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Abstract

In fire-prone regions globally, evolution of plant traits that confer resilience to historical fire
regimes is widespread. However, many common plant species are currently declining due to a
mismatch between historical and contemporary fire regimes. These changes threaten long
term community trajectories of plants and the animal species relying on them for food or
habitat. Understanding plant responses to fire at critical life stages is needed to improve
conservation of plant-animal interactions. We investigated how fire history affected
reproductive traits (i.e., proportion germination, time to 50% germination, reproductive
output, population age structure) relevant to critical life history stages of Allocasuarina
littoralis and A. torulosa (Casuarinaceae). In southeast Queensland, Australia, these species
are primary food trees of the nationally vulnerable Glossy black-cockatoo (Calyptorhynchus
lathami, Cacatuidae). For both species, fire-cues (heat and smoke) did not increase the
proportion of seed germinated, but proportion germination increased with seed weight.
Heavier seeds were associated with exposure to more extreme environments such as
environments with higher fire frequencies and temperature variability. In A. forulosa, seed
weight generally increased germination time, except when seeds were collected from
frequently burned sites which could be linked to a trade-off between resprouting and seed
production. Heat and smoke slowed germination of A. forulosa (recorded as time to 50%
germination) but had no effect on 4. /ittoralis. Fire history did not influence reproductive
output or population age structure in either species, but reproductive output was greater in
sites with more woody vegetation cover, potentially reflecting greater establishment success.
For restoration, our results indicate that fire is not necessary for successful germination in 4.
littoralis or A. torulosa, but when collecting seeds the local fire history and seed weight
should be considered, especially for A. forulosa. Our results can inform Glossy black-

cockatoo conservation by guiding fire management practices associated with their food trees.

Introduction

The regeneration niche of plant species defines the climatic (e.g., temperature and
precipitation) and environmental (e.g., nutrient availability, interspecific competition and
allelopathy) conditions which control seed production, germination, establishment, and

transitions from early life stages to adulthood (Grubb 1977; Pérez-Ramos ef al. 2012; Poorter
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2007; Smith et al. 2016). Given the close relationship between plant fitness and reproduction,
the regeneration niche places reproductive traits under stronger selection pressure than
vegetative traits (Campbell et al. 2022; Keeley et al. 2011; Villellas ef al. 2021). This stronger
selection on reproductive traits is reflected in fire-driven evolution of traits such as post-fire
reproductive mode, fire-cued germination responses, and serotiny which increase plant
species fitness for their historical fire regimes (Gill 1977; Gémez-Gonzalez et al. 2011;
Keeley and Pausas 2022; Pausas et al. 2004). However, contemporary fire regime changes
are likely to shift the regeneration niche, potentially resulting in trait misalignments, due to
changes in seasonality, frequencies, intensities, durations, and scales of fire (Dowdy et al.
2019; Le Page et al. 2017; Moritz et al. 2012). Contemporary fire regime changes are a key
threatening process resulting in declining abundances and range sizes of plants, even for
previously common and widespread species (Enright ef al. 2015; Fairman et al. 2016; Gaston
and Fuller 2007; Grau-Andrés ef al. 2024; Le Breton et al. 2022). Thus, understanding plant
responses to fire throughout their life cycle is critical, especially at early life stages and

through transitions to adulthood (Smith ez al. 2016).

In fire-prone ecosystems, post-fire reproductive modes can be divided broadly into
resprouters, which survive through tissue structures below bark or soil (R+); or obligate
seeders which are killed by fire but persist through propagules (i.e., seed) stored in soil or
canopy seedbanks (P+) (Clarke et al. 2015; Pausas et al. 2004; Pausas and Keeley 2014).
These strategies result in contrasting life histories: resprouters are long-lived with low
population turnover, whereas obligate seeders are short-lived with high population turnover
(Pausas et al. 2004; Pausas and Keeley 2014). Resprouters generally have lower seed
production and seedling densities than seeders, and higher investment in resprouting tissue
production may slow maturation rates (Bendall ez al. 2022; Hunter 2003; Ojeda et al. 2016;
Pausas et al. 2004; Pausas and Keeley 2014; Verdt 2000; Whelan et al. 2002). Thus,
resprouters show a trade-off between seed investment and resprouting responses (Bendall et
al. 2022; Hunter 2003; Ojeda et al. 2016; Pausas et al. 2004; Pausas and Keeley 2014; Verdu
2000; Whelan et al. 2002). Conversely, obligate seeders have high seed production and high
seedling densities, with mass recruitment events post-fire (Hunter 2003; Keith ef al. 2002;

Ojeda et al. 2016; Pausas and Keeley 2014).

Population age structure, defined as the distribution of age classes within a population

(hereafter ‘age class structure’) (Li and Barclay 2001; Taylor 2010), consequently varies
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across these contrasting post-fire reproductive modes. After fire, obligate seeders tend to form
even aged-cohorts resulting from mass recruitment events, while resprouters tend to maintain
their pre-fire age class structure and form multi-aged cohorts (McCarthy et al. 1999; Pausas
and Keeley 2014; Taylor 2010). Consequently, short interval fires relative to the lifespan of
obligate seeders can shift populations into younger states, a phenomenon observed in
Eucalyptus regnans (Myrtaceae) (McCarthy et al. 1999). Such shifts can leave populations of
obligate seeders more susceptible to an immaturity risk as frequent short interval fire can
compromise their ability to reach reproductive maturity and increase the potential for
localised extinctions (Agne et al. 2022; Keith 1996; McColl-Gausden ef al. 2022; Pausas and
Keeley 2014). In resprouters, shifts in age class structure can result from extremely short or
long fire return intervals as these species require time to replenish bud banks and produce
protective bark, but have reduced capacity to initiate shoots with age (Christensen et al. 1981;
Clarke et al. 2015; Gill and Catling 2002). However, fire at appropriate intervals remains
critical for obligate seeders and resprouters to cue regeneration, promote seedling
establishment, and stimulate flowering (Agne et al. 2022; Enright et al. 2011; McCarthy et al.
1999; Taylor 2010; Thomsen and Ooi 2022; Zirondi et al. 2021). Thus, fire and post-fire
reproductive mode act as strong drivers of age class structure but few studies examine these
effects in closely related obligate seeders and resprouters (e.g., Ojeda et al. 2016;

Schmidberger and Ladd 2020).

Regeneration from seed is a critical population process for obligate seeders; and also for
resprouters to enable successful colonisation of new sites or recolonisation after local
extinction (Bellingham and Sparrow 2000; Kennard ef al. 2002; Pausas and Keeley 2014).
Therefore, seeds must possess traits conferring resilience to fire and other environmental
stressors (Bradshaw et al. 2011; Rosbakh et al. 2023; Tangney et al. 2020). Seed traits show
substantial variability (Fenollosa ef al. 2021; Helsen ef al. 2017; Pausas et al. 2024); for
example, seed size can vary widely between populations and species due to differential
selection from dispersal mode (wind, water, or animal), growth form (tree, shrub or grass),
and environmental attributes (climate and vegetation structure) (Moles ef al. 2005; Sims
2012). Fire can drive selection on seed size due to its relation to heat tolerance with larger
seeds providing greater insulation to embryos (Escudero et al. 2000; Gomez-Gonzalez et al.
2011; Lamont et al. 2019; Pausas and Lamont 2022). Conversely, smaller seeds are
associated with higher reproductive output in obligate seeders and might be selected under

certain fire regimes (Verda 2000). Therefore, exposure to more frequent or intense fire may
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result in development of larger seeds in these species (or populations) than close relatives in
environments with lower fire activity, but this likely depends on post-fire reproductive mode
(Escudero et al. 2000; Gomez-Gonzalez et al. 2011; Lamont et al. 2019; Pausas and Lamont
2022; Verda 2000). Studying closely related species with differing post-fire reproductive
modes can help disentangle the role of fire in trait variation and germination because
differences can be explained by environmental variation and trait variation rather than
phylogeny (Cortés-Flores et al. 2020; Fenollosa et al. 2021; Seglias et al. 2018; Wang et al.
2016; Zhao et al. 2021). However, only a few studies have investigated the role of fire and
post-fire reproductive mode in driving reproductive trait variability (e.g., Tangney et al.
2020), especially in phylogenetically related species (e.g., Ojeda et al. 2016; Schmidberger
and Ladd 2020).

