

1 **Climate warming dampens mastинг-driven pulsed**
2 **resources**

3

4 Michał Bogdziewicz*¹, Jessie J. Foest¹, Andrew Hacket-Pain², Maciej K. Barczyk¹, Maria Bogdańska¹,
5 Marcin K. Dyderski ³, Szymon Jastrzębowski⁴, Rachel Gaulton⁵, Jonathan G. A. Lagard ⁶, Peter A.
6 Thomas ⁷, Dave Kelly⁸, Jakub Szymkowiak^{1,2,9}

7

8 ¹Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University,
9 Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland.

10 ²Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool,
11 United Kingdom.

12 ³Department of Systematic and Environmental Botany, Institute of Environmental Biology, Faculty of Biology,
13 Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland.

14 ⁴Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Braci Leśnej 3, Sękocin Stary,
15 05-090, Raszyn, Poland.

16 ⁵School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United
17 Kingdom.

18 ⁶Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK

19 ⁷School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK

20 ⁸ School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.

21 ⁹Population Ecology Research Unit, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz
22 University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland.

23

24 *corresponding authors: michalbogdziewicz@gmail.com

25 *keywords:* Moran effect | mast seeding | spatial synchrony | seed production | tail-dependent
26 synchrony | resource pulses | reproductive failure | forest dynamics | climate synchrony

27

28 **Abstract**

29 Pulsed resources arise when environmental forcing synchronizes biological responses. This
30 synchrony generates episodic booms and busts that structure food webs. Mast seeding is a
31 major example, yet climate warming is increasingly disrupting the synchrony that underpins
32 these pulses. Importantly, the ecological consequences of masting depend on which tail is
33 synchronized: spatially coherent seed failures (synchrony in the lower tail) create trophic bot-
34 tlenecks, whereas coherent mast peaks (upper tail) generate resource pulses that fuel consumer
35 outbreaks. Climate-driven changes in synchrony may be tail-specific, reshaping not only the
36 strength but also the character of resource pulses. Here, we test how warming-driven changes in
37 European beech (*Fagus sylvatica*) masting translate into tail-specific shifts in spatial synchrony
38 and whether these shifts arise from altered coupling between weather cues and reproduction.
39 Using 45 years of individual-tree seed production data from the United Kingdom and 33 years
40 of seed harvest records from Poland, we found that, as predicted, synchrony declined strongly in
41 mast peaks (44% locally; 50% regionally). However, synchrony also declined in failure years,
42 though to a lesser extent (35% locally; 25% regionally) than in mast peaks. This asymmetry
43 was not explained by increasing heterogeneity in responses to the warm-summer cue preceding
44 flowering. Instead, reproductive dynamics shifted toward dominance of the cold-summer cue
45 two years before seedfall, while sensitivity to the warm-summer cue weakened. This flattened
46 previously nonlinear cue–reproduction relationships: reproduction increasingly occurred under
47 conditions that formerly produced synchronized failure, and amplification during favourable
48 years was reduced. Our findings show that warming alters the cue structures that generate
49 masting-driven pulses, weakening and desynchronizing both failures and peaks, and reducing
50 their predictability.

51 **Introduction**

52 Resource pulses, brief and infrequent episodes of strongly elevated resource availability, occur
53 across terrestrial and aquatic ecosystems and arise from climatic forcing, temporal or spatial
54 accumulation and release, and population outbreaks (Ostfeld & Keesing, 2000; Yang *et al.*,

55 2008, 2010). These pulses alter consumer behaviour, drive population responses, and generate
56 indirect effects that propagate through food webs and across ecosystem boundaries (Yang *et al.*,
57 2010; Walter *et al.*, 2024). Pulses often emerge from spatially coherent environmental forcing
58 and synchronized responses of primary producers, such as in El Niño–driven productivity
59 boosts, insect outbreaks, or region-wide mast crops (Yang *et al.*, 2010; Anderson *et al.*, 2020;
60 Bogdziewicz *et al.*, 2025). Climate change is expected to alter the spatial synchrony of both
61 weather drivers and ecological phenomena, which can strengthen or weaken pulsed resources
62 (Hansen *et al.*, 2020; Reuman *et al.*, 2025). Therefore, understanding how climate change
63 reshapes synchrony within pulsed-resource systems is important for predicting how resource
64 pulses will propagate through food webs and across landscapes.

65 Mast seeding is a major example of a pulsed-resource driver (Ostfeld & Keesing, 2000).
66 Masting plants produce interannually variable seed crops that are synchronized within popu-
67 lations and often across large spatial scales (Pearse *et al.*, 2016; Bogdziewicz *et al.*, 2023a).
68 Masting is prevalent especially in temperate and boreal zones, but present across all vegetated
69 continents (Pearse *et al.*, 2020; Journé *et al.*, 2023). A recently described feature of ecological
70 synchrony, including in masting, is its tail-dependence (Szymkowiak *et al.*, 2025), in which
71 spatial synchrony varies between the lower tail (years of seed failure) and the upper tail (years
72 of high seed production) of an ecological variable’s distribution (Ghosh *et al.*, 2020; Walter
73 *et al.*, 2022). In masting, synchrony is generally higher in the lower tail, i.e., synchrony of seed-
74 ing failures among seed-producing individuals or populations is higher and extends over larger
75 spatial scales compared to such synchrony in high-seeding years (Szymkowiak *et al.*, 2024,
76 2025). This asymmetry matters because famines and abundance generate different ecological
77 dynamics (Holt, 2008). Seed-crop failures impose trophic constraints and trigger threshold
78 responses: once resources fall below tolerable levels, survival and reproduction of consumers
79 decline rapidly, often triggering emigration (Sears *et al.*, 2004; Holt, 2008; Tonelli *et al.*, 2026).
80 Mast peaks, in contrast, create resource surges that trigger graded and saturating increases
81 in consumer numbers (Sears *et al.*, 2004; Holt, 2008; Yang *et al.*, 2010). Because scarcity
82 and abundance involve different mechanisms, the two tails of masting drive distinct ecological
83 cascades.

84 Recent evidence shows that masting dynamics are sensitive to climate change (Hacket-
85 Pain & Bogdziewicz, 2021), including in species such as Japanese oak (*Quercus crispula*)
86 (Shibata *et al.*, 2020), tawa (*Beilschmiedia tawa*) (Yukich-Clendon *et al.*, 2023), or blue oak
87 (*Q. douglasii*) (Koenig, 2019). In European beech (*Fagus sylvatica*), a well-studied species
88 in this context, among-tree synchrony of seed production variation has declined, reducing the
89 interannual variability in seed production (Bogdziewicz *et al.*, 2020). This breakdown has
90 been linked to rising summer temperatures, which provide the weather cues for flowering while
91 internal resource dynamics modulate the strength of the flowering response (Bogdziewicz *et al.*,
92 2021; Kelly *et al.*, 2025). Cold summers two years before seedfall (T2) are believed to prime
93 flowering, possibly by triggering molecular pathways, and warm summers one year before
94 seedfall (T1) then facilitate flower initiation in a manner that depends on the tree's resource
95 state (Piovesan & Adams, 2001; Vacchiano *et al.*, 2017; Kelly *et al.*, 2025). As warm summers
96 become more frequent, reproduction is cued more often, resources remain chronically depleted,
97 and weather cues lose their coordinating function (Bogdziewicz *et al.*, 2021; Hacket-Pain *et al.*,
98 2025). The desynchronization is now evident across much of the species' range and is strongest
99 at locations where summer warming has been most pronounced (Foest *et al.*, 2024, 2025b). Yet,
100 it remains unclear how these changes in synchrony map onto tail dependence: whether climate
101 change is weakening synchrony in mast peaks, failures, or both, and to what extent.

