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Abstract

1.

Metacommunity theory unifies ecology by integrating local biotic interactions with regional
dispersal and environmental filtering. However, testing theoretical predictions against
empirical data remains challenging due to the difficulty of disentangling these processes in
nature and the confounding effects of imperfect detection.

Here, we introduce mrangr, an R package designed for the mechanistic, spatially explicit
simulation of multispecies communities. Unlike correlative approaches, mrangr strictly
distinguishes between the fundamental niche (determined by abiotic carrying capacity) and
the realised niche (an emergent property of biotic interactions).

The package implements a generalized Lotka-Volterra framework on a lattice grid (via the
terra ecosystem), allowing users to simulate diverse interaction types — including
competition, predation, and facilitation — alongside species-specific dispersal kernels.

A defining feature is the "Virtual Ecologist" module, which samples the simulated "ground
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truth" with user-defined observation errors and sampling designs, thereby mimicking the
constraints of real-world biodiversity surveys.

We demonstrate the package’s capabilities through three case studies: (i) quantifying the
scale-dependent effects of dispersal on a, 8, and y diversity, (ii) testing the conditions under
which the competition-colonization trade-off promotes coexistence in the presence of fitness
inequalities, and (iii) assessing the recoverability of fundamental niches from imperfect
observational data constrained by biotic interactions.

By providing a flexible platform to generate synthetic data with known underlying
mechanisms, mrangr enables researchers to benchmark statistical models, assess sampling
strategies, and rigorously test hypotheses at the interface of theoretical and empirical

macroecology.

Key-words: metacommunity dynamics, fundamental and realized niche, community assembly,

process-based modelling, virtual ecologist, spatially explicit

Running Head: Mechanistic metacommunity simulation in R
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1. Introduction

One of the key goals of ecology is to understand the mechanisms generating and maintaining
biodiversity. Traditionally, theory separated these mechanisms by spatial scale: regional frameworks
emphasized ecological drift, selection, speciation, and dispersal (Vellend, 2016), whereas local models
focused on competitive coexistence (Chesson, 2000), and priority effects (Adler et al., 2007; Ke &
Letten, 2018). Metacommunity theory (Leibold et al., 2004, 2017) unifies these perspectives by
identifying three spatially explicit mechanisms that operate across scales: density-independent
responses to abiotic conditions, density-dependent biotic interactions, and dispersal (Thompson et

al., 2020).

While explicitly integrating these mechanisms is essential for unravelling biodiversity patterns, a
critical limitation of many existing metacommunity tools is the conflation of the fundamental and
realized niche. Frequently, simulators rely on input suitability maps that implicitly incorporate biotic
constraints, rendering it impossible to disentangle environmental filtering from community processes.
To overcome this, a mechanistic framework must strictly define the fundamental niche as a measure
of environmental potential, allowing the realized niche to emerge purely as a dynamic property of

biotic interactions and dispersal.

Against this requirement for mechanistic clarity, the current landscape of process-based
metacommunity simulators — namely gen3sis (Hagen et al., 2021) and metaIBM (Lin et al., 2024)
- often necessitates trade-offs. While these frameworks share a core principle of coupling dispersal
and density-dependent regulation, they implement interspecific regulation indirectly by the
magnitude of fundamental niche overlap. This reliance on overlap prevents the explicit modelling of
metacommunities with asymmetric (e.g. predation) or positive (e.g. facilitation) interactions,
effectively locking the simulation into the "conflated niche" paradigm. Conversely, metaRange
(Fallert et al., 2025) provides a programming environment in which multiple processes, including all

types of biotic interactions, can be modelled flexibly; yet users must code these functionalities
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themselves. Consequently, no off-the-shelf tool is currently capable of simulating metacommunities
with flexible, asymmetric biotic interactions while maintaining a strict separation between abiotic and

biotic drivers.