Contemporary changes in fire regimes are causing misalignments between plant trait
variability and fire regime characteristics (Canadell et al. 2021; Day et al. 2020; Harvey and
Enright 2022; Johnstone et al. 2016; Kelly et al. 2025; Moritz et al. 2012). For example, fires
in sclerophyllous vegetation ecosystems have increased in severity, such that even species
with well-established fire adaptations (i.e., resprouting or fire-cued germination) can fail to
regenerate (Bennett ef al. 2016; Etchells ef al. 2020; Sano et al. 2025). These declines may
impact plant-animal or trophic interactions, as plants are strong drivers of community
structure and function (Ballarin et al. 2024; Carbone ef al. 2019; Ellison 2019; Kelly et al.
2020; Rainsford et al. 2020; Smith 2018). Specialist interactions are most vulnerable to these
declines; yet are drastically understudied in fire ecology (Charles et al. 2025). Whether trees
can adapt in situ to fire regime changes is unclear, as more extreme climatic conditions have
led to declining post-fire regeneration success (Kelly ef al. 2025; Stevens-Rumann et al.
2018; Young et al. 2019). Therefore, understanding how plants respond to fire requires an
understanding of species’ responses to local and recent fire history. There has been much lab-
based research on fire-cued germination responses (reviewed in Hodges et al. 2021; Moreira
et al. 2010; Newton et al. 2021; Ooi et al. 2014; Younis and Kasel 2023). However, fire
history from the seed collection site has infrequently been included in fire-cued germination
analyses (e.g., Gomez-Gonzélez ef al. 2016; Gomez-Gonzélez ef al. 2011; Kasel et al. 2024;
Plumanns-Pouton et al. 2024; Vandvik et al. 2014; Zaki et al. 2021) and often from only
recent short term fire histories (e.g., <1 to 15 years post-fire, Amoako and Gambiza 2021;
Dawe et al. 2022; Luo et al. 2022; Schmidberger and Ladd 2020; Zimmer et al. 2021;

Zimmermann et al. 2008). To determine whether enough trait variability exists to allow



152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

species to respond to contemporary fire regime changes, we require more studies of critical
regeneration stages (i.e., germination and transitions through seedlings and saplings to adults)

where short-term (1-10 years) and multi-decadal (30 or more years) fire histories are known.

I investigated the influence of fire on reproductive trait variation in two congeneric species
with differing post-fire reproductive modes: the obligate seeder Allocasuarina littoralis and
the facultative resprouter Allocasuarina torulosa (Casuarinaceae). These Allocasuarina
species are common across eastern Australia, where they form mixed stands with Eucalyptus
spp.. Allocasuarina littoralis typically occurs in swamps and eucalypt woodlands and forests,
and A. torulosa in wet eucalypt forests (Atlas of Living Australia 2021a; Atlas of Living
Australia 2021b; Neldner ef al. 2019). The distributions of these species overlap, extending
from the coast to ca. 300 km inland. A/locasuarina torulosa extends from Cairns to Sydney
with a small population in Cape York Peninsula in far-north Queensland. A/locasuarina
littoralis has a broader range, from far-north Queensland to the Fleurieu Peninsula in South
Australia (Atlas of Living Australia 2021a; Atlas of Living Australia 2021b). Fire
management guidelines are often based on the Eucalyptus species which co-occur with
Casuarinaceae, but eucalypts require different fire regime conditions than she-oaks (Kellman
1986; Moss et al. 2011; Neldner et al. 2019; Stewart and Moss 2015). Although these
Allocasuarina species are common and widespread, their seeds are primary food resources
for the dietary specialist Glossy black-cockatoos, Calyptorhynchus lathami (Cacatuidae)
(listed nationally as Vulnerable, EPBC Act 1999), which has one of the most specialised diets
of all Australian birds (Chapman 2007; Menkhorst et al. 2024). Thus, understanding the fire

ecology of Allocasuarina spp. is fundamental to effective conservation for these cockatoos.

Reproductive traits investigated were: germination rates in response to heat and smoke
treatments (i.e., proportion germination, time to 50% germination); age class structure (i.e.,
ratio of seedlings and/or saplings to adults); seed size (i.e., seed weight); and female
reproductive output. Proportion of seeds that germinated was used as a measure of an
individual trees resilience to seed treatments, with higher proportions of germinated seeds
indicating higher resilience. Time to 50% germination was used as a measure of an
individual’s competitiveness, such that less time to reach 50% germination indicated faster
establishment, and thus, a higher competitiveness. Seed weight was used as a measure of seed
size and related to an individuals’ investment in sexual reproduction. These traits were

analysed in relation to fire regime variables, at the site where seeds were collected, that could
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drive short-term ecological responses (e.g., time since last fire), and longer-term evolutionary

responses (e.g., responses to multiple fire events — fire frequency) (Fig. 1).

PLANT REPRODUCTIVE )
TRAITS i ¥ ENVIRONMENT
POST-FIRE REPRODUCTIVE Smoke
MODE SEVERITY

Seeding (P+) Resprouting (R+)

REPRODUCTIVE OUTPUT FIRE
INTERVAL FREQUENCY
Number of cones i : REGIME
P+7 R+ Time since fire Number of
times burnt
SEED WEIGHT INTENSITY
PH1 R+l Heat and smoke
AGE CLASS STRUCTURE
-@-
Proportion of seedlings and » CLIMATE CHANGE
saplings within total population
Pri Rt & MANAGEMENT

Figure 1 Conceptual diagram showing the relationship between plant reproductive traits, fire regime attributes,
environmental attributes, climate change, and management. Plant-reproductive trait arrows relate to my
hypotheses regarding plant trait responses between differing post-fire reproductive modes to increasing fire
frequency. I expected reproductive output, seed weight, and age class structure to increase with fire frequency in

the obligate seeder and decrease in the facultative resprouter.

I first aimed to determine how contemporary fire frequency, and post-fire reproductive mode,
affected fire-cued germination responses and seed size. (H1) I expected that post-fire
reproductive mode would shape fire-cued germination responses and seed investment, with
higher seed investment and tolerances in 4. littoralis (obligate seeder) than A. torulosa
(facultative resprouter). Allocasuarina littoralis was expected to have higher seed investment
with a larger quantity of smaller seeds, which would increase in environments with increasing
fire frequencies, high germination rates in response to heat and smoke, and a higher lethal
temperature threshold (Paula and Pausas 2008; Pausas and Keeley 2014). Allocasuarina
torulosa was expected to have lower seed investment, which would reduce with increasing
fire frequency, lower germination rates in response to heat and smoke, and a lower lethal
temperature threshold (Paula and Pausas 2008; Staden ef al. 2000). Exposure to frequent fire

was expected to correspond with an increase in seed weight for 4. littoralis, but an decrease
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in seed weight in 4. torulosa due to a trade-off between seed production and resprouting

capacity (Bellingham and Sparrow 2000; Pausas and Keeley 2014).

Second, I aimed to determine how fire frequency, time since fire, and post-fire reproductive
mode influenced age class structure and reproductive output (i.e., number of cones). (H2) I
expected that longer times since fire and low fire frequencies would reduce the proportions of
plants in younger age classes (i.e., seedling and sapling age classes) but increase reproductive
output. (H2a) Due to the immaturity risk of the obligate seeding mode of reproduction, I
expected high fire frequencies and short times since fire would result in fewer plants in
younger age classes in A. littoralis than A. torulosa. (H2b) I also expected that higher fire
frequencies and short times since fire would reduce reproductive output due to stem or cone
consumption by fire and reduced capacity to reach reproductive maturity during inter-fire

periods (Enright and Lamont 1989; Pausas and Keeley 2014).

Third, I aimed to investigate how environmental attributes relating to site productivity
(topographic wetness, quantifying water availability (Gallant and Austin 2012); foliage
projective cover, quantifying the percentage of the ground covered by woody vegetation;
thus, photosynthetic potential (Fisher ef al. 2018)) and climatic attributes (latitude;
precipitation seasonality and temperature seasonality, quantifying annual range trends (Noce
et al. 2020; Wang et al. 2024)) interacted with fire regimes to influence reproductive trait
variation. (H3) I expected environments with low site productivity and increasing climatic
variability would be associated with more stressful environments, reducing reproductive
output, seed weights, and proportions of younger age classes (Enright et al. 2015; McColl-
Gausden et al. 2022). Additionally, as lower latitudes are associated with increased
temperatures, promoting photosynthesis, growth and reproductive processes, I expected these
sampling locations to have higher reproductive outputs, seed weights and proportions of
younger age classes (Chamorro et al. 2018; Kéber et al. 2021; Moles and Westoby 2003;
Wang et al. 2023).
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Methods

Study region

This study took place in southeast Queensland, Australia, within the distributions of
Allocasuarina littoralis and A. torulosa. The Glossy black-cockatoo is a dietary specialist in
eastern Australia, listed as vulnerable (EPBC Act 1999) (Department of Climate Change
2022). These cockatoos feed exclusively on a subset of species (12 of 78 species) in the
Casuarinaceae family (Chapman 2007) including the two examined here. Glossy black-
cockatoos are notoriously cryptic, shifting their feeding locations in response to a range of

unknown environmental cues (similar to other nomadic bird species, Webb et al. 2014).

Sampling locations included public land (i.e., national parks and state forests) and private
properties such as Hidden Vale Nature Refuge, Dwyers Scrub Conservation Park, Gillies
Ridge Nature Refuge, Bartopia Nature Refuge, and Bulimbah Nature Refuge (Fig. 2). The
region has a temperate climate with mean maximum temperatures in summer ranging from
25 °C to 32 °C, and winter from 17 °C to 21 °C. The mean annual rainfall in the region
ranges from 688 mm to 1584 mm. In my inland study region in southeast Queensland, 4.
torulosa is more common than A. littoralis (Atlas of Living Australia 2021a; Atlas of Living
Australia 2021b). Dominant vegetation included eucalypt woodland to open forests for A.
littoralis and A. torulosa sampling locations, and wet eucalypt forests for 4. torulosa
sampling locations (Neldner et al. 2019). At these sampling locations, the dominant soil
orders included tenosols, sodosols and dermosols and soil types included volcanics; red soils;

sandstone; and igneous, Cainozoic and sedimentary rocks (Neldner et al. 2019).
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Figure 2 Sampling locations of two Allocasuarina species in southeast Queensland, Australia. Protected areas
are displayed with black outlines including public land (state forests and national parks) and privately managed
nature refuges. Fire frequency between 1987-2023 is shown in red shading (see Charles et al. 2025 under
review) and ranged from 0 to 11 fires in the past 36 years for the study region, with white representing arcas
mapped as unburnt. To aid visualisation of fire frequency variation between my sampling transects, fire

frequency was rescaled so areas burnt 7 or more times are represented by the darkest shade of red.

