

Maximum performance, repeatability, and intraindividual variability of sprinting in common wall lizards (*Podarcis muralis*)

Authors: Madelyn C. Browning^{^**}, Lindsey Mayor^{^**}, Halle Kozak^{**}, Gabrielle Abshire^{**}, Isabel Allo^{*+}, Alida C. Askill^{**}, Allison Bogan^{**}, Hayley Browning^{**}, Halle Dacek^{**}, Lan Do^{*}, Sam Frary^{**}, Sydney Gassert^{**}, Aida Gesink^{**}, Caleb Gunn^{**}, Landon Key^{**}, Ella M. Neuenschwander^{**}, Brittney C. Parks^{**}, Evelyn Waltz^{**}, Aidan Weir^{**}, Eric J. Gangloff^{*}, Bryan H Juarez^{**‡}

Affiliations:

[^]Co-first authorship

^{*}Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015

⁺BIO 331 Vertebrate Anatomy, Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015

[‡]**Corresponding Author Email:** bryanhuarez@gmail.com

ORCIDs (alphabetical order):

M Browning: 0009-0002-1245-1928

Mayor: 0009-0000-0425-7709

Kozak: 0009-0002-0888-6195

Abshire: 0009-0008-0348-3104

Allo: 0009-0004-6916-7500

Askill: 0009-0006-6758-4778

H Browning: 0009-0007-3878-5615

Gesink: 0009-0008-3622-9882

Gunn: 0009-0007-4922-5947

Key: 0009-0003-0634-8366

Neuenschwander: 0009-0009-0845-1096

Parks: 0009-0005-6679-1524

Weir: 0009-0001-1936-6569

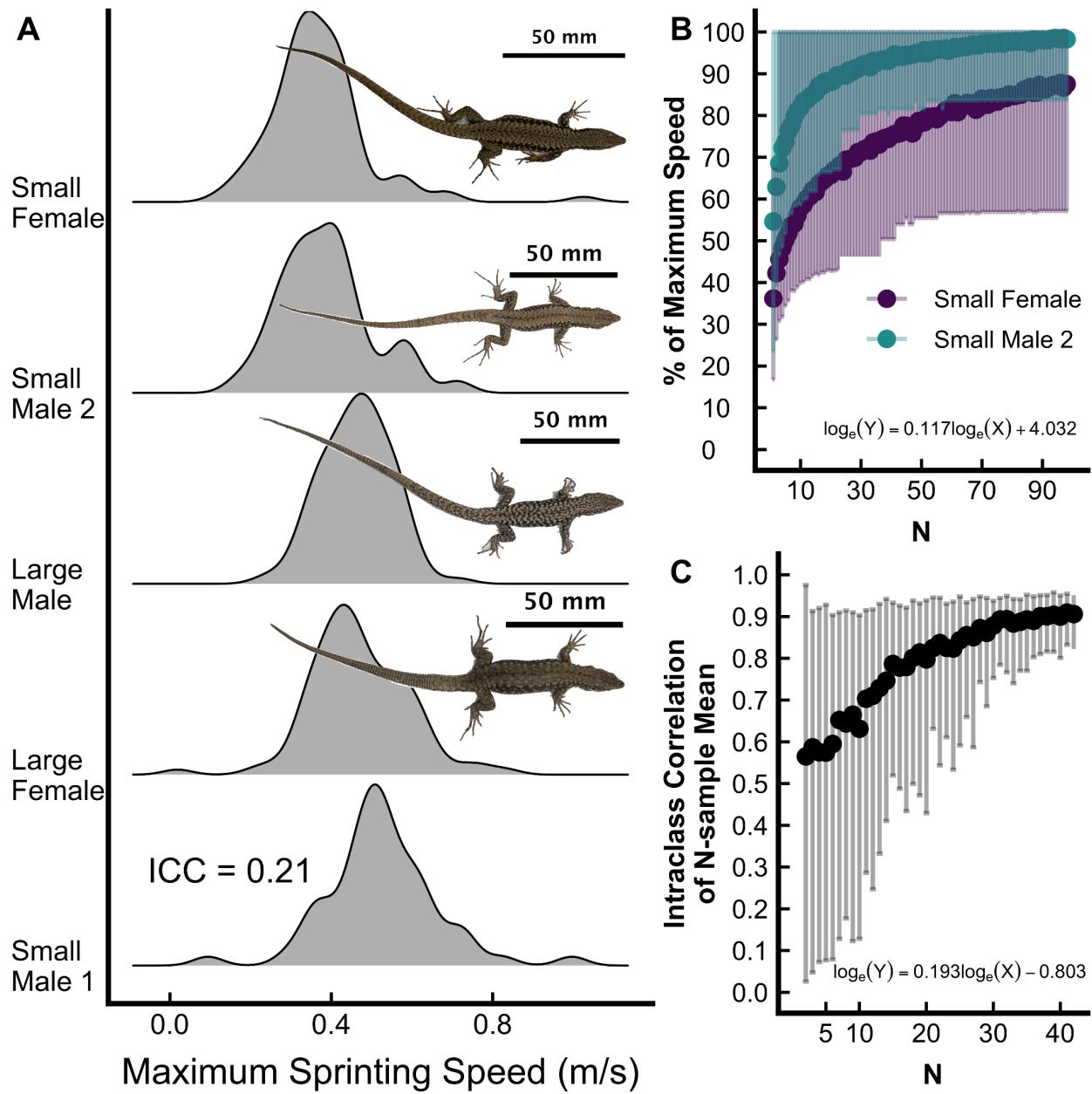
Gangloff: 0000-0002-9074-8009

Juarez: 0000-0002-5474-596X

Running Title: Repeatability of sprinting in lizards (*Podarcis muralis*)

Key Words: urban, introduced, intraspecific, ectotherm, velocity, invasive

Word Count: 1,484


Abstract

The repeatability of functional traits like physiological maxima (maximum performance) measures the reliability of underlying measurements. However, best practices for analyzing maximal performance while accounting for within-individual variation are lacking. Here, we quantify the coefficient of variation and repeatability of maximum sprinting speed in common wall lizards (*Podarcis muralis*) from Cincinnati, USA. We use insights from experimental data and bootstrap resampling to discuss strategies for analyzing physiological maxima while accounting for within-individual variation. Relative to assuming greater among- than within-individual variation, the proposals exhibit greater precision in parameter estimates and statistical test results, with increased power.

