

1 This article has been accepted for publication in the Journal of Evolutionary Biology, published by Oxford
2 University Press: <https://doi.org/10.1093/jeb/voag003>

3
4 This is the original version of the manuscript submitted to the Journal of Evolutionary Biology, and does
5 not contain changes resulting from the peer-reviewing process.

6
7 **Title:** Among-trait covariance and cross-year repeatability for direct and indirect individual effects in
8 producer–scrounger behaviour in wild house sparrows

9
10 **Authors:** Corné de Groot¹, Rori E. Wijnhorst¹, Ådne Messel Nafstad^{2,3,4}, Alastair J. Wilson⁵, Yimen G.
11 Araya-Ajoy^{2,3}, Henrik Jensen^{2,3}, Jonathan Wright², Niels J. Dingemanse¹

12
13 **Affiliations:**

14 ¹ Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152
15 Planegg, Martinsried, Germany

16 ² Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim,
17 Norway

18 ³ Gjærevoll Centre, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim,
19 Norway

20 ⁴ Norwegian Biodiversity Information Centre, 7010 Trondheim, Norway

21 ⁵ Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter,
22 Penryn, UK

23

24 Corresponding author contact information:

25 Corné de Groot,

26 LMU München/Department Biologie II

27 Behavioural ecology group

28 Großhaderner Str. 2

29 82152 Planegg-Martinsried

30 c.degroot@bio.lmu.de

31

32 **Keywords:** Indirect genetic effects, indirect individual effects, producer–scrounger, among-trait
33 covariance, cross-year repeatability

34 **Abstract**

35 Variation in social traits can be attributed to direct individual effects (DIEs) of the focal individual and
36 indirect individual effects (IIEs) due to its social partners eliciting behavioural change, analogous to
37 indirect genetic effects. Indirect effects affect the expressed phenotypic variation upon which selection
38 can act, especially when they covary with direct effects, providing a potential explanation for slower or
39 faster evolution than predicted by classic theory. However, little is known about the among-trait
40 covariance of DIEs and IIEs, or whether IIEs are consistent across time and context and how this can affect
41 evolutionary dynamics. Here we tested game theoretical predictions of producer-scrounger tactic use
42 during social foraging games within a DIE-IIE framework in wild house sparrows (*Passer domesticus*). We
43 used automated high-throughput phenotyping, where we assayed individuals repeatedly against different
44 social partners. We provide evidence for small IIEs in producer-scrounger behaviour, and show high cross-
45 year consistency. We found tight among-trait covariance, which is expected to impose strong constraints
46 on the evolution of the DIEs and IIEs. Indirect effects decreased the potential heritable variation in
47 producing and scrounging behaviour, which appear temporally stable. Overall, these effects may provide
48 a potential mechanism for the long-term maintenance of stable social foraging strategies.
49

50 **Introduction**

51 A key feature of social interactions is that the optimal behaviour is often dependent upon the behaviour
52 of social partners (McNamara & Weissing, 2010). The social environment consists of the phenotypes of
53 social partners with which the focal individual interacts, and plays an essential role in the evolution of
54 social phenotypes (Bergmüller & Taborsky, 2010; Wolf & McNamara, 2013).

55 Social evolution has long been modelled using evolutionary game theory within behavioural
56 ecology, which aims to predict long-term evolutionary outcomes of frequency-dependent behavioural
57 decisions (Maynard-Smith, 1984; McNamara & Weissing, 2010; McNamara & Leimar, 2020). Game theory
58 utilises a cost-benefit approach in which the payoff of a given fitness currency depends upon the strategy
59 employed by a social partner. The evolutionary outcome derived as a mathematical function of the payoff
60 matrix yields a population equilibrium where all strategies perform equally well, referred to as the
61 evolutionary stable strategy (ESS). Individuals can either adopt strategies that are tactically pure, mixed,
62 or conditional where the employed tactic used is plastic, often relative to the phenotype of a social partner
63 (Maynard-Smith, 1984; Giraldeau & Beauchamp, 1999; Tomkins & Hazel, 2007; McNamara & Weissing,
64 2010; McNamara & Leimar, 2020). Different individuals should opt for conditional tactic use that
65 maximises their individual-specific payoffs, which may give rise to more-or-less responsive versus
66 unresponsive strategies within the same population (Wolf *et al.*, 2008).

67 Another approach to studying social evolution comes from quantitative genetics, which provides
68 a statistical framework to estimate short-term evolutionary consequences of social interactions (Hadfield
69 & Thomson, 2017). A significant insight from quantitative genetics theory is that plastic phenotypes
70 interact due to indirect genetic effects (IGEs) (Griffing, 1967; Moore *et al.*, 1997). In IGEs, genetic variation
71 of a focal individual's phenotype 'impacts' or modifies their social partners' phenotype. In addition to this,
72 the usual direct genetic effects (DGEs) of the focal individual's own genes determine its phenotype, and
73 equate to additive genetic variance. At the phenotypic level, such direct and indirect effects have been
74 referred to as direct individual effects (DIEs) and indirect individual effects (IIEs), and consist of both
75 additive genetic variance and permanent environment effects (Han *et al.*, 2018). Indirect effects can have
76 consequences for the amount of phenotypic and thus genetic variation that is expressed within a
77 population on which selection can subsequently act, especially when they covary with direct effects (Wolf
78 *et al.*, 1998; Bijma *et al.*, 2007b; McGlothlin *et al.*, 2010). This is because the heritability of traits with
79 indirect effects is a function of both the direct and indirect effect variances, and their covariances (Bijma
80 *et al.*, 2007a; b). Consequently, indirect effects can thus increase or decrease the total amount of heritable
81 variation (τ^2), providing an appealing explanation for faster or slower evolution than predicted by classic

82 theory (Wolf *et al.*, 1998; Bijma *et al.*, 2007b; McGlothlin *et al.*, 2010). For example, Wilson *et al.* (2009)
83 found both direct and indirect effects on aggression in deer mice (*Peromyscus maniculatus*). These were
84 shown to be heritable, with positive covariance between the propensity to be aggressive (DIE) and
85 aggression elicited in social partners (IIE), increasing the total heritable variation for aggressive behaviour
86 and accelerating the predicted rate of evolution. On average, IGEs explain 3% of the total phenotypic
87 variation, and the effects are stronger in behavioural traits with 6%. Overall, IGEs tend to increase the
88 total heritable variation, and therefore constitute a relevant phenomenon in social evolution
89 (Santostefano *et al.*, 2024).

90 Empirical interest in indirect effects has greatly increased over the past decade (Bailey &
91 Desjonquères, 2022). However, estimates in wild populations are limited and insights into the
92 mechanisms of indirect effects are lacking. For instance, indirect effects are typically studied for one trait
93 in isolation. However, social traits are often multivariate and depend upon multiple aspects of a social
94 interaction. This multivariate nature of indirect effects has been acknowledged theoretically but has been
95 neglected empirically (Moore *et al.*, 1997; Marie-Orleach *et al.*, 2017; Bailey *et al.*, 2018; Bailey &
96 Desjonquères, 2022). Among-trait covariance can pose constraints on the trajectories of evolutionary
97 responses due to genetic architecture and mechanistic constraints (Hansen & Houle, 2008). For instance,
98 covariance between average level behaviours at the among-individual level, also referred to as
99 ‘behavioural syndromes’, constrain potential evolutionary responses by 33% on average (Dochtermann &
100 Dingemanse, 2013). In the context of indirect effects, phenotypic variation can be decomposed into its
101 direct and indirect effects, which can covary within the same trait. From a multivariate perspective, direct
102 and indirect effects can thus covary within and across traits. For instance, Santostefano *et al.* (2017)
103 demonstrated in field crickets (*Gryllus campestris*) that aggression elicited in others (IIE) positively
104 correlates with exploration behaviour (DIE). However, whether indirect effects covary across multiple
105 traits has received little attention. Based upon the sign of the DGE-IGE relationship, this could either imply
106 that certain individuals ‘impact’ or elicit more behavioural change in others across multiple traits, or that
107 individuals elicit behavioural change in one trait but not in other traits. Such consistent individual
108 differences in behaviour elicited in others parallel the different ‘types’ in the ‘animal personality’ or
109 ‘coping style’ literature, as well as individual differences in strategies within game-theory (Wolf &
110 Weissing, 2012). Furthermore, we have insufficient evidence whether individual variation in indirect
111 effects is consistent across time and context, which will determine whether indirect effects modulate the
112 amount of heritable variation. For example, if indirect effects are consistent across time and context, this
113 implies that the consequences of indirect effects on heritable variation are consistent as well. Whereas if
114 indirect effects are not consistent across time and context, this means that the modulatory effects are
115 heterogeneous and fluctuate.

116 Game theoretical approaches in behavioural ecology and IGE models in quantitative genetics
117 provide complementary approaches to the study of social evolution, but greater integration of these two
118 frameworks and their contrasting timescales will yield an improved understanding of the evolution of
119 social phenotypes (Abrams *et al.*, 1993; Araya-Ajoy *et al.*, 2020; McGlothlin *et al.*, 2022). Game theoretical
120 models, such as producer-scrounger games (Barnard & Sibly, 1981), provide fruitful testing grounds to
121 verify hypotheses about indirect effects. This is because game theoretical models make implicit
122 predictions about the phenotypes that individuals should express as a function of their social environment
123 (Barnard & Sibly, 1981; Giraldeau & Beauchamp, 1999). In other words, they contain implicit assumptions
124 about indirect effects that can be tested empirically. This has been approached from a theoretical
125 modelling perspective (Trubenová *et al.*, 2015; McGlothlin *et al.*, 2022), however we still lack empirical
126 studies that incorporate IGEs into game theoretical scenarios.

127 The producer-scrounger social foraging game provides an appropriate experimental system
128 because individuals can repeatedly be assayed when playing with different social partners, allowing for
129 the estimation of both direct and indirect effects. Here individuals can opt for two mutually exclusive

130 behavioural tactics, where individuals either 'produce' and sample the environment and search for
131 resources individually, or 'scrounge' where they (search for opportunities to) exploit resources found by
132 producers (Barnard & Sibly, 1981). Producing and scrounging payoffs are negatively frequency-
133 dependent, which means that each tactic has higher pay-offs when it is rarer in the population (Giraldeau
134 & Beauchamp, 1999; Giraldeau & Caraco, 2000; Mottley & Giraldeau, 2000). Variance in social partner
135 producing and scrounging will therefore affect the plastic expression of focal producing and scrounging,
136 giving rise to indirect effects in producer-scrounger games. From an indirect effects perspective, the
137 negative frequency-dependent nature of producer-scrounger interactions would imply that a higher
138 degree of producing from an individual would elicit reduced producing and increased scrounging in its
139 social partners. Since playing either tactic affects the payoffs and subsequent expression of the traits of
140 both producing and scrounging, a multivariate scenario occurs in which the direct and the indirect effects
141 in both producing and scrounging behaviours are expected to covary (i.e. a 4 x 4 matrix).

142 In this paper, we adopt a variance partitioning approach under the assumption of the phenotypic
143 gambit to study direct and indirect individual effects (DIE & IIE) on the expression of producer-scrounger
144 behaviour during social foraging under experimental social environments in wild Norwegian house
145 sparrows (*Passer domesticus*) across two years. Our aims are as follows. 1) Estimate how repeatable the
146 DIE and IIE in producing and scrounging behaviour are. We expected the repeatability of IIEs to be
147 relatively low, based upon reports within the IGE literature (Santostefano *et al.*, 2024). However, that the
148 IIEs would be relatively stronger compared to average estimates of behavioural IGEs, because IIEs also
149 consist of permanent environment effects. 2) Estimate the temporal consistency (i.e. cross-year
150 repeatability) in DIEs and IIEs in producing and scrounging behaviour. We predicted higher temporal
151 consistency for DIEs, because social foraging strategies are expected to be individually stable across time,
152 and lower consistency for IIEs as these are expected to be more context dependent and vary according to
153 the social environment. 3) Estimate the covariance at the individual level between DIEs and IIEs across
154 producing and scrounging behaviour. A negative covariance was expected between DIEs and IIEs for both
155 producing and scrounging, based upon the negative frequency dependence inherent in the producer-
156 scrounger game. We expected that individuals that produce more elicit more scrounging in their social
157 partners and *vice versa* for individuals that scrounge more. 4) Do indirect effects in producing and
158 scrounging behaviour affect the potential amount of heritable variation? Because we expected a negative
159 covariance between the DIEs and IIEs, we predicted that the potential total heritable variation would be
160 decreased by indirect effects.

161

162 **Methods**

163

164 **Study population**

165 We conducted social foraging experiments in wild house sparrow (*Passer domesticus*) flocks associated
166 with five dairy farms within the Åfjord municipality in Norway. This meta-population has been monitored
167 since 2012, with limited dispersal between farms. During the winter of 2022 we captured 168 sparrows,
168 and in the winter of 2023 we captured 140, totalling 245 unique individuals. We caught sparrows within
169 their home range using mist nets (3 – 18 m), with a total capture rate of 93.1%. Upon capture, we outfitted
170 birds with unique combinations of an alphanumerical metal ring, colour-rings, and a passive integrated
171 transponder (PIT) tag fitted in the colour ring on one of the tarsi (Dorset ID, Aalten, the Netherlands).

172

173 **Housing & habituation**

174 Captured birds were transported to an unused farm building on the island of Lauvøya (63°55'40.3"N,
175 9°55'51.7"E), where temporary aviaries and testing arenas were constructed out of wood, and tarpaulins.
176 After capture, we fitted all individuals with QR-code barcode backpacks (see Alarcón-Nieto *et al.*, 2018)
177 for identification during video analysis. These backpacks with six unique patterns were secured with

178 elastic cord loops around each leg. We divided the birds into groups of six, based upon capture time, with
179 the aim of an equal sex ratio of birds that were familiar to each other from the same farm. We
180 supplemented 6 groups with 11 previously assessed individuals to form full groups. We housed groups in
181 2 x 1.5 x 2 m habituation aviaries provided with branches and nestboxes, *ad libitum* access to food and
182 water, and maintained at an ambient temperature of 10°C (± 2), with a 14:10 light-dark cycle. Over the
183 span of 3 days, we gradually trained the birds to forage on a dummy 'checkerboard' feeder - a platform
184 with regularly-spaced 'wells' filled with sand to hide where the food was located (see Suppl. Figure 1).
185 After completing the habituation procedure at the end of the afternoon on the third day, groups were
186 caught via mist net by sluicing them into an adjacent aviary, and assigned a trial ID (A - F or G – L – see
187 Suppl. Figure 2). We briefly housed the birds in individual wooden nestboxes, which allowed individuals
188 to be moved between trial cages between successive trials. For the rest of the evening, we released the
189 individuals in triads into the cages where the foraging experiments would occur, allowing them to
190 habituate overnight. During the overnight habituation, the feeders were filled with 40 grams of millet
191 seeds, divided among 28 wells, plus 8 wells containing only sand. The following day, all individuals within
192 a group underwent social foraging trials in triads.

