
Influence of fire history on reproductive traits in a congeneric obligate 1 

seeder and facultative resprouter tree species 2 

 3 

Felicity E. Charles1* 0000-0002-7241-2720 4 

April E. Reside1 0000-0002-0760-9527 5 

Patrick T. Moss2 0000-0003-1546-9242 6 

Annabel L. Smith1 0000-0002-1201-8713 7 

 8 

1School of the Environment, The University of Queensland, Gatton, 4343, QLD, Australia 9 

2School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane 10 

City, 4000, QLD, Australia 11 

*Correspondence: f.charles@uq.edu.au 12 

 13 

Keywords: age class structure, Allocasuarina littoralis, Allocasuarina torulosa, fire-cued 14 

germination, reproductive output 15 

 16 

mailto:f.charles@uq.edu.au


Abstract 17 

 18 

In fire-prone regions globally, evolution of plant traits that confer resilience to historical fire 19 

regimes is widespread. However, many common plant species are currently declining due to a 20 

mismatch between historical and contemporary fire regimes. These changes threaten long 21 

term community trajectories of plants and the animal species relying on them for food or 22 

habitat. Understanding plant responses to fire at critical life stages is needed to improve 23 

conservation of plant-animal interactions. We investigated how fire history affected 24 

reproductive traits (i.e., proportion germination, time to 50% germination, reproductive 25 

output, population age structure) relevant to critical life history stages of Allocasuarina 26 

littoralis and A. torulosa (Casuarinaceae). In southeast Queensland, Australia, these species 27 

are primary food trees of the nationally vulnerable Glossy black-cockatoo (Calyptorhynchus 28 

lathami, Cacatuidae). For both species, fire-cues (heat and smoke) did not increase the 29 

proportion of seed germinated, but proportion germination increased with seed weight. 30 

Heavier seeds were associated with exposure to more extreme environments such as 31 

environments with higher fire frequencies and temperature variability. In A. torulosa, seed 32 

weight generally increased germination time, except when seeds were collected from 33 

frequently burned sites which could be linked to a trade-off between resprouting and seed 34 

production. Heat and smoke slowed germination of A. torulosa (recorded as time to 50% 35 

germination) but had no effect on A. littoralis. Fire history did not influence reproductive 36 

output or population age structure in either species, but reproductive output was greater in 37 

sites with more woody vegetation cover, potentially reflecting greater establishment success. 38 

For restoration, our results indicate that fire is not necessary for successful germination in A. 39 

littoralis or A. torulosa, but when collecting seeds the local fire history and seed weight 40 

should be considered, especially for A. torulosa. Our results can inform Glossy black-41 

cockatoo conservation by guiding fire management practices associated with their food trees. 42 

 43 

Introduction 44 

 45 

The regeneration niche of plant species defines the climatic (e.g., temperature and 46 

precipitation) and environmental (e.g., nutrient availability, interspecific competition and 47 

allelopathy) conditions which control seed production, germination, establishment, and 48 

transitions from early life stages to adulthood (Grubb 1977; Pérez-Ramos et al. 2012; Poorter 49 



2007; Smith et al. 2016). Given the close relationship between plant fitness and reproduction, 50 

the regeneration niche places reproductive traits under stronger selection pressure than 51 

vegetative traits (Campbell et al. 2022; Keeley et al. 2011; Villellas et al. 2021). This stronger 52 

selection on reproductive traits is reflected in fire-driven evolution of traits such as post-fire 53 

reproductive mode, fire-cued germination responses, and serotiny which increase plant 54 

species fitness for their historical fire regimes (Gill 1977; Gómez-González et al. 2011; 55 

Keeley and Pausas 2022; Pausas et al. 2004). However, contemporary fire regime changes 56 

are likely to shift the regeneration niche, potentially resulting in trait misalignments, due to 57 

changes in seasonality, frequencies, intensities, durations, and scales of fire (Dowdy et al. 58 

2019; Le Page et al. 2017; Moritz et al. 2012). Contemporary fire regime changes are a key 59 

threatening process resulting in declining abundances and range sizes of plants, even for 60 

previously common and widespread species (Enright et al. 2015; Fairman et al. 2016; Gaston 61 

and Fuller 2007; Grau-Andrés et al. 2024; Le Breton et al. 2022). Thus, understanding plant 62 

responses to fire throughout their life cycle is critical, especially at early life stages and 63 

through transitions to adulthood (Smith et al. 2016). 64 

 65 

In fire-prone ecosystems, post-fire reproductive modes can be divided broadly into 66 

resprouters, which survive through tissue structures below bark or soil (R+); or obligate 67 

seeders which are killed by fire but persist through propagules (i.e., seed) stored in soil or 68 

canopy seedbanks (P+) (Clarke et al. 2015; Pausas et al. 2004; Pausas and Keeley 2014). 69 

These strategies result in contrasting life histories: resprouters are long-lived with low 70 

population turnover, whereas obligate seeders are short-lived with high population turnover 71 

(Pausas et al. 2004; Pausas and Keeley 2014). Resprouters generally have lower seed 72 

production and seedling densities than seeders, and higher investment in resprouting tissue 73 

production may slow maturation rates (Bendall et al. 2022; Hunter 2003; Ojeda et al. 2016; 74 

Pausas et al. 2004; Pausas and Keeley 2014; Verdú 2000; Whelan et al. 2002). Thus, 75 

resprouters show a trade-off between seed investment and resprouting responses (Bendall et 76 

al. 2022; Hunter 2003; Ojeda et al. 2016; Pausas et al. 2004; Pausas and Keeley 2014; Verdú 77 

2000; Whelan et al. 2002). Conversely, obligate seeders have high seed production and high 78 

seedling densities, with mass recruitment events post-fire (Hunter 2003; Keith et al. 2002; 79 

Ojeda et al. 2016; Pausas and Keeley 2014). 80 

 81 

Population age structure, defined as the distribution of age classes within a population 82 

(hereafter ‘age class structure’) (Li and Barclay 2001; Taylor 2010), consequently varies 83 



across these contrasting post-fire reproductive modes. After fire, obligate seeders tend to form 84 

even aged-cohorts resulting from mass recruitment events, while resprouters tend to maintain 85 

their pre-fire age class structure and form multi-aged cohorts (McCarthy et al. 1999; Pausas 86 

and Keeley 2014; Taylor 2010). Consequently, short interval fires relative to the lifespan of 87 

obligate seeders can shift populations into younger states, a phenomenon observed in 88 

Eucalyptus regnans (Myrtaceae) (McCarthy et al. 1999). Such shifts can leave populations of 89 

obligate seeders more susceptible to an immaturity risk as frequent short interval fire can 90 

compromise their ability to reach reproductive maturity and increase the potential for 91 

localised extinctions (Agne et al. 2022; Keith 1996; McColl-Gausden et al. 2022; Pausas and 92 

Keeley 2014). In resprouters, shifts in age class structure can result from extremely short or 93 

long fire return intervals as these species require time to replenish bud banks and produce 94 

protective bark, but have reduced capacity to initiate shoots with age (Christensen et al. 1981; 95 

Clarke et al. 2015; Gill and Catling 2002). However, fire at appropriate intervals remains 96 

critical for obligate seeders and resprouters to cue regeneration, promote seedling 97 

establishment, and stimulate flowering (Agne et al. 2022; Enright et al. 2011; McCarthy et al. 98 

1999; Taylor 2010; Thomsen and Ooi 2022; Zirondi et al. 2021). Thus, fire and post-fire 99 

reproductive mode act as strong drivers of age class structure but few studies examine these 100 

effects in closely related obligate seeders and resprouters (e.g., Ojeda et al. 2016; 101 

Schmidberger and Ladd 2020). 102 

 103 

Regeneration from seed is a critical population process for obligate seeders; and also for 104 

resprouters to enable successful colonisation of new sites or recolonisation after local 105 

extinction (Bellingham and Sparrow 2000; Kennard et al. 2002; Pausas and Keeley 2014). 106 

Therefore, seeds must possess traits conferring resilience to fire and other environmental 107 

stressors (Bradshaw et al. 2011; Rosbakh et al. 2023; Tangney et al. 2020). Seed traits show 108 

substantial variability (Fenollosa et al. 2021; Helsen et al. 2017; Pausas et al. 2024); for 109 

example, seed size can vary widely between populations and species due to differential 110 

selection from dispersal mode (wind, water, or animal), growth form (tree, shrub or grass), 111 

and environmental attributes (climate and vegetation structure) (Moles et al. 2005; Sims 112 

2012). Fire can drive selection on seed size due to its relation to heat tolerance with larger 113 

seeds providing greater insulation to embryos (Escudero et al. 2000; Gómez-González et al. 114 

2011; Lamont et al. 2019; Pausas and Lamont 2022). Conversely, smaller seeds are 115 

associated with higher reproductive output in obligate seeders and might be selected under 116 

certain fire regimes (Verdú 2000). Therefore, exposure to more frequent or intense fire may 117 



result in development of larger seeds in these species (or populations) than close relatives in 118 

environments with lower fire activity, but this likely depends on post-fire reproductive mode 119 

(Escudero et al. 2000; Gómez-González et al. 2011; Lamont et al. 2019; Pausas and Lamont 120 

2022; Verdú 2000). Studying closely related species with differing post-fire reproductive 121 

modes can help disentangle the role of fire in trait variation and germination because 122 

differences can be explained by environmental variation and trait variation rather than 123 

phylogeny (Cortés-Flores et al. 2020; Fenollosa et al. 2021; Seglias et al. 2018; Wang et al. 124 

2016; Zhao et al. 2021). However, only a few studies have investigated the role of fire and 125 

post-fire reproductive mode in driving reproductive trait variability (e.g., Tangney et al. 126 

2020), especially in phylogenetically related species (e.g., Ojeda et al. 2016; Schmidberger 127 

and Ladd 2020). 128 

 129 

Contemporary changes in fire regimes are causing misalignments between plant trait 130 

variability and fire regime characteristics (Canadell et al. 2021; Day et al. 2020; Harvey and 131 

Enright 2022; Johnstone et al. 2016; Kelly et al. 2025; Moritz et al. 2012). For example, fires 132 

in sclerophyllous vegetation ecosystems have increased in severity, such that even species 133 

with well-established fire adaptations (i.e., resprouting or fire-cued germination) can fail to 134 

regenerate (Bennett et al. 2016; Etchells et al. 2020; Sano et al. 2025). These declines may 135 

impact plant-animal or trophic interactions, as plants are strong drivers of community 136 

structure and function (Ballarin et al. 2024; Carbone et al. 2019; Ellison 2019; Kelly et al. 137 