To address this gap, we have developed mrangr: an R package for flexible, mechanistic
metacommunity simulation in which dispersal processes, demographic rates and biotic interaction
coefficients can be explicitly parametrised. Built as a multi-species extension of the rangr package
(Markowska et al., 2025), mrangr inherits that tool's accessible parameterisation of population
dynamics, dispersal, and virtual ecology. By representing species relationships through an asymmetric
interaction matrix, it enables the simulation of diverse biotic interactions — including competition,
facilitation, and predation — within a spatially explicit virtual environment. Moreover, by defining the
fundamental niche strictly through user-supplied carrying capacity maps, the package allows the
realized niche to emerge dynamically. This separation enables researchers to quantify the 'biotic
deficit' - the specific loss of range or abundance attributable solely to biotic interactions - by comparing

the input carrying capacity maps against the simulated equilibrium state.

2. Package overview

The core architecture of mrangr is designed to mechanistically decouple the fundamental niche from
the realized niche (Figure 1). Users define the environmental potential for each species via spatially
explicit carrying capacity maps (K) and intrinsic growth rates (r), while biotic constraints are governed
by a user-supplied asymmetric interaction matrix (a). Consequently, the realized metacommunity
emerges dynamically from the interplay of species-specific demography, dispersal constraints, and
pairwise interactions. To bridge the gap between these theoretical mechanisms and empirical reality,
the package includes a 'virtual ecologist' module that replicates both observation error and the specific
sampling designs of biological surveys. Crucially, this module generates outputs that mimic the

structure of empirical monitoring data, such as sparse spatiotemporal records rather than complete
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grids. This structural fidelity allows researchers to feed simulated datasets directly into standard
analytical pipelines (e.g., SDMs or occupancy models), providing a rigorous platform for benchmarking
statistical methods against a known ground truth. A comprehensive overview of the supported

biological and observational processes is provided in Table 1.
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Figure 1. Conceptual framework and operational workflow of the mrangr package. The schematic

illustrates the mechanistic decoupling of drivers: the fundamental niche is strictly defined by input
carrying capacity maps, while the realized niche emerges dynamically from the integration of biotic
interactions, demographic rates, and dispersal. The workflow progresses from initialization to the
'virtual ecologist' module, which simulates observational errors. Green rectangles represent data
objects (inputs and state variables), while yellow rectangles represent the package's core functions

governing metapopulation dynamics and sampling.



99 Table 1. Overview of the mrangr framework, distinguishing between the ecological state processes
100 (mechanisms generating the true abundance) and the observation model (mechanisms generating

101  survey data).

Simulation .
Impact Implementation in mrangr
Component
PROCESS MODEL
Abiotic Defines the potential range and Users supply carrying capacity maps (K),
constraints maximum abundance of a species either as static rasters or generated
(Fundamental based solely on environmental dynamically via K_sim () based on
niche) physiology, ignoring other species. environmental variables.
Biotic filtering Modifies the fundamental niche by The interaction matrix (a) defines pairwise
(Realized niche) reducing abundance (competition, coefficients. The simulation solves for
predation) or expanding it abundance at each time step, allowing the
(facilitation), creating the realized realized niche to emerge dynamically from
distribution. the K maps and matrix a.
Dispersal Regulates connectivity. Low rates  Users control the spread via the
cause dispersal limitation, kernel fun parameterin

preventing species from reaching  initialise com(). This allows for

suitable patches. High rates drive  modelling constrained diffusion (limitation)

mass effects (source-sink dynamics) or fat-tailed distributions (long distance

and rescue effects. dispersal) to simulate different isolation
scenarios.