Allocasuarina littoralis and A. torulosa are dioecious trees growing 5 to 15 m and 5 to 30 m
tall, respectively (Australian Biological Resources Study. Advisory Committee 1989; Spencer
1995). Allocasuarina littoralis has a more coastal distribution on sandy, heavy clay, or stony
soils (Australian Biological Resources Study. Advisory Committee 1989; Foreman and Walsh
1993) while Allocasuarina torulosa may be found in coastal regions but is also common in
forests on fertile soils (Australian Biological Resources Study. Advisory Committee 1989;
Stanley et al. 1983). Allocasuarina littoralis has an average longevity of 50-70 years but may
live for >500 years, while A. torulosa has a longevity of 500 years (Falster ef al. 2021; Kattge
et al. 2020). Reproductive maturity is usually reached in five years for both species, but 4.
littoralis may take 10 years (Falster ef al. 2021; Kattge ef al. 2020). Both species gradually
release seed from serotinous cones as they dry, allowing recruitment in the absence of fire
(Crowley 1986; Falster et al. 2021; Kattge et al. 2020). Allocasuarina littoralis is commonly
described as an obligate seeder (R-P+) which is fire killed and germinates from canopy-
stored seed (Falster ef al. 2021). However, intermediate post-fire resprouting capacity from

basal lignotubers has also been reported in A. littoralis but is likely linked to low severity
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fires which do not kill stems or result in 100% scorch (Falster ef al. 2021; Kattge et al. 2020)
(a condition required for categorisation as R+, Pausas ef al. 2004). Allocasuarina torulosa is
a strong basal and epicormic facultative resprouter, also displaying fire-cued seeding

responses when canopy seedbanks are available (R+P+) (Kattge et al. 2020).

Both tree species lack seed dormancy beyond the physical dormancy imposed by storage in
serotinous cones (Crowley 1986; Turnbull and Martensz 1982). Germination occurs across a
range of incubation temperatures between 17-37 °C (Turnbull and Martensz 1982). There has
been limited research on fire-cued germination in A4. littoralis and A. torulosa (but see, Clarke
et al. 2000; Crowley 1986). In other Casuarinaceae, seeds have been reported to survive heat
shock of up to 120 °C (Callister ef al. 2018; Hanley and Lamont 2000). Allocasuarina leaf
litter burns at high temperatures (e.g., 60 ° to 111 °C at 1 cm soil depth, Tangney et al. 2020),

likely exposing canopy seedbanks to temperatures above 100 °C.

Field age class structure surveys and cone collection

I established 40 sampling points to cover a range of fire histories within the distribution of the
Glossy black-cockatoo, A. littoralis, and A. torulosa. Age class structure surveys investigated
the hypotheses that (H2) fire history and (H3) environmental attributes influenced
proportions of plants in younger age classes and reproductive output. Identification of
sampling point was assisted using occurrence records from Atlas of Living Australia. From
these records, I randomly selected sampling points across a range of fire frequencies. In the
field at these sampling points, I then located a stand of Allocasuarina but where no
Allocasuarina were found, further scouting was performed to locate a stand of Allocasuarina
with a similar fire frequency. More sampling points were able to be established at low fire
frequencies (1-3 fires from 1987-2023; 32 transects), the majority (n = 26) of which were A.
torulosa transects, than high fire frequencies (4-7 fires from 1987-2023; six transects), all of
which were 4. torulosa transects. Once the stand of Allocasuarina was identified at the
sampling point, a 50 m x 4 m transect was established at an individual tree and age class
structure was measured, with transects spaced at least 140 m apart (range within sampling
locations 140 m — 14 km). Measurements from each individual 4/locasuarina along the
transect included: age class; diameter at breast height (DBH), recruitment type (e.g., basal

resprout, trunk resprout, seedling or none); condition (e.g., dead or alive); and height (using a
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Suunto PM5/360 PC Clinometer (Vantaa, Finland) or Nikon Forestry Pro II Laser
Rangefinder (Tokyo, Japan)). Age classes were defined as: adult = height >1 m, DBH >3 cm;
sapling = height >1 m, DBH <3 cm; and seedling = height <1 m (see Schmidberger and Ladd
2020). For female plants, the number of cones were counted to measure reproductive output,

with counts over 100 recorded as the average estimates from two observers.

Females bearing cones were randomly selected along and nearby to transects for cone
collection, with at least 20 m spacing between individuals (range within sampling locations
20 m — 130 m). Cones were collected from up to six individuals per transect, with fewer
individuals sampled if no cones were available or cones were not within ca. 5 m of the
ground. On each individual tree, I collected a minimum of two mature cones (i.e., brown to
grey-brown in colour with closed valves) to ensure seed had not been released but were fully
developed. More cones were collected where possible (up to 73 cones with an average of 12
cones per individual) to increase sample sizes for the germination experiment. Cones were
stored in paper bags in a warm, dry environment until seeds were shed and any unshed seeds
were manually extracted from cones using tweezers. Seeds were stored for eight to 24 months
in an air-conditioned laboratory inside an airtight container to minimise ambient temperature

fluctuations prior to the germination experiment.

Germination experiment

Germination experimental overview

I conducted a full factorial germination experiment with a replicated design, to test the
hypothesis (H1) that post-fire reproductive mode variation and fire frequency influenced fire-
cued germination responses. The full factorial experiment was conducted with a replicated
design such that three separate rounds of seed germination were conducted, with individuals
exposed to the same treatment(s) in each replicate. Before conducting this experiment, I ran a
series of optimisation trials to determine incubation temperatures, heat shock temperatures
and durations, aerosol exposure duration and material. Incubation temperature tests were run
to determine the optimal germination temperatures for each species and the baseline
germination rate for Allocasuarina littoralis and Allocasuarina torulosa using thermal
gradient bars (Fig. S1). Heat shock and smoke trials were conducted to determine (1) upper

thresholds for heat tolerance and (2) the level at which seeds would show germination
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variability, thus, indicating heat and smoke levels that could drive selection. The following
seed traits were measured to examine the influence of variation in post-fire reproductive
mode, fire history, and environment on seed investment (H1, H3): seed weight and number of
seeds. Seed lots (i.e., all seeds for an individual) were weighed, both as the whole seed lot
and as a 10 seed fraction to estimate the total number of seeds in the seed lot and average

seed weight per seed for the seed lot.

For all germination experiments, 20 seeds from an individual tree (hereafter ‘individual seed
lot”) were placed in plastic 90 mm petri dishes lined with Whatman no. 1 filter paper
moistened with distilled water and sealed with parafilm to reduce water loss. Seeds exposed
to aerosol smoke were plated on sterile petri dishes prior to germination to reduce exposure to
accumulated smoke residues. Seeds exposed to a combination of heat shock and smoke
treatments were heat shocked prior to aerosol smoke exposure. Seeds in all experiments
(excluding incubation temperature optimisation) were germinated in illuminated refrigerated
incubators (TRIL495-1-SD,Thermoline Scientific, Wetherhill Park, New South Wales,
Australia) with a 12-hour photoperiod provided by Grolux fluorescent lighting (36W) and
temperatures set to 17 °C for Allocasuarina littoralis and 20 °C for Allocasuarina torulosa
(see Fig. S1 and Turnbull and Martensz 1982). Seeds were germinated for at least 21 days,
with germination considered to have occurred upon emergence of the radicle from the testa.
After emergence, the germinant was recorded and removed from the dish to allow space for
other seeds to germinate. If no new seeds germinated between 21-28 days, then germination
was considered to have ceased and the trial ended. If seeds continued to germinate up to 28

days, the germination trial was continued until no new seeds germinated over a 7-day period.

Seed viability measurements

Seed viability was measured using two methods: (1) x-ray prior to germination experiments
to estimate pre-treatment viability without reducing the number of seeds for the experiment,
and (2) post-experiment tetrazolium tests to determine whether seeds which remained
ungerminated at the end of the trial were viable (Peters 2000). X-rays were taken on a
Faxitron MX-20 Imaging system (Lincolnshire, IL, USA), on ca. 100 seeds per individual
seed lot with four replicates of 25 seeds at 28 kV for 6.55 seconds. X-ray images were

examined to determine seed fill; a metric related to the amount of seed embryo and
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endosperm which is correlated with viability (Gagliardi and Marcos-Filho 2011; Tausch ef al.
2024). Unfilled seeds were considered unviable but seeds with partial filling were classed as
viable as there was potential seed mass from which germination could occur. The x-ray
viability data were summarised as the proportion of viable seeds in the individual seed lot for
analysis. Tetrazolium tests used a 1% 2,3-5 triphenyl tetrazolium chloride (TTC) solution
with seeds cut laterally through the distal end of cotyledons and incubated in solution for 18
hours at 30 °C in darkness (Peters 2000). After incubation in TTC solution, seeds were
observed under a dissection microscope with seeds classed as viable if the radicle and
cotyledons were completely stained pink (Peters 2000). Any lack or inconsistencies in TTC

staining was considered to indicate unviable seeds (Peters 2000).

