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Abstract 10 

1. Metacommunity theory unifies ecology by integrating local biotic interactions with regional 11 

dispersal and environmental filtering. However, testing theoretical predictions against 12 

empirical data remains challenging due to the difficulty of disentangling these processes in 13 

nature and the confounding effects of imperfect detection. 14 

2. Here, we introduce mrangr, an R package designed for the mechanistic, spatially explicit 15 

simulation of multispecies communities. Unlike correlative approaches, mrangr strictly 16 

distinguishes between the fundamental niche (determined by abiotic carrying capacity) and 17 

the realised niche (an emergent property of biotic interactions). 18 

3. The package implements a generalized Lotka-Volterra framework on a lattice grid (via the 19 

terra ecosystem), allowing users to simulate diverse interaction types — including 20 

competition, predation, and facilitation — alongside species-specific dispersal kernels. 21 

A defining feature is the "Virtual Ecologist" module, which samples the simulated "ground 22 
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truth" with user-defined observation errors and sampling designs, thereby mimicking the 23 

constraints of real-world biodiversity surveys. 24 

4. We demonstrate the package’s capabilities through three case studies: (i) quantifying the 25 

scale-dependent effects of dispersal on α, β, and γ diversity, (ii) testing the conditions under 26 

which the competition-colonization trade-off promotes coexistence in the presence of fitness 27 

inequalities, and (iii) assessing the recoverability of fundamental niches from imperfect 28 

observational data constrained by biotic interactions. 29 

5. By providing a flexible platform to generate synthetic data with known underlying 30 

mechanisms, mrangr enables researchers to benchmark statistical models, assess sampling 31 

strategies, and rigorously test hypotheses at the interface of theoretical and empirical 32 

macroecology. 33 

 34 
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1. Introduction 38 

One of the key goals of ecology is to understand the mechanisms generating and maintaining 39 

biodiversity. Traditionally, theory separated these mechanisms by spatial scale:  regional frameworks 40 

emphasized ecological drift, selection, speciation, and dispersal  (Vellend, 2016), whereas local models 41 

focused on competitive coexistence (Chesson, 2000), and priority effects (Adler et al., 2007; Ke & 42 

Letten, 2018). Metacommunity theory (Leibold et al., 2004, 2017) unifies these perspectives by 43 

identifying three spatially explicit mechanisms that operate across scales: density-independent 44 

responses to abiotic conditions, density-dependent biotic interactions, and dispersal (Thompson et 45 

al., 2020).  46 

While explicitly integrating these mechanisms is essential for unravelling biodiversity patterns, a 47 

critical limitation of many existing metacommunity tools is the conflation of the fundamental and 48 

realized niche. Frequently, simulators rely on input suitability maps that implicitly incorporate biotic 49 

constraints, rendering it impossible to disentangle environmental filtering from community processes. 50 

To overcome this, a mechanistic framework must strictly define the fundamental niche as a measure 51 

of environmental potential, allowing the realized niche to emerge purely as a dynamic property of 52 

biotic interactions and dispersal. 53 

Against this requirement for mechanistic clarity, the current landscape of process-based 54 

metacommunity simulators – namely gen3sis (Hagen et al., 2021) and metaIBM (Lin et al., 2024) 55 

- often necessitates trade-offs. While these frameworks share a core principle of coupling dispersal 56 

and density-dependent regulation, they implement interspecific regulation indirectly by the 57 

magnitude of fundamental niche overlap. This reliance on overlap prevents the explicit modelling of 58 

metacommunities with asymmetric (e.g. predation) or positive (e.g. facilitation) interactions, 59 

effectively locking the simulation into the "conflated niche" paradigm. Conversely, metaRange 60 

(Fallert et al., 2025) provides a programming environment in which multiple processes, including all 61 

types of biotic interactions, can be modelled flexibly; yet users must code these functionalities 62 
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themselves. Consequently, no off-the-shelf tool is currently capable of simulating metacommunities 63 

with flexible, asymmetric biotic interactions while maintaining a strict separation between abiotic and 64 

biotic drivers. 65 

To address this gap, we have developed mrangr: an R package for flexible, mechanistic 66 

metacommunity simulation in which dispersal processes, demographic rates and biotic interaction 67 

coefficients can be explicitly parametrised. Built as a multi-species extension of the rangr package 68 