Ecological drift ~ Stochastic changes in abundance, Demographic stochasticity is inherent to the
dominant in small populations. simulation. Additional noise can be
introduced into demographic rates or
environmental layers using
initialise com()or update ()

functions.
OBSERVATION MODEL
Observation Distorts biological patterns through The virtual ecologist () function
process sampling bias and imperfect samples the simulated metacommunity.
detection. Essential for validating  Users can specify sampling designs (e.g.,
analytical methods against random, systematic) and  detection
"known" truths. probability distributions (e.g., obs_error)

to generate realistic "observed" datasets.
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3. Key features of the package

mrangr inherits the core population dynamics of rangr, including spatially explicit growth models,
flexible dispersal kernels, and non-monotonic regulation (e.g., Allee effects). As these fundamental
mechanisms are detailed in Markowska et al. (2025), we focus here on the novel functionalities

emerging from their integration into a multi-species context.

3.1. Interspecific regulation

Central to mrangr is a generalized interaction matrix that enables the simulation of diverse
community dynamics. By parameterising both positive and negative coefficients in an
asymmetric matrix (a), users can represent a full spectrum of ecological interactions, including
competition, facilitation, and predation.

Biotic interactions are modelled via a square numeric matrix where each element a;;
represents the per-capita interaction strength of species j on species i. Mechanistically, this
coefficient defines the change in the carrying capacity of species i caused by a single individual
of species j. Consequently, the realized niche is calculated dynamically: at each time step, the
effective carrying capacity of a focal species is derived by modifying its fundamental niche
(Kruna) by the net biotic influence of the community.

Formally, the effective carrying capacity for species i at time t in a given cell is calculated as:

S

K = max| K; fyna + Z(ai,j “Nit—1),0
=1

where S is the total number of species, N;;_; is the abundance of species j at the previous
time step, and the max(..., 0) function ensures that carrying capacity remains non-negative.
This formulation represents a specific implementation of the Lotka-Volterra framework where
interactions expand or contract the available niche space (K) rather than acting directly on

intrinsic growth rates (r).
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3.2. Low entry level

The package is designed to minimize technical complexity, requiring only two primary
functions to execute a complete simulation. First, a community object is established using the
initialise com(), which integrates spatial carrying capacity maps (K ), the biotic
interaction matrix (a ) and species-specific life-history parameters. Subsequently, the
sim _com () function executes the spatially explicit simulation. This streamlined workflow
reduces the programming workload, allowing ecologists to study complex feedback loops and

metacommunity dynamics without having to create custom simulation engines.

3.3. Invasion dynamics

The package offers specialised functionality to simulate species invasions. Users can designate
specific species as invaders and schedule their introduction at defined time steps, rather than
initializing them at the start of the simulation. This temporal flexibility enables the mechanistic
investigation of invasion success. It allows researchers to explore how community
composition, biotic resistance and arrival timing shape the settlement of new species within

established metacommunities.

3.4. Virtual ecologist

A major challenge in ecology is that theoretical models often assume perfect knowledge,
whereas empirical data is inherently noisy and incomplete. To bridge this gap, mrangr
includes a Virtual Ecologist module designed to replicate the constraints of real-world
biological surveys. While the simulation inherently generates "true" abundances (perfect
knowledge), the virtual ecologist () function allows users to filter this output
through imperfect observation methods. The module supports:

e Sampling designs: Users can define the sampling intensity (e.g., surveying only 5% of

the landscape) and spatial configuration (random vs. systematic sampling).
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e Detection error: This involves simulating imperfect detection and observation bias by
applying error distributions (e.g. Binomial to mimic imperfect detectability or
log-Normal to impose observation error on counts) to true abundance data.

By generating "observed" datasets alongside known ground truths, this feature allows
researchers to rigorously benchmark statistical methods (such as species distribution models

or occupancy models) and quantify how sampling limitations affect ecological inference.

3.5. Virtual environment generator

To facilitate theoretical investigations, the K sim () function allows for the generation of
spatially explicit carrying capacity maps based on spatially autocorrelated Gaussian Random
Fields (GRFs). This tool enables users to construct controlled synthetic landscapes by defining
both the spatial structure (via the autocorrelation range) and the statistical properties
(marginal distributions) of the environment. Furthermore, the function supports the
specification of cross-correlations between different landscape layers, allowing researchers to
simulate complex niche relationships — such as environmental trade-offs or positive
associations — under precise experimental conditions. This offers a versatile framework for

testing ecological hypotheses across a range of environmental configurations.