193

194 **Experimental setup**

195 The experiments took place on a 36-well checkerboard feeder, similar to the habituation feeders, but
196 equipped with custom-made radio frequency identification (RFID) readers underneath each well to read
197 PIT-tags (Dorset ID Aalten, the Netherlands). Each well had four RFID readers with a multiplexor system
198 activating one reader at a time in a sequence, with cycles alternating approximately every half-second.
199 This allows for the automatic tracking of individual arrival and departure times of visits to wells. Three
200 separate checkerboard feeders were placed inside wire-mesh cage constructions (1 x 1.2 x 1 m) within an
201 experimental aviary, and visually separated using tarpaulins (see Suppl. Figure 3). Each feeder was
202 equipped with a perch, *ad libitum* access to water, and three openings for the individual nestboxes. GoPro
203 Hero 8 cameras (1080p, 24 FPS on linear view) were mounted on top of the feeder cages for the purpose
204 of video recording (see: Video analysis).

205

206 **Producer-scrounger trials**

207 We conducted producer-scrounger trials, while continuously altering the social environment for each
208 focal individual across trials. With groups of six birds, 20 unique triadic combinations were possible, in
209 which each focal individual plays 10 times with different social partners. All 20 unique combinations were
210 played in one day, and we repeated all combinations on a second consecutive trial day. Per trial day, we
211 randomised the order of the unique combinations, and we allocated the randomised combinations evenly
212 over the three checkerboard feeders based on six predefined patterns (see Suppl. Figure 2). In 2023, for
213 some of the groups we also performed full group trials using all six individuals during one day for the
214 purposes of another experiment. Half of these groups had the group trial prior to the triadic trials and the
215 other half after the triadic trials.

216 Each triadic trial lasted 15 minutes with a 25-minute resting period between trials, starting at
217 approximately 08:20 and ending at 17:35. Up to three trials ran simultaneously, with three birds within a
218 group resting in their individual nestboxes during every other trial cycle to prevent satiation and to
219 maintain foraging motivation (see Suppl. Figure 2). For every trial, we refilled the interchangeable well
220 cups (2.7 x 3.6 cm, 17.5 ml) with fine sand. We baited 14 out of 36 wells with 12 grams of millet equally
221 divided over the wells. The seeds were covered with approximately 1 cm of sand filled up to 85% (±5)
222 capacity, so all wells looked indistinguishable. The checkerboard feeders were filled according to
223 predefined randomised patterns, determined by two dice rolls, selecting both the pattern and its
224 orientation (see Suppl. Figure 4). Trials started by turning on the camera and recording a reference PIT-
225 tag on the checkerboard feeder to mark the start of the trial. We stopped the trials after 15 minutes, and

226 flushed each bird separately into an individual nestbox and shut in via sliding doors controlled by a pulley
227 mechanism. After capture, the birds were identified with an ARE-H5 PIT-tag hand scanner (AEG-ID, Ulm,
228 Germany) and their corresponding trial ID label was assigned, and they were redistributed for the next
229 trial. Between trials, we cleaned the feeder plates with wet wipes, and we collected any remaining sand
230 and seed from the plate and wells in a bucket. We sieved the collected material and discarded anything
231 other than seeds by use of tweezers. The remaining seeds were weighed to the nearest 0.05 gram.

232 We repeated this process for each trial cycle within a day. Afterwards, the checkerboard feeder
233 was prepared for the overnight habituation as described previously, so that individuals could stay in the
234 checkerboard feeder cages for a new set of trials on the following day. If two groups had overnight
235 habituation, one of the triads from the initial group was housed in a dummy setup. After completing the
236 second day of trials, the QR-code backpacks were removed and we released the birds into a final aviary
237 (10 x 5 x 2 m), where they were monitored for health before being released at the site of capture within
238 maximally 14 days after capture.

239

240 **Video analysis**

241 In order to calibrate the behaviours derived from the RFID checkerboard feeder, we annotated behaviours
242 by means of video analysis in BORIS (V 7.13.6; Friard & Gamba, 2016). We randomly sampled 112 videos
243 from the 2022 dataset with a stratified design, selecting one trial per group for each trial day (e.g. ABC)
244 along with its complementary trial codes (e.g. DEF), resulting in four annotated trials per group with two
245 observations per individual. For each trial video, we observed all three individuals during separate
246 viewings as focal for the whole 15 minutes. Focal individuals were distinguished using their unique QR
247 code backpack within a group. Foraging behaviours were scored based on visits to wells. Visits were
248 labelled as 'producing events' when individuals found and consumed food from an unoccupied baited
249 well, and as 'scrounging events' when individuals joined occupied baited wells and consumed seeds (see
250 Beauchamp & Giraldeau, 1997; Beauchamp, 2001; Lendvai *et al.*, 2004; Katsnelson *et al.*, 2008; Tóth *et*
251 *al.*, 2009; Morand-Ferron & Giraldeau, 2010a; Belmaker *et al.*, 2012; Ilan *et al.*, 2013, and Suppl. Table 1
252 for the used ethogram). Before starting the video analysis, we established inter- and intra-observer
253 reliability. All observers scored the same three 3-minute video clips of trials (that were not scored in the
254 actual analysis), repeated three times across observers. Observer reliabilities were estimated with the IRR
255 package (Gamer *et al.*, 2019) in R (V4.3.1 R Core Team, 2023). We maintained or exceeded inter- and intra-
256 observer reliability thresholds of 0.85 for scrounging behaviour and 0.9 for all other behaviours (Suppl.
257 Table 1).

258

259 **RFID measures of producing-scrounging behaviour & calibration**

260 In order to derive behavioural measures from the RFID checkerboard feeder, we labelled reads recorded
261 at unique wells as visits with a start and stop time per trial, and individual identity. In this process, we
262 omitted single read visits with a visit duration of zero, because of their uninformative nature. We derived
263 variables from the RFID data that were used to conditionally label visits as 'producing' or 'scrounging'
264 events at baited wells. We performed sliding window analyses to infer whether multiple tags were read
265 at the same well at -3, -1, 0, +1 seconds per second per individual. We labelled visits as 'producing' events
266 if: 1) the well was baited with seeds; 2) no other tags than the focal were read at the start (-1, 0, +1
267 seconds) of the visit nor 3 seconds prior to the visit; 3) millet seeds were consumed within the trial, based
268 on the weight of remaining seeds; and 4) the visit lasted longer than 5 seconds. We labelled visits as
269 'scrounging' events if: 1) more than one tag was read at the start of the visit or a tag was read 3 seconds
270 prior to the visit; 2) the social partner has been at the well for at least three seconds; 3) the well was
271 produced at previously; and 4) the focal visit had more than 5 reads. The number of producing and
272 scrounging events per trial and individual were summed to yield the number of occurrences per trial per
273 individual.

274
275 The annotated video data were used to calibrate the accuracy of the RFID-system derived producing and
276 scrounging behaviour. We performed Pearson's correlations with the number of observed and derived
277 producing and scrounging events per individual within a trial. We found Pearson correlations of 0.70 for
278 producing visits and 0.70 for scrounging visits within a trial per individual. To verify whether the
279 relationship found between the RFID derived behaviour and the annotated video data was generalizable,
280 we scored an additional 68 videos from the 2023 dataset following the same stratified sampling design.
281 Here, we consider the 2022 video dataset as the training dataset and the 2023 video dataset as the testing
282 dataset. We fitted linear models with the annotated video data as the response variable and the derived
283 RFID behaviours as a covariate, the year as a fixed effect and an interaction between year and the RFID-
284 derived behaviour. We found that there was no significant difference between the sampled datasets,
285 indicating consistent assignment of RFID-derived behavioural data. Overall, when fitting the full 2022 and
286 2023 dataset we found a Pearson's correlation of 0.67 for producing behaviours and 0.72 for scrounging
287 behaviours per individual within a trial.
288

289 During the video analysis, we noticed that baited wells were almost never fully depleted by the individual
290 that first 'produced' at the well, or when a well was then 'scrounged' upon by another individual.
291 Consequently, individuals would return to already produced wells. Returning to wells that were previously
292 produced or scrounged at are not really covered by producing-scrounging theory thus far, and such return
293 events are less informative than the primary producing or scrounging visits per well. Therefore, for the
294 purposes of the current analyses, we used only primary visits per well to estimate how often an individual
295 employed a certain social foraging strategy to obtain resources within a trial.
296

297 **Statistical analyses**

298 In total, 1160 triadic trials were conducted in 2022, and 960 trials in 2023, providing a total of 2120 trials.
299 Each trial contributes data on 3 focal individuals, because every individual plays as both a focal individual
300 and as social partner for the two other social partners (Santostefano *et al.*, 2016). Therefore, our dataset
301 includes 6360 observations over 2120 trials. Of these, we only included observations in our analyses
302 where all three individuals were registered on the checkerboard feeder during a trial, and focal individuals
303 had non-zero producing or scrounging events, resulting in 5108 observations. These observations where
304 individuals did not play the game are likely due to habituation effects to the experimental setup. We fitted
305 linear mixed-effect models in a Bayesian framework using Stan (V 2.32.2 Stan Development Team, 2024)
306 within R (V4.3.1 R_Core_Team, 2023). We fitted models with Gaussian likelihood functions with 4 chains,
307 2000 warm up iterations and 3000 sampling iterations, with a thinning interval of one. We set weakly
308 informative priors with Gaussian distributions ($\mu = 0, \sigma = 5$) for fixed effects, half exponential distributions
309 ($\lambda = 3$) for random effects, and LKJ distributions ($\eta = 3$) for correlations. We estimated and report the
310 posterior medians with a 95% credible interval (Pick *et al.*, 2023). We performed posterior predictive
311 checks with the ShinyStan package (Stan Development Team, 2017), and found proper convergence of
312 the chains.
313

314 **Univariate phenotypic models**

315 First, we fitted 14 univariate mixed-effect models for producing and scrounging events per trial per
316 individual. We fitted these models split per year (e.g. 2022), year and trial day (e.g. trial day1 in 2022),
317 and with the full dataset, to assess potential differences in mean level behaviour, individual variation in
318 D1Es and I1Es and correlation structure between the D1E and I1E across these temporal levels (see Suppl.
319 Mat Text1. and Suppl. Table 2 & 3 for more information).
320
321

322 **Bivariate phenotypic models**
323 Second, we fitted a bivariate mixed-effect model to estimate the patterns of (co)variance between the
324 DIE and the IIE for producing and scrounging at the individual level. We fitted producing and scrounging
325 events per trial per individual as response variables, and Focal ID and social partner IDs as random effects
326 to partition the direct individual effect (DIE) and indirect individual effect (IIE), and their covariance
327 (McGlothlin & Brodie III, 2009; Han *et al.*, 2018). Variance due to social partner IDs (IIE) was constrained
328 to be equal, since the assignment of social partner IDs was arbitrary. To account for our study design, we
329 fitted (triadic) trial day (0 - 1), individual trial order (1 - 10), and whether individuals participated in larger
330 groups trials prior to the triadic trials (0 - 1), as fixed effects, and TrialID (n = 1997), and GroupID (n = 53)
331 as random effects. Trial order, and trial day were mean centred such that the intercept was estimated for
332 the average trial for an individual. We fitted a three-way interaction between trial day, trial order and
333 participation in larger group trials, to account for habituation effects during the trials. Since we
334 decompose both producing and scrounging behaviour into direct (DIE) and indirect effects (IIE), a 4 x 4 P-
335 matrix was constructed to estimate the six covariances and correlations between DIEs and IIEs effects
336 across producing and scrounging behaviour. The bivariate model provided similar estimates as the full
337 univariate models (Suppl. Table 2 & 3) and provided unbiased estimates compared with 50 simulated
338 datasets with the same data structure (see Suppl. Figure 5).

339 For all random effects, we estimated adjusted repeatability and unadjusted repeatability by fitting
340 a model with and without the fixed effect structure respectively (Suppl. Mat Text2). We estimated the
341 total social phenotypic effect of producing and scrounging behaviour according to Bijma *et al.* (2007b)
342 equation 6 (Suppl. Mat Text3). This is analogous to the total heritable variation (τ^2), but at the phenotypic
343 level ($P\tau^2$), which theoretically sets the upper bound for τ^2 . We did not adjust for trial-level group size
344 effects for the covariance with IIEs, because our interest lies in how a focal individual impacts one social
345 partner on average. Note that the model yields an estimate of the among-individual variance in IIEs for
346 focal individuals. This is not the same as the total variance in (focal) phenotype attributable to IIEs,
347 because within each trial, a focal individual experiences the IIEs of both of its social partners. Therefore,
348 to obtain the total IIE variance for the total phenotypic variation, we multiplied the IEE variance by two
349 (Bijma *et al.*, 2007b).

350
351 **Cross-year repeatability**
352 In order to estimate temporal consistency, we fitted univariate models to estimate short-term and cross-
353 year repeatability for the DIEs and IIEs of producing and scrounging behaviour. For this, we fitted two
354 additional random effects comprised of unique indices for the combinations of year and individual ID for
355 both the focal and the social partners. We estimated short-term and cross-year repeatability based on
356 equations 3a and 5 described by Araya-Ajoy *et al.* (2015), for the intercept of the DIE and the IIE, and its
357 respective year-ID series variance (see Suppl. Mat text2).