(Markowska et al., 2025), mrangr inherits that tool's accessible parameterisation of population 69 

dynamics, dispersal, and virtual ecology. By representing species relationships through an asymmetric 70 

interaction matrix, it enables the simulation of diverse biotic interactions — including competition, 71 

facilitation, and predation — within a spatially explicit virtual environment. Moreover, by defining the 72 

fundamental niche strictly through user-supplied carrying capacity maps, the package allows the 73 

realized niche to emerge dynamically. This separation enables researchers to quantify the 'biotic 74 

deficit' - the specific loss of range or abundance attributable solely to biotic interactions - by comparing 75 

the input carrying capacity maps against the simulated equilibrium state. 76 

2. Package overview 77 

The core architecture of mrangr is designed to mechanistically decouple the fundamental niche from 78 

the realized niche (Figure 1). Users define the environmental potential for each species via spatially 79 

explicit carrying capacity maps (K) and intrinsic growth rates (r), while biotic constraints are governed 80 

by a user-supplied asymmetric interaction matrix (a). Consequently, the realized metacommunity 81 

emerges dynamically from the interplay of species-specific demography, dispersal constraints, and 82 

pairwise interactions. To bridge the gap between these theoretical mechanisms and empirical reality, 83 

the package includes a 'virtual ecologist' module that replicates both observation error and the specific 84 

sampling designs of biological surveys. Crucially, this module generates outputs that mimic the 85 

structure of empirical monitoring data, such as sparse spatiotemporal records rather than complete 86 
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grids. This structural fidelity allows researchers to feed simulated datasets directly into standard 87 

analytical pipelines (e.g., SDMs or occupancy models), providing a rigorous platform for benchmarking 88 

statistical methods against a known ground truth. A comprehensive overview of the supported 89 

biological and observational processes is provided in Table 1. 90 
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 91 

Figure 1. Conceptual framework and operational workflow of the mrangr package. The schematic 92 

illustrates the mechanistic decoupling of drivers: the fundamental niche is strictly defined by input 93 

carrying capacity maps, while the realized niche emerges dynamically from the integration of biotic 94 

interactions, demographic rates, and dispersal. The workflow progresses from initialization to the 95 

'virtual ecologist' module, which simulates observational errors. Green rectangles represent data 96 

objects (inputs and state variables), while yellow rectangles represent the package's core functions 97 

governing metapopulation dynamics and sampling. 98 
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Table 1. Overview of the mrangr framework, distinguishing between the ecological state processes 99 

(mechanisms generating the true abundance) and the observation model (mechanisms generating 100 

survey data).  101 

Simulation 
Component 

Impact Implementation in mrangr 

PROCESS MODEL 

Abiotic 
constraints 
(Fundamental 
niche) 

Defines the potential range and 
maximum abundance of a species 
based solely on environmental 
physiology, ignoring other species. 

Users supply carrying capacity maps (𝐾), 
either as static rasters or generated 
dynamically via K_sim() based on 
environmental variables. 

Biotic filtering 
(Realized niche) 

Modifies the fundamental niche by 
reducing abundance (competition, 
predation) or expanding it 
(facilitation), creating the realized 
distribution. 

The interaction matrix (𝑎) defines pairwise 
coefficients. The simulation solves for 
abundance at each time step, allowing the 
realized niche to emerge dynamically from 
the 𝐾 maps and matrix 𝑎. 

Dispersal Regulates connectivity. Low rates 
cause dispersal limitation, 
preventing species from reaching 
suitable patches. High rates drive 
mass effects (source-sink dynamics) 
and rescue effects. 

Users control the spread via the 
kernel_fun parameter in 

initialise_com(). This allows for 
modelling constrained diffusion (limitation) 
or fat-tailed distributions (long distance 
dispersal) to simulate different isolation 
scenarios. 

Ecological drift Stochastic changes in abundance, 
dominant in small populations. 