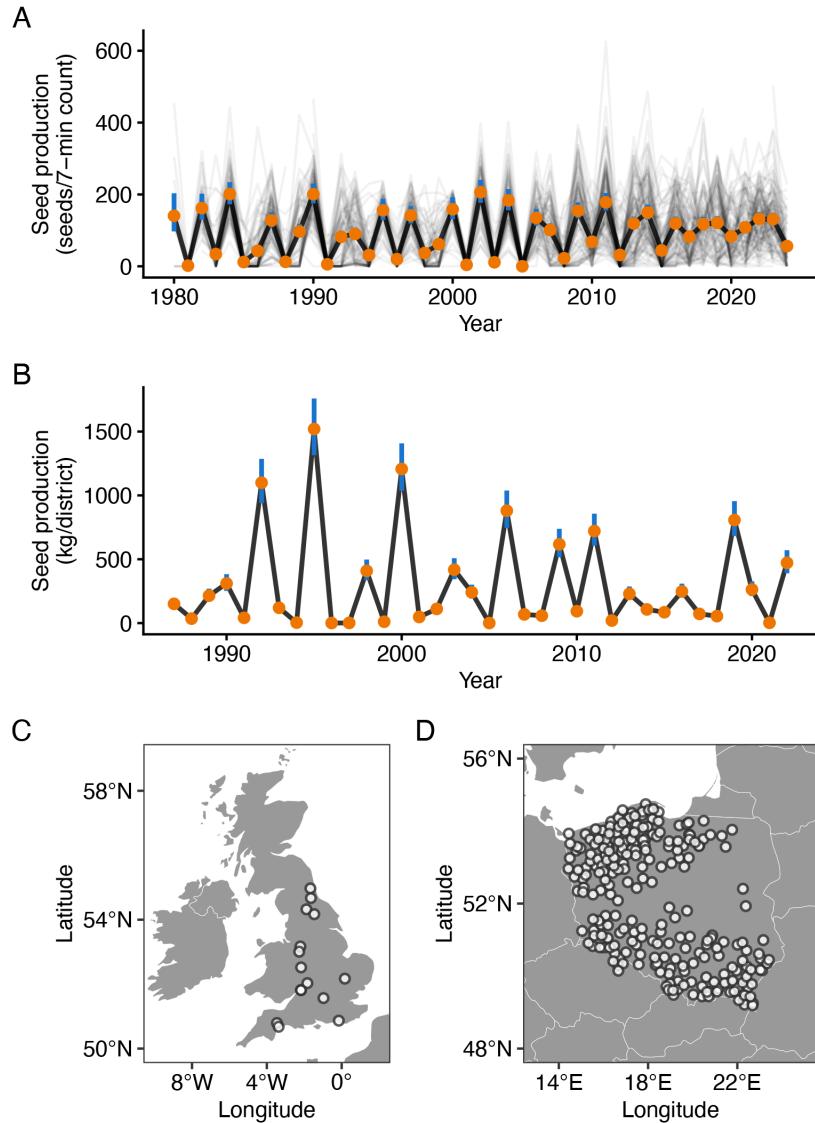
102 Tail-dependent synchrony in masting arises from non-linear responses of reproduction to
103 weather cues (Szymkowiak *et al.*, 2024). Variation and synchrony in seed production are
104 driven by weather cues that regulate flowering and seed maturation (Kelly *et al.*, 2013; Koenig
105 *et al.*, 2015; Journé *et al.*, 2024). Spatial synchrony of masting reflects the Moran effect acting
106 through these cues (Koenig & Knops, 2013; Ascoli *et al.*, 2017; LaMontagne *et al.*, 2020;
107 Wion *et al.*, 2020). Masting plants often respond weakly or not at all across a broad range
108 of unfavourable cue values, and show strong reproductive responses once cues cross induction
109 thresholds (Kelly *et al.*, 2013; Fernández-Martínez *et al.*, 2017; Schermer *et al.*, 2020). Such
110 non-linear relationships generate many years of seed failure and create an asymmetric effect
111 of weather variation on reproduction (Szymkowiak *et al.*, 2024). When cues are low, seed
112 production remains suppressed across a wide range of cue values, so spatial variation in weather

113 produces little variation in reproduction, promoting high synchrony of failures (Szymkowiak
114 *et al.*, 2024). When cues are high, small spatial differences in weather translate into large
115 differences in seed production, reducing synchrony in peaks (Szymkowiak *et al.*, 2024).

116 In this study, we test how the climate-change-induced disruption in European beech masting
117 (Bogdziewicz *et al.*, 2020; Foest *et al.*, 2025b) translates into tail-specific changes in spatial syn-
118 chrony, and how these changes arise from altered coupling between weather cues and individual
119 reproductive responses. Climate warming increases the frequency of cues, which repeatedly
120 trigger flowering but progressively deplete internal resources (Hacket-Pain *et al.*, 2025; Kelly
121 *et al.*, 2025). The consequences should be asymmetric across the masting distribution: when
122 cues are high, resource depletion should dampen and diversify individual responses, weaken-
123 ing cue–reproduction coupling and reducing synchrony in the upper tail. When cues are low,
124 reproduction is not initiated, and synchrony in the lower tail should show little temporal change.

125 To test these predictions, we combine two datasets that capture different levels at which
126 masting synchrony emerges. First, we use 45 years of individual-tree seed-production records
127 from 17 sites in UK (Hacket-Pain *et al.*, 2025), which enable us to quantify how the coupling
128 between weather cues and reproduction varies among trees and changes over time. These data
129 provide direct insight into the individual-level processes from which population-level synchrony
130 arises (Koenig *et al.*, 2003; Pesendorfer *et al.*, 2021). Second, we use spatially extensive,
131 population-level seed harvest records from Poland spanning 33 years (Foest *et al.*, 2025b).
132 Although based on annual harvest data rather than direct counts, this dataset offers broad
133 spatial coverage and enables us to test whether tail-specific changes in synchrony detected at
134 the individual level are replicated across landscape scales. These datasets allow us to link
135 mechanistic changes in cue responsiveness to emergent, tail-dependent patterns of synchrony
136 under climate warming.

137 **Methods**


138 **Study species**

139 European beech (*Fagus sylvatica L.*) is a dominant forest-forming species in temperate Europe
140 (Leuschner & Ellenberg, 2017). It is a masting species with large interannual variation and spatial
141 synchrony in seed production (Nilsson & Wastljung, 1987; Ascoli *et al.*, 2017). Specifically,
142 a combination of cold summer two years before seedfall (T2) and then warm summer one
143 year before seedfall (T1) leads to a large flowering commitment and high seed production
144 (Vacchiano *et al.*, 2017; Journé *et al.*, 2024). Masting in beech improves pollination efficiency
145 and decreases pre- and post-dispersal seed predation rates (Zwolak *et al.*, 2016; Pesendorfer
146 *et al.*, 2024). Recent warming-related disruption of masting has increased pre-dispersal seed
147 predation from 2–3% of seeds to over 40%, reduced pollination efficiency by about 20%, and,
148 consequently, halved viable seed production (Bogdziewicz *et al.*, 2023b; Foest *et al.*, 2025b). In
149 England, the decline in variability, increased regularity of reproduction, and resulting resource
150 depletion under warming have been linked to a 28% reduction in annual tree ring increments
151 (Hacket-Pain *et al.*, 2025).

152 **Seed production data**

153 Individual-level seed production was quantified for 229 trees and 17 sites spaced across England
154 annually between 1980 and 2024 (45 years) (Bogdziewicz *et al.*, 2023b). The ground below
155 each tree was searched for seeds for 7 minutes, and all seeds found were counted (Foest *et al.*,
156 2025a). The other dataset included spatially extensive, population-level records of European
157 beech seed production obtained from the Polish State Forests and is based on annual harvest
158 rates by the state forests inspectorates (Foest *et al.*, 2025b). This dataset provides information
159 on the amount (kg) of seeds collected in each district per year and the focal sampling effort.
160 The data have been collected from 1987 to 2022 across 238 sites. Seeds are collected from
161 the ground by local companies on behalf of the Polish State Forest, and each inspectorate has
162 assigned seed collection sites. In both datasets, a decline in synchrony and interannual variation
163 of seed production linked to summer temperature increases has been detected (Bogdziewicz

¹⁶⁴ *et al.*, 2020, 2021; Foest *et al.*, 2025b). The seeding time series are provided in Figure 1.

Figure 1: Seed production patterns of European beech in UK and Poland. A) For the UK each line shows individual tree seed production (229 trees, 17 sites), while a black thick line shows the country-level mean (orange points) and associated 95% confidence intervals (blue whiskers). Note that the number of trees and sites varies across analyses due to data filtering (see Methods). B) Country-level, annual mean ($\pm 95\%$ CI, blue whiskers) seed output in Poland, based on harvest records from 238 sites. Means and confidence intervals were estimated using a Tweedie GLM with intercept set at zero, with year fitted as a factor variable. Panels C) and D) show the locations of study sites in the UK and Poland, respectively.

