

1 **Influence of fire history on reproductive traits in a congeneric obligate
2 seeder and facultative resprouter tree species**

3

4 Felicity E. Charles^{1*} 0000-0002-7241-2720

5 April E. Reside¹ 0000-0002-0760-9527

6 Patrick T. Moss² 0000-0003-1546-9242

7 Annabel L. Smith¹ 0000-0002-1201-8713

8

9 ¹School of the Environment, The University of Queensland, Gatton, 4343, QLD, Australia

10 ²School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane

11 City, 4000, QLD, Australia

12 *Correspondence: f.charles@uq.edu.au

13

14 **Keywords:** age class structure, *Allocasuarina littoralis*, *Allocasuarina torulosa*, fire-cued

15 germination, reproductive output

16

17 **Abstract**

18

19 In fire-prone regions globally, evolution of plant traits that confer resilience to historical fire
20 regimes is widespread. However, many common plant species are currently declining due to a
21 mismatch between historical and contemporary fire regimes. These changes threaten long
22 term community trajectories of plants and the animal species relying on them for food or
23 habitat. Understanding plant responses to fire at critical life stages is needed to improve
24 conservation of plant-animal interactions. We investigated how fire history affected
25 reproductive traits (i.e., proportion germination, time to 50% germination, reproductive
26 output, population age structure) relevant to critical life history stages of *Allocasuarina*
27 *littoralis* and *A. torulosa* (Casuarinaceae). In southeast Queensland, Australia, these species
28 are primary food trees of the nationally vulnerable Glossy black-cockatoo (*Calyptorhynchus*
29 *lathami*, Cacatuidae). For both species, fire-cues (heat and smoke) did not increase the
30 proportion of seed germinated, but proportion germination increased with seed weight.
31 Heavier seeds were associated with exposure to more extreme environments such as
32 environments with higher fire frequencies and temperature variability. In *A. torulosa*, seed
33 weight generally increased germination time, except when seeds were collected from
34 frequently burned sites which could be linked to a trade-off between resprouting and seed
35 production. Heat and smoke slowed germination of *A. torulosa* (recorded as time to 50%
36 germination) but had no effect on *A. littoralis*. Fire history did not influence reproductive
37 output or population age structure in either species, but reproductive output was greater in
38 sites with more woody vegetation cover, potentially reflecting greater establishment success.
39 For restoration, our results indicate that fire is not necessary for successful germination in *A.*
40 *littoralis* or *A. torulosa*, but when collecting seeds the local fire history and seed weight
41 should be considered, especially for *A. torulosa*. Our results can inform Glossy black-
42 cockatoo conservation by guiding fire management practices associated with their food trees.
43

44 **Introduction**

45

46 The regeneration niche of plant species defines the climatic (e.g., temperature and
47 precipitation) and environmental (e.g., nutrient availability, interspecific competition and
48 allelopathy) conditions which control seed production, germination, establishment, and
49 transitions from early life stages to adulthood (Grubb 1977; Pérez-Ramos *et al.* 2012; Poorter

50 2007; Smith *et al.* 2016). Given the close relationship between plant fitness and reproduction,
51 the regeneration niche places reproductive traits under stronger selection pressure than
52 vegetative traits (Campbell *et al.* 2022; Keeley *et al.* 2011; Villegas *et al.* 2021). This stronger
53 selection on reproductive traits is reflected in fire-driven evolution of traits such as post-fire
54 reproductive mode, fire-cued germination responses, and serotiny which increase plant
55 species fitness for their historical fire regimes (Gill 1977; Gómez-González *et al.* 2011;
56 Keeley and Pausas 2022; Pausas *et al.* 2004). However, contemporary fire regime changes
57 are likely to shift the regeneration niche, potentially resulting in trait misalignments, due to
58 changes in seasonality, frequencies, intensities, durations, and scales of fire (Dowdy *et al.*
59 2019; Le Page *et al.* 2017; Moritz *et al.* 2012). Contemporary fire regime changes are a key
60 threatening process resulting in declining abundances and range sizes of plants, even for
61 previously common and widespread species (Enright *et al.* 2015; Fairman *et al.* 2016; Gaston
62 and Fuller 2007; Grau-Andrés *et al.* 2024; Le Breton *et al.* 2022). Thus, understanding plant
63 responses to fire throughout their life cycle is critical, especially at early life stages and
64 through transitions to adulthood (Smith *et al.* 2016).

65
66 In fire-prone ecosystems, post-fire reproductive modes can be divided broadly into
67 resprouters, which survive through tissue structures below bark or soil (R+); or obligate
68 seeders which are killed by fire but persist through propagules (i.e., seed) stored in soil or
69 canopy seedbanks (P+) (Clarke *et al.* 2015; Pausas *et al.* 2004; Pausas and Keeley 2014).
70 These strategies result in contrasting life histories: resprouters are long-lived with low
71 population turnover, whereas obligate seeders are short-lived with high population turnover
72 (Pausas *et al.* 2004; Pausas and Keeley 2014). Resprouters generally have lower seed
73 production and seedling densities than seeders, and higher investment in resprouting tissue
74 production may slow maturation rates (Bendall *et al.* 2022; Hunter 2003; Ojeda *et al.* 2016;
75 Pausas *et al.* 2004; Pausas and Keeley 2014; Verdú 2000; Whelan *et al.* 2002). Thus,
76 resprouters show a trade-off between seed investment and resprouting responses (Bendall *et*
77 *al.* 2022; Hunter 2003; Ojeda *et al.* 2016; Pausas *et al.* 2004; Pausas and Keeley 2014; Verdú
78 2000; Whelan *et al.* 2002). Conversely, obligate seeders have high seed production and high
79 seedling densities, with mass recruitment events post-fire (Hunter 2003; Keith *et al.* 2002;
80 Ojeda *et al.* 2016; Pausas and Keeley 2014).

81
82 Population age structure, defined as the distribution of age classes within a population
83 (hereafter ‘age class structure’) (Li and Barclay 2001; Taylor 2010), consequently varies

84 across these contrasting post-fire reproductive modes. After fire, obligate seeders tend to form
85 even aged-cohorts resulting from mass recruitment events, while resprouters tend to maintain
86 their pre-fire age class structure and form multi-aged cohorts (McCarthy *et al.* 1999; Pausas
87 and Keeley 2014; Taylor 2010). Consequently, short interval fires relative to the lifespan of
88 obligate seeders can shift populations into younger states, a phenomenon observed in
89 *Eucalyptus regnans* (Myrtaceae) (McCarthy *et al.* 1999). Such shifts can leave populations of
90 obligate seeders more susceptible to an immaturity risk as frequent short interval fire can
91 compromise their ability to reach reproductive maturity and increase the potential for
92 localised extinctions (Agne *et al.* 2022; Keith 1996; McColl-Gausden *et al.* 2022; Pausas and
93 Keeley 2014). In resprouters, shifts in age class structure can result from extremely short or
94 long fire return intervals as these species require time to replenish bud banks and produce
95 protective bark, but have reduced capacity to initiate shoots with age (Christensen *et al.* 1981;
96 Clarke *et al.* 2015; Gill and Catling 2002). However, fire at appropriate intervals remains
97 critical for obligate seeders and resprouters to cue regeneration, promote seedling
98 establishment, and stimulate flowering (Agne *et al.* 2022; Enright *et al.* 2011; McCarthy *et al.*
99 1999; Taylor 2010; Thomsen and Ooi 2022; Zirondi *et al.* 2021). Thus, fire and post-fire
100 reproductive mode act as strong drivers of age class structure but few studies examine these
101 effects in closely related obligate seeders and resprouters (e.g., Ojeda *et al.* 2016;
102 Schmidberger and Ladd 2020).

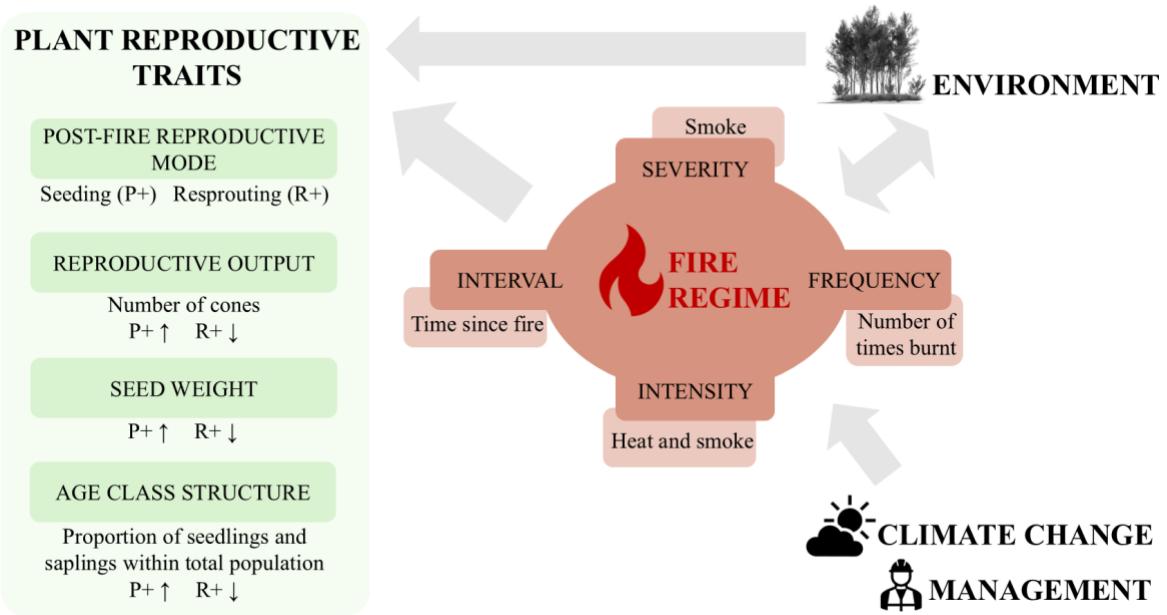
103
104 Regeneration from seed is a critical population process for obligate seeders; and also for
105 resprouters to enable successful colonisation of new sites or recolonisation after local
106 extinction (Bellingham and Sparrow 2000; Kennard *et al.* 2002; Pausas and Keeley 2014).
107 Therefore, seeds must possess traits conferring resilience to fire and other environmental
108 stressors (Bradshaw *et al.* 2011; Rosbakh *et al.* 2023; Tangney *et al.* 2020). Seed traits show
109 substantial variability (Fenollosa *et al.* 2021; Helsen *et al.* 2017; Pausas *et al.* 2024); for
110 example, seed size can vary widely between populations and species due to differential
111 selection from dispersal mode (wind, water, or animal), growth form (tree, shrub or grass),
112 and environmental attributes (climate and vegetation structure) (Moles *et al.* 2005; Sims
113 2012). Fire can drive selection on seed size due to its relation to heat tolerance with larger
114 seeds providing greater insulation to embryos (Escudero *et al.* 2000; Gómez-González *et al.*
115 2011; Lamont *et al.* 2019; Pausas and Lamont 2022). Conversely, smaller seeds are
116 associated with higher reproductive output in obligate seeders and might be selected under
117 certain fire regimes (Verdú 2000). Therefore, exposure to more frequent or intense fire may

118 result in development of larger seeds in these species (or populations) than close relatives in
119 environments with lower fire activity, but this likely depends on post-fire reproductive mode
120 (Escudero *et al.* 2000; Gómez-González *et al.* 2011; Lamont *et al.* 2019; Pausas and Lamont
121 2022; Verdú 2000). Studying closely related species with differing post-fire reproductive
122 modes can help disentangle the role of fire in trait variation and germination because
123 differences can be explained by environmental variation and trait variation rather than
124 phylogeny (Cortés-Flores *et al.* 2020; Fenollosa *et al.* 2021; Seglias *et al.* 2018; Wang *et al.*
125 2016; Zhao *et al.* 2021). However, only a few studies have investigated the role of fire and
126 post-fire reproductive mode in driving reproductive trait variability (e.g., Tangney *et al.*
127 2020), especially in phylogenetically related species (e.g., Ojeda *et al.* 2016; Schmidberger
128 and Ladd 2020).

129

130 Contemporary changes in fire regimes are causing misalignments between plant trait
131 variability and fire regime characteristics (Canadell *et al.* 2021; Day *et al.* 2020; Harvey and
132 Enright 2022; Johnstone *et al.* 2016; Kelly *et al.* 2025; Moritz *et al.* 2012). For example, fires
133 in sclerophyllous vegetation ecosystems have increased in severity, such that even species
134 with well-established fire adaptations (i.e., resprouting or fire-cued germination) can fail to
135 regenerate (Bennett *et al.* 2016; Etchells *et al.* 2020; Sano *et al.* 2025). These declines may
136 impact plant-animal or trophic interactions, as plants are strong drivers of community
137 structure and function (Ballarin *et al.* 2024; Carbone *et al.* 2019; Ellison 2019; Kelly *et al.*
138 2020; Rainsford *et al.* 2020; Smith 2018). Specialist interactions are most vulnerable to these
139 declines; yet are drastically understudied in fire ecology (Charles *et al.* 2025). Whether trees
140 can adapt in situ to fire regime changes is unclear, as more extreme climatic conditions have
141 led to declining post-fire regeneration success (Kelly *et al.* 2025; Stevens-Rumann *et al.*
142 2018; Young *et al.* 2019). Therefore, understanding how plants respond to fire requires an
143 understanding of species' responses to local and recent fire history. There has been much lab-
144 based research on fire-cued germination responses (reviewed in Hodges *et al.* 2021; Moreira
145 *et al.* 2010; Newton *et al.* 2021; Ooi *et al.* 2014; Younis and Kasel 2023). However, fire
146 history from the seed collection site has infrequently been included in fire-cued germination
147 analyses (e.g., Gómez-González *et al.* 2016; Gómez-González *et al.* 2011; Kasel *et al.* 2024;
148 Plumanns-Pouton *et al.* 2024; Vandvik *et al.* 2014; Zaki *et al.* 2021) and often from only
149 recent short term fire histories (e.g., <1 to 15 years post-fire, Amoako and Gambiza 2021;
150 Dawe *et al.* 2022; Luo *et al.* 2022; Schmidberger and Ladd 2020; Zimmer *et al.* 2021;
151 Zimmermann *et al.* 2008). To determine whether enough trait variability exists to allow

152 species to respond to contemporary fire regime changes, we require more studies of critical
153 regeneration stages (i.e., germination and transitions through seedlings and saplings to adults)
154 where short-term (1-10 years) and multi-decadal (30 or more years) fire histories are known.


155

156 I investigated the influence of fire on reproductive trait variation in two congeneric species
157 with differing post-fire reproductive modes: the obligate seeder *Allocasuarina littoralis* and
158 the facultative resprouter *Allocasuarina torulosa* (Casuarinaceae). These *Allocasuarina*
159 species are common across eastern Australia, where they form mixed stands with *Eucalyptus*
160 spp.. *Allocasuarina littoralis* typically occurs in swamps and eucalypt woodlands and forests,
161 and *A. torulosa* in wet eucalypt forests (Atlas of Living Australia 2021a; Atlas of Living
162 Australia 2021b; Neldner *et al.* 2019). The distributions of these species overlap, extending
163 from the coast to *ca.* 300 km inland. *Allocasuarina torulosa* extends from Cairns to Sydney
164 with a small population in Cape York Peninsula in far-north Queensland. *Allocasuarina*
165 *littoralis* has a broader range, from far-north Queensland to the Fleurieu Peninsula in South
166 Australia (Atlas of Living Australia 2021a; Atlas of Living Australia 2021b). Fire
167 management guidelines are often based on the *Eucalyptus* species which co-occur with
168 Casuarinaceae, but eucalypts require different fire regime conditions than she-oaks (Kellman
169 1986; Moss *et al.* 2011; Neldner *et al.* 2019; Stewart and Moss 2015). Although these
170 *Allocasuarina* species are common and widespread, their seeds are primary food resources
171 for the dietary specialist Glossy black-cockatoos, *Calyptorhynchus lathami* (Cacatuidae)
172 (listed nationally as Vulnerable, EPBC Act 1999), which has one of the most specialised diets
173 of all Australian birds (Chapman 2007; Menkhorst *et al.* 2024). Thus, understanding the fire
174 ecology of *Allocasuarina* spp. is fundamental to effective conservation for these cockatoos.

175

176 Reproductive traits investigated were: germination rates in response to heat and smoke
177 treatments (i.e., proportion germination, time to 50% germination); age class structure (i.e.,
178 ratio of seedlings and/or saplings to adults); seed size (i.e., seed weight); and female
179 reproductive output. Proportion of seeds that germinated was used as a measure of an
180 individual trees resilience to seed treatments, with higher proportions of germinated seeds
181 indicating higher resilience. Time to 50% germination was used as a measure of an
182 individual's competitiveness, such that less time to reach 50% germination indicated faster
183 establishment, and thus, a higher competitiveness. Seed weight was used as a measure of seed
184 size and related to an individuals' investment in sexual reproduction. These traits were
185 analysed in relation to fire regime variables, at the site where seeds were collected, that could

186 drive short-term ecological responses (e.g., time since last fire), and longer-term evolutionary
187 responses (e.g., responses to multiple fire events – fire frequency) (Fig. 1).
188

189
190 **Figure 1** Conceptual diagram showing the relationship between plant reproductive traits, fire regime attributes,
191 environmental attributes, climate change, and management. Plant-reproductive trait arrows relate to my
192 hypotheses regarding plant trait responses between differing post-fire reproductive modes to increasing fire
193 frequency. I expected reproductive output, seed weight, and age class structure to increase with fire frequency in
194 the obligate seeder and decrease in the facultative resprouter.

195
196 I first aimed to determine how contemporary fire frequency, and post-fire reproductive mode,
197 affected fire-cued germination responses and seed size. (H1) I expected that post-fire
198 reproductive mode would shape fire-cued germination responses and seed investment, with
199 higher seed investment and tolerances in *A. littoralis* (obligate seeder) than *A. torulosa*
200 (facultative resprouter). *Allocasuarina littoralis* was expected to have higher seed investment
201 with a larger quantity of smaller seeds, which would increase in environments with increasing
202 fire frequencies, high germination rates in response to heat and smoke, and a higher lethal
203 temperature threshold (Paula and Pausas 2008; Pausas and Keeley 2014). *Allocasuarina*
204 *torulosa* was expected to have lower seed investment, which would reduce with increasing
205 fire frequency, lower germination rates in response to heat and smoke, and a lower lethal
206 temperature threshold (Paula and Pausas 2008; Staden *et al.* 2000). Exposure to frequent fire
207 was expected to correspond with an increase in seed weight for *A. littoralis*, but a decrease

208 in seed weight in *A. torulosa* due to a trade-off between seed production and resprouting
209 capacity (Bellingham and Sparrow 2000; Pausas and Keeley 2014).

210
211 Second, I aimed to determine how fire frequency, time since fire, and post-fire reproductive
212 mode influenced age class structure and reproductive output (i.e., number of cones). **(H2)** I
213 expected that longer times since fire and low fire frequencies would reduce the proportions of
214 plants in younger age classes (i.e., seedling and sapling age classes) but increase reproductive
215 output. **(H2a)** Due to the immaturity risk of the obligate seeding mode of reproduction, I
216 expected high fire frequencies and short times since fire would result in fewer plants in
217 younger age classes in *A. littoralis* than *A. torulosa*. **(H2b)** I also expected that higher fire
218 frequencies and short times since fire would reduce reproductive output due to stem or cone
219 consumption by fire and reduced capacity to reach reproductive maturity during inter-fire
220 periods (Enright and Lamont 1989; Pausas and Keeley 2014).

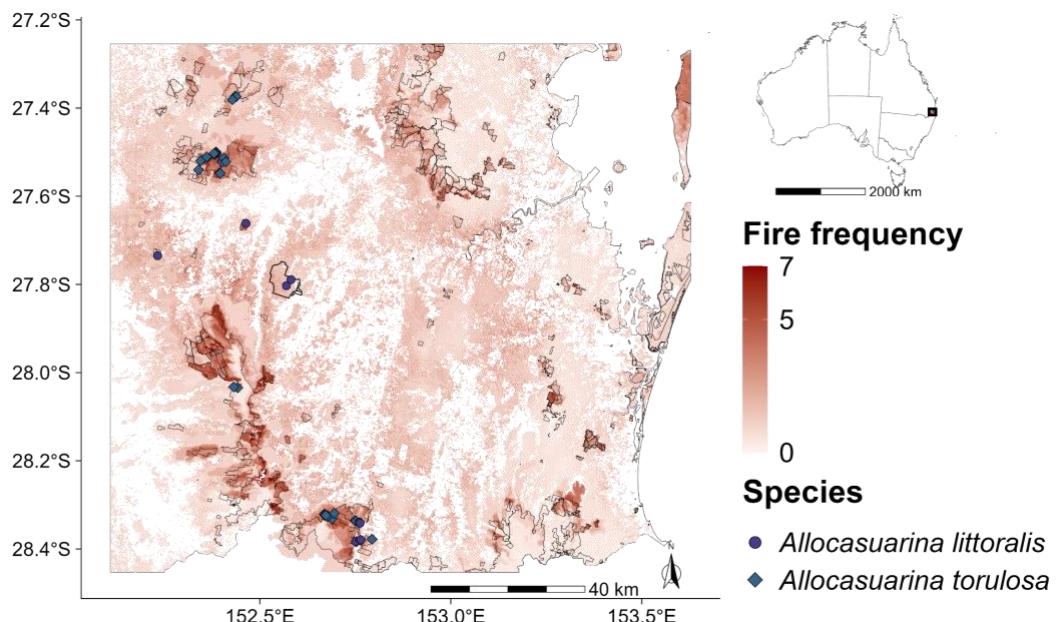
221
222 Third, I aimed to investigate how environmental attributes relating to site productivity
223 (topographic wetness, quantifying water availability (Gallant and Austin 2012); foliage
224 projective cover, quantifying the percentage of the ground covered by woody vegetation;
225 thus, photosynthetic potential (Fisher *et al.* 2018)) and climatic attributes (latitude;
226 precipitation seasonality and temperature seasonality, quantifying annual range trends (Noce
227 *et al.* 2020; Wang *et al.* 2024)) interacted with fire regimes to influence reproductive trait
228 variation. **(H3)** I expected environments with low site productivity and increasing climatic
229 variability would be associated with more stressful environments, reducing reproductive
230 output, seed weights, and proportions of younger age classes (Enright *et al.* 2015; McColl-
231 Gausden *et al.* 2022). Additionally, as lower latitudes are associated with increased
232 temperatures, promoting photosynthesis, growth and reproductive processes, I expected these
233 sampling locations to have higher reproductive outputs, seed weights and proportions of
234 younger age classes (Chamorro *et al.* 2018; Käber *et al.* 2021; Moles and Westoby 2003;
235 Wang *et al.* 2023).

236

237 **Methods**

238

239 *Study region*


240

241 This study took place in southeast Queensland, Australia, within the distributions of
242 *Allocasuarina littoralis* and *A. torulosa*. The Glossy black-cockatoo is a dietary specialist in
243 eastern Australia, listed as vulnerable (EPBC Act 1999) (Department of Climate Change
244 2022). These cockatoos feed exclusively on a subset of species (12 of 78 species) in the
245 Casuarinaceae family (Chapman 2007) including the two examined here. Glossy black-
246 cockatoos are notoriously cryptic, shifting their feeding locations in response to a range of
247 unknown environmental cues (similar to other nomadic bird species, Webb et al. 2014).

248

249 Sampling locations included public land (i.e., national parks and state forests) and private
250 properties such as Hidden Vale Nature Refuge, Dwyers Scrub Conservation Park, Gillies
251 Ridge Nature Refuge, Bartopia Nature Refuge, and Bulimbah Nature Refuge (Fig. 2). The
252 region has a temperate climate with mean maximum temperatures in summer ranging from
253 25 °C to 32 °C, and winter from 17 °C to 21 °C. The mean annual rainfall in the region
254 ranges from 688 mm to 1584 mm. In my inland study region in southeast Queensland, *A.*
255 *torulosa* is more common than *A. littoralis* (Atlas of Living Australia 2021a; Atlas of Living
256 Australia 2021b). Dominant vegetation included eucalypt woodland to open forests for *A.*
257 *littoralis* and *A. torulosa* sampling locations, and wet eucalypt forests for *A. torulosa*
258 sampling locations (Neldner et al. 2019). At these sampling locations, the dominant soil
259 orders included tenosols, sodosols and dermosols and soil types included volcanics; red soils;
260 sandstone; and igneous, Cainozoic and sedimentary rocks (Neldner et al. 2019).