Demographic stochasticity is inherent to the 
simulation. Additional noise can be 
introduced into demographic rates or 
environmental layers using 
initialise_com()or update() 
functions. 

OBSERVATION MODEL 

Observation 
process 

Distorts biological patterns through 
sampling bias and imperfect 
detection. Essential for validating 
analytical methods against 
"known" truths. 

The virtual_ecologist() function 
samples the simulated metacommunity. 
Users can specify sampling designs (e.g., 
random, systematic) and detection 
probability distributions (e.g., obs_error) 
to generate realistic "observed" datasets. 
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3. Key features of the package 102 

mrangr inherits the core population dynamics of rangr, including spatially explicit growth models, 103 

flexible dispersal kernels, and non-monotonic regulation (e.g., Allee effects). As these fundamental 104 

mechanisms are detailed in Markowska et al. (2025), we focus here on the novel functionalities 105 

emerging from their integration into a multi-species context. 106 

3.1. Interspecific regulation 107 

Central to mrangr is a generalized interaction matrix that enables the simulation of diverse 108 

community dynamics. By parameterising both positive and negative coefficients in an 109 

asymmetric matrix (𝑎), users can represent a full spectrum of ecological interactions, including 110 

competition, facilitation, and predation. 111 

Biotic interactions are modelled via a square numeric matrix where each element 𝑎𝑖𝑗  112 

represents the per-capita interaction strength of species 𝑗 on species 𝑖. Mechanistically, this 113 

coefficient defines the change in the carrying capacity of species 𝑖 caused by a single individual 114 

of species 𝑗. Consequently, the realized niche is calculated dynamically: at each time step, the 115 

effective carrying capacity of a focal species is derived by modifying its fundamental niche 116 

(𝐾𝑓𝑢𝑛𝑑) by the net biotic influence of the community. 117 

Formally, the effective carrying capacity for species 𝑖 at time 𝑡 in a given cell is calculated as: 118 

𝐾𝑖,𝑡 = 𝑚𝑎𝑥(𝐾𝑖,𝑓𝑢𝑛𝑑 +∑(𝑎𝑖,𝑗 ∙ 𝑁𝑗,𝑡−1)

𝑆

𝑗=1

, 0) 119 

where 𝑆 is the total number of species, 𝑁𝑗,𝑡−1 is the abundance of species 𝑗 at the previous 120 

time step, and the 𝑚𝑎𝑥(… , 0) function ensures that carrying capacity remains non-negative. 121 

This formulation represents a specific implementation of the Lotka-Volterra framework where 122 

interactions expand or contract the available niche space (𝐾) rather than acting directly on 123 

intrinsic growth rates (𝑟). 124 
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3.2. Low entry level 125 

The package is designed to minimize technical complexity, requiring only two primary 126 

functions to execute a complete simulation. First, a community object is established using the 127 

initialise_com(), which integrates spatial carrying capacity maps (𝐾 ), the biotic 128 

interaction matrix ( 𝑎 ) and species-specific life-history parameters. Subsequently, the 129 

sim_com() function executes the spatially explicit simulation. This streamlined workflow 130 

reduces the programming workload, allowing ecologists to study complex feedback loops and 131 

metacommunity dynamics without having to create custom simulation engines. 132 

3.3. Invasion dynamics 133 

The package offers specialised functionality to simulate species invasions. Users can designate 134 

specific species as invaders and schedule their introduction at defined time steps, rather than 135 

initializing them at the start of the simulation. This temporal flexibility enables the mechanistic 136 

investigation of invasion success. It allows researchers to explore how community 137 

composition, biotic resistance and arrival timing shape the settlement of new species within 138 

established metacommunities. 139 

3.4. Virtual ecologist 140 

A major challenge in ecology is that theoretical models often assume perfect knowledge, 141 

whereas empirical data is inherently noisy and incomplete. To bridge this gap, mrangr 142 

includes a Virtual Ecologist module designed to replicate the constraints of real-world 143 

biological surveys. While the simulation inherently generates "true" abundances (perfect 144 

knowledge), the virtual_ecologist() function allows users to filter this output 145 