¹⁶⁵ Analysis

¹⁶⁶ **Masting–weather cue coupling** To quantify temporal changes in the coupling between weather
¹⁶⁷ cues and reproduction, we used the UK seed-production dataset, which is based on long-term
¹⁶⁸ ecological monitoring at the individual-tree level. Because population-level synchrony emerges

169 from the aggregation of individual reproductive responses (Koenig *et al.*, 2003), we estimated
170 cue–reproduction relationships separately for each tree. We fitted tree-specific zero-inflated
171 Tweedie models with a log link function, using annual seed production as the response vari-
172 able, while mean June–July maximum temperatures two years (T2) and one year (T1) before
173 seedfall, and seed production in the previous year (log-transformed), were used as predictors.
174 The zero-inflated formula included log-transformed previous year seed production. We fitted
175 separate models for each tree rather than mixed-effects models with random slopes, to avoid
176 shrinkage of individual responses toward the population-level mean. To assess temporal changes
177 in cue coupling, models were fitted separately for two periods: 1980–2006 and 2007–2024. This
178 division reflects the documented abrupt decline in masting synchrony in the UK, with a clear
179 transition around 2006 (Bogdziewicz *et al.*, 2020; Hacket-Pain *et al.*, 2025). In each period,
180 we included only trees with at least $n = 10$ years of seed-production records to ensure reliable
181 estimation of individual cue responses. As a result, we used 84 trees (11 sites) in the 1980–2006
182 subset, and 96 trees (11 sites) in the 2007–2024 subset.

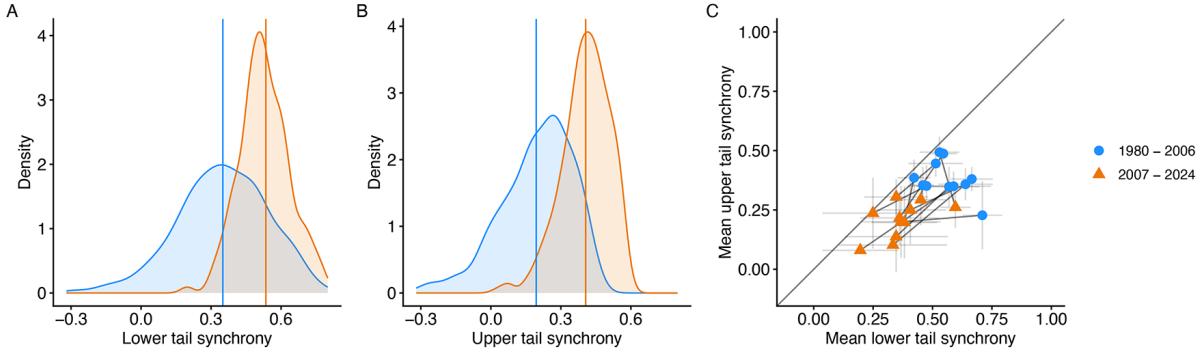
183 In addition to the tree-specific models, we fitted generalized linear mixed models (GLMMs)
184 to characterise the aggregate relationship between seed production and weather cues at the
185 dataset level (UK). These models used a Tweedie error distribution with a log link, included
186 mean June–July maximum temperatures at T1 and T2, and previous year seed production (log-
187 transformed) as fixed effects, and incorporated tree ID and site ID as random intercepts. As
188 above, models were fitted separately for the periods 1980–2006 and 2007–2024. Moreover,
189 in addition to models with separate T1 and T2 predictors, we also fitted models using the
190 temperature difference between summers one and two years before seedfall ($\Delta T = T1 - T2$) as
191 a single predictor. This formulation captures the established cueing system of European beech
192 reproduction, in which cold summers two years before seedfall, followed by warm summers one
193 year before seedfall, promote flowering (Vacchiano *et al.*, 2017). ΔT provides a parsimonious
194 representation of the combined effect of T1 and T2 and facilitates visualisation and interpretation
195 of changes in cue dependence (Kelly *et al.*, 2013; Szymkowiak *et al.*, 2024). This analysis was
196 based on 106 trees (11 sites) in the 1980–2006 data subset, and 169 trees (15 sites) in the
197 2007–2024 subset.

198 **Tail-dependent synchrony and its temporal change**

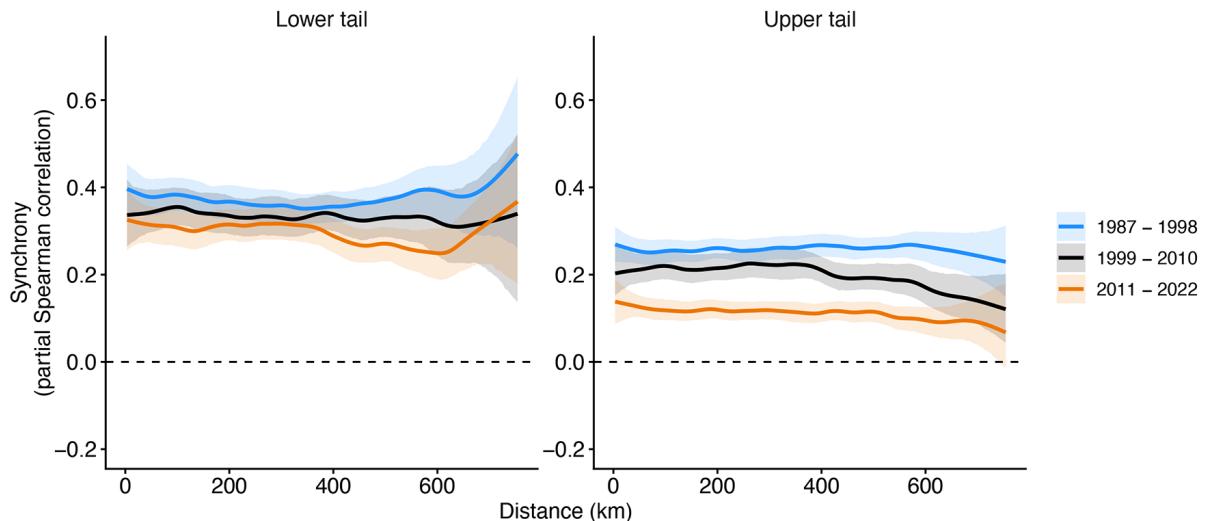
199 **Categorization of masting data into tails** Our framework follows that of Walter *et al.* (2022),
200 modified by Szymkowiak *et al.* (2024). For seed production scaled at individual tree (UK data)
201 or site (Polish data) to values between 0 and 1, masting lower tail includes annual values of seed
202 production ≤ 0.5 , while upper those > 0.5 . The thresholds are arbitrary in the sense that masting
203 is not a categorical variable, but they enable analysis of tail-dependence (Ghosh *et al.*, 2021;
204 Walter *et al.*, 2022; Szymkowiak *et al.*, 2024). We also tested other thresholds (0.2/0.8, 0.4/0.6,
205 0.6/0.4, 0.8/0.2), and these provided qualitatively similar results.

206 **Tail-dependent masting synchrony** We estimated the synchrony in masting tails using a
207 partial Spearman correlation, defined as the portion of the standard Spearman rank correlation
208 arising due to the range of values in the two variables being bounded by tails thresholds (Walter
209 *et al.*, 2022). Pairwise correlations were calculated separately for the lower (≤ 0.5) and upper ($>$
210 0.5) tails of the seed production time series. In cases when the annual value of seed production for
211 the two time series falls into opposite tails, the value was included in both tails when calculating
212 the partial Spearman correlation (Szymkowiak *et al.*, 2024, 2025). Thus, if one individual or site
213 experienced a mast peak and the other a year of seed scarcity in the same year, synchrony was
214 reduced in both tails. This approach ensures that mismatches across individuals or sites reduce
215 synchrony in both tails, reflecting the ecological interpretation that opposite outcomes indicate
216 asynchrony. Note that scaling of the mast data does not affect the correlations calculated via
217 Spearman correlation, as these are calculated on ranked data.

218 The tail-dependent synchrony was estimated at two levels: among trees, within populations
219 (UK data), and among-sites, regional (Polish data). The within-site synchrony has been summa-
220 rized as mean (\pm SD) lower/upper synchrony across all trees within a given population. In the
221 case of regional synchrony, we calculated the distance-decay of within-tail seed production syn-
222 chrony using non-parametric spatial covariance functions (Bjørnstad & Falck, 2021). We used
223 the matrices of partial Spearman correlations within the lower and upper tails as the response
224 (synchrony variables), explained by the matrices of pairwise geographical distances between
225 sites (Szymkowiak *et al.*, 2024). To calculate 95% confidence bands for each function, we used


226 the standard bootstrapping procedure (Bjørnstad & Falck, 2021).

227 **Temporal changes in tail-dependent synchrony** To quantify temporal shifts in tail-dependent
228 masting synchrony, we divided the datasets into time periods reflecting documented or expected
229 changes in masting dynamics. In the UK, the decline in synchrony occurred abruptly, with a
230 clear transition around 2006 (Bogdziewicz *et al.*, 2020; Hacket-Pain *et al.*, 2025); we therefore
231 analysed two periods, 1980-2006 (84 trees, 11 sites) and 2007-2024 (96 trees, 11 sites). In
232 Poland, the spatially extensive dataset and the heterogeneous pattern of summer warming did
233 not permit identification of a single transition period (Foest *et al.*, 2025b). Instead, we parti-
234 tioned the time series into three equal 12-year periods (1987-1998, 1999-2010, and 2011-2022).
235 Tail-specific synchrony was estimated separately within each period following the procedures
236 described above.