Description

Organismal performance, an individual's ability to perform a specific task, bears important implications for individual fitness, ecology, and evolution (Arnold 1983; Husak et al., 2006; Irschick and Meyers 2007). Some examples include measuring whole-animal movement, bite force, or contractile velocities in muscles (Garland et al., 1990; James et al., 2007; Anderson et al., 2008). Most performance studies analyze an individual's maximum performance, but this is often done using low sample sizes associated with relatively larger errors (Losos et al., 2002; Adolph and Pickering 2008). The purpose of this study is to quantify the relationships between maximum sprinting speed, repeatability (sensu Falconer and Mackay 1996), intraindividual variability, and sample size in introduced common wall lizards (*Podarcis muralis*) from Cincinnati, Ohio, USA.

We measured the repeatability of sprinting speed among five lizards totalling $N = 387$ total trials. The individuals selected for this study were chosen to represent sex- and size-specific variation found in nature. These five lizards included one smaller male ("SM1"; body mass = 5.13 g, snout-vent length = 60.30 mm, sprinted $N = 56$ times) which died during the study period and was replaced with a second smaller male ("SM2"; 4.53 g, 55.54 mm, $N = 42$), a larger male ("LM"; 7.26 g, 64.28 mm, $N = 96$), a smaller female ("SF"; 5.17 g, 58.7 mm, $N = 95$), and a larger female ("LF"; 7.48 g, 66 mm, $N = 98$). We measured mass across the trial period and found no change (GLMM; Slope = -0.012, $t = -0.325$, DF = 320, $p = 0.745$). The lizards sprinted an average of 0.44 m/s (Fig. 1A) and this did not change throughout the study (LMM; Slope = -0.0279, $t = -3.752$, DF = 1.0354, $p = 0.159$). The coefficient of variation for sprinting speed across individuals ranged from 0.19 to 0.33 with an average of 0.27. We found sprinting speed was weakly repeatable (ICC = 0.21): only 21% of variation in sprinting speed was due to among-individual variation. Finally, we found logarithmic relationships between sample size and 1) the percent of maximum speed sampled within individuals (Fig. 1B) and the repeatability of maximum sprinting speed across the average of N samples (Fig. 1C).