through imperfect observation methods. The module supports: 146 

• Sampling designs: Users can define the sampling intensity (e.g., surveying only 5% of 147 

the landscape) and spatial configuration (random vs. systematic sampling). 148 
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• Detection error: This involves simulating imperfect detection and observation bias by 149 

applying error distributions (e.g. Binomial to mimic imperfect detectability or 150 

log-Normal to impose observation error on counts) to true abundance data. 151 

By generating "observed" datasets alongside known ground truths, this feature allows 152 

researchers to rigorously benchmark statistical methods (such as species distribution models 153 

or occupancy models) and quantify how sampling limitations affect ecological inference. 154 

3.5. Virtual environment generator 155 

To facilitate theoretical investigations, the K_sim() function allows for the generation of 156 

spatially explicit carrying capacity maps based on spatially autocorrelated Gaussian Random 157 

Fields (GRFs). This tool enables users to construct controlled synthetic landscapes by defining 158 

both the spatial structure (via the autocorrelation range) and the statistical properties 159 

(marginal distributions) of the environment. Furthermore, the function supports the 160 

specification of cross-correlations between different landscape layers, allowing researchers to 161 

simulate complex niche relationships — such as environmental trade-offs or positive 162 

associations — under precise experimental conditions.  This offers a versatile framework for 163 

testing ecological hypotheses across a range of environmental configurations. 164 

3.6. GIS integration 165 

Unlike theoretical tools that rely solely on synthetic landscapes, mrangr is fully integrated 166 

with the terra ecosystem, the modern standard for spatial data analysis in R (Hijmans, 167 

2026). This interoperability allows users to directly ingest empirical raster data — such as 168 

climate layers, land cover maps, or remote sensing outputs — to define simulation arenas. By 169 

enabling the use of real-world geographical data as boundary conditions, mrangr facilitates 170 

the seamless transition from abstract theoretical exploration to data-driven macroecological 171 

modelling. 172 
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3.7. Computational efficiency 173 

Spatially explicit simulations are often computationally expensive, particularly when scaling 174 

up to large landscapes or high species richness. mrangr addresses this by delegating 175 

intensive spatial operations to the terra package, which is optimized in C++. This allows the 176 

package to maintain the flexibility and readability of pure R code while achieving the 177 

performance necessary to handle large landscape grids and extensive replication. 178 

Furthermore, the package is designed to support parallel execution. As demonstrated in the 179 

provided case studies, users can easily distribute replicates across processor cores using 180 

standard R parallelization tools (e.g., parallel, pbapply), making it feasible to conduct 181 

extensive sensitivity analyses and robustly estimate parameter uncertainty. 182 

4. mrangr workflow 183 

The mrangr package provides a straightforward workflow consisting of 3 main steps.  184 

4.1. Environment and community initialisation 185 

The workflow begins by defining the simulation arena and the community structure.  Users can 186 

integrate empirical spatial data by providing SpatRaster objects for carrying capacity maps (K), 187 

representing species fundamental niches, and initial abundance maps (N1). Alternatively, for 188 

theoretical applications or sensitivity testing, the K_sim() function allows users to generate 189 

synthetic, spatially autocorrelated carrying capacity landscapes. Concurrently, interspecific 190 

dynamics are parameterised via an asymmetric interaction matrix (a), enabling the representation 191 

of complex biotic relationships. The initialise_com() function integrates the spatial data 192 

and interaction parameters into a sim_com_data object. At this stage, users define species-193 

specific traits, including intrinsic growth rates (r) and dispersal kernels (kernel_fun). This step 194 

validates the input maps and community parameters before the simulation begins, while also 195 

encapsulating all this data into a single sim_com_data object. 196 
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4.2. Simulation execution 197 