261

262

263 **Figure 2** Sampling locations of two *Allocasuarina* species in southeast Queensland, Australia. Protected areas
 264 are displayed with black outlines including public land (state forests and national parks) and privately managed
 265 nature refuges. Fire frequency between 1987-2023 is shown in red shading (see Charles *et al.* 2025 under
 266 review) and ranged from 0 to 11 fires in the past 36 years for the study region, with white representing areas
 267 mapped as unburnt. To aid visualisation of fire frequency variation between my sampling transects, fire
 268 frequency was rescaled so areas burnt 7 or more times are represented by the darkest shade of red.

269

270 *Allocasuarina littoralis* and *A. torulosa* are dioecious trees growing 5 to 15 m and 5 to 30 m
 271 tall, respectively (Australian Biological Resources Study. Advisory Committee 1989; Spencer
 272 1995). *Allocasuarina littoralis* has a more coastal distribution on sandy, heavy clay, or stony
 273 soils (Australian Biological Resources Study. Advisory Committee 1989; Foreman and Walsh
 274 1993) while *Allocasuarina torulosa* may be found in coastal regions but is also common in
 275 forests on fertile soils (Australian Biological Resources Study. Advisory Committee 1989;
 276 Stanley *et al.* 1983). *Allocasuarina littoralis* has an average longevity of 50-70 years but may
 277 live for >500 years, while *A. torulosa* has a longevity of 500 years (Falster *et al.* 2021; Kattge
 278 *et al.* 2020). Reproductive maturity is usually reached in five years for both species, but *A.*
 279 *littoralis* may take 10 years (Falster *et al.* 2021; Kattge *et al.* 2020). Both species gradually
 280 release seed from serotinous cones as they dry, allowing recruitment in the absence of fire
 281 (Crowley 1986; Falster *et al.* 2021; Kattge *et al.* 2020). *Allocasuarina littoralis* is commonly
 282 described as an obligate seeder (R-P+) which is fire killed and germinates from canopy-
 283 stored seed (Falster *et al.* 2021). However, intermediate post-fire resprouting capacity from
 284 basal lignotubers has also been reported in *A. littoralis* but is likely linked to low severity

285 fires which do not kill stems or result in 100% scorch (Falster *et al.* 2021; Kattge *et al.* 2020)
286 (a condition required for categorisation as R+, Pausas *et al.* 2004). *Allocasuarina torulosa* is
287 a strong basal and epicormic facultative resprouter, also displaying fire-cued seeding
288 responses when canopy seedbanks are available (R+P+) (Kattge *et al.* 2020).

289

290 Both tree species lack seed dormancy beyond the physical dormancy imposed by storage in
291 serotinous cones (Crowley 1986; Turnbull and Martensz 1982). Germination occurs across a
292 range of incubation temperatures between 17-37 °C (Turnbull and Martensz 1982). There has
293 been limited research on fire-cued germination in *A. littoralis* and *A. torulosa* (but see, Clarke
294 *et al.* 2000; Crowley 1986). In other Casuarinaceae, seeds have been reported to survive heat
295 shock of up to 120 °C (Callister *et al.* 2018; Hanley and Lamont 2000). *Allocasuarina* leaf
296 litter burns at high temperatures (e.g., 60 ° to 111 °C at 1 cm soil depth, Tangney *et al.* 2020),
297 likely exposing canopy seedbanks to temperatures above 100 °C.

298

299 *Field age class structure surveys and cone collection*

300

301 I established 40 sampling points to cover a range of fire histories within the distribution of the
302 Glossy black-cockatoo, *A. littoralis*, and *A. torulosa*. Age class structure surveys investigated
303 the hypotheses that (H2) fire history and (H3) environmental attributes influenced
304 proportions of plants in younger age classes and reproductive output. Identification of
305 sampling point was assisted using occurrence records from Atlas of Living Australia. From
306 these records, I randomly selected sampling points across a range of fire frequencies. In the
307 field at these sampling points, I then located a stand of *Allocasuarina* but where no
308 *Allocasuarina* were found, further scouting was performed to locate a stand of *Allocasuarina*
309 with a similar fire frequency. More sampling points were able to be established at low fire
310 frequencies (1-3 fires from 1987-2023; 32 transects), the majority (n = 26) of which were *A.*
311 *torulosa* transects, than high fire frequencies (4-7 fires from 1987-2023; six transects), all of
312 which were *A. torulosa* transects. Once the stand of *Allocasuarina* was identified at the
313 sampling point, a 50 m × 4 m transect was established at an individual tree and age class
314 structure was measured, with transects spaced at least 140 m apart (range within sampling
315 locations 140 m – 14 km). Measurements from each individual *Allocasuarina* along the
316 transect included: age class; diameter at breast height (DBH), recruitment type (e.g., basal
317 resprout, trunk resprout, seedling or none); condition (e.g., dead or alive); and height (using a

318 Suunto PM5/360 PC Clinometer (Vantaa, Finland) or Nikon Forestry Pro II Laser
319 Rangefinder (Tokyo, Japan)). Age classes were defined as: adult = height >1 m, DBH >3 cm;
320 sapling = height >1 m, DBH <3 cm; and seedling = height <1 m (see Schmidberger and Ladd
321 2020). For female plants, the number of cones were counted to measure reproductive output,
322 with counts over 100 recorded as the average estimates from two observers.

323

324 Females bearing cones were randomly selected along and nearby to transects for cone
325 collection, with at least 20 m spacing between individuals (range within sampling locations
326 20 m – 130 m). Cones were collected from up to six individuals per transect, with fewer
327 individuals sampled if no cones were available or cones were not within *ca.* 5 m of the
328 ground. On each individual tree, I collected a minimum of two mature cones (i.e., brown to
329 grey-brown in colour with closed valves) to ensure seed had not been released but were fully
330 developed. More cones were collected where possible (up to 73 cones with an average of 12
331 cones per individual) to increase sample sizes for the germination experiment. Cones were
332 stored in paper bags in a warm, dry environment until seeds were shed and any unshed seeds
333 were manually extracted from cones using tweezers. Seeds were stored for eight to 24 months
334 in an air-conditioned laboratory inside an airtight container to minimise ambient temperature
335 fluctuations prior to the germination experiment.

336

337 *Germination experiment*

338

339 Germination experimental overview

340

341 I conducted a full factorial germination experiment with a replicated design, to test the
342 hypothesis (**H1**) that post-fire reproductive mode variation and fire frequency influenced fire-
343 cued germination responses. The full factorial experiment was conducted with a replicated
344 design such that three separate rounds of seed germination were conducted, with individuals
345 exposed to the same treatment(s) in each replicate. Before conducting this experiment, I ran a
346 series of optimisation trials to determine incubation temperatures, heat shock temperatures
347 and durations, aerosol exposure duration and material. Incubation temperature tests were run
348 to determine the optimal germination temperatures for each species and the baseline
349 germination rate for *Allocasuarina littoralis* and *Allocasuarina torulosa* using thermal
350 gradient bars (Fig. S1). Heat shock and smoke trials were conducted to determine (1) upper
351 thresholds for heat tolerance and (2) the level at which seeds would show germination

352 variability, thus, indicating heat and smoke levels that could drive selection. The following
353 seed traits were measured to examine the influence of variation in post-fire reproductive
354 mode, fire history, and environment on seed investment (**H1, H3**): seed weight and number of
355 seeds. Seed lots (i.e., all seeds for an individual) were weighed, both as the whole seed lot
356 and as a 10 seed fraction to estimate the total number of seeds in the seed lot and average
357 seed weight per seed for the seed lot.

358

359 For all germination experiments, 20 seeds from an individual tree (hereafter ‘individual seed
360 lot’) were placed in plastic 90 mm petri dishes lined with Whatman no. 1 filter paper
361 moistened with distilled water and sealed with parafilm to reduce water loss. Seeds exposed
362 to aerosol smoke were plated on sterile petri dishes prior to germination to reduce exposure to
363 accumulated smoke residues. Seeds exposed to a combination of heat shock and smoke
364 treatments were heat shocked prior to aerosol smoke exposure. Seeds in all experiments
365 (excluding incubation temperature optimisation) were germinated in illuminated refrigerated
366 incubators (TRIL495-1-SD, Thermoline Scientific, Wetherhill Park, New South Wales,
367 Australia) with a 12-hour photoperiod provided by Grolux fluorescent lighting (36W) and
368 temperatures set to 17 °C for *Allocasuarina littoralis* and 20 °C for *Allocasuarina torulosa*
369 (see Fig. S1 and Turnbull and Martensz 1982). Seeds were germinated for at least 21 days,
370 with germination considered to have occurred upon emergence of the radicle from the testa.
371 After emergence, the germinant was recorded and removed from the dish to allow space for
372 other seeds to germinate. If no new seeds germinated between 21-28 days, then germination
373 was considered to have ceased and the trial ended. If seeds continued to germinate up to 28
374 days, the germination trial was continued until no new seeds germinated over a 7-day period.
375

376 Seed viability measurements

377

378 Seed viability was measured using two methods: (1) x-ray prior to germination experiments
379 to estimate pre-treatment viability without reducing the number of seeds for the experiment,
380 and (2) post-experiment tetrazolium tests to determine whether seeds which remained
381 ungerminated at the end of the trial were viable (Peters 2000). X-rays were taken on a
382 Faxitron MX-20 Imaging system (Lincolnshire, IL, USA), on *ca.* 100 seeds per individual
383 seed lot with four replicates of 25 seeds at 28 kV for 6.55 seconds. X-ray images were
384 examined to determine seed fill; a metric related to the amount of seed embryo and

385 endosperm which is correlated with viability (Gagliardi and Marcos-Filho 2011; Tausch *et al.*
386 2024). Unfilled seeds were considered unviable but seeds with partial filling were classed as
387 viable as there was potential seed mass from which germination could occur. The x-ray
388 viability data were summarised as the proportion of viable seeds in the individual seed lot for
389 analysis. Tetrazolium tests used a 1% 2,3,5 triphenyl tetrazolium chloride (TTC) solution
390 with seeds cut laterally through the distal end of cotyledons and incubated in solution for 18
391 hours at 30 °C in darkness (Peters 2000). After incubation in TTC solution, seeds were
392 observed under a dissection microscope with seeds classed as viable if the radicle and
393 cotyledons were completely stained pink (Peters 2000). Any lack or inconsistencies in TTC
394 staining was considered to indicate unviable seeds (Peters 2000).

395

396 Incubation temperature optimisation

397

398 Water in a thermal gradient bar (CSK Model CSK-TGB, Serial 3310; CSK Group, Wacol,
399 Queensland, Australia) was heated to temperatures ranging between 4 °C to 41 °C, with the
400 ambient temperature in five chambers monitored on an hourly basis for two weeks using data
401 loggers (Tinytag, TGP 4500; Hastings data loggers, Port Macquarie, New South Wales,
402 Australia). Ambient temperatures ranged from *ca.* 6 °C to 36 °C across 10 insulated
403 chambers, with chambers differing by *ca.* 3 °C to 4 °C along the gradient (Fig. S1). During
404 incubation, seeds were exposed to a 12-hour photoperiod (Callister *et al.* 2018) of cool white
405 fluorescent LED light (1200 lumens, 12W). For each species, three individual seed lots,
406 representing three different individuals, were used with 20 seeds per petri dish, giving 600
407 seeds across the thermal gradient bar for incubation temperature optimisation. Incubation
408 temperature optimisation tests were ceased on day 28 as previous studies considered this
409 sufficient time for viable seeds to germinate (Crowley and Jackes 1990; Turnbull and
410 Martensz 1982). Ungerminated, viable seed was considered to be exposed to an unsuitable
411 germination temperature, with germination likely having been slowed by exposure to low
412 temperatures. Optimal incubation temperatures for germination were determined to be 17 °C
413 for *A. littoralis* and 20 °C for *A. torulosa* (Fig. S1).

414

415 Heat shock and smoke exposure optimisation

416

417 Preliminary heat shock tests were conducted using a dehydrating oven (Thermoline
418 Scientific, Wetherhill Park, New South Wales, Australia) to determine the lethal temperature
419 threshold. Heat shocks tests were conducted at 80 °C, 95 °C, 110 °C, 125 °C, and 150 °C for
420 durations of 0.5, 1, 2, 5 and 10 minutes. Three individual seed lots from both species with a
421 large quantity of seeds were used for these tests, with cones from two *A. torulosa* individuals
422 collected only for optimisation tests. These tests indicated that temperatures over 100 °C
423 were, in most cases, sufficient to kill loose seeds (Fig. S2). Thus, 80 °C and 95 °C were
424 selected for heat shock temperatures in the full factorial experiment as they were below the
425 lethal temperature threshold but still produced variability in germination rates (Fig. S2).

426

427 *Allocasuarina* species produce dense leaf litter, which has an allelopathic effect on other
428 plants (Ahmed *et al.* 2019; Buehler 2010). As such, I expected smoke responses in my study
429 species could be strongly tied to smoke from their own leaf litter, rather than smoke more
430 generally. Therefore, aerosol smoke tests were conducted to compare germination responses
431 to smoke from *Allocasuarina torulosa* leaf litter material and to pine sawdust, which
432 promotes germination across a range of species (Keeley and Bond 1997). Leaf litter from *A.*
433 *torulosa* was collected from a private property in Seventeen Mile, Queensland, Australia (one
434 of the main sampling locations) and compared to commercially available pine sawdust.

435

436 Aerosol smoking was implemented in a modified 54 L rectangular plastic container (65 cm ×
437 28 cm × 41 cm) used as a smoke chamber. The chamber included a 40 cm × 25 cm door on the
438 long edge, attached with hinges and sealed with weatherproof tape to minimise smoke escape
439 while enabling access to samples. A 50 cm PVC pipe with 1 cm holes along its length (spaced
440 *ca.* 4 cm – 4.5 cm apart) spanned the full length of the container. The pipe passed through a
441 4.5 cm diameter hole in the bottom of the short side of the container, enabling even smoke
442 dispersal. A beekeepers' smoker was held at the end of this pipe, with a 20 cm extension pipe
443 extending outside the container to minimise heat transfer into the main chamber. A cluster of
444 small holes were drilled in the opposite corner of the chamber lid from the smoke entry point
445 to create air flow. During smoke exposure, regular smoke flow was maintained by pumping
446 smoke from the beekeepers' smoker through the PVC pipe and into the chamber to maintain
447 an approximately even amount of smoke in the chamber. Seeds from three *A. littoralis* and

448 three *A. torulosa* individuals were used for the smoke optimisation trials. Each individual
449 seed lot of 20 seeds was placed in petri dishes on an approximately 10 cm high shelf inside
450 the smoke chamber. All smoke was released from the chamber between petri dishes with new
451 individual seed lots to maintain a similar amount of smoke across individuals. I tested smoke
452 exposures of 5, 10, and 20 minutes for each individual. To minimise cross contamination
453 between smoke material types, the beekeepers' smoker was thoroughly cleaned with acetone
454 and the smoke chamber wiped with ethanol between trials. *Allocasuarina torulosa* leaf litter
455 produced a similar effect to pine sawdust and was most consistent at a 20-minute exposure
456 time in both species (Fig. S3).

457

458 Full factorial germination experiment

459

460 The full factorial experiment included six treatments: (1) control; (2) 80 °C heat shock for 5
461 min; (3) 95 °C heat shock for 5 min; (4) 20 min smoke exposure; (5) 80 °C heat shock for 5
462 min + 20 min smoke exposure; and (6) 95 °C heat shock for 5 min + 20 min smoke exposure.
463 Three replicates for each treatment combination were conducted, with the start time for each
464 replicate staggered by 14 days to minimise bias related to starting conditions. Seed
465 germination was recorded on the first day after plating then every second to third day until
466 day 29 (i.e., day 1, 3, 6, 8, 10, 13, 15, 17, 20, 22, 24, 27 and 29) or until germination ceased.
467 Cessation of germination was 35 days, 36 days and 46 days post-commencement of the
468 germination experiment for each replicate, respectively. Therefore, for replicates one and two,
469 I assigned values of zero germination for all seeds up to 46 days to standardise test periods
470 across replicates, a step required for calculating germination metrics.

471

472 To test the hypothesis (**H1**) that variation in post-fire reproductive mode affected fire-cued
473 germination responses and seed size, species were considered separately. Individual seed lots
474 for *A. torulosa* were also divided based on the fire frequency at the collection site (i.e., low
475 fire frequency individual seed lots and high fire frequency individual seed lots). Due to
476 limited seed available, I was unable to assign each individual to all six treatments (e.g., an
477 individual with only 120 seeds could only be assigned to 3 treatments). Thus, I used
478 arrangements package version 1.1.9 (Lai 2019) in R version 4.3.1 (R Core Team 2018) to
479 randomly assign the six treatments to individuals, with six separate rounds of assignment. I
480 subsequently reduced treatment assignments on a case-by-case basis such that only three

481 treatments were assigned to an individual with 120 seeds. During this case-by-case treatment
482 assignment reduction, I ensured 15 individual seed lots were included for all six treatments.
483 Thus, each germination experiment replicate included six treatments with 300 seeds from 15
484 individual seeds lots, totalling 1800 seeds for *A. littoralis*, 1800 seeds for *A. torulosa* low fire
485 frequency, and 1800 seeds for *A. torulosa* high fire frequency.

486

487 *Analysis*

488

489 Fire frequency data from was obtained from Queensland Parks and Wildlife Service (Table 1)
490 and subset temporally (i.e., 1987-2023) to match the temporal resolution of generalised
491 additive modelled satellite fire frequency estimates used to supplement data for areas outside
492 of public estates (see Charles *et al.* 2025 under review). Year of last fire was obtained from
493 Queensland Parks and Wildlife fire history data and satellite fire history data, with areas of no
494 fire data between 1987-2023 assigned 1986. Time since fire was then calculated by
495 subtracting year of last fire from sampling year. Temperature and precipitation seasonality
496 data (Fick and Hijmans 2017), Topographic Wetness Index (TWI) (Gallant and Austin 2012),
497 and Foliage Projective Cover (FPC) (Department of Environment 2020; Department of
498 Environment 2022; Department of Environment 2024a; Department of Environment 2024b;
499 Department of Environment 2024c) data are summarised in Table 1. Spatial data requiring
500 resolution adjustments were rescaled to 30 m resolution (see Table 1) using
501 gdalUtilities version 1.2.5 nearest neighbour resampling. Foliage projective cover data
502 was provided as 0-100% foliage cover, but data from 2014 were on a different scale.
503 Therefore, 2014 FPC data were reclassified to align with other years. Foliage projective cover
504 was then rescaled to 30 m, prior to calculation of the average FPC (Table 1).

505

506

507 **Table 1** Spatial fire, climate, and environment variables used to investigate reproductive trait variability in
 508 *Allocasuarina littoralis* and *A. torulosa* in southeast Queensland, Australia.

Variable	Raw	Resampled	Temporal	Data source
	resolution	resolution	resolution	
Fire history – Queensland Parks and Wildlife Service	1 m	30 m	1930-2023	(Queensland Parks and Wildlife Service 2023)
Annual Fire Scars – Landsat, QLD DES algorithm	30 m	Unchanged	1987-2016	(Collett 2021)
Sentinel-2 fire scars – QLD DES algorithm, annual	10 m	30 m	2017-2023	(van den Berg 2021)
Temperature seasonality	1 km	30 m	1970-2000	(Fick and Hijmans 2017)
Precipitation seasonality	1 km	30 m	1970-2000	(Fick and Hijmans 2017)
Topographic wetness index	30 m	Unchanged	2000	(Gallant and Austin 2012)
Foliage projective cover				
- Landsat 2014	30 m	Unchanged	1998-2014	(Department of Environment 2020)
- Statewide Landcover and Trees Study Sentinel-2 2018	30 m	Unchanged	2018	(Department of Environment 2022)
- Statewide Landcover and Trees Study Sentinel-2	10 m	30 m	2019, 2020, 2021	(Department of Environment 2024c)

509
 510 Analyses of reproductive trait data were conducted in R version 4.3.1 (R Core Team 2023)
 511 using generalised linear mixed models in `lme4` R package version 1.1-34 (Bates *et al.* 2015).
 512 I used the same model structure for each response variable but modified the model family
 513 (error structure) as appropriate for each type of response variable. Models were fit separately
 514 for each species to account for biological differences related to their post-fire reproductive
 515 modes and other biological factors. Prior to modelling, continuous numeric predictors were
 516 scaled by dividing values by the series-wide standard deviation. I fit models with and without
 517 a main effect for fire to investigate the influence of environmental variation on reproductive
 518 trait variation (**H3**). For each response variable a null model was fit with no variation, against
 519 which to compare the other models. Model selection was performed by ranking models based

520 on Akaike's Information Criterion corrected for small sample sizes (AIC_c) in `AICcmodavg`
521 R package version 2.3-3 (Mazerolle 2020). The best model was chosen as the model with the
522 lowest AIC_c in the candidate set which improved model fit over the null model by $\Delta AIC_c > 2$
523 (Arnold 2010; Leroux 2019). Where additional models were ranked within 2 AIC_c units of
524 the top model and included one additional parameter, I considered the additional parameter to
525 be supported by the data if (1) the additional parameter improved log likelihood over that of
526 the top-ranked model; (2) confidence intervals did not overlap zero (Fig. S7, S9) (Arnold
527 2010; Leroux 2019). For top-ranked models including factorial predictors with multiple
528 levels, I calculated least-squares means comparisons to determine differences between levels
529 within the factor (Fig. S8). For example, if the top-ranked model included germination
530 treatment, I used least-squares means comparisons to determine if 95 °C heat shocked seed
531 germination was different to control seed germination (Fig. S8).

532

533 Germination experiment

534

535 Cumulative proportion germination for each individual was calculated by dividing the
536 cumulative sum of germination by the total number of seeds germinated at the end of the
537 period. First and last germination day and time to 50% germination were calculated by
538 adapting functions from `germinationmetrics` R package version 0.1.8 (Aaravind *et al.*
539 2022). To analyse the effect of seed treatment and fire frequency on fire-cued germination
540 (**H1**) I fit seven models each for proportion of seeds germinated and time to 50%
541 germination: a null model; three univariate models with main effects for treatment, fire
542 frequency, and seed weight; and three multivariate models investigating interactions between
543 treatment, fire frequency and seed weight. To account for individual-level similarities in
544 responses and potential effects of replicates, I included a random effect for replicate and
545 individual in each model. To analyse the effect of fire frequency and environment on seed
546 weight (**H1, H3**), I used the average weight of a singular seed (hereafter 'seed weight') as the
547 response variable as a proxy measure of seed size as these measures are strongly correlated
548 (Eriksson 1999; Gnan *et al.* 2014). I fit twelve models with a random effect for individual: a
549 null model; six univariate main effect models for fire frequency and environmental attributes;
550 and five multivariate models investigating interactions between fire frequency and
551 environmental attributes.

552

553 Age class structure surveys

554

555 To analyse fire history effects on age class structure, the proportion of seedlings, saplings,
556 and recruits (i.e., seedlings and saplings) within the total population was calculated by
557 dividing the total number of individuals in an age class by the sum of the number of
558 individuals from that age class and the number of adults. For example, proportion of

559 seedlings within the total population was calculated by $\frac{\text{Number of seedlings}}{\text{Number of adults+seedlings}}$. To analyse
560 the effect of fire and environment on age class structure (**H2a, H3**) I fit twelve models: a null
561 model; six univariate main effect models for the focal fire metric (i.e., fire frequency or time
562 since fire) and environmental attributes; and five multivariate models investigating
563 interactions between the focal fire metric and environmental attributes. To analyse the effect
564 of fire and environment on reproductive output (i.e., cone number, **H2b, H3**), I fit eight
565 models: a null model and seven univariate models for fire frequency, time since fire, and
566 environmental attributes. I did not fit any multivariate models for reproductive output due to
567 a limited number of individuals with cones along our transects. For age class structure and
568 reproductive output analyses, due to the hierarchical structure of data collection (multiple
569 individuals along transects and multiple transects within locations), I included transect nested
570 within location as a random effect in each model.