Figure 1. The effect of intraindividual variation on the repeatability of maximum sprinting speed in common wall lizards (*Podarcis muralis*) from Cincinnati, Ohio, USA. A. The distribution of maximum sprinting speeds across lizards ordered by mean. SM1 sprinted at an average of 0.37 m/s (standard error (SE) = 0.013 m/s), SM2 at 0.39 m/s (SE = 0.018 m/s), LM at 0.46 m/s (SE = 0.0088 m/s), LF at 0.47 m/s (SE = 0.012 m/s), and SM1 at 0.52 m/s (SE = 0.019 m/s). B. The percent of top speed sampled by N measurements of lizards with distinct patterns. Error bars are the 25th and 75th sampled quantiles. C. The repeatability of maximum sprinting speed based on N-sample averages. Error bars are the 25th and 75th sampled quantiles.

P. muralis exhibited greater intraindividual variability relative to similar species.

Since sprinting speeds in ectotherms are temperature-dependent, published studies report a CV across groups of interest of 0.05–0.32, for *P. muralis* at 22°C (Gomes et al., 2017; Žagar et al., 2017). In $N = 21$ adult and subadult male *Sceloporus occidentalis* (western fence lizards), mean CV across individuals was 0.20–0.23 at 20 and 35°C (Adolph and Pickering 2008). These findings indicate that the CV of maximum sprinting speed may be greater in *P. muralis* than in *S. occidentalis*, but the differences in the measured temperatures and number of trials and lizards may confound comparisons and further work is needed. Furthermore, a previous study reports a higher sprinting repeatability (consistency) of 0.5 for *P. muralis* measured at 31°C using $N = 82$ lizards (Gangloff et al., 2019). In *S. occidentalis*, sprinting repeatability was 0.31 and 0.83 for juvenile populations measured at 24 and 30°C, respectively (Buckley et al., 2009). Maximum sprinting speed was repeatable (0.56–0.63) across years in $N = 30$ –62 adult male *S. merriami* (Huey and Dunham 1987). These findings suggest the repeatability of maximum sprinting speed may be lower in *P. muralis* from the USA, relative to Europe, but further research is needed. Overall, maximum sprinting speed in *P. muralis* exhibited a low repeatability despite having a low CV. For example, $N = 11$ and 55 trials guarantee sampling a maximum speed of 75 and 90% of the animal's top speed. Previous studies have described difficulties in estimating an animal's true maximum (Adolph and Pickering 2008; Astley et al., 2013).

Here, we describe alternative methods for accounting for within-individual variation. Although we often assume greater among- than within-individual variation (ICC > 0.5), these assumptions are not explored often in the broader biological literature. We emphasize that quantifying repeatability in maximum performance traits is an important first step in understanding the ecology and evolution of physiological performance (Bennet and Huey 1990; Roche et al., 2016). This is partly because any degree of within-individual variation (ICC < 1) results in relatively larger variance of parameter estimates and lower statistical power and one way to resolve this is by using random effects models to jointly estimate and distinguish among- and within-individual variation (Gelman and Hill 2007). A second method is to integrate over individual variability by estimating per-individual averages of maximum performance using $N \geq 2$.

samples; for *P. muralis*, measuring each individual $N = 2$ or 10 times results in repeatabilities of about 0.5 and 0.7, respectively (Fig. 1C). Notably, applying non-normal residual distributions or using permutational methods (Collyer and Adams 2018; 2024) may be necessary when $N < 30$ and speed was not measured (e.g., with high-speed video) using instantaneous estimates because (“interval”) estimates from infrared sensors are not normally distributed and have relatively greater variance (Gomes et al., 2017). These approaches have the inherent benefits of controlling for behavioral, physiological, or environmental effects on intraindividual variability (Losos et al., 2002; Roche et al., 2016), including plasticity (Irschick and Meyers 2007; Stamps 2016). Determining appropriate sample sizes remains largely study-specific and it is up to the researchers to determine an appropriate trade-off between repeatability (Liljequist et al., 2019), statistical power (Serdar et al., 2021), researcher effort, and animal ethics. In conclusion, we have quantified the relationships between repeatability, intraindividual variation, and sample size for sprinting speed in common wall lizards and used these insights to describe a repeatable statistical framework for analyzing data on maximum performance.