Once the system is defined, the sim_com() function executes the spatially explicit simulation 198 

over discrete time steps. In each iteration, the model sequentially resolves dispersal and local 199 

population dynamics. First, the effective carrying capacity (𝐾𝑖,𝑡) of every grid cell is dynamically 200 

updated based on the local abundance of all interacting species (as defined by the interaction 201 

matrix 𝑎). Populations then grow according to their intrinsic growth rates (𝑟), constrained by these 202 

dynamically updated realized niches. Simultaneously, individuals disperse across the landscape 203 

according to species-specific kernels. This cycle repeats for the specified duration, generating a 204 

complete spatiotemporal history of the metacommunity that captures the interplay between 205 

environmental forcing, biotic interactions, and dispersal.  206 

4.3. Observation and analysis 207 

Following the simulation, users can analyse the "biological truth" directly or, optionally, pass the 208 

results to the virtual_ecologist() function. This post-processing step applies the 209 

observation constraints described in Section 3.4 to the raw simulation output. By defining specific 210 

sampling protocols (e.g., plot number, detection probability) at this stage, users generate an 211 

"observed" dataset derived from the "true" state. This dual-output workflow allows researchers 212 

to seamlessly benchmark analytical methods by comparing statistical inferences drawn from the 213 

virtual samples against the known ground truth of the metacommunity. Following the simulation 214 

(and optionally an observation process), the resulting community state can be analysed directly. 215 

The package provides native plotting methods: plot_series() generates temporal 216 

trajectories of total or mean abundance for all species, while plot() visualises the spatial 217 

distribution (i.e. realised niches) of the metacommunity at specific time points. 218 
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5. Case studies 219 

We present three case studies to validate the simulator against established ecological theory. The first 220 

two examples benchmark mrangr against known biological patterns: the influence of dispersal on 221 

biodiversity scaling and the dynamics of competition-colonization trade-offs. The third example 222 

demonstrates the package's methodological utility, evaluating the limitations and potential of 223 

inferring fundamental niches from observation-based data. 224 

The three case studies were run in the same exemplary simulation environment, defined on a 20×20 225 

grid (400 cells) with a 1 km resolution, assuming a coordinate system EPSG:2180. Trends in simulated 226 

parameters were quantified and visualised using Generalized Additive Models for Location, Scale and 227 

Shape (GAMLSS) to capture non-linear responses and heteroscedasticity. 228 

5.1. Example 1: Testing the effect of dispersal on species diversity 229 

Dispersal is the fundamental process connecting local communities, shaping biodiversity patterns at 230 

multiple scales. In metacommunity theory, dispersal promotes local coexistence through the rescue 231 

effect, yet potentially undermines regional diversity by homogenizing distinct communities (Mouquet 232 

& Loreau, 2003). Consequently, the relationship between dispersal ability and diversity metrics is 233 

expected to vary across scales. Increased dispersal should theoretically elevate local richness 234 

(α-diversity) by overcoming dispersal limitation, while simultaneously eroding compositional turnover 235 

(β-diversity) through mass effects. At the regional scale (γ-diversity), these opposing forces may 236 

generate a unimodal response, where biodiversity peaks at intermediate dispersal rates that balance 237 

colonization against competitive exclusion. Testing these predictions empirically is challenging due to 238 

the difficulty of manipulating dispersal traits. Here, we demonstrate how mrangr can be used to 239 

rigorously test these macroecological hypotheses by simulating metacommunities across a controlled 240 

gradient of dispersal ranges while keeping niche requirements and interaction strengths constant. 241 
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In this example, the metacommunity consisted of 20 species. For each simulation replicate, 242 

species-specific carrying capacity maps (𝐾) were generated using spatially autocorrelated log-normal 243 

distributions. Biotic interactions were modelled via an asymmetric interaction matrix ( 𝑎 ) with 244 

coefficients drawn from a normal distribution. The experimental gradient focused on dispersal ability. 245 

We varied the mean dispersal distance from 100 m to 3000 m across 30 discrete intervals. Dispersal 246 

was modelled using an exponential kernel, where the rate parameter is defined as 1/𝑚𝑒𝑎𝑛 distance. 247 

We performed 100 independent replicates for each dispersal scenario. Each simulation ran for 20 time 248 

steps, sufficient to allow the metacommunity to reorganize from its initial state under the imposed 249 

dispersal and interaction constraints. At the final time step, we calculated diversity metrics based on 250 