3.6. GIS integration

Unlike theoretical tools that rely solely on synthetic landscapes, mrangr is fully integrated
with the terra ecosystem, the modern standard for spatial data analysis in R (Hijmans,
2026). This interoperability allows users to directly ingest empirical raster data — such as
climate layers, land cover maps, or remote sensing outputs — to define simulation arenas. By
enabling the use of real-world geographical data as boundary conditions, mrangr facilitates
the seamless transition from abstract theoretical exploration to data-driven macroecological

modelling.

10
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3.7. Computational efficiency
Spatially explicit simulations are often computationally expensive, particularly when scaling
up to large landscapes or high species richness. mrangr addresses this by delegating
intensive spatial operations to the terra package, which is optimized in C++. This allows the
package to maintain the flexibility and readability of pure R code while achieving the
performance necessary to handle large landscape grids and extensive replication.
Furthermore, the package is designed to support parallel execution. As demonstrated in the
provided case studies, users can easily distribute replicates across processor cores using
standard R parallelization tools (e.g., parallel, pbapply), making it feasible to conduct

extensive sensitivity analyses and robustly estimate parameter uncertainty.

4. mrangr workflow

The mrangr package provides a straightforward workflow consisting of 3 main steps.

4.1. Environment and community initialisation

The workflow begins by defining the simulation arena and the community structure. Users can
integrate empirical spatial data by providing SpatRaster objects for carrying capacity maps (K),
representing species fundamental niches, and initial abundance maps (N;). Alternatively, for
theoretical applications or sensitivity testing, the K sim () function allows users to generate
synthetic, spatially autocorrelated carrying capacity landscapes. Concurrently, interspecific
dynamics are parameterised via an asymmetric interaction matrix (a), enabling the representation
of complex biotic relationships. The initialise com() function integrates the spatial data
and interaction parameters into a sim_com_data object. At this stage, users define species-
specific traits, including intrinsic growth rates (r) and dispersal kernels (kernel fun). This step
validates the input maps and community parameters before the simulation begins, while also

encapsulating all this data into a single sim com_data object.
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4.2. Simulation execution

Once the system is defined, the sim com () function executes the spatially explicit simulation
over discrete time steps. In each iteration, the model sequentially resolves dispersal and local
population dynamics. First, the effective carrying capacity (K; ;) of every grid cell is dynamically
updated based on the local abundance of all interacting species (as defined by the interaction
matrix a). Populations then grow according to their intrinsic growth rates (r), constrained by these
dynamically updated realized niches. Simultaneously, individuals disperse across the landscape
according to species-specific kernels. This cycle repeats for the specified duration, generating a
complete spatiotemporal history of the metacommunity that captures the interplay between

environmental forcing, biotic interactions, and dispersal.

4.3. Observation and analysis

Following the simulation, users can analyse the "biological truth" directly or, optionally, pass the
results to the virtual ecologist () function. This post-processing step applies the
observation constraints described in Section 3.4 to the raw simulation output. By defining specific
sampling protocols (e.g., plot number, detection probability) at this stage, users generate an
"observed" dataset derived from the "true" state. This dual-output workflow allows researchers
to seamlessly benchmark analytical methods by comparing statistical inferences drawn from the
virtual samples against the known ground truth of the metacommunity. Following the simulation
(and optionally an observation process), the resulting community state can be analysed directly.
The package provides native plotting methods: plot series() generates temporal
trajectories of total or mean abundance for all species, while plot () visualises the spatial

distribution (i.e. realised niches) of the metacommunity at specific time points.

12
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5. Case studies

We present three case studies to validate the simulator against established ecological theory. The first
two examples benchmark mrangr against known biological patterns: the influence of dispersal on
biodiversity scaling and the dynamics of competition-colonization trade-offs. The third example
demonstrates the package's methodological utility, evaluating the limitations and potential of

inferring fundamental niches from observation-based data.