Incubation temperature optimisation

Water in a thermal gradient bar (CSK Model CSK-TGB, Serial 3310; CSK Group, Wacol,
Queensland, Australia) was heated to temperatures ranging between 4 °C to 41 °C, with the
ambient temperature in five chambers monitored on an hourly basis for two weeks using data
loggers (Tinytag, TGP 4500; Hastings data loggers, Port Macquarie, New South Wales,
Australia). Ambient temperatures ranged from ca. 6 °C to 36 °C across 10 insulated
chambers, with chambers differing by ca. 3 °C to 4 °C along the gradient (Fig. S1). During
incubation, seeds were exposed to a 12-hour photoperiod (Callister et al. 2018) of cool white
fluorescent LED light (1200 lumens, 12W). For each species, three individual seed lots,
representing three different individuals, were used with 20 seeds per petri dish, giving 600
seeds across the thermal gradient bar for incubation temperature optimisation. Incubation
temperature optimisation tests were ceased on day 28 as previous studies considered this
sufficient time for viable seeds to germinate (Crowley and Jackes 1990; Turnbull and
Martensz 1982). Ungerminated, viable seed was considered to be exposed to an unsuitable
germination temperature, with germination likely having been slowed by exposure to low
temperatures. Optimal incubation temperatures for germination were determined to be 17 °C

for A. littoralis and 20 °C for A. torulosa (Fig. S1).



415  Heat shock and smoke exposure optimisation

416

417  Preliminary heat shock tests were conducted using a dehydrating oven (Thermoline

418  Scientific, Wetherhill Park, New South Wales, Australia) to determine the lethal temperature
419  threshold. Heat shocks tests were conducted at 80 °C, 95 °C, 110 °C, 125 °C, and 150 °C for
420  durations of 0.5, 1, 2, 5 and 10 minutes. Three individual seed lots from both species with a
421  large quantity of seeds were used for these tests, with cones from two 4. torulosa individuals
422 collected only for optimisation tests. These tests indicated that temperatures over 100 °C

423  were, in most cases, sufficient to kill loose seeds (Fig. S2). Thus, 80 °C and 95 °C were

424  selected for heat shock temperatures in the full factorial experiment as they were below the
425  lethal temperature threshold but still produced variability in germination rates (Fig. S2).

426

427  Allocasuarina species produce dense leaf litter, which has an allelopathic effect on other

428  plants (Ahmed et al. 2019; Buehler 2010). As such, I expected smoke responses in my study
429  species could be strongly tied to smoke from their own leaf litter, rather than smoke more
430  generally. Therefore, aerosol smoke tests were conducted to compare germination responses
431  to smoke from Allocasuarina torulosa leaf litter material and to pine sawdust, which

432  promotes germination across a range of species (Keeley and Bond 1997). Leaf litter from A.
433 torulosa was collected from a private property in Seventeen Mile, Queensland, Australia (one
434  of the main sampling locations) and compared to commercially available pine sawdust.

435

436  Aerosol smoking was implemented in a modified 54 L rectangular plastic container (65 cm x
437 28 cm x 41 cm) used as a smoke chamber. The chamber included a 40 cm x 25 cm door on the
438  long edge, attached with hinges and sealed with weatherproof tape to minimise smoke escape
439  while enabling access to samples. A 50 cm PVC pipe with 1 cm holes along its length (spaced
440  ca. 4 cm —4.5 cm apart) spanned the full length of the container. The pipe passed through a
441 4.5 cm diameter hole in the bottom of the short side of the container, enabling even smoke
442  dispersal. A beekeepers’ smoker was held at the end of this pipe, with a 20 cm extension pipe
443  extending outside the container to minimise heat transfer into the main chamber. A cluster of
444  small holes were drilled in the opposite corner of the chamber lid from the smoke entry point
445  to create air flow. During smoke exposure, regular smoke flow was maintained by pumping
446  smoke from the beekeepers’ smoker through the PVC pipe and into the chamber to maintain

447  an approximately even amount of smoke in the chamber. Seeds from three A. /ittoralis and
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three A. torulosa individuals were used for the smoke optimisation trials. Each individual
seed lot of 20 seeds was placed in petri dishes on an approximately 10 cm high shelf inside
the smoke chamber. All smoke was released from the chamber between petri dishes with new
individual seed lots to maintain a similar amount of smoke across individuals. I tested smoke
exposures of 5, 10, and 20 minutes for each individual. To minimise cross contamination
between smoke material types, the beekeepers’ smoker was thoroughly cleaned with acetone
and the smoke chamber wiped with ethanol between trials. Allocasuarina torulosa leaf litter
produced a similar effect to pine sawdust and was most consistent at a 20-minute exposure

time in both species (Fig. S3).

Full factorial germination experiment

The full factorial experiment included six treatments: (1) control; (2) 80 °C heat shock for 5
min; (3) 95 °C heat shock for 5 min; (4) 20 min smoke exposure; (5) 80 °C heat shock for 5
min + 20 min smoke exposure; and (6) 95 °C heat shock for 5 min + 20 min smoke exposure.
Three replicates for each treatment combination were conducted, with the start time for each
replicate staggered by 14 days to minimise bias related to starting conditions. Seed
germination was recorded on the first day after plating then every second to third day until
day 29 (i.e., day 1, 3, 6, 8, 10, 13, 15, 17, 20, 22, 24, 27 and 29) or until germination ceased.
Cessation of germination was 35 days, 36 days and 46 days post-commencement of the
germination experiment for each replicate, respectively. Therefore, for replicates one and two,
I assigned values of zero germination for all seeds up to 46 days to standardise test periods

across replicates, a step required for calculating germination metrics.

To test the hypothesis (H1) that variation in post-fire reproductive mode affected fire-cued
germination responses and seed size, species were considered separately. Individual seed lots
for A. torulosa were also divided based on the fire frequency at the collection site (i.e., low
fire frequency individual seed lots and high fire frequency individual seed lots). Due to
limited seed available, I was unable to assign each individual to all six treatments (e.g., an
individual with only 120 seeds could only be assigned to 3 treatments). Thus, I used
arrangements package version 1.1.9 (Lai 2019) in R version 4.3.1 (R Core Team 2018) to
randomly assign the six treatments to individuals, with six separate rounds of assignment. I

subsequently reduced treatment assignments on a case-by-case basis such that only three
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treatments were assigned to an individual with 120 seeds. During this case-by-case treatment
assignment reduction, I ensured 15 individual seed lots were included for all six treatments.
Thus, each germination experiment replicate included six treatments with 300 seeds from 15
individual seeds lots, totalling 1800 seeds for 4. littoralis, 1800 seeds for A. torulosa low fire

frequency, and 1800 seeds for A. torulosa high fire frequency.

Analysis

Fire frequency data from was obtained from Queensland Parks and Wildlife Service (Table 1)
and subset temporally (i.e., 1987-2023) to match the temporal resolution of generalised
additive modelled satellite fire frequency estimates used to supplement data for areas outside
of public estates (see Charles ef al. 2025 under review). Year of last fire was obtained from
Queensland Parks and Wildlife fire history data and satellite fire history data, with areas of no
fire data between 1987-2023 assigned 1986. Time since fire was then calculated by
subtracting year of last fire from sampling year. Temperature and precipitation seasonality
data (Fick and Hijmans 2017), Topographic Wetness Index (TWI) (Gallant and Austin 2012),
and Foliage Projective Cover (FPC) (Department of Environment 2020; Department of
Environment 2022; Department of Environment 2024a; Department of Environment 2024b;
Department of Environment 2024c) data are summarised in Table 1. Spatial data requiring
resolution adjustments were rescaled to 30 m resolution (see Table 1) using
gdalUtilities version 1.2.5 nearest neighbour resampling. Foliage projective cover data
was provided as 0-100% foliage cover, but data from 2014 were on a different scale.
Therefore, 2014 FPC data were reclassified to align with other years. Foliage projective cover

was then rescaled to 30 m, prior to calculation of the average FPC (Table 1).