Hill numbers with 𝑞 = 1 (exponential of Shannon entropy): 251 

1. Alpha diversity (𝛼): calculated as the mean local diversity across all 400 grid cells. 252 

2. Gamma diversity (𝛾): calculated based on the total pooled abundance of each species across 253 

the entire landscape. 254 

3. Beta diversity (𝛽): derived using additive partitioning: 𝛽 = 𝛾 − 𝛼. 255 

The simulation results confirm the opposing effects of dispersal on biodiversity across spatial scales, 256 

reproducing classic theoretical predictions (e.g., Mouquet & Loreau, 2003): 257 

1. Local enrichment (α-diversity): As predicted, local species richness increased monotonically 258 

with dispersal ability (Figure 2a). At low dispersal rates, local communities are impoverished 259 

due to local extinctions and dispersal limitation. Increasing connectivity allows species to 260 

colonize and persist in suboptimal patches ('sink' habitats) via the rescue effect, thereby 261 

inflating local diversity. 262 

2. Spatial homogenization (β-diversity): Conversely, compositional turnover declined sharply as 263 

dispersal increased (Figure 2b). High dispersal rates effectively mix the metacommunity, 264 

eroding the spatial distinctions driven by environmental heterogeneity.  265 
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3. The regional trade-off (γ-diversity): The response of regional diversity highlights the tension 266 

between local enrichment and spatial homogenization (Figure 2c). Gamma diversity increases 267 

rapidly at low dispersal distances as species overcome dispersal limitation, eventually 268 

saturating at a stable plateau. Unlike simple theoretical models that predict a decline in 269 

diversity at high dispersal rates due to global competitive exclusion, our results indicate that 270 

spatial heterogeneity in carrying capacity provides sufficient refuge for inferior competitors. 271 

In this high-dispersal regime, species sorting mechanisms allow species to efficiently track 272 

their environmental optima without being displaced from the landscape entirely, maintaining 273 

high regional diversity despite extensive mixing. 274 

 275 

Figure 2. Response of metacommunity diversity components to mean dispersal distance. Scatterplots 276 

display (a) alpha, (b) beta, and (c) gamma diversity for metacommunities simulated with a regional 277 

pool of 20 species. Points represent individual simulation runs. Solid lines indicate the median and 278 

shaded regions represent the interquartile range, modelled using a Gaussian Location-Scale GAM 279 

(GAMLSS). 280 

5.2. Example 2: Competition–colonization trade-off 281 

A fundamental puzzle in community ecology is explaining how inferior competitors avoid exclusion in 282 

landscapes dominated by superior species. The competition–colonization trade-off hypothesis 283 
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provides a classic metacommunity solution, proposing that species coexist by partitioning the 284 

landscape based on dispersal ability rather than resource use (Tilman, 1994). In this framework, 285 

inferior competitors persist as "fugitive species" by investing in superior colonization rates, allowing 286 

them to occupy vacant patches before slower-dispersing dominants arrive to displace them. 287 

Identifying this trade-off in empirical systems is often confounded by environmental heterogeneity 288 

and complex trait correlations. In this example, we use mrangr to simulate a test of this hypothesis 289 

by enforcing a strict constraint between competitive rank and dispersal distance, evaluating whether 290 

this trade-off alone is sufficient to maintain regional coexistence in a spatially explicit context. 291 

In this example, the metacommunity consisted of just two virtual species. To isolate the effect of 292 

dispersal on coexistence, we controlled for environmental preferences by enforcing complete 293 

fundamental niche overlap. Both species were assigned identical spatial habitat requirements, 294 

differing only in their competitive fitness within that niche: 295 

1. Species 1 (superior competitor): Assigned a baseline carrying capacity generated via a 296 

log-normal distribution. 297 

2. Species 2 (inferior competitor): Assigned a carrying capacity 20% lower than Species 1,  across 298 

the entire landscape.  299 

3. Biotic interactions: We applied strong, symmetric competition between the species (𝑎 = −1). 300 

Under these conditions — identical fundamental niches and distinct fitness levels — theory 301 

predicts the deterministic exclusion of Species 2 by Species 1 in every grid cell. 302 