571

572 **Results**

573

574 *Germination experiment*

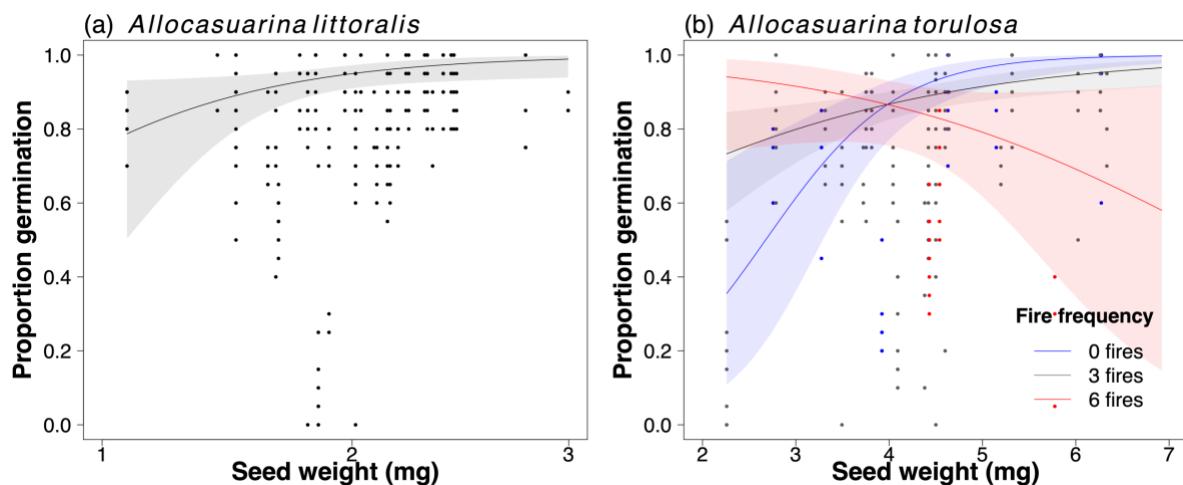
575

576 Field sample collection resulted in seeds from 115 individual trees across the study region in
577 southeast Queensland, comprising 40 *A. littoralis* and 75 *A. torulosa* individuals. Seven
578 individual trees with less than 60 seeds were excluded resulting in 108 individuals (37 *A.*
579 *littoralis* and 71 *A. torulosa*) available for the germination experiment. Fire frequencies at
580 seed collection locations ranged from one to three and six fires over 36 years for *A. littoralis*
581 and *A. torulosa*, respectively. Time since fire at collection locations ranged from at least 36
582 years post-fire to around two-years post-fire for *A. littoralis* and *A. torulosa*, respectively.

583

584 Germination rates were not strongly influenced by heat shock or smoke in either species (Fig.
585 S6), with the null model ranked higher than models including seed treatments (Table 2).

586 Treatments did not reduce seed viability or vary to a strong degree between replicates as no
587 noticeable differences in viability were observed (Fig. S4, S5). Thus, *A. littoralis* and *A.*
588 *torulosa* are smoke and heat tolerant up to 95 °C with no requirement for fire-cues to
589 germinate once seeds have been released from cones. Seed weight influenced germination
590 rate for *A. littoralis* (ΔAIC_c relative to null model = 3.07; Table 2, Fig. 3), and *A. torulosa*
591 with an interaction between seed weight and fire frequency (ΔAIC_c relative to null model =
592 10.97; Table 2, Fig. 3). In both species, heavier seeds were associated with greater
593 germination rates (Table 2, Fig. 3). For *A. torulosa* individuals exposed to high fire
594 frequencies, germination rates decreased with increasing seed weight and were highly
595 variable (20-90% proportion of seeds germinated, Fig 3b).


596

597

598 **Table 2** Models used to examine the influence of fire frequency and seed treatment on proportion germination in
 599 *Allocasuarina littoralis*, and facultative resprouter, *A. torulosa*. For each species, models are ranked from
 600 highest to lowest AIC_c .

Species	Model structure	Number of parameters	AIC_c	ΔAIC_c	Log
					Likelihood
<i>Allocasuarina littoralis</i>	Seed weight	3	129.07	0.00	-60.46
	Null model	3	132.14	3.07	-63.03
	Seed weight \times fire frequency	4	132.81	3.74	-60.25
	Fire frequency	3	133.42	4.34	-62.63
	Treatment	3	136.27	7.20	-59.86
	Treatment \times seed weight	4	140.94	11.86	-55.65
	Treatment \times fire frequency	4	144.84	15.76	-57.59
<i>Allocasuarina torulosa</i>	Seed weight \times fire frequency	4	404.26	0.00	-196.05
	Seed weight	3	408.31	4.05	-200.12
	Null model	3	415.23	10.97	-204.59
	Fire frequency	3	416.75	12.49	-204.34
	Treatment	3	421.81	17.55	-202.77
	Treatment \times seed weight	4	422.75	18.49	-196.97
	Treatment \times fire frequency	4	430.50	26.24	-200.85

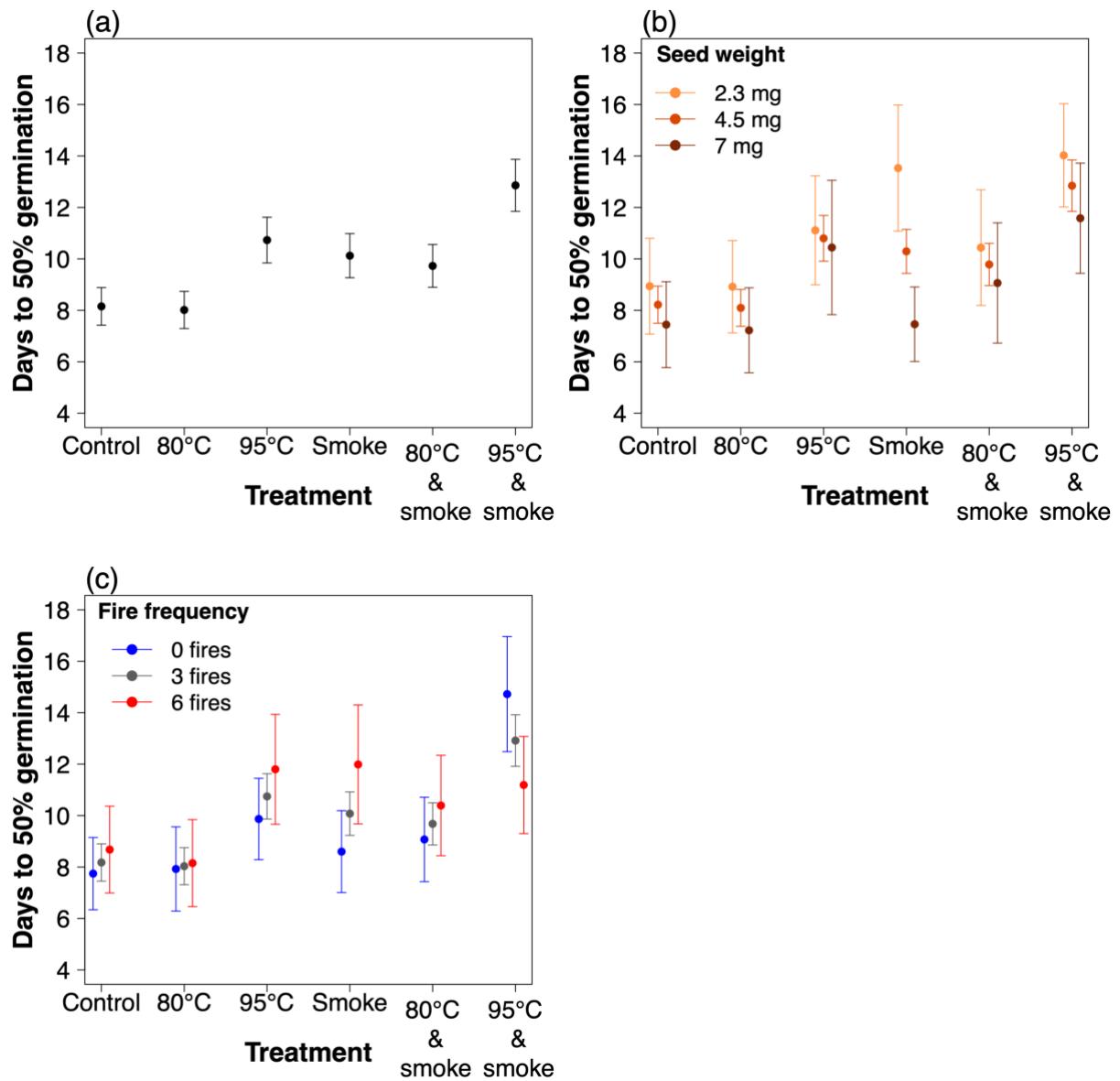
601

602

603 **Figure 3** The estimated effect (and 95% confidence intervals) of seed weight on proportion germination in (a)
 604 *Allocasuarina littoralis* and (b) *A. torulosa*. The top-ranked model for *A. torulosa* included an interaction
 605 between seed weight and fire frequency.

606

607 Time to reach 50% germination was influenced by seed treatment in both species (Fig. 4a-b).
608 For *A. littoralis*, there was not strong support for an effect of seed treatment on time to 50%
609 germination as the null model was equivalent to the treatment only model (Table 1). In *A.*
610 *torulosa*, there was support from the data for three models: treatment only (ΔAIC_c relative to
611 null model = 108.77), treatment and seed weight interactive model (ΔAIC_c relative to the top
612 ranked model = 0.11), and treatment and fire frequency interactive model (ΔAIC_c relative to
613 the top ranked model = 0.67) (Table 3). Time to 50% germination increased for all treatments
614 compared to controls, except for the 80 °C treatment (Fig. 4a). Thus, heat and smoke slowed
615 down germination in *A. torulosa*. In the seed weight interaction model, heavier seeds were
616 typically faster to germinate, an effect which was most pronounced for individuals exposed to
617 the smoke treatment (Fig. 4b). For 95 °C; smoke; and 80 °C + smoke, seeds from historically
618 more frequently burned sampling transects had slower germination (Fig. 4c). However, for
619 individuals exposed to the 95 °C + smoke treatment, this pattern was reversed, with
620 individuals from more frequently burned sampling transects having faster germination than
621 those exposed to less frequent fire (Fig. 4c).


622

623

624 **Table 3** Models used to examine the influence of fire frequency, seed weight, and seed treatment on time to
 625 reach 50% germination, as a measure of germination speed, in *Allocasuarina littoralis* and *A. torulosa*.

Species	Model structure	Number of parameters	AIC _c	ΔAIC _c	Log Likelihood
<i>Allocasuarina littoralis</i>	Treatment	3	1284.18	0.00	-633.81
	Null model	3	1284.99	0.81	-639.45
	Seed weight	3	1286.36	2.18	-639.10
	Fire frequency	3	1286.82	2.64	-639.34
	Seed weight × fire frequency	4	1289.69	5.51	-639.69
	Treatment × seed weight	4	1292.97	8.79	-631.66
	Treatment × fire frequency	4	1295.10	10.92	-632.72
<i>Allocasuarina torulosa</i>	Treatment	3	2579.61	0.00	-1281.67
	Treatment × seed weight	4	2579.72	0.11	-1275.46
	Treatment × fire frequency	4	2580.28	0.67	-1275.74
	Seed weight	3	2680.38	100.77	-1336.15
	Seed weight × fire frequency	4	2682.91	103.30	-1335.38
	Null model	3	2688.38	108.77	-1341.17
	Fire frequency	3	2690.24	110.63	-1341.08

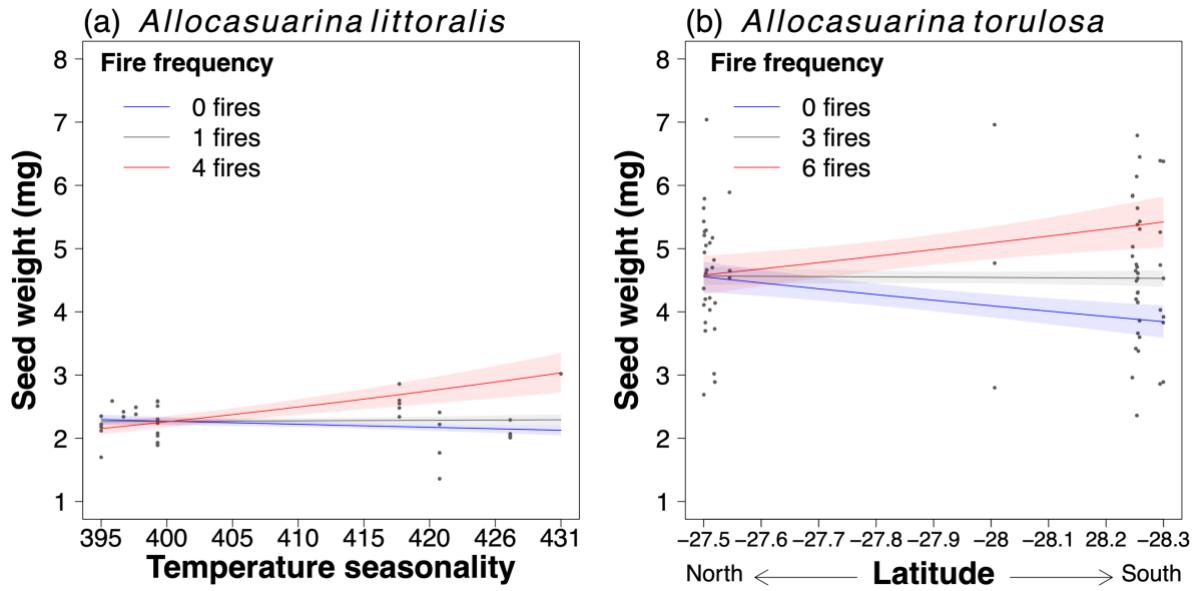
626

627
628
629
630

Figure 4 The estimated effect and 95% confidence interval of seed treatment on time to 50% germination (days) for (a) *A. torulosa*. In addition to main effects of treatment, there was evidence for an interaction between treatment and (b) seed weight, and (c) fire frequency on time to 50% germination.

631
632
633
634
635
636
637
638

Seed weight was influenced by an interaction between fire frequency and temperature seasonality in *A. littoralis* and between fire frequency and latitude in *A. torulosa* (Table 4, Fig. 5). There was no evidence of any other environmental variables influencing seed weight in either species ($\Delta AIC_c > 5$, Table 4). For *A. littoralis*, seed weight increased with temperature seasonality for seeds collected at frequently burned transects (4 fires over 36 years, Fig. 5a). At low- to intermediate fire frequencies (0-1 fire over 36 years) there was no relationship between seed weight and temperature seasonality (Fig. 5a). For *A. torulosa*, seed


639 weight increased with decreasing latitude for frequently burned transects (6 fires over 36
640 years) and decreased with decreasing latitude for infrequently burned transects (0 fires over
641 36 years) (Fig. 5b). There was no relationship between latitude and seed weight for
642 intermediate fire frequencies (3 fires over 36 years, Fig. 5b). In other words, at southern
643 sampling locations seeds were heavier when collected at transects which had experienced
644 frequent fire, compared to relatively unburnt transects. At northern sampling locations, there
645 were no differences in seed weight related to fire history (Fig. 5b).

646

647

648 **Table 4** Models used examine the influence of fire frequency and environmental variation on seed weight in
 649 *Allocasuarina littoralis* and *A. torulosa*.

Species	Model structure	Number of parameters	AIC _c	ΔAIC _c	Log Likelihood
<i>Allocasuarina littoralis</i>	Fire frequency × temperatures seasonality	4	-8418.33	0.00	4215.33
	Null model	3	-8376.10	42.23	4191.10
	Temperature seasonality	3	-8347.75	70.58	4177.95
	Precipitation seasonality	3	-8330.16	88.17	4169.16
	Latitude	3	-8329.41	88.92	4168.78
	Fire frequency	3	-8317.17	101.16	4162.66
	Fire frequency × latitude	4	-8263.94	154.40	4138.13
	Fire frequency × precipitation seasonality	4	-8235.42	182.91	4123.87
	Fire frequency × topographic wetness	4	-8224.59	193.75	4118.45
	Topographic wetness	3	-8215.94	202.40	4112.04
	Foliage projective cover	3	-7533.58	884.75	3770.88
	Fire frequency × foliage projective cover	4	-7521.56	896.77	3766.96
<i>Allocasuarina torulosa</i>	Fire frequency × latitude	4	-16303.73	0.00	8157.95
	Fire frequency × topographic wetness	4	-16297.98	5.75	8155.07
	Topographic wetness	3	-16170.19	133.54	8089.13
	Null model	3	-16126.40	177.33	8066.22
	Precipitation seasonality	3	-16112.83	190.90	8060.45
	Temperature seasonality	3	-16112.83	190.90	8060.45
	Fire frequency	3	-16044.97	258.76	8026.52
	Fire frequency × precipitation seasonality	4	-16034.15	269.59	8023.15
	Fire frequency × temperature seasonality	4	-16034.15	269.59	8023.15
	Latitude	3	-16004.08	299.34	8006.08
	Fire frequency × foliage projective cover	4	-15192.60	1111.1	7602.39
	Foliage projective cover	3	-15158.09	1145.6	7583.08
				3	
				5	

651

652 **Figure 5** The estimated effect and 95% confidence intervals of fire frequency on seed weight in (a)
 653 *Allocasuarina littoralis* and (b) *A. torulosa*. Seed weight was influenced by the interactive effects of fire
 654 frequency and (a) temperature seasonality in *A. littoralis*, and (b) latitude in *A. torulosa*.

655

656 *Reproductive output and age class structure*

657

658 Fire frequency ranged from zero to four and seven fires for *A. littoralis* and *A. torulosa*
 659 transects, respectively. Reproductive output (number of cones per tree) was not influenced by
 660 fire frequency or time since fire (Table 5). There was a positive effect of foliage projective
 661 cover on number of cones in *A. littoralis* (Intercept = -1.793 [se = 1.081], FPC = 0.066 [se =
 662 1.175]) and *A. torulosa* (Intercept = -3.409 [se = 1.1336], FPC = 2.105 [se = 1.303]) (ΔAIC_c
 663 relative to the null model = 877.42 for *A. littoralis*, and = 281.39 for *A. torulosa*; Table 5).

664

665 **Table 5** Models used to examine the influence of fire frequency, time since fire, and environmental variation on
 666 reproductive output (i.e., number of cones) in *Allocasuarina littoralis* and *A. torulosa*.

Species	Model structure	Number of parameters	AIC _c	ΔAIC _c	Log Likelihood
<i>Allocasuarina littoralis</i>	Foliage projective cover	2	1167.32	0.00	-579.07
	Topographic wetness	2	2017.11	849.79	-1004.05
	Fire frequency	2	2027.42	860.10	-1009.21
	Null model	2	2044.73	877.42	-1019.07
	Latitude	2	2045.50	878.18	-1018.25
	Temperature seasonality	2	2046.23	878.91	-1018.61
	Precipitation seasonality	2	2046.27	878.95	-1018.63
	Time since fire	2	2046.27	879.25	-1018.78
<i>Allocasuarina torulosa</i>	Foliage projective cover	2	1221.68	0.00	-606.15
	Fire frequency	2	1380.78	159.10	-685.72
	Precipitation seasonality	2	1496.76	275.08	-743.71
	Null model	2	1503.06	281.39	-748.15
	Time since fire	2	1504.76	283.08	-747.71
	Topographic wetness	2	1504.89	283.21	-747.78
	Latitude	2	1504.25	283.57	-747.96
	Temperature seasonality	2	1505.52	283.84	-748.09

667
 668 Population age structure in *A. littoralis* was not influenced by fire frequency, time since fire,
 669 or environmental variability, with the null model being top ranked for all analyses (Table S1).
 670 In *A. torulosa*, foliage projective cover influenced the proportion of seedlings within the total
 671 population (Intercept = -3.409 [se = 1.336]; FPC = 2.105 [se = 1.303], Table 6). Greater
 672 temperature seasonality reduced the proportion of saplings within the total population
 673 (Intercept = -1.040 [se = 0.482], temperature seasonality = -1.136 [se = 0.481]) and recruits
 674 within the total population (Intercept = -0.919 [se = -1.833]), temperature seasonality = -
 675 1.642 [se = 0.535], Table 6). The interaction between temperature seasonality and time since
 676 fire on the proportion of *A. torulosa* recruits within the total population was ranked within
 677 $\Delta\text{AIC}_c < 2$, but confidence intervals of the interaction term overlapped zero (Fig. S9). Thus,
 678 fire history did not strongly influence *A. littoralis* or *A. torulosa* reproductive output or
 679 population age structure, with environmental variability more important in constraining
 680 recruitment processes (Table 5, 6, S1).

681

682

683 **Table 6** Models used to examine the influence of fire frequency, time since fire, and environmental variation on
 684 population age structure in *Allocasuarina torulosa*.

Fire metric	Age class	Model structure	Number of parameters	AIC _c	ΔAIC _c	Log likelihood
Fire frequency	Seedlings	Foliage projective cover	2	24.62	0.00	-7.54
		Null model	2	26.77	2.15	-9.96
		Precipitation seasonality	2	28.56	3.94	-9.54
		Fire frequency	2	28.72	4.10	-9.62
		Fire frequency × foliage projective cover	3	28.85	4.23	-6.67
		Temperature seasonality	2	29.14	4.52	-9.83
		Latitude	2	29.25	4.63	-9.88
		Topographic wetness	2	29.37	4.75	-9.94
		Fire frequency × precipitation seasonality	3	32.55	7.93	-8.59
		Fire frequency × topographic wetness	3	33.03	8.41	-8.84
Saplings		Fire frequency × temperature	3	34.17	9.55	-9.40
		Fire frequency × latitude	3	34.39	9.78	-9.52
		Temperature seasonality	2	39.69	0.00	-15.01
		Latitude	2	43.14	3.45	-16.83
		Fire frequency × temperature seasonality	3	45.33	5.64	-14.99
		Precipitation seasonality	2	45.69	6.00	-18.11
		Null model	2	46.23	6.55	-19.69
		Foliage projective cover	2	46.55	6.86	-18.50
		Topographic wetness	2	48.85	9.16	-19.68
		Fire frequency	2	48.85	9.16	-19.68
Recruits		Fire frequency × latitude	3	48.99	9.30	-16.82
		Fire frequency × precipitation seasonality	3	49.27	9.58	-16.95
		Fire frequency × foliage projective cover	3	51.85	12.16	-18.18
		Fire frequency × topographic wetness	3	52.35	12.67	-18.50
		Temperature seasonality	2	37.02	0.00	-13.77
		Latitude	2	42.24	5.22	-16.38

	Fire frequency × temperature seasonality	3	42.77	5.74	-13.70	
	Foliage projective cover	2	47.29	10.27	-18.88	
	Null model	2	47.51	10.48	-20.32	
	Precipitation seasonality	2	47.83	10.80	-19.17	
	Fire frequency × latitude	3	47.94	10.91	-16.29	
	Topographic wetness	2	50.13	13.11	-20.32	
	Fire frequency	2	50.13	13.11	-20.32	
	Fire frequency × precipitation	3	51.56	14.54	-18.10	
	Fire frequency × foliage projective cover	3	52.61	15.59	-18.56	
	Fire frequency × topographic wetness	3	53.56	16.54	-19.10	
Time since fire	Seedlings	Foliage projective cover	2	24.62	0.00	-7.54
		Null model	2	26.77	2.15	-9.96
		Precipitation seasonality	2	28.56	3.94	-9.54
		Temperature seasonality	2	29.14	4.52	-9.83
		Latitude	2	29.25	4.63	-9.88
		Topographic wetness	2	29.37	4.75	-9.94
		Time since fire	2	29.37	4.76	-9.95
		Time since fire × foliage projective cover	3	30.26	5.64	-7.38
		Time since fire × topographic wetness	3	32.01	7.40	-8.33
		Time since fire × precipitation seasonality	3	34.29	9.68	-9.47
Saplings		Time since fire × temperature seasonality	3	34.92	10.31	-9.78
		Time since fire × latitude	3	35.12	10.51	-9.88
	Temperature seasonality	2	39.39	0.00	-15.10	
		Time since fire × precipitation seasonality	3	42.30	2.61	-13.47
		Time since fire × temperature seasonality	3	42.52	2.83	-13.58
		Latitude	2	43.14	3.45	-16.83
		Time since fire	2	45.35	5.66	-17.93
		Time since fire × topographic wetness	3	45.62	5.93	-15.13

	Time since fire \times latitude	3	45.62	5.93	-15.13
	Precipitation seasonality	2	45.69	6.00	-18.11
	Null model	2	46.23	6.55	-19.69
	Foliage projective cover	2	46.55	6.86	-18.50
	Time since fire \times foliage projective cover	3	48.23	8.54	-16.37
	Topographic wetness	2	48.85	9.16	-19.68
Recruits	Temperature seasonality	2	37.02	0.00	-13.77
	Time since fire \times temperature seasonality	3	37.88	0.85	-11.26
	Latitude	2	42.24	5.22	-16.38
	Time since fire \times latitude	3	43.35	6.33	-14.00
	Time since fire \times precipitation seasonality	3	44.25	7.22	-14.44
	Time since fire \times topographic wetness	3	45.65	8.63	-15.15
	Time since fire	2	45.69	8.67	-18.10
	Foliage projective cover	2	47.29	10.27	-18.88
	Null model	2	47.51	10.48	-20.32
	Precipitation seasonality	2	47.83	10.80	-19.17
	Time since fire \times foliage projective cover	3	48.63	11.61	-16.57
	Topographic wetness	2	50.13	13.11	-20.32

685

686 **Discussion**

687

688 Determining optimal fire regimes for ecosystem restoration is hindered by a lack of
 689 knowledge of plant responses to fire regimes at critical life stages of germination and through
 690 transitions to adulthood. Furthermore, a lack of integration of fire history in germination
 691 studies, and how these influence age class structures limits our understanding of the influence
 692 of fire history on population level changes. My results showed that fire history, specifically
 693 frequency, influenced variation in germination; but foliage projective cover and temperature
 694 seasonality had more influence than fire history on reproductive output and age class
 695 structure. These results point to environments with greater climate stability and
 696 photosynthetic potential leading to greater reproductive output. Post-fire reproductive mode
 697 influenced traits relevant to germination success as individual trees of the facultative

698 resprouter, *A. torulosa*, exposed to higher fire frequencies had lower proportion germination
699 with increasing seed weight. This decreased germination success with increasing fire
700 frequency may have reflected stronger resprouting responses, with higher investment in
701 resprouting bud banks than seed production (Bendall *et al.* 2022; Pausas and Keeley 2014;
702 Verdú 2000). These results can inform restoration and conservation actions of these
703 *Allocasuarina* species, important food trees of the vulnerable dietary specialist Glossy black-
704 cockatoos.