2020; Rainsford et al. 2020; Smith 2018). Specialist interactions are most vulnerable to these 138 

declines; yet are drastically understudied in fire ecology (Charles et al. 2025). Whether trees 139 

can adapt in situ to fire regime changes is unclear, as more extreme climatic conditions have 140 

led to declining post-fire regeneration success (Kelly et al. 2025; Stevens-Rumann et al. 141 

2018; Young et al. 2019). Therefore, understanding how plants respond to fire requires an 142 

understanding of species’ responses to local and recent fire history. There has been much lab-143 

based research on fire-cued germination responses (reviewed in Hodges et al. 2021; Moreira 144 

et al. 2010; Newton et al. 2021; Ooi et al. 2014; Younis and Kasel 2023). However, fire 145 

history from the seed collection site has infrequently been included in fire-cued germination 146 

analyses (e.g., Gómez-González et al. 2016; Gómez-González et al. 2011; Kasel et al. 2024; 147 

Plumanns-Pouton et al. 2024; Vandvik et al. 2014; Zaki et al. 2021) and often from only 148 

recent short term fire histories (e.g., <1 to 15 years post-fire, Amoako and Gambiza 2021; 149 

Dawe et al. 2022; Luo et al. 2022; Schmidberger and Ladd 2020; Zimmer et al. 2021; 150 

Zimmermann et al. 2008). To determine whether enough trait variability exists to allow 151 



species to respond to contemporary fire regime changes, we require more studies of critical 152 

regeneration stages (i.e., germination and transitions through seedlings and saplings to adults) 153 

where short-term (1-10 years) and multi-decadal (30 or more years) fire histories are known. 154 

 155 

I investigated the influence of fire on reproductive trait variation in two congeneric species 156 

with differing post-fire reproductive modes: the obligate seeder Allocasuarina littoralis and 157 

the facultative resprouter Allocasuarina torulosa (Casuarinaceae). These Allocasuarina 158 

species are common across eastern Australia, where they form mixed stands with Eucalyptus 159 

spp.. Allocasuarina littoralis typically occurs in swamps and eucalypt woodlands and forests, 160 

and A. torulosa in wet eucalypt forests (Atlas of Living Australia 2021a; Atlas of Living 161 

Australia 2021b; Neldner et al. 2019). The distributions of these species overlap, extending 162 

from the coast to ca. 300 km inland. Allocasuarina torulosa extends from Cairns to Sydney 163 

with a small population in Cape York Peninsula in far-north Queensland. Allocasuarina 164 

littoralis has a broader range, from far-north Queensland to the Fleurieu Peninsula in South 165 

Australia (Atlas of Living Australia 2021a; Atlas of Living Australia 2021b). Fire 166 

management guidelines are often based on the Eucalyptus species which co-occur with 167 

Casuarinaceae, but eucalypts require different fire regime conditions than she-oaks (Kellman 168 

1986; Moss et al. 2011; Neldner et al. 2019; Stewart and Moss 2015). Although these 169 

Allocasuarina species are common and widespread, their seeds are primary food resources 170 

for the dietary specialist Glossy black-cockatoos, Calyptorhynchus lathami (Cacatuidae) 171 

(listed nationally as Vulnerable, EPBC Act 1999), which has one of the most specialised diets 172 

of all Australian birds (Chapman 2007; Menkhorst et al. 2024). Thus, understanding the fire 173 

ecology of Allocasuarina spp. is fundamental to effective conservation for these cockatoos. 174 

 175 

Reproductive traits investigated were: germination rates in response to heat and smoke 176 

treatments (i.e., proportion germination, time to 50% germination); age class structure (i.e., 177 

ratio of seedlings and/or saplings to adults); seed size (i.e., seed weight); and female 178 

reproductive output. Proportion of seeds that germinated was used as a measure of an 179 

individual trees resilience to seed treatments, with higher proportions of germinated seeds 180 

indicating higher resilience. Time to 50% germination was used as a measure of an 181 

individual’s competitiveness, such that less time to reach 50% germination indicated faster 182 

establishment, and thus, a higher competitiveness. Seed weight was used as a measure of seed 183 

size and related to an individuals’ investment in sexual reproduction. These traits were 184 

analysed in relation to fire regime variables, at the site where seeds were collected, that could 185 



drive short-term ecological responses (e.g., time since last fire), and longer-term evolutionary 186 

responses (e.g., responses to multiple fire events – fire frequency) (Fig. 1). 187 

 188 

 189 

Figure 1 Conceptual diagram showing the relationship between plant reproductive traits, fire regime attributes, 190 

environmental attributes, climate change, and management. Plant-reproductive trait arrows relate to my 191 

hypotheses regarding plant trait responses between differing post-fire reproductive modes to increasing fire 192 

frequency. I expected reproductive output, seed weight, and age class structure to increase with fire frequency in 193 

the obligate seeder and decrease in the facultative resprouter. 194 

 195 

I first aimed to determine how contemporary fire frequency, and post-fire reproductive mode, 196 

affected fire-cued germination responses and seed size. (H1) I expected that post-fire 197 

reproductive mode would shape fire-cued germination responses and seed investment, with 198 

higher seed investment and tolerances in A. littoralis (obligate seeder) than A. torulosa 199 

(facultative resprouter). Allocasuarina littoralis was expected to have higher seed investment 200 

with a larger quantity of smaller seeds, which would increase in environments with increasing 201 

fire frequencies, high germination rates in response to heat and smoke, and a higher lethal 202 

temperature threshold (Paula and Pausas 2008; Pausas and Keeley 2014). Allocasuarina 203 

torulosa was expected to have lower seed investment, which would reduce with increasing 204 

fire frequency, lower germination rates in response to heat and smoke, and a lower lethal 205 

temperature threshold (Paula and Pausas 2008; Staden et al. 2000). Exposure to frequent fire 206 

was expected to correspond with an increase in seed weight for A. littoralis, but an decrease 207 



in seed weight in A. torulosa due to a trade-off between seed production and resprouting 208 

capacity (Bellingham and Sparrow 2000; Pausas and Keeley 2014). 209 

 210 

Second, I aimed to determine how fire frequency, time since fire, and post-fire reproductive 211 

mode influenced age class structure and reproductive output (i.e., number of cones). (H2) I 212 

expected that longer times since fire and low fire frequencies would reduce the proportions of 213 

plants in younger age classes (i.e., seedling and sapling age classes) but increase reproductive 214 

output. (H2a) Due to the immaturity risk of the obligate seeding mode of reproduction, I 215 

expected high fire frequencies and short times since fire would result in fewer plants in 216 

younger age classes in A. littoralis than A. torulosa. (H2b) I also expected that higher fire 217 

frequencies and short times since fire would reduce reproductive output due to stem or cone 218 

consumption by fire and reduced capacity to reach reproductive maturity during inter-fire 219 

periods (Enright and Lamont 1989; Pausas and Keeley 2014). 220 

 221 

Third, I aimed to investigate how environmental attributes relating to site productivity 222 

(topographic wetness, quantifying water availability (Gallant and Austin 2012); foliage 223 

projective cover, quantifying the percentage of the ground covered by woody vegetation; 224 

thus, photosynthetic potential (Fisher et al. 2018)) and climatic attributes (latitude; 225 

precipitation seasonality and temperature seasonality, quantifying annual range trends (Noce 226 

et al. 2020; Wang et al. 2024)) interacted with fire regimes to influence reproductive trait 227 

variation. (H3) I expected environments with low site productivity and increasing climatic 228 

variability would be associated with more stressful environments, reducing reproductive 229 

output, seed weights, and proportions of younger age classes (Enright et al. 2015; McColl-230 

Gausden et al. 2022). Additionally, as lower latitudes are associated with increased 231 

temperatures, promoting photosynthesis, growth and reproductive processes, I expected these 232 

sampling locations to have higher reproductive outputs, seed weights and proportions of 233 

younger age classes (Chamorro et al. 2018; Käber et al. 2021; Moles and Westoby 2003; 234 

Wang et al. 2023). 235 

 236 



Methods 237 

 238 

Study region 239 

 240 

This study took place in southeast Queensland, Australia, within the distributions of 241 

Allocasuarina littoralis and A. torulosa. The Glossy black-cockatoo is a dietary specialist in 242 

eastern Australia, listed as vulnerable (EPBC Act 1999) (Department of Climate Change 243 

2022). These cockatoos feed exclusively on a subset of species (12 of 78 species) in the 244 

Casuarinaceae family (Chapman 2007) including the two examined here. Glossy black-245 

cockatoos are notoriously cryptic, shifting their feeding locations in response to a range of 246 

unknown environmental cues (similar to other nomadic bird species, Webb et al. 2014). 247 

 248 

Sampling locations included public land (i.e., national parks and state forests) and private 249 

properties such as Hidden Vale Nature Refuge, Dwyers Scrub Conservation Park, Gillies 250 

Ridge Nature Refuge, Bartopia Nature Refuge, and Bulimbah Nature Refuge (Fig. 2). The 251 

region has a temperate climate with mean maximum temperatures in summer ranging from 252 

25 C to 32 C, and winter from 17 C to 21 C. The mean annual rainfall in the region 253 

ranges from 688 mm to 1584 mm. In my inland study region in southeast Queensland, A. 254 

torulosa is more common than A. littoralis (Atlas of Living Australia 2021a; Atlas of Living 255 

Australia 2021b). Dominant vegetation included eucalypt woodland to open forests for A. 256 

littoralis and A. torulosa sampling locations, and wet eucalypt forests for A. torulosa 257 

sampling locations (Neldner et al. 2019). At these sampling locations, the dominant soil 258 

orders included tenosols, sodosols and dermosols and soil types included volcanics; red soils; 259 

sandstone; and igneous, Cainozoic and sedimentary rocks (Neldner et al. 2019). 260 

 261 



 262 

Figure 2 Sampling locations of two Allocasuarina species in southeast Queensland, Australia. Protected areas 263 

are displayed with black outlines including public land (state forests and national parks) and privately managed 264 

nature refuges. Fire frequency between 1987-2023 is shown in red shading (see Charles et al. 2025 under 265 

review) and ranged from 0 to 11 fires in the past 36 years for the study region, with white representing areas 266 

mapped as unburnt. To aid visualisation of fire frequency variation between my sampling transects, fire 267 

frequency was rescaled so areas burnt 7 or more times are represented by the darkest shade of red. 268 

 269 

Allocasuarina littoralis and A. torulosa are dioecious trees growing 5 to 15 m and 5 to 30 m 270 

tall, respectively (Australian Biological Resources Study. Advisory Committee 1989; Spencer 271 

1995). Allocasuarina littoralis has a more coastal distribution on sandy, heavy clay, or stony 272 

soils (Australian Biological Resources Study. Advisory Committee 1989; Foreman and Walsh 273 