237 **Results**

238 Spatial synchrony in European beech seed production declined in both tails of the masting
239 distribution, but the decline was consistently stronger in the upper tail. Local (UK) upper-tail
240 synchrony decreased by approximately 50%, i.e., from 0.38 (± 0.07 ; mean partial Spearman
241 cross-correlation among trees within site \pm SD) in the first period (1980–2006) to 0.21 (± 0.14)
242 in the second period (2007-2024; Fig. 2). Lower-tail synchrony also declined, but to a lesser
243 extent, i.e., by 36%, i.e., from 0.56 (± 0.09) to 0.37 (± 0.16) (Fig. 2).

244 In the case of regional synchrony (Poland), the decline in synchrony was similarly asymmetric
245 as in the case of local synchrony. The upper tail synchrony decline was also stronger compared
246 to the lower tail, i.e., the upper tail decreased by over 50% from 0.26 (± 0.005 ; mean partial
247 Spearman cross-correlation among sites \pm SD) to 0.12 (± 0.007) (Fig. 3). In contrast, the lower
248 tail synchrony declined by about 25%, from 0.37 (± 0.01) to 0.30 (± 0.02) (Fig. 3). Thus,
249 although the asymmetry in decline matched our prediction of a stronger decrease of synchrony
250 in mast peaks than in failures, the magnitude of change was substantial in both tails.

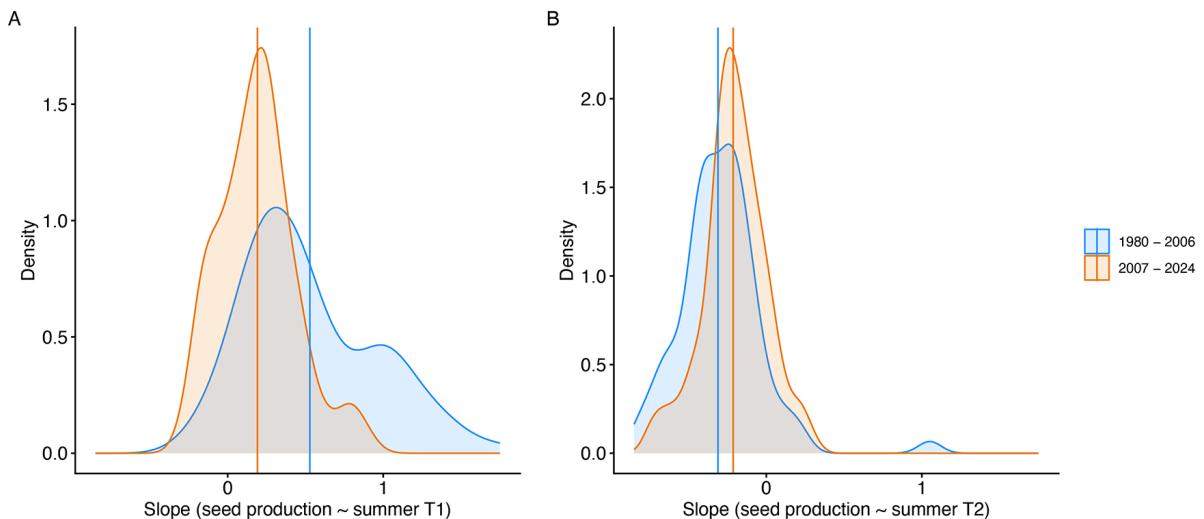

Figure 2: The temporal decline in local (within-site) masting synchrony is stronger in upper-tail (high-seeding years) years, than in lower-tail (poor-seeding years). Density plots show local (among trees, within-site) synchrony in A) lower, and B) upper tail of masting, estimated separately for two periods, before the masting breakdown (i.e., the abrupt decline in interannual variation and synchrony of seed production; 1980–2006; $n = 84$ trees at 11 sites), and after breakdown (2007–2024; $n = 96$ trees at 11 sites). The vertical line shows tail- and period-level means. C) Site-level tail-dependence. Points show site-level mean tail-dependent synchrony, while whiskers show SDs. Synchrony for each site was calculated for the two time periods (1980–2006, and 2007–2024); these points are joined by a line. The estimates are based on partial Spearman correlations, with the lower tail being seed production below 0.5, while the upper being above, for annual seed production values scaled within each site to between 0 and 1 (see Methods).

Figure 3: The temporal decline in regional (among-sites) masting synchrony is stronger in upper-tail (high-seeding) years than in lower-tail (poor-seeding years). Distance decay of beech masting synchrony in the upper and lower tail, estimated separately for the three periods (1987–1998, 1999–2010, and 2011–2022). The estimates are based on partial Spearman correlations and seed production records from 238 sites in Poland. The lower tail is seed production below 0.5, while the upper is above, for annual values scaled within each site to between 0 and 1 (see Methods).

251 The decline in synchrony reflected changes in the coupling between seed production and
 252 weather cues that differed from our expectations. The association between seed production
 253 and the T1 temperature cue weakened markedly and, in many cases, nearly disappeared. The

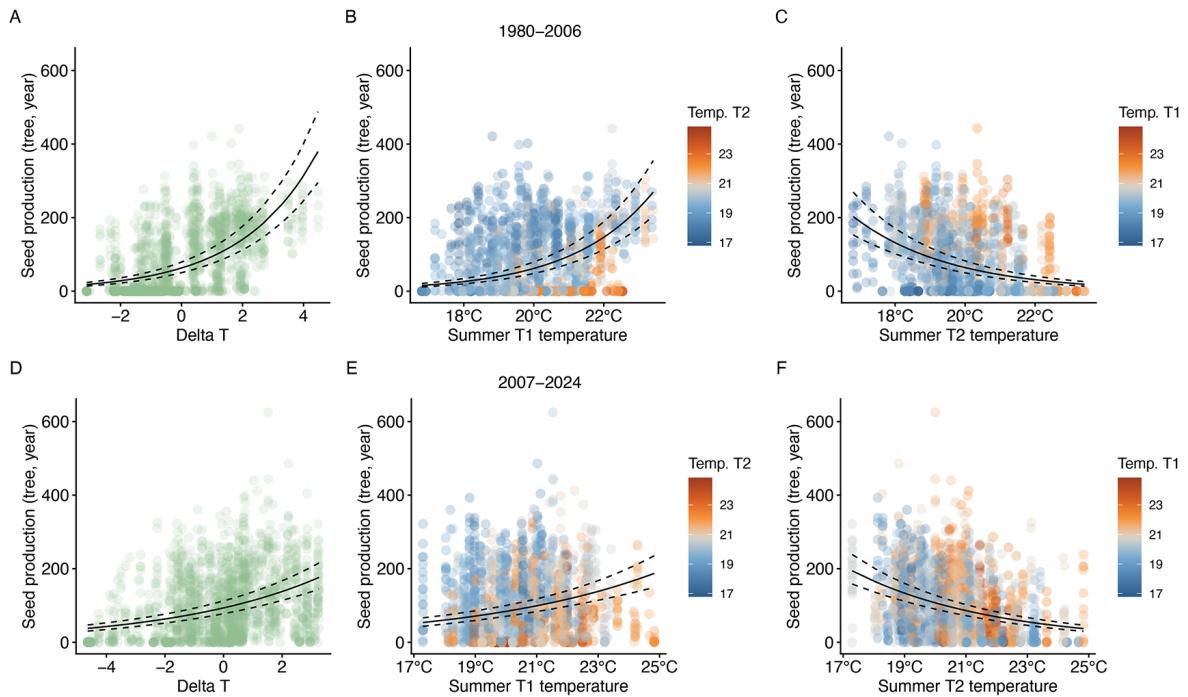

254 mean slope of the tree-level responses to the T1 cue was 0.53 ± 0.42 (SD) in the first studied
 255 period (1980-2006), and declined 3-fold to 0.19 ± 0.25 (SD) in the second period (2007-2024;
 256 Fig. 4). In contrast, the decline in responses to the T2 cue was smaller; the mean slope in the
 257 first period was -0.31 ± 0.28 (SD), which declined to -0.21 ± 0.21 (SD). Visual inspection of
 258 these relationships further reveals that the decline in the response to the T1 cues was not due to
 259 weakening and diversification of responses specifically under high cue values (Fig. S1). Instead,
 260 seed production responses to the T1 cue generally flattened across the whole gradient of cues.
 261 While cold T1 summers largely prevented seed production in the first period of the study, that
 262 was no longer the case in the second period.