705

706 In this study, the obligate seeder, *A. littoralis* was less sensitive to extreme heat shocks and
707 variable smoke exposure than the facultative resprouter, *A. torulosa*. Despite occurring in
708 fire-prone environments, germination of *A. littoralis* and *A. torulosa* was not enhanced by
709 application of fire-related germination cues as seeds exposed to heat shocks up to 95 °C
710 showed comparative germination to controls. However, obligate seeders are more likely to
711 express traits increasing post-fire germination due to their greater investment in seeds than
712 congeneric resprouters (Pausas and Keeley 2014; Tangney *et al.* 2020; Zammit and Westoby
713 1987). Strongly seasonal environments also generally favour heavier seeds, which provide
714 greater reserves for seeds to withstand seasonal variation in water availability (Leishman *et*
715 *al.* 2000; Muller-Landau 2010). This was reflected in my experiment as in variable climatic
716 conditions, with high fire frequency (i.e., 4 fires over 36 years), seed weight was greater in
717 the obligate seeder than the facultative resprouter. In the facultative resprouter, *A. torulosa*,
718 seed investment was more likely driven by exposure to recurrent fire as seed weight
719 decreased in the absence of fire even under more seasonal climates. However, *A. torulosa* had
720 high germination variability when seeds were larger, possibly because seed reproductive
721 effort was traded-off with resource allocation to resprouting (Bellingham and Sparrow 2000).
722 Where species show plasticity in regeneration modes, high fire frequency could result in
723 more resources being allocated to resprouting capabilities than production of viable seeds
724 (Bellingham and Sparrow 2000; Verdú 2000).

725

726 Fast germination provides individuals with a competitive advantage (Hodges *et al.* 2021);
727 therefore, germination speed can be promoted by fire-related germination cues, especially in
728 obligate seeders which are adapted for post-fire germination (Hodges *et al.* 2021; Pausas and
729 Lamont 2022; Ramos *et al.* 2019; Tangney *et al.* 2020). Results from this study ran contrary
730 to this general prediction (**H1**): heat and smoke did not strongly affect germination in the

731 obligate seeder *A. littoralis* but slowed germination in the facultative resprouter *A. torulosa*.
732 The stronger reduction in germination speed as temperature increased for *A. torulosa* was
733 likely linked to temperatures being closer to the lethal temperature threshold of *A. torulosa*
734 than *A. littoralis* (i.e., *A. torulosa* = ca. 100 °C; *A. littoralis* = ca. 110 °C), so reductions may
735 be related to lower seed viability (Emery *et al.* 2011; Hanley *et al.* 2003). In the natural
736 environment, these higher temperatures could be linked to higher fire intensities (Rossi *et al.*
737 2018), indicating that *A. littoralis* to some extent may be faster to establish than *A. torulosa*
738 after higher intensity fire. However, in *A. torulosa* germination speed was also influenced by
739 seed size and fire history. Heavier seeds have higher energy reserves which support faster
740 germination rates (Kołodziejek 2017) and provide greater heat insulation (Escudero *et al.*
741 2000; Gómez-González *et al.* 2011; Lamont *et al.* 2019), reducing potential decreases in
742 viability and germination speed due to fire-cues.

743

744 It seems likely that fire frequency effects on germination speed in this study were influenced
745 by the reproductive output and resprouting capacity trade-off (Bellingham and Sparrow
746 2000). Individuals of the facultative resprouter *A. torulosa* from environments that
747 experienced frequent fire had greater reductions in germination speed than those from lower
748 fire frequencies. Individuals exposed to intermediate fire frequencies where this trade-off
749 may be reduced had lower variability in germination speeds. Therefore, fire could potentially
750 inhibit germination for species if they have not been previously exposed to a flammable
751 environment. My results support this prediction as post-fire reproductive mode and the post-
752 fire environment in which the species occurs influenced germination rates.

753

754 Through later life stages in *A. torulosa*, woody foliage cover and climate variability were
755 stronger drivers of reproductive output and population age structure than fire history,
756 respectively. Higher woody foliage cover resulted in an increased number of cones for *A.*
757 *torulosa* likely due to higher photosynthetic potential in these environments associated with
758 greater resource availability for reproduction (Wheelwright and Logan 2004). Lower annual
759 climate variability may have been a stronger driver of *A. torulosa* age class structure as
760 stressful environments impose limitations on growth, with more variable climates likely to
761 increase the trade-off between survival and reproduction (Hamann *et al.* 2021; Zhang *et al.*
762 2020). Conversely, I found no effect of climate or environmental attributes on *A. littoralis*
763 reproduction or age class structure, but establishment of *A. littoralis* was likely limited by

764 these attributes as sampling occurred outside of the preferred coastal habitat (Australian
765 Biological Resources Study. Advisory Committee 1989; Foreman and Walsh 1993). For both
766 species, I found no effect of time since fire on the number of cones, as while recent fire
767 activity could be associated with lower cone number, most sampling in this study occurred in
768 areas two or more years post-fire which is sufficient time for cone production (Plumanns-
769 Pouton *et al.* 2024). Thus, my results indicate that reproductive effort and age class structure
770 appear to be independent of fire history, even with up to seven fires over 36 years. However,
771 more extreme fire frequencies are likely to filter populations as such frequent fire could
772 compromise resprouting or reproduction and seedling establishment abilities (Christensen *et*
773 *al.* 1981; Clarke *et al.* 2015; Gill and Catling 2002; McColl-Gausden *et al.* 2022). Therefore,
774 further experimental research in this system remains vital to understanding fire history effects
775 on *A. littoralis* and *A. torulosa* reproductive output and age class structure.

776

777 My results have important implications for Glossy black-cockatoo conservation and food tree
778 restoration actions. Restoration programs producing seed collections should consider seed
779 weight, because heavier seeds were more likely to have a competitive advantage (i.e.,
780 reduced time to reach 50% germination). However, restoration programs should also consider
781 fire history in locations where the seed are collected. For *A. littoralis*, I recommend collecting
782 seeds from individuals exposed to higher fire frequencies, such as four fires over past 36
783 years, and high annual temperature variability in my study region. Conversely, it may not be
784 optimal to collect *A. torulosa* seeds from individuals exposed to high fire frequencies, such as
785 six fires over past the 36 years, as while seeds were likely to be heavier, overall germination
786 was much more variable. For *A. torulosa*, I would recommend collecting seeds from
787 individuals exposed to intermediate fire frequencies such as three fires over the past 36 years.
788 I also recommend restoration efforts focus on areas with higher annual temperature
789 variability due to the higher likelihood of aging populations with low population turnover
790 (i.e., low proportions of seedlings and saplings to adults). In my inland study region within
791 southeast Queensland, restoration effort is best invested in *A. torulosa* food trees as this
792 species is found more commonly throughout the region and, as a facultative resprouter, is
793 likely to have higher resilience under projected fire regime changes. Nevertheless, coastal
794 regions where *A. littoralis* is abundant may benefit from restoring patches of both *A. littoralis*
795 and *A. torulosa* as a buffer against high fire frequencies and immaturity risk in *A. littoralis*.

796

797 **Conclusion**

798

799 Plant responses to fire vary throughout their life cycle, especially at critical life stages such as
800 germination and transitions from seedlings through to adults. Thus, investigating how fire
801 drives selection on reproductive traits and controls age class structure is vital for conservation
802 and restoration actions to mitigate the effects of future fire regime changes. In this study I
803 investigated the influence of fire history and environmental attributes on fire-cued
804 germination responses, reproductive output, and age class structure in congeneric obligate
805 seeding and facultative resprouting *Allocasuarina spp.*. Exposure to fire-cues were not
806 essential for germination of either species but for the facultative resprouter fire-cues, to some
807 extent, inhibited germination. This inhibition was especially extreme in individuals not pre-
808 adapted to fire or exposed to high fire frequencies. Thus, selection for reproductive traits
809 conferring higher resilience to fire-cues was more likely to be exerted on the obligate seeder
810 *A. littoralis*. However, reproductive trait selection in the facultative resprouter *A. torulosa*
811 was dependent on fire history likely due to a reproduction – resprouting trade-off.
812 *Allocasuarina torulosa* seeds from environments experiencing higher fire frequencies were
813 less resilient to fire-cues compared to seeds from more moderate fire frequencies.
814 Nevertheless, fire history effects were not a strong driver during later life stages with climate
815 and environmental attributes being stronger drivers of reproductive output and age class
816 structure. However, fire frequency is likely to impact age class structure due to age-related
817 effects, but areas at higher fire frequencies with *Allocasuarina spp.* in my study region were
818 limited. Thus, further research in this system is recommended to better understand the
819 impacts of fire history on reproduction and age class structure, with a particular focus on
820 sampling higher fire frequencies.

821

822 **Data and code availability**

823

824 Data and code are currently stored as a public repository on GitHub (Charles and Smith
825 2025): https://github.com/felicityeloise/Allocasuarina_germfire.

826

827 **References**

828

829 Aaravind, J., Vimala Devi, S., Radhamani, J., Jacob, S. R., and Srinivasan, K. (2022)

830 germinationmetrics: seed germination indices and curve fitting. R package version 0.1.7.

831 viewed 6th October 2022, <<https://github.com/aravind-j/germinationmetrics><https://cran.r-project.org/package=germinationmetrics>>.

833

834 Agne, M. C., Fontaine, J. B., Enright, N. J., Bisbing, S. M., and Harvey, B. J. (2022).

835 Demographic processes underpinning post-fire resilience in California closed-cone pine

836 forests: the importance of fire interval, stand structure, and climate. *Plant ecology* **223**, 751-

837 767. doi: <https://doi.org/10.1007/s11258-022-01228-7>.

838

839 Ahmed, T. A., Elezz, A. A., and Al-Sayed, N. H. (2019). Dataset of allelopathic effects of

840 *Casuarina equisetifolia*-L leaf aquatic extract on seed germination and growth of selected

841 plant crops. *Data in Brief* **27**, 104770. doi: <https://doi.org/10.1016/j.dib.2019.104770>.

842

843 Amoako, E. E. and Gambiza, J. (2021). Effects of fire on the population structure and

844 abundance of *Anogeissus leiocarpa* and *Vitellaria paradoxa* in a West African savanna

845 parkland. *Acta Oecologica* **112**, 103745. doi: <https://doi.org/10.1016/j.actao.2021.103745>.

846

847 Arnold, T. W. (2010). Uninformative parameters and model selection using Akaike's

848 Information Criterion. *The Journal of wildlife management* **74**, 1175-1178. doi:

849 <https://doi.org/10.1111/j.1937-2817.2010.tb01236.x>.

850

851 Atlas of Living Australia (2021a) *Allocasuarina littoralis* (Salisb.) L.A.S.Johnson. (Atlas of

852 Living AustraliaAustralia). viewed 29th October 2021,

853 <<https://bie.ala.org.au/species/https://id.biodiversity.org.au/node/apni/2907962#overview>>.

854

855 Atlas of Living Australia (2021b) *Allocasuarina torulosa* (Aiton) L.A.S.Johnson. (Atlas of

856 Living AustraliaAustralia). viewed 29th October 2021,

857 <<https://bie.ala.org.au/species/https://id.biodiversity.org.au/node/apni/2898576#overview>>.

858

859 Australian Biological Resources Study. Advisory Committee (1989) 'Flora of Australia.'

860 (Australian Government Publishing Service: Canberra, ACT, Australia.)

861

862 Ballarin, C. S., Mores, G. J., Alcarás de Goés, G., Fidelis, A., and Cornelissen, T. (2024).
863 Trends and gaps in the study of fire effects on plant–animal interactions in Brazilian
864 ecosystems. *Austral Ecology* **49**, e13420. doi: <https://doi.org/10.1111/aec.13420>.

865

866 Bates, D., Maechler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effect models
867 using lme4. *Journal of Statistical Software* **67**, 1-48. doi:
868 <https://doi.org/10.18637/jss.v067.i01>.

869

870 Bellingham, P. J. and Sparrow, A. D. (2000). Resprouting as a life history strategy in woody
871 plant communities. *Oikos* **89**, 409-416. doi: <https://doi.org/10.1034/j.1600-0706.2000.890224.x>.

873

874 Bendall, E. R., Bedward, M., Boer, M., Clarke, H., Collins, L., Leigh, A., and Bradstock, R.
875 A. (2022). Mortality and resprouting responses in forest trees driven more by tree and
876 ecosystem characteristics than drought severity and fire frequency. *Forest ecology and
877 management* **509**, 120070. doi: <https://doi.org/10.1016/j.foreco.2022.120070>.

878

879 Bennett, L. T., Bruce, M. J., MacHunter, J., Kohout, M., Tanase, M. A., and Aponte, C.
880 (2016). Mortality and recruitment of fire-tolerant eucalypts as influenced by wildfire severity
881 and recent prescribed fire. *Forest ecology and management* **380**, 107-117. doi:
882 <https://doi.org/10.1016/j.foreco.2016.08.047>.

883

884 Bradshaw, S. D., Dixon, K. W., Hopper, S. D., Lambers, H., and Turner, S. R. (2011). Little
885 evidence for fire-adapted plant traits in Mediterranean climate regions. *Trends in Plant
886 Science* **16**, 69-76. doi: <https://doi.org/10.1016/j.tplants.2010.10.007>.

887

888 Buehler, C. P. (2010) Soil modification and potential allelopathy: an investigation into how
889 the invasive *Casuarina equisetifolia* L. (Australian pine) modify their environment.
890 (Mississippi State University: Mississippi, United States of America.)

891

892 Callister, K. E., Florentine, S. K., and Westbrooke, M. E. (2018). An investigation of the soil
893 seedbank and seed germination of perennial species in belah (*Casuarina pauper*) woodlands
894 in north-west Victoria. *Australian journal of botany* **66**, 202-212. doi:
895 <https://doi.org/10.1071/BT17160>.

896

897 Campbell, D. R., Raguso, R. A., Midzik, M., Bischoff, M., and Broadhead, G. T. (2022).
898 Genetic and spatial variation in vegetative and floral traits across a hybrid zone. *American*
899 *Journal of Botany* **109**, 1780-1793. doi: <https://doi.org/10.1002/ajb2.16067>.

900

901 Canadell, J. G., Meyer, C. P., Cook, G. D., Dowdy, A., Briggs, P. R., Knauer, J., Pepler, A.,
902 and Haverd, V. (2021). Multi-decadal increase of forest burned area in Australia is linked to
903 climate change. *Nature Communications* **12**, 6921. doi: <https://doi.org/10.1038/s41467-021-27225-4>.

905

906 Carbone, L. M., Tavella, J., Pausas, J. G., and Aguilar, R. (2019). A global synthesis of fire
907 effects on pollinators. *Global ecology and biogeography* **28**, 1487-1498. doi:
908 <https://doi.org/10.1111/geb.12939>.

909

910 Chamorro, D., Luna, B., and Moreno, J. M. (2018). Local climate controls among-population
911 variation in germination patterns in two *Erica* species across western Iberia. *Seed science*
912 *research* **28**, 112-122. doi: <https://doi.org/10.1017/S0960258518000041>.

913

914 Chapman, T. F. (2007). Foods of the glossy black-cockatoo: *Calyptorhynchus lathami*.
915 *Australian Field Ornithology* **24**, 30-36.

916

917 Charles, F. E., Reside, A. E., Moss, P. T., and Smith, A. L. (2025 under review). Improving
918 landscape fire frequency estimates by integrating public land fire data and satellite imagery
919 (pre-print). *EcoEvoRvix*. doi: <https://doi.org/10.32942/X24331>.

920

921 Charles, F. E., Reside, A. E., and Smith, A. L. (2025). The influence of changing fire regimes
922 on specialised plant-animal interactions. *Philosophical Transactions of the Royal Society B:*
923 *Biological Sciences* **380**, 20230448. doi: <https://doi.org/10.1098/rstb.2023.0448>.

924

925 Charles, F. E. and Smith, A. L. (2025) Influence of fire history on reproductive traits in a
926 congeneric obligate seeder and facultative resprouter tree species (Dataset). (F. E. Charles
927 GitHub: Brisbane, Queensland, Australia). Available at
928 https://github.com/felicityeloise/Allocasuarina_germfire [Verified 20/02/2026]
929

930 Christensen, P., Recher, H., and Hoare, J. (1981). Responses of open forests (dry sclerophyll
931 forests) to fire regimes In 'Fire and the Australian biota'. (Eds A. M. Gill, R. H. Groves, and I.
932 R. Noble) pp. 367-393. (Australian Academy of Science: Canberra, ACT, Australia.)
933

934 Clarke, P. J., Davison, E. A., and Fulloon, L. (2000). Germination and dormancy of grassy
935 woodland and forest species: effects of smoke, heat, darkness and cold. *Australian journal of*
936 *botany* **48**, 687-699. doi: <https://doi.org/10.1071/BT99077>.
937

938 Clarke, P. J., Lawes, M. J., Murphy, B. P., Russell-Smith, J., Nano, C. E. M., Bradstock, R.,
939 Enright, N. J., Fontaine, J. B., Gosper, C. R., Radford, I., Midgley, J. J., and Gunton, R. M.
940 (2015). A synthesis of postfire recovery traits of woody plants in Australian ecosystems.
941 *Science of The Total Environment* **534**, 31-42. doi:
942 <https://doi.org/10.1016/j.scitotenv.2015.04.002>.
943

944 Collett, L. (2021) Annual Fire Scars - Landsat, QLD DES algorithm, QLD coverage
945 (Dataset). (Terrestrial Ecosystem Research Network (TERN) TERN: Brisbane, Queensland,
946 Australia). Available at
947 <http://geonetwork.tern.org.au/geonetwork/srv/eng/catalog.search#/metadata/461074b3-5272->
948 [4e4e-886f-df26bd2426ad, https://portal.tern.org.au/annual-scars-landsat-qld-coverage](https://portal.tern.org.au/annual-scars-landsat-qld-coverage)
949 [Verified 2021-12-01]
950

951 Cortés-Flores, J., Cornejo-Tenorio, G., Sánchez-Coronado, M. E., Orozco-Segovia, A., and
952 Ibarra-Manríquez, G. (2020). Disentangling the influence of ecological and historical factors
953 on seed germination and seedling types in a neotropical dry forest. *PLoS One* **15**, e0231526.
954 doi: <https://doi.org/10.1371/journal.pone.0231526>.
955

956 Crowley, G. M. (1986) Ecology of *Allocasuarina littoralis* (Salisb.) L. Johnson and A.
957 *torulosa* (Ait.) L. Johnson in north Queensland. (James Cook University: Townsville, QLD,
958 Australia.)
959

960 Crowley, G. M. and Jackes, B. R. (1990). Germination characteristics in tropical provenances
961 of *Allocasuarina littoralis* and *A. torulosa*. *Forest ecology and management* **35**, 227-238. doi:
962 [https://doi.org/10.1016/0378-1127\(90\)90004-U](https://doi.org/10.1016/0378-1127(90)90004-U).
963

964 Dawe, D. A., Parisien, M.-A., Van Dongen, A., and Whitman, E. (2022). Initial succession
965 after wildfire in dry boreal forests of northwestern North America. *Plant ecology* **223**, 789-
966 809. doi: <https://doi.org/10.1007/s11258-022-01237-6>.
967

968 Day, N. J., White, A. L., Johnstone, J. F., Degré-Timmons, G. E., Cumming, S. G., Mack, M.
969 C., Turetsky, M. R., Walker, X. J., and Baltzer, J. L. (2020). Fire characteristics and
970 environmental conditions shape plant communities via regeneration strategy. *Ecography* **43**,
971 1464-1474. doi: <https://doi.org/10.1111/ecog.05211>.
972

973 Department of Climate Change, Energy, the Environment, and Water (2022) *Calyptorhynchus*
974 *lathami lathami* - south-eastern glossy black-cockatoo. (State Government of
975 QueenslandBrisbane, QLD, Australia). viewed 2nd February 2023,
976 <http://www.environment.gov.au/cgi-bin/sprat/public/publicspecies.pl?taxon_id=67036>.
977

978 Department of Environment, Tourism, Science and Innovation (2020) Landsat foliage
979 projective cover - Queensland 2014 (Dataset). (Queensland Department of Environment,
980 Tourism, Science and Innovation Queensland Spatial Catalogue: Brisbane, Queensland,
981 Australia). Available at <https://www.data.qld.gov.au/dataset/landsat-foliage-projective-cover-queensland-2014> [Verified 6 April 2023]
982

983

984 Department of Environment, Tourism, Science and Innovation (2022) Statewide Landcover
985 and Trees Study (SLATS) Sentinel - 2 - 2018 Foliage Projective Cover (FPC) Queensland
986 (Dataset). (Queensland Department of Environment, Tourism, Science and Innovation
987 Queensland Spatial Catalogue: Brisbane, Queensland, Australia). Available at
988 <https://www.data.qld.gov.au/dataset/statewide-landcover-and-trees-study-slats-sentinel-2-2018-foliage-projective-cover-fpc-queensland> [Verified 17 April 2024]
989

990

991 Department of Environment, Tourism, Science and Innovation (2024a) Statewide Landcover
992 and Trees Study (SLATS) Sentinel - 2 - 2020 Foliage Projective Cover (FPC) Queensland
993 (Dataset). (Queensland Department of Environment, Tourism, Science and Innovation
994 Queensland Spatial Catalogue: Brisbane, Queensland, Australia). Available at
995 <https://www.data.qld.gov.au/dataset/statewide-landcover-and-trees-study-queensland-sentinel-2-series> [Verified 16 April 2024]
996

997

998 Department of Environment, Tourism, Science and Innovation (2024b) Statewide Landcover
999 and Trees Study (SLATS) Sentinel - 2 - 2021 Foliage Projective Cover (FPC) Queensland
1000 (Dataset). (Queensland Department of Environment, Tourism, Science and Innovation
1001 Queensland Spatial Catalogue: Brisbane, Queensland, Australia). Available at
1002 [https://www.data.qld.gov.au/dataset/statewide-landcover-and-trees-study-queensland-
1003 sentinel-2-series](https://www.data.qld.gov.au/dataset/statewide-landcover-and-trees-study-queensland-sentinel-2-series) [Verified 16 April 2024]

1004

1005 Department of Environment, Tourism, Science and Innovation (2024c) Statewide Landcover
1006 and Trees Study (SLATS) Sentinel - 2 Foliage Projective Cover (FPC) Queensland (Dataset).
1007 (Queensland Department of Environment, Tourism, Science and Innovation Queensland
1008 Spatial Catalogue: Brisbane, Queensland, Australia). Available at
1009 [https://www.data.qld.gov.au/dataset/statewide-landcover-and-trees-study-queensland-
1010 sentinel-2-series](https://www.data.qld.gov.au/dataset/statewide-landcover-and-trees-study-queensland-sentinel-2-series) [Verified 16 April 2024]

1011

1012 Dowdy, A. J., Ye, H., Pepler, A., Thatcher, M., Osbrough, S. L., Evans, J. P., Di Virgilio, G.,
1013 and McCarthy, N. (2019). Future changes in extreme weather and pyroconvection risk factors
1014 for Australian wildfires. *Scientific reports* **9**, 10073-10011. doi:
1015 <https://doi.org/10.1038/s41598-019-46362-x>.