358
359 **Results**
360

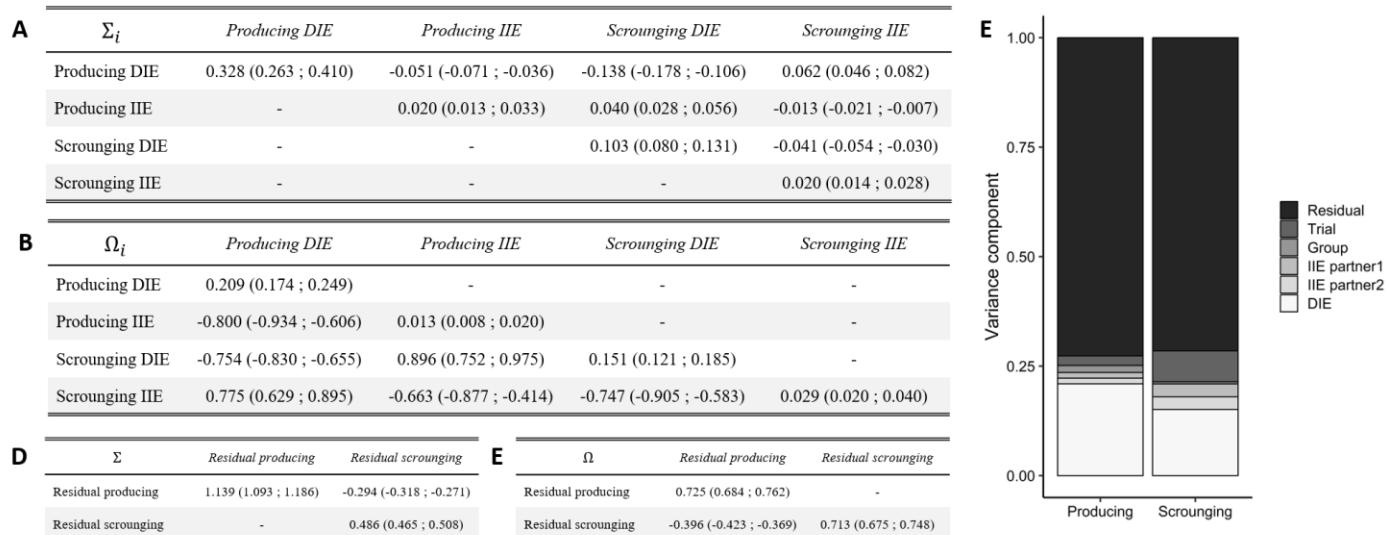
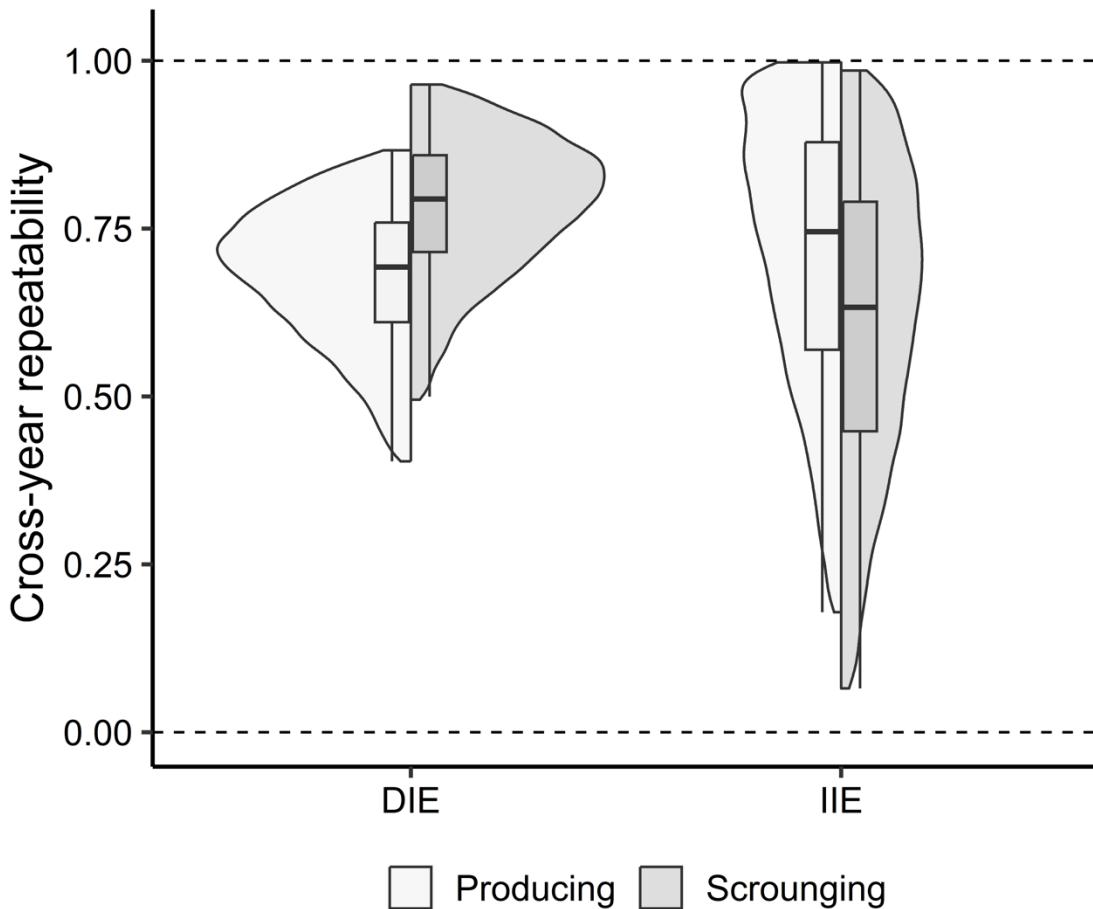

361 **Fixed effects**
362 On average individuals performed 1.55 producing events and 0.64 scrounging events per trial (Table 1).
363 This implies that during the average 15 min trial there were approximately 4 producing events and 2
364 scrounging events per triad. Producing and scrounging behaviour both increased as a function of trial
365 order, but scrounging decreased slightly between years and trial days. Individuals that participated in full
366 group trials prior to the triadic trials did not produce or scrounge more or less. The three-way interaction
367 between individuals that were involved in full group trials before the triadic trials, trial day and trial order
368 affected scrounging , but not producing behaviour. Two-way interactions also did not affect producing
369 behaviour.

Table 1: Posterior medians with 95% credible intervals (in parentheses) for the full and unadjusted bivariate models for the direct individual effect (DIE) and indirect individual effect (IIE) in producing and scrounging behaviour. The DIE represents the average level behaviour of the focal and the IIE represents the behaviour elicited in others as a social partner. Pt2 refers to the social phenotypic variance attributable to interacting phenotypes. Note that the covariances and correlations are reported in Figure 1.

Variables	Producing	Scrounging	Producing unadjusted	Scrounging unadjusted
<i>Fixed effects</i>	β (95% CI)	β (95% CI)	β (95% CI)	β (95% CI)
<i>Intercept</i>	1.545 (1.465 ; 1.623)	0.640 (0.596 ; 0.685)	1.530 (1.451 ; 1.613)	0.656 (0.614 ; 0.697)
<i>Year</i>	-0.119 (-0.251 ; 0.014)	-0.085 (-0.161 ; -0.010)	-	-
<i>Trial order</i>	0.030 (0.018 ; 0.042)	0.019 (0.011 ; 0.027)	-	-
<i>Trial day</i>	0.065 (-0.001 ; 0.133)	-0.047 (-0.093 ; 0.000)	-	-
<i>Group trial before</i>	-0.200 (-0.414 ; 0.011)	0.102 (-0.021 ; 0.221)	-	-
<i>Trial day * Group trial before</i>	-0.176 (-0.364 ; 0.014)	-0.035 (-0.098 ; 0.029)	-	-
<i>Trial day * Trial order</i>	-0.018 (-0.041 ; 0.005)	-0.022 (-0.039 ; -0.006)	-	-
<i>Trial order * Group trial before</i>	-0.020 (-0.052 ; 0.012)	0.003 (-0.043 ; 0.050)	-	-
<i>Trial day * Trial order * Group trial before</i>	0.007 (-0.057 ; 0.070)	0.053 (0.008 ; 0.099)	-	-
<i>Random effects</i>	σ^2 (95% CI)	σ^2 (95% CI)	σ^2 (95% CI)	σ^2 (95% CI)
<i>DIE</i>	0.328 (0.263 ; 0.410)	0.103 (0.080 ; 0.131)	0.328 (0.264 ; 0.410)	0.103 (0.081 ; 0.131)
<i>IIE</i>	0.020 (0.013 ; 0.033)	0.020 (0.014 ; 0.028)	0.020 (0.011 ; 0.031)	0.021 (0.014 ; 0.029)
<i>Trial</i>	0.034 (0.020 ; 0.050)	0.048 (0.036 ; 0.061)	0.039 (0.023 ; 0.056)	0.051 (0.039 ; 0.066)
<i>Group</i>	0.025 (0.003 ; 0.058)	0.003 (0.000 ; 0.016)	0.041 (0.019 ; 0.077)	0.003 (0.000 ; 0.016)
<i>Residual</i>	1.139 (1.093 ; 1.186)	0.486 (0.465 ; 0.508)	1.140 (1.095 ; 1.186)	0.486 (0.465 ; 0.508)
<i>total phenotypic effect</i>	0.150 (0.091 ; 0.228)	0.048 (0.018 ; 0.081)	0.142 (0.086 ; 0.219)	0.052 (0.019 ; 0.087)
<i>Total</i>	1.570 (1.486 ; 1.669)	0.681 (0.647 ; 0.720)	1.591 (1.506 ; 1.694)	0.686 (0.653 ; 0.725)
<i>Repeatability</i>	R (95% CI)	R (95% CI)	R (95% CI)	R (95% CI)
<i>DIE</i>	0.209 (0.174 ; 0.249)	0.151 (0.121 ; 0.185)	0.207 (0.172 ; 0.246)	0.150 (0.121 ; 0.185)
<i>IIE</i>	0.013 (0.008 ; 0.020)	0.029 (0.020 ; 0.040)	0.012 (0.007 ; 0.019)	0.030 (0.020 ; 0.041)
<i>Trial</i>	0.022 (0.013 ; 0.032)	0.070 (0.053 ; 0.089)	0.024 (0.015 ; 0.035)	0.075 (0.057 ; 0.095)
<i>Group</i>	0.016 (0.002 ; 0.036)	0.005 (0.000 ; 0.022)	0.026 (0.012 ; 0.048)	0.005 (0.000 ; 0.024)
<i>Residual</i>	0.725 (0.684 ; 0.762)	0.713 (0.675 ; 0.748)	0.716 (0.675 ; 0.753)	0.708 (0.670 ; 0.742)
<i>total phenotypic effect</i>	0.095 (0.059 ; 0.143)	0.071 (0.028 ; 0.118)	0.089 (0.054 ; 0.135)	0.075 (0.028 ; 0.126)

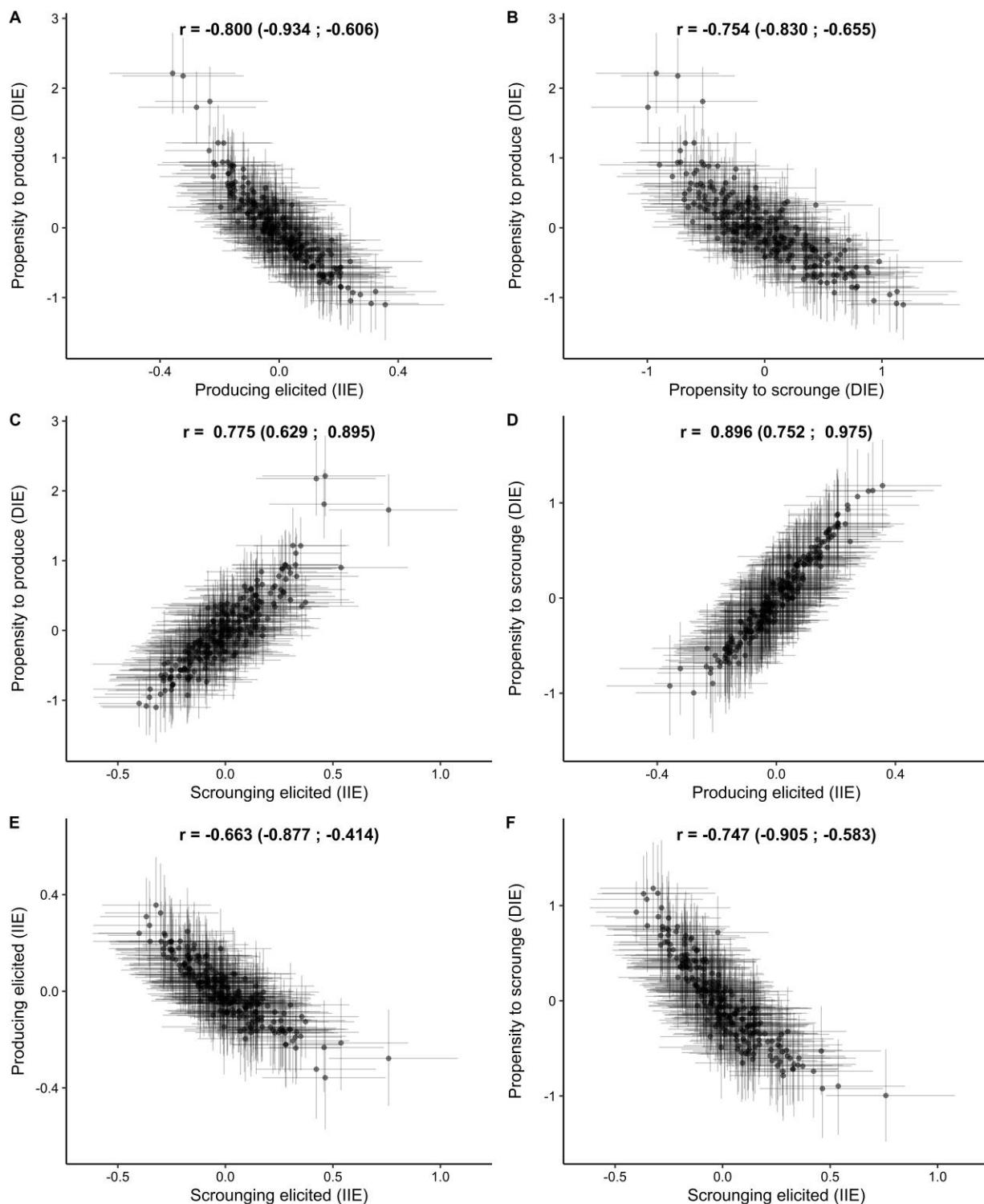
376 **Repeatability & variances**


377 The total phenotypic variance in producing was 1.570, and 0.681 for scrounging behaviour (Table 1). The
 378 direct individual effect (DIE), or average level behaviour, had moderate and low repeatability, where
 379 20.9% of the variance in producing behaviour and 15.1% of the variance in scrounging behaviour was
 380 attributable to differences among focal individuals (Table 1 & Figure 1). The indirect individual effect (IIE),
 381 representing the behavioural change elicited in others, had low repeatability, where 1.3% of the variance
 382 in producing behaviour and 2.9% of the variance in scrounging behaviour was attributable to the focal
 383 individual. The amount of variance in producing and scrounging behaviour caused by interacting with both
 384 social partners within a trial was 2.6% and 5.8% respectively. The variation among groups was close to
 385 zero for both producing and scrounging behaviour, indicating no bias in group formation. Scrounging
 386 behaviour varied more among trials than producing behaviour. Residual variance was high for both
 387 producing and scrounging behaviour, which must be partially due to measurement error from the RFID
 388 system. The adjusted repeatability estimates did not deviate much from the unadjusted repeatability
 389 estimates (see Table 1), further showing that the fixed effects structure of the model only explained a
 390 small amount of variance.

