

1 **Title:** Anergiobiosis: a testable framework for microbial life under extreme power limitation

2

3 **Authors:** Paul Carini^{1,2}, Roland Hatzenpichler³, Jennifer F. Biddle⁴

4

5 **Affiliation:**

6 ¹Department of Environmental Science, University of Arizona, Tucson AZ

7 ²BIO5 Institute, University of Arizona, Tucson, AZ

8 ³Department of Chemistry and Biochemistry, Department of Microbiology and Cell Biology,
9 Thermal Biology Institute, Center for Biofilm Engineering, Montana State University, Bozeman,
10 MT

11 ⁴School of Marine Science and Policy, University of Delaware, Lewes DE

12

13 **Abstract:**

14 "Aeonophily" was recently suggested as a new category of extremophily for ultra-slow-growing
15 subsurface microorganisms. This terminology conflates a physiological state with potential
16 extremophilic specialization. We propose "anergiobiosis" to describe life without sufficient
17 power to sustain cell division, separating this state from questions about specialization.
18 Analogous to temperature extremophiles, microbes may exhibit distinct maintenance power
19 optima, with aeonophiles representing low-power specialists. We outline testable hypotheses
20 for establishing whether specific taxa possess such adaptations.

21

22 **Main Text:**

23 Lloyd and Steen recently proposed that ultra-slow microbial life may persist over geological
24 timescales and represent a distinct extremophile category defined by prolonged survival of
25 ultra-slow-metabolizing organisms, they call "aeonophiles" (long-time-loving)¹. Their synthesis
26 labels remarkable biology and raises important questions about how we conceptualize
27 extremophily and life at its thermodynamic limits. Here, we propose that distinguishing the
28 physiological state from potential extremophilic specialization requires different terminology
29 that captures the underlying biology.

30

31 **The challenge with aeonophily as an extremophile category**

32 Terminology shapes how we think about biological phenomena. The words we choose to
33 describe organisms influence our hypotheses, experimental designs, and interpretations.
34 Labeling organisms as "aeonophiles" implies they "love" slow growth in the same way
35 thermophiles "love" heat, suggesting slow growth represents their physiological optimum
36 rather than an ecological constraint they tolerate.

37

38 Extremophile nomenclature traditionally reflects a defining feature of these organisms: growth
39 optima under extreme conditions of an independent environmental variable. Thermophiles
40 don't just tolerate high temperature; they grow *better* at high temperature—and become
41 inactive below a threshold—with genomes encoding heat-stable proteins and membrane lipids
42 that confer competitive advantages at high temperature. The '-phile' distinction therefore

43 identifies organisms with specific physiological adaptations to discrete environmental variables
44 (temperature, pH, salinity, pressure) that can be manipulated to demonstrate optimal growth.

45
46 Applying this framework to include aeonophiles presents two fundamental challenges. First,
47 time cannot be separated as an independent variable analogous to temperature, pH, salinity, or
48 pressure. Long timescales are the timeframe over which microbes experience environmental
49 limitations, not conditions they adapt to. While organisms can evolve dormancy mechanisms
50 and efficient maintenance strategies, these represent responses to resource scarcity, not to
51 time itself as a selective pressure.

52
53 Second, without an independent environmental variable that can be manipulated to show
54 optimal growth, we cannot establish aeonophily as experimentally testable. Unlike the growth
55 optimization apparent in other extremophiles, there is no direct evidence aeonophiles are
56 obligated to ultra-slow rates. For example, subsurface taxa proposed to be aeonophiles—
57 including some members of the Atribacteria, *Thalassospira*, Bathyarchaeia, and
58 *Promethearcheum*—grow orders of magnitude *faster* when grown with increased substrate
59 availability, both in the laboratory^{2–5} and during transient high-flux events in sediments⁶. This
60 growth response is the opposite pattern expected for true extremophiles: thermophiles grow
61 poorly when removed from high temperature and halophiles grow poorly at low salinity. Yet,
62 proposed aeonophiles grow *faster* when substrate limitation is relieved. This demonstrates that
63 *in situ* ultra-slow growth rates result from environmental limitations rather than physiological
64 adaptation requiring slow growth. Because time itself cannot be manipulated as an
65 independent variable, we cannot test whether any organism truly optimizes growth at ultra-
66 slow rates; the concept of aeonophily as presented¹ is thus an untestable hypothesis.