1993) while Allocasuarina torulosa may be found in coastal regions but is also common in 274 

forests on fertile soils (Australian Biological Resources Study. Advisory Committee 1989; 275 

Stanley et al. 1983). Allocasuarina littoralis has an average longevity of 50-70 years but may 276 

live for >500 years, while A. torulosa has a longevity of 500 years (Falster et al. 2021; Kattge 277 

et al. 2020). Reproductive maturity is usually reached in five years for both species, but A. 278 

littoralis may take 10 years (Falster et al. 2021; Kattge et al. 2020). Both species gradually 279 

release seed from serotinous cones as they dry, allowing recruitment in the absence of fire 280 

(Crowley 1986; Falster et al. 2021; Kattge et al. 2020). Allocasuarina littoralis is commonly 281 

described as an obligate seeder (R-P+) which is fire killed and germinates from canopy-282 

stored seed (Falster et al. 2021). However, intermediate post-fire resprouting capacity from 283 

basal lignotubers has also been reported in A. littoralis but is likely linked to low severity 284 



fires which do not kill stems or result in 100% scorch (Falster et al. 2021; Kattge et al. 2020) 285 

(a condition required for categorisation as R+, Pausas et al. 2004). Allocasuarina torulosa is 286 

a strong basal and epicormic facultative resprouter, also displaying fire-cued seeding 287 

responses when canopy seedbanks are available (R+P+) (Kattge et al. 2020). 288 

 289 

Both tree species lack seed dormancy beyond the physical dormancy imposed by storage in 290 

serotinous cones (Crowley 1986; Turnbull and Martensz 1982). Germination occurs across a 291 

range of incubation temperatures between 17-37 C (Turnbull and Martensz 1982). There has 292 

been limited research on fire-cued germination in A. littoralis and A. torulosa (but see, Clarke 293 

et al. 2000; Crowley 1986). In other Casuarinaceae, seeds have been reported to survive heat 294 

shock of up to 120 C (Callister et al. 2018; Hanley and Lamont 2000). Allocasuarina leaf 295 

litter burns at high temperatures (e.g., 60  to 111 C at 1 cm soil depth, Tangney et al. 2020), 296 

likely exposing canopy seedbanks to temperatures above 100 C. 297 

 298 

Field age class structure surveys and cone collection 299 

 300 

I established 40 sampling points to cover a range of fire histories within the distribution of the 301 

Glossy black-cockatoo, A. littoralis, and A. torulosa. Age class structure surveys investigated 302 

the hypotheses that (H2) fire history and (H3) environmental attributes influenced 303 

proportions of plants in younger age classes and reproductive output. Identification of 304 

sampling point was assisted using occurrence records from Atlas of Living Australia. From 305 

these records, I randomly selected sampling points across a range of fire frequencies. In the 306 

field at these sampling points, I then located a stand of Allocasuarina but where no 307 

Allocasuarina were found, further scouting was performed to locate a stand of Allocasuarina 308 

with a similar fire frequency. More sampling points were able to be established at low fire 309 

frequencies (1-3 fires from 1987-2023; 32 transects), the majority (n = 26) of which were A. 310 

torulosa transects, than high fire frequencies (4-7 fires from 1987-2023; six transects), all of 311 

which were A. torulosa transects. Once the stand of Allocasuarina was identified at the 312 

sampling point, a 50 m × 4 m transect was established at an individual tree and age class 313 

structure was measured, with transects spaced at least 140 m apart (range within sampling 314 

locations 140 m – 14 km). Measurements from each individual Allocasuarina along the 315 

transect included: age class; diameter at breast height (DBH), recruitment type (e.g., basal 316 

resprout, trunk resprout, seedling or none); condition (e.g., dead or alive); and height (using a 317 



Suunto PM5/360 PC Clinometer (Vantaa, Finland) or Nikon Forestry Pro II Laser 318 

Rangefinder (Tokyo, Japan)). Age classes were defined as: adult = height >1 m, DBH >3 cm; 319 

sapling = height >1 m, DBH <3 cm; and seedling = height <1 m (see Schmidberger and Ladd 320 

2020). For female plants, the number of cones were counted to measure reproductive output, 321 

with counts over 100 recorded as the average estimates from two observers. 322 

 323 

Females bearing cones were randomly selected along and nearby to transects for cone 324 

collection, with at least 20 m spacing between individuals (range within sampling locations 325 

20 m – 130 m). Cones were collected from up to six individuals per transect, with fewer 326 

individuals sampled if no cones were available or cones were not within ca. 5 m of the 327 

ground. On each individual tree, I collected a minimum of two mature cones (i.e., brown to 328 

grey-brown in colour with closed valves) to ensure seed had not been released but were fully 329 

developed. More cones were collected where possible (up to 73 cones with an average of 12 330 

cones per individual) to increase sample sizes for the germination experiment. Cones were 331 

stored in paper bags in a warm, dry environment until seeds were shed and any unshed seeds 332 

were manually extracted from cones using tweezers. Seeds were stored for eight to 24 months 333 

in an air-conditioned laboratory inside an airtight container to minimise ambient temperature 334 

fluctuations prior to the germination experiment. 335 

 336 

Germination experiment 337 

 338 

Germination experimental overview 339 

 340 

I conducted a full factorial germination experiment with a replicated design, to test the 341 

hypothesis (H1) that post-fire reproductive mode variation and fire frequency influenced fire-342 

cued germination responses. The full factorial experiment was conducted with a replicated 343 

design such that three separate rounds of seed germination were conducted, with individuals 344 

exposed to the same treatment(s) in each replicate. Before conducting this experiment, I ran a 345 

series of optimisation trials to determine incubation temperatures, heat shock temperatures 346 

and durations, aerosol exposure duration and material. Incubation temperature tests were run 347 

to determine the optimal germination temperatures for each species and the baseline 348 

germination rate for Allocasuarina littoralis and Allocasuarina torulosa using thermal 349 

gradient bars (Fig. S1). Heat shock and smoke trials were conducted to determine (1) upper 350 

thresholds for heat tolerance and (2) the level at which seeds would show germination 351 



variability, thus, indicating heat and smoke levels that could drive selection. The following 352 

seed traits were measured to examine the influence of variation in post-fire reproductive 353 

mode, fire history, and environment on seed investment (H1, H3): seed weight and number of 354 

seeds. Seed lots (i.e., all seeds for an individual) were weighed, both as the whole seed lot 355 

and as a 10 seed fraction to estimate the total number of seeds in the seed lot and average 356 

seed weight per seed for the seed lot. 357 

 358 

For all germination experiments, 20 seeds from an individual tree (hereafter ‘individual seed 359 

lot’) were placed in plastic 90 mm petri dishes lined with Whatman no. 1 filter paper 360 

moistened with distilled water and sealed with parafilm to reduce water loss. Seeds exposed 361 

to aerosol smoke were plated on sterile petri dishes prior to germination to reduce exposure to 362 

accumulated smoke residues. Seeds exposed to a combination of heat shock and smoke 363 

treatments were heat shocked prior to aerosol smoke exposure. Seeds in all experiments 364 

(excluding incubation temperature optimisation) were germinated in illuminated refrigerated 365 

incubators (TRIL495-1-SD,Thermoline Scientific, Wetherhill Park, New South Wales, 366 

Australia) with a 12-hour photoperiod provided by Grolux fluorescent lighting (36W) and 367 

temperatures set to 17 C for Allocasuarina littoralis and 20 C for Allocasuarina torulosa 368 

(see Fig. S1 and Turnbull and Martensz 1982). Seeds were germinated for at least 21 days, 369 

with germination considered to have occurred upon emergence of the radicle from the testa. 370 

After emergence, the germinant was recorded and removed from the dish to allow space for 371 

other seeds to germinate. If no new seeds germinated between 21-28 days, then germination 372 

was considered to have ceased and the trial ended. If seeds continued to germinate up to 28 373 

days, the germination trial was continued until no new seeds germinated over a 7-day period. 374 

 375 

Seed viability measurements 376 

 377 

Seed viability was measured using two methods: (1) x-ray prior to germination experiments 378 

to estimate pre-treatment viability without reducing the number of seeds for the experiment, 379 

and (2) post-experiment tetrazolium tests to determine whether seeds which remained 380 

ungerminated at the end of the trial were viable (Peters 2000). X-rays were taken on a 381 

Faxitron MX-20 Imaging system (Lincolnshire, IL, USA), on ca. 100 seeds per individual 382 

seed lot with four replicates of 25 seeds at 28 kV for 6.55 seconds. X-ray images were 383 

examined to determine seed fill; a metric related to the amount of seed embryo and 384 



endosperm which is correlated with viability (Gagliardi and Marcos-Filho 2011; Tausch et al. 385 

2024). Unfilled seeds were considered unviable but seeds with partial filling were classed as 386 

viable as there was potential seed mass from which germination could occur. The x-ray 387 

viability data were summarised as the proportion of viable seeds in the individual seed lot for 388 

analysis. Tetrazolium tests used a 1% 2,3-5 triphenyl tetrazolium chloride (TTC) solution 389 

with seeds cut laterally through the distal end of cotyledons and incubated in solution for 18 390 

hours at 30 C in darkness (Peters 2000). After incubation in TTC solution, seeds were 391 

observed under a dissection microscope with seeds classed as viable if the radicle and 392 

cotyledons were completely stained pink (Peters 2000). Any lack or inconsistencies in TTC 393 

staining was considered to indicate unviable seeds (Peters 2000). 394 

 395 

Incubation temperature optimisation 396 

 397 

Water in a thermal gradient bar (CSK Model CSK-TGB, Serial 3310; CSK Group, Wacol, 398 

Queensland, Australia) was heated to temperatures ranging between 4 C to 41 C, with the 399 

ambient temperature in five chambers monitored on an hourly basis for two weeks using data 400 

loggers (Tinytag, TGP 4500; Hastings data loggers, Port Macquarie, New South Wales, 401 

Australia). Ambient temperatures ranged from ca. 6 C to 36 C across 10 insulated 402 

chambers, with chambers differing by ca. 3 C to 4 C along the gradient (Fig. S1). During 403 

incubation, seeds were exposed to a 12-hour photoperiod (Callister et al. 2018) of cool white 404 

fluorescent LED light (1200 lumens, 12W). For each species, three individual seed lots, 405 

representing three different individuals, were used with 20 seeds per petri dish, giving 600 406 

seeds across the thermal gradient bar for incubation temperature optimisation. Incubation 407 

temperature optimisation tests were ceased on day 28 as previous studies considered this 408 

sufficient time for viable seeds to germinate (Crowley and Jackes 1990; Turnbull and 409 