Figure 4: Masting dynamics are increasingly dominated by a summer T2 cue. Density plots of slopes of the tree-level relationships between seed production and summer T1 (A), and summer T2 (B) cues. Summer is June-July mean maximum temperature in one (T1) and two (T2) years before seedfall. Models were fitted for each tree individually, and included this and this. Models were fitted for two time periods, i.e., 1980-2006 (yellow; n = 84 trees at 11 sites), and 2007-2024 (purple; n = 96 trees at 11 sites). Estimated relationships are visualized in Fig. S1.

263 Consequently, before the breakdown of masting synchrony (1980-2006), large seed crops
 264 followed the canonical sequence of weather cues, with cold summers two years before seedfall
 265 (T2) followed by warm summers one year before seedfall (T1). When expressed as the tem-
 266 perature contrast between these two summers ($\Delta T = T1 - T2$), seed production was generally
 267 suppressed for negative ΔT values and increased sharply once ΔT became positive, that is, when
 268 the summer preceding flowering (T1) was warmer than the priming summer (T2) (Fig. 5).
 269 After 2006, this relationship changed markedly. Seed production was no longer strongly

suppressed at negative ΔT values, and high seed crops occurred even when T1 summers were relatively cool. In other words, cold summers in T2 increasingly appeared sufficient to trigger reproduction, largely independent of conditions in T1 (Fig. 5). As a result, the steep, non-linear increase in seed production with increasing ΔT observed before the breakdown was replaced by a flatter relationship (Fig. 5). Together, these changes indicate a shift toward reproductive dynamics dominated by the T2 cue, with diminished modulation by T1.

Figure 5: Population-level relationship between weather cues and masting indicates flattening of responses in recent times. Plots show relationships between seed production and ΔT (A and D), summer T1 (B and E), and summer T2 (C and F) cues. Summer is June-July mean maximum temperature in one (T1) and two (T2) years before seedfall. Prediction lines and associated 95% confidence intervals were estimated with GLMM models with Tweedie error distributions and log links that included tree identity and site as random intercepts. Points show annual, tree-level seed production records. Models were fitted for two time periods, i.e., 1980-2006 (top row; $n = 106$ trees at 11 sites) and 2007-2024 (bottom row; $n = 169$ trees at 15 sites). Model summaries are provided in Table S1 and Table S2.

276 Discussion

Our analyses show a tail-dependent decline in masting synchrony in European beech, consistent across spatial scales and datasets. Synchrony weakened more in the upper tail compared to the lower tail. This concordance indicates that the tail-dependent decline of synchrony is a general feature of beech reproduction under warming. However, contrary to expectations,

281 lower-tail synchrony also declined substantially. Thus, climate-driven disruption extends to both
282 extremes of the seed-production distribution. This pattern can be linked to a restructuring of
283 cue–reproduction relationships. Rather than increased heterogeneity in responses to the warm-
284 summer cue (T1), we found that reproductive dynamics became increasingly dominated by the
285 cold-summer cue two years before seedfall (T2), with the influence of T1 markedly weakened.
286 Consequently, the steep, non-linear response to combined cues that previously induced years of
287 widespread failure and synchronized peaks was replaced by a flatter response across a broad
288 range of cue conditions. This flattening of cue dependence translates directly into a flattening of
289 masting-driven resource pulses: failures are no longer uniformly severe across space, and peaks
290 are less synchronous both locally and regionally.

291 The erosion of tail-dependent masting synchrony has direct consequences for ecosystems
292 structured by pulsed seed resources. Desynchronization of failures weakens the trophic bottle-
293 necks that underpin many cascade effects. For example, in boreal North America, synchronous
294 conifer cone production failures drive large-scale southward irruptions of granivorous birds
295 (Strong *et al.*, 2015; Widick *et al.*, 2025), triggering downstream ecological and epidemiological
296 consequences, including elevated transmission of avian salmonellosis (Tonelli *et al.*, 2026). To
297 the extent that climate warming disrupts lower-tail synchrony, such irruptive dynamics may cease
298 to operate, because seed failure no longer occurs coherently across space. At the opposite end
299 of the distribution, mast peaks generate short-lived resource surges that fuel outbreaks of seed
300 consumers, with consequences for rodent populations, tick abundance, and human exposure to
301 Lyme disease (Jones *et al.*, 1998; Bregnard *et al.*, 2021). The observed weakening of upper-tail
302 synchrony implies that these outbreaks may become less spatially extensive and less episodic.
303 However, reduced pulsing does not necessarily imply reduced disease risk: more regular but
304 moderate seed production may sustain consistently higher consumer populations, potentially in-
305 creasing long-term disease exposure even as extreme outbreaks become rarer. Higher consumer
306 populations may also translate into a decrease in tree recruitment (Zwolak *et al.*, 2024). Similar
307 dependencies on pulsed reproduction occur in other systems, such as specialist frugivores whose
308 breeding is tightly coupled to mast events (Fidler *et al.*, 2008), raising the possibility that flattened
309 resource pulses could disrupt animal reproductive cycles. Two important research directions

310 emerge: first, quantifying how flattened pulsed resources alter interaction strength across trophic
311 levels in systems already undergoing change (Shibata *et al.*, 2020; Yukich-Clendon *et al.*, 2023;
312 Bush *et al.*, 2020; Foest *et al.*, 2025b). Second, determining how general this restructuring is
313 across masting species, climates, and reproductive strategies.

314 We expected climate warming to decrease masting synchrony, particularly in the upper tail, by
315 increasing heterogeneity in individual responses to the warm-summer cue preceding flowering
316 (T1). Instead, our results indicate a shift in the relative importance of cues: reproductive
317 dynamics became increasingly governed by the priming effect of cold summers two years before
318 seedfall (T2), while modulation by T1 weakened substantially. Past work has focused primarily
319 on T1, showing that the responses to this cue are strongly contingent on internal resource
320 levels: when resources have accumulated over several years since the last reproductive event,
321 even moderate T1 warming can trigger large flowering, whereas depleted reserves suppress
322 reproduction despite strong cues (Kelly *et al.*, 2025). As summer warming has increased the
323 frequency of T1 cueing, repeated flowering has led to chronic resource depletion (Hacket-Pain
324 *et al.*, 2025), reducing the sensitivity of trees to T1 and flattening the response that previously
325 structured mast peaks. In contrast, the T2 cue is not expected to depend on resource state,
326 as it precedes seedfall by three growing seasons and therefore cannot reliably index resource
327 availability at the time of reproduction (Kelly *et al.*, 2025). Instead, T2 likely acts through
328 developmental priming or epigenetic “summer memory”, initiating regulatory pathways that
329 condition the plant’s subsequent response to later cues (Samarth *et al.*, 2020, 2021; Satake
330 & Kelly, 2021). We hypothesize that because this mechanism is decoupled from short-term
331 resource depletion, the effectiveness of T2 has been less eroded by warming. As a result,
332 reproduction increasingly occurs following cold T2 summers even when T1 conditions are weak,
333 producing seed crops under negative ΔT values. What remains unresolved is why reproduction
334 is no longer consistently suppressed when internal resources are depleted, as predicted by
335 resource–cue interaction models in which a low resource state constrains flowering responses
336 (Kelly *et al.*, 2025). Resolving that issue will require experimental and molecular approaches
337 that track resource state alongside cue perception.

338 The reweighting of cues provides a mechanistic explanation for why synchrony declined in

339 both tails of the masting distribution. Under the former cue structure, reproduction was largely
340 vetoed across wide areas whenever ΔT was negative, because cold T2 summers not followed
341 by warm T1 conditions suppressed flowering. This produced high synchrony in the lower tail,
342 as spatial variation in weather had little effect as long as ΔT remained negative. In contrast,
343 cold T2 summers have increasingly become sufficient to induce reproduction regardless of T1,
344 allowing some trees and populations to reproduce under conditions that previously produced
345 synchronized failure. The consequence is a loss of spatially coherent seed scarcity. At the same
346 time, the weakening of T1 reduced the amplification of reproductive effort under favourable
347 conditions, replacing steep, nonlinear responses with flatter ones. This diminished the spatial
348 coherence of mast peaks and led to a stronger decline in upper-tail synchrony.