67
68 The aeonophile proposal further redefines extremophile fitness as “who dies the slowest, rather
69 than who grows the fastest.” While this acknowledges distinct selective pressures in power-
70 limited environments, the '-phile' suffix still implies optimal fitness under extreme power
71 limitation. Net growth rate (reproduction rate minus death rate) integrated over geological time
72 determines which lineages persist. The organism that “dies the slowest” is also most likely to
73 survive and reproduce when conditions improve—which is what net growth fitness already
74 measures. Moreover, reframing fitness around survival does not resolve the core problem: time
75 cannot be isolated as a variable to demonstrate that persistence reflects physiological
76 adaptation rather than environmental circumstance. For example, survival over geological
77 timescales may also result from abiotic physical or geochemical protection. Without the ability
78 to disentangle these experimentally, aeonophily describes a pattern of survival rather than a
79 demonstrated adaptive strategy.

80
81 **Is survival over geological timescales an extremophile trait?**
82 For a trait to qualify as extremophilic, we should demonstrate some organisms possess it while
83 others do not, with demonstrable fitness advantages along a gradient of the relevant
84 environmental variable. The observation that certain taxonomic groups dominate deep
85 subsurface environments is suggestive but does not, by itself, establish extremophily. The key

86 question is not whether organisms can persist at near-zero growth under extreme energy
87 limitation—retentostats demonstrate this is broadly achievable across phylogenetically diverse
88 taxa⁷⁻⁹—but whether specific lineages have evolved competitive advantages at maintaining
89 viability under these conditions compared to other organisms held under identical constraints.
90 Phylogenetic clustering in subsurface environments could reflect true specialization (i.e.
91 aeonophily), dispersal limitation, superior dormancy, or historical contingency. The observation
92 that very few taxa are limited to subsurface environments argues against obligate aeonophily
93 and suggests they may tolerate rather than require extreme power limitation.

94
95 We agree that evidence from subsurface environments—including lack of genetic
96 recombination³, minimal mutation accumulation¹⁰, persistent mRNA¹¹, and active
97 metabolism¹²—supports rare cell division. However, current methods measure community-
98 averaged rates that integrate metabolic states of large cell numbers and cannot distinguish
99 individual cell fates over geological timescales (see below). Distinguishing whether subsurface
100 dominance reflects true aeonophilic specialization, dispersal advantages, superior dormancy,
101 historical contingency, or a combination of these factors requires comparative experiments
102 testing whether subsurface-associated taxa outperform phylogenetically diverse organisms
103 under controlled conditions of extreme power limitation. Current evidence does not yet meet
104 this standard.

105

106 **Anergiobiosis: Life without work**

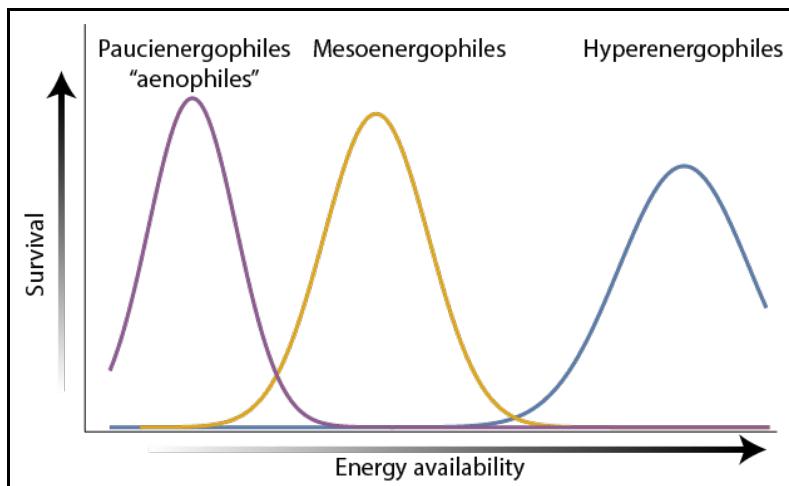
107 We propose anergiobiosis (an- = without, ergon = work/energy, bios = life) as a framework for
108 understanding microbial life persisting at thermodynamic limits. This terminology parallels
109 established biological nomenclature like anhydrobiosis (life without water), directly describing
110 the physiological state rather than implying preference or optimization. Unlike aeonophile,
111 'anergiobiosis' describes what subsurface organisms experience: life without sufficient power
112 to support cell division.

