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ABSTRACT

Arachnids represent a diverse and ecologically influential paraphyletic assemblage of chelicerate arthropods
that has colonized virtually every terrestrial habitat. Arachnids contribute to ecosystems as predators, parasites
and decomposers. Yet, the chemical mechanisms that allow arachnids to interact with the environment remain
strikingly understudied relative to their taxonomic breadth. Much of what is known for insect chemical
communications has yet to be investigated for arachnids. Compared to insects, arachnids lack antennae and
only share two out of three chemo-receptor families which mediate chemoreception across Insecta. The
sophisticated and structural diversity with which arachnids taste and smell recently gained appreciation. Here,
we compare the diverse modified appendages that enable gustation and olfaction of arachnids: from pectines
of scorpions and malleoli of solifuges to the Haller’s organ of ticks and the antenniform legs of amblypygids.
The detected chemical information mediates basic behaviours including mate recognition and choice, social
interactions, prey or host detection and predator avoidance.

Our review provides a comprehensive synthesis of arachnid chemical ecology, from sensory detection to
behavioural response. We provide an overview of the diversity of arachnid behaviours in response to
semiochemicals, from pheromones through cuticular hydrocarbons to kairomones. The few identified
semiochemicals produced by arachnids are likewise discussed and compared against those of the better
studied insects. We catalogue the underlying morpho-anatomy of chemosensory organs across Arachnida and
discuss where investigations could yet reveal chemosensory structures. We record the electrophysiological
evidence linking sense organs to specific semiochemicals as well as sense organs to behavioural responses,
highlighting the technical challenges and recent methodological advancements.

Yet critical questions persist for the chemical ecology of Arachnida: Which chemoreceptor families detect
pheromones, kairomones, and other semiochemicals? Where are the chemosensory organs located on the
body, apart from the few that have been identified? Recent advances in genomics, transcriptomics,
electrophysiology, and metabolomics now offer unprecedented opportunities to bridge knowledge gaps.
Comparative analyses of chemoreceptor gene candidates amongst transcript profiles, coupled with computer
tracked behavioural assays, are beginning to reveal the molecular and neural mechanisms that shape arachnid
chemical communication. We identify the ongoing challenges that can now be addressed with improved
methodology. Particularly the scarcity of identified pheromones across most Arachnida or the near absence of
integrative studies in smaller, historically neglected orders. By integrating perspectives from evolutionary
biology, chemical ecology at different spatial scales, neurology and metabolomics, we outline priority
directions for future research to uncover the breadth, complexity, and evolutionary origins of chemical
communication across Arachnida.

Key words: ticks, spiders, mites, sensory morphology, electrophysiology, Chelicerata, metabolomics, sensory
ecology, chemical communication, Arachnida
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| Introduction

Arachnids are a remarkably diverse and ecologically significant group of arthropods encompassing spiders,
scorpions, ticks, mites, and several lesser-known groups (Fig. 1). Over 120,000 species of arachnids have
been described (World Arachnid Catalog, 2026), with estimates suggesting that the true number could be
two to three times higher due to under-sampling and cryptic diversity (Zhang, 2013). This highlights the
exceptional evolutionary success of arachnids across ecosystems.

Arachnids occupy virtually every terrestrial and many aquatic environments. Across ecosystems, they
function as predators regulating arthropod populations, parasites of animals and plants, detritivores
contributing to nutrient cycling, and prey supporting higher trophic levels. Collectively, these roles position
arachnids as central drivers of food web structure, ecosystem stability, and, in some cases, disease dynamics
(Moro, Chauve & Zenner, 2005; Pekar & Raspotnig, 2022; Foelix, 2025).

Survival and reproductive success of arachnids rely on a suite of finely tuned sensory modalities.
Mechanoreception and vision contribute for some species to prey capture and navigation; however,
chemosensation plays the pivotal role in mediating interactions with conspecifics, predators, hosts and the
environment, especially in the many blind species. Chemical information, whether airborne (i.e., olfaction) or
substrate-bound (i.e., gustation), are integral for mate location, aggregation, prey detection, and predator
avoidance (Uhl, 2013; Fischer, 2019). Acknowledging the ecological significance of chemosensation for
arachnids, fundamental questions remain unanswered: How do different chemosensory organs function in
tandem or in isolation? What molecular receptors underlie the detection of specific semiochemicals? Which
semiochemicals are used to transfer information and how do the biosynthetic pathways of chemical signals
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relate with phylogeny? To what extent is chemosensory behaviour shaped by context, phylogenetic
constraints, or convergent evolution?

Chemical communication in arachnid is facilitated by a diverse array of chemosensory organs, including
specialized sensilla on unique appendages, such as the pectines of scorpions (Wolf, 2017), or specific organs
such as the Haller’s organ of ticks (Faraone, 2022). The diversity of these sensory systems and their
behavioural outputs mirror the ecological niches and evolutionary histories of each arachnid lineage.
However, detailed knowledge of chemosensory function is limited to a few model taxa—particularly
araneomorph spiders and parasitiform ticks—leaving most arachnid lineages comparatively unexplored. In
this review, we synthesize current knowledge of chemosensory systems and chemical communication across
major arachnid lineages, highlighting both established findings and critical gaps.

(1) Biodiversity of Arachnids

“Arachnids” are considered paraphyletic within the Chelicerata (Sharma & Gavish-Regev, 2024). Modern
phylogenetic hypotheses of Chelicerata nest the horseshoe crabs and seaspiders among the Arachnida.
“Arachnida” thus comprises eleven extant orders (Table 1), together representing a wide spectrum of life
histories and sensory adaptations relevant to chemical ecology.

Table 1: “Arachnid” orders based on the phylogeny presented in Sharma & Gavish-Regev, 2024

Accepted
Order Common name species | Reference
Araneae Spiders 53,644 World Spider Catalog, 2026
Acariformes Mites 42,096 | Zhang, 2013
Parasitiformes Mites and Ticks 12,377 Zhang, 2013
Opiliones Harvestmen 6,686 Kury et al., 2026
Pseudoscorpiones | Pseudoscorpions 4,208 World Pseudoscopriones Catalog, 2026
Scorpiones Scorpions 2,750 Santibafiez-Lépez et al., 2023
Pycnogonida Seaspiders 1,591 Bamber et al., 2026
Solifugae Camel spiders 1,221 World Solifugae Catalog, 2026
Schizomida Short-tailed whip-scorpion 376 World Schizomida Catalog, 2026
Amblypygi Whip spiders 279 World Amblypygi Catalog, 2026
Palpigradi Microwhip scorpion 139 World Palpigradi Catalog, 2026
Uropygi Whip scorpions 128 World Uropygi Catalog, 2026
Ricinulei Hooded tickspiders 103 World Ricinulei Catalog, 2026
Xiphosura Horseshoe crabs 4 Lamsdell, 2020

Each arachnid order possesses unique morphological and behavioural adaptations that influence their

modes of chemical communication. The following sections summarize general features of these groups and

provide insights into their known or potential roles in chemosensation. Chemical ecology provides a

powerful lens for examining behavioural and evolutionary processes in arachnids. Olfactory-mediated

behaviours influence prey capture strategies, predator avoidance, mate selection, and social structuring (Uhl

& Elias, 2011; Foelix, 2025).
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Fig. 1: Photographs of selected arachnids. (A) Steatoda nobilis (Araneae: Theridiidae, photo: AF), (B)
Trombidium holosericeum (Acariformes: Trombidiidae, photo: AF), (C) Ixodes scapularis (Parasitiformes:
Ixodidae, photo: AF), (D) Opilio canestrinii (Opiliones: Phalangiidae, photo: AF), (E) Lamprochernes nodosus
(Pseudoscorpiones: Chernetidae, photo LR), (F) Heterometrus laoticus (Scorpiones: Scorpionidae, photo: AF),
(G) Pycnogonum litorale (Pycnogonida: Pycnogonidae, photo: Jesus Ballesteros), (H) Galeodes sp. (Solifugae:
Galeodes, photo: AF), (1) Hubbardia sp. (Schizomida: Hubbardiidae, photo: Dr. Marshal Hedin), (J) Damon
medius (Amblypygi: Phrynichidae, photo: AF), (K) unidentified Palpigradi (photo: Jillian Cowles), (L)
Mastigoproctus giganteus (Uropygi: Thelyphonidae, photo: AF), (M) Cryptocellus narino (Ricinulei:
Ricinoididae, photo: Dr. Giovanni Talarico), (N) Limulus polyphemus (Xiphosura: Limulidae, photo: AF).

(2) General Introduction on each Order

Spiders (Araneae)

Spiders (Fig. 1A) are the most speciose arachnid with over 53,500 species categorized within 120
families (World Spider Catalog, 2026). Spiders are unwarrantly perceived as infamous (Mammola et al.,
2025) given that arachnophobia is the most commonly reported biophobia (Zeller et al., 2025). However,
spiders are generally (99.5% of them) harmless for humans (Hauke & Herzig, 2017). While mostly safe for
humans, spiders are important predators of arthropods, contributing to ecosystem functions by limiting
insect populations and indirectly shaping plant communities and diversity (Nyffeler & Birkhofer, 2017;
Cardoso et al., 2025). The ecological niches of spiders are as diverse as spiders themselves, some spiders are
sessile on webs, or in silk-lined crevices, while others hunt cursorily (Foelix, 2025). Spiders are divided into
three suborders: Mesothelae, the tarantula containing Mygalomorphae, and the hyperdiverse
Araneomorphae (Wheeler et al., 2017). Chemical communication has been observed in the Mygalomorphae
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(Dor et al., 2008) and is relatively best studied in the Araneomorphae (Schulz, 2004, 2013; Gaskett, 2007; Uhl
& Elias, 2011; Uhl, 2013; Fischer, 2019; Foelix, 2025). No experimental investigation of chemical
communication of Mesothelae spiders is known to us with rare reports suggesting chemosensation by
Mygalomorphs (Dor et al., 2008). Spiders taste substrate-bound molecules via tip-pore sensilla primarily
located on their legs, pedipalps and mouthparts (Foelix, 1985a; Tichy et al., 2001; Ganske & Uhl, 2018;
Muller, Ganske & Uhl, 2020; Talukder et al., 2025a). Olfactory perception (i.e., smelling) of sex pheromones
has been attributed to wall-pore sensilla that are likewise located on the spider’s leg (Talukder et al., 2025b).
Sex pheromones facilitate mate choice of male and female spiders by mediating attraction and courtship and
providing fitness information. Interestingly, the biosynthetic pathways of the few identified pheromones
differ widely across spider phylogeny. Spiders use pheromones to communicate among males and among
females (Scott et al., 2015a; Fischer et al., 2023a). Prey is detected chemically (Jackson & Cross, 2015), while
in specialized spiders even attracted by scent (Haynes et al., 2002). Danger, such as predators, may be
detected and avoided via chemical information (Shannon, Kutz & Persons, 2022; Narimanov et al., 2024).

The Acariformes (Fig. 1B) and Parasitiformes (Fig. 1C) groups comprise over 54,617 described
arachnid species (Zhang, 2013). They may be found in nearly all terrestrial and freshwater habitats and
display a wide range of diets—predatory, parasitic, saprophagous, and phytophagous. Most lack visual
organs and instead rely heavily on chemosensation for intra- and interspecific communication. The common
distinction between mites and ticks is not taxonomically accurate. Mites (Fig. 1B) are paraphyletic and
encompass much of Parasitiformes (e.g., Mesostigmata, Opilioacarida) and all of Acariformes
(Trombidiformes, Sarcoptiformes). While ticks (Fig. 1C) belong to the order Ixodida within the superorder
Parasitiformes. Ticks are obligate ectoparasites feeding on mammals, birds, reptiles, and amphibians. Ticks
locate hosts via chemical cues like CO,, heat, and host odours using Haller’s organ (Carr et al., 2017; Josek,
Allan & Alleyne, 2018; Faraone, 2022). Ticks also use pheromones for aggregation and mating, which are
critical for survival and potential targets for control strategies (Carr & Roe, 2016).

Mesostigmata includes mites with diverse life histories in soil, litter, nests, and on plants. Parasitism has
evolved independently multiple times and constitute a small part of clades grouping predatory and
saprophagous species (Dowling & OConnor, 2010). Families like Dermanyssidae and Macronyssidae affect
poultry, while Varroidae and Laelapidae impact beekeeping. These mites use volatile kairomones to detect
hosts (Light et al., 2020; Auffray et al., 2022). Predatory Phytoseiidae respond to herbivore-induced plant
volatiles (Maeda & Takabayashi, 2001), and aggregation pheromones are known in several groups (e.g.
Entrekin & Oliver, 1982), though sex pheromones remain largely unstudied. Acariformes show even greater
ecological and feeding diversity, including terrestrial, aquatic, and marine forms and may be predatory,
parasitic, saprophagous, or phytophagous (Lindquist, 1999). Sarcoptiformes include dust mites, cheese
mites, scabies mites (Astigmata), and soil-dwelling Oribatida. Trombidiformes are highly diverse, with
predators (e.g., Trombidiidae), plant pests (e.g., Tetranychidae), and vertebrate parasites (e.g.,
Trombiculidae). Some species show stage-specific behaviour, such as parasitic larvae (e.g., chigger mites)
and predatory adults.