Methods

We caught lizards by hand or using the lasso method (Blomberg and Shine 2006) from two sites (Ault and Mount Storm Parks) in Cincinnati, Ohio, USA during May 2025. Animal care was identical to a previous study (Head et al., 2024), except we housed each female with 1–4 other non-experimental females and housed males in pairs with non-experimental males or singly in plastic tubs (~43 cm L \times 31 cm W \times 33 cm H). We conducted all research under Ohio Division of Wildlife Wild Animal Permit (23-014) and all procedures were approved by Ohio Wesleyan University Institutional Animal Care and Use Committee (2020-21-04).

We measured sprinting speed using published methods (Vaughn et al., 2021; Head et al., 2024), except we used a 1-m racetrack with a stepping stone substrate. We initially chose two male and female pairs of lizards for sampling which had complete tails and represented the greatest difference in body size in our animal colony. The animals spent 50–75 minutes in plastic containers in an incubator at 34°C before trials.

Preliminary trials with non-experimental animals showed this procedure got animals within $\pm 0.5^{\circ}\text{C}$ of their optimal temperature for sprinting, which was $\sim 33^{\circ}\text{C}$ for the sampled populations (unpublished). Animals were measured 2–4 times during trials occurring once or twice per day, between 0900 and 1530 hours, for 14 days from 28 October 2025 to 30 November 2025. On days with two trial periods, we rested the animals at room temperature ($\sim 20^{\circ}\text{C}$) for 1 hour between trials. We measured maximum speed as the animal's fastest 25-cm dash. We measured mass during most trial periods using a Top-200 scale (Weigh Gram, Barcelona, Spain) and SVL before or immediately after the experimental period using a CD-6 ASX digital caliper (Kawasaki, Kanagawa, Japan).

We investigated repeatability and individual variability in a number of ways. First, we used a generalized linear mixed model with random slopes and intercepts (for specimen ID) to test for changes in mass and velocity through the experimental period. The mass model included a first-order continuous autocorrelation structure to account for temporal autocorrelation. We implemented these models using the *nlme* v3.1-168 (Pinheiro and Bates 2000; Pinheiro et al., 2025) and *lme4* v1.1-37 (Bates et al., 2015) libraries in R v4.5.0 (R Core Team 2025). Next, we estimated the individual and average coefficient of variation for sprinting speed. Then, we estimated the intraclass correlation coefficient (ICC) using the *psych* package v2.5.6 (Revelle 2025). Specifically, we estimated the ICC2 (Koo and Li 2016) single measurement ($k=1$) statistic representing absolute similarity (agreement) across samples. This statistic is the same as the ICCa statistic (Collyer and Adams 2018; 2024) and the ICC(2,1) statistic (Shrout and Fleiss 1979). The ICC ranges from 0 to 1; ICC = 1 represents high repeatability and a high ratio of among-individual to total variation. Additionally, we standardized velocities using lizard-specific maxima and used bootstrap resampling (1,000 \times with replacement) to determine the relationship between sample size and each animal's sampled speed, relative to individual maxima. Finally, we used a similar approach to quantify the repeatability of average maximum sprint performance (the ICC2k statistic) across N samples per individual, up to the minimum individual sample size (N = 42).

Author Contributions

MB: Data curation, Validation, Investigation, Visualization, Writing (original draft), Writing (review and editing). LM: Data curation, Validation, Investigation, Visualization, Writing (original draft), Writing (review and editing). HK: Investigation, Visualization, Writing (review and editing). GA: Investigation, Visualization. IA: Investigation, Visualization. ACA: Investigation, Visualization. AB: Investigation, Visualization. HB: Investigation, Visualization. HD: Investigation, Visualization. LD: Investigation, Visualization. SF: Investigation, Visualization. SG: Investigation, Visualization. AG: Investigation, Visualization. CG: Investigation, Visualization. LK: Investigation, Visualization. EMN: Investigation, Visualization. BCP: Investigation, Visualization. EW: Investigation, Visualization. AW: Investigation, Visualization. EJG: Resources, Supervision, Funding Acquisition, Validation, Visualization, Project Administration, Writing (review and editing) BHJ: Conceptualization, Data Curation, Software, Formal Analysis, Supervision, Validation, Investigation, Visualization, Methodology, Writing (original draft), Project Administration, Writing (review and editing).