1016

1017 Ellison, A. M. (2019). Foundation species, non-trophic interactions, and the value of being
1018 common. *iScience* **13**, 254-268. doi: <https://doi.org/10.1016/j.isci.2019.02.020>.

1019

1020 Emery, S. M., Uwimbabazi, J., and Flory, S. L. (2011). Fire intensity effects on seed
1021 germination of native and invasive eastern deciduous forest understory plants. *Forest ecology
1022 and management* **261**, 1401-1408. doi: <https://doi.org/10.1016/j.foreco.2011.01.024>.

1023

1024 Enright, N. J., Fontaine, J. B., Bowman, D. M. J. S., Bradstock, R. A., and Williams, R. J.
1025 (2015). Interval squeeze: altered fire regimes and demographic responses interact to threaten
1026 woody species persistence as climate changes. *Frontiers in ecology and the environment* **13**,
1027 265-272. doi: <https://doi.org/10.1890/140231>.

1028

1029 Enright, N. J., Fontaine, J. B., Westcott, V. C., Lade, J. C., and Miller, B. P. (2011). Fire
1030 interval effects on persistence of resprouter species in Mediterranean-type shrublands. *Plant
1031 ecology* **212**, 2071-2083. doi: <https://doi.org/10.1007/s11258-011-9970-7>.

1032
1033 Enright, N. J. and Lamont, B. B. (1989). Seed banks, fire season, safe sites and seedling
1034 recruitment in five co-occurring banksia species. *Journal of Ecology* **77**, 1111-1122. doi:
1035 <https://doi.org/10.2307/2260826>.

1036
1037 Eriksson, O. (1999). Seed size variation and its effect on germination and seedling
1038 performance in the clonal herb *Convallaria majalis*. *Acta Oecologica* **20**, 61-66. doi:
1039 [https://doi.org/10.1016/S1146-609X\(99\)80016-2](https://doi.org/10.1016/S1146-609X(99)80016-2).

1040
1041 Escudero, A., Núñez, Y., and Pérez-García, F. (2000). Is fire a selective force of seed size in
1042 pine species? *Acta Oecologica* **21**, 245-256. doi: [https://doi.org/10.1016/S1146-609X\(00\)01083-3](https://doi.org/10.1016/S1146-609X(00)01083-3).

1044
1045 Etchells, H., O'Donnell, A. J., Lachlan McCaw, W., and Grierson, P. F. (2020). Fire severity
1046 impacts on tree mortality and post-fire recruitment in tall eucalypt forests of southwest
1047 Australia. *Forest ecology and management* **459**, 117850. doi:
1048 <https://doi.org/10.1016/j.foreco.2019.117850>.

1049
1050 Fairman, T. A., Nitschke, C. R., and Bennett, L. T. (2016). Too much, too soon? A review of
1051 the effects of increasing wildfire frequency on tree mortality and regeneration in temperate
1052 eucalypt forests. *International Journal of Wildland Fire* **25**, 831-848. doi:
1053 <https://doi.org/10.1071/WF15010>.

1054
1055 Falster, D. and Gallagher, R. and Wenk, E. H. and Wright, I. J. and Indiarto, D. and Andrew,
1056 S. C. and Baxter, C. and Lawson, J. and Allen, S. and Fuchs, A. and Monro, A. and Kar, F.
1057 and Adams, M. A. and Ahrens, C. W. and Alfonzetti, M. and Angevin, T. and Apgaua, D. M.
1058 G. and Arndt, S. and Atkin, O. and Atkinson, J. and Auld, T. and Baker, A. and von Balthazar,
1059 M. and Bean, A. and Blackman, C. J. and Bloomfield, K. and Bowman, D. M. J. S. and
1060 Bragg, J. and Brodribb, T. J. and Buckton, G. and Burrows, G. and Caldwell, E. and Camac,
1061 J. S. and Carpenter, R. and Catford, J. A. and Cawthray, G. R. and Cernusak, L. A. and
1062 Chandler, G. and Chapman, A. R. and Cheal, D. and Cheesman, A. W. and Chen, S.-C. and
1063 Choat, B. and Clinton, B. and Clode, P. L. and Coleman, H. and Cornwell, W. K. and
1064 Cosgrove, M. and Crips, M. and Cross, E. and Crous, K. Y. and Cunningham, S. and Curran,
1065 T. and Curtis, E. and Daws, M. I. and DeGabriel, J. L. and Denton, M. D. and Dong, N. and

1066 Du, P. and Duan, H. and Duncan, D. H. and Duncan, R. P. and Duerutto, M. and Dwyer, J. M.
1067 and Edwards, C. and Esperon-Roiguez, M. and Evans, J. R. and Everingham, S. E. and
1068 Farrell, C. and Firn, J. and Fonseca, C. R. and French, B. J. and Frood, D. and Funk, J. L. and
1069 Geange, S. R. and Ghannoum, O. and Gleason, S. M. and Gosper, C. R. and Gray, E. and
1070 Groom, P. K. and Grootemaat, S. and Gross, C. and Guerin, G. and Guja, Lydia K. and Hahs,
1071 A. K. and Harrison, M. T. and Hayes, P. E. and Henery, M. and Hochuli, D. and Howell, J.
1072 and Huang, G. and Hughes, L. and Huisman, J. and Ilic, J. and Jagdish, A. and Jin, D. and
1073 Jordan, G. and Jurado, E. and Kanowski, J. and Kasel, S. and Kellermann, J. and Kenny, B.
1074 and Kohout, M. and Kooyman, R. M. and Kotowska, M. M. and Lai, H. R. and Laliberté, E.
1075 and Lambers, H. and Lamont, B. B. and Lanfear, R. and van Langevelde, F. and Laughlin, D.
1076 C. and Laugier-Kitchener, B.-A. and Laurance, S. and Lehmann, C. E. R. and Leigh, A. and
1077 Leishman, M. R. and Lenz, T. and Lepschi, B. and Lewis, J. D. and Lim, F. and Liu, U. and
1078 Lord, J. and Lusk, C. H. and Macinnis-Ng, C. and McPherson, H. and Magallón, S. and
1079 Maneae, A. and López-Martinez, A. and Mayfield, M. and McCarthy, J. K. and Meers, T. and
1080 Merwe, v. d. M. and Metcalfe, D. J. and Milberg, P. and Mokany, K. and Moles, A. T. and
1081 Moore, B. D. and Moore, N. and Morgan, J. W. and Morris, W. and Muir, A. and Munroe, S.
1082 and Nicholson, Á. and Nicolle, D. and Nicotra, Adrienne B. and Niinemets, Ü. and North, T.
1083 and O'Reilly-Nugent, A. and O'Sullivan, O. S. and Oberle, B. and Onoda, Y. and Ooi, M. K.
1084 J. and Osborne, C. P. and Paczkowska, G. and Pekin, B. and Pereira, C. G. and Pickering, C.
1085 and Pickup, M. and Pollock, L. J. and Poot, P. and Powell, J. R. and Power, S. A. and
1086 Prentice, I. C. and Prior, L. D. and Prober, S. M. and Read, J. and Reynolds, V. and Richards,
1087 A. E. and Richardson, B. and Roderick, M. L. and Rosell, J. A. and Rossetto, M. and Rye, B.
1088 and Rymer, P. D. and Sams, M. A. and Sanson, G. and Sauquet, H. and Schmidt, S. and
1089 Schönenberger, J. and Schulze, E. D. and Sendall, K. and Sinclair, S. and Smith, B. and
1090 Smith, R. and Soper, F. and Sparrow, B. and Standish, R. J. and Staples, T. L. and Stephens,
1091 R. and Szota, C. and Taseki, G. and Tasker, E. and Thomas, F. and Tissue, D. T. and Tjoelker,
1092 M. G. and Tng, D. Y. P. and de Tombeur, F. and Tomlinson, K. and Turner, N. C. and
1093 Veneklaas, E. J. and Venn, S. and Vesk, P. and Vlasveld, C. and Vorontsova, M. S. and
1094 Warren, C. A. and Warwick, N. and Weerasinghe, L. K. and Wells, J. and Westoby, M. and
1095 White, M. and Williams, N. S. G. and Wills, J. and Wilson, P. G. and Yates, C. and Zanne, A.
1096 E. and Zemunik, G. and Ziemińska, K. (2021). AusTraits, a curated plant trait database for
1097 the Australian flora. *Scientific Data* **8**, 254. doi: <https://doi.org/10.1038/s41597-021-01006-6>.
1098

1099 Fenollosa, E., Jené, L., and Munné-Bosch, S. (2021). Geographic patterns of seed trait
1100 variation in an invasive species: how much can close populations differ? *Oecologia* **196**, 747-
1101 761. doi: <https://doi.org/10.1007/s00442-021-04971-2>.

1102

1103 Fick, S. E. and Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate
1104 surfaces for global land areas. *International Journal of Climatology* **37**, 4302-4315. doi:
1105 <https://doi.org/10.1002/joc.5086>.

1106

1107 Fisher, A., Scarth, P., Armston, J., and Danaher, T. (2018). Relating foliage and crown
1108 projective cover in Australian tree stands. *Agricultural and Forest Meteorology* **259**, 39-47.
1109 doi: <https://doi.org/10.1016/j.agrformet.2018.04.016>.

1110

1111 Foreman, D. B. and Walsh, N. G. (1993) 'Flora of Victoria.' (Inkata Press: Melbourne, VIC,
1112 Australia.)

1113

1114 Gagliardi, B. and Marcos-Filho, J. (2011). Relationship between germination and bell pepper
1115 seed structure assessed by the x-ray test. *Scientia Agricola* **68**, 411-416. doi:
1116 <https://doi.org/10.1590/S0103-90162011000400004>.

1117

1118 Gallant, J. and Austin, J. (2012) Topographic Wetness Index derived from 1" SRTM DEM-H.
1119 v2 (Dataset). (CSIRO CSIRO: Australia). Available at
1120 <https://doi.org/10.4225/08/57590B59A4A08> [Verified 18 August 2023]

1121

1122 Gaston, K. J. and Fuller, R. A. (2007). Biodiversity and extinction: losing the common and
1123 the widespread. *Progress in Physical Geography: Earth and Environment* **31**, 213-225. doi:
1124 <https://doi.org/10.1177/0309133307076488>.

1125

1126 Gill, A. M. (1977). Management of fire-prone vegetation for plant species conservation in
1127 Australia. *Search* **8**, 20.

1128

1129 Gill, A. M. and Catling, P. C. (2002). Fire regimes and biodiversity of forested landscapes of
1130 southern. In 'Flammable Australia: the fire regimes and biodiversity of a continent'. (Eds R.
1131 A. Bradstock, J. E. Williams, and A. M. Gill) pp. 351. (Cambridge University Press:
1132 Cambridge, United Kingdom; New York, United States of America.)

1133

1134 Gnan, S., Priest, A., and Kover, P. X. (2014). The genetic basis of natural variation in seed
1135 size and seed number and their trade-off using *Arabidopsis thaliana* MAGIC lines. *Genetics*
1136 **198**, 1751-1758. doi: <https://doi.org/10.1534/genetics.114.170746>.

1137

1138 Gómez-González, S., Ojeda, F., Torres-Morales, P., and Palma, J. E. (2016). Seed pubescence
1139 and shape modulate adaptive responses to fire cues. *PLoS One* **11**, e0159655. doi:
1140 <https://doi.org/10.1371/journal.pone.0159655>.

1141

1142 Gómez-González, S., Torres-Díaz, C., Bustos-Schindler, C., and Gianoli, E. (2011).
1143 Anthropogenic fire drives the evolution of seed traits. *PNAS Nexus* **108**, 18743-18747. doi:
1144 <https://doi.org/10.1073/pnas.1108863108>.

1145

1146 Grau-Andrés, R., Moreira, B., and Pausas, J. G. (2024). Global plant responses to intensified
1147 fire regimes. *Global Ecology and Biogeography* **33**, e13858. doi:
1148 <https://doi.org/10.1111/geb.13858>.

1149

1150 Grubb, P. J. (1977). The maintenance of species-richness in plant communities: the
1151 importance of the regeneration niche. *Biological Reviews* **52**, 107-145. doi:
1152 <https://doi.org/10.1111/j.1469-185X.1977.tb01347.x>.

1153

1154 Hamann, E., Wadgymar, S. M., and Anderson, J. T. (2021). Costs of reproduction under
1155 experimental climate change across elevations in the perennial forb *Boechera stricta*.
1156 *Proceedings of the Royal Society B: Biological Sciences* **288**, 20203134. doi:
1157 <https://doi.org/10.1098/rspb.2020.3134>.

1158

1159 Hanley, M. E. and Lamont, B. B. (2000). Heat pre-treatment and the germination of soil- and
1160 canopy-stored seeds of south-western Australian species. *Acta Oecologica* **21**, 315-321. doi:
1161 [https://doi.org/10.1016/S1146-609X\(00\)01087-0](https://doi.org/10.1016/S1146-609X(00)01087-0).

1162

1163 Hanley, M. E., Unna, J. E., and Darvill, B. (2003). Seed size and germination response: a
1164 relationship for fire-following plant species exposed to thermal shock. *Oecologia* **134**, 18-22.
1165 doi: <https://doi.org/10.1007/s00442-002-1094-2>.

1166

1167 Harvey, B. J. and Enright, N. J. (2022). Climate change and altered fire regimes: impacts on
1168 plant populations, species, and ecosystems in both hemispheres. *Plant ecology* **223**, 699-709.
1169 doi: <https://doi.org/10.1007/s11258-022-01248-3>.

1170

1171 Helsen, K., Acharya, K. P., Brunet, J., Cousins, S. A. O., Decocq, G., Hermy, M., Kolb, A.,
1172 Lemke, I. H., Lenoir, J., Plue, J., Verheyen, K., De Frenne, P., and Graae, B. J. (2017). Biotic
1173 and abiotic drivers of intraspecific trait variation within plant populations of three herbaceous
1174 plant species along a latitudinal gradient. *BMC Ecology* **17**, 38. doi:
1175 <https://doi.org/10.1186/s12898-017-0151-y>.

1176

1177 Hodges, J. A., Price, J. N., Nicotra, A. B., Neeman, T., and Guja, L. K. (2021). Smoke and
1178 heat accelerate and increase germination in fire-prone temperate grassy ecosystems.
1179 *Ecosphere* **12**, n/a. doi: <https://doi.org/10.1002/ecs2.3851>.

1180

1181 Hunter, J. T. (2003). Persistence on inselbergs: the role of obligate seeders and resprouters.
1182 *Journal of Biogeography* **30**, 497-510. doi: <https://doi.org/10.1046/j.1365-2699.2003.00876.x>.

1183

1184

1185 Johnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B. J., Higuera, P. E.,
1186 Mack, M. C., Meentemeyer, R. K., Metz, M. R., Perry, G. L. W., Schoennagel, T., and Turner,
1187 M. G. (2016). Changing disturbance regimes, ecological memory, and forest resilience.
1188 *Frontiers in ecology and the environment* **14**, 369-378. doi: <https://doi.org/10.1002/fee.1311>.

1189

1190 Käber, Y., Meyer, P., Stillhard, J., De Lombaerde, E., Zell, J., Stadelmann, G., Bugmann, H.,
1191 and Bigler, C. (2021). Tree recruitment is determined by stand structure and shade tolerance
1192 with uncertain role of climate and water relations. *Ecology and Evolution* **11**, 12182-12203.
1193 doi: <https://doi.org/10.1002/ece3.7984>.

1194

1195 Kasel, S., Fairman, T. A., and Nitschke, C. R. (2024). Short-interval, high-severity wildfire
1196 depletes diversity of both extant vegetation and soil seed banks in fire-tolerant eucalypt
1197 forests. *Fire* **7**, 148. doi: <https://doi.org/10.3390/fire7040148>.

1198

1199 Kattge, J. and Bönisch, G. and Díaz, S. and Lavorel, S. and Prentice, I. C. and Leadley, P. and
1200 Tautenhahn, S. and Werner, G. D. A. and Aakala, T. and Abedi, M. and Acosta, A. T. R. and

1201 Adamidis, G. C. and Adamson, K. and Aiba, M. and Albert, C. H. and Alcántara, J. M. and
1202 Alcázar C, C. and Aleixo, I. and Ali, H. and Amiaud, B. and Ammer, C. and Amoroso, M. M.
1203 and Anand, M. and Anderson, C. and Anten, N. and Antos, J. and Apgaua, D. M. G. and
1204 Ashman, T.-L. and Asmara, D. H. and Asner, G. P. and Aspinwall, M. and Atkin, O. and
1205 Aubin, I. and Baastrup-Spohr, L. and Bahalkeh, K. and Bahn, M. and Baker, T. and Baker, W.
1206 J. and Bakker, J. P. and Baldocchi, D. and Baltzer, J. and Banerjee, A. and Baranger, A. and
1207 Barlow, J. and Barneche, D. R. and Baruch, Z. and Bastianelli, D. and Battles, J. and Bauerle,
1208 W. and Bauters, M. and Bazzato, E. and Beckmann, M. and Beeckman, H. and
1209 Beierkuhnlein, C. and Bekker, R. and Belfry, G. and Belluau, M. and Beloiu, M. and
1210 Benavides, R. and Benomar, L. and Berdugo-Lattke, M. L. and Berenguer, E. and Bergamin,
1211 R. and Bergmann, J. and Bergmann Carlucci, M. and Berner, L. and Bernhardt-Römermann,
1212 M. and Bigler, C. and Bjorkman, A. D. and Blackman, C. and Blanco, C. and Blonder, B. and
1213 Blumenthal, D. and Bocanegra-González, K. T. and Boeckx, P. and Bohlman, S. and
1214 Böhning-Gaese, K. and Boisvert-Marsh, L. and Bond, W. and Bond-Lamberty, B. and Boom,
1215 A. and Boonman, C. C. F. and Bordin, K. and Boughton, E. H. and Boukili, V. and Bowman,
1216 D. M. J. S. and Bravo, S. and Brendel, M. R. and Broadley, M. R. and Brown, K. A. and
1217 Bruelheide, H. and Brunnich, F. and Bruun, H. H. and Bruy, D. and Buchanan, S. W. and
1218 Bucher, S. F. and Buchmann, N. and Buitenwerf, R. and Bunker, D. E. and Bürger, J. and
1219 Burrascano, S. and Burslem, D. F. R. P. and Butterfield, B. J. and Byun, C. and Marques, M.
1220 and Scalon, M. C. and Caccianiga, M. and Cadotte, M. and Cailleret, M. and Camac, J. and
1221 Camarero, J. J. and Campany, C. and Campetella, G. and Campos, J. A. and Cano-Arboleda,
1222 L. and Canullo, R. and Carbognani, M. and Carvalho, F. and Casanoves, F. and Castagnyrol,
1223 B. and Catford, J. A. and Cavender-Bares, J. and Cerabolini, B. E. L. and Cervellini, M. and
1224 Chacón-Madrigal, E. and Chapin, K. and Chapin, F. S. and Chelli, S. and Chen, S.-C. and
1225 Chen, A. and Cherubini, P. and Chianucci, F. and Choat, B. and Chung, K.-S. and Chytrý, M.
1226 and Ciccarelli, D. and Coll, L. and Collins, C. G. and Conti, L. and Coomes, D. and
1227 Cornelissen, J. H. C. and Cornwell, W. K. and Corona, P. and Coyea, M. and Craine, J. and
1228 Craven, D. and Cromsigt, J. P. G. M. and Csecserits, A. and Cufar, K. and Cuntz, M. and da
1229 Silva, A. C. and Dahlin, K. M. and Dainese, M. and Dalke, I. and Dalle Fratte, M. and Dang-
1230 Le, A. T. and Danihelka, J. and Dannoura, M. and Dawson, S. and de Beer, A. J. and De
1231 Frutos, A. and De Long, J. R. and Dechant, B. and Delagrange, S. and Delpierre, N. and
1232 Derroire, G. and Dias, A. S. and Diaz-Toribio, M. H. and Dimitrakopoulos, P. G. and
1233 Dobrowolski, M. and Doktor, D. and Dřevojan, P. and Dong, N. and Dransfield, J. and
1234 Dressler, S. and Duarte, L. and Ducouret, E. and Dullinger, S. and Durka, W. and Duursma,

1235 R. and Dymova, O. and E-Vojtkó, A. and Eckstein, R. L. and Ejtehadi, H. and Elser, J. and
1236 Emilio, T. and Engemann, K. and Erfanian, M. B. and Erfmeier, A. and Esquivel-Muelbert,
1237 A. and Esser, G. and Estiarte, M. and Domingues, T. F. and Fagan, W. F. and Fagúndez, J. and
1238 Falster, D. S. and Fan, Y. and Fang, J. and Farris, E. and Fazlioglu, F. and Feng, Y. and
1239 Fernandez-Mendez, F. and Ferrara, C. and Ferreira, J. and Fidelis, A. and Finegan, B. and
1240 Firn, J. and Flowers, T. J. and Flynn, D. F. B. and Fontana, V. and Forey, E. and Forgiarini, C.
1241 and Fran ois, L. and Frangipani, M. and Frank, D. and Frenette-Dussault, C. and Freschet, G.
1242 T. and Fry, E. L. and Fyllas, N. M. and Mazzochini, G. G. and Gachet, S. and Gallagher, R.
1243 and Ganade, G. and Ganga, F. and Garc a-Palacios, P. and Gargaglione, V. and Garnier, E.
1244 and Garrido, J. L. and de Gasper, A. L. and Gea-Izquierdo, G. and Gibson, D. and Gillison, A.
1245 N. and Giroldo, A. and Glasenhardt, M.-C. and Gleason, S. and Gliesch, M. and Goldberg, E.
1246 and G odel, B. and Gonzalez-Akre, E. and Gonzalez-Andujar, J. L. and Gonz lez-Melo, A.
1247 and Gonz lez-Robles, A. and Graae, B. J. and Granda, E. and Graves, S. and Green, W. A.
1248 and Gregor, T. and Gross, N. and Guerin, G. R. and G nther, A. and Guti rez, A. G. and
1249 Haddock, L. and Haines, A. and Hall, J. and Hambuckers, A. and Han, W. and Harrison, S. P.
1250 and Hattingh, W. and Hawes, J. E. and He, T. and He, P. and Heberling, J. M. and Helm, A.
1251 and Hempel, S. and Hentschel, J. and H rault, B. and Here , A.-M. and Herz, K. and Heuertz,
1252 M. and Hickler, T. and Hietz, P. and Higuchi, P. and Hipp, A. L. and Hiron, A. and Hock, M.
1253 and Hogan, J. A. and Holl, K. and Honnay, O. and Hornstein, D. and Hou, E. and Hough-
1254 Snee, N. and Hovstad, K. A. and Ichie, T. and Igi , B. and Illa, E. and Isaac, M. and Ishihara,
1255 M. and Ivanov, L. and Ivanova, L. and Iversen, C. M. and Izquierdo, J. and Jackson, R. B.
1256 and Jackson, B. and Jactel, H. and Jagodzinski, A. M. and Jandt, U. and Jansen, S. and
1257 Jenkins, T. and Jentsch, A. and Jespersen, J. R. P. and Jiang, G.-F. and Johansen, J. L. and
1258 Johnson, D. and Jokela, E. J. and Joly, C. A. and Jordan, G. J. and Joseph, G. S. and Junaedi,
1259 D. and Junker, R. R. and Justes, E. and Kabzems, R. and Kane, J. and Kaplan, Z. and
1260 Kattenborn, T. and Kavelenova, L. and Kearsley, E. and Kempel, A. and Kenzo, T. and
1261 Kerkhoff, A. and Khalil, M. I. and Kinlock, N. L. and Kissling, W. D. and Kitajima, K. and
1262 Kitzberger, T. and Kj ller, R. and Klein, T. and Kleyer, M. and Klime ov , J. and Klipel, J.
1263 and Kloepel, B. and Klotz, S. and Knops, J. M. H. and Kohyama, T. and Koike, F. and
1264 Kollmann, J. and Komac, B. and Komatsu, K. and K nig, C. and Kraft, N. J. B. and Kramer,
1265 K. and Kreft, H. and K hn, I. and Kumarathunge, D. and Kuppler, J. and Kurokawa, H. and
1266 Kurosawa, Y. and Kuyah, S. and Laclau, J.-P. and Lafleur, B. and Lallai, E. and Lamb, E. and
1267 Lamprecht, A. and Larkin, D. J. and Laughlin, D. and Le Bagousse-Pinguet, Y. and le Maire,
1268 G. and le Roux, P. C. and le Roux, E. and Lee, T. and Lens, F. and Lewis, S. L. and Lhotsky,