Opiliones (Fig. 1D), commonly known as harvestmen, constitute the third largest arachnid order with
over 6,600 described species (Kury et al., 2026), which lack venom or silk glands. Harvestmen occur across
terrestrial ecosystems and function as generalist predators and scavengers. Contact chemoreception is used
to find food (Willemart et al., 2007) and they utilize their second pair of legs as specialized antenniform
organs to perceive the environment (Gainett et al., 2017). Chemical defenses are particularly well described
which are secreted via ozopores (Hara, Cavalheiro & Gnaspini, 2005). Pheromones have not yet been
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identified, whereas ethological evidence suggests chemical communication to mediate mate choice and
aggregation behaviour (Donaldson & Grether, 2007; Fernandes et al., 2017).

With over 4,000 species, pseudoscorpions (Fig. 1E) are small predators commonly found in leaf litter,
under bark, and in soil habitats. Despite their ubiquity and potential role in soil ecosystems, chemosensory
studies remain sparse (Stemme & Pfeffer, 2022).

Scorpions (Fig. 1F) represent a major extant lineage within Arachnida, with roughly 2,750 described
species. Their chemosensory systems include specialized ventral comb-like appendages called pectines
(Wolf, 2017), which are thought to play a role in both substrate-borne and airborne chemical detection.
Scorpions use chemosensory information for mate location, prey tracking, and territorial marking according
to behavioural reports and the semiochemicals involved are yet to be identified. Although less extensively
studied than in spiders or ticks, recent research has begun to elucidate the molecular basis of scorpion
olfaction and its behavioural relevance (Wolf, 2008, 2017; Oviedo-Diego et al., 2021).

Pycnogonida (Fig. 1G), Solifuges (Fig. 1H), Schizomida (Fig. 11), Amblypygi (Fig. 1J) Palpigradi (Fig.
1K), Uropygi (Fig. 1L) Ricinulei (Fig. 1M) and Xiphosura (Fig. 1N) are less specious arachnid orders, often
referred to as lower or the “neglected arachnids” (Harvey, 2002). These arachnids exhibit an array of
behaviours which suggest chemosensory adaptations — but studies to substantiate are few (Botton, Loveland
& Jacobsen, 1988; Talarico, Palacios-Vargas & Alberti, 2007, 2008; Chapin & Hebets, 2016; Hebets et al.,
2024).

Il Semiochemicals and Behavioural Evidence of Chemosensation in “Arachnida”

Semiochemicals play a pivotal role in mediating both intra- and interspecific behaviours among chelicerates,
encompassing a vast array of ecological contexts including mate choice, aggregation, alarm signaling, host
and prey detection and defense. Chemical information can be broadly categorized into pheromones, which
facilitate communication between conspecifics, and allelochemicals, which mediate interactions between
different species. Allelochemicals are further subdivided into kairomones (i.e., benefiting the receiver),
allomones (i.e., benefiting the emitter), and synomones (i.e., benefiting both parties) (Wyatt, 2014). Insects
have been best studied for their chemical ecology, while research on arachnids remains comparatively
underdeveloped. Here we accumulate evidence that highlights the essential role of chemical signals across
chelicerate taxa.

(1) Pheromones and Reproductive Semiochemistry

Pheromonal communication is vital to reproductive success in chelicerates, orchestrating a series of
behaviours including mate location, species recognition, assessment of partner quality, and mating itself
(Johansson & Jones, 2007). Chemical signals mediate a hierarchical sequence of mate choice decisions to
narrow the pool of potential partners (Andersson & Simmons, 2006). The primary level is mate recognition,
encompassing both species and sex identification (Ptacek, 2000). For many arachnids, volatile long range
pheromones, or upon contact, cuticular (or silk borne) inform the receiver that the sender is a fertile
conspecific of the opposite sex.

Once a potential mate is recognized it is favourable to assess their quality. Pheromones vary among
individuals and may reflect their quality when dependent on the condition of the signaller (Laidre &
Johnstone, 2013). Pheromones that are metabolically costly to produce or depend on the nutritional status
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can serve as ‘honest signals’ of phenotypic condition, revealing information about the signaler’s body size or
weight, parasite load and by proxy, their reproductive value (Hamilton & Zuk, 1982; Johnstone & Grafen,
1993). Consequently, variations in pheromone composition or quantity enable the choosing sex to
discriminate among potential mates, driving the evolution of elaborate and diverse chemical courtships via
sexual selection.

Spiders exhibit an impressive array of pheromone-mediated reproductive strategies. Of over 53,500
species, sex pheromonal structures have been identified in only 19 species so far (Figs. 2 A+B), work that has
been pioneered by Stefan Schulz (reviewed in Schulz, 2013). Female spider pheromones serve to attract
mates or release courtship, or both (Figs. 2 B+C) (Uhl, 2013; Fischer, 2019). In the widow spiders
(Theridiidae: Latrodectinae), nitrogenous pheromones (Fig. 2C) are produced in greater quantities during
peak mating season (Fischer et al., 2025a) and are constrained under conditions of starvation (Fischer et al.,
2024) or aging (Waner et al., 2018), suggesting significant metabolic investment. The male courtship
investment was observed to be dose dependent of female pheromone (Fischer et al., 2022, 2024), indicating
potential honest signaling. The production cost of pheromone likely varies across taxa, species like Argiope
bruennichi (Araneae: Araneidae) and Cupiennius salei (Araneae: Trechaleidae) employ citric acid-derived
pheromones (Fig. 2C) (Papke et al., 2000; Chinta et al., 2010), which are presumably less costly to produce
than amino-acid derived pheromones (Fig. 2C). Differing constraints in pheromone production could be
investigated in spiders, as pheromones evolved from metabolic pathways with apparent different
production costs.

Across investigated species, immature male spiders accelerate their maturity in response to female sex
pheromone, a tactic that results in smaller males that aim to secure available mates (Kasumovic & Andrade,
2006; Cory & Schneider, 2017; Fischer et al., 2020). Males may also change their reproductive strategy
depending on their experience of female scent (Nessler, Uhl & Schneider, 2009). Male spiders may emit
pheromones to manipulate female receptivity, such as the only identified male spider pheromone, (2)-9-
tricosene of Pholcus beijingensis (Araneae: Pholcidae) that acts as an aphrodisiac (Xiao, Zhang & Li, 2010).
Other male pheromones are suggested by behavioural studies such as the induction of female quiescence
(Becker, Riechert & Singer, 2005; Cargnelutti et al., 2023; Kralj-Fiser et al., 2025). Further, males of various
black widow spiders suppress rival attraction with pheromone on their courtship silk (Scott et al., 2015a)
either by inhibiting the female mate call, or by repelling rival males directly. The courtship silk of these males
likely also contains aphrodisiac pheromones which increases the likelihood of mating (DiRienzo et al., 2019;
Golobinek, Gregori¢ & Kralj-Fiser, 2021).
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Trechaleidae: Cupiennius salei Theridiidae: Latrodectus hesperus
Fig. 2 Overview of female spider pheromones. (A) Representation of ~53,500 spider species (dots) of which
19 (red dots) have a chemical structure identified based on bioassay of synthetic pheromone. (B) Phylogeny
of spider families (after (Kulkarni, Wood & Hormiga, 2023) and number of species thereof to which
pheromonal structures were assigned. The chemical class of the identified pheromones as well as the
modality of their perception were assigned. (C) Examples of spider pheromone structures. Argiope
bruennichi (Araneidae): (1) trimethyl (2R,3S)-methylcitrate which attracts males (Chinta et al., 2010);
Cupiennius salei (Trechaleidae): (2) S-dimethyl citrate which elicits courtship (Papke et al., 2000); Linyphia
triangularis (Linyphiidae): (3) (R,R)-3-(3-hydroxybutyroloxy)butyric acid which elicits courtship and
autocatalytically forms 3-hydroxybutyric acid (4) which attracts males, whereas the resulting crotonic acid
(5) could not be linked to any behavior (Schulz & Toft, 1993); Latrodectus hesperus (Theridiidae): (6) N-3-
methylbutanoyl-O-methylpropanoyl-L-serine which elicits male courtship and slowly hydrolyzes to release
the mate-attractant isobutyric acid (7), while N-3-methylbutanoyl-serine (8) accumulates on the web with
unknown biological function (Fischer et al., 2025a). Colors link selected chemical classes in (B) to structures
in (C). The arrows in (B) refer to the functional transition of gustatory to olfactory pheromone components.

In ixodid ticks, a particularly well-characterized sex pheromone is 2,6-dichlorophenol. This phenol is
synthesized by partially engorged females and detected by conspecific males using the Haller’s organ. The
pheromone induces anemotaxis and initiates courtship behaviours in species such as Dermacentor variabilis,
Rhipicephalus appendiculatus, and Amblyomma variegatum (Parasitiformes: Ixodidae; Sonenshine et al.,
1976; Waladde, 1982). Volatile signals are especially important in environments where ticks are sparse and
direct encounters between potential mates are rare. Electrophysiological responses to the phenol have been
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documented, affirming its strong excitatory effect on male sensory neurons (de Bruyne & Guerin, 1998;
Josek et al., 2021).

The parasitiform mite Varroa destructor (Parasitiformes: Varroidae) evolved a complex
semiochemical system. Females produce a multi-component sex pheromone composed of fatty acids and
esters, including palmitic acid and ethyl oleate, which attracts males inside sealed brood cells during mating
(zZiegelmann et al., 2013; HauRermann et al., 2015). These signals are tightly integrated with host-derived
kairomones that guide mites to suitable brood cells, exemplifying how reproductive and foraging
information can be interlinked. In some predatory parasitiform mites, not only has the emission of
uncharacterized sex pheromones by females been demonstrated (Rock, Monroe & Yeargan, 1976), but also
by immature females (Hoy & Smilanick, 1979), which males track and guard before adult emergence as part
of sexual competition.

In Acariformes, males of at least two Tetranychus (Acariformes: Tetranychidae) species are attracted
by a sex pheromone emitted by quiescent female deutonymphs (Cone et al., 1971), then engage in
precopulatory guarding until adult females emerge. In case a female emerges unguarded, these virgin
females continue to emit mate-attracting pheromone until they are mated (Oku et al., 2005). To our
knowledge, none of these pheromones has been chemically characterized to date.

Among harvestmen, males are known to respond to female-derived information —either from the
cuticle or secreted onto substrates—by initiating courtship, including penis exposure and stroking
behaviours (Fernandes et al., 2017). Though specific chemical identities remain unknown, evidence strongly
supports pheromonal mediation of these behaviours. Males of many harvestment species present a nuptial
gift secretions on their pensises which are transferred orally to the female, seemingly to convey chemical
aphrodisiacs that influence her receptivity (Kahn et al., 2018; Brown, Marinko & Burns, 2025).

In pseudoscorpions, reproductive semiochemistry is multifaceted. Males deposit spermatophores on
the substrate, marking the stalk with droplets containing chemical cues that guide females to the sperm
packet. These droplets may persist for up to 24 hours and include amino acids and proteinaceous substances
likely involved in detection by the female’s chemosensory structures (Legg, 1973; Stemme & Pfeffer, 2022).
Males of Cordylochernes scorpioides (Pseudoscorpiones: Chernetidae) transfer anti-aphrodisiac pheromone
onto mated females, reducing subsequent male interest and sperm competition (Bonilla et al., 2011). These
behaviours highlight a complex interplay between sexual communication and mate manipulation, while the
active semiochemicals remain to be identified.

Scorpions provide further examples of chemically guided reproduction. In Hadrurus arizonensis
(Scorpiones: Hadruridae), males detect and follow pheromonal trails deposited by females, which are
believed to contain contact-based cues that provide information on receptivity (Melville, Tallarovic &
Brownell, 2003). In Urophonius brachycentrus (Scorpiones: Bothriuridae), males exhibit olfactory attraction
to females in the absence of trails, indicating possible airborne signals. The temporary loss of attractiveness
in mated U. brachycentrus females fitted with mating plugs—reversed upon plug removal—implies a
possible male-derived deterrent pheromone affecting female signaling (Romero-Lebrén et al., 2019). Males
of the scorpion Tityus pusillus (Scorpiones: Buthidae) seemingly respond with courtship-behaviour to female
chemical signals and the existence of an unknown polar pheromone was postulated as the non-polar
cuticular components did not elicit male courtship (Barbosa-da-Silva et al., 2025).
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In horseshoe crabs no reproductive pheromone has been chemically characterized, although
experimental studies demonstrate female-associated chemical cues that attract males and prolong satellite
male association during spawning (Schwab & Brockmann, 2007; Saunders et al., 2010).

Chelicerate taxa demonstrate the diverse evolution of pheromone-mediated mating strategies.
Despite taxon-specific nuances in signal production and reception, the underlying selective pressures—
sparse mate availability, the need for accurate species recognition, and minimization of energetic costs—
appear to shape a shared reliance on semiochemicals to regulate reproductive success (Johansson & Jones,
2007).