We introduced a trade-off where the inferior competitor (Species 2) compensated for its lower fitness 303 

with superior dispersal. We fixed the mean dispersal distance of Species 2 at 1000 m and 304 

systematically varied the mean dispersal of the superior competitor (Species 1) across three scenarios: 305 

1. No trade-off (Control): Species 1 also disperses 1000 m (equal dispersal, unequal fitness). 306 

2. Moderate trade-off: Species 1 disperses 100 m (10× disadvantage). 307 

3. Strong trade-off: Species 1 disperses 10 m (100× disadvantage). 308 
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We performed 40 independent replicates per scenario over 50 time steps. We tracked the relative 309 

abundance of the inferior competitor to evaluate whether spatial niche partitioning (via colonisation 310 

ability) could prevent exclusion despite the lack of niche differentiation. 311 

 312 

Figure 3. Testing the competition-colonization trade-off. Temporal dynamics of the inferior 313 

competitor's relative abundance over 50 simulation steps. The inferior competitor (Species 2) has a 314 

fixed high dispersal distance (1000 m) but lower competitive fitness (𝐾2 = 0.8 × 𝐾1). Thin lines 315 

represent individual simulation trajectories (n=40), while thick lines indicate the median. Scenarios 316 

differ by the mean dispersal distance of the superior competitor (Species 1): 1000 m (violet, dotted 317 

line), 100 m (orange, dashed line), and 10 m (green, solid line). 318 

The simulations demonstrate that dispersal advantage can effectively counteract competitive 319 

exclusion (Figure 3). In the absence of a trade-off, when both species shared equal dispersal 320 

capabilities (violet dotted line), the inferior competitor was rapidly driven toward extinction. However, 321 

as the trade-off strength increased, the inferior competitor's persistence improved significantly. In the 322 

strongest trade-off scenario (green solid line), where the superior competitor was severely dispersal-323 
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limited (10 m), the inferior competitor successfully exploited vacant space, achieving numerical 324 

dominance despite its lower fitness. 325 

5.3. Example 3: Reconstruction of fundamental niches 326 

Estimating the fundamental niche from field data is complicated by two filters: biotic interactions, 327 

which constrain the realized distribution, and observational errors, which distort detection. 328 

Consequently, ecological field data rarely reflect pure environmental potential (Soberón, 2007). Yet, 329 

recovering this baseline is essential for forecasting species responses to novel environments. In this 330 

example, we use mrangr to simulate a known ground truth and systematically evaluate whether 331 

statistical models can penetrate these biological and observational layers to reliably reconstruct the 332 

fundamental niche. 333 

Spatially autocorrelated environmental variables were generated using Gaussian Random Fields via 334 

the K_sim() function. The metacommunity consisted of 5 virtual species. For each species, the 335 

fundamental niche (carrying capacity, 𝐾) was defined as a log-linear function of the environmental 336 

covariates, ensuring a known ground truth for species-environment relationships. To model the 337 

realized niche, we generated asymmetric interaction matrices (𝑎) where off-diagonal elements were 338 

drawn from a normal distribution 𝑁(0, 𝛿2) . We systematically varied the interaction strength 339 

parameter, 𝛿, across a gradient to simulate metacommunities ranging from purely abiotic-driven (𝛿 =340 

0) to highly interactive systems (𝛿 = 3).  341 

Simulations were initialized with abundances drawn from a Poisson distribution with expectations 342 

equal to the local carrying capacity (𝜆 = 𝐾). The system was evolved for 50 time steps, with the first 343 

10 steps serving as a burn-in period to allow the community to reach a quasi-equilibrium state. To 344 

replicate the spatiotemporal structure of empirical monitoring datasets, we employed the 'virtual 345 

ecologist' module across the subsequent 40 time steps. We sampled 10% of the available site-time 346 

combinations (prop = 0.1) and introduced observational error using a binomial distribution with 347 

detection probability 𝑝 = 0.5, mimicking the imperfect detection typical of wildlife surveys. 348 
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We attempted to reconstruct the fundamental niche from the sampled realized abundances using 349 