507 Table 1 Spatial fire, climate, and environment variables used to investigate reproductive trait variability in

508  Allocasuarina littoralis and A. torulosa in southeast Queensland, Australia.

Variable Raw Resampled Temporal Data source
resolution  resolution resolution

Fire history — Queensland Parks Im 30m 1930-2023  (Queensland Parks and

and Wildlife Service Wildlife Service 2023)

Annual Fire Scars — Landsat, 30 m Unchanged 1987-2016  (Collett 2021)

QLD DES algorithm

Sentinel-2 fire scars — QLD DES 10 m 30 m 2017-2023  (van den Berg 2021)

algorithm, annual

Temperature seasonality 1 km 30 m 1970-2000  (Fick and Hijmans 2017)
Precipitation seasonality 1 km 30 m 1970-2000  (Fick and Hijmans 2017)
Topographic wetness index 30 m Unchanged 2000 (Gallant and Austin 2012)

Foliage projective cover

- Landsat 2014 30 m Unchanged 1998-2014  (Department of
Environment 2020)
- Statewide Landcover and 30 m Unchanged 2018 (Department of
Trees Study Sentinel-2 2018 Environment 2022)
- Statewide Landcoverand 10 m 30 m 2019,2020, (Department of
Trees Study Sentinel-2 2021 Environment 2024c)

509

510  Analyses of reproductive trait data were conducted in R version 4.3.1 (R Core Team 2023)
511  using generalised linear mixed models in 1me4 R package version 1.1-34 (Bates et al. 2015).
512 T used the same model structure for each response variable but modified the model family
513 (error structure) as appropriate for each type of response variable. Models were fit separately
514  for each species to account for biological differences related to their post-fire reproductive
515  modes and other biological factors. Prior to modelling, continuous numeric predictors were
516  scaled by dividing values by the series-wide standard deviation. I fit models with and without
517  amain effect for fire to investigate the influence of environmental variation on reproductive
518  trait variation (H3). For each response variable a null model was fit with no variation, against

519  which to compare the other models. Model selection was performed by ranking models based
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on Akaike’s Information Criterion corrected for small sample sizes (AIC.) in AICcmodavg
R package version 2.3-3 (Mazerolle 2020). The best model was chosen as the model with the
lowest AIC. in the candidate set which improved model fit over the null model by AAIC. > 2
(Arnold 2010; Leroux 2019). Where additional models were ranked within 2 AIC. units of
the top model and included one additional parameter, I considered the additional parameter to
be supported by the data if (1) the additional parameter improved log likelihood over that of
the top-ranked model; (2) confidence intervals did not overlap zero (Fig. S7, S9) (Arnold
2010; Leroux 2019). For top-ranked models including factorial predictors with multiple
levels, I calculated least-squares means comparisons to determine differences between levels
within the factor (Fig. S8). For example, if the top-ranked model included germination
treatment, [ used least-squares means comparisons to determine if 95 °C heat shocked seed

germination was different to control seed germination (Fig. S8).

Germination experiment

Cumulative proportion germination for each individual was calculated by dividing the
cumulative sum of germination by the total number of seeds germinated at the end of the
period. First and last germination day and time to 50% germination were calculated by
adapting functions from germinationmetrics R package version 0.1.8 (Aaravind et al.
2022). To analyse the effect of seed treatment and fire frequency on fire-cued germination
(H1) I fit seven models each for proportion of seeds germinated and time to 50%
germination: a null model; three univariate models with main effects for treatment, fire
frequency, and seed weight; and three multivariate models investigating interactions between
treatment, fire frequency and seed weight. To account for individual-level similarities in
responses and potential effects of replicates, I included a random effect for replicate and
individual in each model. To analyse the effect of fire frequency and environment on seed
weight (H1, H3), I used the average weight of a singular seed (hereafter ‘seed weight’) as the
response variable as a proxy measure of seed size as these measures are strongly correlated
(Eriksson 1999; Gnan et al. 2014). I fit twelve models with a random effect for individual: a
null model; six univariate main effect models for fire frequency and environmental attributes;
and five multivariate models investigating interactions between fire frequency and

environmental attributes.
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Age class structure surveys

To analyse fire history effects on age class structure, the proportion of seedlings, saplings,
and recruits (i.e., seedlings and saplings) within the total population was calculated by
dividing the total number of individuals in an age class by the sum of the number of

individuals from that age class and the number of adults. For example, proportion of

. s : b dli
seedlings within the total population was calculated by Number of seedlings

——. To analyse
Number of adults+seedlings

the effect of fire and environment on age class structure (H2a, H3) I fit twelve models: a null
model; six univariate main effect models for the focal fire metric (i.e., fire frequency or time
since fire) and environmental attributes; and five multivariate models investigating
interactions between the focal fire metric and environmental attributes. To analyse the effect
of fire and environment on reproductive output (i.e., cone number, H2b, H3), I fit eight
models: a null model and seven univariate models for fire frequency, time since fire, and
environmental attributes. I did not fit any multivariate models for reproductive output due to
a limited number of individuals with cones along our transects. For age class structure and
reproductive output analyses, due to the hierarchical structure of data collection (multiple
individuals along transects and multiple transects within locations), I included transect nested

within location as a random effect in each model.

Results

Germination experiment

Field sample collection resulted in seeds from 115 individual trees across the study region in
southeast Queensland, comprising 40 A. littoralis and 75 A. torulosa individuals. Seven
individual trees with less than 60 seeds were excluded resulting in 108 individuals (37 A.
littoralis and 71 A. torulosa) available for the germination experiment. Fire frequencies at
seed collection locations ranged from one to three and six fires over 36 years for A4. littoralis
and A. torulosa, respectively. Time since fire at collection locations ranged from at least 36

years post-fire to around two-years post-fire for A. littoralis and A. torulosa, respectively.

Germination rates were not strongly influenced by heat shock or smoke in either species (Fig.

S6), with the null model ranked higher than models including seed treatments (Table 2).
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Treatments did not reduce seed viability or vary to a strong degree between replicates as no
noticeable differences in viability were observed (Fig. S4, S5). Thus, A. littoralis and A.
torulosa are smoke and heat tolerant up to 95 °C with no requirement for fire-cues to
germinate once seeds have been released from cones. Seed weight influenced germination
rate for A. littoralis (AAIC. relative to null model = 3.07; Table 2, Fig. 3), and 4. forulosa
with an interaction between seed weight and fire frequency (AAIC. relative to null model =
10.97; Table 2, Fig. 3). In both species, heavier seeds were associated with greater
germination rates (Table 2, Fig. 3). For A. torulosa individuals exposed to high fire
frequencies, germination rates decreased with increasing seed weight and were highly

variable (20-90% proportion of seeds germinated, Fig 3b).



598 Table 2 Models used to examine the influence of fire frequency and seed treatment on proportion germination in
599 Allocasuarina littoralis, and facultative resprouter, A. torulosa. For each species, models are ranked from

600  highest to lowest AIC...

Species Model structure Number of AIC. AAIC. Log
parameters Likelihood
Allocasuarina littoralis Seed weight 3 129.07 0.00 -60.46
Null model 3 132.14 3.07 -63.03
Seed weight x fire 4 132.81 3.74 -60.25
frequency
Fire frequency 3 13342 434 -62.63
Treatment 3 136.27 7.20 -59.86
Treatment x seed weight 4 14094 11.86  -55.65
Treatment x fire frequency 4 144.84 15.76  -57.59
Allocasuarina torulosa Seed weight x fire 4 404.26 0.00 -196.05
frequency
Seed weight 3 408.31 4.05 -200.12
Null model 3 415.23 1097  -204.59
Fire frequency 3 416.75 12.49  -204.34
Treatment 3 421.81 17.55  -202.77
Treatment x seed weight 4 42275 1849  -196.97
Treatment x fire frequency 4 430.50 26.24  -200.85
601
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603  Figure 3 The estimated effect (and 95% confidence intervals) of seed weight on proportion germination in (a)
604  Allocasuarina littoralis and (b) A. torulosa. The top-ranked model for A. torulosa included an interaction

605  between seed weight and fire frequency.

606
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Time to reach 50% germination was influenced by seed treatment in both species (Fig. 4a-b).
For A. littoralis, there was not strong support for an effect of seed treatment on time to 50%
germination as the null model was equivalent to the treatment only model (Table 1). In A.
torulosa, there was support from the data for three models: treatment only (AAIC. relative to
null model = 108.77), treatment and seed weight interactive model (AAIC. relative to the top
ranked model = 0.11), and treatment and fire frequency interactive model (AAIC. relative to
the top ranked model = 0.67) (Table 3). Time to 50% germination increased for all treatments
compared to controls, except for the 80 °C treatment (Fig. 4a). Thus, heat and smoke slowed
down germination in 4. torulosa. In the seed weight interaction model, heavier seeds were
typically faster to germinate, an effect which was most pronounced for individuals exposed to
the smoke treatment (Fig. 4b). For 95 °C; smoke; and 80 °C + smoke, seeds from historically
more frequently burned sampling transects had slower germination (Fig. 4c). However, for
individuals exposed to the 95 °C + smoke treatment, this pattern was reversed, with
individuals from more frequently burned sampling transects having faster germination than

those exposed to less frequent fire (Fig. 4c).
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Table 3 Models used to examine the influence of fire frequency, seed weight, and seed treatment on time to

reach 50% germination, as a measure of germination speed, in Allocasuarina littoralis and A. torulosa.

Species Model structure Number of AIC. AAIC. Log
parameters Likelihood

Allocasuarina littoralis ~ Treatment 3 1284.18  0.00 -633.81
Null model 3 1284.99  0.81 -639.45
Seed weight 3 1286.36  2.18 -639.10
Fire frequency 3 1286.82  2.64 -639.34
Seed weight x fire frequency 4 1289.69  5.51 -639.69
Treatment x seed weight 4 129297  8.79 -631.66
Treatment % fire frequency 4 1295.10 10.92  -632.72

Allocasuarina torulosa  Treatment 3 2579.61  0.00 -1281.67
Treatment x seed weight 4 2579.72  0.11 -1275.46
Treatment % fire frequency 4 2580.28  0.67 -1275.74
Seed weight 3 2680.38  100.77 -1336.15
Seed weight x fire frequency 4 2682.91 103.30 -1335.38
Null model 3 2688.38  108.77 -1341.17
Fire frequency 3 2690.24  110.63 -1341.08
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Figure 4 The estimated effect and 95% confidence interval of seed treatment on time to 50% germination (days) for (a) 4.
torulosa. In addition to main effects of treatment, there was evidence for an interaction between treatment and (b) seed

weight, and (¢) fire frequency on time to 50% germination.