Social Semiochemistry and Behaviour

In many chelicerates, semiochemicals play a central role in organizing and maintaining non-sexual
intraspecific communication structures, coordinating aggregations, mediating territory, and alarm signaling.
Chemical signals provide a flexible and efficient mechanism to manage intra-species interactions, particularly
in gregarious or aggregation-prone species. In spiders, female sex pheromones extend beyond sexual
communication to mediate conspecific attraction. Female widow spiders such as Steatoda grossa (Araneae:
Theridiidae) emits short chained carboxylic acids from their webs that serve dual purposes—attracting mates
and informing other females about potential competition for mates and resources, as well as predation risk
(Fischer et al., 2022, 2023a). Such response to the sex pheromone of the same sex is has been termed
‘autodetection’ (reviewed in Holdcraft, Rodriguez-Saona & Stelinski, 2016). Clustering within pockets of
suitable habitats has been documented in orb-weaving spiders and other sedentary web-builders
(Kasumovic & Jordan, 2013; Fischer, Hung & Gries, 2019), suggesting that autodetection-mediated clustering
may be a common strategy in taxa with high web construction costs (Salomon, 2009; Fischer et al., 2023a).
Field experiments further suggest that sex pheromones could mediate site fidelity, as female widow spiders
are less likely to relocate when conspecifics are present (Salomon, 2007).

Among Acariformes, especially within the Astigmata and Oribatida, both aggregation and alarm
behaviours are well-documented and chemically mediated. Aggregation pheromones such as lardolure
(1,3,4,7-tetramethyldecyl formate) in Lardoglyphus konoi (Sarcoptiformes: Lardoglyphidae) promote
conspecific clustering, enhancing collective thermoregulation, increasing mating opportunities, and reducing
predation risk through the dilution effect (Kuwahara, 2004; Raspotnig, 2006). Alarm pheromones like neral
and geranial are produced by astigmatid and oribatid mites to trigger rapid dispersal in response to
environmental stress or predation threats. The same compounds can function in opposite directions
depending on their concentration, with low doses promoting aggregation and high doses triggering
dispersal, as demonstrated in Halotydeus destructor (Trombidiformes: Penthaleidae) (Jiang, Ridsdill-Smith &
Ghisalberti, 1997; Heethoff & Raspotnig, 2012).

In Parasitiformes, the existence of aggregation pheromones has been demonstrated both from
individuals and from their feces, with likely complementary effects: in the blood-feeding mite Dermanyssus
gallinae (Parasitiformes: Dermanyssidae), the existence of a chemically uncharacterized aggregation
pheromone emitted by individuals has been unambiguously demonstrated, with individuals freshly fed on
blood showing the maximum attractive effect for conspecifics (Entrekin & Oliver, 1982; Koenraadt & Dicke,
2010; Masier et al., 2023). Two compounds in mite feces have been shown to have an arresting effect on the
same species (Qi et al., 2023), namely guanine and hematin. In the tick Argas walkera (Parasitiformes:
Argasidae), uncharacterized aggregation pheromones have been shown to originate from females, and
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guanine has also been shown to be strongly attractive to fed and unfed individuals at various life stages
(Neitz & Gothe, 1984).

Harvestmen (Opiliones) also show evidence of chemically mediated non-sexual communication.
Some species are solitary and defend individual territories, others form mixed-species aggregations in shared
refuges. Chemical recruitment signals are hypothesized to underlie these behaviours, although the specific
compounds and source glands remain unidentified (Donaldson & Grether, 2007; Escalante et al., 2022). Male
Mischonyx cuspidatus (Opiliones: Gonyleptidae) are attracted to scent of conspecific males, while not of
females supporting the idea of scent mediated aggregations (Dias, Segovia & Willemart, 2020). Learning of
chemical cues associated with favorable shelter conditions has been demonstrated in Discocyrtus invalidus
(Opiliones: Gonyleptidae), suggesting a capacity for associative learning involving semiochemicals (Dos
Santos, Hogan & Willemart, 2013). In some species, males may secrete territorial markers from sexually
dimorphic glands to maintain individual spacing, further supporting the importance of semiochemical
communication in non-reproductive contexts (Fernandes & Willemart, 2014).

Territorial marking using chemical signals has been observed in pseudoscorpions, where males rub
their ventral surfaces along substrates to mark spatial boundaries (Weygoldt, 1966). These behaviours, likely
mediated by pheromones, may serve to deter rivals and communicate dominance or reproductive status.
Male-male chemical signaling remains underexplored but is suspected to play a role in maintaining spacing
and reducing conflict.

In whip spiders (Amblypygi), evidence for social communication remains limited, but homing
behaviour provides strong indirect evidence (Chapin & Hebets, 2016; Casto et al., 2019). The species Phrynus
marginemaculatus (Amblybygi: Phrynidae) shows a significant preference for filter paper previously touched
by itself over that touched by a conspecific or untouched paper, suggesting the use of self-referential
chemical cues in orientation and site fidelity (Casto et al., 2019). The variety of chemical strategies employed
across chelicerate taxa to mediate social interactions—ranging from aggregation and alarm to territory
marking and individual recognition—demonstrates the broad utility of semiochemicals in social organization.
While detailed chemical analyses are still lacking for many groups, especially in the lesser-studied orders, the
behavioural evidence suggests that semiochemical communication is a conserved and evolutionarily flexible
solution to the challenges of intra-specific coordination in these largely solitary but occasionally gregarious
animals.

Host or Prey Detection and Feeding (Kairomonal Cues)

Kairomonal cues—semiochemicals emitted by one species and exploited by another for its benefit—
play a critical role in host location, prey detection, and foraging strategies across a range of chelicerate taxa.
These cues are particularly important for hematophagous groups such as ticks and poultry red mites, but
also guide predatory behaviours in spiders, scorpions, harvestmen, parasitiform predatory mites and others
(Ratz et al., 2023).

Ticks, particularly those in the family Ixodidae, are archetypal examples of kairomone-driven host-
seeking. These ectoparasites rely on complex blends of volatile organic compounds (VOCs) to detect and
locate hosts in their environment. The Haller’s organ, located on the first pair of legs, is a specialized sensory
apparatus that detects CO,, lactic acid, ammonia, and other host-derived carboxylic acids, which are critical
components of vertebrate body odor (Leonovich, 2004; Carr & Roe, 2016; Faraone, 2022). For instance,
lactic acid and ammonia elicit significant questing behaviour in Ixodes scapularis (Parasitiformes: Ixodidae)
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and A. americanum, while blends of butyric acid and other skin-emitted volatiles improve host-tracking
precision (Soares & Borges, 2012). Studies using Y-tube olfactometers and electrophysiology have confirmed
that ticks not only detect but can discriminate between host species based on odor profiles (Lopez-Lépez et
al., 2023; Bezerra-Santos et al., 2024). Beyond host-seeking, tick kairomonal sensitivity also plays a role in
microhabitat selection. Volatiles emitted from vegetation or associated with host bedding materials may
guide ticks to optimal questing sites. Certain odors, such as those from donkey sweat containing £2-octenal,
act as repellents, illustrating how odors can also serve to signal less suitable hosts (Ferreira et al., 2019).

Amongst other Parasitiformes, Varroa destructor, a parasitic mite of honeybees, uses kairomones
such as methyl linoleate, ethyl palmitate, and brood food volatiles to locate appropriate developmental
stages of bee larvae for invasion and reproduction (Calderone & Lin, 2001; Nganso et al., 2020; Light et al.,
2020). In addition, adults preferentially seek out nurses during their phoretic phase rather than foragers,
thanks to an uncharacterized kairomone that differs between castes (Eliash et al., 2014). These kairomones
are detected by a foreleg sense organ that integrates olfactory and gustatory signals. In poultry red mites,
host-derived odorants influence movement only at close range and vary in effectiveness among populations,
suggesting limited reliance on long-distance chemical guidance in high-host environments (Roy et al., 2017;
Auffray et al., 2022; Masier et al., 2023). Responses to CO; are similarly conditional, with attraction in
darkness but freezing under bright light, reflecting modulation by predation risk (Kilpinen, 2005). Contact
kairomones can act as feeding stimulants once the host is reached (Zeman, 1988). In contrast, predatory
phytoseiid mites exploit herbivore-induced plant volatiles to locate prey (Maeda & Takabayashi, 2001; Bao et
al., 2026), while macrochelid mites use kairomones from flying insects to select phoretic carriers, facilitating
dispersal rather than foraging (Niogret, Lumaret & Bertrand, 2006).

In spiders, kairomonal cues from prey are used in both active hunting and habitat selection (Fischer,
2019). Web-building spiders like Latrodectus spp. (Araneae: Theriidae) may choose web sites based on prey
availability inferred from environmental residues (Johnson, Revis & Johnson, 2011), while active hunters
such as the jumping spider Evarcha culicivora (Araneae: Salticidae) detects and prefers the scent of blood-
fed mosquito, as well as the scent of potential mates that recently fed on a blood-fed mosquito (Jackson &
Cross, 2015). Notably, aggressive mimicry—where predators exploit prey pheromones to lure them into
range—is exemplified by Mastophora (Araneae: Araneidae) bolas spiders (Haynes et al., 2002). Individual
Mastophora mimic the sex pheromones of multiple moth species, M. cornigera for example attracts up to 19
different prey species (Stowe et al., 1995). Similarly, Habronestes bradleyi (Zodariidae), mimics the alarm
pheromone 6-methyl-5-hepten-2-one of its ant prey Iridomyrmex purpureus (Hymenoptera: Formicidae)
(Allan, Elgar & Capon, 1996). Conversely, obligate kleptoparasites Argyrodinae (Araneae: Theridiidae) detect
the resource quality and parasite load of their host spiders, while the underlying cues remain to be
investigated (Gregoric et al., 2024).

Other chelicerates illustrate a continuum of chemically guided behaviors that vary with sensory
modality, ecological context, and phylogenetic history. Scorpions and pseudoscorpions also rely on
kairomones for prey localization. Contact chemoreception plays a major role in Androctonus australis
(Buthidae) and Buthus occitanus (Buthidae), which initiate grasping behaviours upon detecting prey cuticular
compounds or extracts (Krapf, 1986). In scorpions, contact chemoreception is central to prey localization,
with species such as Androctonus australis and Buthus occitanus initiating grasping behaviors upon detecting
prey cuticular compounds or extracts (Krapf, 1986), while in pseudoscorpions like Chelifer cancroides,
chemically guided prey capture is reinforced by venom peptides that ensure rapid immobilization (Kramer et
al., 2022). Harvestmen further demonstrate variability in kairomonal sensitivity, as some species respond to
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odors from live or freshly killed prey whereas others do not, highlighting interspecific and phylogenetic
differences in chemical cue use (Willemart et al., 2007; Costa & Willemart, 2013). Finally, comparative
evidence from horseshoe crabs locate buried prey using chemical cues detected by chelae and gnathobase
spines, providing a functional analogue to kairomone-mediated prey detection in predatory arachnids
(Smith, 1953).

Collectively, these findings reveal a sophisticated chemosensory ecology in chelicerates, in which
kairomones inform both partners engaged in antagonistic interactions (predator /parasite and prey). The
evolution of this system highlights the selective pressures imposed by foraging efficiency, host specificity,
and predator avoidance, emphasizing the centrality of kairomonal cues in ecological interactions across
Arachnida.

Avoiding Danger (Allelochemicals)

In the ongoing evolutionary arms race between predator and prey, arachnids have evolved diverse
chemical defenses—known as allomones—that benefit the emitter by deterring, confusing, or repelling
predators (Pekdr & Raspotnig, 2022). These compounds range from volatile deterrents to long-lasting
cuticular secretions and serve as crucial components of the animal’s anti-predator strategy. Conversely,
arachnids eavesdrop on chemical cues (kairomones) of their predators and respond with life-extending
behaviour, suggesting the existence of a chemically mediated “landscape of fear” that influences distribution
and behaviour (Gooding et al., 2024).

Opiliones (i.e., harvestmen) have long been recognized for their use of benzoquinones and other
reactive chemicals in defense (Dettner, 2010). These compounds are produced in paired scent glands called
ozopores, which open on the sides of the prosoma. Upon mechanical disturbance, species such as P.
calcariferus release benzoquinone-rich secretions, sometimes in sex-specific patterns, with females more
frequently deploying these defenses (Moore & Townsend, 2019). Such secretions serve a dual purpose:
deterring invertebrate and vertebrate predators and alerting conspecifics to danger, functioning in both
defense and alarm signaling (Machado, Bonato & Oliveira, 2002; Hara et al., 2005; Fottinger et al., 2010).