391
 392 **Figure 1:** (A) Variance-covariance matrix showing the variances on the diagonal and the covariances above the diagonal for the
 393 direct individual effect (DIE) and the (social) indirect individual effect (IIE) for producing and scrounging behaviour. (B) Correlation
 394 matrix showing the repeatabilities on the diagonal and the correlations below the diagonal for DIEs and IIEs. (C) Stacked bar plot
 395 of the variance components for producing and scrounging behaviour. Trial represents the variance attributed to variation among
 396 the 15-minute triadic trials, and group represents the variance among the groups of six individuals. Note that the IIE variances
 397 are presented for both social partners. (D) Residual variance covariance matrix showing the variances on the diagonal and the
 398 residual covariance above the diagonal. (E) Residual correlation matrix showing the variance components on the diagonal and the
 399 residual correlation below the diagonal.

400 **Temporal consistency**

401 The univariate cross-year repeatability models provide evidence for high cross-year repeatability of the
 402 DIE and the IIE for producing and scrounging behaviour (Figure 2, Suppl. Table 4). The long-term
 403 repeatabilities were similar to the bivariate model estimates, and hence are not reported here (Suppl.
 404 Tables 2-4). For producing behaviour, the individual cross-year repeatability for the DIE was 0.693, and
 405 0.745 for the IIE. Similarly, for scrounging the individual cross-year repeatability for the DIE was 0.794,
 406 and 0.633 for the IIE. These high cross-year repeatability estimates indicate that individuals exhibited
 407 similar mean level behaviours, and elicited similar levels of behavioural change in others across years.


408

409 **Figure 2:** Half violin plot depicting the cross-year repeatability of producing and scrounging behaviour for the direct individual
 410 effect (DIE) and indirect individual effect (IIE). The boxplot shows the median (horizontal line), and interquartile range (box), and
 411 the violin shows the posterior distribution as a density function (N.ind = 245, N.repeats = 63, N.obs = 5108, N.series = 307).

412 **Phenotypic among trait covariance & correlations**

413 The bivariate mixed model provides strong evidence for a tight phenotypic among-trait covariation for
 414 DIEs and IIEs at the individual level (Figures 1 & 3). The model shows that individuals with a higher
 415 tendency to produce elicited less producing in other individuals, elicited more scrounging in others, and
 416 had a lower propensity to scrounge themselves. Furthermore, individuals that scrounged more on average
 417 elicited more producing in others, but less scrounging behaviour in others. Individuals that elicited more
 418 producing elicited less scrounging in their social partners, and *vice versa*. The residual or within-individual
 419 correlation was negative, which implies that within a given trial when individuals produce more than
 420 average they scrounge less than average, and *vice versa*.

421 The total social phenotypic effect (Pt^2), which is the proportion of phenotypic variance attributable to
 422 interacting phenotypes, for producing was 0.095, and 0.071 for scrounging behaviour (Table 1). This
 423 implies that phenotypic variation or the upper limit of the potential heritable variation due to social effects
 424 was 9.5% in producing behaviour and 7.1% in scrounging behaviour, which was 54.5% and 53% lower,
 425 respectively, compared with the repeatability of the DIEs.

Figure 3: Posterior median of Best Linear Unbiased Predictors (BLUPs) with 95% credible intervals at the individual level (N.ind = 245, N.obs = 5108), as a visualization of the correlation structure across the direct individual effect (DIE) and the indirect individual effect (IIE) in producing and scrounging behaviour. A) Producing DIE - producing IIE. B) Producing DIE - scrounging DIE. C) Producing DIE - scrounging IIE. D) Scrounging DIE - producing IIE. E) Producing IIE - scrounging IIE. F) Scrounging DIE - scrounging IIE.

433 **Discussion**

434 In this study, we show evidence for both indirect individual effects (IIE) in the behavioural change elicited
435 in others, and for direct individual effects (DIE) in the average behaviour in social foraging. The IIEs
436 explained a small amount of variation in producing and scrounging behaviour, but they were highly
437 consistent across years. The DIEs showed moderate repeatability, but showed high temporal consistency
438 across years. We also found a high degree of covariance between the DIEs and IIEs across and within
439 producing and scrounging behaviours at the individual level. We found that individuals that produce more
440 scrounge less, providing evidence for purer producer-scrounger strategies. Despite these small indirect
441 effects, they still have the potential to decrease the amount of phenotypic variation. To our knowledge,
442 this is the first empirical study that shows among-trait covariance of DIEs and IIEs across multiple
443 behaviours with high temporal consistency.

444

445 We derived our measurements of producing and scrounging behaviour via a high throughput RFID system.
446 Based on the correlations of around 0.7 with observed data, we are aware that our RFID data contains
447 reasonable measurement error that is currently unquantifiable. We therefore have to consider that the
448 residual variance of our models would have been inflated by measurement error and that any
449 repeatability estimates here may in fact be underestimated as a result (Nakagawa & Schielzeth, 2010).

450

451 **Repeatability of the DIEs & IIEs**

452 We found moderate to low repeatabilities ($R = 0.209$ & 0.151) in producing and scrounging behaviour
453 respectively. Other studies that estimated among-individual variation in producing and scrounging
454 behaviour found varying repeatability that ranged from 0.37 to 0.5 for producing, and 0.06 to 0.5 for
455 scrounging behaviour (David *et al.*, 2014; Aplin & Morand-Ferron, 2017; Barou-Dagues *et al.*, 2020;
456 Reichert *et al.*, 2021). Repeatability is generally lower for traits that are very labile and affected by
457 energetic state and the social environment (Bell *et al.*, 2009; Santostefano *et al.*, 2016), which applies to
458 social foraging tactic use, especially under variable social environments, similar to our experimental setup.
459 For instance, sticklebacks (*Gasterosteus aculeatus*) that were socially housed show lower repeatability in
460 boldness than when housed solitary (Jolles *et al.*, 2016). This emphasises the dynamic nature of social
461 interactions and that individuals likely do not respond in the same manner to different social
462 environments (Taborsky & Oliveira, 2012; Araya-Ajoy *et al.*, 2015, 2020). Moreover, in our study about
463 13% of the variation in scrounging behaviour was attributable to variation among trials. This is likely a
464 result of the fact that scrounging cannot occur when no wells have been produced within a trial, as other
465 among trial differences such as trial order have been accounted for in the models. This shows how the
466 immediate composition of phenotypes within the social environment can affect the expression of social
467 behaviours.

468

469 We found small IIEs at the focal individual level ($R = 0.013$ & 0.029) and larger IIEs due to both social
470 partners ($R = 0.026$ & 0.058) in producing and scrounging behaviour respectively. This means that a small
471 portion of the variation in producing and scrounging behaviour is attributable to whom a focal individual
472 interacts with. Typically, the amount of variation explained by indirect genetic effects is relatively low, and
473 the average effect size is 6% for behavioural traits (Santostefano *et al.*, 2024). Since the IIEs consist of both
474 additive genetic variance and permanent environment effects (Han *et al.*, 2018), IGEs in producing and
475 scrounger behaviour will necessarily be smaller than our IIE estimates. The strength of indirect effects
476 varies across different types of behaviour. For instance, aggressive behaviours are reciprocal which
477 provides feedback loops that are often asymmetrical (i.e. winning a contest makes the other lose the
478 contest), and therefore often have strong indirect effects (Wilson *et al.*, 2009, 2011; McGlothlin *et al.*,
479 2010; Santostefano *et al.*, 2016), which is likely why scrounging has a greater IIE than producing. The
480 degree to which an individual produces or scrounges should depend upon the tactic chosen by its social

481 partner(s) on average, as predicted by negative frequency-dependence (Giraldeau & Beauchamp, 1999;
482 Giraldeau & Caraco, 2000; Giraldeau & Dubois, 2008). Our findings imply, however, that variation in
483 producing and scrounging is not so much affected by social partners. Indicating that individuals may
484 primarily be driven by variation in their energetic state, because the pay-offs for producing and scrounging
485 vary based on energetic demands and body condition (Barta & Giraldeau, 2000). For example, captive
486 house sparrows with poorer energy reserves due to overnight wind exposure have been shown to
487 scrounge more during the very first foraging interactions of the day (Lendvai *et al.*, 2004).

488 An alternative explanation for our results might instead be that individual sparrows were
489 responding to the total levels of producing and scrounging within a specific trial, rather than to the
490 average behaviour of any particular social partner. This would seem sensible because individuals were not
491 very consistent in their producing and scrounging behaviour, and individuals varied greatly among trials.
492 This would suggest that individuals were 'socially responsive' to their immediate social environment (Wolf
493 *et al.*, 2008; Dingemanse & Araya-Ajoy, 2015; Araya-Ajoy *et al.*, 2020), and plastically adjusted their social
494 foraging tactic-use accordingly to some conditional ESSs, but irrespective of which individual was doing
495 the producing or scrounging. The variance partitioning approach used in this study does not capture this
496 social responsiveness, because plastic responses to immediate social partner' producing and scrounging
497 in the social environment are not included here as they would be in a trait-based model (Moore *et al.*,
498 1997). In such models, any individual variation in plasticity would thus be captured as residual variation
499 (Martin *et al.*, 2011). In order to further tease this apart, a random regression model is required where an
500 individual's 'social responsiveness' to its social environment, and its 'social impact' on others are
501 estimated in conjunction (de Groot *et al.*, 2023). In reality, the within individual variation in social
502 phenotypes likely consists of a mixture of social responsiveness, state-dependency, along with additional
503 unexplained variation in the environment.

504

505 **Temporal consistency in DIEs & IIEs**

506 Contrary to our initial predictions, both the DIE and the IIE in producing and scrounging behaviour showed
507 high cross-year repeatability or temporal consistency. This indicates that individuals produce and
508 scrounge similarly, and elicit the same amount of behavioural change in their social partners across years.
509 Aplin & Morand-Ferron (2017) also found that average producing and scrounging behaviour was
510 repeatable across years with an intraclass correlation approach. Overall, this suggests that the average
511 DIEs and IIEs of individuals are consistent over time, but that individuals are highly plastic in their
512 producing and scrounging behaviour between trials. Even though the (long-term) repeatability of the DIEs
513 and IIEs presented here are not very high, the fact that these individual effects are conserved across time
514 may suggest that there are certain 'types' of individuals with differential impact on others, similar to
515 strategies within game-theory (Maynard-Smith, 1984; McNamara & Leimar, 2020). For instance, some
516 individuals may consistently elicit higher or lower trait values in their social partners, whereas some
517 individuals may have no impact at all. This is significant, because certain individuals may thus have
518 disproportionate effects on the amount of heritable variation in the population (Araya-Ajoy *et al.*, 2020),
519 and could be part of an individual's socially evolved strategy to play the producer-scrounger game.

520

521 **Producer-scrounger theory and indirect effects**

522 We found that producing and scrounging behaviour correlated negatively ($r = -0.754$), which has also been
523 found by various other studies (Barnard & Sibly, 1981; Giraldeau *et al.*, 1994; Mottley & Giraldeau, 2000;
524 Beauchamp, 2001), and is often an assumption in theoretical models (Barnard & Sibly, 1981; Giraldeau &
525 Caraco, 2000; Giraldeau & Dubois, 2008). This indicates that individuals primarily opt for a purer producer-
526 scrounger strategy. Moreover, the within-individual correlation between producing and scrounging
527 behaviour was negative ($r = -0.396$), which further reinforces that individuals tend to opt for a particular
528 tactic within a trial. However, because this relationship was not strongly negative this could also indicate

529 that in many instances individuals opt for mixed or conditional strategies. We found that individuals that
530 have a higher propensity to produce elicit more scrounging, but less producing in others, and *vice versa*
531 for individuals that have a higher propensity to scrounge. Conversely, individuals that elicited more
532 scrounging elicited less producing in others, reinforcing the idea that there are 'types' of individuals that
533 vary in how much behaviour they elicit in others across traits.

534 Generally, our findings are in line with the negative frequency-dependence in producing-
535 scrounging models at the population level, because more producing facilitates increased scrounging and
536 increased scrounging increases the relative pay-off of producing, yielding the ESS (Giraldeau &
537 Beauchamp, 1999; Giraldeau & Caraco, 2000). However, producer-scrounger game theory is derived at
538 the population level for fitness consequences, and not at the trial-level with the amount of producing or
539 scrounging events as is presented in this study, making it difficult to fully equate the two. Classic producer-
540 scrounger models assume that individuals either adopt a deterministic pure, a probabilistic mixed
541 strategy, or conditional plastic strategy (Caraco & Giraldeau, 1991; Vickery *et al.*, 1991; Giraldeau &
542 Beauchamp, 1999). Here, we show that producer-scrounger strategies are shaped by among-individual
543 variation that contributes to the average tactic use, with IIEs that elicit behavioural change in others and
544 within-individual variation that determines conditional strategy use. This suggests a more complex
545 multivariate approach to tactic-use in house sparrows, which is not yet fully embedded into current game-
546 theory. Our findings can thus be seen as further empirical information for future theoretical models of
547 frequency-dependent behaviour that include quantitative genetic mechanisms (McGlothlin *et al.*, 2022).

548

549 **Consequences of IIEs in producing and scrounging behaviour**

550 As described above, indirect effects can have profound effects on the expressed phenotypic variation
551 upon which selection can act, providing a potential explanation for slower or more rapid evolution of
552 social traits than predicted by classic theory (Moore *et al.*, 1997; Wolf *et al.*, 1999; Bijma *et al.*, 2007b;
553 McGlothlin *et al.*, 2010). The amount of variation explained by the IIEs in this study may seem marginal,
554 but we showed that the total social phenotypic effect (Pt^2) was 50% lower compared to the repeatability
555 of the DIEs. Similar to repeatability, this would theoretically set the upper limit for heritability for traits
556 with indirect effects. This suggests that IIEs in our system probably decrease the potential heritable
557 variation as compared to assessments of only repeatability or heritability using direct effects of the
558 phenotype (Bijma *et al.*, 2007a; b). Because the DIES and IIEs in our birds exhibited high temporal
559 consistency, these effects of IIEs in reducing any phenotypic variation are probably conserved across time.