349 The same logic suggests that climate-driven flattening of tail-dependent synchrony may
350 extend beyond European beech. Masting systems differ in how strongly reproductive cues are
351 coupled to internal resource dynamics; as suggested by variation in sensitivity to cues across
352 species (Kelly *et al.*, 2013; Journé *et al.*, 2025). Species in which flowering responses are
353 strongly gated by resource accumulation and amplified by rare, high-magnitude cues should
354 be particularly sensitive to increases in cue frequency, as chronic depletion will weaken cue
355 responsiveness. In contrast, systems dominated by relative cues, such as differential-temperature
356 cues (Kelly *et al.*, 2013; LaMontagne *et al.*, 2021), may retain stronger non-linear behaviour
357 and more stable tail dependence under warming. Testing this prediction across species will be
358 required for understanding when climate change will reorganize the synchrony structure that
359 underpins resource pulses and their ecological effects.

360 To summarize, our results show that climate warming is altering the nonlinear cue structures
361 that generate masting-driven pulsed resources, reducing synchrony in both seed failures and
362 mast peaks, with a stronger decline in the latter. Pulsed-resource systems shape ecological dy-
363 namics because strong environmental events trigger synchronized biological responses, creating
364 predictable booms and busts that spread through food webs (Yang *et al.*, 2010). By flattening
365 cue-reproduction relationships, warming weakens this alignment, replacing spatially coherent
366 pulses with weaker and less predictable dynamics. This shift has implications for ecological
367 processes, including for ecological forecasting (Dietze *et al.*, 2018; Pearse *et al.*, 2021). When

368 relationships between climatic cues, masting, and consumer responses are preserved, climate
369 information can be used to anticipate downstream effects such as bird irruptions, zoonotic dis-
370 ease outbreaks, and to plan conservation and management actions (Pearse *et al.*, 2021; Journé
371 *et al.*, 2023; Oberklammer *et al.*, 2025). Our results suggest that such forecasting frameworks
372 may become less reliable as cue responses and synchrony decline, because weather signals lose
373 predictive power. Determining whether similar cue reweighting and synchrony asymmetric
374 synchrony decline occur in other masting species is important for assessing how broadly climate
375 change is reshaping pulsed-resource dynamics and their predictability.

376 **Acknowledgements**

377 The study was supported by grant no. 2024/54/E/NZ8/00007 from the Polish National Science
378 Centre. JF was supported by the MSCA Postdoctoral Fellowship FECUND (ID: 101244227)
379 and by the Foundation for Polish Science (FNP).

380

381 **Author Contributions Statement**

382 MBogdziewicz, JJF, and JSz conceived and designed the study. AHP, RG, PAT, JGAL SJ,
383 MKD, JJF and JSz collected and curated the data. JSz and MBogdziewicz conducted the anal-
384 ysis. MBogdziewicz wrote the first draft of the manuscript. All authors contributed to the
385 interpretation of the analysis, revised the draft, and gave final approval for publication.

386

387 **Declaration of interests**

388 No competing interests to declare.

389

390 **Data availability statement**

391 The data supporting the results are archived in the Open Science Framework and are available at:
392 https://osf.io/c59rf/overview?view_only=c659c7a7ba0944d1becccbd765b1173d.

393 **References**

394 Anderson, T.L., Sheppard, L.W., Walter, J.A., Rolley, R.E. & Reuman, D.C. (2020). Synchronous
395 effects produce cycles in deer populations and deer-vehicle collisions. *Ecology Letters*, 24,
396 337–347.

397 Ascoli, D., Vacchiano, G., Turco, M., Conedera, M., Drobyshev, I., Maringer, J. *et al.* (2017).
398 Inter-annual and decadal changes in teleconnections drive continental-scale synchronization
399 of tree reproduction. *Nature Communications* 2017 8:1, 8, 1–9.

400 Bjørnstad, O. & Falck, W. (2021). Nonparametric spatial covariance functions: estimation and
401 testing. *Ecology Letters*, 8, 53–70.

402 Bogdziewicz, M., Hacket-Pain, A., Kelly, D., Thomas, P.A., Lageard, J. & Tanentzap, A.J.
403 (2021). Climate warming causes mast seeding to break down by reducing sensitivity to
404 weather cues. *Global Change Biology*, 27, 1952–1961.

405 Bogdziewicz, M., Journé, V., Hacket-Pain, A. & Szymkowiak, J. (2023a). Mechanisms driving
406 interspecific variation in regional synchrony of trees reproduction. *Ecology Letters*, 26,
407 754–764.

408 Bogdziewicz, M., Kelly, D., Tanentzap, A.J., Thomas, P., Foest, J., Lageard, J. *et al.* (2023b).
409 Reproductive collapse in European beech results from declining pollination efficiency in large
410 trees. *Global Change Biology*, 29, 4595–4604.

411 Bogdziewicz, M., Kelly, D., Thomas, P.A., Lageard, J.G.A. & Hacket-Pain, A. (2020). Climate
412 warming disrupts mast seeding and its fitness benefits in European beech. *Nature Plants*, 6,
413 88–94.

414 Bogdziewicz, M., Kelly, D., Zwolak, R., Szymkowiak, J. & Hacket-Pain, A. (2025). Dynamics,
415 mechanisms, and consequences of mast seeding. *Annual Reviews in Ecology, Evolution, and*
416 *Systematics*, 56, 119–144.

417 Bregnard, C., Rais, O. & Voordouw, M.J. (2021). Masting by beech trees predicts the risk of
418 lyme disease. *Parasites and Vectors*, 14, 1–22.

419 Bush, E.R., Whytock, R.C., el din, L.B., Bourgeois, S., Bunnefeld, N., Cardoso, A.W. *et al.*
420 (2020). Long-term collapse in fruit availability threatens central african forest megafauna.
421 *Science*, 370, eabc7791.

422 Dietze, M.C., Fox, A., Beck-Johnson, L.M., Betancourt, J.L., Hooten, M.B., Jarnevich, C.S.
423 *et al.* (2018). Iterative near-term ecological forecasting: Needs, opportunities, and challenges.
424 *Proceedings of the National Academy of Sciences of the United States of America*, 115, 1424–
425 1432.

426 Fernández-Martínez, M., Bogdziewicz, M., Espelta, J.M. & Peñuelas, J. (2017). Nature be-
427 yond linearity: Meteorological variability and jensen's inequality can explain mast seeding
428 behavior. *Frontiers in Ecology and Evolution*, 5, 134.

429 Fidler, A.E., Lawrence, S.B. & McNatty, K.P. (2008). An hypothesis to explain the linkage
430 between kakapo (*strigops habroptilus*) breeding and the mast fruiting of their food trees.
431 *Wildlife Research*, 35, 1–7.

432 Foest, J., Bogdziewicz, M., Ascoli, D., Pesendorfer, M., Cutini, A., Nussbaumer, A. *et al.* (2024).
433 Widespread breakdown in masting in European beech due to rising summer temperatures.
434 *Global Change Biology*, 30, e17307.

435 Foest, J.J., Bogdziewicz, M., Caignard, T., Hadad, M., Thomas, P.A. & Hacket-Pain, A. (2025a).
436 Comparing two ground-based seed count methods and their effect on masting metrics. *Forest*
437 *Ecology and Management*, 581, 122551.

438 Foest, J.J., Szymkowiak, J., Dyderski, M.K., Jastrzębowski, S., Fuchs, H., Ratajczak, E. *et al.*
439 (2025b). No refuge at the edge for european beech as climate warming disproportionately
440 reduces masting at colder margins. *Ecology Letters*, 28, e70284.

441 Ghosh, S., Cottingham, K.L. & Reuman, D.C. (2021). Species relationships in the extremes
442 and their influence on community stability. *Philosophical Transactions of the Royal Society*
443 *B: Biological Sciences*, 376, 20200343.

444 Ghosh, S., Sheppard, L.W., Reid, P.C. & Reuman, D. (2020). A new approach to interspecific

445 synchrony in population ecology using tail association. *Ecology and Evolution*, 10, 12764–
446 12776.

447 Hacket-Pain, A. & Bogdziewicz, M. (2021). Climate change and plant reproduction: trends
448 and drivers of mast seeding change. *Philosophical Transactions of the Royal Society B*, 376,
449 20200379.

450 Hacket-Pain, A., Szymkowiak, J., Journé, V., Barczyk, M.K., Thomas, P.A., Lageard, J.G.A.
451 *et al.* (2025). Growth decline in european beech associated with temperature-driven increase
452 in reproductive allocation. *PNAS*, 122, e2423181122.

453 Hansen, B.B., Grøtan, V., Herfindal, I. & Lee, A.M. (2020). The moran effect revisited: spatial
454 population synchrony under global warming. *Ecography*, 43, 1591–1602.

455 Holt, R.D. (2008). Theoretical perspectives on resource pulses. *Ecology*, 89, 671–681.

456 Jones, C.G., Ostfeld, R.S., Richard, M.P., Schauber, E.M. & Wolff, J.O. (1998). Chain reactions
457 linking acorns to gypsy moth outbreaks and lyme disease risk. *Science*, 279, 1023–1026.