Among Parasitiformes several allomonal defenses have been described. In ticks, long-chain
hydrocarbons and terpenes such as squalene, secreted by ixodid ticks, have been shown to repel predatory
ants and deter attack (Yoder, Pollack & Spielman, 1993). More recently, I. scapularis has been found to avoid
areas contaminated with secretions from the Dufour’s gland of Formica oreas (Hymenoptera: Formicidae),
suggesting sensitivity to ant-produced alarm and trail pheromones (Gooding et al., 2024). This behaviour
likely serves to reduce encounters with aggressive, chemically defended predators in shared environments.
The parasitic mite V. destructor also employs chemical avoidance strategies. Non-host volatiles such as
octanoic acid and (2)-8-heptadecene—compounds found in pollen and royal jelly—act as natural repellents,
reducing mite colonization of certain brood types. Such chemical sensitivity not only facilitates host choice
but also underlies potential avenues for integrated pest management using repellent cues.

Acariformes Hydrachnidia water mites release potent fish repellents from their pyriform glands
(Pekar & Raspotnig, 2022). The oil glands of most Oribatida and Astigmata likewise release potent predator
repellents alongside alarm pheromones that induce dispersal of conspecifics. Collohmannia gigantea
(Acariformes: Oribatida) for example releases the monoterpenes neryl formate, neral, geranial, the aromatic
2-hydroxy-6-methyl-benzaldehyde and the hydrocarbons tridecane and pentadecane, with each
semiochemical deterring the potential predator Euconnus oblongus (Coleoptera: Scydmaenidae) (Raspotnig,
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2006). The poison hydrogen cyanide is released by Oribatula tibialis (Acariformes: Oribatulidae). The highly
volatile cyanide is stored in the form of mendelonitrile-hexanoate which degrades upon release into the
lethal gas (Briickner et al., 2017).

Spiders, so far we know, do not release predator repelling volatiles but are equipped with detection
systems to avoid predators. For example, certain wolf spiders avoid areas contaminated with chemical cues
of larger or older cannibalistic spiders (Schonewolf et al., 2006; Shannon et al., 2022). Likewise, many spiders
exhibit avoidance of ant-derived chemical cues. Generalist predators such as ants leave behind chemical
cues that spiders use to identify and avoid risky microhabitats (Mestre et al., 2020; Fischer et al., 2021a).
Some spider species even display chemical mimicry to become cryptic, and thus survive within ant colonies
(Cushing et al., 2022). Interestingly, spiders do not seem to detect danger associated with mud-dauber
wasps, a group of spider specialist predators (Obin, 1982). Spiders of potential prey taxa indiscriminately
build webs in direct vicinity to their potential hymenopteran predators that locate their spider-prey based on
olfactory cues (Uma & Weiss, 2010, 2012). Distasteful prey are also chemically recognized and avoided by
spiders (Bristowe, 1941). The terrestrial crustacean isopod Porcellio scaber (Isopoda: Porcellionidae) secretes
defensive quinolines that protect them from the predation by generalist spiders such as S. grossa (Fischer et
al., 2025b). On the other hand, red devil spiders (Araneae: Dysderidae) specialize on isopods and overcome
their defenses, likely driving the diversification within this spider family (Bellvert et al., 2023, 2025b, 2025a).
It remains to be investigated whether the elongated chelicerae of some dysderids also aid in avoiding
gustatory contact with the defensive metabolites of their isopod prey (Fischer et al., 2025b). The use of
venom as defense has been difficult to disentangle from their offensive use (Liddecke et al., 2022). At least
in the case of male funnel-web spider venom there is convincing evidence that §-hexatoxins have evolved
primarily for defense against vertebrate predators (Herzig et al., 2020).

Scorpions, while famous for their venomous sting, also display olfactory-based avoidance behaviours
that suggest chemical cue detection of predatory threats. In experimental settings, prey species such as
Paruroctonus marksi (Scorpiones: Vaejovidae) have been shown to avoid chemical traces left by predatory
conspecifics like Hadrurus arizonensis, indicating kairomonal sensitivity and intraspecific risk management
(Nisani et al., 2018).

Sea spiders (Pycnogonida), though less studied behaviourally, also exhibit chemical defenses.
Pycnogonum litorale (Pycnogonida: Pycnogonidae), for instance, produces an ecdysteroid known as
exogenous 55, which deters marine crustacean predators such as the green crab Carcinus maenas
(Decapoda: Portunidae) (Brown, Sieglaff & Rees, 2009).

Though no known defensive substances are known from Xiphosura, juvenile horseshoe crabs
respond to predator-associated chemical cues and integrate this information with visual signals, indicating
that chemically mediated risk assessment is conserved across Chelicerata (Medina & Tankersley, 2010).

Uropygi (whipscorpions) and Schizomida (short-tailed whip-scorpions) possess one of the most
dramatic examples of chemical defense among arachnids (Pekar & Raspotnig, 2022). When threatened, they
emit an acetic acid-rich spray from their pygidial glands. This secretion contains short-chain carboxylic acids,
including acetic and formic acids, and is projected in a directed stream towards the predator (Schmidt et al.,
2000). The giant whipscorpion, Mastigoproctus giganteus (Uropygi: Thelyphonidae), may spray up to 84%
concentrated acetic acid as far as 80 cm onto potential predators (Eisner et al., 1961). The spray is highly
effective against both invertebrate and vertebrate predators and is not employed during intraspecific
competition, indicating a strict predator-specific function (Watari & Komine, 2016).
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An anecdote suggests potential chemical defense for ricinuleids: Ricinoides afzelii (Ricinoididae)
larvae release a fine spray from their anus when disturbed (Pollock, 1967). Pollock assumed the spraying
represents defecation with chemical analyses yet to be conducted.

Although many chelicerate taxa exhibit strong chemical defenses, some remain poorly characterized
in this regard. For example, Solifugae have no confirmed reports of chemical defenses despite their exposure
to predation. However, morphological and behavioural observations suggest that at least some
chemosensory-based predator detection may be present.

Altogether, these examples underscore the adaptive value of allomones and predator-detection
cues across chelicerates. Defensive semiochemistry enhances survivorship in diverse habitats, allowing
chelicerates to avoid predation proactively and in real time. Expanding our understanding of these cues may
lead to novel biocontrol agents or repellents that exploit natural predator-prey communication systems

Production and Release of Semiochemicals

Semiochemical production in chelicerates is functionally diverse and context-dependent. Spiders commonly
deposit their pheromone with their silk (Fischer, 2019). Whether pheromone is emitted from the spider’s
body remains to be investigated. Argiope spider females emit their volatile mate-attractant from their orb
webs (Chinta et al., 2010; Weiss & Schneider, 2022). While mate attractant pheromone of female widow
spiders (Theridiidae: Latrodectinae) is gradually, over the course of weeks, emitted via the hydrolysis of the
web-borne courtship-inducing sex pheromone (Fischer et al., 2025a). This web-borne pheromone of female
widow spiders has been linked to the posterior aggregate gland responsible for sticky glue production
(Fischer et al., 2022). If glue-producing glands of other spiders also produce the sex pheromone remains to
be investigated.

Direct release of volatiles is known in ixodid ticks metathoracic glands that produce pheromones
dispersed into the air or deposited onto substrates (Sonenshine, 2004). Amblyomma (Ixodidae) species
release aggregation pheromones from their coxal gland complex, which exhibit conserved structural traits
across individuals (Dusbabek, Zahradniékovaz & Simekz, 1998; Sonenshine, 2004).

Contact-based semiochemicals are involved in courtship, aggregation, and territorial behaviours.
Pseudoscorpions deposit a pheromone-laden droplet on the spermatophore stalk, aiding females in locating
sperm for uptake (Legg, 1973). These chemicals include amino acids and fibroin-like proteins (Stemme &
Pfeffer, 2022). Female scorpions deposit contact pheromone onto the substrate that triggers male courtship
behaviour (Taylor, Cosper & Gaffin, 2012; Pordeus, Lira & Albuquerque, 2019; Barbosa-da-Silva et al., 2025).
Hadrurus arizonensis (Scorpiones: Hadruridae) evidently uses a contact-trail pheromone that males follow to
their potential mate while courting along the way (Melville et al., 2003).

Defensive compounds such as benzoquinones in Opiliones or ecdysteroids in sea spiders are
synthesized and stored in specialized reservoirs and released when threatened.

In Pycnogonum litorale (Pantopoda: Pycnogonidae), an ecdysteroid deters crustacean predators
(Brown et al., 2009), while harvestmen, such as Phareicranaus calcariferus (Opiliones: Cranaidae), release
defensive secretions from ozopores, paired glands on the prosoma, in a sex-specific manner (Moore &
Townsend, 2019).

Known Semiochemicals

Chelicerates produce and respond to a wide array of chemical compounds, many of which are conserved
across different taxa. Short-chain carboxylic acids, such as acetic acid and butyric acid, are ubiquitous in
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vertebrate odors and decomposing matter, and play a key role in the host-seeking behaviour of parasitic
ticks and mites. For instance, A. americanum and I. scapularis ticks exhibit heightened questing behaviour in
response to lactic acid and other carboxylic acid derivatives found in human sweat, sensed through the
Haller’s organ (Leonovich, 2004; Carr & Roe, 2016).

Convergently, short-chain carboxylic acids are the male attractant sex pheromone of various
Linyphia (Aranaea: Linyphiidae) species (Schulz & Toft, 1993; Schulz, 2013) and the widow spiders
(Theridiidae: Latrodectinae) Latrodectus (Bryan et al., 2018; Fischer et al., 2025a) and Steatoda (Fischer et
al., 2022, 2023b). Methyl-esters are frequently found as sex pheromones of spiders (Fig. 2C) (Schulz, 2013;
Fischer, 2019). Trimethyl methyl citrates act as volatile mate-attractant sex pheromones in Argiope
(Araneidae) wasp spiders (Chinta et al., 2010). Similarly, asymmetric dimethyl citrate acts as courtship-
inducing sex pheromone of C. salei wandering spider (Papke et al., 2000). Methyl-serine derivatives are
contact sex pheromone components of black widow, Latrodectus, spiders (Jerhot et al., 2010; Scott et al.,
2015b), while the corresponding acid were found to be the main courtship-inducing component (Fischer et
al., 2025a) (Fig. 2C).

Aldehydes, such as trans-2-hexenal, nonanal, and benzaldehyde, function as volatiles that can either
attract or repel depending on context and concentration. In the mite Halotydeus destructor (Acariformes:
Penthaleidae), low concentrations of 2-(E)-hexenal promote aggregation, while higher doses cause dispersal
and increased mortality, illustrating the dual functionality of these compounds (Jiang et al., 1997; Kuwahara,
2004). Terpenoids, including geraniol, neral, and citronellol, are commonly employed by oribatid and
astigmatid mites as repellent or alarm substances, and many have a repellent activity against parasitiform
hematophagous mites which do not produce them but often meet astigmatic mites on farms (Roy et al.,
2020). These compounds are often released in response to physical disturbance or perceived predation
threats, and are detected through specialized sensilla (Leal & Mochizuki, 1990; Skelton et al., 2010). Phenolic
compounds, particularly 2,6-dichlorophenol, are key sex pheromones in ixodid ticks. This compound is
released by engorged females and serves to attract conspecific males, as shown in D. variabilis, R.
appendiculatus, and A. variegatum (Sonenshine et al., 1976; Waladde, 1982). The pheromone elicits strong
olfactory receptor responses of male ticks, highlighting its role in mate localization.

Cuticular hydrocarbons (CHCs) also play multiple roles across arachnids. The primary role of CHCs is
to retain water and protect against desiccation. The CHC of insects consists mainly of alkanes and alkenes.
Curiously, the CHC profiles of spiders and scorpions are structurally more diverse than those of insects
(Chinta et al., 2016; Fischer et al., 2021b; Gerbaulet et al., 2022; Adams et al., 2024; Barbosa-da-Silva et al.,
2025). Arachnids feature proportionally more methyl-branched long chain methyl ethers, fatty acids,
aliphatic alcohols and esters. These diverse CHCs can also be found on the silk of spiders with a similar
component profile as the respective cuticle (Fischer et al., 2021b).

Communication via CHCs has been reported in diverse contexts. Species recognition among co-occurring
Tetragnatha spiders (Araneae: Tetragnathidae) was correlated to unique blends of long chain alkyl methyl
ethers on the silk (Adams et al., 2024). Kin recognition in the solitary orb spider A. bruennichi has been
attributed to CHC profiles (Weiss & Schneider, 2021). Likewise, in the subsocial spider Stegodyphus lineatus
(Araneae: Eresidae), siblings are seemingly identified by similar CHC profiles (Grinsted, Bilde & d’Ettorre,
2011). Changing CHC profiles of developing Pardosa saltans (Araneae: Lycosidae) embryos seem to inform
mothers of the imminent emergence of offspring (Ruhland et al., 2019). Similarly, developing P. paludicola
experiences an ongoing decrease and increase of CHC components from egg over embryo to spiderling
(Suprunowicz et al., 2025). CHC profiles of L. geometricus spiderlings are similar to their mother and become
increasingly unique with growth, while the chemical similarity is thought to suppress maternal cannibalism
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(Guimardes et al., 2016). Thus, CHCs are important signals during the development of spiders.
Myrmecophile spiders have more diverse CHC profiles compared to their ant-host, resulting in many spider
unique cues the ants do not respond to (von Beeren et al., 2021). It seems that chemical mimicry is
facilitated by the components which these spiders share with the ant-host, mainly n-alkanes (Cushing et al.,
2022). Nest-specific chemical mimicry seems acquired by the spiders, either by consumption or physical
contact with the ants (Elgar & Allan, 2004).