The three case studies were run in the same exemplary simulation environment, defined on a 20x20
grid (400 cells) with a 1 km resolution, assuming a coordinate system EPSG:2180. Trends in simulated
parameters were quantified and visualised using Generalized Additive Models for Location, Scale and

Shape (GAMLSS) to capture non-linear responses and heteroscedasticity.

5.1. Example 1: Testing the effect of dispersal on species diversity
Dispersal is the fundamental process connecting local communities, shaping biodiversity patterns at
multiple scales. In metacommunity theory, dispersal promotes local coexistence through the rescue
effect, yet potentially undermines regional diversity by homogenizing distinct communities (Mouquet
& Loreau, 2003). Consequently, the relationship between dispersal ability and diversity metrics is
expected to vary across scales. Increased dispersal should theoretically elevate local richness
(a-diversity) by overcoming dispersal limitation, while simultaneously eroding compositional turnover
(B-diversity) through mass effects. At the regional scale (y-diversity), these opposing forces may
generate a unimodal response, where biodiversity peaks at intermediate dispersal rates that balance
colonization against competitive exclusion. Testing these predictions empirically is challenging due to
the difficulty of manipulating dispersal traits. Here, we demonstrate how mrangr can be used to
rigorously test these macroecological hypotheses by simulating metacommunities across a controlled

gradient of dispersal ranges while keeping niche requirements and interaction strengths constant.
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In this example, the metacommunity consisted of 20 species. For each simulation replicate,
species-specific carrying capacity maps (K) were generated using spatially autocorrelated log-normal
distributions. Biotic interactions were modelled via an asymmetric interaction matrix (a) with
coefficients drawn from a normal distribution. The experimental gradient focused on dispersal ability.
We varied the mean dispersal distance from 100 m to 3000 m across 30 discrete intervals. Dispersal

was modelled using an exponential kernel, where the rate parameter is defined as 1/mean distance.

We performed 100 independent replicates for each dispersal scenario. Each simulation ran for 20 time
steps, sufficient to allow the metacommunity to reorganize from its initial state under the imposed
dispersal and interaction constraints. At the final time step, we calculated diversity metrics based on

Hill numbers with g = 1 (exponential of Shannon entropy):

1. Alpha diversity (a): calculated as the mean local diversity across all 400 grid cells.
2. Gamma diversity (y): calculated based on the total pooled abundance of each species across
the entire landscape.

3. Beta diversity (f): derived using additive partitioning: § =y — a.

The simulation results confirm the opposing effects of dispersal on biodiversity across spatial scales,

reproducing classic theoretical predictions (e.g., Mouquet & Loreau, 2003):

1. Local enrichment (a-diversity): As predicted, local species richness increased monotonically
with dispersal ability (Figure 2a). At low dispersal rates, local communities are impoverished
due to local extinctions and dispersal limitation. Increasing connectivity allows species to
colonize and persist in suboptimal patches ('sink' habitats) via the rescue effect, thereby
inflating local diversity.

2. Spatial homogenization (B-diversity): Conversely, compositional turnover declined sharply as
dispersal increased (Figure 2b). High dispersal rates effectively mix the metacommunity,

eroding the spatial distinctions driven by environmental heterogeneity.
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3. The regional trade-off (y-diversity): The response of regional diversity highlights the tension
between local enrichment and spatial homogenization (Figure 2c). Gamma diversity increases
rapidly at low dispersal distances as species overcome dispersal limitation, eventually
saturating at a stable plateau. Unlike simple theoretical models that predict a decline in
diversity at high dispersal rates due to global competitive exclusion, our results indicate that
spatial heterogeneity in carrying capacity provides sufficient refuge for inferior competitors.
In this high-dispersal regime, species sorting mechanisms allow species to efficiently track
their environmental optima without being displaced from the landscape entirely, maintaining

high regional diversity despite extensive mixing.
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Figure 2. Response of metacommunity diversity components to mean dispersal distance. Scatterplots
display (a) alpha, (b) beta, and (c) gamma diversity for metacommunities simulated with a regional
pool of 20 species. Points represent individual simulation runs. Solid lines indicate the median and
shaded regions represent the interquartile range, modelled using a Gaussian Location-Scale GAM

(GAMLSS).