113

114 Anergiobiosis describes the state of maintaining cellular viability when energy supply falls
115 below thresholds supporting cell division but allows maintenance metabolism. Power utilization
116 in deep subsurface environments (as low as 1.5×10^{-20} watts per cell¹³) falls orders of
117 magnitude below maintenance power requirements measured in other systems. Anergiobionts
118 are therefore organisms demonstrating capacity to maintain this state.

119

120 This framework is mechanistically grounded and testable through energy budgets, ATP
121 turnover, metabolic flux, maintenance power coefficients, and single cell measurements¹⁴. It
122 separates the physiological state (anergiobiosis) from questions about adaptation versus
123 tolerance and remains accurate regardless of what specifically limits energy availability.


124

125 Within the anergiobiosis framework, aeonophily as proposed¹, could represent a specific
126 extremophile designation: organisms that not only tolerate anergiobiotic conditions but are
127 specifically adapted to maintain viability better than other organisms under identical conditions
128 of extreme energy limitation. Just as microbes partition across temperature gradients
129 (psychrophiles, mesophiles, thermophiles), microbes may partition along energy availability
130 gradients based on their maintenance energy optima. We propose three new putative
131 categories of power specialists: paucienergophiles (low power specialists, colloquially
132 “aeonophiles”), mesoenergophiles (intermediate-power specialists), and hyperenergophiles
133 (high-power specialists) (Fig. 1).

134

135 True paucienergophiles
136 (“aeonophiles”) would possess
137 low basal power requirements,
138 conferring competitive
139 advantages by maintaining
140 lower death rates and resuming
141 cell division at lower energy
142 inputs. However, systematically
143 measuring maintenance power
144 thresholds—the power level at
145 which cell division equals zero—
146 remains technically challenging
147 and is largely unaccomplished.
148 Not all organisms capable of
149 entering anergiobiosis would
150 qualify as paucienergophiles
151 (aeonophiles). The designation
152 requires demonstrating *superior*
153 performance under energy
154 limitation, not merely
155 persistence.

156
157 We agree that low energy
158 delivery represents the dominant
159 selective pressure in deep subsurface environments. Importantly, hypotheses about
160 aeonophilic specialization remain testable even in organisms that have been successfully
161 cultivated and grow readily in the laboratory. The question is not whether organisms can grow,
162 but whether they possess specific molecular adaptations enabling extended viability under
163 energy limitation. A thermophile remains a thermophile even when growing at suboptimal
164 temperature—its heat-stable proteins and specialized membrane lipids are demonstrable
165 regardless of culture conditions. Similarly, if subsurface taxa possess adaptations conferring
166 aeonophilic advantages, these should be detectable through comparative molecular and
167 physiological analyses whether organisms are actively growing or not.

Fig. 1 Microbial survival may partition along energy availability gradients. Proposed framework analogous to specialization in other extremophiles. Paucienergophiles (“aeonophiles”, purple) would exhibit optimal survival performance at very low power availability, possessing lower basal maintenance requirements than other organisms. Mesoenergophiles and Hyperenergophiles are potential specialists at moderate (yellow) and high (blue) power availability, respectively. Measurements of maintenance power thresholds across microbial diversity would be required to validate this framework.

168

169 Current evidence suggests but does not yet establish energy specialization in this manner as a
170 distinct extremophile category. Subsurface-associated taxa may possess specific adaptations
171 enabling extended persistence: ultra-stable biomolecules resisting degradation, efficient repair
172 systems that minimize damage accumulation, protective compounds preventing protein
173 aggregation, mRNA-stabilizing factors, and specialized enzymes degrading recalcitrant organic
174 matter. These are testable hypotheses about mechanisms enabling superior performance in
175 anergiobiosis. Lloyd and Steen cite slow growth under ideal conditions and specialized
176 enzymes as potential aeonophilic trade-offs¹. However, establishing aeonophily as an
177 extremophile category requires demonstrating that these taxa maintain viability *better* than
178 other non-aeonophilic organisms under controlled conditions of extreme energy limitation, not
179 just observing that they dominate natural subsurface environments, produce unusual enzymes
180 or biomolecules, or grow slowly in the laboratory.

181

182 The anergiobiosis framework clarifies experimental approaches needed to test aeonophily.
183 Current methods measure community-averaged rates and cannot resolve individual cell fates;
184 a measured community doubling time of thousands of years could represent all cells dividing
185 slowly, a fraction dividing while most remain dormant, or turnover balancing sporadic divisions.
186 Testing requires resolving individual cell behaviors through single-cell measurements,
187 identifying molecular signatures of specialized maintenance or repair machinery, and
188 comparing performance across taxa under controlled energy limitation. Such approaches need
189 not depend on cultivation and could leverage *in situ* single-cell techniques, comparative
190 genomics, and experimental manipulations of natural communities to determine whether
191 subsurface-associated taxa represent true extremophiles or simply persist in power-limited
192 habitats.