CHCs of Varroa destructor closely match those of their honey bee hosts and shift quantitatively with host
developmental stage, supporting a well-documented role in chemical camouflage that reduces host
detection and facilitates parasitism and host switching (Kather et al., 2015b; Kather, Drijfhout & Martin,
2015a; Le Conte et al., 2015). In ticks (Ixodida), CHCs have been experimentally demonstrated to inhibit
entomopathogenic fungi (Ribeiro-Silva et al., 2022). Tick CHCs vary among populations and host-associated
lineages, making them useful chemotaxonomic and population-structuring markers (Dupraz et al., 2022). In
Parachernes melanopygus (Pseudoscorpiones: Chernetidae), a pseudoscorpion, CHCs are similarly adjusted
to match the chemical signatures of their congeneric hosts over 48 hours, promoting social integration (Tizo-
Pedroso & Del-Claro, 2014). Collectively these studies indicate a wide array of potential social cues being
detected by chelicerates.

11l Morphology and anatomy of chemosensation across Arachnida

Understanding chemosensory systems relies on identifying links between behavioural responses to
semiochemical compounds and morpho-anatomy at different scales. Chemosensory systems are well
understood in mammals and insects (Meyerhof & Korsching, 2009). In all these animals, chemical
compounds are perceived by receptor proteins located in sense-organs on the body surface (nose, antenna
cuticle, etc.). The local perception signal is transferred to the central nervous system (CNS), where it is
integrated and processed, resulting in a motor response (Fig. 3). Insects carry a majority of their olfactory
organs on paired specialized appendages, the antennae, although some olfactory sensilla and receptors have
been discovered on the legs (Yang et al., 2020; Wu et al., 2022). The organs of contact chemosensation (i.e.,
gustation) in insects are distributed on the palps, mouthparts, legs, wings and the ovipositor (Stocker, 1994;
Wang et al., 2004; Agnel, Da Rocha & Robichon, 2017; Seada et al., 2018; Sevarika, Rossi Stacconi & Romani,
2021). Across arachnids, behavioural responses to chemosensation have been well documented. However,
knowledge of their chemosensory systems relies largely on inferences by analogy with insects” morpho-
anatomy (Hallberg & Hansson, 1999). In this section, we will discuss the integrative scales: chemosensory
circuits throughout the body and receptor molecules. Further, we will provide an overview of the current
state of knowledge and knowledge gaps of the morpho-anatomy of chemo-sensing organs among arachnids.

At the body level, many gaps of knowledge prevent us from providing a robust description of the arachnids’
chemosensory circuits. Most neuronal-level knowledge in arachnids comes from a few focus species (Hayes,
1971; Brownell, 1998; Steinhoff, Harzsch & Uhl, 2024), while the pathway from chemosensory detection to
motor output is still inferred from analogies with insects or other arthropods. Despite the high degree of
compression of the central nervous system (CNS) in arachnids, the homologies established between insect
neuromeres and regions of the arachnid synganglion (Smarandache-Wellmann, 2016) allows for some rough
organizational comparisons. Studies using histoimmunochemical techniques, anterograde tracing and
transmission electron microscopy (Table 2) revealed major differences compared to insects without allowing
chemosensory circuits to be drawn. Therefore, we will rely on the best-described chemosensory circuits of
insects (Fig. 3) and simply highlight below the areas of disagreement between the two taxa. Figure 3
provides a simplified overview of the current state of knowledge regarding insect chemosensory circuits,
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based on (Edgecomb & Murdock, 1992; Stocker, 1994; Wang et al., 2004; Kim, Kirkhart & Scott, 2017; Zhao
& McBride, 2020; Lucas, Montagne & Jacquin-Joly, 2022; Walker, Pefia-Garcia & Devineni, 2025). It should
be noted that much less is known about insects’ gustatory processing (steps 2 and 3 in Fig. 3) than about
their olfactory processing. Regarding the nerve transmission of the signal detected in the periphery (step 1),
insects generally have no synapses between the olfactory sense organs and the first neuropile. In contrast,
arachnids - at least spiders, whip spiders, harvestmen and scorpions - have numerous synapses in peripheral
sensory nerves, indicating a more distributed organization of the chemosensory circuits (Foelix, 1975, 1985b;
Fabian-Fine, Meinertzhagen & Seyfarth, 2000; Gaffin, 2002; Zhang, Wang & Uhl, 2026). In arachnids, given
the absence of antennae, the neuropiles where primary processing takes place (step 2) are located in fairly
diverse lobes of the synganglion, corresponding to the location of the sense-organs [e.g., pecten lobes in
scorpions (Drozd, Wolf & Stemme, 2020); first leg neuromere in a tick (Borges et al., 2016) and in a
parasitiform predator (van Wijk, Wadman & Sabelis, 2006)]. These lobes contain presumable glomeruli of
various shapes, sometimes similar to those described in the antennal lobes of insects’ supraoesophageal
ganglia (spheroidal), sometimes elongated, spindle-shaped, or laminar (Drozd et al., 2020; Gronenberg,
2026). Interestingly, Amblypygi’s mushroom bodies are exceptionally large and elaborated as compared to
insects’ and apparently receive massive olfactory information via a prominent tract originating from the
“olfactory glomeruli” (Wiegmann et al., 2016). Furthermore, the mapping logic of signal integration (Fig. 3C)
differs greatly between the olfactory and the gustatory systems in insects (Wang et al., 2004; Lucas et al.,
2022). The insect olfactory system follows a chemotopic logic, i.e. all neurons expressing the same olfactory
receptor converge on a single glomerulus, so olfactory projections are separated exclusively by the molecule
(odor) detected . The gustatory system follows an organotopic logic, i.e. the appendage at the origin of the
signal is mapped onto the neuropile, so gustatory projections are separated first by their peripheral location.
In arachnids, available studies demonstrate the recurrent presence of an organotopic logic (e.g. Obenchain,
1974, in a tick). In most cases, organotopy is reinforced in the arachnids studied: projections not only allow
to locate which appendage the perception occurred in, but also to locate the precise location within that
appendage (somatotopy; Anton & Barth, 1993 in a spider; Wolf, 2008 and Drozd, 2024 in scorpions). At the
body level, the olfactory and gustatory systems of arachnids seem to share more similarities with the
gustatory system of insects than with their olfactory system. This could well be the result of a common
ancestral origin, since most of chemosensory organs in arachnids are located on body parts homologous to
those that carry the gustatory organs in insects (palps or legs).

At the molecule level, (Missbach et al., 2014) showed that among the three gene families containing
olfactory receptors (OR, IR, GR), ORs (concentrated in the antennae) were an innovation in insects. Indeed,
arachnid genes sequenced since then confirm the absence of ORs and the presence of at least IRs and often
GRs (e.g., in Parasitiformes, Carr et al., 2017; Eliash et al., 2019; Bhowmick et al., 2020; Zhang et al., 2026).
However, to date, we do not know the role of IRs and GRs in the chemosensation of arachnids. Many other
proteins have been proposed as potential candidates for contributing to chemosensation in several
Parasitiformes (Carr et al., 2017; Eliash et al., 2019; Bhowmick et al., 2020). The role in Varroa olfaction of a
protein homologous to pheromone receptor transcription factor (PRTF) has been demonstrated by
combining behavioral bioassays and gene silencing (Singh et al., 2016), and the role of Niemann-Pick type C2
genes in olfaction of a parasitiform predatory mite has been demonstrated by combining behavioral
bioassays (including tarsal amputation) and differential transcriptomics on tarsi (Bao et al., 2026).
Interestingly, through heterologous expression of spider ionotropic glutamate receptors (iGluRs, conserved
across animals and beyond, of which IRs are variants), Zhang et al., (2026) recorded key differences in their
properties with respect to two ligands compared to related iGlurs studied in Drosophila.
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686  Fig. 3. Simplified schematic of the chemosensory system in insects. The chemosensory differences between
687 insects and arachnids are discussed in the text. Olfactory pathways are displayed in blue, while gustatory
688 pathways in green. A. Diagram of a wall-pore type olfactory sensillum. B. Diagram of a tip-pore type

689  gustatory sensillum. We show a bimodal sensillum, integrated with a mechano-perceiving neuron (purple),
690  whichis common in insects. Molecules enter the sensilla through cuticular pores and interact with ORs or
691  GRs, receptor proteins located in the dendritic membrane of olfactory (ORN) or gustatory receptor neurons
692 (GRN) (boxes). C. Diagram summarizing the olfactory and gustatory circuits from peripheral detection of
693 molecules (1) to the integration of signals into the CNS ganglia (grey). In the olfactory circuit, the signal

694  transmitted directly by the ORN axons is integrated by the antennal lobe (2), a neuropile located in the

695  supraesophageal ganglion (brain) containing glomeruli (grey circles) and a network of interneurons and
696  projection neurons (not shown here). All ORNs of the same type (expressing the same OR) located in

697  different sensilla project to the same glomerulus (chemotopy). The projection neurons project in one or
698 more nerve bundles to the mushroom bodies and lateral horns (3). The gustatory circuit has similarities with
699  the olfactory circuit in terms of peripheral detection (1) and signal transmission by GRN axons (2), but the
700 first stage of signal integration takes place in the subesophageal ganglion (SOG), which does not contain a
701 discrete glomerular structure. Most of leg GRN terminate into the corresponding thoracic ganglion where
702 second order interneurones are sent into SOG. Nevertheless, a small number of leg GRN are directly sent to
703 SOG. In addition, GRN projections are segregated in the SOG according to the organ from which they

704  originate (proboscis, mouthparts, legs, etc.), regardless of the receptor protein (organotopy). Higher-order
705 processing steps for insect gustation is less understood than for olfaction (3).

706



707
708

709
710
711
712
713
714
715
716
717
718
719

720
721
722
723
724
725
726
727
728
729

— e VA 100um

S 10um | 4um S
> —_— | — = v/

L W ===
Fig. 4: External view of chemosensory organs of selected arachnids. (A): Ventral view of pectines (p)
positioned on the ventral side of the mesosoma in proximity to the first walking legs of a scorpion. (B)
Ventral view of a Galeodes sp. (Solifugidae: Galeodidae) showing malleoli (m) positioned on the 4™ leg. c-k
are scanning electron microscope images. (C) Distal foreleg of Ixodes scapularis (Parasitiformes: Ixodidae)
with Haller’s organ (ho) and (D) the closeup of the Haller’s organ (ho) with sensilla array. (E) Tip-pore
sensillum on the metatarsus of the 1st leg of a male Argiope bruennichi (Araneae: Araneidae) with (F)
closeup of the tip pore. (G) Wall-pore sensillum on the femur of the 1 leg of a male A. bruennichi (Araneae:
Araneidae) with (H) closeup of the wall pores. (1) Tip-pore sensillum of the distal tarsomere | of Cryptocellus
narino (Ricinulei: Ricinoididae) (J) two short wall-pore sensilla from the distal tarsomere Il of C. narino
(Ricinulei: Ricinoididae). (K) Distal tarsomere | of C. narino (Ricinulei: Ricinoididae) with tip-pore and wall
pore sensilla. p = pectines; m = malleoli, ho = Haller’s organ; tp = tip pore sensillum; wp = wall pore
sensillum. Photo credit: AF: a, b; NF: c,d; M. Belal Talukder: e, f, g, h; Giovanni Talarico: i, j and k.

The organs of olfactory or gustatory chemosensation of arachnids are mostly carried by appendages as in
insects, but with highly contrasting levels of specialization depending on the taxa studied. Scorpions possess
feather-like pectines (Wolf, 2017) located on the ventral mesosoma that are capable of chemo- and
mechanosensation (Fig. 4A), while Solifuges possess malleoli (Fig. 4B), contrasting the antenniform legs of
e.g. Ricinulei, Uropygi and Amblypygi (Fig. 1) used for chemosensation. Like in insects, the presence of
specialized chemosensory appendages does not exclude the existence of other sensory organs located on
other parts of the body in arachnids. In scorpions, additional chemosensory organs appear to be present on
the pedipalp chelae (Fet et al., 2006; Nisani et al., 2018), and structures that may be chemosensory organs
have also been reported on the metasoma and telson (Fet et al., 2003). In other arachnids, many organs of
olfactory or gustatory chemosensation are carried by appendages whose primary function is non-sensory
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such as the four pairs of walking legs in spiders (Talukder et al., 2025a, 2025b), the IVth pair of walking legs
in Solifugae (Sombke et al., 2019), all pairs of walking legs and chilariae (1-segment paired appendages
ventrally located on the vestigial first abdominal segment) in horseshoe crabs (Hayes, 1971; Hassler &
Brockmann, 2001), the tarsus of the first pair of walking legs and the chelicerae in Parasitiformes
(Sonenshine, Taylor & Carson, 1986; Dillier, Fluri & Imdorf, 2006; Leonovich & Stanyukovich, 2011; Bao et al.,
2026). It should be noted that studies on Acariformes and Parasitiformes have largely focused on the tarsi of
legs I, mainly because their location is similar to that of insect antennae, and because mites themselves use
them to explore their environment. However, this does not exclude the possibility that sensory organs are
present elsewhere in these taxa.