1269 B. and Li, Y. and Li, X. and Lichstein, J. W. and Liebergesell, M. and Lim, J. Y. and Lin, Y.-S.
1270 and Linares, J. C. and Liu, C. and Liu, D. and Liu, U. and Livingstone, S. and Llusià, J. and
1271 Lohbeck, M. and López-García, Á. and Lopez-Gonzalez, G. and Lososová, Z. and Louault, F.
1272 and Lukács, B. A. and Lukeš, P. and Luo, Y. and Lussu, M. and Ma, S. and Maciel Rabelo
1273 Pereira, C. and Mack, M. and Maire, V. and Mäkelä, A. and Mäkinen, H. and Malhado, A. C.
1274 M. and Mallik, A. and Manning, P. and Manzoni, S. and Marchetti, Z. and Marchino, L. and
1275 Marcilio-Silva, V. and Marcon, E. and Marignani, M. and Markestijn, L. and Martin, A. and
1276 Martínez-Garza, C. and Martínez-Vilalta, J. and Mašková, T. and Mason, K. and Mason, N.
1277 and Massad, T. J. and Masse, J. and Mayrose, I. and McCarthy, J. and McCormack, M. L. and
1278 McCulloh, K. and McFadden, I. R. and McGill, B. J. and McPartland, M. Y. and Medeiros, J.
1279 S. and Medlyn, B. and Meerts, P. and Mehrabi, Z. and Meir, P. and Melo, F. P. L. and
1280 Mencuccini, M. and Meredieu, C. and Messier, J. and Mészáros, I. and Metsaranta, J. and
1281 Michaletz, S. T. and Michelaki, C. and Migalina, S. and Milla, R. and Miller, J. E. D. and
1282 Minden, V. and Ming, R. and Mokany, K. and Moles, A. T. and Molnár V, A. and Molofsky, J.
1283 and Molz, M. and Montgomery, R. A. and Monty, A. and Moravcová, L. and Moreno-
1284 Martínez, A. and Moretti, M. and Mori, A. S. and Mori, S. and Morris, D. and Morrison, J.
1285 and Mucina, L. and Mueller, S. and Muir, C. D. and Müller, S. C. and Munoz, F. and Myers-
1286 Smith, I. H. and Myster, R. W. and Nagano, M. and Naidu, S. and Narayanan, A. and
1287 Natesan, B. and Negoita, L. and Nelson, A. S. and Neuschulz, E. L. and Ni, J. and Niedrist,
1288 G. and Nieto, J. and Niinemets, Ü. and Nolan, R. and Nottebrock, H. and Nouvellon, Y. and
1289 Novakovskiy, A. and The Nutrient, N. and Nystuen, K. O. and O'Grady, A. and O'Hara, K.
1290 and O'Reilly-Nugent, A. and Oakley, S. and Oberhuber, W. and Ohtsuka, T. and Oliveira, R.
1291 and Öllerer, K. and Olson, M. E. and Onipchenko, V. and Onoda, Y. and Onstein, R. E. and
1292 Ordonez, J. C. and Osada, N. and Ostonen, I. and Ottaviani, G. and Otto, S. and Overbeck, G.
1293 E. and Ozinga, W. A. and Pahl, A. T. and Paine, C. E. T. and Pakeman, R. J. and
1294 Papageorgiou, A. C. and Parfionova, E. and Pärtel, M. and Patacca, M. and Paula, S. and
1295 Paule, J. and Pauli, H. and Pausas, J. G. and Peco, B. and Penuelas, J. and Perea, A. and Peri,
1296 P. L. and Petisco-Souza, A. C. and Petraglia, A. and Petritan, A. M. and Phillips, O. L. and
1297 Pierce, S. and Pillar, V. D. and Pisek, J. and Pomogaybin, A. and Poorter, H. and Portsmuth,
1298 A. and Poschlod, P. and Potvin, C. and Pounds, D. and Powell, A. S. and Power, S. A. and
1299 Prinzing, A. and Puglielli, G. and Pyšek, P. and Raavel, V. and Rammig, A. and Ransijn, J.
1300 and Ray, C. A. and Reich, P. B. and Reichstein, M. and Reid, D. E. B. and Réjou-Méchain,
1301 M. and de Dios, V. R. and Ribeiro, S. and Richardson, S. and Riibak, K. and Rillig, M. C. and
1302 Riviera, F. and Robert, E. M. R. and Roberts, S. and Robroek, B. and Roddy, A. and

1303 Rodrigues, A. V. and Rogers, A. and Rollinson, E. and Rolo, V. and Römermann, C. and
1304 Ronzhina, D. and Roscher, C. and Rosell, J. A. and Rosenfield, M. F. and Rossi, C. and Roy,
1305 D. B. and Royer-Tardif, S. and Rüger, N. and Ruiz-Peinado, R. and Rumpf, S. B. and Rusch,
1306 G. M. and Ryo, M. and Sack, L. and Saldaña, A. and Salgado-Negret, B. and Salguero-
1307 Gomez, R. and Santa-Regina, I. and Santacruz-García, A. C. and Santos, J. and Sardans, J.
1308 and Schamp, B. and Scherer-Lorenzen, M. and Schleuning, M. and Schmid, B. and Schmidt,
1309 M. and Schmitt, S. and Schneider, J. V. and Schowanek, S. D. and Schrader, J. and Schrodlt, F.
1310 and Schuldt, B. and Schurr, F. and Selaya Garvizu, G. and Semchenko, M. and Seymour, C.
1311 and Sfair, J. C. and Sharpe, J. M. and Sheppard, C. S. and Sheremetiev, S. and Shiodera, S.
1312 and Shipley, B. and Shovon, T. A. and Siebenkäs, A. and Sierra, C. and Silva, V. and Silva,
1313 M. and Sitzia, T. and Sjöman, H. and Slot, M. and Smith, N. G. and Sodhi, D. and Soltis, P.
1314 and Soltis, D. and Somers, B. and Sonnier, G. and Sørensen, M. V. and Sosinski Jr, E. E. and
1315 Soudzilovskaia, N. A. and Souza, A. F. and Spasojevic, M. and Sperandii, M. G. and Stan, A.
1316 B. and Stegen, J. and Steinbauer, K. and Stephan, J. G. and Sterck, F. and Stojanovic, D. B.
1317 and Strydom, T. and Suarez, M. L. and Svenning, J.-C. and Svitková, I. and Svitok, M. and
1318 Svoboda, M. and Swaine, E. and Swenson, N. and Tabarelli, M. and Takagi, K. and
1319 Tappeiner, U. and Tarifa, R. and Tauugourdeau, S. and Tavsanoglu, C. and te Beest, M. and
1320 Tedersoo, L. and Thiffault, N. and Thom, D. and Thomas, E. and Thompson, K. and
1321 Thornton, P. E. and Thuiller, W. and Tichý, L. and Tissue, D. and Tjoelker, M. G. and Tng, D.
1322 Y. P. and Tobias, J. and Török, P. and Tarin, T. and Torres-Ruiz, J. M. and Tóthmérész, B. and
1323 Treurnicht, M. and Trivellone, V. and Trolliet, F. and Trotsiuk, V. and Tsakalos, J. L. and
1324 Tsiripidis, I. and Tysklind, N. and Umehara, T. and Usoltsev, V. and Vadeboncoeur, M. and
1325 Vaezi, J. and Valladares, F. and Vamosi, J. and van Bodegom, P. M. and van Breugel, M. and
1326 Van Cleemput, E. and van de Weg, M. and van der Merwe, S. and van der Plas, F. and van der
1327 Sande, M. T. and van Kleunen, M. and Van Meerbeek, K. and Vanderwel, M. and Vanselow,
1328 K. A. and Vårhammar, A. and Varone, L. and Vasquez Valderrama, M. Y. and Vassilev, K. and
1329 Vellend, M. and Veneklaas, E. J. and Verbeeck, H. and Verheyen, K. and Vibrans, A. and
1330 Vieira, I. and Villacís, J. and Violle, C. and Vivek, P. and Wagner, K. and Waldram, M. and
1331 Waldron, A. and Walker, A. P. and Waller, M. and Walther, G. and Wang, H. and Wang, F. and
1332 Wang, W. and Watkins, H. and Watkins, J. and Weber, U. and Weedon, J. T. and Wei, L. and
1333 Weigelt, P. and Weiher, E. and Wells, A. W. and Wellstein, C. and Wenk, E. and Westoby, M.
1334 and Westwood, A. and White, P. J. and Whitten, M. and Williams, M. and Winkler, D. E. and
1335 Winter, K. and Womack, C. and Wright, I. J. and Wright, S. J. and Wright, J. and Pinho, B. X.
1336 and Ximenes, F. and Yamada, T. and Yamaji, K. and Yanai, R. and Yankov, N. and Yguel, B.

1337 and Zanini, K. J. and Zanne, A. E. and Zelený, D. and Zhao, Y.-P. and Zheng, J. and Zheng, J.
1338 and Ziemińska, K. and Zirbel, C. R. and Zizka, G. and Zo-Bi, I. C. and Zott, G. and Wirth, C.
1339 (2020). TRY plant trait database - enhanced coverage and open access. *Global Change
1340 Biology* **26**, 119-188. doi: <https://doi.org/10.1111/gcb.14904>.

1341

1342 Keeley, J. E. and Bond, W. J. (1997). Convergent seed germination in South African fynbos
1343 and Californian chaparral. *Plant ecology* **133**, 153-167. doi:
1344 <https://doi.org/10.1023/A:1009748603202>.

1345

1346 Keeley, J. E. and Pausas, J. G. (2022). Evolutionary ecology of fire. *Annual Review of
1347 Ecology, Evolution, and Systematics* **53**, 203-225. doi: [https://doi.org/10.1146/annurev-
1348_ecolsys-102320-095612](https://doi.org/10.1146/annurev-
1348_ecolsys-102320-095612).

1349

1350 Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J., and Bradstock, R. A. (2011). Fire as
1351 an evolutionary pressure shaping plant traits. *Trends in Plant Science* **16**, 406-411. doi:
1352 <https://doi.org/10.1016/j.tplants.2011.04.002>.

1353

1354 Keith, D. A. (1996). Fire-driven extinction of plant populations: a synthesis of theory and
1355 review of evidence from Australian vegetation. *Proceedings of the Linnean Society of New
1356 South Wales* **116**, 37-78.

1357

1358 Keith, D. A., McCaw, W. L., and Whelan, R. J. (2002). Fire regimes in Australian heathlands
1359 and their effects on plants and animals. In 'Flammable Australia: the fire regimes and
1360 biodiversity of a continent'. (Eds R. A. Bradstock, J. E. Williams, and A. M. Gill) pp. 199-
1361 237. (Cambridge University Press: Cambridge, United Kingdom; New York, United States of
1362 America.)

1363

1364 Kellman, M. (1986). Fire sensitivity of *Casuarina torulosa* in north Queensland, Australia.
1365 *Biotropica* **18**, 107-110. doi: <https://doi.org/10.2307/2388752>.

1366

1367 Kelly, L. T., Giljohann, K. M., Duane, A., Aquilue, N., Archibald, S., Batllori, E., Bennett, A.
1368 F., Buckland, S. T., Canelles, Q., Clarke, M. F., Fortin, M.-J., Hermoso, V., Herrando, S.,
1369 Keane, R. E., Lake, F. K., McCarthy, M. A., Moran-Ordonez, A., Parr, C. L., Pausas, J. G.,
1370 Penman, T. D., Regos, A., Rumpff, L., Santos, J. L., Smith, A. L., Syphard, A. D., Tingley, M.

1371 W., and Brotons, L. (2020). Fire and biodiversity in the Anthropocene. *Science* **370**, 929. doi:
1372 <https://doi.org/10.1126/science.abb0355>.

1373

1374 Kelly, L. T., Hoffmann, A. A., Nitschke, C. R., and Pausas, J. G. (2025). Can plants keep up
1375 with fire regime changes through evolution? *Trends in Ecology & Evolution*. doi:
1376 <https://doi.org/10.1016/j.tree.2025.04.009>.

1377

1378 Kennard, D. K., Gould, K., Putz, F. E., Fredericksen, T. S., and Morales, F. (2002). Effect of
1379 disturbance intensity on regeneration mechanisms in a tropical dry forest. *Forest ecology and
1380 management* **162**, 197-208. doi: [https://doi.org/10.1016/S0378-1127\(01\)00506-0](https://doi.org/10.1016/S0378-1127(01)00506-0).

1381

1382 Kołodziejek, J. (2017). Effect of seed position and soil nutrients on seed mass, germination
1383 and seedling growth in *Peucedanum oreoselinum* (Apiaceae). *Scientific reports* **7**, 1959. doi:
1384 <https://doi.org/10.1038/s41598-017-02035-1>.

1385

1386 Lai, R. (2019) Arrangements: fast generators and iterators for permutations, combinations,
1387 integer partitions and compositions. (GitHubVienna, Austria). viewed 4 April 2024,
1388 <<https://github.com/randy3k/arrangements>>.

1389

1390 Lamont, B. B., He, T., and Yan, Z. (2019). Evolutionary history of fire-stimulated
1391 resprouting, flowering, seed release and germination. *Biological Reviews* **94**, 903-928. doi:
1392 <https://doi.org/10.1111/brv.12483>.

1393

1394 Le Breton, T. D., Lyons, M. B., Nolan, R. H., Penman, T., Williamson, G. J., and Ooi, M. K.
1395 (2022). Megafire-induced interval squeeze threatens vegetation at landscape scales. *Frontiers
1396 in ecology and the environment* **20**, 327-334. doi: <https://doi.org/10.1002/fee.2482>.

1397

1398 Le Page, Y., Morton, D., Hartin, C., Bond-Lamberty, B., Pereira, J. M. C., Hurt, G., and
1399 Asrar, G. (2017). Synergy between land use and climate change increases future fire risk in
1400 Amazon forests. *Earth System Dynamics* **8**, 1237-1246. doi: <https://doi.org/10.5194/esd-8-1237-2017>.

1402

1403 Leishman, M. R., Wright, I. J., Moles, A. T., and Westoby, M. (2000). The evolutionary
1404 ecology of seed size. In 'Seeds: the ecology of regeneration in plant communities' pp. 31-57.
1405 (CABI Publishing: Wallingford, United Kingdom.)

1406

1407 Leroux, S. J. (2019). On the prevalence of uninformative parameters in statistical models
1408 applying model selection in applied ecology. *PLoS One* **14**, e0206711. doi:
1409 <https://doi.org/10.1371/journal.pone.0206711>.

1410

1411 Li, C. and Barclay, H. J. (2001). Fire disturbance patterns and forest age structure. *Natural
1412 Resource Modelling* **14**, 495-521. doi: <https://doi.org/10.1111/j.1939-7445.2001.tb00071.x>.

1413

1414 Luo, C., Liu, Y., Shen, Z., Yang, K., Wang, X., and Jiang, Y. (2022). Modifying regeneration
1415 strategies classification to enhance the understanding of dominant species growth in fire-
1416 prone forest in southwest China. *Forest Ecosystems* **9**, 100009. doi:
1417 <https://doi.org/10.1016/j.fecs.2022.100009>.

1418

1419 Mazerolle, M. J. (2020) AICcmodavg: model selection and multimodel inference based on
1420 (Q)AIC(c). R package version 2.3-1. (The Comprehensive R Research NetworkVienna,
1421 Austria). viewed 10th March 2021, <<https://cran.r-project.org/package=AICcmodavg>>.

1422

1423 McCarthy, M. A., Malcolm Gill, A., and Lindenmayer, D. B. (1999). Fire regimes in
1424 mountain ash forest: evidence from forest age structure, extinction models and wildlife
1425 habitat. *Forest ecology and management* **124**, 193-203. doi: [https://doi.org/10.1016/S0378-1127\(99\)00066-3](https://doi.org/10.1016/S0378-
1426 1127(99)00066-3).

1427

1428 McColl-Gausden, S. C., Bennett, L. T., Ababei, D. A., Clarke, H. G., and Penman, T. D.
1429 (2022). Future fire regimes increase risks to obligate-seeder forests. *Diversity and
1430 Distributions* **28**, 542-558. doi: <https://doi.org/10.1111/ddi.13417>.

1431

1432 Menkhorst, P., Schulz, M., and Stamation, K. (2024). Impacts of bushfire on the glossy black-
1433 cockatoo "Calyptorhynchus lathami" and its single food source in eastern Victoria.
1434 *Australian Field Ornithology* **41**, 48-55. doi: <https://doi.org/10.20938/af041048055>.

1435

1436 Moles, A. T., Ackerly, D. D., Webb, C. O., Tweddle, J. C., Dickie, J. B., Pitman, A. J., and
1437 Westoby, M. (2005). Factors that shape seed mass evolution. *PNAS Nexus* **102**, 10540-10544.
1438 doi: <https://doi.org/10.1073/pnas.0501473102>.

1439

1440 Moles, A. T. and Westoby, M. (2003). Latitude, seed predation and seed mass. *Journal of*
1441 *Biogeography* **30**, 105-128. doi: <https://doi.org/10.1046/j.1365-2699.2003.00781.x>.

1442

1443 Moreira, B., Tormo, J., Estrelles, E., and Pausas, J. G. (2010). Disentangling the role of heat
1444 and smoke as germination cues in Mediterranean Basin flora. *Annals of Botany* **105**, 627-635.
1445 doi: <https://doi.org/10.1093/aob/mcq017>.

1446

1447 Moritz, M. A., Parisien, M.-A., Batllori, E., Krawchuk, M. A., Van Dorn, J., Ganz, D. J., and
1448 Hayhoe, K. (2012). Climate change and disruptions to global fire activity. *Ecosphere* **3**, 49.
1449 doi: <https://doi.org/10.1890/ES11-00345.1>.

1450

1451 Moss, P. T., Petherick, L., and Neil, D. (2011). Environmental change at Myora Springs,
1452 North Stradbroke island over the last millennium. *Proceedings of the Royal Society of*
1453 *Queensland* **117**, 113-140. doi: <https://doi.org/10.5962/p.357751>.

1454

1455 Muller-Landau, H. C. (2010). The tolerance–fecundity trade-off and the maintenance of
1456 diversity in seed size. *PNAS Nexus* **107**, 4242-4247. doi:
1457 <https://doi.org/10.1073/pnas.0911637107>.

1458

1459 Neldner, V., Butler, D., and Guymer, G. (2019) 'Queensland's regional ecosystems: building
1460 and maintaining a biodiversity inventory, planning framework and information system for
1461 Queensland version 2.' (Queensland Herbarium, Department of Science, Informatoion
1462 Technology and Innovation: Brisbane, QLD, Australia.)

1463

1464 Newton, R. J., Mackenzie, B. D. E., Lamont, B. B., Gomez-Barreiro, P., Cowling, R. M., and
1465 He, T. (2021). Fire-mediated germination syndromes in *Leucadendron* (Proteaceae) and their
1466 functional correlates. *Oecologia* **196**, 589-604. doi: <https://doi.org/10.1007/s00442-021-04947-2>.

1467

1468

1469 Noce, S., Caporaso, L., and Santini, M. (2020). A new global dataset of bioclimatic
1470 indicators. *Scientific Data* **7**, 398. doi: <https://doi.org/10.1038/s41597-020-00726-5>.

1471

1472 Ojeda, F., van der Niet, T., Malan, M. C., Midgley, J. J., and Segarra-Moragues, J. G. (2016).
1473 Strong signature of selection in seeder populations but not in resprouters of the fynbos heath
1474 *Erica coccinea* (Ericaceae). *Botanical Journal of the Linnean Society* **181**, 115-126. doi:
1475 <https://doi.org/10.1111/boj.12395>.

1476

1477 Ooi, M. K. J., Denham, A. J., Santana, V. M., and Auld, T. D. (2014). Temperature thresholds
1478 of physically dormant seeds and plant functional response to fire: variation among species
1479 and relative impact of climate change. *Ecology and Evolution* **4**, 656-671. doi:
1480 <https://doi.org/10.1002/ece3.973>.

1481

1482 Paula, S. and Pausas, J. G. (2008). Burning seeds: germinative response to heat treatments in
1483 relation to resprouting ability. *Journal of Ecology* **96**, 543-552. doi:
1484 <https://doi.org/10.1111/j.1365-2745.2008.01359.x>.

1485

1486 Pausas, J. G., Bradstock, R. A., Keith, D. A., and Keeley, J. E. (2004). Plant functional traits
1487 in relation to fire in crown-fire ecosystems. *Ecology* **85**, 1085-1100. doi:
1488 <https://doi.org/10.1890/02-4094>.

1489

1490 Pausas, J. G. and Keeley, J. E. (2014). Evolutionary ecology of resprouting and seeding in
1491 fire-prone ecosystems. *New Phytologist* **204**, 55-65. doi: <https://doi.org/10.1111/nph.12921>.

1492

1493 Pausas, J. G. and Lamont, B. B. (2022). Fire-released seed dormancy - a global synthesis.
1494 *Biological Reviews* **97**, 1612-1639. doi: <https://doi.org/10.1111/brv.12855>.

1495

1496 Pausas, J. G., Lamont, B. B., Keeley, J. E., and Bond, W. J. (2024). The need for mechanistic
1497 explanations in (seed) ecology. *New Phytologist* **242**, 2394-2398. doi:
1498 <https://doi.org/10.1111/nph.19751>.

1499

1500 Pérez-Ramos, I. M., Urbieta, I. R., Zavala, M. A., and Marañón, T. (2012). Ontogenetic
1501 conflicts and rank reversals in two Mediterranean oak species: implications for coexistence.
1502 *Journal of Ecology* **100**, 467-477. doi: <https://doi.org/10.1111/j.1365-2745.2011.01912.x>.

1503
1504 Peters, J. (2000) 'Tetrazolium testing handbook : contribution no. 29 to the handbook on seed
1505 testing.' (The Association of Official Seed Analysts: Lincoln, Nebraska, United States of
1506 America.)
1507
1508 Plumanns-Pouton, E. S., Swan, M., Penman, T., and Kelly, L. T. (2024). How do intervals
1509 between fires influence canopy seed production and viability? *Functional Ecology* **38**, 1915-
1510 1930. doi: <https://doi.org/10.1111/1365-2435.14619>.
1511
1512 Poorter, L. (2007). Are species adapted to their regeneration niche, adult niche, or both? *The*
1513 *American naturalist* **169**, 433-442. doi: <https://doi.org/10.1086/512045>.
1514
1515 Queensland Parks and Wildlife Service (2023) Fire history - Queensland Parks and Wildlife
1516 Service (Dataset). (Queensland Parks and Wildlife Service Queensland Spatial: Brisbane,
1517 Queensland, Australia). Available at <https://www.data.qld.gov.au/dataset/fire-history-queensland-parks-and-wildlife-service> [Verified 18 August 2023]
1519
1520 R Core Team (2018) The R Project for statistical computing. (R Foundation for Statistical
1521 ComputingVienna, Austria). viewed 12th September 2020, <<https://www.r-project.org>>.
1522
1523 R Core Team (2023) R: a language and environment for statistical computing. (R Foundation
1524 for Statistical ComputingVienna, Austria). viewed 1 August 2023, <<https://www.R-project.org/>>.
1526
1527 Rainsford, F. W., Kelly, L. T., Leonard, S. W. J., and Bennett, A. F. (2020). Post-fire
1528 development of faunal habitat depends on plant regeneration traits. *Austral Ecology* **45**, 800-
1529 812. doi: <https://doi.org/10.1111/aec.12896>.
1530
1531 Ramos, D. M., Valls, J. F. M., Borghetti, F., and Ooi, M. K. J. (2019). Fire cues trigger
1532 germination and stimulate seedling growth of grass species from Brazilian savannas.
1533 *American Journal of Botany* **106**, 1190-1201. doi: <https://doi.org/10.1002/ajb2.1345>.
1534
1535 Rosbakh, S., Carta, A., Fernández-Pascual, E., Phartyal, S. S., Dayrell, R. L. C., Mattana, E.,
1536 Saatkamp, A., Vandelook, F., Baskin, J., and Baskin, C. (2023). Global seed dormancy

1537 patterns are driven by macroclimate but not fire regime. *New Phytologist* **240**, 555-564. doi:
1538 <https://doi.org/10.1111/nph.19173>.