Martensz 1982). Ungerminated, viable seed was considered to be exposed to an unsuitable 410 

germination temperature, with germination likely having been slowed by exposure to low 411 

temperatures. Optimal incubation temperatures for germination were determined to be 17 °C 412 

for A. littoralis and 20 °C for A. torulosa (Fig. S1). 413 

 414 



Heat shock and smoke exposure optimisation 415 

 416 

Preliminary heat shock tests were conducted using a dehydrating oven (Thermoline 417 

Scientific, Wetherhill Park, New South Wales, Australia) to determine the lethal temperature 418 

threshold. Heat shocks tests were conducted at 80 °C, 95 °C, 110 °C, 125 °C, and 150 °C for 419 

durations of 0.5, 1, 2, 5 and 10 minutes. Three individual seed lots from both species with a 420 

large quantity of seeds were used for these tests, with cones from two A. torulosa individuals 421 

collected only for optimisation tests. These tests indicated that temperatures over 100 °C 422 

were, in most cases, sufficient to kill loose seeds (Fig. S2). Thus, 80 C and 95 C were 423 

selected for heat shock temperatures in the full factorial experiment as they were below the 424 

lethal temperature threshold but still produced variability in germination rates (Fig. S2). 425 

 426 

Allocasuarina species produce dense leaf litter, which has an allelopathic effect on other 427 

plants (Ahmed et al. 2019; Buehler 2010). As such, I expected smoke responses in my study 428 

species could be strongly tied to smoke from their own leaf litter, rather than smoke more 429 

generally. Therefore, aerosol smoke tests were conducted to compare germination responses 430 

to smoke from Allocasuarina torulosa leaf litter material and to pine sawdust, which 431 

promotes germination across a range of species (Keeley and Bond 1997). Leaf litter from A. 432 

torulosa was collected from a private property in Seventeen Mile, Queensland, Australia (one 433 

of the main sampling locations) and compared to commercially available pine sawdust. 434 

 435 

Aerosol smoking was implemented in a modified 54 L rectangular plastic container (65 cm × 436 

28 cm × 41 cm) used as a smoke chamber. The chamber included a 40 cm × 25 cm door on the 437 

long edge, attached with hinges and sealed with weatherproof tape to minimise smoke escape 438 

while enabling access to samples. A 50 cm PVC pipe with 1 cm holes along its length (spaced 439 

ca. 4 cm – 4.5 cm apart) spanned the full length of the container. The pipe passed through a 440 

4.5 cm diameter hole in the bottom of the short side of the container, enabling even smoke 441 

dispersal. A beekeepers’ smoker was held at the end of this pipe, with a 20 cm extension pipe 442 

extending outside the container to minimise heat transfer into the main chamber. A cluster of 443 

small holes were drilled in the opposite corner of the chamber lid from the smoke entry point 444 

to create air flow. During smoke exposure, regular smoke flow was maintained by pumping 445 

smoke from the beekeepers’ smoker through the PVC pipe and into the chamber to maintain 446 

an approximately even amount of smoke in the chamber. Seeds from three A. littoralis and 447 



three A. torulosa individuals were used for the smoke optimisation trials. Each individual 448 

seed lot of 20 seeds was placed in petri dishes on an approximately 10 cm high shelf inside 449 

the smoke chamber. All smoke was released from the chamber between petri dishes with new 450 

individual seed lots to maintain a similar amount of smoke across individuals. I tested smoke 451 

exposures of 5, 10, and 20 minutes for each individual. To minimise cross contamination 452 

between smoke material types, the beekeepers’ smoker was thoroughly cleaned with acetone 453 

and the smoke chamber wiped with ethanol between trials. Allocasuarina torulosa leaf litter 454 

produced a similar effect to pine sawdust and was most consistent at a 20-minute exposure 455 

time in both species (Fig. S3). 456 

 457 

Full factorial germination experiment 458 

 459 

The full factorial experiment included six treatments: (1) control; (2) 80 C heat shock for 5 460 

min; (3) 95 C heat shock for 5 min; (4) 20 min smoke exposure; (5) 80 C heat shock for 5 461 

min + 20 min smoke exposure; and (6) 95 C heat shock for 5 min + 20 min smoke exposure. 462 

Three replicates for each treatment combination were conducted, with the start time for each 463 

replicate staggered by 14 days to minimise bias related to starting conditions. Seed 464 

germination was recorded on the first day after plating then every second to third day until 465 

day 29 (i.e., day 1, 3, 6, 8, 10, 13, 15, 17, 20, 22, 24, 27 and 29) or until germination ceased. 466 

Cessation of germination was 35 days, 36 days and 46 days post-commencement of the 467 

germination experiment for each replicate, respectively. Therefore, for replicates one and two, 468 

I assigned values of zero germination for all seeds up to 46 days to standardise test periods 469 

across replicates, a step required for calculating germination metrics. 470 

 471 

To test the hypothesis (H1) that variation in post-fire reproductive mode affected fire-cued 472 

germination responses and seed size, species were considered separately. Individual seed lots 473 

for A. torulosa were also divided based on the fire frequency at the collection site (i.e., low 474 

fire frequency individual seed lots and high fire frequency individual seed lots). Due to 475 

limited seed available, I was unable to assign each individual to all six treatments (e.g., an 476 

individual with only 120 seeds could only be assigned to 3 treatments). Thus, I used 477 

arrangements package version 1.1.9 (Lai 2019) in R version 4.3.1 (R Core Team 2018) to 478 

randomly assign the six treatments to individuals, with six separate rounds of assignment. I 479 

subsequently reduced treatment assignments on a case-by-case basis such that only three 480 



treatments were assigned to an individual with 120 seeds. During this case-by-case treatment 481 

assignment reduction, I ensured 15 individual seed lots were included for all six treatments. 482 

Thus, each germination experiment replicate included six treatments with 300 seeds from 15 483 

individual seeds lots, totalling 1800 seeds for A. littoralis, 1800 seeds for A. torulosa low fire 484 

frequency, and 1800 seeds for A. torulosa high fire frequency. 485 

 486 

Analysis 487 

 488 

Fire frequency data from was obtained from Queensland Parks and Wildlife Service (Table 1) 489 

and subset temporally (i.e., 1987-2023) to match the temporal resolution of generalised 490 

additive modelled satellite fire frequency estimates used to supplement data for areas outside 491 

of public estates (see Charles et al. 2025 under review). Year of last fire was obtained from 492 

Queensland Parks and Wildlife fire history data and satellite fire history data, with areas of no 493 

fire data between 1987-2023 assigned 1986. Time since fire was then calculated by 494 

subtracting year of last fire from sampling year. Temperature and precipitation seasonality 495 

data (Fick and Hijmans 2017), Topographic Wetness Index (TWI) (Gallant and Austin 2012), 496 

and Foliage Projective Cover (FPC) (Department of Environment 2020; Department of 497 

Environment 2022; Department of Environment 2024a; Department of Environment 2024b; 498 

Department of Environment 2024c) data are summarised in Table 1. Spatial data requiring 499 

resolution adjustments were rescaled to 30 m resolution (see Table 1) using 500 

gdalUtilities version 1.2.5 nearest neighbour resampling. Foliage projective cover data 501 

was provided as 0-100% foliage cover, but data from 2014 were on a different scale. 502 

Therefore, 2014 FPC data were reclassified to align with other years. Foliage projective cover 503 

was then rescaled to 30 m, prior to calculation of the average FPC (Table 1). 504 

 505 

 506 



Table 1 Spatial fire, climate, and environment variables used to investigate reproductive trait variability in 507 

Allocasuarina littoralis and A. torulosa in southeast Queensland, Australia. 508 

Variable Raw 

resolution 

Resampled 

resolution 

Temporal 

resolution 

Data source 

Fire history – Queensland Parks 

and Wildlife Service 

1 m 30 m 1930-2023 (Queensland Parks and 

Wildlife Service 2023) 

Annual Fire Scars – Landsat, 

QLD DES algorithm 

30 m Unchanged 1987-2016 (Collett 2021) 

Sentinel-2 fire scars – QLD DES 

algorithm, annual 

10 m 30 m 2017-2023 (van den Berg 2021) 

Temperature seasonality 1 km 30 m 1970-2000 (Fick and Hijmans 2017) 

Precipitation seasonality 1 km 30 m 1970-2000 (Fick and Hijmans 2017) 

Topographic wetness index 30 m Unchanged 2000 (Gallant and Austin 2012) 

Foliage projective cover 

- Landsat 2014 

 

30 m 

 

Unchanged 

 

1998-2014 

 

(Department of 

Environment 2020) 

- Statewide Landcover and 

Trees Study Sentinel-2 2018 

30 m Unchanged 2018 (Department of 

Environment 2022) 

- Statewide Landcover and 

Trees Study Sentinel-2 

10 m 30 m 2019, 2020, 

2021 

(Department of 

Environment 2024c) 

 509 

Analyses of reproductive trait data were conducted in R version 4.3.1 (R Core Team 2023) 510 

using generalised linear mixed models in lme4 R package version 1.1-34 (Bates et al. 2015). 511 

I used the same model structure for each response variable but modified the model family 512 

(error structure) as appropriate for each type of response variable. Models were fit separately 513 

for each species to account for biological differences related to their post-fire reproductive 514 

modes and other biological factors. Prior to modelling, continuous numeric predictors were 515 

scaled by dividing values by the series-wide standard deviation. I fit models with and without 516 

a main effect for fire to investigate the influence of environmental variation on reproductive 517 

trait variation (H3). For each response variable a null model was fit with no variation, against 518 

which to compare the other models. Model selection was performed by ranking models based 519 



on Akaike’s Information Criterion corrected for small sample sizes (AICc) in AICcmodavg 520 

R package version 2.3-3 (Mazerolle 2020). The best model was chosen as the model with the 521 

lowest AICc in the candidate set which improved model fit over the null model by ∆AICc > 2 522 

(Arnold 2010; Leroux 2019). Where additional models were ranked within 2 AICc units of 523 

the top model and included one additional parameter, I considered the additional parameter to 524 

be supported by the data if (1) the additional parameter improved log likelihood over that of 525 

the top-ranked model; (2) confidence intervals did not overlap zero (Fig. S7, S9) (Arnold 526 

2010; Leroux 2019). For top-ranked models including factorial predictors with multiple 527 

levels, I calculated least-squares means comparisons to determine differences between levels 528 

within the factor (Fig. S8). For example, if the top-ranked model included germination 529 

treatment, I used least-squares means comparisons to determine if 95 °C heat shocked seed 530 

germination was different to control seed germination (Fig. S8). 531 

 532 

Germination experiment 533 

 534 

Cumulative proportion germination for each individual was calculated by dividing the 535 

cumulative sum of germination by the total number of seeds germinated at the end of the 536 

period. First and last germination day and time to 50% germination were calculated by 537 

adapting functions from germinationmetrics R package version 0.1.8 (Aaravind et al. 538 