Seed weight was influenced by an interaction between fire frequency and temperature
seasonality in 4. littoralis and between fire frequency and latitude in 4. torulosa (Table 4,
Fig. 5). There was no evidence of any other environmental variables influencing seed weight
in either species (AAIC. > 5, Table 4). For A. littoralis, seed weight increased with
temperature seasonality for seeds collected at frequently burned transects (4 fires over 36
years, Fig. 5a). At low- to intermediate fire frequencies (0-1 fire over 36 years) there was no

relationship between seed weight and temperature seasonality (Fig. 5a). For A. torulosa, seed
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weight increased with decreasing latitude for frequently burned transects (6 fires over 36
years) and decreased with decreasing latitude for infrequently burned transects (0 fires over
36 years) (Fig. 5b). There was no relationship between latitude and seed weight for
intermediate fire frequencies (3 fires over 36 years, Fig. 5b). In other words, at southern
sampling locations seeds were heavier when collected at transects which had experienced
frequent fire, compared to relatively unburnt transects. At northern sampling locations, there

were no differences in seed weight related to fire history (Fig. 5b).
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Table 4 Models used examine the influence of fire frequency and environmental variation on seed weight in

Allocasuarina littoralis and A. torulosa.

Species Model structure Number of  AIC. AAIC. Log
parameters Likelihood

Allocasuarina littoralis  Fire frequency x 4 -8418.33 0.00 4215.33
temperatures seasonality
Null model 3 -8376.10 4223  4191.10
Temperature seasonality 3 -8347.75 70.58  4177.95
Precipitation seasonality 3 -8330.16 88.17  4169.16
Latitude 3 -8329.41 88.92  4168.78
Fire frequency 3 -8317.17 101.16 4162.66
Fire frequency x latitude 4 -8263.94 154.40 4138.13
Fire frequency x 4 -8235.42 18291 4123.87
precipitation seasonality
Fire frequency x 4 -8224.59 193.75 4118.45
topographic wetness
Topographic wetness 3 -8215.94 202.40 4112.04
Foliage projective cover 3 -7533.58 884.75 3770.88
Fire frequency x foliage 4 -7521.56 896.77 3766.96
projective cover

Allocasuarina torulosa  Fire frequency x latitude 4 -16303.73  0.00 8157.95
Fire frequency x 4 -16297.98  5.75 8155.07
topographic wetness
Topographic wetness 3 -16170.19  133.54 8089.13
Null model 3 -16126.40  177.33  8066.22
Precipitation seasonality 3 -16112.83 190.90 8060.45
Temperature seasonality 3 -16112.83 190.90 8060.45
Fire frequency 3 -16044.97  258.76  8026.52
Fire frequency x 4 -16034.15  269.59 8023.15
precipitation seasonality
Fire frequency x 4 -16034.15  269.59 8023.15
temperature seasonality
Latitude 3 -16004.08  299.34  8006.08
Fire frequency x foliage 4 -15192.60  1111.1  7602.39
projective cover 3
Foliage projective cover 3 -15158.09  1145.6  7583.08

5
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Figure 5 The estimated effect and 95% confidence intervals of fire frequency on seed weight in (a)
Allocasuarina littoralis and (b) A. torulosa. Seed weight was influenced by the interactive effects of fire

frequency and (a) temperature seasonality in A. littoralis, and (b) latitude in A. forulosa.

Reproductive output and age class structure

Fire frequency ranged from zero to four and seven fires for 4. littoralis and A. torulosa
transects, respectively. Reproductive output (number of cones per tree) was not influenced by
fire frequency or time since fire (Table 5). There was a positive effect of foliage projective
cover on number of cones in 4. littoralis (Intercept = -1.793 [se = 1.081], FPC = 0.066 [se =
1.175]) and A. torulosa (Intercept = -3.409 [se = 1.1336], FPC = 2.105 [se = 1.303]) (AAIC.
relative to the null model = 877.42 for A. littoralis, and = 281.39 for A. torulosa; Table 5).
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Table 5 Models used to examine the influence of fire frequency, time since fire, and environmental variation on

reproductive output (i.e., number of cones) in Allocasuarina littoralis and A. torulosa.

Species Model structure Number of AIC, AAIC. Log
parameters Likelihood

Allocasuarina littoralis Foliage projective cover 2 1167.32  0.00 -579.07
Topographic wetness 2 2017.11  849.79 -1004.05
Fire frequency 2 2027.42  860.10 -1009.21
Null model 2 2044.73  877.42 -1019.07
Latitude 2 2045.50  878.18 -1018.25
Temperature seasonality 2 2046.23 87891 -1018.61
Precipitation seasonality 2 2046.27 87895 -1018.63
Time since fire 2 2046.27  879.25 -1018.78

1221.68  0.00 -606.15
1380.78  159.10 -685.72
1496.76  275.08 -743.71
1503.06 281.39 -748.15
1504.76  283.08 -747.71
1504.89  283.21 -747.78
1504.25  283.57 -747.96
1505.52  283.84 -748.09

Allocasuarina torulosa Foliage projective cover
Fire frequency
Precipitation seasonality
Null model
Time since fire
Topographic wetness

Latitude

NN NN NN NN

Temperature seasonality

Population age structure in 4. littoralis was not influenced by fire frequency, time since fire,
or environmental variability, with the null model being top ranked for all analyses (Table S1).
In A. torulosa, foliage projective cover influenced the proportion of seedings within the total
population (Intercept = -3.409 [se = 1.336]; FPC = 2.105 [se = 1.303], Table 6). Greater
temperature seasonality reduced the proportion of saplings within the total population
(Intercept = -1.040 [se = 0.482], temperature seasonality = -1.136 [se = 0.481]) and recruits
within the total population (Intercept = -0.919 [se = -1.833]), temperature seasonality = -
1.642 [se = 0.535], Table 6). The interaction between temperature seasonality and time since
fire on the proportion of A. torulosa recruits within the total population was ranked within
AAIC. < 2, but confidence intervals of the interaction term overlapped zero (Fig. S9). Thus,
fire history did not strongly influence A. littoralis or A. torulosa reproductive output or
population age structure, with environmental variability more important in constraining

recruitment processes (Table 5, 6, S1).



683 Table 6 Models used to examine the influence of fire frequency, time since fire, and environmental variation on

684  population age structure in Allocasuarina torulosa.

Fire Age Model structure Number of AIC. AAIC. Log
metric class parameters likelihood
Fire Seedlings Foliage projective cover 2 24.62 0.00 -7.54
frequency
Null model 2 26.77 2.15 -9.96
Precipitation seasonality 2 28.56 3.94 -9.54
Fire frequency 2 28.72 4.10 -9.62
Fire frequency x foliage projective 3 28.85 4.23 -6.67
cover
Temperature seasonality 2 29.14 4.52 -9.83
Latitude 2 29.25 4.63 -9.88
Topographic wetness 2 2937 4.5 -9.94
Fire frequency X precipitation 3 32.55 7.93 -8.59
seasonality
Fire frequency X topographic wetness 3 33.03 8.4l -8.84
Fire frequency x temperature 3 34.17 9.55 -9.40
Fire frequency x latitude 3 3439 9.78 -9.52
Saplings  Temperature seasonality 2 39.69 0.00 -15.01
Latitude 2 43.14 345 -16.83
Fire frequency x temperature 3 4533 5.64 -14.99
seasonality
Precipitation seasonality 2 45.69 6.00 -18.11
Null model 2 46.23 6.55 -19.69
Foliage projective cover 2 46.55 6.86 -18.50
Topographic wetness 2 48.85 9.16 -19.68
Fire frequency 2 48.85 9.16 -19.68
Fire frequency x latitude 3 48.99 9.30 -16.82
Fire frequency x precipitation 3 49.27 9.58 -16.95
seasonality
Fire frequency x foliage projective 3 51.85 12.16  -18.18
cover
Fire frequency X topographic wetness 3 52.35 12,67  -18.50
Recruits ~ Temperature seasonality 2 37.02 0.00 -13.77

Latitude 2 4224 522 -16.38



Time
since fire

Seedlings

Saplings

Fire frequency x temperature
seasonality

Foliage projective cover

Null model

Precipitation seasonality

Fire frequency x latitude
Topographic wetness

Fire frequency

Fire frequency X precipitation

Fire frequency x foliage projective
cover

Fire frequency x topographic wetness

Foliage projective cover

Null model
Precipitation seasonality
Temperature seasonality
Latitude

Topographic wetness
Time since fire

Time since fire x foliage projective
cover

Time since fire X topographic wetness

Time since fire x precipitation
seasonality

Time since fire X temperature
seasonality

Time since fire x latitude
Temperature seasonality

Time since fire X precipitation
seasonality

Time since fire x temperature
seasonality

Latitude
Time since fire

Time since fire X topographic wetness

NN

42.77

47.29
47.51
47.83
47.94
50.13
50.13
51.56

52.61

53.56

24.62

26.77
28.56
29.14
29.25
29.37
29.37
30.26

32.01
34.29

34.92

35.12
39.39

42.30

42.52

43.14
45.35

45.62

5.74

10.27
10.48
10.80
10.91
13.11
13.11
14.54

15.59

16.54

0.00

2.15
3.94
4.52
4.63
4.75
4.76
5.64

7.40
9.68

10.31

10.51
0.00

2.61

2.83

3.45
5.66
5.93

-13.70

-18.88
-20.32
-19.17
-16.29
-20.32
-20.32
-18.10

-18.56

-19.10

-7.54

-9.96
-9.54
-9.83
-9.88
-9.94
-9.95
-7.38

-8.33
-9.47

-9.78

-9.88
-15.10

-13.47

-13.58

-16.83
-17.93
-15.13
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689
690
691
692
693
694
695
696
697