560 Furthermore, we present a tight covariance structure between DIES and IIEs in producing and
561 scrounging behaviour. Phenotypic correlations explain 75% of the variance in genetic correlations in
562 various behavioural traits, and thus seem to provide a reliable estimate of the sign and magnitude of the
563 genetic relationship (Dochtermann, 2011). At either the phenotypic or at the genetic level, this tight
564 covariance structure suggests limited autonomy for these phenotypes to evolve independently (Hansen
565 & Houle, 2008). This is also observed in other behavioural syndromes (Dochtermann & Dingemanse,
566 2013), and may imply a coordinated social foraging behavioural syndrome. This suggests major
567 evolutionary constraints for how the population mean phenotypic response will evolve in these
568 populations due to selection. Together with the constraining effects on the phenotypic variation in
569 producing and scrounging behaviour due to indirect effects, this suggests limited evolutionary change
570 even under directional selection in this system, leading to potential evolutionary stasis (Wolf *et al.*, 1999;
571 Bijma *et al.*, 2007b; McGlothlin *et al.*, 2010; Santostefano *et al.*, 2017). Ultimately, this tight covariance
572 structure, and persistent constraining effects on the phenotypic variation due to indirect effects, could
573 provide a potential explanation and mechanism for the existence of a phenotypic equilibrium or ESS in
574 sparrow social foraging behaviour.

575

576 In conclusion, this study provides evidence for direct and indirect individual effects in the frequency-
577 dependent producer-scrounger game. The DIs and IIs showed high temporal consistency, but showed
578 modest and low (long-term) repeatability. Individuals opted for purer producer-scrounger tactics, but
579 were highly plastic in their tactics use across trials. The DIs and IIs covaried strongly across producing
580 and scrounging behaviour and imply constraint on evolutionary trajectories. Our findings also indicate the
581 existence of individuals that varied in their social impact on others across traits. The indirect effects
582 decreased the phenotypic variation for both behaviours and illustrate that indirect effects can slow down
583 the rate of evolution. Together the reduced phenotypic variation and trait covariance provide evidence
584 for potential evolutionary stasis that can maintain the equilibrium state at the ESS. Our findings underline
585 the importance of indirect effects and multivariate approaches in light of social evolution, which will allow
586 for better models and understanding of the maintenance of phenotypic variation.

587

588 **Acknowledgements & Funding**

589 This work was supported by funding from the German Science Foundation (DI 1694 5–1, DI 1694 1–2) to
590 CDG, REW and NJD, and the Research Council of Norway (RCN, 325826) to YGA, (RCN, 302619) to
591 ÅMN and HJ, and (SFF-III 223257/ F50) to JW. We thank Jørgen Søraker, Markus Drangsland, Martin
592 Køber Guldvik, Rok Movh, Sophie Larsson and Tuva Zeiner-Henriksen for their help during the fieldwork.
593 We also thank Piter Bijma for assistance with interpretation of the model output.

594

595 **Ethics statement**

596 All experimental procedures conformed with the ethical guidelines concerning the capture and use of
597 animals in research and were approved by the Norwegian Food Safety Authority (FOTS ID 29007) and the
598 Norwegian Bird Ringing Centre.

599

600 **Data & code availability.**

601 Data and code for analyses are available at: https://github.com/C-dG/DIE_IIE_cov_PS

602

603 **References**

604 Abrams, P.A., Harada, Y. & Matsuda, H. 1993. On the relationship between quantitative genetic and ESS
605 models. *Evolution* **47**: 982–985. Oxford University Press.

606 Alarcón-Nieto, G., Graving, J.M., Klarevas-Irby, J.A., Maldonado-Chaparro, A.A., Mueller, I. & Farine, D.R.
607 2018. An automated barcode tracking system for behavioural studies in birds. *Methods in
608 Ecology and Evolution* **9**: 1536–1547.

609 Aplin, L.M. & Morand-Ferron, J. 2017. Stable producer–scrounger dynamics in wild birds: sociability and
610 learning speed covary with scrounging behaviour. *Proceedings of the Royal Society B: Biological
611 Sciences* **284**: 20162872. Royal Society.

612 Araya-Ajoy, Y.G., Mathot, K.J. & Dingemanse, N.J. 2015. An approach to estimate short-term, long-term
613 and reaction norm repeatability. *Methods in Ecology and Evolution* **6**: 1462–1473.

614 Araya-Ajoy, Y.G., Westneat, D.F. & Wright, J. 2020. Pathways to social evolution and their evolutionary
615 feedbacks. *Evolution* **74**: 1894–1907.

616 Bailey, N.W. & Desjonquères, C. 2022. The indirect genetic effect interaction coefficient ψ : Theoretically
617 essential and empirically neglected. *Journal of Heredity* **113**: 79–90.

618 Bailey, N.W., Marie-Orleach, L. & Moore, A.J. 2018. Indirect genetic effects in behavioral ecology: Does
619 behavior play a special role in evolution? *Behavioral Ecology* **29**: 1–11.

620 Barnard, C.J. & Sibly, R.M. 1981. Producers and scroungers: A general model and its application to
621 captive flocks of house sparrows. *Animal Behaviour* **29**: 543–550.

622 Barou-Dagues, M., Hall, C.L. & Giraldeau, L.-A. 2020. Individual differences in learning ability are
623 negatively linked to behavioural plasticity in a frequency-dependent game. *Animal Behaviour*
624 **159**: 97–103.

625 Barta, Z. & Giraldeau, L. 2000. Daily patterns of optimal producer and scrounger use under predation
626 hazard: A state-dependent dynamic game analysis. *The American Naturalist* **155**: 570–582. The
627 University of Chicago Press.

628 Beauchamp, G. 2001. Consistency and flexibility in the scrounging behaviour of zebra finches. *Can. J.
629 Zool.* **79**: 540–544. NRC Research Press.

630 Beauchamp, G. 2000. Learning rules for social foragers: Implications for the producer–scrounger game
631 and ideal free distribution theory. *Journal of Theoretical Biology* **207**: 21–35.

632 Beauchamp, G. & Giraldeau, L.-A. 1997. Patch exploitation in a producer-scrounger system: Test of a
633 hypothesis using flocks of spice finches (*Lonchura punctulata*). *Behavioral Ecology* **8**: 54–59.

634 Bell, A.M., Hankison, S.J. & Laskowski, K.L. 2009. The repeatability of behaviour: A meta-analysis. *Animal
635 Behaviour* **77**: 771–783.

636 Belmaker, A., Motro, U., Feldman, M.W. & Lotem, A. 2012. Learning to choose among social foraging
637 strategies in adult house sparrows (*Passer domesticus*). *Ethology* **118**: 1111–1121.

638 Bergmüller, R. & Taborsky, M. 2010. Animal personality due to social niche specialisation. *Trends in
639 Ecology & Evolution* **25**: 504–511. Elsevier.

640 Bijma, P., Muir, W.M., Ellen, E.D., Wolf, J.B. & Van Arendonk, J.A.M. 2007a. Multilevel selection 2:
641 Estimating the genetic parameters determining inheritance and response to selection. *Genetics*
642 **175**: 289–299.

643 Bijma, P., Muir, W.M. & Van Arendonk, J.A.M. 2007b. Multilevel selection 1: Quantitative genetics of
644 inheritance and response to selection. *Genetics* **175**: 277–288.

645 Caraco, T. & Giraldeau, L.-A. 1991. Social foraging: Producing and scrounging in a stochastic environment.
646 *Journal of Theoretical Biology* **153**: 559–583.

647 David, M., Le Hô, M., Laskowski, K.L., Salignon, M., Gillingham, M.A.F. & Giraldeau, L.-A. 2014. Individual
648 differences in behavioral consistency are related to sequential access to resources and body
649 condition in a producer-scrounger game. *Front. Ecol. Evol.* **2**. Frontiers.

650 de Groot, C., Wijnhorst, R.E., Ratz, T., Murray, M., Araya-Ajoy, Y.G., Wright, J., *et al.* 2023. The
651 importance of distinguishing individual differences in ‘social impact’ versus ‘social

652 responsiveness' when quantifying indirect genetic effects on the evolution of social plasticity.
653 *Neuroscience & Biobehavioral Reviews* **144**: 104996.

654 Dingemanse, N.J. & Araya-Ajoy, Y.G. 2015. Interacting personalities: Behavioural ecology meets
655 quantitative genetics. *Trends in Ecology & Evolution* **30**: 88–97. Elsevier.

656 Dochtermann, N.A. 2011. Testing Cheverud's conjecture for behavioural correlations and behavioural
657 syndromes. *Evolution* **65**: 1814–1820.

658 Dochtermann, N.A. & Dingemanse, N.J. 2013. Behavioral syndromes as evolutionary constraints.
659 *Behavioral Ecology* **24**: 806–811.

660 Ensminger, A.L. & Westneat, D.F. 2012. Individual and sex differences in habituation and neophobia in
661 house sparrows (*Passer domesticus*). *Ethology* **118**: 1085–1095.

662 Flynn, R.E. & Giraldeau, L.-A. 2001. Producer–scrounger games in a spatially explicit world: Tactic use
663 influences flock geometry of spice finches. *Ethology* **107**: 249–257.

664 Frank, S.A. 1998. *Foundations of social evolution*. Princeton University Press.

665 Friard, O. & Gamba, M. 2016. BORIS: A free, versatile open-source event-logging software for
666 video/audio coding and live observations. *Methods in Ecology and Evolution* **7**: 1325–1330.

667 Gamer, M., Lemon, J. & Singh, P. 2019. *Various coefficients of interrater reliability and agreement*. CRAN.

668 Giraldeau, L.-A. & Beauchamp, G. 1999. Food exploitation: Searching for the optimal joining policy.
669 *Trends in Ecology & Evolution* **14**: 102–106. Elsevier.

670 Giraldeau, L.-A. & Caraco, T. 2000. *Social foraging theory*. Princeton University Press.

671 Giraldeau, L.-A. & Dubois, F. 2008. Chapter 2 Social foraging and the study of exploitative behavior. In:
672 *Advances in the Study of Behavior*, pp. 59–104. Academic Press.

673 Giraldeau, L.-A., Soos, C. & Beauchamp, G. 1994. A test of the producer-scrounger foraging game in
674 captive flocks of spice finches, *Lonchura punctulata*. *Behav Ecol Sociobiol* **34**: 251–256.

675 Griffing, B. 1967. Selection in reference to biological groups I. Individual and group selection applied to
676 populations of unordered groups. *Aust. Jnl. Of Bio. Sci.* **20**: 127–140. CSIRO PUBLISHING.

677 Hadfield, J.D. & Thomson, C.E. 2017. Interpreting selection when individuals interact. *Methods in
678 Ecology and Evolution* **8**: 688–699.

679 Han, C.S., Tuni, C., Ulcik, J. & Dingemanse, N.J. 2018. Increased developmental density decreases the
680 magnitude of indirect genetic effects expressed during agonistic interactions in an insect.
681 *Evolution* **72**: 2435–2448.

682 Hansen, T.F. & Houle, D. 2008. Measuring and comparing evolvability and constraint in multivariate
683 characters. *Journal of Evolutionary Biology* **21**: 1201–1219.

684 Ilan, T., Katsnelson, E., Motro, U., Feldman, M.W. & Lotem, A. 2013. The role of beginner's luck in
685 learning to prefer risky patches by socially foraging house sparrows. *Behavioral Ecology* **24**:
686 1398–1406.

687 Jolles, J.W., Aaron Taylor, B. & Manica, A. 2016. Recent social conditions affect boldness repeatability in
688 individual sticklebacks. *Animal Behaviour* **112**: 139–145.

689 Katsnelson, E., Motro, U., Feldman, M.W. & Lotem, A. 2008. Early experience affects producer–
690 scrounger foraging tendencies in the house sparrow. *Animal Behaviour* **75**: 1465–1472.

691 Lendvai, Á.Z., Barta, Z., Liker, A. & Bókony, V. 2004. The effect of energy reserves on social foraging:
692 Hungry sparrows scrounge more. *Proceedings of the Royal Society of London. Series B: Biological
693 Sciences* **271**: 2467–2472. Royal Society.

694 Marie-Orleach, L., Vogt-Burri, N., Mouginot, P., Schlatter, A., Vizoso, D.B., Bailey, N.W., *et al.* 2017.
695 Indirect genetic effects and sexual conflicts: Partner genotype influences multiple morphological
696 and behavioral reproductive traits in a flatworm. *Evolution* **71**: 1232–1245.

697 Martin, J.G.A., Nussey, D.H., Wilson, A.J. & Réale, D. 2011. Measuring individual differences in reaction
698 norms in field and experimental studies: A power analysis of random regression models.
699 *Methods in Ecology and Evolution* **2**: 362–374.

700 Maynard-Smith, J. 1984. Game theory and the evolution of behaviour. *Behavioral and Brain Sciences* **7**:
701 95–101.

702 McGlothlin, J.W., Akçay, E., Brodie, E.D., III, Moore, A.J. & Van Cleve, J. 2022. A synthesis of game theory
703 and quantitative genetic models of social evolution. *Journal of Heredity* **113**: 109–119.

704 McGlothlin, J.W. & Brodie III, E.D. 2009. How to measure indirect genetic effects: The congruence of
705 trait-based and variance partitioning approaches. *Evolution* **63**: 1785–1795.

706 McGlothlin, J.W., Moore, A.J., Wolf, J.B. & Brodie III, E.D. 2010. Interacting phenotypes and the
707 evolutionary process III. Social evolution. *Evolution* **64**: 2558–2574.

708 McNamara, J.M. & Leimar, O. 2020. *Game theory in biology: Concepts and frontiers*. Oxford University
709 Press.

710 McNamara, J.M. & Weissing, F.J. 2010. Evolutionary game theory. In: *Social behaviour: Genes, ecology
711 and evolution*. Cambridge University Press.

712 Milinski, M., Pfluger, D., Külling, D. & Kettler, R. 1990. Do sticklebacks cooperate repeatedly in reciprocal
713 pairs? *Behav Ecol Sociobiol* **27**: 17–21.

714 Moldoff, D.E. & Westneat, D.F. 2017. Foraging sparrows exhibit individual differences but not a
715 syndrome when responding to multiple kinds of novelty. *Behavioral Ecology* **28**: 732–743.

716 Moore, A.J., Brodie, E.D. & Wolf, J.B. 1997. Interacting phenotypes and the evolutionary process: I.
717 Direct and indirect genetic effects of social interactions. *Evolution* **51**: 1352–1362.

718 Morand-Ferron, J. & Giraldeau, L.-A. 2010a. Learning behaviorally stable solutions to producer–
719 scrounger games. *Behavioral Ecology* **21**: 343–348.

720 Morand-Ferron, J. & Giraldeau, L.-A. 2010b. Learning behaviorally stable solutions to producer–
721 scrounger games. *Behavioral Ecology* **21**: 343–348.

722 Mottley, K. & Giraldeau, L.-A. 2000. Experimental evidence that group foragers can converge on
723 predicted producer–scrounger equilibria. *Animal Behaviour* **60**: 341–350.

724 Nafstad, Å.M. 2024. Sources of variation, evolutionary potential and natural selection on components of
725 resting metabolic rate in a wild bird. *In prep.*

726 Nakagawa, S. & Schielzeth, H. 2010. Repeatability for Gaussian and non-Gaussian data: A practical guide
727 for biologists. *Biological Reviews* **85**: 935–956.