193

194 **Conclusion:**

195 Lloyd and Steen's synthesis highlights biology that represents a dominant mode of microbial
196 life on Earth. We extend their work to propose anergiobiosis as terminology that captures this
197 biology while maintaining experimental testability and mechanistic precision. This framework
198 distinguishes the physiological state all organisms can enter from potential extremophilic
199 specialization some may possess. We suggest microbes may partition along power availability
200 gradients based on maintenance power optima, with "aeonophiles" representing potential
201 specialists at very low power. This focuses research on testable hypotheses about survival
202 mechanisms, maintenance power minimization, and damage repair under extreme power
203 limitation. Whether subsurface-associated taxa represent true aeonophilic specialists remains
204 an open question that the anergiobiosis framework provides clear experimental pathways to
205 resolve.

206

207 **Acknowledgements:**

208 P.C. was supported through an Early Career in Aquatic and Marine Ecology and Evolution
209 award from the Simons Foundation. R.H. was supported through NSF award OCE-2049445.
210 J.F.B. was supported by an award from the WM Keck Foundation.

211

212

213 **References:**

214 1. Lloyd, K. G. & Steen, A. D. Defining ultra-slow-growing extremophilic microorganisms as
215 aeonophiles. *Nat. Microbiol.* **10**, 1555–1557 (2025).

216 2. Katayama, T. *et al.* Isolation of a member of the candidate phylum “Atribacteria” reveals a
217 unique cell membrane structure. *Nat. Commun.* **11**, 6381 (2020).

218 3. Orsi, P. C. W. *et al.* Genome Evolution in Bacteria Isolated from Million-Year-Old
219 Subseafloor Sediment. *mBio* **12**, e01150-21 (2021).

220 4. Yu, T. *et al.* Widespread Bathyarchaeia encode a novel methyltransferase utilizing lignin-
221 derived aromatics. *mLife* **2**, 272–282 (2023).

222 5. Imachi, H. *et al.* Isolation of an archaeon at the prokaryote-eukaryote interface. *Nature*
223 **577**, 519–525 (2020).

224 6. Vuillemin, A. *et al.* Atribacteria reproducing over millions of years in the Atlantic abyssal
225 subseafloor. *MBio* **11**, (2020).

226 7. Vos, T. *et al.* Maintenance-energy requirements and robustness of *Saccharomyces*
227 *cerevisiae* at aerobic near-zero specific growth rates. *Microb. Cell Fact.* **15**, 111 (2016).

228 8. Tappe, W. *et al.* Maintenance energy demand and starvation recovery dynamics of
229 *Nitrosomonas europaea* and *Nitrobacter winogradskyi* cultivated in a retentostat with
230 complete biomass retention. *Appl. Environ. Microbiol.* **65**, 2471–2477 (1999).

231 9. Ercan, O., den Besten, H. M. W., Smid, E. J. & Kleerebezem, M. The growth-survival trade-
232 off is hard-wired in the *Lactococcus lactis* gene regulation network. *Environ. Microbiol.*
233 *Rep.* (2022) doi:10.1111/1758-2229.13073.

234 10. Starnawski, P. *et al.* Microbial community assembly and evolution in subseafloor sediment.
235 *Proc. Natl. Acad. Sci. U. S. A.* **114**, 2940–2945 (2017).

236 11. Orsi, W. D., Edgcomb, V. P., Christman, G. D. & Biddle, J. F. Gene expression in the deep

237 biosphere. *Nature* **499**, 205–208 (2013).

238 12. Morono, Y. *et al.* Aerobic microbial life persists in oxic marine sediment as old as 101.5
239 million years. *Nat. Commun.* **11**, 3626 (2020).

240 13. Bradley, J. A. *et al.* Widespread energy limitation to life in global subseafloor sediments.
241 *Sci Adv* **6**, eaba0697 (2020).

242 14. Hatzenpichler, R., Krukenberg, V., Spietz, R. L. & Jay, Z. J. Next-generation physiology
243 approaches to study microbiome function at single cell level. *Nat. Rev. Microbiol.* **18**, 241–
244 256 (2020).

245