2022). To analyse the effect of seed treatment and fire frequency on fire-cued germination 539 

(H1) I fit seven models each for proportion of seeds germinated and time to 50% 540 

germination: a null model; three univariate models with main effects for treatment, fire 541 

frequency, and seed weight; and three multivariate models investigating interactions between 542 

treatment, fire frequency and seed weight. To account for individual-level similarities in 543 

responses and potential effects of replicates, I included a random effect for replicate and 544 

individual in each model. To analyse the effect of fire frequency and environment on seed 545 

weight (H1, H3), I used the average weight of a singular seed (hereafter ‘seed weight’) as the 546 

response variable as a proxy measure of seed size as these measures are strongly correlated 547 

(Eriksson 1999; Gnan et al. 2014). I fit twelve models with a random effect for individual: a 548 

null model; six univariate main effect models for fire frequency and environmental attributes; 549 

and five multivariate models investigating interactions between fire frequency and 550 

environmental attributes. 551 

 552 



Age class structure surveys 553 

 554 

To analyse fire history effects on age class structure, the proportion of seedlings, saplings, 555 

and recruits (i.e., seedlings and saplings) within the total population was calculated by 556 

dividing the total number of individuals in an age class by the sum of the number of 557 

individuals from that age class and the number of adults. For example, proportion of 558 

seedlings within the total population was calculated by  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑑𝑢𝑙𝑡𝑠+𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔𝑠
. To analyse 559 

the effect of fire and environment on age class structure (H2a, H3) I fit twelve models: a null 560 

model; six univariate main effect models for the focal fire metric (i.e., fire frequency or time 561 

since fire) and environmental attributes; and five multivariate models investigating 562 

interactions between the focal fire metric and environmental attributes. To analyse the effect 563 

of fire and environment on reproductive output (i.e., cone number, H2b, H3), I fit eight 564 

models: a null model and seven univariate models for fire frequency, time since fire, and 565 

environmental attributes. I did not fit any multivariate models for reproductive output due to 566 

a limited number of individuals with cones along our transects. For age class structure and 567 

reproductive output analyses, due to the hierarchical structure of data collection (multiple 568 

individuals along transects and multiple transects within locations), I included transect nested 569 

within location as a random effect in each model. 570 

 571 

Results 572 

 573 

Germination experiment 574 

 575 

Field sample collection resulted in seeds from 115 individual trees across the study region in 576 

southeast Queensland, comprising 40 A. littoralis and 75 A. torulosa individuals. Seven 577 

individual trees with less than 60 seeds were excluded resulting in 108 individuals (37 A. 578 

littoralis and 71 A. torulosa) available for the germination experiment. Fire frequencies at 579 

seed collection locations ranged from one to three and six fires over 36 years for A. littoralis 580 

and A. torulosa, respectively. Time since fire at collection locations ranged from at least 36 581 

years post-fire to around two-years post-fire for A. littoralis and A. torulosa, respectively. 582 

 583 

Germination rates were not strongly influenced by heat shock or smoke in either species (Fig. 584 

S6), with the null model ranked higher than models including seed treatments (Table 2). 585 



Treatments did not reduce seed viability or vary to a strong degree between replicates as no 586 

noticeable differences in viability were observed (Fig. S4, S5). Thus, A. littoralis and A. 587 

torulosa are smoke and heat tolerant up to 95 °C with no requirement for fire-cues to 588 

germinate once seeds have been released from cones. Seed weight influenced germination 589 

rate for A. littoralis (∆AICc relative to null model = 3.07; Table 2, Fig. 3), and A. torulosa 590 

with an interaction between seed weight and fire frequency (∆AICc relative to null model = 591 

10.97; Table 2, Fig. 3). In both species, heavier seeds were associated with greater 592 

germination rates (Table 2, Fig. 3). For A. torulosa individuals exposed to high fire 593 

frequencies, germination rates decreased with increasing seed weight and were highly 594 

variable (20-90% proportion of seeds germinated, Fig 3b). 595 

 596 

 597 



Table 2 Models used to examine the influence of fire frequency and seed treatment on proportion germination in 598 

Allocasuarina littoralis, and facultative resprouter, A. torulosa. For each species, models are ranked from 599 

highest to lowest AICc. 600 

Species Model structure Number of 

parameters 

AICc ∆AICc Log 

Likelihood 

Allocasuarina littoralis Seed weight 3 129.07 0.00 -60.46 

 Null model 3 132.14 3.07 -63.03 

 Seed weight × fire 

frequency 

4 132.81 3.74 -60.25 

 Fire frequency 3 133.42 4.34 -62.63 

 Treatment 3 136.27 7.20 -59.86 

 Treatment × seed weight 4 140.94 11.86 -55.65 

 Treatment × fire frequency 4 144.84 15.76 -57.59 

      

Allocasuarina torulosa Seed weight × fire 

frequency 

4 404.26 0.00 -196.05 

 Seed weight 3 408.31 4.05 -200.12 

 Null model 3 415.23 10.97 -204.59 

 Fire frequency 3 416.75 12.49 -204.34 

 Treatment 3 421.81 17.55 -202.77 

 Treatment × seed weight 4 422.75 18.49 -196.97 

 Treatment × fire frequency 4 430.50 26.24 -200.85 

 601 

 602 

Figure 3 The estimated effect (and 95% confidence intervals) of seed weight on proportion germination in (a) 603 

Allocasuarina littoralis and (b) A. torulosa. The top-ranked model for A. torulosa included an interaction 604 

between seed weight and fire frequency. 605 

 606 



Time to reach 50% germination was influenced by seed treatment in both species (Fig. 4a-b). 607 

For A. littoralis, there was not strong support for an effect of seed treatment on time to 50% 608 

germination as the null model was equivalent to the treatment only model (Table 1). In A. 609 

torulosa, there was support from the data for three models: treatment only (∆AICc relative to 610 

null model = 108.77), treatment and seed weight interactive model (∆AICc relative to the top 611 

ranked model = 0.11), and treatment and fire frequency interactive model (∆AICc relative to 612 

the top ranked model = 0.67) (Table 3). Time to 50% germination increased for all treatments 613 

compared to controls, except for the 80 °C treatment (Fig. 4a). Thus, heat and smoke slowed 614 

down germination in A. torulosa. In the seed weight interaction model, heavier seeds were 615 

typically faster to germinate, an effect which was most pronounced for individuals exposed to 616 

the smoke treatment (Fig. 4b). For 95 °C; smoke; and 80 °C + smoke, seeds from historically 617 

more frequently burned sampling transects had slower germination (Fig. 4c). However, for 618 

individuals exposed to the 95 °C + smoke treatment, this pattern was reversed, with 619 

individuals from more frequently burned sampling transects having faster germination than 620 

those exposed to less frequent fire (Fig. 4c). 621 

 622 

 623 



Table 3 Models used to examine the influence of fire frequency, seed weight, and seed treatment on time to 624 

reach 50% germination, as a measure of germination speed, in Allocasuarina littoralis and A. torulosa. 625 

Species Model structure Number of 

parameters 

AICc ∆AICc Log 

Likelihood 

Allocasuarina littoralis Treatment 3 1284.18 0.00 -633.81 

 Null model 3 1284.99 0.81 -639.45 

 Seed weight 3 1286.36 2.18 -639.10 

 Fire frequency 3 1286.82 2.64 -639.34 

 Seed weight × fire frequency 4 1289.69 5.51 -639.69 

 Treatment × seed weight 4 1292.97 8.79 -631.66 

 Treatment × fire frequency 4 1295.10 10.92 -632.72 

      

Allocasuarina torulosa Treatment 3 2579.61 0.00 -1281.67 

 Treatment × seed weight 4 2579.72 0.11 -1275.46 

 Treatment × fire frequency 4 2580.28 0.67 -1275.74 

 Seed weight 3 2680.38 100.77 -1336.15 

 Seed weight × fire frequency 4 2682.91 103.30 -1335.38 

 Null model 3 2688.38 108.77 -1341.17 

 Fire frequency 3 2690.24 110.63 -1341.08 

 626 



 627 

Figure 4 The estimated effect and 95% confidence interval of seed treatment on time to 50% germination (days) for (a) A. 628 

torulosa. In addition to main effects of treatment, there was evidence for an interaction between treatment and (b) seed 629 

weight, and (c) fire frequency on time to 50% germination. 630 

 631 

Seed weight was influenced by an interaction between fire frequency and temperature 632 

seasonality in A. littoralis and between fire frequency and latitude in A. torulosa (Table 4, 633 

Fig. 5). There was no evidence of any other environmental variables influencing seed weight 634 

in either species (∆AICc > 5, Table 4). For A. littoralis, seed weight increased with 635 

temperature seasonality for seeds collected at frequently burned transects (4 fires over 36 636 

years, Fig. 5a). At low- to intermediate fire frequencies (0-1 fire over 36 years) there was no 637 

relationship between seed weight and temperature seasonality (Fig. 5a). For A. torulosa, seed 638 



weight increased with decreasing latitude for frequently burned transects (6 fires over 36 639 

years) and decreased with decreasing latitude for infrequently burned transects (0 fires over 640 

36 years) (Fig. 5b). There was no relationship between latitude and seed weight for 641 

intermediate fire frequencies (3 fires over 36 years, Fig. 5b). In other words, at southern 642 

sampling locations seeds were heavier when collected at transects which had experienced 643 

frequent fire, compared to relatively unburnt transects. At northern sampling locations, there 644 

were no differences in seed weight related to fire history (Fig. 5b). 645 

 646 

 647 



Table 4 Models used examine the influence of fire frequency and environmental variation on seed weight in 648 

Allocasuarina littoralis and A. torulosa. 649 

Species Model structure Number of 

parameters 

AICc ∆AICc Log 

Likelihood 

Allocasuarina littoralis Fire frequency × 

temperatures seasonality 

4 -8418.33 0.00 4215.33 

 Null model 3 -8376.10 42.23 4191.10 

 Temperature seasonality 3 -8347.75 70.58 4177.95 

 Precipitation seasonality 3 -8330.16 88.17 4169.16 

 Latitude 3 -8329.41 88.92 4168.78 

 Fire frequency 3 -8317.17 101.16 4162.66 

 Fire frequency × latitude 4 -8263.94 154.40 4138.13 

 Fire frequency × 

precipitation seasonality 

4 -8235.42 182.91 4123.87 

 Fire frequency × 

topographic wetness 

4 -8224.59 193.75 4118.45 

 Topographic wetness 3 -8215.94 202.40 4112.04 

 Foliage projective cover 3 -7533.58 884.75 3770.88 

 Fire frequency × foliage 

projective cover 

4 -7521.56 896.77 3766.96 

      