Time since fire X latitude 3 45.62 5093 -15.13

Precipitation seasonality 2 45.69 6.00 -18.11
Null model 2 46.23 6.55 -19.69
Foliage projective cover 2 46.55 6.86 -18.50
Time since fire x foliage projective 3 48.23 8.54 -16.37
cover
Topographic wetness 2 48.85 9.16 -19.68
Recruits ~ Temperature seasonality 2 37.02  0.00 -13.77
Time since fire X temperature 3 37.88 0.85 -11.26
seasonality
Latitude 2 4224 522 -16.38
Time since fire x latitude 3 43135 6.33 -14.00
Time since fire x precipitation 3 4425 722 -14.44
seasonality
Time since fire X topographic wetness 3 45.65 8.63 -15.15
Time since fire 2 45.69 8.67 -18.10
Foliage projective cover 2 47.29 10.27 -18.88
Null model 2 47.51 1048  -20.32
Precipitation seasonality 2 47.83 10.80 -19.17
Time since fire x foliage projective 3 48.63 11.61  -16.57
cover
Topographic wetness 2 50.13  13.11  -20.32

Discussion

Determining optimal fire regimes for ecosystem restoration is hindered by a lack of
knowledge of plant responses to fire regimes at critical life stages of germination and through
transitions to adulthood. Furthermore, a lack of integration of fire history in germination
studies, and how these influence age class structures limits our understanding of the influence
of fire history on population level changes. My results showed that fire history, specifically
frequency, influenced variation in germination; but foliage projective cover and temperature
seasonality had more influence than fire history on reproductive output and age class
structure. These results point to environments with greater climate stability and
photosynthetic potential leading to greater reproductive output. Post-fire reproductive mode

influenced traits relevant to germination success as individual trees of the facultative
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resprouter, 4. torulosa, exposed to higher fire frequencies had lower proportion germination
with increasing seed weight. This decreased germination success with increasing fire
frequency may have reflected stronger resprouting responses, with higher investment in
resprouting bud banks than seed production (Bendall ef al. 2022; Pausas and Keeley 2014;
Verdu 2000). These results can inform restoration and conservation actions of these
Allocasuarina species, important food trees of the vulnerable dietary specialist Glossy black-

cockatoos.

In this study, the obligate seeder, 4. littoralis was less sensitive to extreme heat shocks and
variable smoke exposure than the facultative resprouter, A. forulosa. Despite occurring in
fire-prone environments, germination of 4. /ittoralis and A. torulosa was not enhanced by
application of fire-related germination cues as seeds exposed to heat shocks up to 95 °C
showed comparative germination to controls. However, obligate seeders are more likely to
express traits increasing post-fire germination due to their greater investment in seeds than
congeneric resprouters (Pausas and Keeley 2014; Tangney ef al. 2020; Zammit and Westoby
1987). Strongly seasonal environments also generally favour heavier seeds, which provide
greater reserves for seeds to withstand seasonal variation in water availability (Leishman et
al. 2000; Muller-Landau 2010). This was reflected in my experiment as in variable climatic
conditions, with high fire frequency (i.e., 4 fires over 36 years), seed weight was greater in
the obligate seeder than the facultative resprouter. In the facultative resprouter, 4. forulosa,
seed investment was more likely driven by exposure to recurrent fire as seed weight
decreased in the absence of fire even under more seasonal climates. However, A. forulosa had
high germination variability when seeds were larger, possibly because seed reproductive
effort was traded-off with resource allocation to resprouting (Bellingham and Sparrow 2000).
Where species show plasticity in regeneration modes, high fire frequency could result in
more resources being allocated to resprouting capabilities than production of viable seeds

(Bellingham and Sparrow 2000; Verdu 2000).

Fast germination provides individuals with a competitive advantage (Hodges et al. 2021);
therefore, germination speed can be promoted by fire-related germination cues, especially in
obligate seeders which are adapted for post-fire germination (Hodges et al. 2021; Pausas and
Lamont 2022; Ramos et al. 2019; Tangney et al. 2020). Results from this study ran contrary

to this general prediction (H1): heat and smoke did not strongly affect germination in the
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obligate seeder A. littoralis but slowed germination in the facultative resprouter 4. torulosa.
The stronger reduction in germination speed as temperature increased for 4. torulosa was
likely linked to temperatures being closer to the lethal temperature threshold of 4. forulosa
than A. littoralis (i.e., A. torulosa = ca. 100 °C; A. littoralis = ca. 110 °C), so reductions may
be related to lower seed viability (Emery ef al. 2011; Hanley et al. 2003). In the natural
environment, these higher temperatures could be linked to higher fire intensities (Rossi et al.
2018), indicating that A. littoralis to some extent may be faster to establish than A. torulosa
after higher intensity fire. However, in 4. torulosa germination speed was also influenced by
seed size and fire history. Heavier seeds have higher energy reserves which support faster
germination rates (Kotodziejek 2017) and provide greater heat insulation (Escudero et al.
2000; Gomez-Gonzalez et al. 2011; Lamont et al. 2019), reducing potential decreases in

viability and germination speed due to fire-cues.

It seems likely that fire frequency effects on germination speed in this study were influenced
by the reproductive output and resprouting capacity trade-oft (Bellingham and Sparrow
2000). Individuals of the facultative resprouter 4. forulosa from environments that
experienced frequent fire had greater reductions in germination speed than those from lower
fire frequencies. Individuals exposed to intermediate fire frequencies where this trade-off
may be reduced had lower variability in germination speeds. Therefore, fire could potentially
inhibit germination for species if they have not been previously exposed to a flammable
environment. My results support this prediction as post-fire reproductive mode and the post-

fire environment in which the species occurs influenced germination rates.

Through later life stages in 4. torulosa, woody foliage cover and climate variability were
stronger drivers of reproductive output and population age structure than fire history,
respectively. Higher woody foliage cover resulted in an increased number of cones for 4.
torulosa likely due to higher photosynthetic potential in these environments associated with
greater resource availability for reproduction (Wheelwright and Logan 2004). Lower annual
climate variability may have been a stronger driver of 4. forulosa age class structure as
stressful environments impose limitations on growth, with more variable climates likely to
increase the trade-off between survival and reproduction (Hamann et al. 2021; Zhang et al.
2020). Conversely, I found no effect of climate or environmental attributes on A. littoralis

reproduction or age class structure, but establishment of 4. /ittoralis was likely limited by
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these attributes as sampling occurred outside of the preferred coastal habitat (Australian
Biological Resources Study. Advisory Committee 1989; Foreman and Walsh 1993). For both
species, I found no effect of time since fire on the number of cones, as while recent fire
activity could be associated with lower cone number, most sampling in this study occurred in
areas two or more years post-fire which is sufficient time for cone production (Plumanns-
Pouton et al. 2024). Thus, my results indicate that reproductive effort and age class structure
appear to be independent of fire history, even with up to seven fires over 36 years. However,
more extreme fire frequencies are likely to filter populations as such frequent fire could
compromise resprouting or reproduction and seedling establishment abilities (Christensen et
al. 1981; Clarke et al. 2015; Gill and Catling 2002; McColl-Gausden et al. 2022). Therefore,
further experimental research in this system remains vital to understanding fire history effects

on A. littoralis and A. torulosa reproductive output and age class structure.

My results have important implications for Glossy black-cockatoo conservation and food tree
restoration actions. Restoration programs producing seed collections should consider seed
weight, because heavier seeds were more likely to have a competitive advantage (i.e.,
reduced time to reach 50% germination). However, restoration programs should also consider
fire history in locations where the seed are collected. For 4. littoralis, I recommend collecting
seeds from individuals exposed to higher fire frequencies, such as four fires over past 36
years, and high annual temperature variability in my study region. Conversely, it may not be
optimal to collect A. torulosa seeds from individuals exposed to high fire frequencies, such as
six fires over past the 36 years, as while seeds were likely to be heavier, overall germination
was much more variable. For 4. torulosa, I would recommend collecting seeds from
individuals exposed to intermediate fire frequencies such as three fires over the past 36 years.
I also recommend restoration efforts focus on areas with higher annual temperature
variability due to the higher likelihood of aging populations with low population turnover
(i.e., low proportions of seedlings and saplings to adults). In my inland study region within
southeast Queensland, restoration effort is best invested in 4. forulosa food trees as this
species 1s found more commonly throughout the region and, as a facultative resprouter, is
likely to have higher resilience under projected fire regime changes. Nevertheless, coastal
regions where A. littoralis is abundant may benefit from restoring patches of both 4. littoralis

and A. torulosa as a buffer against high fire frequencies and immaturity risk in A. littoralis.
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Conclusion

Plant responses to fire vary throughout their life cycle, especially at critical life stages such as
germination and transitions from seedlings through to adults. Thus, investigating how fire
drives selection on reproductive traits and controls age class structure is vital for conservation
and restoration actions to mitigate the effects of future fire regime changes. In this study |
investigated the influence of fire history and environmental attributes on fire-cued
germination responses, reproductive output, and age class structure in congeneric obligate
seeding and facultative resprouting A/locasuarina spp.. Exposure to fire-cues were not
essential for germination of either species but for the facultative resprouter fire-cues, to some
extent, inhibited germination. This inhibition was especially extreme in individuals not pre-
adapted to fire or exposed to high fire frequencies. Thus, selection for reproductive traits
conferring higher resilience to fire-cues was more likely to be exerted on the obligate seeder
A. littoralis. However, reproductive trait selection in the facultative resprouter A. torulosa
was dependent on fire history likely due to a reproduction — resprouting trade-off.
Allocasuarina torulosa seeds from environments experiencing higher fire frequencies were
less resilient to fire-cues compared to seeds from more moderate fire frequencies.
Nevertheless, fire history effects were not a strong driver during later life stages with climate
and environmental attributes being stronger drivers of reproductive output and age class
structure. However, fire frequency is likely to impact age class structure due to age-related
effects, but areas at higher fire frequencies with Allocasuarina spp. in my study region were
limited. Thus, further research in this system is recommended to better understand the
impacts of fire history on reproduction and age class structure, with a particular focus on

sampling higher fire frequencies.