Chemosensory appendages of arachnids bear different types of sensilla, some of which resemble those
found in insects (i.e., hair sensilla or chaetica; e.g. Fig. 4E-K) (Dillier et al., 2006) while others are specific to
an arachnid order (e.g. malleoli of Solifugae, peg sensilla of scorpions; Wolf, 2017; Sombke et al., 2019; Fig.
4A-B) (see Table 2). Sensilla are organs whose external part consists of a modification of the cuticle, forming
either a protrusion, a groove, pit or just a pore. These different types of sensilla are distributed either
sparsely or in dense groups, some of which are considered as distinct organs. The “Haller’s organ” of ticks for
example (Fig. 4C-D) are cuticular depressions on the apex of the first tarsus that feature groups of
heterogeneous and highly specific sensilla (Sonenshine et al., 1986). Similarly, groups of hair sensilla on the
fixed finger of the pedipalps of scorpions form the “constellation arrays” (Fet et al., 2006; Nisani et al., 2018)
(Table 2). Within and beneath the cuticular structures of the sensilla are sensory receptor neurons. Based on
insect knowledge, transmembrane receptors are expressed on the dendritic membrane of sensory neurons
housed inside or beneath the sensillum-modified cuticle (Fig. 3). In Table 2, we present a summary of
current knowledge regarding the external shapes of chemosensory sensilla in arachnids, and the state of
knowledge regarding their functions. The general shapes of hair sensilla are extremely varied, as in insects
(with many similarities), resulting from various protuberances, with one or more lumens, pointed, blunt,
spatulate, or bifid tips, and straight, curved, or club-shaped bodies. For the sake of brevity, we will not detail
categories based on general shape and will only distinguish between hair sensilla with wall pores (wp) and
those with a tip pore (tp).

To establish whether a cuticular structure is the external part of a sensory organ, it is necessary to
demonstrate that there is a functional link between it and at least one of the steps of a sensory circuit (Fig.
3). The description of a neural system located beneath the cuticular modification (step 1 in Fig. 3),
sometimes even nerve connections to the neuropiles (step 2), using histoimmunochemical approaches
and/or transmission electron microscopy (Table 2, “Histology/ultrastructure”) has confirmed the existence
of a sensory function in various sensilla in 10 orders of arachnids, without identifying their specific function
with certainty. To determine whether a sensillum had a chemosensory or another sensory function (e.g.
mechanosensory), a few studies used sensillum-level electrophysiological approaches (see below). Thus, it
was demonstrated that neurons of a specific sensillum detect semiochemicals (step 1 of the chemosensory
circuit in Fig. 3): for a spider (Tichy et al., 2001), scorpion (Gaffin & Brownell, 1997), or tick (Leonovich,
2004). However, characterizing the behavioural response is necessary to accurately determine the biological
activity of semiochemicals perceived by the organ under study. A link between chemodetection by a given
sensillum and a behavioural response (step 3 in Fig. 3) may be demonstrated by inactivation of the sensillum
by ablation, painting or gene slicing. For example, this was performed in a parasitiform mite (Bao et al.,
2026), tick (Hess & Vlimant, 1986), Leal & Mochizuk (1990) in an acariform mite (Leal & Mochizuki, 1990), or
scorpions (Nisani et al., 2018; Drozd, 2024). In addition, (Talukder et al., 2025a)) provided strong support for
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such a dependence by observing the positioning of the body parts carrying the sensilla studied during the
target behaviours.

In most studies, authors rely on analogies to deduce the precise sensory functions of sensilla. Sensilla are
considered to have olfactory, gustatory, or mechanoreceptive function depending on their external
morphology, by analogy with insect’s sensilla (Moraza, 2004; Judson, 2007; Leonovich & Stanyukovich, 2011;
Wiegmann et al., 2016). The similarities in the general organization of the nervous system of arthropods are
supported by demonstrated homologies (Smarandache-Wellmann, 2016), with highly probable functional
similarities. However, similarities between individual sensilla should be considered with caution. Functional
inferences based on local analogies are more uncertain, especially since morphological similarity alone may
mislead attributions of chemosensory function even in insects (King & Gunathunga, 2023). Interestingly,
demonstrating a mechanosensory function has recurrently resulted in the exclusion of any chemosensory
function from various arachnids’ sensilla. Yet, amongst the very few sensilla whose chemosensory function
has been specifically studied to date, several have been demonstrated to be bimodal (see Table 2). Bimodal
gustatory and mechanosensory sensilla are well known from the legs of flies (Stocker, 1994), with neuronal
organization similar to arachnids’ (Haupt, 1982; Miiller et al., 2020; Drozd et al., 2020). Such bimodality of
single sensilla should open up the field of study on the potential chemosensory role of various arachnid
sensilla across the body. Further, bimodal sensilla are another argument supporting comparability between
arachnid chemosensory systems and insect gustatory systems, rather than with olfactory systems of insects.
Ganske & Uhl (2018) and Talukder et al. (2025a and 2025b) conducted an in-depth study of hair sensilla on
all segments of all four legs in two spider species. Talukder et al. (2025b) revealed that wall pore setae
distributed across all four pairs of legs do indeed have an olfactory function at least in males, while females
seemingly lack wall pore setae on legs. A more comprehensive view of arachnid chemosensory organization
may be gained by investigating sensory structures throughout the body. In addition to these arguments for
broadening the scope of investigation of chemosensory sensilla in arachnids, technical difficulties may limit
the exploration of the morphology of the sensillum wall. For chemo-dectection to occur, semiochemicals
must come in contact with chemosensory dendrites. Thus, many scientists considered only those sensilla
with visible openings in their cuticular wall (wall pore or tip pore sensilla) as candidates for chemosensation.
On the one hand, openings can be overlooked even under SEM microscopy: for example, compare Ganske &
Uhl (2018) versus Talukder et al., (2025b). Therefore, a distal pore of mesostigmatic chemosensory setae not
directly visible under SEM microscopy was only assumed by Bhowmick et al. (2020). Furthermore, it is not
certain that pores visible under microscopy are necessary, since many molecules are much smaller than the
pores detectable under microscopy. Electrophysiological signals of equivalent amplitude have been
measured on legs |, 11, 1ll, and IV excised from dozens of adult females of Dermanyssus gallinae
(Parasitiformes: Dermanyssidae), Stratiolaelaps scimitus (Parasitiformes: Mesostigmata: Laelapidae) and
Ornithodoros maritimus (Parasitiformes: Ixodida: Argasidae) in response to ammonia puffs (LR, unpublished
data). The strong attractive response to volatile ammonia in D. gallinae measured by (Auffray et al., 2022)
may well come from detection by the four locomotive appendages. However, in the three Parasitiformes
examined, wall pore or tip pore setae were detected exclusively on the tarsi of the first leg pair. All other leg
segments possessed only setae without visible pores, as well as slit sensilla (LR, unpublished data).

A more complete characterization of arachnid chemosensory systems will likely emerge from integrative
studies of chemosensory pathways starting from the various sensilla described to date and limiting
preconceptions about their sensory functions.



815
816
817
818
819
820
821
822
823
824
825
826
827

828

Table 2. Summary overview of the current state of knowledge regarding the links between morpho-anatomy
and chemosensory function in Arachnida. Only sensilla considered to be chemosensory are presented here
(other sensilla may also have this type of function without this having been noticed yet). Behaviour: here are
mentioned studies that have demonstrated a behavioral response in the presence of semiochemicals
(whether or not they have demonstrated the specific role of any sensillum in this response). See the text
concerning studies that specifically investigated the effect of specific sensilla inactivation.
Histology/ultrastructure: studies that have examined the cellular organization located under and within the
sensilla, either by dissection and staining or by transmission electron microscopy (TEM). Studies that have
examined the external ultrastructure (cuticle) of the sensilla are mentioned in Type of sensilla (external
morphology). Multimodal sensilla: some single sensilla have been shown to possess other sensory functions
at the same time (e.g., sensilla that are both chemosensory and mechanosensory, sensilla that are chemo-,
hygro-, and thermosensory). Bibliographic references corresponding to the header are listed using 2-letters
and 1 or 2 digits (correspondences listed below).
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aml (Casto et al., 2019); *™2 (Hebets & Chapman, 2000); ®™2 (Foelix & Hebets, 2001); ™3 (Foelix, Chu-Wang &
Beck, 1975); % (Foelix, 1985a); 2% (Foelix, 1970); 3 (Miiller et al., 2020); ®*(Ehn & Tichy, 1994); *> (Platnick et
al., 2012); ¢ (Talukder et al., 2025a, 2025b); *7 (Ganske & Uhl, 2018); ! (Gaudet, Faraone & Hillier, 2023);
a2 (Leal & Mochizuki, 1990); °P* (Fernandes et al., 2017); °®? (Gainett et al., 2017) ; P** (Sonenshine et al.,
1986); P22 (Leonovich & Stanyukovich, 2011); P#3 (Eliash et al., 2014); ** (Faraone et al., 2020); P> (Leonovich,
2007); P2 (Bhowmick et al., 2020); P*7 (Gaudet et al., 2024); P28 (Foelix & Axtell, 1971); *° (Su, Zhang & Xu,
2021); P39 (Nganso et al., 2020); P! (Bao et al., 2026); P12 (Hess & Vlimant, 1986); P2 (Chu-Wang & Axtell,
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1974); P34 (Leonovich, 2004); P* (Weygoldt, 1966); P2 (Stemme & Pfeffer, 2022); ™ (Talarico et al., 2006); "2
(Talarico et al., 2008); ** (Gaffin & Brownell, 1997); 5 (Fet et al., 2006); * (Knowlton & Gaffin, 2011); 5
(Nisani et al., 2018); 5> (Drozd, 2024); *® (Abushama, 1964); 7 (Gaffin, 2002); *® (Foelix & Schabronath,
1983); *°* (Bauchhenss, 1983); *°?(Yigit et al., 2012); °* (Sombke et al., 2019); *°* (Haupt, 1982); ** (Hayes,
1971); *2(Wyse, 1971); ¥ (Hassler & Brockmann, 2001); ¥ (Barber, 1956); *** (Hayes, 1965).

11l Electrophysiological evidence

Electrophysiological studies have been carried out to record the action potentials induced by
semiochemicals (Olsson & Hansson, 2013). The action potential exerted by individual compounds have been
measured in different ways based on the morphological structures of the arthropod olfactory appendages or
sensilla and can be broadly divided into appendage-level and sensillum-level recordings, reflecting
hierarchical organization of arthropod chemosensory systems.

At appendage-level, electroantennography (EAG) and electropalpography (EPG) record summed action
potentials from the entire appendage. The average output of the arthropod chemosensory appendage to its
CNS (in adapted-EAG) is thus integrated as a proxy of the global neural response of a chemosensory
appendage to chemical stimulation. Because appendages typically contain multiple sensillum types, each
housing variable numbers of receptor neurons with distinct tuning properties, appendage-level recordings
do not quantify discrete neural output as single sensillum recordings (SSR) and may not directly reflect
stimulus-specific information transmitted to the central nervous system. Indeed, standard EAG amplitudes
do not consistently covariate with behavioural responses, a limitation that has prompted methodological
refinements such as the triple-EAG approach proposed by Ramiaranjatovo, Reynaud & Jacob, 2023 to
improve the interpretability of appendage-level electrophysiological measurements. In contrast, sensillum-
level electrophysiology, most commonly performed using SSR, targets individual chemosensory units. In SSR,
an electrode is inserted close to the neurons under just one sensillum and the recording is performed from
only the receptor neurons that are contained within that sensillum.

Electrophysiological techniques have been successfully used for insects providing valuable information on
the sensitivity to the studied species towards specific semiochemicals (Pickett et al., 2012; Olsson &
Hansson, 2013). However, more challenges have been encountered with arachnids because of the lack of
antennae (traditional EAG not possible), the knowledge on the location and role of sensilla, the different
morphological organization of their chemosensory organs and the sometimes very small structures
(especially hard with SSR in mites), slowing down the advancement in this field of research.

Electrophysiology across arachnids

Electrophysiological investigations of chemosensory responses in arachnid orders other than Parasitiformes
and Acariformes remain comparatively limited, and only a small number of studies have directly examined
responses to chemical stimuli in these groups. In spiders and scorpions, most electrophysiological evidence
derives from appendages-level recordings, with comparatively few studies achieving sensillum- or neuron-
level resolution. Spiders possess the ability to smell and detect chemical volatiles and, similarly to mites and
ticks, are equipped with wall-pore sensilla that have shown olfactory function (Talukder et al., 2025a, 2025b)
and can be compared to the olfactory sensilla in insects. An adaptation to the insect electroantennography
(called ‘electrolegogram’) was used to record the olfactory response of the whip spider Phrynus parvulus
(Amblypygi: Phrynidae) towards a series of chemicals (Hebets & Chapman, 2000). Among the tested
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compounds, some induced excitatory responses (e.g., monocarboxylic acids); however, others produced no
signal (e.g., alpha-pinene) or gave an inhibitory response (e.g., citral). These volatile compounds are typically
linked to repellent-induced behaviour, and some have not been reported to trigger electrophysiological
responses in other parasitiform species (Faraone, MacPherson & Hillier, 2019; Gaudet et al., 2023, 2024).
Finally, in horseshoe crabs, electrophysiological recordings from parts of legs (coxal gnathobase and chela)
reveal broadly tuned responses to amino acids and food extracts, providing a functional contrast to the more
ligand-specific pheromone-sensitive sensilla characterized in other groups (Wyse, 1971).