728 Pick, J.L., Kasper, C., Allegue, H., Dingemanse, N.J., Dochtermann, N.A., Laskowski, K.L., *et al.* 2023.
729 Describing posterior distributions of variance components: Problems and the use of null
730 distributions to aid interpretation. *Methods in Ecology and Evolution* **14**: 2557–2574.

731 R Core Team. 2023. *R: A Language and Environment for Statistical Computing*. Vienna, Austria.

732 Reichert, M.S., Morand-Ferron, J., Kulahci, I.G., Firth, J.A., Davidson, G.L., Crofts, S.J., *et al.* 2021.
733 Cognition and covariance in the producer–scrounger game. *Journal of Animal Ecology* **90**: 2497–
734 2509.

735 Santostefano, F., Moiron, M., Sánchez-Tójar, A. & Fisher, D.N. 2024. Indirect genetic effects increase the
736 heritable variation available to selection and are largest for behaviours: A meta-analysis.
737 bioRxiv.

738 Santostefano, F., Wilson, A.J., Araya-Ajoy, Y.G. & Dingemanse, N.J. 2016. Interacting with the enemy:
739 Indirect effects of personality on conspecific aggression in crickets. *Behavioral Ecology* **27**: 1235–
740 1246.

741 Santostefano, F., Wilson, A.J., Niemelä, P.T. & Dingemanse, N.J. 2017. Indirect genetic effects: A key
742 component of the genetic architecture of behaviour. *Sci Rep* **7**: 10235. Nature Publishing Group.

743 Stan Development Team. 2024. *RStan: the R interface to Stan*.

744 Stan Development Team. 2017. *ShinyStan: Interactive visual and numerical diagnostics and posterior
745 analysis for Bayesian models*.

746 Taborsky, B. & Oliveira, R.F. 2012. Social competence: an evolutionary approach. *Trends in Ecology &
747 Evolution* **27**: 679–688. Elsevier.

748 Tomkins, J.L. & Hazel, W. 2007. The status of the conditional evolutionarily stable strategy. *Trends in
749 Ecology & Evolution* **22**: 522–528. Elsevier.

750 Tóth, Z., Bókony, V., Lendvai, Á.Z., Szabó, K., Pénzes, Z. & Liker, A. 2009. Effects of relatedness on social-
751 foraging tactic use in house sparrows. *Animal Behaviour* **77**: 337–342.

752 Trubenová, B., Novak, S. & Hager, R. 2015. Indirect Genetic Effects and the Dynamics of Social
753 Interactions. *PLOS ONE* **10**: e0126907. Public Library of Science.

754 Vickery, W.L., Giraldeau, L.-A., Templeton, J.J., Kramer, D.L. & Chapman, C.A. 1991. Producers,
755 scroungers, and group foraging. *The American Naturalist* **137**: 847–863. The University of
756 Chicago Press.

757 Wilson, A.J., Gelin, U., Perron, M.-C. & Réale, D. 2009. Indirect genetic effects and the evolution of
758 aggression in a vertebrate system. *Proc. R. Soc. B.* **276**: 533–541.

759 Wilson, A.J., Morrissey, M.B., Adams, M.J., Walling, C.A., Guinness, F.E., Pemberton, J.M., *et al.* 2011.
760 Indirect genetics effects and evolutionary constraint: An analysis of social dominance in red
761 deer, *Cervus elaphus*. *Journal of Evolutionary Biology* **24**: 772–783.

762 Wolf, J.B., Brodie, E.D., III, Cheverud, J.M., Moore, A.J. & Wade, M.J. 1998. Evolutionary consequences of
763 indirect genetic effects. *Trends in Ecology & Evolution* **13**: 64–69.

764 Wolf, J.B., Brodie III, E.D. & Moore, A.J. 1999. Interacting phenotypes and the evolutionary process. II.
765 Selection resulting from social interactions. *The American Naturalist* **153**: 254–266. The
766 University of Chicago Press.

767 Wolf, M. & McNamara, J.M. 2013. Adaptive between-individual differences in social competence. *Trends
768 in Ecology & Evolution* **28**: 253–254. Elsevier.

769 Wolf, M., van Doorn, G.S. & Weissing, F.J. 2008. Evolutionary emergence of responsive and
770 unresponsive personalities. *Proceedings of the National Academy of Sciences* **105**: 15825–15830.
771 Proceedings of the National Academy of Sciences.

772 Wolf, M. & Weissing, F.J. 2012. Animal personalities: Consequences for ecology and evolution. *Trends in
773 Ecology & Evolution* **27**: 452–461. Elsevier.

774 Wright, J., Haaland, T.R., Dingemanse, N.J. & Westneat, D.F. 2022. A reaction norm framework for the
775 evolution of learning: How cumulative experience shapes phenotypic plasticity. *Biological
776 Reviews* **97**: 1999–2021.

777

778 **Supplemental material**

779 **Supplemental text 1: Univariate models**

780 We fitted Focal ID and social partner IDs as random effects to partition the direct individual effect (DIE)
781 and indirect individual effect (IIE), and their covariance. Variance due to social partner IDs (IIE) was
782 constrained to be equal, since the assignment of social partner IDs was arbitrary. To account for our study
783 design, we fitted (triadic) trial day (1 – 2), and individual trial order (1 – 10), as fixed effects, and TrialID (n
784 = 1997), and GroupID (n = 53) as random effects. Trial order and trial day were mean centred such that
785 the intercept was estimated for the average trial for an individual. We fitted interactions between trial
786 day and trial order to account for habituation effects during the trials. For the 2022 models, we fitted an
787 additional binary fixed effect for individuals that were included for the BMR measurements (n = 127)
788 during the first habituation day. For the 2023 models, we fitted an additional binary fixed effect for
789 individuals that participated in the full group trials before starting the triadic trials (n = 36) to account for
790 habituation effects. Individuals that participated in full group trials prior to triadic trials produced and
791 scrounged more. Therefore, we fitted an additional three-way interaction between trial day, trial order
792 and group trial before to account for differences in habituation at these three levels. For the full dataset,
793 we also fitted year (2022 – 2023) as a fixed effect. Individuals that partook in the BMR measurements
794 prior to habituation did not behave differently, and this parameter was therefore dropped from the full
795 model. The full model provided similar patterns compared to the split models for each year and trial day
796 (see Suppl. Table 2 & 3).

797

798 **Supplemental text 2: Repeatability equations**

799

$$(long - term) \text{ Repeatability} = \frac{\sigma^2 \text{DIE}}{\sigma^2 \text{Total}} \quad \text{Equation 1}$$

800 The variance standardised repeatability is calculated by dividing the variance of a given parameter, in this
801 case the variance for the direct individual effect (DIE), by the total variance, which is the sum of all the
802 variances and the residual variance estimated by the model. For the total variance we summed the
803 product of the IIE multiplied by 2, because a focal individual's phenotype is determined by both its social
804 partners IIEs.

805

$$\text{Short} - \text{term repeatability} = \frac{\sigma^2 \text{DIE} + \sigma^2 \text{Series FocalID, Year}}{\sigma^2 \text{Total}} \quad \text{Equation 2}$$

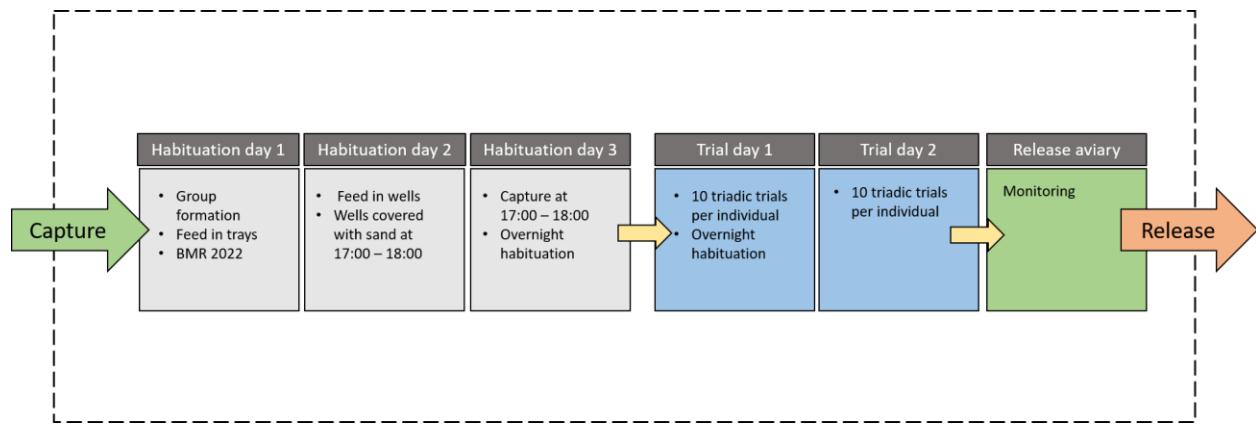
806 The short-term repeatability is calculated by summing the variance of the parameter of interest (i.e. the
807 product for the long-term repeatability) and the variance of the series parameter. The series parameter
808 consists of the index of the focalID and the year of the observation (e.g. Focal_ID152_year2022). For IIEs
809 the series parameter consists of the opponent IDs instead of the focal ID.

810

$$\text{Cross} - \text{year repeatability} = \frac{\sigma^2 \text{DIE}}{\sigma^2 \text{DIE} + \sigma^2 \text{Series FocalID, Year}} \quad \text{Equation 3}$$

811 The cross-year or average repeatability is calculated by dividing the long-term repeatability numerator by
812 the short-term repeatability numerator and represents the average repeatability of the trait across the
813 measurements. In this specific scenario we measured this across two years and thus represents whether

814 individuals are consistent across the two years. Note that the equation to estimate cross-year
815 repeatability does not include any residual variance, but estimates how the short and long-term
816 repeatability relate to one another. For further reading see: Araya-Ajoy YG, Mathot KJ, Dingemanse NJ.
817 2015 An approach to estimate short-term, long-term and reaction norm repeatability. Methods in Ecology
818 and Evolution 6, 1462–1473. (doi:10.1111/2041-210X.12430).


819
820
821

Supplemental text 3: The total social phenotypic effect

$$P\tau^2 = \frac{\sigma^2DIE + \sigma DIE, IIE 2(n - 1) + \sigma^2IIE (n - 1)}{\sigma^2P} \quad \text{Equation 4}$$

822 The total social phenotypic effect ($P\tau^2$) was calculated by dividing the sum of the DIE variance, the
823 covariance between the DIE and IIE, and the IIE variance, divided by the total phenotypic variation. This
824 yields a fraction of variance explained by $P\tau^2$ compared to the total phenotypic variation, and would
825 theoretically set the upper bound for the total heritable variation in a trait due to interacting phenotypes
826 (τ^2). To account for the number of interacting social partners, the covariance between the DIE and the IIE
827 and the IIE variance are multiplied by $n-1$, which is 3 minus 1 in our case. For further reading see: Bijma P,
828 Muir WM, Van Arendonk JAM. 2007 Multilevel selection 1: Quantitative genetics of inheritance and
829 response to selection. Genetics 175, 277–288. (doi:10.1534/genetics.106.062711).

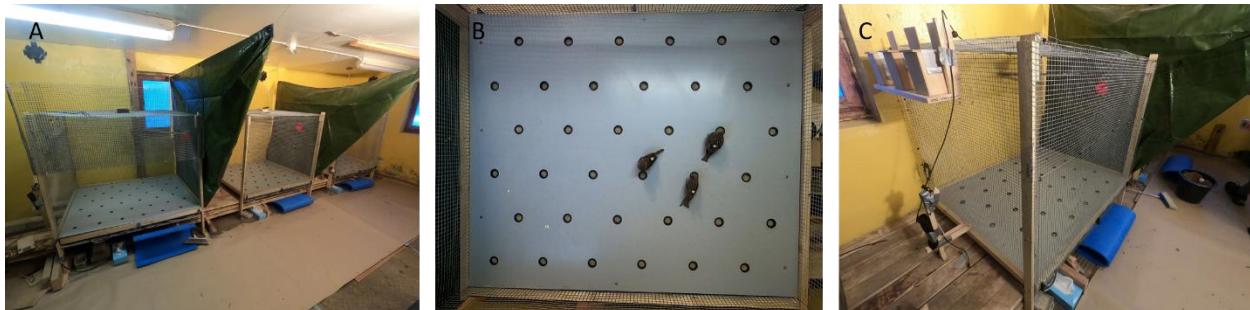
830

831
832
833 **Supplemental Figure 1:** Schematic overview of the steps in the habituation process, experiments and subsequent release.