References

Adolph SC, Pickering T. 2008. Estimating maximum performance: effects of intraindividual variation. *J Exp Biol.* 211(Pt 8):1336–1343. doi:[10.1242/jeb.011296](https://doi.org/10.1242/jeb.011296).

Anderson RA, Mcbrayer LD, Herrel A. 2008. Bite force in vertebrates: opportunities and caveats for use of a nonpareil whole-animal performance measure. *Biol J Linn Soc Lond.* 93(4):709–720. doi:[10.1111/j.1095-8312.2007.00905.x](https://doi.org/10.1111/j.1095-8312.2007.00905.x).

Arnold SJ. 1983. Morphology, performance and fitness. *Am Zool.* 23(2):347–361. doi:[10.1093/icb/23.2.347](https://doi.org/10.1093/icb/23.2.347).

Astley HC, Abbott EM, Azizi E, Marsh RL, Roberts TJ. 2013. Chasing maximal performance: a cautionary tale from the celebrated jumping frogs of Calaveras County. *J Exp Biol.* 216(Pt 21):3947–3953. doi:[10.1242/jeb.090357](https://doi.org/10.1242/jeb.090357).

Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. *Journal of Statistical Software.* 67(1):1–48. doi:[10.18637/jss.v067.i01](https://doi.org/10.18637/jss.v067.i01).

Blomberg S, Shine R. 2006. Reptiles. In: Sutherland WJ, editor. *Ecological Census Techniques*. Cambridge: Cambridge University Press. p. 297–307. doi:[10.1017/cbo9780511790508.009](https://doi.org/10.1017/cbo9780511790508.009).

Buckley CR, Irschick DJ, Adolph SC. 2009. The contributions of evolutionary divergence and phenotypic plasticity to geographic variation in the western fence lizard, *Sceloporus occidentalis*: phenotypic plasticity in western fence lizards. *Biol J Linn Soc Lond.* 99(1):84–98. doi:[10.1111/j.1095-8312.2009.01346.x](https://doi.org/10.1111/j.1095-8312.2009.01346.x).

Collyer ML, Adams DC. 2018. RRPP: An r package for fitting linear models to high-dimensional data using residual randomization. *Methods Ecol Evol.* 9(7):1772–1779. doi:[10.1111/2041-210X.13029](https://doi.org/10.1111/2041-210X.13029).

Collyer ML, Adams DC. 2024. RRPP: Linear model evaluation with Randomized Residuals in a Permutation Procedure. R package version 2.1.2. <https://CRAN.R-project.org/package=RRPP>.

Falconer DS, Mackay TFC. 1996. Introduction to quantitative genetics. Harlow, Essex, England: Longman Scientific and Technical.

Gangloff EJ, Sorlin M, Cordero GA, Souchet J, Aubret F. 2019. Lizards at the peak: Physiological plasticity does not maintain performance in lizards transplanted to high altitude. *Physiol Biochem Zool*. 92(2):189–200. doi:[10.1086/701793](https://doi.org/10.1086/701793).

Garland T Jr, Bennett AF, Daniels CB. 1990. Heritability of locomotor performance and its correlates in a natural population. *Experientia*. 46(5):530–533. doi:[10.1007/BF01954257](https://doi.org/10.1007/BF01954257).

Gelman A, Hill J. 2007. Data analysis using regression and multilevel/hierarchical models. Cambridge, England: Cambridge University Press.

Gomes V, Carretero MA, Kaliontzopoulou A. 2017. Instantaneous versus interval speed estimates of maximum locomotor capacities for whole-organism performance studies. *Evol Biol*. 44(4):551–560. doi:[10.1007/s11692-017-9426-7](https://doi.org/10.1007/s11692-017-9426-7).

Head A, Vaughn PL, Livingston EH, Colwell C, Muñoz MM, Gangloff EJ. 2024. Include the females: morphology-performance relationships vary between sexes in lizards. *J Exp Biol*. 227(18):jeb248014. doi:[10.1242/jeb.248014](https://doi.org/10.1242/jeb.248014).