The identification of sex pheromone receptive gustatory cells in the cursorial spider C. salei has been
successfully achieved through electrophysiological recordings performed on the tip pore sensilla (Tichy et al.,
2001). Electrophysiological single-sensillum recording has been used to demonstrate the olfactory role of the
wall-pore sensilla located on walking legs of A. bruennichi spider in pheromone detection (Talukder et al.,
2025b) being specific only to males and involved in detecting signaling females. Electrograms that integrate
the sum-potential of the sensilla of spider appendages were involved in the identification of pheromone
candidates of P. bejingensis (Xiao et al., 2010) and A. diadematus (Fischer et al., 2021b).

Extracellular electrophysiological studies conducted on eleven solifugae species provided interesting insight
on arthropod mechanoreceptors (Cushing et al., 2014). These camel spiders are equipped with specialized
conical setae called papillae located on the pedipalps and they have been found to function as
mechanoreceptors, and potentially as chemoreceptors as well.

Scorpions offer an accessible system for investigating chemosensory organs using electrophysiological
techniques. They are equipped with unique chemo-tactile appendages called pectines (Fig. 4A) involved in
mating and food-seeking behaviours (Wolf, 2017). Because of their structures and accessibility, pectines are
well suitable for electrophysiological screenings, providing stable connection with tungsten electrodes and
long-lasting recordings (Gaffin, 2002). The peg sensilla on scorpion pectines have been shown, through
electrophysiological studies, to detect a wide range of semiochemicals (Gaffin & Brownell, 1997; Hughes &
Gaffin, 2019), and respond to mechanosensory stimuli through peg deflection (Peeples & Gaffin, 2024).

Tick and mite electrophysiology

Electrophysiological studies of chemosensation in ticks and mites have relied on a range of
approaches that vary in spatial resolution and technical complexity. These include sensillum-level recordings
(e.g., SSR and tip recording), appendage-level recordings adapted for the tarsi or palps (e.g.,
electrotarsography, tip-recording technique) and whole-appendage or body-region recordings designed to
overcome the extreme miniaturization and structural complexity of parasitiform and acariform sensory
organs. While sensillum-level approaches offer higher specificity, they are technically challenging in ticks and
especially in mites, resulting in a predominance of adapted appendage-level and multi-unit
electriophysiological methods in these taxa.

SSR in ticks and even worse in mites has been shown to be technically challenging and time-
consuming, resulting in only occasional reports on the activity of tick chemosensory sensilla with limited
compound panels (Leonovich, 2004; Josek et al., 2021). Previous studies have reported electrophysiological
recordings from individual sensilla in various tick species targeting the olfactory sensilla in all four parts of
the Haller's organ (capsule, anterior pit, posterior sensillum group, distal knoll, Fig. 4D). These sensilla
responded to sex pheromone components, exhale breath and CO;, and host body odors (including fatty
acids, aldehydes, lactones, and phenolic compounds) (Leonovich, 2004; Faraone et al., 2020; Josek et al.,
2021). The procedure, used to measure the extracellular action potentials from neurons associated with tick
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tarsal sensilla, has been adapted to simplify the technical challenges presented by SSR. In Ixodidae and
Tetranychidae electrophysiological recordings have been successfully performed by using a fork electrode,
and electrotarsal detection showed sensitivity of two-spotted spider mites, Tetranychus urticae to many
terpenoids commonly found in plant essential oils, such as eucalyptol, thymol, and linalool, and to carboxylic
acids and aldehydes, which are known to be detected by ionotropic receptors (Gaudet et al., 2023). Similarly,
tick electrophysiological response towards butyric acid has been recorded from the foretarsi using a similar
mounting technique called ‘electrotarsography’ based on the use of a fork-electrode set-up (Gaudet et al.,
2024; Amiro, Plazas & Faraone, 2026; Dhunna, Hobbs & Hillier, under review). Another adaptation of the SSR
technique was based on using sharpened tungsten electrodes inserted below the apotele of either the left or
right foretarsi in parasitiform mites, Varroa destructor to measure changes in electrical potential (Light et al.,
2021) after exposure to essential oil components.

To overcome the limitations of sensillum-level recordings in ticks, a novel body-region—level
electrophysiological approach, termed electroscutumography, was developed (Faraone et al., 2020). In this
method, a sharpened tungsten electrode is inserted into the soft tissue beneath the scutum, in proximity to
the synganglion, allowing the recording of integrated neural responses to chemical stimulation. Using
electroscutumography, electrophysiological responses to attractants (e.g., aldehydes and carboxylic acids)
and other volatile organic compounds were successfully recorded in Ixodes scapularis. This approach has
proven particularly informative for assessing inhibitory interactions between attractants and repellents,
revealing reduced neural responsiveness following repellent exposure (Faraone et al., 2020; Gaudet et al.,
2024). The use of a glass electrode connected to the cut tip of the distal knoll sensilla provided interesting
data on the characterization of phenol and lactone receptors in the distal sensilla located in the Haller’s
organ in Ixodes ticks (Leonovich, 2004). A similar setup was used to record the electrophysiological response
of Varroa mites to bee volatiles, either alone or in combination with repellents. The foreleg - where the
sensory organ is located - was dissected and mounted between two glass electrodes, both filled with KCI
solution and containing a silver recording electrode (Eliash et al., 2014; Singh et al., 2015). A similar set-up
made it possible to detect an unambiguous electrophysiological response in each leg pair to volatile
ammonia (attractant) in three parasitiform species (LR, unpublished data). The lack of electrophysiological
response of ticks towards individual repellents (Faraone et al., 2020; Gaudet et al., 2024) and the induced
reduction in electrophysiological response to attractant after repellent exposure (Gaudet et al., 2024; Amiro
et al., 2026) has inspired more research in trying to explain the mechanism behind repellent detection.
Perhaps, the absence of receptors in the OR protein family (‘olfactory receptors’; Gulia-Nuss et al., 2016;
Bhowmick et al., 2020) might explain the recurring trend. In a previous study, electrophysiological assays
have revealed that the inhibitory response of V. destructor to honeybee headspace volatiles significantly
decreases in the presence of certain compounds, such as DEET, and is dose-dependent and long-lasting.
However, the exposure of DEET alone to V. destructor foreleg did not elicit a significant and consistent
electrophysiological response (Singh et al., 2015). A similar trend was observed in I. scapularis ticks where
electrophysiological response to butyric acid was significantly reduced when delivered together with
repellents (Faraone et al., 2020) or after exposure to repellents (Gaudet et al., 2024; Amiro et al., 2026).
Gustatory sensilla have been identified on the pedipalps of male R. microplus , which come into contact with
the female cuticle during mating. Electrophysiological recordings have provided evidence for contact
chemoreceptors in these sensilla. Taste receptors have been shown to be present in the distal segment of
the palps and chelicerae, as well as the tip of tarsus of this tick and Amblyomma cajennense (de Bruyne &
Guerin, 1998; Soares & Borges, 2012). Cheliceral pit sensilla of female R. microplus have also been studied
using taste electrophysiological experiments. On the other hand, cheliceral sensilla of R. sanguineus have
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been found to present only one pore sensillum (Soares et al., 2012). In terms of olfaction, chemosensory
sensilla have been identified in the Haller’s organ of adult male A.americanum, A. cajennense, A. variegatum,
D. variabilis, and Rhipicephalus appendiculatus (Parasitiformes: Ixodidae) that are responsible for detecting
2,6-dichlorophenol, although only mature males respond to it. The tip-recording technique has been used to
study olfactory sensilla located on tarsi in R. appendiculatus and A. variegatum (Haggart & Davis, 1981;
Waladde, 1982; Leonovich, 2004; Soares & Borges, 2012). Interestingly, very few studies have been
published reporting electrophysiological response of tick and mites towards repellent compounds found in
essential oils (Josek et al., 2021; Gaudet et al., 2023). In addition, no examples assessing repellents through
electrophysiology in a dose-response fashion are available, emphasizing the lack of knowledge on
chemosensory system-repellent compound interaction at neurological and molecular level. Despite
significant advancements in tick neurobiology over the past two decades, further research is needed to
clarify the mechanisms underlying repellent detection.

Analytical Tools to Identify Arachnid Semiochemicals

The identification of chemical messengers presents a set of challenges that chemical ecologists must
overcome. This process involves several key stages: the semiochemicals must be i) sampled, ii) separated, iii)
detected, and iv) structurally characterized. Finally, one must v) select the few behaviourally active
components out of the vast number of detected ones (Fischer, 2019).

Behavioural assays guide the i) sampling of the unknown semiochemicals. For example, once the
presence of volatile attractants or deterrents has been demonstrated in bioassays, the semiochemicals can
be captured in the headspace using filters (e.g., activated charcoal, Tenax®, or Poropak®) (Sahm et al., 2024;
Dossel, Weiss & Schneider, 2026). For subsequent analysis, the adsorbed compounds can be released via
thermal desorption (TD) or extracted with a solvent (Brodie et al., 2016; von Hoermann et al., 2022). Solid-
phase microextraction (SPME) is another valuable technique, where a coated fiber is exposed to the sample
(either headspace or liquid) to adsorb analytes, which are then thermally desorbed directly in the
instrument's injection port (El Adouzi et al., 2020; Gries et al., 2022). Low-volatile components, on the other
hand, can be sampled using solvent washes of relevant substrates such as silk, the cuticle, or dissected
glands (Fischer et al., 2021b, 2022). The choice of solvent is critical and should be guided by bioassays; non-
polar solvents, like hexane, are commonly chosen to acquire CHCs (Bey et al., 2025). More polar solvents,
such as methanol or acetonitrile, are used to extract polar compounds (Fischer et al., 2023b). Before
proceeding with chemical analysis, it is crucial that behavioural assays with the initial headspace or solvent
extracts confirm the successful capture of the active semiochemicals. The resulting behaviourally active
sample typically consists of a complex mixture of semiochemicals that require separation to allow for the
identification of individual compounds (Millar & Haynes, 1998).

Gas chromatography (GC) is the standard tool to ii) separate complex samples (Millar & Haynes,
1998). Upon injection, the mixture is vaporized at a high temperature, and carried by an inert gas through a
heated column. This column is lined with a stationary phase that retains semiochemicals based on their
properties, primarily polarity and volatility. Stronger interactions with the column or lower volatility delay
the passage of a compound, resulting in a characteristic retention time that effectively separates the
components of the mixture (Harris, 2016). However, only an estimated 10% of known organic compounds
are detectable for GC analysis; heat-labile, very polar, or high molecular weight compounds (>500 Da) tend
to be unsuitable for GC-analysis (Rood, 2007).

For compounds not amenable to GC, liquid chromatography (LC) has become increasingly popular, a
trend driven by recent developments of powerful detectors (Siuzdak, 2025). In LC, the sample is injected into
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a liquid mobile phase (solvent) that carries the analytes through a column lined with a stationary phase.
Differences in solubility with the mobile phase and interactions with the stationary phase cause
characteristic differential retention of compounds, leading to their separation (Harris, 2016).

Once separated, the compounds must be iii) detected. The mass spectrometer (MS) is arguably the
most informative detector, as it ionizes and fragments molecules, and the resulting fragment masses provide
crucial structural information and require minute quantities (Siuzdak, 2025). When coupled with GC, the MS
generates characteristic fragmentation patterns for each separated compound through electron ionization
(EI) ("hard" ionization technique) (Harris, 2016). These patterns can be compared against extensive libraries
of reference standards to aid in structural identification (Siuzdak, 2025). In contrast, the electrospray
ionization (ESI) typically used in LC-MS is a "soft" ionization technique that often results in less informative
fragmentation; to overcome this, tandem mass spectrometry (MS-MS) is employed. Tandem-MS isolates and
further fragments the initial ions, yielding additional structural data. Reference libraries for LC-MS/MS are
rapidly emerging, further establishing this method for the structural elucidation of unknown metabolites
(Siuzdak, 2025). Other detectors are also commonly employed; for instance, GC coupled with a flame
ionization detector (GC-FID) is frequently used to identify or quantify known compounds based on their
characteristic retention times and chemical standards (Fischer et al., 2021b).

The iv) structural characterization of detected compounds is typically based on MS or MS/MS data
combined with chromatographic retention times. However, mass spectra alone are sometimes insufficient to
definitively determine a chemical structure. Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful
tool for elucidating the exact structure of unknown compounds, but this technique requires microgram
quantities of the purified metabolite (Harris, 2016). Individual metabolites are commonly isolated for NMR
by collecting fractions as they elute from an LC column at their respective retention times (Fischer et al.,
2022).