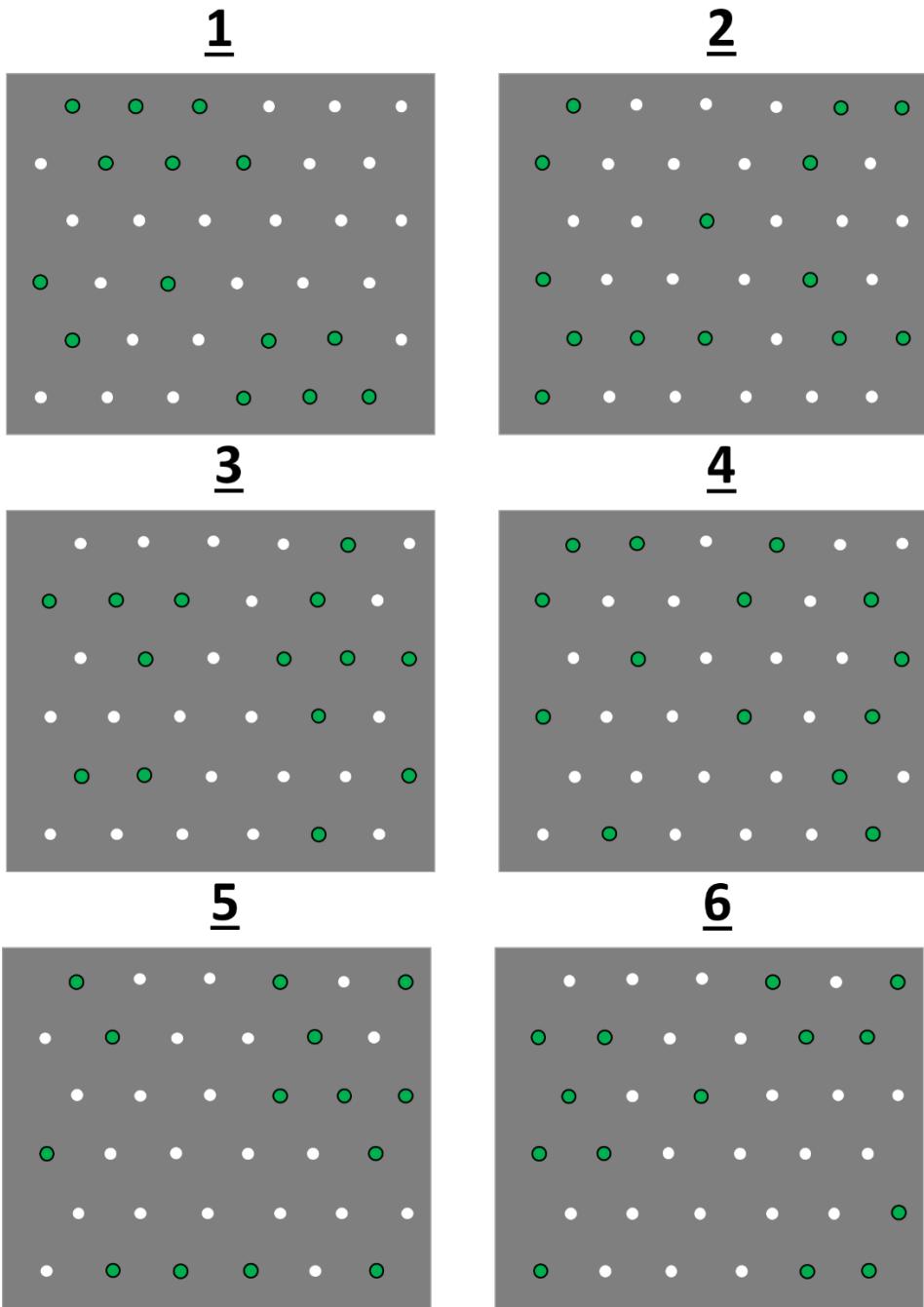
834
835

B

	1					2				
	Feeder 1	Feeder 2	Feeder 3	Sitting out	Sitting out	Feeder 1	Feeder 2	Feeder 3	Sitting out	Sitting out
n1	Blue	Yellow	Yellow	Yellow	Yellow	Yellow	Blue	Blue	Yellow	Yellow
n2	Yellow	Blue	Blue	Blue	Blue	Blue	Yellow	Yellow	Blue	Blue
n3	Yellow	Blue	Blue	Blue	Blue	Blue	Yellow	Yellow	Blue	Blue
n4	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n5	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n6	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n7	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n8	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n9	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n10	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n11	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n12	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n13	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n14	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue



	3					4				
	Feeder 1	Feeder 2	Feeder 3	Sitting out	Sitting out	Feeder 1	Feeder 2	Feeder 3	Sitting out	Sitting out
n1	Blue	Yellow	Yellow	Yellow	Yellow	Yellow	Blue	Blue	Yellow	Yellow
n2	Yellow	Blue	Blue	Blue	Blue	Blue	Yellow	Yellow	Blue	Blue
n3	Yellow	Blue	Blue	Blue	Blue	Blue	Yellow	Yellow	Blue	Blue
n4	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n5	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n6	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n7	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n8	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n9	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n10	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n11	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n12	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n13	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n14	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue

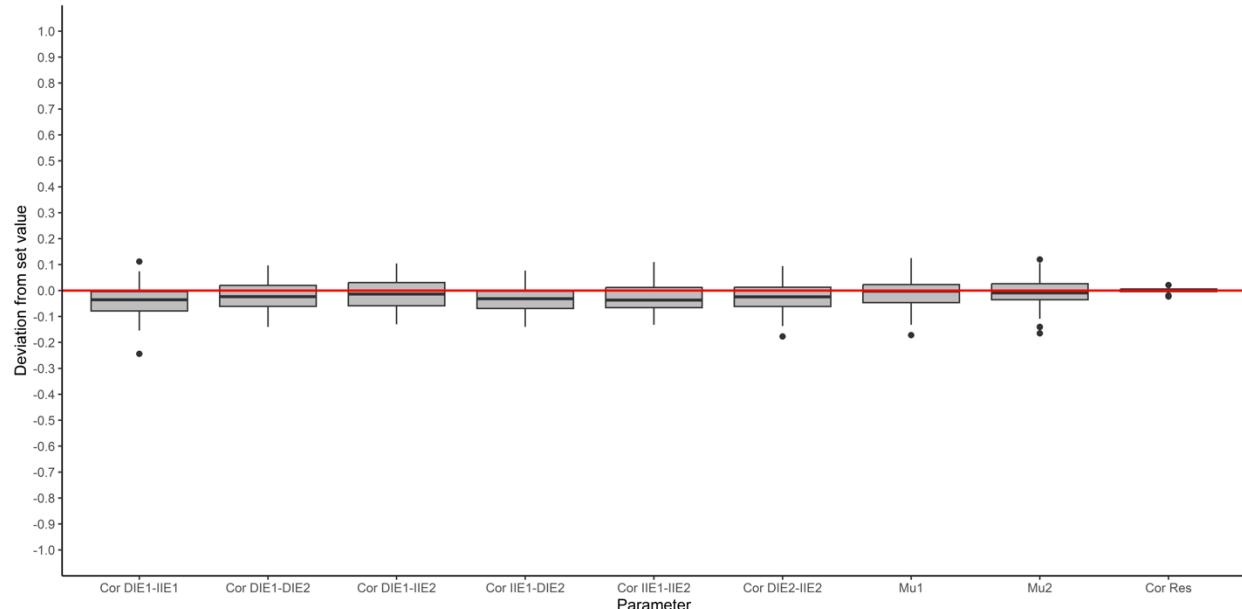


	5					6				
	Feeder 1	Feeder 2	Feeder 3	Sitting out	Sitting out	Feeder 1	Feeder 2	Feeder 3	Sitting out	Sitting out
n1	Blue	Yellow	Yellow	Yellow	Yellow	Yellow	Blue	Blue	Yellow	Yellow
n2	Yellow	Blue	Blue	Blue	Blue	Blue	Yellow	Yellow	Blue	Blue
n3	Yellow	Blue	Blue	Blue	Blue	Blue	Yellow	Yellow	Blue	Blue
n4	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n5	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n6	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n7	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n8	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n9	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n10	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n11	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n12	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n13	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
n14	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue

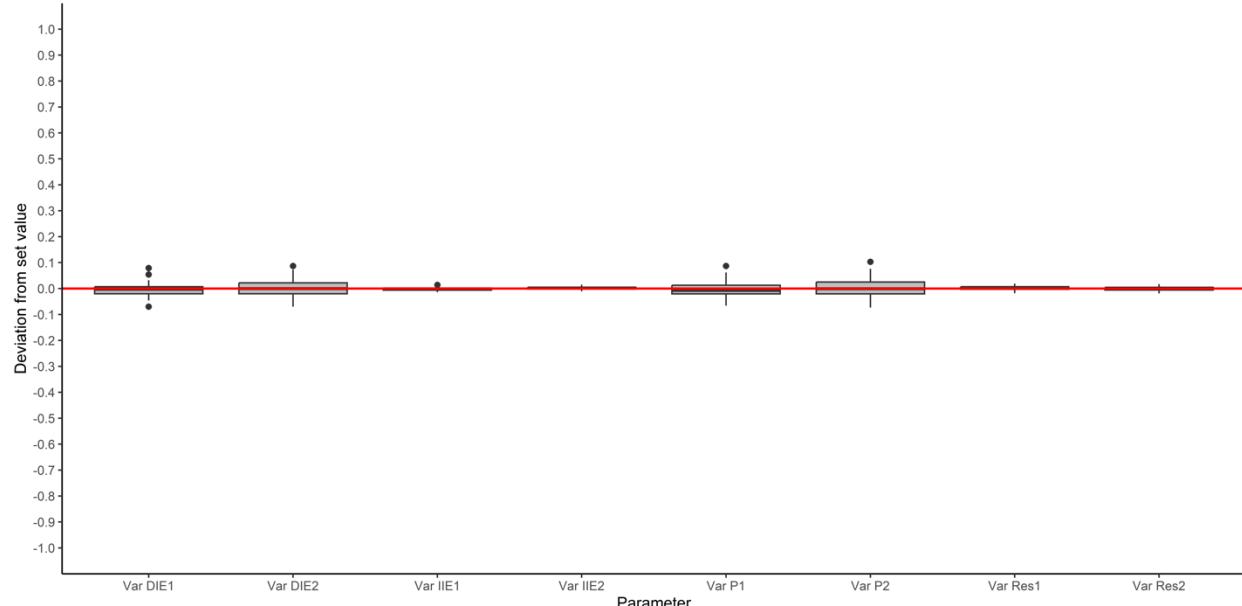
836 **Supplemental Figure 2:** A schematic overview of: (A) the 20 possible combinations used during the experiments to manipulate
837 the social phenotypes to which individuals were exposed to. (B) The 6 different patterns to which triadic combinations can be
838 assigned to the 3 different feeders, the different colours represent the different groups (A – F, G – K). Sitting out individuals did
839 not play a trial but remained in their individual nestbox during a running trial to prevent satiation and maintain motivation
840

841 **Supplemental Figure 3:** Photos of the experimental setup: (A) The 3 checkerboard feeders in caged mesh wire structures in the
842 experimental room. (B) A top down view of the checkerboard feeder during a trial. (C) A side view of a checkerboard feeder with
843 the three individual nestboxes on the left side of the cage construction. A pulley mechanism made with fishing wire was used to
844 open and close the nestbox that was closest to the wall from a distance so birds could more easily be flushed into a nestbox.
845
846

847
848


849 **Supplemental Figure 4:** The 6 randomised patterns of baited wells, the green circles represent wells that are baited with millet
850 seeds and the open circles represent wells filled with only sand. Which order was used to fill a checkerboard feeder for that
851 particular trial was based on a dice roll (1 – 6), where the number of eyes corresponds with the pattern that was used. A second
852 dice roll determined whether the orientation of the pattern with which the feeder was filled non-rotated (1 -3) or rotated by 180
853 degrees (4- 6).

Supplemental Table 1: The ethogram used in BORIS to score the videos, during video analysis. State events have a duration (s) with a start and stop time, whereas point events are counts with a timestamp.


Behaviour	Event type	Category	Description
Search/produce	State event	Foraging	Sieving through sand/beak is visibly in the well.
Join/scrounge	State event	Foraging	Joining a well or feeding from seeds around a well (<2cm) that another individual is sampling from. Includes attempts at joining. Also includes the recipient and outcome of the behaviour (whether 1) the focal individual leaves, 2) the social partner leaves, 3) both leave, 4) both stay , or 5) it is a latent join). Score as latent join when resident left shortly (no longer than 3 seconds) before focal arrived.
Secondary find	State event	Foraging	Same criteria as search, but the well has clear visual cues for seeds.
Feed	Point event	Foraging	Consuming one seed either from board or a well.
Revisit	State event	Foraging	Leaving the well and returning to the same well within less than 10 seconds, without visiting another well or stopping feeding for longer than 5 seconds, but staying at the same well. Includes which behaviour was resumed (Search/Join/Secondary search).
Attack	Point event	Aggression	Short peck or attack launched and not directly reciprocated.
Aggression	Point event	Aggression	Fighting/directly reciprocated attack initiated by the focal individual. Includes the recipient, outcome (whether 1) the focal individual leaves, 2) the social partner leaves, 3) both leave, 4) both stay), and duration (any 0.5 second interval between 0 and 5 seconds, or longer than 5 seconds) of the behaviour.
Display	Point event	Aggression	Wing display or flapping. Count each display or flap.
Board	State event	Methodological	Standing on the board.

Reference tag	Point event	Methodological	The moment the reference tag is tapped on the feeder.
Release	Point event	Methodological	The moment the first bird is released, which indicates the start time of the 15-minute trial.

856

857

858

859

860

861

862

863

Supplemental Figure 5: Boxplots based on the estimated (upper panel) correlations and (lower panel) variances by the bivariate stan model based on 50 simulated datasets with the same structure as the data used in the analyses. The data represented here is based on the median estimate minus the set value for the parameter. Models were fitted with one chain, 2000 warmup iterations and 3000 sampling iterations, similar to the iterations used in the final models. The variances were estimated with little bias, but some of the correlations show some, but overall small bias.

Supplemental Table 2: Posterior medians with the 95% credible intervals between parentheses for producing behaviour for models split per year and trial day, for the direct individual effect (DIE) and indirect individual effect (IIE).