1539

1540 Rossi, J. L., Chatelon, F. J., and Marcelli, T. (2018). Fire intensity. In 'Encyclopedia of
1541 Wildfires and Wildland-Urban Interface (WUI) Fires'. (Ed. S. L. Manzello) pp. 1-6. (Springer
1542 International Publishing: Cham, Switzerland.)

1543

1544 Sano, M., Tangney, R., Thomsen, A., and Ooi, M. K. J. (2025). Extreme fire severity interacts
1545 with seed traits to moderate post-fire species assemblages. *American Journal of Botany*,
1546 e70012. doi: <https://doi.org/10.1002/ajb2.70012>.

1547

1548 Schmidberger, J. W. and Ladd, P. G. (2020). Geographic distribution and the reproductive and
1549 demographic ecology of two congeneric seeder and resprouter tree species. *Forest ecology
1550 and management* **475**, 118428. doi: <https://doi.org/10.1016/j.foreco.2020.118428>.

1551

1552 Seglias, A. E., Williams, E., Bilge, A., and Kramer, A. T. (2018). Phylogeny and source
1553 climate impact seed dormancy and germination of restoration-relevant forb species. *PLoS
1554 One* **13**, e0191931. doi: <https://doi.org/10.1371/journal.pone.0191931>.

1555

1556 Sims, H. J. (2012). The evolutionary diversification of seed size: using the past to understand
1557 the present. *Evolution* **66**, 1636-1649. doi: <https://doi.org/10.1111/j.1558-5646.2011.01527.x>.

1558

1559 Smith, A. L. (2018). Successional changes in trophic interactions support a mechanistic
1560 model of post-fire population dynamics. *Oecologia* **186**, 129-139. doi:
1561 <https://doi.org/10.1007/s00442-017-4016-z>.

1562

1563 Smith, A. L., Blanchard, W., Blair, D. P., McBurney, L., Banks, S. C., Driscoll, D. A., and
1564 Lindenmayer, D. B. (2016). The dynamic regeneration niche of a forest following a rare
1565 disturbance event. *Diversity and Distributions* **22**, 457-467. doi:
1566 <https://doi.org/10.1111/ddi.12414>.

1567

1568 Spencer, R. (1995) 'Horticultural flora of South-eastern Australia: the identification of garden
1569 and cultivated plants.' (University of New South Wales Press: Sydney, NSW, Australia.)

1570

1571 Staden, J. V., Brown, N. A. C., Jäger, A. K., and Johnson, T. A. (2000). Smoke as a
1572 germination cue. *Plant Species Biology* **15**, 167-178. doi: <https://doi.org/10.1046/j.1442-1984.2000.00037.x>.

1573

1574

1575 Stanley, T. D., Ross, E. M., and Jessup, L. W. (1983) 'Flora of south-eastern Queensland.'
1576 (Queensland Department of Primary Industries: Brisbane, QLD, Australia.)

1577

1578 Stevens-Rumann, C. S., Kemp, K. B., Higuera, P. E., Harvey, B. J., Rother, M. T., Donato, D.
1579 C., Morgan, P., and Veblen, T. T. (2018). Evidence for declining forest resilience to wildfires
1580 under climate change. *Ecology Letters* **21**, 243-252. doi: <https://doi.org/10.1111/ele.12889>.

1581

1582 Stewart, P. L. C. F. and Moss, P. T. Fire patterns of south eastern Queensland in a global
1583 context: a review. 19/05/2014-23/05/2014 2015, Missoula, Montana, United States of
1584 America. (Eds. R. E. Keane, M. Jolly, R. Parsons, and K. Riley) pp. 227-236. (U.S.
1585 Department of Agriculture, Forest Service, Rocky Mountains Research Station.)

1586

1587 Tangney, R., Merritt, D. J., Callow, J. N., Fontaine, J. B., and Miller, B. P. (2020). Seed traits
1588 determine species' responses to fire under varying soil heating scenarios. *Functional Ecology*
1589 **34**, 1967-1978. doi: <https://doi.org/10.1111/1365-2435.13623>.

1590

1591 Tausch, S., Leipold, M., Reisch, C., and Poschlod, P. (2024). How precisely can x-ray predict
1592 the viability of wild flower plant seeds? *Seed Science and Technology* **52**, 109-123. doi:
1593 <https://doi.org/10.15258/sst.2024.52.1.10>.

1594

1595 Taylor, A. H. (2010). Fire disturbance and forest structure in an old-growth *Pinus ponderosa*
1596 forest, southern Cascades, USA. *Journal of vegetation science* **21**, 561-572. doi:
1597 <https://doi.org/10.1111/j.1654-1103.2009.01164.x>.

1598

1599 Thomsen, A. M. and Ooi, M. K. J. (2022). Shifting season of fire and its interaction with fire
1600 severity: impacts on reproductive effort in resprouting plants. *Ecology and Evolution* **12**,
1601 e8717-n/a. doi: <https://doi.org/10.1002/ece3.8717>.

1602

1603 Turnbull, J. W. and Martensz, P. N. (1982). Aspects of seed collection, storage and
1604 germination in Casuarinaceae. *Australian Forest Research* **12**, 2810249.

1605
1606 van den Berg, D. (2021) Sentinel-2 fire scars - QLD DES algorithm, QLD coverage.
1607 (Terrestrial Ecosystem Research NetworkAustralia). viewed 7th November 2024,
1608 <<https://portal.tern.org.au/metadata/TERN/7b6d2b84-cbf3-46e8-aa8c-c49352f9ffd5>>.
1609
1610 Vandvik, V., Töpper, J. P., Cook, Z., Daws, M. I., Heegaard, E., Måren, I. E., and Velle, L. G.
1611 (2014). Management-driven evolution in a domesticated ecosystem. *Biology letters* **10**,
1612 20131082. doi: <https://doi.org/10.1098/rsbl.2013.1082>.
1613
1614 Verdú, M. (2000). Ecological and evolutionary differences between Mediterranean seeders
1615 and resprouters. *Journal of vegetation science* **11**, 265-268. doi:
1616 <https://doi.org/10.2307/3236806>.
1617
1618 Villegas, J., Ehrlén, J., Crone, E. E., Csergő, A. M., Garcia, M. B., Laine, A.-L., Roach, D.
1619 A., Salguero-Gómez, R., Wardle, G. M., Childs, D. Z., Elderd, B. D., Finn, A., Munné-Bosch,
1620 S., Bachelot, B., Bódis, J., Bucharova, A., Caruso, C. M., Catford, J. A., Coghill, M.,
1621 Compagnoni, A., Duncan, R. P., Dwyer, J. M., Ferguson, A., Fraser, L. H., Griffoul, E.,
1622 Groenteman, R., Hamre, L. N., Helm, A., Kelly, R., Laanisto, L., Lonati, M., Münzbergová,
1623 Z., Nuche, P., Olsen, S. L., Oprea, A., Pärtel, M., Petry, W. K., Ramula, S., Rasmussen, P. U.,
1624 Enri, S. R., Roeder, A., Roscher, C., Schultz, C., Skarpaas, O., Smith, A. L., Tack, A. J. M.,
1625 Töpper, J. P., Vesk, P. A., Vose, G. E., Wandrag, E., Wingler, A., and Buckley, Y. M. (2021).
1626 Phenotypic plasticity masks range-wide genetic differentiation for vegetative but not
1627 reproductive traits in a short-lived plant. *Ecology Letters* **24**, 2378-2393. doi:
1628 <https://doi.org/10.1111/ele.13858>.
1629
1630 Wang, X., Luo, M., Song, F., Wu, S., Chen, Y. D., and Zhang, W. (2024). Precipitation
1631 seasonality amplifies as Earth warms. *Geophysical Research Letters* **51**, e2024GL109132.
1632 doi: <https://doi.org/10.1029/2024GL109132>.
1633
1634 Wang, X., Morin, X., Zhang, J., Chen, G., Mao, L., Chen, Y., Song, Z., Du, Y., and Ma, K.
1635 (2023). Geographical patterns and determinants in plant reproductive phenology duration.
1636 *Frontiers in Plant Science* **14**. doi: <https://doi.org/10.3389/fpls.2023.1199316>.
1637

1638 Wang, Z., Wang, L., Liu, Z., Li, Y., Liu, Q., and Liu, B. (2016). Phylogeny, seed trait, and
1639 ecological correlates of seed germination at the community level in a degraded sandy
1640 grassland. *Frontiers in Plant Science* **7**. doi: <https://doi.org/10.3389/fpls.2016.01532>.
1641

1642 Webb, M. H., Wotherspoon, S., Stojanovic, D., Heinsohn, R., Cunningham, R. B., Bell, P.,
1643 and Terauds, A. (2014). Location matters: using spatially explicit occupancy models to
1644 predict the distribution of the highly mobile, endangered swift parrot. *Biological
1645 Conservation* **176**, 99-108. doi: <https://doi.org/10.1016/j.biocon.2014.05.017>.
1646

1647 Wheelwright, N. T. and Logan, B. A. (2004). Previous-year reproduction reduces
1648 photosynthetic capacity and slows lifetime growth in females of a neotropical tree. *PNAS
1649 Nexus* **101**, 8051-8055. doi: <https://doi.org/10.1073/pnas.0402735101>.
1650

1651 Whelan, R., Rogerson, L., Dickman, C., and Sutherland, E. (2002). Critical life cycles of
1652 plants and animals: developing a process-based understanding of population changes in fire-
1653 prone landscapes. In 'Flammable Australia: the fire regimes and biodiversity of a continent'.
1654 (Eds R. A. Bradstock, J. E. Williams, and A. M. Gill) pp. 94-124. (Cambridge University
1655 Press: Cambridge, United Kingdom.)
1656

1657 Young, D. J. N., Werner, C. M., Welch, K. R., Young, T. P., Safford, H. D., and Latimer, A.
1658 M. (2019). Post-fire forest regeneration shows limited climate tracking and potential for
1659 drought-induced type conversion. *Ecology* **100**, 13. doi: <https://doi.org/10.1002/ecy.2571>.
1660

1661 Younis, S. and Kasel, S. (2023). Do fire cues enhance germination of soil seed stores across
1662 an ecotone of wet eucalypt forest to cool temperate rainforest in the central highlands of
1663 south-eastern Australia? *Fire* **6**, 138. doi: <https://doi.org/10.3390/fire6040138>.
1664

1665 Zaki, E., Abedi, M., and Naqinezhad, A. (2021). How fire history affects germination cues of
1666 three perennial grasses from the mountain steppes of Golestan National Park. *Flora* **280**,
1667 151835. doi: <https://doi.org/10.1016/j.flora.2021.151835>.
1668

1669 Zammit, C. and Westoby, M. (1987). Seedling recruitment strategies in obligate-seeding and
1670 resprouting banksia shrubs. *Ecology* **68**, 1984-1992. doi: <https://doi.org/10.2307/1939889>.
1671

1672 Zhang, H., Zhao, Y., and Zhu, J.-K. (2020). Thriving under stress: how plants balance growth
1673 and the stress response. *Developmental Cell* **55**, 529-543. doi:
1674 <https://doi.org/10.1016/j.devcel.2020.10.012>.

1675

1676 Zhao, M., Liu, Z., Zhang, H., Wang, Y., and Yan, H. (2021). Germination characteristics is
1677 more associated with phylogeny-related traits of species in a salinized grassland of
1678 Northeastern China. *Frontiers in Ecology and Evolution* **9**. doi:
1679 <https://doi.org/10.3389/fevo.2021.748038>.

1680

1681 Zimmer, H., Allen, J., Smith, R., Gibson, R., and Auld, T. (2021). Post-fire recruitment and
1682 resprouting of a threatened montane eucalypt. *Australian journal of botany* **69**, 21-29. doi:
1683 <https://doi.org/10.1071/BT20116>.

1684

1685 Zimmermann, J., Higgins, S. I., Grimm, V., Hoffmann, J., Münkemüller, T., and Linstädter,
1686 A. (2008). Recruitment filters in a perennial grassland: the interactive roles of fire,
1687 competitors, moisture and seed availability. *Journal of Ecology* **96**, 1033-1044. doi:
1688 <https://doi.org/10.1111/j.1365-2745.2008.01409.x>.

1689

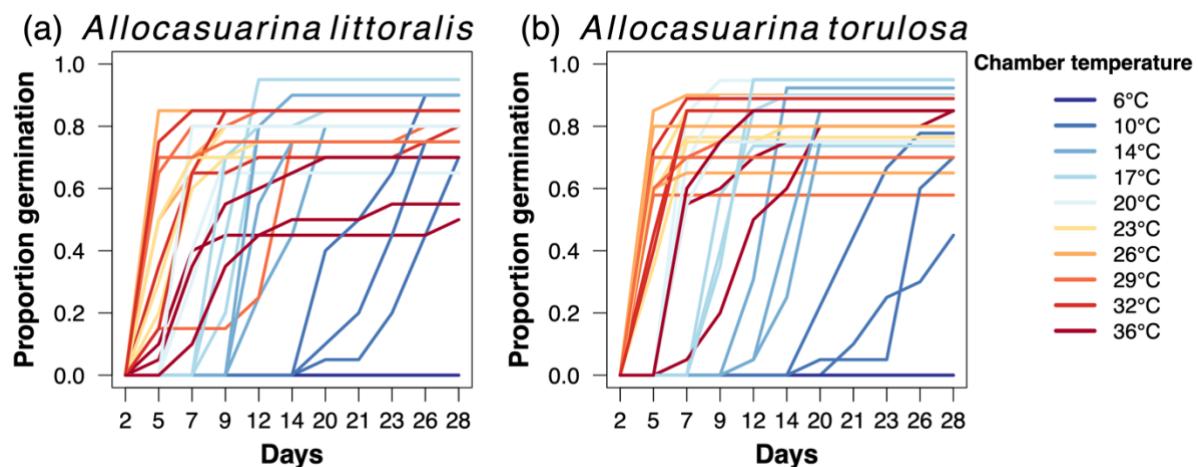
1690 Zirondi, H. L., Ooi, M. K. J., and Fidelis, A. (2021). Fire-triggered flowering is the dominant
1691 post-fire strategy in a tropical savanna. *Journal of vegetation science* **32**, e12995. doi:
1692 <https://doi.org/10.1111/jvs.12995>.

1693

1694

1695

1696 APPENDIX


1697

1698 *Incubation temperature optimisation*

1699

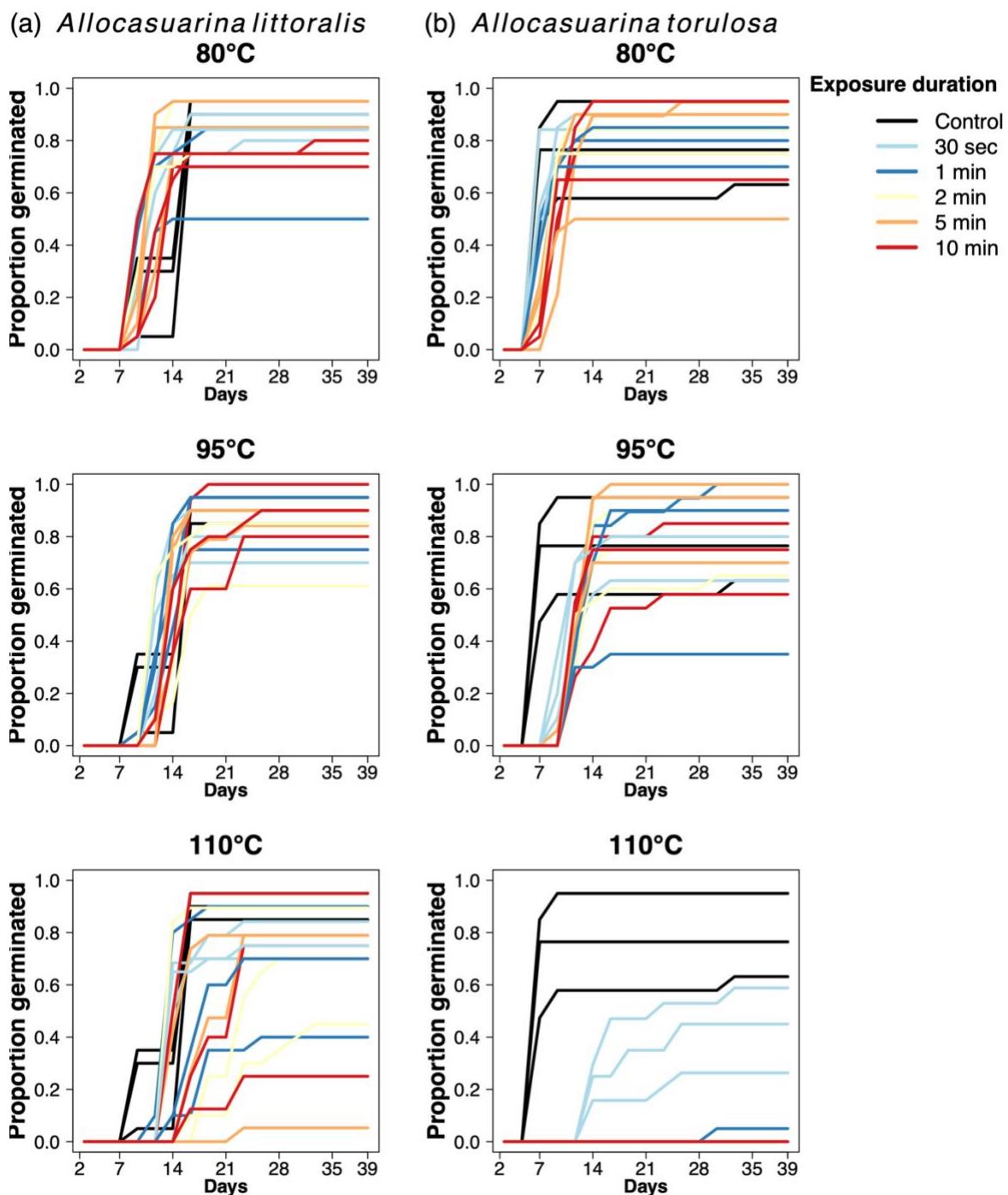
1700 Incubation temperature optimisation tests show that low temperatures of 6 °C and 10 °C
 1701 slowed germination rates or stopped germination over the 28-day sampling period, and these
 1702 temperatures were not considered further (Fig. S1). *Allocasuarina littoralis* germination was
 1703 most consistent in chamber temperatures from 14 °C to 32 °C (70-90%, Fig. S1). For
 1704 *Allocasuarina littoralis*, 17 °C was determined optimal as this chamber had the highest
 1705 overall germination for two of the three individuals tested (85-95%, Fig. S1). Germination in
 1706 *Allocasuarina torulosa* was similar at 17 °C and 20 °C (85-90%, Fig. S1). *Allocasuarina*
 1707 *torulosa* germination was most consistent across the range of temperatures from 14 °C to
 1708 36 °C. I selected 20 °C for the experimental tests as it fell within the range of temperatures
 1709 suggested by Turnbull and Martensz (1982).

1710

1711

1712 **Figure S6** Cumulative proportion of seeds germinated along a thermal gradient bar ranging from 6 °C to 36 °C
 1713 for (a) *Allocasuarina littoralis* and (b) *A. torulosa*. No germination occurred in either species in chambers at
 1714 6 °C.

1715


1716 *Heat shock and smoke exposure tests*

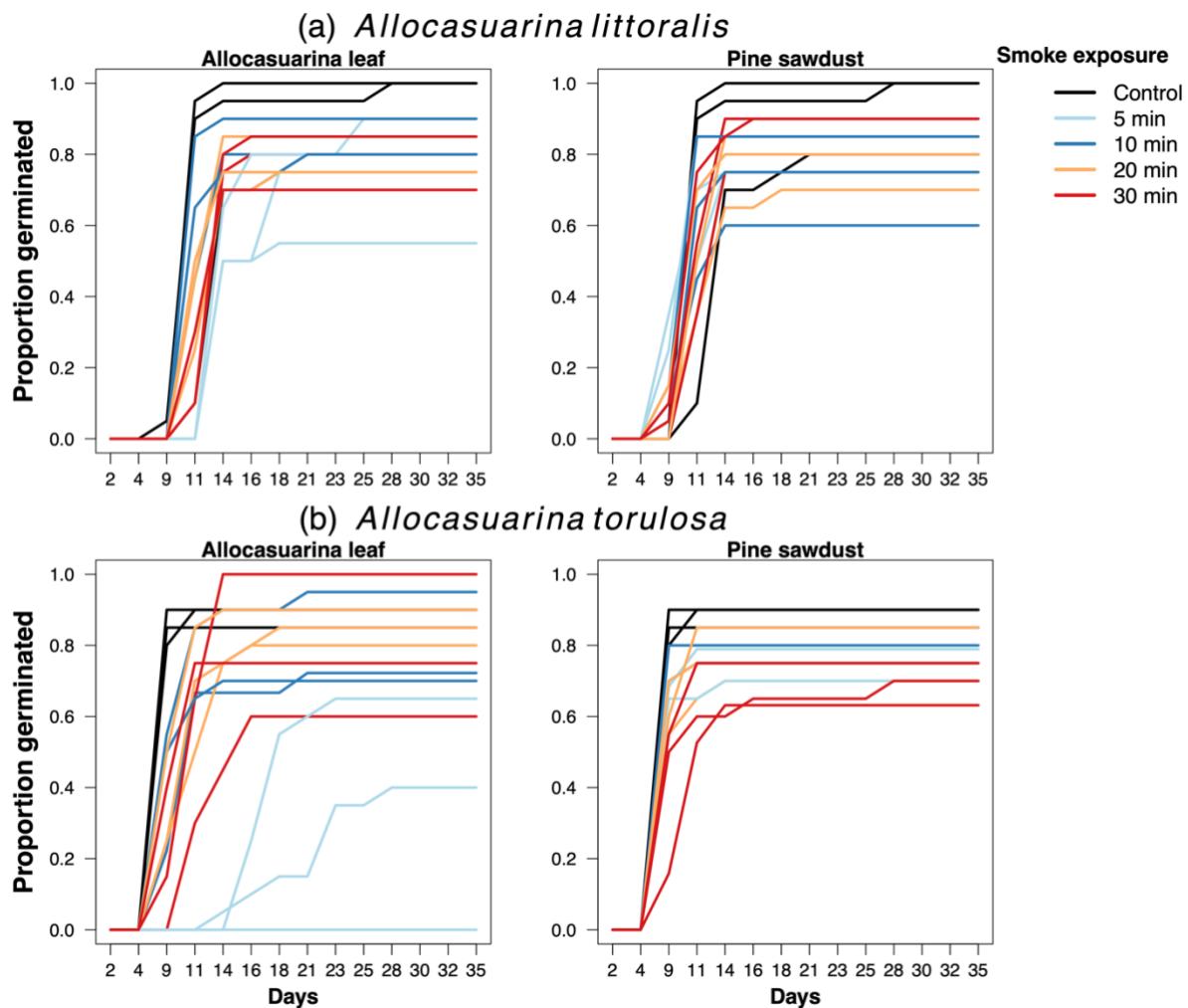
1717

1718 Heat shock optimisation tests showed consistently high germination in both species at 80 °C,
 1719 but variable germination responses between the species as temperature and duration increased
 1720 (Fig. S2). In *Allocasuarina littoralis*, the lethal temperature threshold was between 110 °C to

1721 120 °C as no germination occurred in seeds exposed to 125 °C (data not plotted). At 110 °C,
1722 *A. littoralis* germination varied widely and began to decline: some individuals had high
1723 germination at exposures of 10 minutes, while others had poor germination at this
1724 temperature, even with exposure times as low as 1 minute (Fig. S2a). In *A. littoralis*,
1725 exposures of 5 minutes at 80 °C and 95 °C produced relatively consistently high germination
1726 rates, with germination being the same or greater than the control, respectively (Fig. S2a). In
1727 *A. torulosa*, the lethal temperature threshold was between 95 °C to 105 °C, as only seeds
1728 exposed to short durations at 110 °C germinated (Fig. S2b). Exposure times of 5 minutes at
1729 85 °C and 95 °C produced consistently high germination, which was similar or greater than
1730 that of the controls. Therefore, for both species a 5-minute exposure time at 85 °C and 95 °C
1731 was selected for heat shock in the main experiment.