Allocasuarina torulosa Fire frequency × latitude 4 -16303.73 0.00 8157.95 

 Fire frequency × 

topographic wetness 

4 -16297.98 5.75 8155.07 

 Topographic wetness 3 -16170.19 133.54 8089.13 

 Null model 3 -16126.40 177.33 8066.22 

 Precipitation seasonality 3 -16112.83 190.90 8060.45 

 Temperature seasonality 3 -16112.83 190.90 8060.45 

 Fire frequency 3 -16044.97 258.76 8026.52 

 Fire frequency × 

precipitation seasonality 

4 -16034.15 269.59 8023.15 

 Fire frequency × 

temperature seasonality 

4 -16034.15 269.59 8023.15 

 Latitude 3 -16004.08 299.34 8006.08 

 Fire frequency × foliage 

projective cover 

4 -15192.60 1111.1

3 

7602.39 

 Foliage projective cover 3 -15158.09 1145.6

5 

7583.08 

 650 



 651 

Figure 5 The estimated effect and 95% confidence intervals of fire frequency on seed weight in (a) 652 

Allocasuarina littoralis and (b) A. torulosa. Seed weight was influenced by the interactive effects of fire 653 

frequency and (a) temperature seasonality in A. littoralis, and (b) latitude in A. torulosa. 654 

 655 

Reproductive output and age class structure 656 

 657 

Fire frequency ranged from zero to four and seven fires for A. littoralis and A. torulosa 658 

transects, respectively. Reproductive output (number of cones per tree) was not influenced by 659 

fire frequency or time since fire (Table 5). There was a positive effect of foliage projective 660 

cover on number of cones in A. littoralis (Intercept = -1.793 [se = 1.081], FPC = 0.066 [se = 661 

1.175]) and A. torulosa (Intercept = -3.409 [se = 1.1336], FPC = 2.105 [se = 1.303]) (∆AICc 662 

relative to the null model = 877.42 for A. littoralis, and = 281.39 for A. torulosa; Table 5). 663 

 664 



Table 5 Models used to examine the influence of fire frequency, time since fire, and environmental variation on 665 

reproductive output (i.e., number of cones) in Allocasuarina littoralis and A. torulosa. 666 

Species Model structure Number of 

parameters 

AICc ∆AICc Log 

Likelihood 

Allocasuarina littoralis Foliage projective cover 2 1167.32 0.00 -579.07 

 Topographic wetness 2 2017.11 849.79 -1004.05 

 Fire frequency 2 2027.42 860.10 -1009.21 

 Null model 2 2044.73 877.42 -1019.07 

 Latitude 2 2045.50 878.18 -1018.25 

 Temperature seasonality 2 2046.23 878.91 -1018.61 

 Precipitation seasonality 2 2046.27 878.95 -1018.63 

 Time since fire 2 2046.27 879.25 -1018.78 

      

Allocasuarina torulosa Foliage projective cover 2 1221.68 0.00 -606.15 

 Fire frequency 2 1380.78 159.10 -685.72 

 Precipitation seasonality 2 1496.76 275.08 -743.71 

 Null model 2 1503.06 281.39 -748.15 

 Time since fire 2 1504.76 283.08 -747.71 

 Topographic wetness 2 1504.89 283.21 -747.78 

 Latitude 2 1504.25 283.57 -747.96 

 Temperature seasonality 2 1505.52 283.84 -748.09 

 667 

Population age structure in A. littoralis was not influenced by fire frequency, time since fire, 668 

or environmental variability, with the null model being top ranked for all analyses (Table S1). 669 

In A. torulosa, foliage projective cover influenced the proportion of seedings within the total 670 

population (Intercept = -3.409 [se = 1.336]; FPC = 2.105 [se = 1.303], Table 6). Greater 671 

temperature seasonality reduced the proportion of saplings within the total population 672 

(Intercept = -1.040 [se = 0.482], temperature seasonality = -1.136 [se = 0.481]) and recruits 673 

within the total population (Intercept = -0.919 [se = -1.833]), temperature seasonality = -674 

1.642 [se = 0.535], Table 6). The interaction between temperature seasonality and time since 675 

fire on the proportion of A. torulosa recruits within the total population was ranked within 676 

∆AICc < 2, but confidence intervals of the interaction term overlapped zero (Fig. S9). Thus, 677 

fire history did not strongly influence A. littoralis or A. torulosa reproductive output or 678 

population age structure, with environmental variability more important in constraining 679 

recruitment processes (Table 5, 6, S1). 680 

 681 

 682 



Table 6 Models used to examine the influence of fire frequency, time since fire, and environmental variation on 683 

population age structure in Allocasuarina torulosa. 684 

Fire 

metric 

Age 

class 

Model structure Number of 

parameters 

AICc ∆AICc Log 

likelihood 

Fire 

frequency 

Seedlings Foliage projective cover 2 24.62 0.00 -7.54 

  Null model 2 26.77 2.15 -9.96 

  Precipitation seasonality 2 28.56 3.94 -9.54 

  Fire frequency 2 28.72 4.10 -9.62 

  Fire frequency × foliage projective 

cover 

3 28.85 4.23 -6.67 

  Temperature seasonality 2 29.14 4.52 -9.83 

  Latitude 2 29.25 4.63 -9.88 

  Topographic wetness 2 29.37 4.75 -9.94 

  Fire frequency × precipitation 

seasonality 

3 32.55 7.93 -8.59 

  Fire frequency × topographic wetness 3 33.03 8.41 -8.84 

  Fire frequency × temperature 3 34.17 9.55 -9.40 

  Fire frequency × latitude 3 34.39 9.78 -9.52 

 Saplings Temperature seasonality 2 39.69 0.00 -15.01 

  Latitude 2 43.14 3.45 -16.83 

  Fire frequency × temperature 

seasonality 

3 45.33 5.64 -14.99 

  Precipitation seasonality 2 45.69 6.00 -18.11 

  Null model 2 46.23 6.55 -19.69 

  Foliage projective cover 2 46.55 6.86 -18.50 

  Topographic wetness 2 48.85 9.16 -19.68 

  Fire frequency 2 48.85 9.16 -19.68 

  Fire frequency × latitude 3 48.99 9.30 -16.82 

  Fire frequency × precipitation 

seasonality 

3 49.27 9.58 -16.95 

  Fire frequency × foliage projective 

cover 

3 51.85 12.16 -18.18 

  Fire frequency × topographic wetness 3 52.35 12.67 -18.50 

 Recruits Temperature seasonality 2 37.02 0.00 -13.77 

  Latitude 2 42.24 5.22 -16.38 



  Fire frequency × temperature 

seasonality 

3 42.77 5.74 -13.70 

  Foliage projective cover 2 47.29 10.27 -18.88 

  Null model 2 47.51 10.48 -20.32 

  Precipitation seasonality 2 47.83 10.80 -19.17 

  Fire frequency × latitude 3 47.94 10.91 -16.29 

  Topographic wetness 2 50.13 13.11 -20.32 

  Fire frequency 2 50.13 13.11 -20.32 

  Fire frequency × precipitation 3 51.56 14.54 -18.10 

  Fire frequency × foliage projective 

cover 

3 52.61 15.59 -18.56 

  Fire frequency × topographic wetness 3 53.56 16.54 -19.10 

       

Time 

since fire 

Seedlings Foliage projective cover 2 24.62 0.00 -7.54 

  Null model 2 26.77 2.15 -9.96 

  Precipitation seasonality 2 28.56 3.94 -9.54 

  Temperature seasonality 2 29.14 4.52 -9.83 

  Latitude 2 29.25 4.63 -9.88 

  Topographic wetness 2 29.37 4.75 -9.94 

  Time since fire 2 29.37 4.76 -9.95 

  Time since fire × foliage projective 

cover 

3 30.26 5.64 -7.38 

  Time since fire × topographic wetness 3 32.01 7.40 -8.33 

  Time since fire × precipitation 

seasonality 

3 34.29 9.68 -9.47 

  Time since fire × temperature 

seasonality 

3 34.92 10.31 -9.78 

  Time since fire × latitude 3 35.12 10.51 -9.88 

 Saplings Temperature seasonality 2 39.39 0.00 -15.10 

  Time since fire × precipitation 

seasonality 

3 42.30 2.61 -13.47 

  Time since fire × temperature 

seasonality 

3 42.52 2.83 -13.58 

  Latitude 2 43.14 3.45 -16.83 

  Time since fire 2 45.35 5.66 -17.93 

  Time since fire × topographic wetness 3 45.62 5.93 -15.13 



  Time since fire × latitude 3 45.62 5.93 -15.13 

  Precipitation seasonality 2 45.69 6.00 -18.11 

  Null model 2 46.23 6.55 -19.69 

  Foliage projective cover 2 46.55 6.86 -18.50 

  Time since fire × foliage projective 

cover 

3 48.23 8.54 -16.37 

  Topographic wetness 2 48.85 9.16 -19.68 

 Recruits Temperature seasonality 2 37.02 0.00 -13.77 

  Time since fire × temperature 

seasonality 

3 37.88 0.85 -11.26 

  Latitude 2 42.24 5.22 -16.38 

  Time since fire × latitude 3 43l35 6.33 -14.00 

  Time since fire × precipitation 

seasonality 

3 44.25 7.22 -14.44 

  Time since fire × topographic wetness 3 45.65 8.63 -15.15 

  Time since fire 2 45.69 8.67 -18.10 

  Foliage projective cover 2 47.29 10.27 -18.88 

  Null model 2 47.51 10.48 -20.32 

  Precipitation seasonality 2 47.83 10.80 -19.17 

  Time since fire × foliage projective 

cover 

3 48.63 11.61 -16.57 

  Topographic wetness 2 50.13 13.11 -20.32 

 685 

Discussion 686 

 687 

Determining optimal fire regimes for ecosystem restoration is hindered by a lack of 688 

knowledge of plant responses to fire regimes at critical life stages of germination and through 689 

transitions to adulthood. Furthermore, a lack of integration of fire history in germination 690 

studies, and how these influence age class structures limits our understanding of the influence 691 

of fire history on population level changes. My results showed that fire history, specifically 692 

frequency, influenced variation in germination; but foliage projective cover and temperature 693 

seasonality had more influence than fire history on reproductive output and age class 694 

structure. These results point to environments with greater climate stability and 695 

photosynthetic potential leading to greater reproductive output. Post-fire reproductive mode 696 

influenced traits relevant to germination success as individual trees of the facultative 697 



resprouter, A. torulosa, exposed to higher fire frequencies had lower proportion germination 698 

with increasing seed weight. This decreased germination success with increasing fire 699 

frequency may have reflected stronger resprouting responses, with higher investment in 700 

resprouting bud banks than seed production (Bendall et al. 2022; Pausas and Keeley 2014; 701 