After compounds are separated, detected, and characterized, the few behaviourally active ones
must be v) selected. The most direct selection method involves using the animal itself as a bio-detector via
electrophysiology (see above). Here, an electrode records the neural response of the animal's primary
olfactory organ when exposed to compounds eluting from a gas chromatograph. Synchronous peaks from
the bio-detector and a chemical detector (e.g., FID or MS) indicate that a specific semiochemical is detected
by the animal. For insects, electroantennography (GC-EAD) is well-established (Moorhouse et al., 1969; Gries
et al., 2021). When electrophysiological methods are not feasible, comparative metabolomics can be
employed to select candidate semiochemicals (Fischer et al., 2023b). In comparative metabolomics, samples
from signaling and non-signaling individuals are collected, analyzed, and statistically compared. Compounds
that are unique to or significantly more abundant in the signaling group are considered potential candidates.
While, traditionally this involved targeted analysis of well-separated chromatogram peaks, co-eluting
compounds introduce difficulties, particularly when the target compound is detected in trace amounts. Non-
targeted metabolomics has demonstrated to be a powerful tool for selecting candidates detected by MS
detectors (Fischer et al., 2023b; Covington & Seyedsayamdost, 2025). Instead of comparing integrated
peaks, this method considers individual fragment-masses across the entire dataset, effectively deconvoluting
candidate compounds from co-eluents, even at trace quantities (Fischer et al., 2023b).

As a final step, any candidate compounds that have been separated, detected, characterized, and selected
need to be synthesized and tested in behavioural assays to test their biological activity.
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Future directions

Studies on the chemical ecology of Arachnida have revealed ubiquitous use of chemical information
that is detected by diverse chemoreception organs, some of which are unique to their order. Patchy
knowledge is based on few well characterized groups, with most of the diversity of arachnids to be
investigated. The next frontier of chemical ecology of Arachnida requires comparative and mechanistic
approaches that integrate advanced chemical analysis with neuroethology, additionally to ongoing
behavioural descriptions. By continuing the identification of arachnid semiochemicals and pheromones,
particularly of non-model lineages, we will be able to distinguish unique evolutionary innovations from
conserved traits. We propose to systematically address the identified knowledge gaps within each order:

Spiders are the most speciose arachnid order and abundant predators in nearly every terrestrial
ecosystem. Spiders are also the most studied group for chemoreception, yet we still have a poor
understanding of their chemical communication (Fischer, 2019; Talukder et al., 2025a). Our knowledge is
concentrated on a handful of species within the hyperdiverse Araneomorphae, leaving vast branches of the
spider tree of life to be investigated. We have anecdotal evidence of chemosensation in tarantulas
(Mygalomorphae) (Dor et al., 2008), leaving the more basely branching segmented Mesothelae in the
unknown. An exciting frontier is to explore these phylogenetic gaps to build a more complete picture of how
chemical signaling evolved within the Araneae. Even within the best-studied groups, fundamental questions
remain. We have identified sex pheromone components for nineteen of over 53,500 species, we know little
about how spiders produce pheromones and how the biosynthetic pathways evolved. How conserved are
production pathways within a family? Diversity in biosynthesis of pheromones opens another intriguing
frontier: does pheromone production costs render spider pheromones ‘honest signals’ of quality (Fischer et
al., 2024). Further, most research has focused on female-to-male signals, it became evident that spiders
have much more complex chemical conversations rather than female biased monologues (Xiao et al., 2010;
Fischer et al., 2023a). Male anti-aphrodisiacs fend off rivals (Watson, 1986; Malouines, 2017) while their
aphrodisiacs represent underinvestigated chemical courtship (Xiao et al., 2010; DiRienzo et al., 2019).
Research should explore beyond a simple mate-attraction model to disentangle the web of spider chemical
ecology.

The sensory world of the Parasitiformes and Acariformes is primarily chemical, as most species lack
eyes entirely. Our research efforts have been narrowly focused on a few dozen species of ticks and mites
that are of medical or agricultural importance, leaving the chemical ecology of over 48,000 species as a
scientific frontier. We have a good understanding of the kairomonal cues, like CO, and carboxylic acids, that
parasitic ticks and mites use to find their hosts (Light et al., 2020; Auffray et al., 2022; Faraone, 2022), or like
herbivore-induced plant volatile, that phytophilous predatory mites use to find their prey (Maeda &
Takabayashi, 2001). But how does a predatory mite find its prey through the granular soil material? How
does a free-living mite find a mate in heterogenous environments? Similarly, how does a tick find a suitable
blood meal or a mate relying mainly on chemical cues? Outstanding and exciting questions of arachnid
chemical ecology lie within this vast, unstudied majority. We know that some mites use compounds like
neral and geranial as alarm pheromones (Jiang et al., 1997; Heethoff & Raspotnig, 2012), and others use
aggregation pheromones (Entrekin & Oliver, 1982), sex pheromones remain almost entirely unknown
outside of a few pest species (Ziegelmann et al., 2013; HauBermann et al., 2015). Sex pheromones have
been well characterized in metastriate ticks (Dermacentor and Amblyomma spp.) (Sonenshine et al., 1976;
Waladde, 1982), but the pheromones involved in mating among prostriate ticks, such as those in the genus
Ixodes, remain poorly understood. Another important question concerns the mechanism by which ticks
process semiochemicals. Uncovering how they detect these signals and respond behaviourally could lead to
the development of effective repellents or attractants). What are the specific chemical attractants that
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mediate reproduction in the thousands of non-parasitic species? Furthermore, how do the chemical signals
used by a plant-feeding spider mite compare to those of a soil-dwelling Oribatid or a marine Halacarid? The
Parasitiformes and Acariformes provide ideal systems in which to study how extreme ecological
diversification—from obligate parasitism to predation and detritivory—has shaped the evolution of chemical
communication systems. Answering these questions will not only fill a significant gap in our basic biological
knowledge but could also provide novel avenues for the biocontrol of pest species by exploiting their own
chemical languages.

Pseudoscorpions exhibit a complex, chemically mediated social life. Males deposit pheromones on
spermatophores (Legg, 1973), mark their mates with anti-aphrodisiacs (Bonilla et al., 2011), and even alter
their own chemical signature to mimic their hosts (Tizo-Pedroso & Del-Claro, 2014). The frontier here is to
move beyond behavioural descriptions to identify the specific molecules driving these interactions. What are
the compounds that guide females to sperm, deter rival males, or grant a parasite safe passage into a host
colony?

Scorpions present a promising model group. We have decades of behavioural reports describing
pheromonal communication for mating and chemical trail-following (Melville et al., 2003; Taylor et al., 2012;
Pordeus et al., 2019; Barbosa-da-Silva et al., 2025), yet not a single compound has been structurally
identified. A primary frontier is the chemical identification of these elusive signals. With pheromone
structures at hand we may be able to ask: what is the precise function of the pectines? Do they detect
airborne molecules, substrate-bound chemicals, or both? Are they pheromone-specific (Gaffin & Brownell,
1997; Hughes & Gaffin, 2019)?

Solifugae have long been considered to be animals that perceive the world primarily through
vibrations (Kundu et al., 2025), emerging evidence suggests that chemosensation is a critical, underexplored
modality for solifuges (Hebets et al., 2024; Simian et al., 2025). The malleoli are covered in chemoreceptive
sensilla and appear crucial for detecting contact sex pheromones during mating. It remains unclear whether
these fast predators use volatile cues for longer-range detection of prey or mates? Likewise, linking the
function of the malleoli to identified chemical structures represents a central frontier of chemical ecology of
arachnids.

For the relatively neglected groups such as Amblypygi, Uropygi, Schizomida, Palpigradi, seaspiders
and horseshoe crabs we are in the infancy of discovery. The defensive spray of whip scorpions is unlikely to
be their sole chemical communication (Schmidt et al., 2000). For whip spiders there is strong evidence for
chemically-guided homing (Casto et al., 2019), but what are their self-referential semiochemicals?

Advances in morphological technology will benefit arachnid investigations by visualizing in greater
detail the structure of chemosensory organs and their associated neural pathways. Emerging techniques
such as high-resolution electron microscopy, confocal laser scanning microscopy, and three-dimensional
reconstruction from serial sections (Zhao et al., 2024; Ruan et al., 2025; Schindler et al., 2025) now allow for
novel insights into the fine architecture and spatial organization of sensory structures. Combining these tools
with molecular labeling and connectomics approaches will help link morphology with function, deepening
our understanding of how chemical cues are detected and processed. Future studies integrating these
technologies are expected to reveal novel sensory adaptations across parasitiform and acariform taxa and
refine our interpretation of the evolution and diversification of arachnid chemosensory systems.

The rise of ‘omics technologies offers unprecedented opportunities to connect genes to behaviour
(Li, Wang & Zhou, 2025). A major frontier will be to integrate genomic and transcriptomic data with chemical
ecology, allowing the characterization of arachnid chemoreceptor toolkits. We should be able to identify the
specific receptors tuned to sex pheromones or prey kairomones, linking genes directly to function
Fascinatingly, the distantly related spiders and ticks both use short carboxylic acids to solve different
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ecological problems - one for mating and the other for host finding (Faraone et al., 2020; Fischer et al.,
2025a), the underlying receptors should shed light on the nature of this convergent evolution.

The identification of semiochemicals likewise requires adjustment from solely GC-MS based approaches that
worked well for insects (Fischer et al., 2025b). Many spider, and seemingly scorpion pheromones remained
undetected via GC-MS analyses (Fischer et al., 2025a; Barbosa-da-Silva et al., 2025). A key frontier lies in the
recent advancements of LC-MS/MS and non-targeted metabolomics to capture a more complete picture of
an animal’s communication metabolome (Fischer et al., 2023b; Siuzdak, 2025). Additionally, targeted spatial
metabolomics can provide a direct link between the morphological tissues and the behaviourally active
semiochemicals (Chen et al., 2025; Redureau et al., 2025). The rise of machine learning and rapidly growing
MS-spectral libraries provide promising outlook on rapid structural annotation that could fasttrack chemical
ecology of arachnids and beyond (Covington & Seyedsayamdost, 2025; Siuzdak, 2025).

Even with more traditional methods, it is possible to make significant advances in understanding the
chemosensory systems of arachnids by considering two key aspects: interpopulation variation and the scale
of individual functioning. At least among Parasitiformes, significant variations between populations in
behavioral responses to semiochemicals (Auffray et al., 2022; Masier et al., 2023) and in CHC profiles
(Dupraz et al., 2022) have been demonstrated. We recommend, where possible, comparing distant
populations within each species of arachnid studied, in order to consolidate conclusions on chemosensory
interactions as much as possible. Similarly, despite the real attractant activity of an odorant kairomone, a
significant portion of chance in the foraging process has been demonstrated in the Poultry Red Mite based
on behavioral experiments at different scales (from in vitro to the field to laboratory; Auffray et al., 2022).
While it is certain that kairomones exist and are detected by various arachnids, in many cases we do not
really know the role they effectively play in the search for hosts in ticks, prey in the predators studied to
date, or even carriers in phorionts, at the scale of arachnid functioning. This can be of considerable
importance when it comes to developing pest management tools. We therefore strongly recommend
considering the implementation of multi-scale experiments to effectively advance the production of new
knowledge on chemosensory interactions in arachnids.

CONCLUSIONS

1. Arachnids exhibit exceptional diversity, exceeding mammals in species richness and ecological roles,
with chemosensation serving as the foundation for essential behaviours such as prey detection,
mate choice, habitat selection and predator avoidance.

2. Viewed across Chelicerata, arachnid chemosensory systems offer a powerful window into how
ancestral, appendage-based chemical detection has been repeatedly modified, elaborated, or
repurposed in response to ecological diversification.

3. Integrating data from arachnids with that of extant marine chelicerates will allow explicit tests of
homology versus convergence in sensory organs, receptor repertoires, and semiochemical use.

4. Current understanding of arachnid chemosensation is largely restricted to a few model taxa such as
spiders, mites and ticks.

5. Sensory biology in scorpions, pseudoscorpions, solifuges, and other arachnid orders is in its infancy,
despite clear evidence of chemical sensitivity in these groups.

6. The adaptation of electrophysiological techniques from insect models has yielded functional insights
into chemosensilla, though technical constraints remain due to the morphological diversity and small
size of organs.
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10.

Research on arachnid semiochemistry (pheromones, kairomones, allomones and synomones) is
neglected compared to insect chemical ecology.

The integration of modern analytical approaches, including GC-MS, LC-MS/MS based metabolomics,
differential transcriptomics, and three-dimensional imaging with behavioural and
electrophysiological assays, offers promising avenues for characterizing behaviourally active
semiochemicals.

Expanding interdisciplinary research to underrepresented taxa is essential for constructing a
comprehensive framework of arachnid chemosensory evolution and addressing fundamental
questions in neuroethology and evolutionary biology.

Advancing the study of arachnid chemical communication systems has practical implications for pest
management, biodiversity conservation, and biomimetic design.
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