Variable	2022	2022 day1	2022 day2	2023	2023 day1	2023 day2	2022/2023
Fixed effects	β (95% CI)						
Intercept producing	1.464 (1.296 ; 1.636)	1.411 (1.215 ; 1.612)	1.498 (1.303 ; 1.692)	1.489 (1.375 ; 1.601)	1.506 (1.385 ; 1.628)	1.486 (1.366 ; 1.607)	1.545 (1.469 ; 1.623)
Year							-0.116 (-0.246 ; 0.016)
BMR	0.166 (-0.041 ; 0.367)	0.183 (-0.051 ; 0.415)	0.169 (-0.060 ; 0.399)				
Trial order	0.033 (0.018 ; 0.048)	0.035 (0.012 ; 0.057)	0.030 (0.011 ; 0.048)	0.026 (0.008 ; 0.044)	0.048 (0.020 ; 0.077)	0.005 (-0.017 ; 0.028)	0.030 (0.018 ; 0.041)
Trial day	0.109 (0.026 ; 0.193)			-0.012 (-0.114 ; 0.089)			0.063 (-0.033 ; 0.128)
Group trial before	-	-	-	-0.205 (-0.422 ; 0.008)	-0.169 (-0.399 ; 0.064)	-0.261 (-0.495 ; -0.028)	-0.201 (-0.415 ; 0.005)
Trial day * Group trial before	-	-	-	-0.097 (-0.288 ; 0.097)	-0.016 (-0.050 ; 0.017)	-0.031 (-0.081 ; 0.019)	-0.173 (-0.355 ; 0.008)
Trial day * Trial order	-0.005 (-0.027 ; 0.019)	-	-	-0.038 (-0.074 ; 0.001)	-	-	-0.018 (-0.041 ; 0.013)
Trial day * Trial order * Group trial before	-	-	-	0.025 (-0.042 ; 0.093)	-	-	-0.005 (-0.056 ; 0.068)
Random effects	σ^2 (95% CI)						
DIE	0.420 (0.323 ; 0.547)	0.442 (0.319 ; 0.608)	0.441 (0.329 ; 0.589)	0.273 (0.196 ; 0.380)	0.274 (0.178 ; 0.406)	0.295 (0.204 ; 0.422)	0.336 (0.269 ; 0.419)
IIE	0.020 (0.010 ; 0.035)	0.034 (0.014 ; 0.064)	0.019 (0.006 ; 0.038)	0.014 (0.004 ; 0.030)	0.015 (0.001 ; 0.010)	0.019 (0.004 ; 0.048)	0.019 (0.011 ; 0.030)
Group	0.003 (0.000 ; 0.025)	0.005 (0.000 ; 0.047)	0.003 (0.000 ; 0.036)	0.018 (0.006 ; 0.074)	0.010 (0.000 ; 0.067)	0.011 (0.000 ; 0.071)	0.028 (0.009 ; 0.059)
Trial	0.000 (0.000 ; 0.007)	0.002 (0.000 ; 0.016)	0.002 (0.000 ; 0.016)	0.000 (0.000 ; 0.007)	0.001 (0.000 ; 0.015)	0.001 (0.000 ; 0.015)	0.000 (0.000 ; 0.005)
Residual variance	1.214 (1.151 ; 1.283)	1.287 (1.138 ; 1.398)	1.074 (1.097 ; 1.163)	1.096 (1.032 ; 1.165)	1.157 (1.057 ; 1.271)	1.006 (1.024 ; 1.099)	1.175 (1.129 ; 1.223)
Total variance	1.663 (1.542 ; 1.805)	1.781 (1.623 ; 1.970)	1.546 (1.409 ; 1.715)	1.411 (1.309 ; 1.533)	1.468 (1.334 ; 1.631)	1.347 (1.225 ; 1.493)	1.561 (1.478 ; 1.659)
Covariance	σ (95% CI)						
DIE-IIE	-0.063 (-0.092 ; -0.041)	-0.080 (-0.122 ; -0.047)	-0.063 (-0.098 ; -0.035)	-0.043 (-0.067 ; -0.023)	-0.040 (-0.075 ; -0.011)	-0.046 (-0.080 ; -0.018)	-0.056 (-0.075 ; -0.040)
Repeatability	R (95% CI)						
DIE	0.253 (0.205 ; 0.306)	0.249 (0.190 ; 0.315)	0.285 (0.226 ; 0.351)	0.194 (0.145 ; 0.254)	0.187 (0.126 ; 0.258)	0.220 (0.159 ; 0.292)	0.215 (0.179 ; 0.256)
IIE	0.012 (0.006 ; 0.021)	0.019 (0.008 ; 0.036)	0.012 (0.004 ; 0.024)	0.010 (0.003 ; 0.021)	0.010 (0.001 ; 0.028)	0.015 (0.003 ; 0.036)	0.012 (0.007 ; 0.019)
Group	0.002 (0.000 ; 0.015)	0.003 (0.000 ; 0.026)	0.002 (0.000 ; 0.023)	0.014 (0.000 ; 0.051)	0.007 (0.000 ; 0.045)	0.008 (0.000 ; 0.052)	0.018 (0.006 ; 0.038)
Trial	0.000 (0.000 ; 0.004)	0.001 (0.000 ; 0.009)	0.001 (0.000 ; 0.010)	0.000 (0.000 ; 0.005)	0.001 (0.000 ; 0.010)	0.001 (0.000 ; 0.011)	0.000 (0.000 ; 0.002)
Residual	0.731 (0.676 ; 0.780)	0.724 (0.656 ; 0.784)	0.696 (0.630 ; 0.755)	0.778 (0.721 ; 0.825)	0.789 (0.720 ; 0.848)	0.749 (0.680 ; 0.808)	0.753 (0.711 ; 0.790)
Correlations	r (95% CI)						
DIE-IIE	-0.927 (-0.997 ; -0.715)	-0.905 (-0.996 ; -0.647)	-0.907 (-0.997 ; -0.641)	-0.851 (-0.993 ; -0.508)	-0.820 (-0.992 ; -0.350)	-0.746 (-0.986 ; -0.330)	-0.909 (-0.995 ; -0.708)

Supplemental Table 3: Posterior medians with the 95% credible intervals between parentheses for scrounging behaviour for models split per year and trial day for the direct individual effect (DIE) and indirect individual effect (IIE).

Variable	2022	2022 day1	2022 day2	2023	2023 day1	2023 day2	2022/2023
Fixed effects	β (95% CI)						
Intercept scrounging	0.709 (0.594 ; 0.823)	0.766 (0.612 ; 0.917)	0.655 (0.539 ; 0.774)	0.596 (0.532 ; 0.661)	0.581 (0.500 ; 0.660)	0.609 (0.528 ; 0.690)	0.644 (0.599 ; 0.687)
Year	-	-	-	-	-	-	-0.079 (-0.155 ; -0.006)
BMR	-0.034 (-0.161 ; 0.099)	-0.030 (-0.201 ; 0.142)	-0.036 (-0.174 ; 0.102)				
Trial order	0.017 (0.007 ; 0.027)	0.028 (0.012 ; 0.044)	0.006 (-0.006 ; 0.019)	0.021 (0.009 ; 0.034)	0.032 (0.014 ; 0.050)	0.010 (-0.005 ; 0.026)	0.019 (0.011 ; 0.027)
Trial day	-0.110 (-0.167 ; -0.055)			0.040 (-0.030 ; 0.110)			-0.052 (-0.094 ; -0.1010)
Group trial before	-	-	-	0.109 (-0.177 ; 0.234)	0.144 (-0.008 ; 0.298)	0.075 (-0.083 ; 0.230)	0.098 (-0.022 ; 0.219)
Trial order * Group trial before	-	-	-	-0.085 (-0.218 ; 0.047)	-0.039 (-0.036 ; 0.009)	0.014 (-0.016 ; 0.045)	0.012 (-0.112 ; 0.134)
Trial day * Trial order	-0.026 (-0.049 ; -0.002)	-	-	-0.023 (-0.048 ; 0.002)	-	-	-0.022 (-0.038 ; -0.006)
Trial day * Trial order * Group trial before	-	-	-	0.053 (0.008 ; 0.100)	-	-	0.052 (0.010 ; 0.095)
Random effects	σ^2 (95% CI)						
DIE	0.121 (0.089 ; 0.166)	0.124 (0.079 ; 0.184)	0.144 (0.103 ; 0.199)	0.080 (0.054 ; 0.115)	0.092 (0.056 ; 0.141)	0.116 (0.077 ; 0.169)	0.107 (0.083 ; 0.137)
IIE	0.029 (0.019 ; 0.043)	0.036 (0.019 ; 0.062)	0.021 (0.011 ; 0.037)	0.010 (0.004 ; 0.020)	0.018 (0.006 ; 0.035)	0.006 (0.001 ; 0.017)	0.021 (0.014 ; 0.029)
Group	0.012 (0.000 ; 0.034)	0.021 (0.000 ; 0.059)	0.004 (0.000 ; 0.023)	0.006 (0.000 ; 0.024)	0.006 (0.000 ; 0.030)	0.006 (0.000 ; 0.032)	0.005 (0.000 ; 0.016)
Trial	0.001 (0.000 ; 0.016)	0.003 (0.000 ; 0.028)	0.003 (0.000 ; 0.021)	0.001 (0.000 ; 0.015)	0.006 (0.000 ; 0.037)	0.001 (0.000 ; 0.015)	0.001 (0.000 ; 0.008)
Residual	0.547 (0.518 ; 0.579)	0.602 (0.535 ; 0.659)	0.466 (0.430 ; 0.506)	0.500 (0.470 ; 0.532)	0.459 (0.414 ; 0.508)	0.484 (0.444 ; 0.528)	0.532 (0.510 ; 0.554)
Total	0.715 (0.668 ; 0.773)	0.795 (0.729 ; 0.876)	0.644 (0.588 ; 0.709)	0.602 (0.563 ; 0.648)	0.587 (0.534 ; 0.650)	0.619 (0.565 ; 0.684)	0.666 (0.633 ; 0.705)
Covariance	σ (95% CI)						
DIE-IIE	-0.056 (-0.078 ; -0.039)	-0.056 (-0.084 ; -0.034)	-0.055 (-0.080 ; -0.037)	-0.028 (-0.044 ; -0.016)	-0.036 (-0.061 ; -0.001)	-0.023 (-0.043 ; -0.004)	-0.042 (-0.056 ; -0.031)
Repeatability	R (95% CI)						
DIE	0.169 (0.129 ; 0.221)	0.157 (0.074 ; 0.220)	0.223 (0.168 ; 0.288)	0.133 (0.093 ; 0.183)	0.156 (0.097 ; 0.225)	0.188 (0.130 ; 0.256)	0.160 (0.129 ; 0.198)
IIE	0.040 (0.026 ; 0.060)	0.046 (0.024 ; 0.077)	0.033 (0.018 ; 0.056)	0.017 (0.007 ; 0.033)	0.030 (0.010 ; 0.059)	0.009 (0.001 ; 0.027)	0.031 (0.021 ; 0.043)
Group	0.017 (0.000 ; 0.047)	0.027 (0.000 ; 0.073)	0.006 (0.000 ; 0.054)	0.011 (0.000 ; 0.059)	0.010 (0.000 ; 0.050)	0.009 (0.000 ; 0.050)	0.007 (0.000 ; 0.025)
Trial	0.002 (0.000 ; 0.022)	0.004 (0.000 ; 0.035)	0.004 (0.000 ; 0.022)	0.003 (0.000 ; 0.024)	0.010 (0.000 ; 0.063)	0.002 (0.000 ; 0.024)	0.001 (0.000 ; 0.012)
Residual	0.767 (0.714 ; 0.811)	0.759 (0.692 ; 0.817)	0.726 (0.661 ; 0.782)	0.831 (0.781 ; 0.873)	0.782 (0.707 ; 0.848)	0.783 (0.716 ; 0.840)	0.798 (0.759 ; 0.831)
Correlations	r (95% CI)						
DIE-IIE	-0.825 (-0.981 ; -0.620)	-0.790 (-0.987 ; -0.465)	-0.835 (-0.989 ; -0.596)	-0.793 (-0.988 ; -0.453)	-0.736 (-0.982 ; -0.353)	-0.739 (-0.988 ; -0.215)	-0.748 (-0.914 ; -0.583)

Supplemental Table 4: Posterior medians with the 95% credible intervals between parentheses for producing and scrounging behaviour for cross-year repeatability models for the direct individual effect (DIE) and indirect individual effect (IIE).

Variables	Producing	Scrounging
Fixed effects	β (95% CI)	β (95% CI)
Intercept	1.544 (1.474 ; 1.615)	0.644 (0.599 ; 0.687)
Year	-0.110 (-0.231 ; 0.015)	-0.080 (-0.159 ; -0.004)
Trial order	0.030 (0.019 ; 0.042)	0.019 (0.011 ; 0.027)
Trial day	0.064 (-0.001 ; 0.128)	-0.053 (-0.096 ; -0.009)
Group trial before	-0.208 (-0.401 ; -0.020)	0.104 (-0.018 ; 0.231)

<i>Trial day * Group trial before</i>	-0.170 (-0.354 ; 0.011)	0.010 (-0.114 ; 0.133)
<i>Trial day * Trial order</i>	-0.018 (-0.041 ; 0.004)	-0.022 (-0.038 ; -0.007)
<i>Trial order * Group trial before</i>	-0.019 (-0.051 ; 0.011)	-0.011 (-0.032 ; 0.010)
<i>Trial day * Trial order * Group trial before</i>	0.006 (-0.056 ; 0.069)	0.053 (0.010 ; 0.096)
<i>Random effects</i>	σ^2 (95% CI)	σ^2 (95% CI)
<i>DIE</i>	0.242 (0.135 ; 0.343)	0.083 (0.048 ; 0.118)
<i>IIE</i>	0.013 (0.003 ; 0.025)	0.012 (0.001 ; 0.023)
<i>Trial</i>	0.008 (0.000 ; 0.036)	0.004 (0.000 ; 0.015)
<i>Group</i>	0.000 (0.000 ; 0.003)	0.001 (0.000 ; 0.009)
<i>Series DIE</i>	0.109 (0.047 ; 0.214)	0.022 (0.003 ; 0.053)
<i>Series IIE</i>	0.005 (0.000 ; 0.016)	0.008 (0.000 ; 0.021)
<i>Residual</i>	1.162 (1.115 ; 1.211)	0.527 (0.506 ; 0.549)
<i>Total</i>	1.564 (1.481 ; 1.664)	0.682 (0.647 ; 0.722)
<i>Covariance</i>	σ (95% CI)	σ (95% CI)
<i>DIE-IIE</i>	-0.038 (-0.060 ; -0.013)	-0.028 (-0.047 ; -0.005)
<i>series DIE-IIE</i>	-0.014 (-0.038 ; 0.000)	-0.012 (-0.033 ; 0.000)
<i>Repeatability</i>	R (95% CI)	R (95% CI)
<i>DIE</i>	0.155 (0.087 ; 0.211)	0.123 (0.071 ; 0.167)
<i>IIE</i>	0.008 (0.002 ; 0.016)	0.018 (0.002 ; 0.034)
<i>Trial</i>	0.000 (0.000 ; 0.002)	0.001 (0.000 ; 0.013)
<i>Group</i>	0.005 (0.000 ; 0.023)	0.006 (0.000 ; 0.022)
<i>Series DIE</i>	0.070 (0.030 ; 0.136)	0.032 (0.005 ; 0.078)
<i>Series IIE</i>	0.003 (0.000 ; 0.010)	0.011 (0.000 ; 0.030)
<i>Residual</i>	0.743 (0.701 ; 0.780)	0.774 (0.735 ; 0.809)
<i>Cross-year rep DIE</i>	0.693 (0.403 ; 0.866)	0.794 (0.495 ; 0.965)
<i>Cross-year rep IIE</i>	0.745 (0.179 ; 0.997)	0.633 (0.065 ; 0.985)
<i>Correlations</i>	r (95% CI)	r (95% CI)
<i>DIE-IIE</i>	-0.881 (-0.994 ; -0.561)	-0.742 (-0.970 ; -0.385)
<i>series DIE-IIE</i>	-0.814 (-0.993 ; 0.167)	-0.844 (-0.994 ; -0.081)

	<i>Full</i>	<i>Unadjusted</i>
<i>Covariance</i>	σ (95% CI)	σ (95% CI)
<i>Trial</i>	0.039 (0.030 ; 0.049)	0.044 (0.033 ; 0.054)
<i>Group</i>	0.000 (-0.009 ; 0.008)	0.001 (-0.009 ; 0.011)
<i>Correlations</i>	r (95% CI)	r (95% CI)
<i>Trial</i>	0.981 (0.901 ; 0.999)	0.983 (0.907 ; 0.999)
<i>Group</i>	-0.098 (-0.920 ; 0.846)	0.075 (-0.831 ; 0.878)

874

875 **Supplemental Table 5:** Posterior medians with 95% credible intervals (in parentheses) for the full and unadjusted bivariate
 876 models for covariance and correlation estimates for trial, group-level effects.