Verdú 2000). These results can inform restoration and conservation actions of these 702 

Allocasuarina species, important food trees of the vulnerable dietary specialist Glossy black-703 

cockatoos. 704 

 705 

In this study, the obligate seeder, A. littoralis was less sensitive to extreme heat shocks and 706 

variable smoke exposure than the facultative resprouter, A. torulosa. Despite occurring in 707 

fire-prone environments, germination of A. littoralis and A. torulosa was not enhanced by 708 

application of fire-related germination cues as seeds exposed to heat shocks up to 95 °C 709 

showed comparative germination to controls. However, obligate seeders are more likely to 710 

express traits increasing post-fire germination due to their greater investment in seeds than 711 

congeneric resprouters (Pausas and Keeley 2014; Tangney et al. 2020; Zammit and Westoby 712 

1987). Strongly seasonal environments also generally favour heavier seeds, which provide 713 

greater reserves for seeds to withstand seasonal variation in water availability (Leishman et 714 

al. 2000; Muller-Landau 2010). This was reflected in my experiment as in variable climatic 715 

conditions, with high fire frequency (i.e., 4 fires over 36 years), seed weight was greater in 716 

the obligate seeder than the facultative resprouter. In the facultative resprouter, A. torulosa, 717 

seed investment was more likely driven by exposure to recurrent fire as seed weight 718 

decreased in the absence of fire even under more seasonal climates. However, A. torulosa had 719 

high germination variability when seeds were larger, possibly because seed reproductive 720 

effort was traded-off with resource allocation to resprouting (Bellingham and Sparrow 2000). 721 

Where species show plasticity in regeneration modes, high fire frequency could result in 722 

more resources being allocated to resprouting capabilities than production of viable seeds 723 

(Bellingham and Sparrow 2000; Verdú 2000). 724 

 725 

Fast germination provides individuals with a competitive advantage (Hodges et al. 2021); 726 

therefore, germination speed can be promoted by fire-related germination cues, especially in 727 

obligate seeders which are adapted for post-fire germination (Hodges et al. 2021; Pausas and 728 

Lamont 2022; Ramos et al. 2019; Tangney et al. 2020). Results from this study ran contrary 729 

to this general prediction (H1): heat and smoke did not strongly affect germination in the 730 



obligate seeder A. littoralis but slowed germination in the facultative resprouter A. torulosa. 731 

The stronger reduction in germination speed as temperature increased for A. torulosa was 732 

likely linked to temperatures being closer to the lethal temperature threshold of A. torulosa 733 

than A. littoralis (i.e., A. torulosa = ca. 100 C; A. littoralis = ca. 110 C), so reductions may 734 

be related to lower seed viability (Emery et al. 2011; Hanley et al. 2003). In the natural 735 

environment, these higher temperatures could be linked to higher fire intensities (Rossi et al. 736 

2018), indicating that A. littoralis to some extent may be faster to establish than A. torulosa 737 

after higher intensity fire. However, in A. torulosa germination speed was also influenced by 738 

seed size and fire history. Heavier seeds have higher energy reserves which support faster 739 

germination rates (Kołodziejek 2017) and provide greater heat insulation (Escudero et al. 740 

2000; Gómez-González et al. 2011; Lamont et al. 2019), reducing potential decreases in 741 

viability and germination speed due to fire-cues. 742 

 743 

It seems likely that fire frequency effects on germination speed in this study were influenced 744 

by the reproductive output and resprouting capacity trade-off (Bellingham and Sparrow 745 

2000). Individuals of the facultative resprouter A. torulosa from environments that 746 

experienced frequent fire had greater reductions in germination speed than those from lower 747 

fire frequencies. Individuals exposed to intermediate fire frequencies where this trade-off 748 

may be reduced had lower variability in germination speeds. Therefore, fire could potentially 749 

inhibit germination for species if they have not been previously exposed to a flammable 750 

environment. My results support this prediction as post-fire reproductive mode and the post-751 

fire environment in which the species occurs influenced germination rates. 752 

 753 

Through later life stages in A. torulosa, woody foliage cover and climate variability were 754 

stronger drivers of reproductive output and population age structure than fire history, 755 

respectively. Higher woody foliage cover resulted in an increased number of cones for A. 756 

torulosa likely due to higher photosynthetic potential in these environments associated with 757 

greater resource availability for reproduction (Wheelwright and Logan 2004). Lower annual 758 

climate variability may have been a stronger driver of A. torulosa age class structure as 759 

stressful environments impose limitations on growth, with more variable climates likely to 760 

increase the trade-off between survival and reproduction (Hamann et al. 2021; Zhang et al. 761 

2020). Conversely, I found no effect of climate or environmental attributes on A. littoralis 762 

reproduction or age class structure, but establishment of A. littoralis was likely limited by 763 



these attributes as sampling occurred outside of the preferred coastal habitat (Australian 764 

Biological Resources Study. Advisory Committee 1989; Foreman and Walsh 1993). For both 765 

species, I found no effect of time since fire on the number of cones, as while recent fire 766 

activity could be associated with lower cone number, most sampling in this study occurred in 767 

areas two or more years post-fire which is sufficient time for cone production (Plumanns-768 

Pouton et al. 2024). Thus, my results indicate that reproductive effort and age class structure 769 

appear to be independent of fire history, even with up to seven fires over 36 years. However, 770 

more extreme fire frequencies are likely to filter populations as such frequent fire could 771 

compromise resprouting or reproduction and seedling establishment abilities (Christensen et 772 

al. 1981; Clarke et al. 2015; Gill and Catling 2002; McColl-Gausden et al. 2022). Therefore, 773 

further experimental research in this system remains vital to understanding fire history effects 774 

on A. littoralis and A. torulosa reproductive output and age class structure. 775 

 776 

My results have important implications for Glossy black-cockatoo conservation and food tree 777 

restoration actions. Restoration programs producing seed collections should consider seed 778 

weight, because heavier seeds were more likely to have a competitive advantage (i.e., 779 

reduced time to reach 50% germination). However, restoration programs should also consider 780 

fire history in locations where the seed are collected. For A. littoralis, I recommend collecting 781 

seeds from individuals exposed to higher fire frequencies, such as four fires over past 36 782 

years, and high annual temperature variability in my study region. Conversely, it may not be 783 

optimal to collect A. torulosa seeds from individuals exposed to high fire frequencies, such as 784 

six fires over past the 36 years, as while seeds were likely to be heavier, overall germination 785 

was much more variable. For A. torulosa, I would recommend collecting seeds from 786 

individuals exposed to intermediate fire frequencies such as three fires over the past 36 years. 787 

I also recommend restoration efforts focus on areas with higher annual temperature 788 

variability due to the higher likelihood of aging populations with low population turnover 789 

(i.e., low proportions of seedlings and saplings to adults). In my inland study region within 790 

southeast Queensland, restoration effort is best invested in A. torulosa food trees as this 791 

species is found more commonly throughout the region and, as a facultative resprouter, is 792 

likely to have higher resilience under projected fire regime changes. Nevertheless, coastal 793 

regions where A. littoralis is abundant may benefit from restoring patches of both A. littoralis 794 

and A. torulosa as a buffer against high fire frequencies and immaturity risk in A. littoralis. 795 

 796 



Conclusion 797 

 798 

Plant responses to fire vary throughout their life cycle, especially at critical life stages such as 799 

germination and transitions from seedlings through to adults. Thus, investigating how fire 800 

drives selection on reproductive traits and controls age class structure is vital for conservation 801 

and restoration actions to mitigate the effects of future fire regime changes. In this study I 802 

investigated the influence of fire history and environmental attributes on fire-cued 803 

germination responses, reproductive output, and age class structure in congeneric obligate 804 

seeding and facultative resprouting Allocasuarina spp.. Exposure to fire-cues were not 805 

essential for germination of either species but for the facultative resprouter fire-cues, to some 806 

extent, inhibited germination. This inhibition was especially extreme in individuals not pre-807 

adapted to fire or exposed to high fire frequencies. Thus, selection for reproductive traits 808 

conferring higher resilience to fire-cues was more likely to be exerted on the obligate seeder 809 

A. littoralis. However, reproductive trait selection in the facultative resprouter A. torulosa 810 

was dependent on fire history likely due to a reproduction – resprouting trade-off. 811 

Allocasuarina torulosa seeds from environments experiencing higher fire frequencies were 812 

less resilient to fire-cues compared to seeds from more moderate fire frequencies. 813 

Nevertheless, fire history effects were not a strong driver during later life stages with climate 814 

and environmental attributes being stronger drivers of reproductive output and age class 815 

structure. However, fire frequency is likely to impact age class structure due to age-related 816 

effects, but areas at higher fire frequencies with Allocasuarina spp. in my study region were 817 

limited. Thus, further research in this system is recommended to better understand the 818 

impacts of fire history on reproduction and age class structure, with a particular focus on 819 

sampling higher fire frequencies. 820 

 821 

Data and code availability 822 

 823 

Data and code are currently stored as a public repository on GitHub (Charles and Smith 824 

2025): https://github.com/felicityeloise/Allocasuarina_germfire. 825 
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APPENDIX 1696 

 1697 

Incubation temperature optimisation 1698 

 1699 

Incubation temperature optimisation tests show that low temperatures of 6 C and 10 C 1700 

slowed germination rates or stopped germination over the 28-day sampling period, and these 1701 

temperatures were not considered further (Fig. S1). Allocasuarina littoralis germination was 1702 

most consistent in chamber temperatures from 14 C to 32 C (70-90%, Fig. S1). For 1703 

Allocasuarina littoralis, 17 C was determined optimal as this chamber had the highest 1704 

overall germination for two of the three individuals tested (85-95%, Fig. S1). Germination in 1705 

Allocasuarina torulosa was similar at 17 C and 20 C (85-90%, Fig. S1). Allocasuarina 1706 

torulosa germination was most consistent across the range of temperatures from 14 C to 1707 

36 C. I selected 20 C for the experimental tests as it fell within the range of temperatures 1708 

suggested by Turnbull and Martensz (1982). 1709 

 1710 

 1711 

Figure S6 Cumulative proportion of seeds germinated along a thermal gradient bar ranging from 6 C to 36 C 1712 

for (a) Allocasuarina littoralis and (b) A. torulosa. No germination occurred in either species in chambers at 1713 