Huey RB, Dunham AE. 1987. Repeatability of locomotor performance in natural populations of the lizard *Sceloporus merriami*. *Evolution*. 41(5):1116–1120. doi:[10.1111/j.1558-5646.1987.tb05880.x](https://doi.org/10.1111/j.1558-5646.1987.tb05880.x).

Husak JF, Fox SF, Lovern MB, Van Den Bussche RA. 2006. Faster lizards sire more offspring: sexual selection on whole-animal performance. *Evolution*. 60(10):2122–2130. doi:[10.1111/j.0014-3820.2006.tb01849.x](https://doi.org/10.1111/j.0014-3820.2006.tb01849.x).

Irschick DJ, Meyers JJ. 2007. An analysis of the relative roles of plasticity and natural selection in the morphology and performance of a lizard (*Urosaurus ornatus*). *Oecologia*. 153(2):489–499. doi:[10.1007/s00442-007-0726-y](https://doi.org/10.1007/s00442-007-0726-y).

James RS, Navas CA, Herrel A. 2007. How important are skeletal muscle mechanics in setting limits on jumping performance? *J Exp Biol*. 210:923–933. doi:[10.1242/jeb.02731](https://doi.org/10.1242/jeb.02731).

Koo TK, Li MY. 2016. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. *J Chiropr Med*. 15(2):155–163. doi:[10.1016/j.jcm.2016.02.012](https://doi.org/10.1016/j.jcm.2016.02.012).

Liljequist D, Elfving B, Skavberg Roaldsen K. 2019. Intraclass correlation - A discussion and demonstration of basic features. *PLoS One*. 14(7):e0219854. doi:[10.1371/journal.pone.0219854](https://doi.org/10.1371/journal.pone.0219854).

Losos JB, Creer DA, Schulte JA II. 2002. Cautionary comments on the measurement of maximum locomotor capabilities. *J Zool* (1987). 258(1):57–61. doi:[10.1017/s0952836902001206](https://doi.org/10.1017/s0952836902001206).

Pinheiro J, Bates D. 2000. Mixed-effects models in S and S-PLUS. Chambers J, Eddy W, Härdle W, Sheather S, Tierney L, editors. New York, NY: Springer.

Pinheiro J, Bates D, R Core Team. 2025. nlme: Linear and nonlinear mixed effects models. <https://doi.org/10.32614/CRAN.package.nlme>, R package version 3.1-168, <https://CRAN.R-project.org/package=nlme>.

R Core Team. 2025. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

Revelle W. 2025. psych: Procedures for psychological, psychometric, and personality research.

Northwestern University, Evanston, Illinois. R package version 2.5.6,
<https://CRAN.R-project.org/package=psych>.

Roche DG, Careau V, Binning SA. 2016. Demystifying animal “personality” (or not): why individual variation matters to experimental biologists. *J Exp Biol.* 219(Pt 24):3832–3843. doi:10.1242/jeb.146712.

Serdar CC, Cihan M, Yücel D, Serdar MA. 2021. Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. *Biochem Med.* 31(1):010502. doi:[10.11613/BM.2021.010502](https://doi.org/10.11613/BM.2021.010502).

Shrout PE, Fleiss JL. 1979. Intraclass correlations: Uses in assessing rater reliability. *Psychol Bull.* 86(2):420–428. doi:[10.1037/0033-2909.86.2.420](https://doi.org/10.1037/0033-2909.86.2.420).

Stamps JA. 2016. Individual differences in behavioural plasticities: Behavioural plasticities. *Biol Rev Camb Philos Soc.* 91(2):534–567. doi:[10.1111/brv.12186](https://doi.org/10.1111/brv.12186).

Vaughn PL, Mcqueen W, Gangloff EJ. 2021. Moving to the city: testing the implications of morphological shifts on locomotor performance in introduced urban lizards. *Biol J Linn Soc Lond.* 134(1):141–153. doi:[10.1093/biolinnean/blab076](https://doi.org/10.1093/biolinnean/blab076).

Žagar A, Carretero MA, Vrezec A, Drašler K, Kaliontzopoulou A. 2017. Towards a functional understanding of species coexistence: ecomorphological variation in relation to whole-organism performance in two sympatric lizards. *Funct Ecol.* 31(9):1780–1791. doi:[10.1111/1365-2435.12878](https://doi.org/10.1111/1365-2435.12878).