Generalized Linear Mixed Models (GLMMs) fitted via the glmmTMB package. The models included the 350 

true environmental covariates as predictors. We evaluated the performance of these reconstructions 351 

against the true fundamental niche (𝐾) using three metrics: 352 

1. Bias of 𝛽: The absolute difference between the estimated environmental coefficient and the 353 

true coefficient used to generate 𝐾. 354 

2. Sign agreement: The proportion of simulations where the model correctly identified the 355 

direction of the environmental response (positive/negative). 356 

3. Correlation with 𝐾: The Spearman rank correlation between the spatially predicted 357 

abundance surface and the true carrying capacity map. 358 

Our simulations demonstrate that interaction strength substantially impairs the statistical recovery of 359 

the fundamental niche. As the interaction strength increased, the spatial correlation between the 360 

reconstructed niche and the true carrying capacity declined non-linearly, effectively uncoupling 361 

realized abundance from environmental potential (Figure 4c). Concurrently, the absolute bias in 362 

estimated environmental coefficients (𝛽 ) rose (Figure 4a), indicating that biotic constraints 363 

systematically distort the perceived magnitude of environmental preferences. Most critically, under 364 

strong biotic regulation, the sign agreement dropped toward 0.5 (Figure 4b), equivalent to random 365 

guessing. This implies that in highly interactive communities, standard correlative models frequently 366 

misidentify positive environmental associations as negative (and vice versa), yielding spurious niche 367 

estimates driven by community dynamics rather than abiotic suitability. 368 
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 369 

Figure 4. Influence of biotic interaction strength on the accuracy of fundamental niche estimation by 370 

the virtual ecologist. Interaction strength is defined as the mean absolute value of off-diagonal 371 

elements in the interaction matrix. Estimation performance is evaluated via: (a) absolute bias of slope 372 

estimates (𝛽 ); (b) sign agreement (proportion of estimated slopes matching the true sign); and 373 

(c) correlation between estimated abundances and true carrying capacity (𝐾 ). Points represent 374 

individual metacommunities. Solid lines indicate the median and shaded regions represent the 375 

interquartile range, modelled using a Gaussian Location-Scale GAM (GAMLSS). Dashed horizontal lines 376 

indicate reference values for optimal performance (zero bias or perfect agreement/correlation). 377 

6. Conclusions 378 

The metacommunity concept has traditionally been categorized into four major paradigms: species 379 

sorting, mass effects, patch dynamics, and neutral theory (Leibold et al., 2004). While recent  380 

theoretical work has moved toward a unified process-based metacommunity framework, 381 

operationalization of this synthesis in a flexible simulation environment remains a challenge. Here, we 382 

address this by conceptually reducing metacommunity dynamics into three axes—space, time, and 383 

species—linked by fundamental ecological processes. Specifically, mrangr integrates population 384 

growth (temporal dynamics), dispersal (spatial dynamics), and biotic interactions (interspecific 385 

dynamics).  386 
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Although this abstraction is necessarily simplified, mrangr captures both the biotic interactions that 387 

drive local species coexistence, and the spatio-temporal population dynamics that determine 388 

community assembly while allowing for mechanistic flexibility. Crucially, this flexibility is grounded in 389 

the decoupling of the fundamental and realized niche. By defining environmental potential and biotic 390 

interactions as distinct, independent inputs, the package ensures that the realized niche emerges 391 

dynamically from their interplay rather than being an implicit artifact of suitability maps. Furthermore, 392 

incorporating stochasticity into each process enables the generation of parameter distributions from 393 

replicated simulations, facilitating robust statistical inference. 394 

mrangr provides a user-friendly and flexible framework for spatially explicit metacommunity 395 

simulation. Its distinguishing features include support for arbitrary biotic interaction structures, fully 396 

spatially explicit environments, and an integrated observation process model. This enables precise 397 

mechanistic control over the primary processes driving community dynamics, allowing researchers to 398 

replicate established patterns while exploring complex frontiers—such as the disentanglement of 399 

abiotic filtering from competition, the interplay between niche and fitness differences, or the 400 

spatiotemporal dynamics of species invasions. 401 
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