Data and code availability

Data and code are currently stored as a public repository on GitHub (Charles and Smith

2025): https://github.com/felicityeloise/Allocasuarina_germfire.
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APPENDIX

Incubation temperature optimisation

Incubation temperature optimisation tests show that low temperatures of 6 °C and 10 °C
slowed germination rates or stopped germination over the 28-day sampling period, and these
temperatures were not considered further (Fig. S1). Allocasuarina littoralis germination was
most consistent in chamber temperatures from 14 °C to 32 °C (70-90%, Fig. S1). For
Allocasuarina littoralis, 17 °C was determined optimal as this chamber had the highest
overall germination for two of the three individuals tested (85-95%, Fig. S1). Germination in
Allocasuarina torulosa was similar at 17 °C and 20 °C (85-90%, Fig. S1). Allocasuarina
torulosa germination was most consistent across the range of temperatures from 14 °C to

36 °C. I selected 20 °C for the experimental tests as it fell within the range of temperatures

suggested by Turnbull and Martensz (1982).
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Figure S6 Cumulative proportion of seeds germinated along a thermal gradient bar ranging from 6 °C to 36 °C
for (a) Allocasuarina littoralis and (b) A. torulosa. No germination occurred in either species in chambers at

6 °C.

Heat shock and smoke exposure tests

Heat shock optimisation tests showed consistently high germination in both species at 80 °C,
but variable germination responses between the species as temperature and duration increased

(Fig. S2). In Allocasuarina littoralis, the lethal temperature threshold was between 110 °C to



1721 120 °C as no germination occurred in seeds exposed to 125 °C (data not plotted). At 110 °C,
1722 A. littoralis germination varied widely and began to decline: some individuals had high

1723 germination at exposures of 10 minutes, while others had poor germination at this

1724  temperature, even with exposure times as low as 1 minute (Fig. S2a). In A4. littoralis,

1725  exposures of 5 minutes at 80 °C and 95 °C produced relatively consistently high germination
1726  rates, with germination being the same or greater than the control, respectively (Fig. S2a). In
1727  A. torulosa, the lethal temperature threshold was between 95 °C to 105 °C, as only seeds
1728  exposed to short durations at 110 °C germinated (Fig. S2b). Exposure times of 5 minutes at
1729 85 °C and 95 °C produced consistently high germination, which was similar or greater than
1730  that of the controls. Therefore, for both species a 5S-minute exposure time at 85 °C and 95 °C

1731  was selected for heat shock in the main experiment.

1732
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Figure S7 Cumulative proportion of seeds germinated in heat shock optimisation tests at 80 °C, 95 °C, and 110

°C compared to a control (black) in (a) Allocasuarina littoralis and (b) A. torulosa.

Smoke exposure optimisation tests showed similar germination rates between Allocasuarina

leaf litter and pine sawdust (Fig. S3). However, short exposures to Allocasuarina leaf litter

resulted in more variable germination rates than other treatments (Fig. S3), for unknown

reasons. Seeds that remained ungerminated after smoke treatments were all deemed unviable



1741 by TTC testing (see seed viability and trait measurements section). A 20-minute exposure to
1742  aerosol smoke was selected as optimal as it produced high germination rates for both species
1743  and smoke types which was comparable to the controls (Fig. S3). At this 20-minute smoke
1744  exposure time, Allocasuarina leaf litter smoke produced higher germination rates than pine
1745  sawdust (Fig. S3). Thus, Allocasuarina leaf litter derived smoke was selected for the main

1746  experiment.
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1749  Figure S8 Cumulative proportion of seeds germinated after exposure to acrosol Allocasuarina leaf litter or pine

1750  sawdust derived smoke in (a) Allocasuarina littoralis and (b) A. torulosa.

1751

1752 Full factorial experiment seed viability

1753

1754  Viability rates assessed by the x-ray and tetrazolium methods were correlated for both A.

1755  littoralis and A. torulosa across experimental replicates (71% and 74%, respectively, Fig. S4),



1756  indicating no effect of treatment on seed viability. Despite the expectation that higher heat
1757  treatments (e.g., 95 °C) would result in variable post-germination viability, tetrazolium tests
1758  (TTC) showed that seed viability across all treatments was high for 4. littoralis and A.

1759  torulosa (Fig. S5). Furthermore, there was also high correlation between the viability test
1760  methods post-treatment and germination (85% and 79% respectively, Fig. S5).
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1762
1763 Figure §9 Average pre-germination x-ray and post-germination TTC viability rate correlations for (a)

1764  Allocasuarina littoralis, and (b) A. torulosa individuals across experimental replicates.
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1767 Figure S10 Average pre-germination x-ray and post-germination TTC viability rate correlation for (a)

1768  Allocasuarina littoralis, and (b) A. torulosa individuals across seed treatments.
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Full factorial germination experiment
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Figure S6 The estimated effect and 95% confidence intervals of seed treatments on proportion germination of

(a) Allocasuarina littoralis and (b) A. torulosa.
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Figure S7Effect sizes of coefficients and 95% confidence intervals for models examining time to 50%
germination in Allocasuarina torulosa. Effect sizes were examined to determine the strength of effects for
models including (a) treatment, (b) treatment x seed weight, and (c) treatment xfire frequency.
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Figure S8 Least squares mean differences and 95% confidence intervals for models examining the effect of seed
treatments compared to controls on time to 50% germination in Allocasuarina torulosa. Models included an
interaction between treatment and (a-c) seed weight, or (d-f) fire frequency. To aid comparisons between
different seed weights or fire frequencies, differences were examined for (a, d) minimum seed weight = 2.36 mg
or fire frequency = 0; (b, ) average seed weight = 4.51 mg or fire frequency = 3; and (d, f) maximum seed

weight =7.04 or fire frequency = 6.
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Population age structure

Table S7 Models used to examine the influence of fire frequency, time since fire, and environmental variation

on age class structure in Allocasuarina littoralis.

Fire metric Age Model structure Number of AIC. AAIC. Log
class parameters likelihood
Fire Seedlings Null model 2 18.03  0.00 -3.01
frequency
Temperature seasonality 2 2133 331 0.00
Topographic wetness 2 2133 331 0.00
Latitude 2 21.56  3.53 -0.11
Fire frequency 2 2552 749 -2.09
Precipitation seasonality 2 27.10  9.07 -2.88
Foliage projective cover 2 33.74 1571  -2.87
Fire frequency X precipitation 3 96.00 77.97 0.00
seasonality
Fire frequency x temperature 3 96.00 77.97 0.00
seasonality
Fire frequency % topographic 3 96.00 77.97 0.00
wetness
Fire frequency x latitude 3 96.02  78.00 -0.01
Fire frequency x foliage projective 3 Inf Inf 0.00
cover
Saplings  Null model 2 18.03  0.00 -3.01
Fire frequency 2 21.89  3.87 -0.28
Temperature seasonality 2 2246 444 -0.57
Latitude 2 2323 520 -0.95
Precipitation seasonality 2 2723 9.20 -2.95
Topographic wetness 2 2735 932 -3.01
Foliage projective cover 2 28.53  10.51  -0.27
Fire frequency X precipitation 3 96.00 77.97 0.00
seasonality
Fire frequency X temperature 3 96.00 77.97  0.00
seasonality
Fire frequency x latitude 3 96.00 77.97 0.00
Fire frequency x topographic 3 96.05 78.02 -0.03

wetness
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Figure S11 Effect sizes of coefficients and 95% confidence intervals for the influence of (a) temperature
seasonality, and (b) temperature seasonality and time since fire (TSF) interaction on the proportion of recruits to

adults in Allocasuarina torulosa.

References

Turnbull, J. W. and Martensz, P. N. (1982). Aspects of seed collection, storage and

germination in Casuarinaceae. Australian Forest Research 12,2810249.



	Introduction
	Methods
	Study region
	Field age class structure surveys and cone collection
	Germination experiment
	Germination experimental overview
	Seed viability measurements
	Incubation temperature optimisation
	Heat shock and smoke exposure optimisation
	Full factorial germination experiment

	Analysis
	Germination experiment
	Age class structure surveys


	Results
	Germination experiment
	Reproductive output and age class structure

	Discussion
	Conclusion
	Incubation temperature optimisation
	Heat shock and smoke exposure tests
	Full factorial experiment seed viability