1732

1733


1734 **Figure S7** Cumulative proportion of seeds germinated in heat shock optimisation tests at 80 °C, 95 °C, and 110 °C compared to a control (black) in (a) *Allocasuarina littoralis* and (b) *A. torulosa*.

1736

1737 Smoke exposure optimisation tests showed similar germination rates between *Allocasuarina* leaf litter and pine sawdust (Fig. S3). However, short exposures to *Allocasuarina* leaf litter 1738 resulted in more variable germination rates than other treatments (Fig. S3), for unknown 1739 reasons. Seeds that remained ungerminated after smoke treatments were all deemed unviable 1740

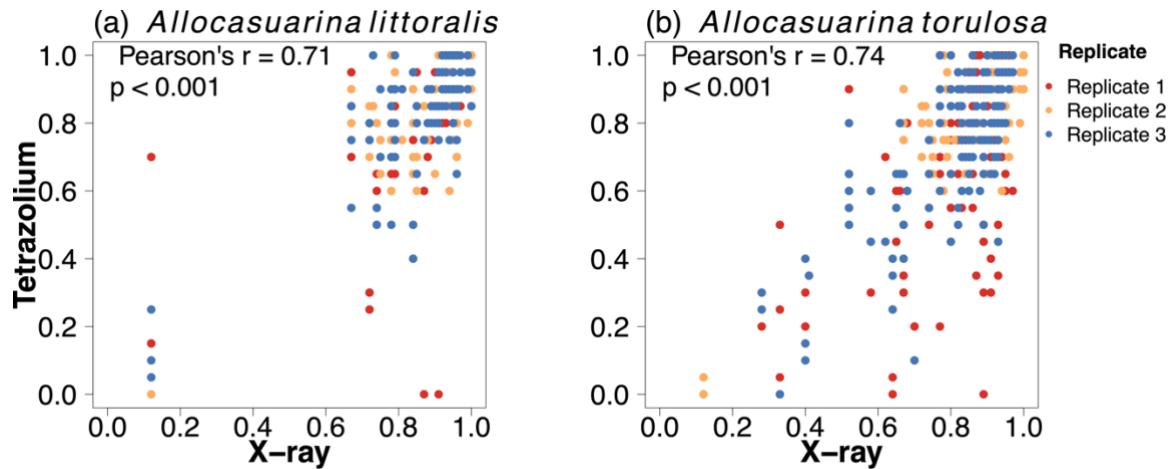
1741 by TTC testing (see seed viability and trait measurements section). A 20-minute exposure to
1742 aerosol smoke was selected as optimal as it produced high germination rates for both species
1743 and smoke types which was comparable to the controls (Fig. S3). At this 20-minute smoke
1744 exposure time, *Allocasuarina* leaf litter smoke produced higher germination rates than pine
1745 sawdust (Fig. S3). Thus, *Allocasuarina* leaf litter derived smoke was selected for the main
1746 experiment.

1747

1748

1749 **Figure S8** Cumulative proportion of seeds germinated after exposure to aerosol *Allocasuarina* leaf litter or pine
1750 sawdust derived smoke in (a) *Allocasuarina littoralis* and (b) *A. torulosa*.

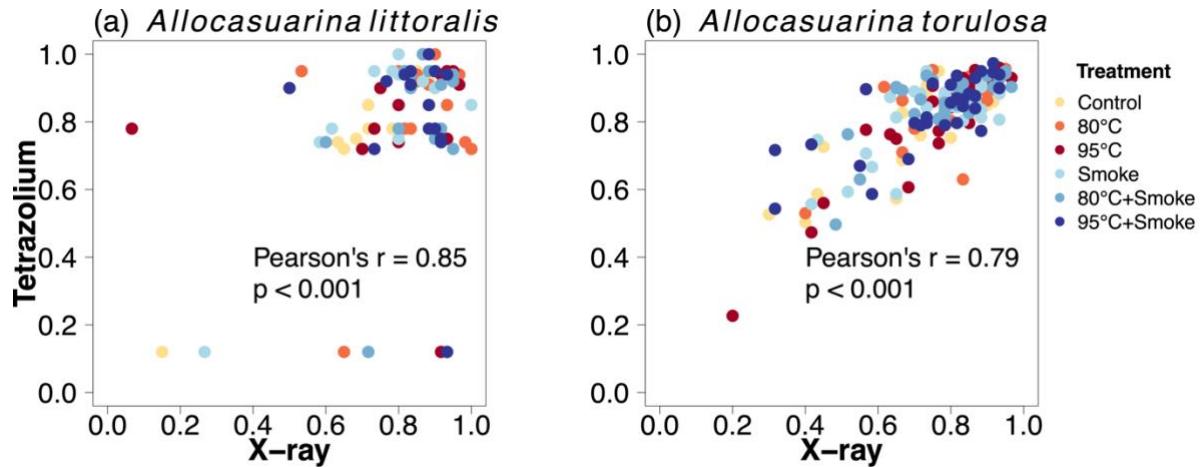
1751


1752 *Full factorial experiment seed viability*

1753

1754 Viability rates assessed by the x-ray and tetrazolium methods were correlated for both *A.*
1755 *littoralis* and *A. torulosa* across experimental replicates (71% and 74%, respectively, Fig. S4),

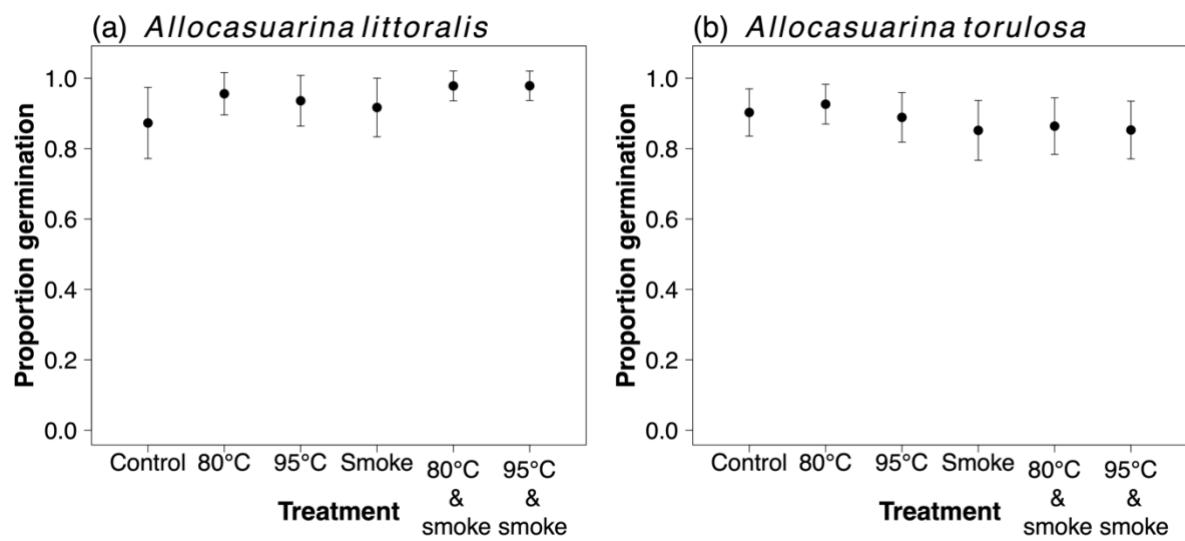
1756 indicating no effect of treatment on seed viability. Despite the expectation that higher heat
 1757 treatments (e.g., 95 °C) would result in variable post-germination viability, tetrazolium tests
 1758 (TTC) showed that seed viability across all treatments was high for *A. littoralis* and *A.*
 1759 *torulosa* (Fig. S5). Furthermore, there was also high correlation between the viability test
 1760 methods post-treatment and germination (85% and 79% respectively, Fig. S5).


1761

1762

1763 **Figure S9** Average pre-germination x-ray and post-germination TTC viability rate correlations for (a)
 1764 *Allocasuarina littoralis*, and (b) *A. torulosa* individuals across experimental replicates.

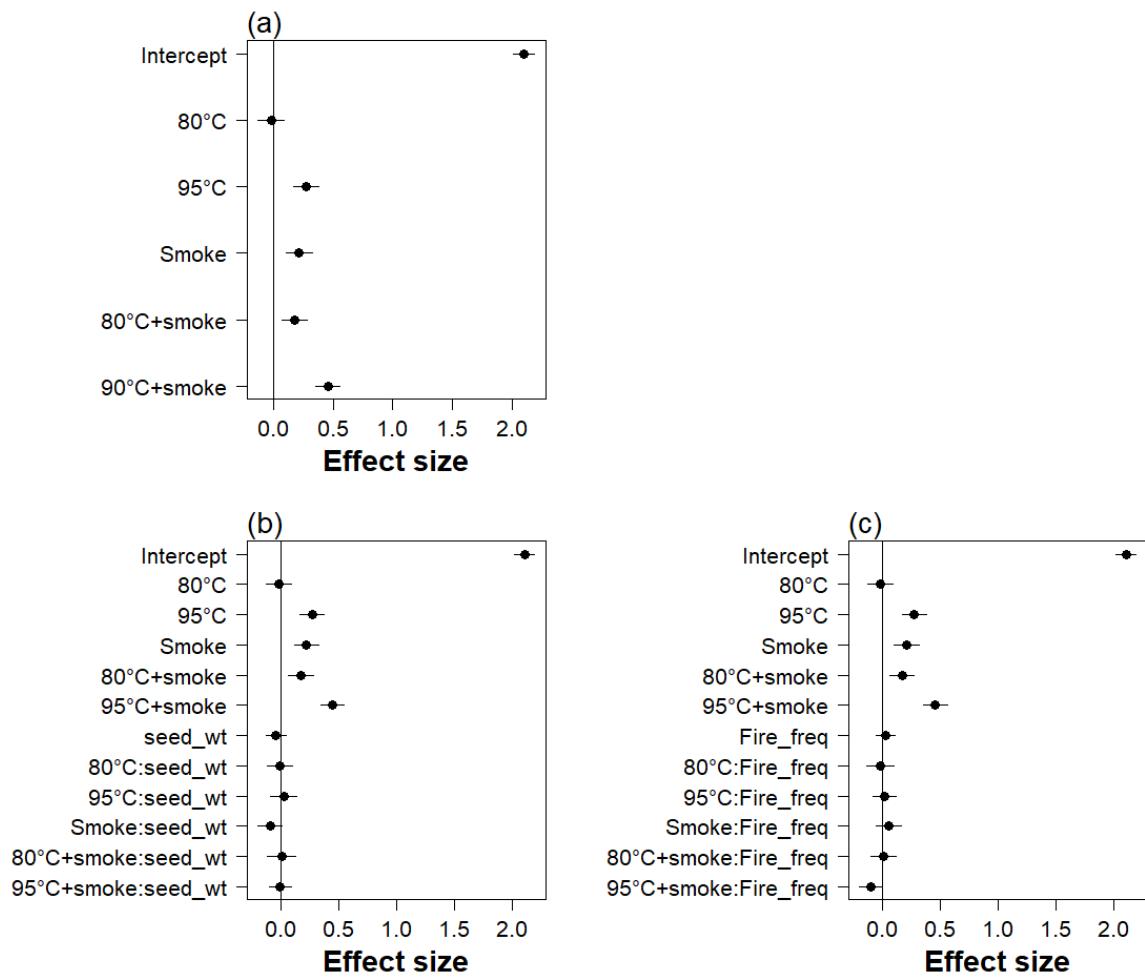
1765

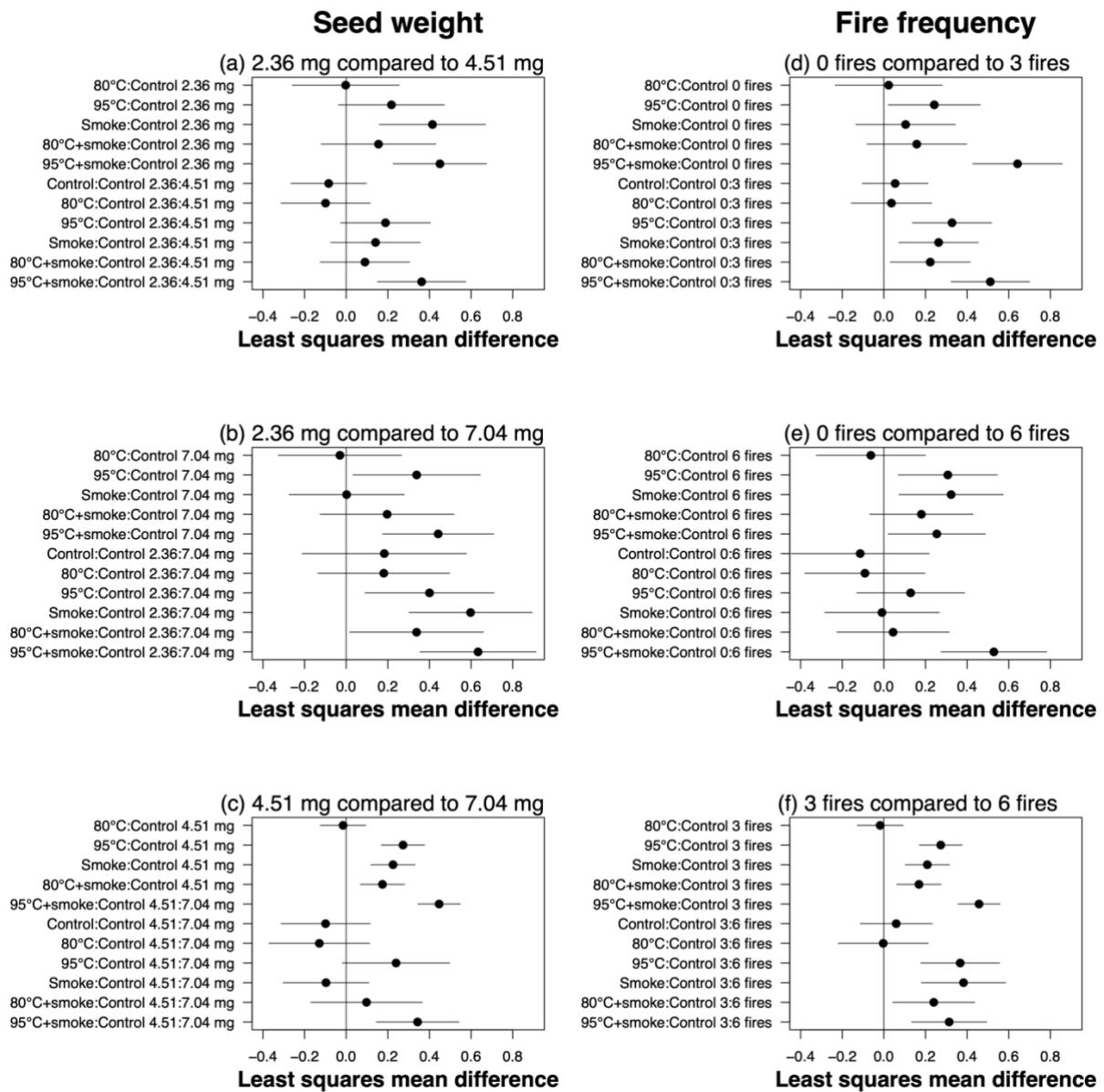

1766

1767 **Figure S10** Average pre-germination x-ray and post-germination TTC viability rate correlation for (a)
 1768 *Allocasuarina littoralis*, and (b) *A. torulosa* individuals across seed treatments.

1769

1770 *Full factorial germination experiment*


1771


1772

1773 **Figure S6** The estimated effect and 95% confidence intervals of seed treatments on proportion germination of

1774 (a) *Allocasuarina littoralis* and (b) *A. torulosa*.

1777 **Figure S7** Effect sizes of coefficients and 95% confidence intervals for models examining time to 50%
 1778 germination in *Allocasuarina torulosa*. Effect sizes were examined to determine the strength of effects for
 1779 models including (a) treatment, (b) treatment × seed weight, and (c) treatment × fire frequency.

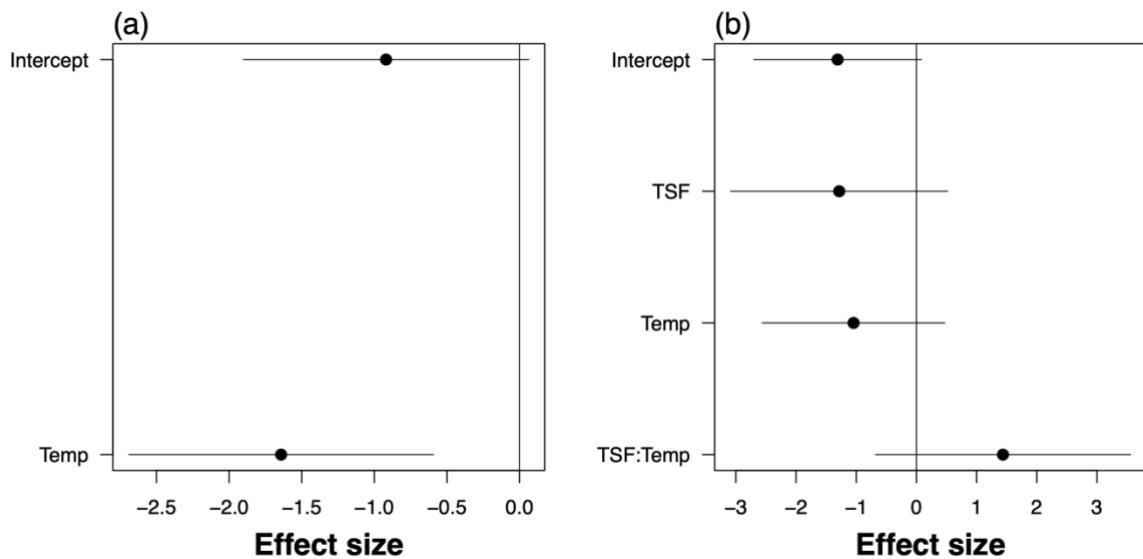
1781

1782 **Figure S8** Least squares mean differences and 95% confidence intervals for models examining the effect of seed
 1783 treatments compared to controls on time to 50% germination in *Allocasuarina torulosa*. Models included an
 1784 interaction between treatment and (a-c) seed weight, or (d-f) fire frequency. To aid comparisons between
 1785 different seed weights or fire frequencies, differences were examined for (a, d) minimum seed weight = 2.36 mg
 1786 or fire frequency = 0; (b, e) average seed weight = 4.51 mg or fire frequency = 3; and (d, f) maximum seed
 1787 weight = 7.04 or fire frequency = 6.

1788

1789

1790 *Population age structure*


1791

1792 **Table S7** Models used to examine the influence of fire frequency, time since fire, and environmental variation
1793 on age class structure in *Allocasuarina littoralis*.

Fire metric	Age class	Model structure	Number of parameters	AIC _c	ΔAIC _c	Log likelihood
Fire frequency	Seedlings	Null model	2	18.03	0.00	-3.01
		Temperature seasonality	2	21.33	3.31	0.00
		Topographic wetness	2	21.33	3.31	0.00
		Latitude	2	21.56	3.53	-0.11
		Fire frequency	2	25.52	7.49	-2.09
		Precipitation seasonality	2	27.10	9.07	-2.88
		Foliage projective cover	2	33.74	15.71	-2.87
		Fire frequency × precipitation seasonality	3	96.00	77.97	0.00
		Fire frequency × temperature seasonality	3	96.00	77.97	0.00
		Fire frequency × topographic wetness	3	96.00	77.97	0.00
		Fire frequency × latitude	3	96.02	78.00	-0.01
		Fire frequency × foliage projective cover	3	Inf	Inf	0.00
Saplings	Saplings	Null model	2	18.03	0.00	-3.01
		Fire frequency	2	21.89	3.87	-0.28
		Temperature seasonality	2	22.46	4.44	-0.57
		Latitude	2	23.23	5.20	-0.95
		Precipitation seasonality	2	27.23	9.20	-2.95
		Topographic wetness	2	27.35	9.32	-3.01
		Foliage projective cover	2	28.53	10.51	-0.27
		Fire frequency × precipitation seasonality	3	96.00	77.97	0.00
		Fire frequency × temperature seasonality	3	96.00	77.97	0.00
		Fire frequency × latitude	3	96.00	77.97	0.00
		Fire frequency × topographic wetness	3	96.05	78.02	-0.03

	Fire frequency \times foliage projective cover	3	Inf	Inf	0.00
Recruits	Null model	2	18.03	0.00	-3.01
	Fire frequency	2	21.89	3.86	-0.28
	Temperature seasonality	2	22.91	4.88	-0.79
	Latitude	2	23.18	5.15	-0.92
	Precipitation seasonality	2	27.23	9.20	-2.95
	Topographic wetness	2	27.35	9.32	-3.01
	Foliage projective cover	2	29.96	11.93	-0.98
	Fire frequency \times temperature seasonality	3	96.00	77.97	0.00
	Fire frequency \times precipitation seasonality	3	96.00	77.98	0.00
	Fire frequency \times topographic wetness	3	96.02	77.99	-0.01
	Fire frequency \times latitude	3	96.026	78.23	-0.13
	Fire frequency \times foliage projective cover	3	Inf	Inf	0.00
Time since fire	Seedlings	Null model	2	18.03	0.00
	Temperature seasonality	2	21.33	3.31	0.00
	Topographic wetness	2	21.33	3.31	0.00
	Latitude	2	21.56	3.53	-0.11
	Time since fire	2	24.39	6.36	-1.53
	Precipitation seasonality	2	27.10	9.07	-2.88
	Foliage projective cover	2	33.74	15.71	-2.87
	Time since fire \times latitude	3	96.00	77.97	0.00
	Time since fire \times precipitation seasonality	3	96.00	77.97	0.00
	Time since fire \times topographic wetness	3	96.00	77.97	0.00
	Time since fire \times temperature seasonality	3	96.17	78.14	-0.09
	Time since fire \times foliage projective cover	3	Inf	Inf	0.00
Saplings	Null model	2	18.03	0.00	-3.01
	Temperature seasonality	2	22.46	4.44	-0.57
	Latitude	2	23.23	5.20	-0.95
	Time since fire	2	23.86	5.83	-2.26
	Precipitation seasonality	2	27.23	9.20	-2.95

	Topographic wetness index	2	27.53	9.32	-3.01
	Foliage projective cover	2	28.53	10.51	-0.27
	Time since fire \times temperature seasonality	3	96.00	77.97	0.00
	Time since fire \times precipitation seasonality	3	96.01	77.98	0.00
	Time since fire \times topographic wetness	3	96.03	78.00	-0.02
	Time since fire \times latitude	3	96.11	78.08	-0.06
	Time since fire \times foliage projective cover	3	Inf	Inf	0.00
Recruits	Null model	2	18.03	0.00	-3.01
	Temperature seasonality	2	22.91	4.88	-0.79
	Latitude	2	23.18	5.15	-0.92
	Time since fire	2	23.81	5.78	-1.24
	Precipitation seasonality	2	27.23	9.20	-2.95
	Topographic wetness	2	27.35	9.32	-3.01
	Foliage projective cover	2	29.96	11.93	-0.98
	Time since fire \times temperature seasonality	3	96.00	77.97	0.00
	Time since fire \times topographic wetness	3	96.00	77.97	0.00
	Time since fire \times precipitation seasonality	3	96.01	77.98	-0.01
	Time since fire \times latitude	3	96.10	78.07	-0.05
	Time since fire \times foliage projective cover	3	Inf	Inf	-0.12

1795

1796 **Figure S11** Effect sizes of coefficients and 95% confidence intervals for the influence of (a) temperature
 1797 seasonality, and (b) temperature seasonality and time since fire (TSF) interaction on the proportion of recruits to
 1798 adults in *Allocasuarina torulosa*.

1799

1800 **References**

1801

1802 Turnbull, J. W. and Martensz, P. N. (1982). Aspects of seed collection, storage and
 1803 germination in Casuarinaceae. *Australian Forest Research* **12**, 2810249.

1804