6 C. 1714 

 1715 

Heat shock and smoke exposure tests 1716 

 1717 

Heat shock optimisation tests showed consistently high germination in both species at 80 C, 1718 

but variable germination responses between the species as temperature and duration increased 1719 

(Fig. S2). In Allocasuarina littoralis, the lethal temperature threshold was between 110 C to 1720 



120 C as no germination occurred in seeds exposed to 125 C (data not plotted). At 110 C, 1721 

A. littoralis germination varied widely and began to decline: some individuals had high 1722 

germination at exposures of 10 minutes, while others had poor germination at this 1723 

temperature, even with exposure times as low as 1 minute (Fig. S2a). In A. littoralis, 1724 

exposures of 5 minutes at 80 C and 95 C produced relatively consistently high germination 1725 

rates, with germination being the same or greater than the control, respectively (Fig. S2a). In 1726 

A. torulosa, the lethal temperature threshold was between 95 C to 105 C, as only seeds 1727 

exposed to short durations at 110 C germinated (Fig. S2b). Exposure times of 5 minutes at 1728 

85 C and 95 C produced consistently high germination, which was similar or greater than 1729 

that of the controls. Therefore, for both species a 5-minute exposure time at 85 C and 95 C 1730 

was selected for heat shock in the main experiment. 1731 

 1732 



 1733 

Figure S7 Cumulative proportion of seeds germinated in heat shock optimisation tests at 80 C, 95 C, and 110 1734 

C compared to a control (black) in (a) Allocasuarina littoralis and (b) A. torulosa. 1735 

 1736 

Smoke exposure optimisation tests showed similar germination rates between Allocasuarina 1737 

leaf litter and pine sawdust (Fig. S3). However, short exposures to Allocasuarina leaf litter 1738 

resulted in more variable germination rates than other treatments (Fig. S3), for unknown 1739 

reasons. Seeds that remained ungerminated after smoke treatments were all deemed unviable 1740 



by TTC testing (see seed viability and trait measurements section). A 20-minute exposure to 1741 

aerosol smoke was selected as optimal as it produced high germination rates for both species 1742 

and smoke types which was comparable to the controls (Fig. S3). At this 20-minute smoke 1743 

exposure time, Allocasuarina leaf litter smoke produced higher germination rates than pine 1744 

sawdust (Fig. S3). Thus, Allocasuarina leaf litter derived smoke was selected for the main 1745 

experiment. 1746 

 1747 

 1748 

Figure S8 Cumulative proportion of seeds germinated after exposure to aerosol Allocasuarina leaf litter or pine 1749 

sawdust derived smoke in (a) Allocasuarina littoralis and (b) A. torulosa. 1750 

 1751 

Full factorial experiment seed viability 1752 

 1753 

Viability rates assessed by the x-ray and tetrazolium methods were correlated for both A. 1754 

littoralis and A. torulosa across experimental replicates (71% and 74%, respectively, Fig. S4), 1755 



indicating no effect of treatment on seed viability. Despite the expectation that higher heat 1756 

treatments (e.g., 95 C) would result in variable post-germination viability, tetrazolium tests 1757 

(TTC) showed that seed viability across all treatments was high for A. littoralis and A. 1758 

torulosa (Fig. S5). Furthermore, there was also high correlation between the viability test 1759 

methods post-treatment and germination (85% and 79% respectively, Fig. S5). 1760 

 1761 

1762 

Figure S9 Average pre-germination x-ray and post-germination TTC viability rate correlations for (a) 1763 

Allocasuarina littoralis, and (b) A. torulosa individuals across experimental replicates. 1764 

 1765 

 1766 

Figure S10 Average pre-germination x-ray and post-germination TTC viability rate correlation for (a) 1767 

Allocasuarina littoralis, and (b) A. torulosa individuals across seed treatments. 1768 

 1769 



Full factorial germination experiment 1770 

 1771 

 1772 

Figure S6 The estimated effect and 95% confidence intervals of seed treatments on proportion germination of 1773 

(a) Allocasuarina littoralis and (b) A. torulosa. 1774 



 1775 

 1776 

Figure S7Effect sizes of coefficients and 95% confidence intervals for models examining time to 50% 1777 
germination in Allocasuarina torulosa. Effect sizes were examined to determine the strength of effects for 1778 
models including (a) treatment, (b) treatment × seed weight, and (c) treatment ×fire frequency. 1779 

 1780 



 1781 

Figure S8 Least squares mean differences and 95% confidence intervals for models examining the effect of seed 1782 

treatments compared to controls on time to 50% germination in Allocasuarina torulosa. Models included an 1783 

interaction between treatment and (a-c) seed weight, or (d-f) fire frequency. To aid comparisons between 1784 

different seed weights or fire frequencies, differences were examined for (a, d) minimum seed weight = 2.36 mg 1785 

or fire frequency = 0; (b, e) average seed weight = 4.51 mg or fire frequency = 3; and (d, f) maximum seed 1786 

weight =7.04 or fire frequency = 6. 1787 

 1788 

 1789 



Population age structure 1790 

 1791 

Table S7 Models used to examine the influence of fire frequency, time since fire, and environmental variation 1792 

on age class structure in Allocasuarina littoralis. 1793 

Fire metric Age 

class 

Model structure Number of 

parameters 

AICc ∆AICc Log 

likelihood 

Fire 

frequency 

Seedlings Null model 2 18.03 0.00 -3.01 

  Temperature seasonality 2 21.33 3.31 0.00 

  Topographic wetness 2 21.33 3.31 0.00 

  Latitude 2 21.56 3.53 -0.11 

  Fire frequency 2 25.52 7.49 -2.09 

  Precipitation seasonality 2 27.10 9.07 -2.88 

  Foliage projective cover 2 33.74 15.71 -2.87 

  Fire frequency × precipitation 

seasonality 

3 96.00 77.97 0.00 

  Fire frequency × temperature 

seasonality 

3 96.00 77.97 0.00 

  Fire frequency × topographic 

wetness 

3 96.00 77.97 0.00 

  Fire frequency × latitude 3 96.02 78.00 -0.01 

  Fire frequency × foliage projective 

cover 

3 Inf Inf 0.00 

 Saplings Null model 2 18.03 0.00 -3.01 

  Fire frequency 2 21.89 3.87 -0.28 

  Temperature seasonality 2 22.46 4.44 -0.57 

  Latitude 2 23.23 5.20 -0.95 

  Precipitation seasonality 2 27.23 9.20 -2.95 

  Topographic wetness 2 27.35 9.32 -3.01 

  Foliage projective cover 2 28.53 10.51 -0.27 

  Fire frequency × precipitation 

seasonality 

3 96.00 77.97 0.00 

  Fire frequency × temperature 

seasonality 

3 96.00 77.97 0.00 

  Fire frequency × latitude 3 96.00 77.97 0.00 

  Fire frequency × topographic 

wetness 

3 96.05 78.02 -0.03 



  Fire frequency × foliage projective 

cover 

3 Inf Inf 0.00 

 Recruits Null model 2 18.03 0.00 -3.01 

  Fire frequency 2 21.89 3.86 -0.28 

  Temperature seasonality 2 22.91 4.88 -0.79 

  Latitude 2 23.18 5.15 -0.92 

  Precipitation seasonality 2 27.23 9.20 -2.95 

  Topographic wetness 2 27.35 9.32 -3.01 

  Foliage projective cover 2 29.96 11.93 -0.98 

  Fire frequency × temperature 

seasonality 

3 96.00 77.97 0.00 

  Fire frequency × precipitation 

seasonality 

3 96.00 77.98 0.00 

  Fire frequency × topographic 

wetness 

3 96.02 77.99 -0.01 

  Fire frequency × latitude 3 96.026 78.23 -0.13 

  Fire frequency × foliage projective 

cover 

3 Inf Inf 0.00 

Time since 

fire 

Seedlings Null model 2 18.03 0.00 -3.01 

  Temperature seasonality 2 21.33 3.31 0.00 

  Topographic wetness 2 21.33 3.31 0.00 

  Latitude 2 21.56 3.53 -0.11 

  Time since fire 2 24.39 6.36 -1.53 

  Precipitation seasonality 2 27.10 9.07 -2.88 

  Foliage projective cover 2 33.74 15.71 -2.87 

  Time since fire × latitude 3 96.00 77.97 0.00 

  Time since fire × precipitation 

seasonality 

3 96.00 77.97 0.00 

  Time since fire × topographic 

wetness 

3 96.00 77.97 0.00 

  Time since fire × temperature 

seasonality 

3 96.17 78.14 -0.09 

  Time since fire × foliage 

projective cover 

3 Inf Inf 0.00 

 Saplings Null model 2 18.03 0.00 -3.01 

  Temperature seasonality 2 22.46 4.44 -0.57 

  Latitude 2 23.23 5.20 -0.95 

  Time since fire 2 23.86 5.83 -2.26 

  Precipitation seasonality 2 27.23 9.20 -2.95 



  Topographic wetness index 2 27.53 9.32 -3.01 

  Foliage projective cover 2 28,53 10.51 -0.27 

  Time since fire × temperature 

seasonality 

3 96.00 77.97 0.00 

  Time since fire × precipitation 

seasonality 

3 96.01 77.98 0.00 

  Time since fire × topographic 

wetness 

3 96.03 78.00 -0.02 

  Time since fire × latitude 3 96.11 78.08 -0.06 

  Time since fire × foliage 

projective cover 

3 Inf Inf 0.00 

 Recruits Null model 2 18.03 0.00 -3.01 

  Temperature seasonality 2 22.91 4.88 -0.79 

  Latitude 2 23.18 5.15 -0.92 

  Time since fire 2 23.81 5.78 -1.24 

  Precipitation seasonality 2 27.23 9.20 -2.95 

  Topographic wetness 2 27.35 9.32 -3.01 

  Foliage projective cover 2 29.96 11.93 -0.98 

  Time since fire × temperature 

seasonality 

3 96.00 77.97 0.00 

  Time since fire × topographic 

wetness 

3 96.00 77.97 0.00 

  Time since fire × precipitation 

seasonality 

3 96.01 77.98 -0.01 

  Time since fire × latitude 3 96.10 78.07 -0.05 

  Time since fire × foliage 

projective cover 

3 Inf Inf -0.12 

 1794 



 1795 

Figure S11 Effect sizes of coefficients and 95% confidence intervals for the influence of (a) temperature 1796 

seasonality, and (b) temperature seasonality and time since fire (TSF) interaction on the proportion of recruits to 1797 

adults in Allocasuarina torulosa. 1798 

 1799 
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