458 Journé, V., Hacket-Pain, A. & Bogdziewicz, M. (2023). Evolution of masting in plants is linked
459 to investment in low tissue mortality. *Nature Communications*, 14, 7998.

460 Journé, V., Hacket-Pain, A., Oberklammer, I., Pesendorfer, M.B. & Bogdziewicz, M. (2023).
461 Forecasting seed production in perennial plants: identifying challenges and charting a path
462 forward. *New Phytologist*, 239, 466–476.

463 Journé, V., Kelly, D., Hacket-Pain, A., Pearse, I.S., Szymkowiak, J., Foest, J.J. *et al.* (2025).
464 Weather drivers of reproductive variability in perennial plants and their implications for
465 climate change risks. *Nature Communications*, 16, 9226.

466 Journé, V., Szymkowiak, J., Foest, J., Hacket-Pain, A., Kelly, D. & Bogdziewicz, M. (2024).
467 Summer solstice orchestrates the subcontinental-scale synchrony of mast seeding. *Nature
468 Plants*, 10, 367–373.

469 Kelly, D., Geldenhuys, A., James, A., Holland, E.P., Plank, M.J., Brockie, R.E. *et al.* (2013).
470 Of mast and mean: differential-temperature cue makes mast seeding insensitive to climate
471 change. *Ecology Letters*, 16, 90–98.

472 Kelly, D., Szymkowiak, J., Hacket-Pain, A. & Bogdziewicz, M. (2025). Fine-tuning mast
473 seeding: as resources accumulate, plants become more sensitive to weather cues. *New*
474 *Phytologist*, 246, 1975–1985.

475 Koenig, W.D. (2019). Acorn production and California oaks in a changing world. *International*
476 *Oaks*, 30, 45–52.

477 Koenig, W.D., Kelly, D., Sork, V.L., Duncan, R.P., Elkinton, J.S., Peltonen, M.S. *et al.* (2003).
478 Dissecting components of population-level variation in seed production and the evolution of
479 mast seeding behavior. *Oikos*, 102, 581–591.

480 Koenig, W.D., Knops, J.M., Carmen, W.J. & Pearse, I.S. (2015). What drives mast seeding? the
481 phenological synchrony hypothesis. *Ecology*, 96, 184–192.

482 Koenig, W.D. & Knops, J.M.H. (2013). Large-scale spatial synchrony and cross-synchrony in
483 acorn production by two California oaks. *Ecology*, 94, 83–93.

484 LaMontagne, J.M., Pearse, I.S., Greene, D.F. & Koenig, W.D. (2020). Mast seeding patterns
485 are asynchronous at a continental scale. *Nature Plants*, 6, 460–465.

486 LaMontagne, J.M., Redmond, M.D., Wion, A.P. & Greene, D.F. (2021). An assessment of
487 temporal variability in mast seeding of North American Pinaceae. *Philosophical Transactions*
488 *of the Royal Society B: Biological Sciences*, 376, 20200373.

489 Leuschner, C. & Ellenberg, H. (2017). Beech and mixed beech forests. *Ecology of Central*
490 *European Forests: Vegetation Ecology of Central Europe*, 1, 351–441.

491 Nilsson, S.G. & Wastljung, U. (1987). Seed predation and cross-pollination in mast-seeding
492 beech (*Fagus sylvatica*) patches. *Ecology*, 68, 260–265.

493 Oberklammer, I., Gratzer, G., Schueler, S., Konrad, Heino, Hacket-Pain *et al.* (2025). See(d)ing
494 the seeds-toward weather-based forecasting of annual seed production in six european forest
495 tree species. *Ecoevorxiv*, <https://doi.org/10.32942/X2T05Z>.

496 Ostfeld, R.S. & Keesing, F. (2000). Pulsed resources and community dynamics of consumers
497 in terrestrial ecosystems. *Trends in Ecology & Evolution*, 15, 232–237.

498 Pearse, I.S., Koenig, W.D. & Kelly, D. (2016). Mechanisms of mast seeding: resources, weather,
499 cues, and selection. *New Phytologist*, 212, 546–562.

500 Pearse, I.S., LaMontagne, J.M., Lordon, M., Hipp, A.L. & Koenig, W.D. (2020). Biogeography
501 and phylogeny of masting: do global patterns fit functional hypotheses? *New Phytologist*,
502 227, 1557–1567.

503 Pearse, I.S., Wion, A.P., Gonzalez, A.D. & Pesendorfer, M.B. (2021). Understanding mast
504 seeding for conservation and land management. *Philosophical Transactions of the Royal
505 Society B: Biological Sciences*, 376, 34657466.

506 Pesendorfer, M.B., Ascoli, D., Bogdziewicz, M., Hacket-Pain, A., Pearse, I.S. & Vacchiano,
507 G. (2021). The ecology and evolution of synchronized reproduction in long-lived plants.
508 *Philosophical Transactions of the Royal Society B: Biological Sciences*, 376, 20200369.

509 Pesendorfer, M.B., Bogdziewicz, M., Oberklammer, I., Nopp-Mayr, U., Szwagrzyk, J. &
510 Gratzer, G. (2024). Positive spatial and temporal density-dependence drive early reproductive
511 economy-of-scale effects of masting in a european old-growth forest community. *Journal of
512 Ecology*, 112, 1872–1884.

513 Piovesan, G. & Adams, J.M. (2001). Masting behaviour in beech: Linking reproduction and
514 climatic variation. *Canadian Journal of Botany*, 79, 1039–1047.

515 Reuman, D.C., Walter, J.A., Sheppard, L.W., Karataev, V.A., Kadiyala, E.S., Lohmann, A.C.
516 *et al.* (2025). Insights into spatial synchrony enabled by long-term data. *Ecology Letters*, 28,
517 e70112.

518 Samarth, Kelly, D., Turnbull, M.H. & Jameson, P.E. (2020). Molecular control of masting: An
519 introduction to an epigenetic summer memory. *Annals of Botany*, 125, 851–858.

520 Samarth, Lee, R., Kelly, D., Turnbull, M.H., Macknight, R.C., Poole, A.M. *et al.* (2021).
521 Molecular control of the floral transition in the mast seeding plant celmisia lyallii (asteraceae).
522 *Molecular Ecology*, 30, 1846–1863.

523 Satake, A. & Kelly, D. (2021). Studying the genetic basis of masting. *Philosophical Transactions
524 of the Royal Society B*, 376, 20210116.

525 Schermer, E., Bel-Venner, M.C., Gaillard, J.M., Dray, S., Boulanger, V., Roncé, I.L. *et al.*
526 (2020). Flower phenology as a disruptor of the fruiting dynamics in temperate oak species.
527 *New Phytologist*, 225, 1181–1192.

528 Sears, A.L.W., Holt, R.D. & Polis, G.A. (2004). Feast and famine in food webs: the effects of
529 pulsed productivity. In: *Food Webs at the Landscape Level* (eds. Polis, G.A., Power, M.E. &
530 Huxel, G.R.). University of Chicago Press, Chicago, pp. 359–386.

531 Shibata, M., Masaki, T., Yagihashi, T., Shimada, T. & Saitoh, T. (2020). Decadal changes in
532 masting behaviour of oak trees with rising temperature. *Journal of Ecology*, 108, 1088–1100.

533 Strong, C., Zuckerberg, B., Betancourt, J.L. & Koenig, W.D. (2015). Climatic dipoles drive
534 two principal modes of north american boreal bird irruption. *Proceedings of the National
535 Academy of Sciences of the United States of America*, 112, 2795–2802.

536 Szymkowiak, J., Foest, J., Dyderski, M.K., Jastrzebowski, S., Barczyk, M., Hacket-Pain, A.
537 *et al.* (2025). Geography of masting creates greater synchrony in seed scarcity than in seed
538 abundance. *Proceedings of the National Academy of Sciences*, 122, e2518918122.

539 Szymkowiak, J., Foest, J., Hacket-Pain, A., Journé, V., Ascoli, D. & Bogdziewicz, M. (2024).
540 Tail-dependence of masting synchrony results in continent-wide seed scarcity. *Ecology Letters*,
541 27, e14474.

542 Tonelli, B.A., Youngflesh, C. & Tingley, M.W. (2026). An ecological cascade links climatic

543 variability to avian irruptions and zoonotic salmonellosis outbreaks. *Proceedings of the*
544 *National Academy of Sciences*, 123, e2511209123.

545 Vacchiano, G., Hacket-Pain, A., Turco, M., Motta, R., Maringer, J., Conedera, M. *et al.* (2017).
546 Spatial patterns and broad-scale weather cues of beech mast seeding in Europe. *New Phytol-*
547 *ogist*, 215, 595–608.

548 Walter, J.A., Castorani, M.C., Bell, T.W., Sheppard, L., Cavanaugh, K.C. & Reuman, D.C.
549 (2022). Tail-dependent spatial synchrony arises from nonlinear driver–response relationships.
550 *Ecology Letters*, 25, 1189–1201.

551 Walter, J.A., Emery, K.A., Dugan, J.E., Hubbard, D.M., ID, T.W.B., Sheppard, L.W. *et al.*
552 (2024). Spatial synchrony cascades across ecosystem boundaries and up food webs via
553 resource subsidies. *PNAS*, 121, e2310052120.

554 Widick, I.V., Strong, C., LaMontagne, J.M., Young, M.A. & Zuckerberg, B. (2025). Continent-
555 wide patterns of climate and mast seeding entrain boreal bird irruptions. *Global Change*
556 *Biology*, 31, e70076.

557 Wion, A.P., Weisberg, P.J., Pearse, I.S. & Redmond, M.D. (2020). Aridity drives spatiotemporal
558 patterns of masting across the latitudinal range of a dryland conifer. *Ecography*, 43, 569–580.

559 Yang, L.H., Bastow, J.L., Spence, K.O. & Wright, A.N. (2008). What can we learn from resource
560 pulses. *Ecology*, 89, 621–634.

561 Yang, L.H., Edwards, K.F., Byrnes, J.E., Bastow, J.L., Wright, A.N. & Spence, K.O. (2010). A
562 meta-analysis of resource pulse-consumer interactions. *Ecological Monographs*, 80, 125–151.

563 Yukich-Clendon, O.M.M., Carpenter, J.K., Kelly, D., Timoti, P., Burns, B.R., Boswijk, G. *et al.*
564 (2023). Global change explains reduced seeding in a widespread new zealand tree: indigenous
565 tūhoe knowledge informs mechanistic analysis. *Frontiers in Forests and Global Change*, 6,
566 1172326.

567 Zwolak, R., Bogdziewicz, M., Wróbel, A. & Crone, E. (2016). Advantages of masting in

568 european beech: timing of granivore satiation and benefits of seed caching support the
569 predator dispersal hypothesis. *Oecologia*, 180, 749–758.

570 Zwolak, R., Clement, D., Sih, A. & Schreiber, S.J. (2024). Granivore abundance shapes
571 mutualism quality in plant–scatterhoarder interactions. *New Phytologist*, 241, 1840–1850.

572 **Supporting Information**

573 **Climate warming flattens masting-driven pulsed resources**

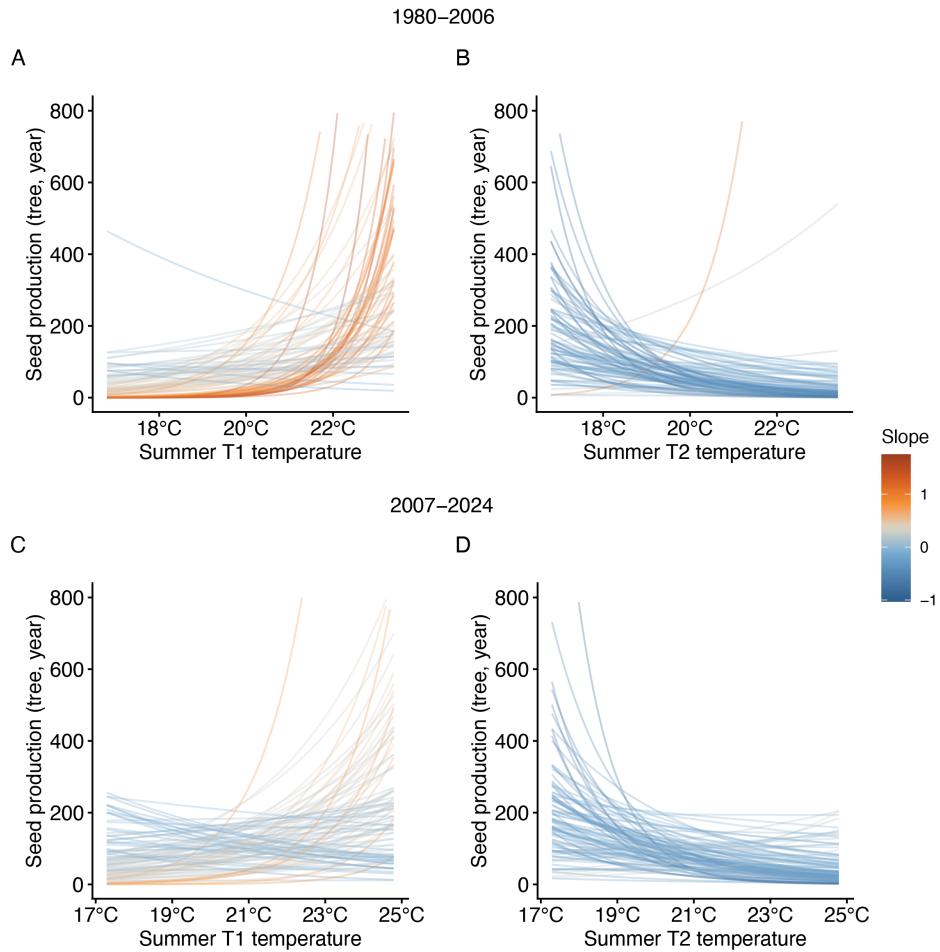

574

Table S1: Summary of the GLMMs testing the population-level relationship between a composite weather cue (ΔT) and annual variation in seed production, separately for the two periods, i.e., 1980-2006 and 2007-2024. The models were fitted with a Tweedie error distribution and a log link function, and included tree identity and site as random intercepts. The previous year's seed production was included as a covariate.

Model term	Slope	Std. Error	z value	p value
1980–2006 period				
<i>Conditional part</i>				
Intercept	4.60	0.12	39.56	< 0.001
ΔT	0.40	0.02	23.74	< 0.001
Seed production T-1	-0.15	0.01	-11.78	< 0.001
<i>Zero-inflated part</i>				
Intercept	-11.42	1.55	-7.35	< 0.001
Seed production T-1	2.07	0.29	7.03	< 0.001
2007–2024 period				
<i>Conditional part</i>				
Intercept	4.97	0.11	45.95	< 0.001
ΔT	0.19	0.01	15.77	< 0.001
Seed production T-1	-0.11	0.01	-8.21	< 0.001
<i>Zero-inflated part</i>				
Intercept	-4.81	2.258	-2.13	0.033
Seed production T-1	-16.16	1152.80	-0.01	0.989

Table S2: Summary of the GLMMs testing the population-level relationship between weather cues (summer temperatures in year T1 and T2) and annual variation in seed production, separately for the two periods, i.e., 1980-2006 and 2007-2024. The models were fitted with a Tweedie error distribution and a logit link function, and included tree identity and site as random intercepts. The previous year's seed production was included as a covariate. Summer temperature is the mean maximum temperature in June and July.

Model term	Slope	Std. Error	z value	p value
1980–2006 period				
<i>Conditional part</i>				
Intercept	3.17	0.67	4.72	< 0.001
Summer temperature T-1	0.43	0.02	19.62	< 0.001
Summer temperature T-2	-0.36	0.03	-14.14	< 0.001
Seed production T-1	-0.15	0.01	-11.97	< 0.001
<i>Zero-inflated part</i>				
Intercept	-11.32	1.51	-7.48	< 0.001
Seed production T-1	2.06	0.29	7.18	< 0.001
2007–2024 period				
<i>Conditional part</i>				
Intercept	6.02	0.50	11.94	< 0.001
Summer temperature T-1	0.17	0.02	9.04	< 0.001
Summer temperature T-2	-0.22	0.02	-13.00	< 0.001
Seed production T-1	0.10	0.01	-6.57	< 0.001
<i>Zero-inflated part</i>				
Intercept	-5.25	3.63	-1.45	0.147
Seed production T-1	-2.66	7.43	-0.36	0.720

Figure S1: Tree-level weather-cue and seed production relationships indicate that sensitivity to T1 cue weakened more than to the T2 cue. Tree-level relationships between annual seed production and summer (June-July) mean maximum temperatures one (T1) and two years (T2) preceding seedfall. Relationships were estimated with tweedie models, separately for the two time periods, i.e., 1980–2006 (top row; $n = 84$ trees at 11 sites), and 2007–2024 (bottom row; $n = 96$ trees at 11 sites). Slopes of these relationships are summarized in Fig. 4.