5.2. Example 2: Competition—colonization trade-off
A fundamental puzzle in community ecology is explaining how inferior competitors avoid exclusion in

landscapes dominated by superior species. The competition—colonization trade-off hypothesis
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provides a classic metacommunity solution, proposing that species coexist by partitioning the
landscape based on dispersal ability rather than resource use (Tilman, 1994). In this framework,
inferior competitors persist as "fugitive species" by investing in superior colonization rates, allowing
them to occupy vacant patches before slower-dispersing dominants arrive to displace them.
Identifying this trade-off in empirical systems is often confounded by environmental heterogeneity
and complex trait correlations. In this example, we use mrangr to simulate a test of this hypothesis
by enforcing a strict constraint between competitive rank and dispersal distance, evaluating whether

this trade-off alone is sufficient to maintain regional coexistence in a spatially explicit context.

In this example, the metacommunity consisted of just two virtual species. To isolate the effect of
dispersal on coexistence, we controlled for environmental preferences by enforcing complete
fundamental niche overlap. Both species were assigned identical spatial habitat requirements,

differing only in their competitive fitness within that niche:

1. Species 1 (superior competitor): Assigned a baseline carrying capacity generated via a
log-normal distribution.

2. Species 2 (inferior competitor): Assigned a carrying capacity 20% lower than Species 1, across
the entire landscape.

3. Bioticinteractions: We applied strong, symmetric competition between the species (a = —1).
Under these conditions — identical fundamental niches and distinct fitness levels — theory

predicts the deterministic exclusion of Species 2 by Species 1 in every grid cell.

We introduced a trade-off where the inferior competitor (Species 2) compensated for its lower fitness
with superior dispersal. We fixed the mean dispersal distance of Species 2 at 1000 m and

systematically varied the mean dispersal of the superior competitor (Species 1) across three scenarios:

1. No trade-off (Control): Species 1 also disperses 1000 m (equal dispersal, unequal fitness).
2. Moderate trade-off: Species 1 disperses 100 m (10x disadvantage).

3. Strong trade-off: Species 1 disperses 10 m (100x disadvantage).
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We performed 40 independent replicates per scenario over 50 time steps. We tracked the relative
abundance of the inferior competitor to evaluate whether spatial niche partitioning (via colonisation

ability) could prevent exclusion despite the lack of niche differentiation.

Relative abundance

Time

Figure 3. Testing the competition-colonization trade-off. Temporal dynamics of the inferior
competitor's relative abundance over 50 simulation steps. The inferior competitor (Species 2) has a
fixed high dispersal distance (1000 m) but lower competitive fitness (K, = 0.8 X K;). Thin lines
represent individual simulation trajectories (n=40), while thick lines indicate the median. Scenarios
differ by the mean dispersal distance of the superior competitor (Species 1): 1000 m (violet, dotted

line), 100 m (orange, dashed line), and 10 m (green, solid line).

The simulations demonstrate that dispersal advantage can effectively counteract competitive
exclusion (Figure 3). In the absence of a trade-off, when both species shared equal dispersal
capabilities (violet dotted line), the inferior competitor was rapidly driven toward extinction. However,
as the trade-off strength increased, the inferior competitor's persistence improved significantly. In the

strongest trade-off scenario (green solid line), where the superior competitor was severely dispersal-
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limited (10 m), the inferior competitor successfully exploited vacant space, achieving numerical

dominance despite its lower fitness.

5.3. Example 3: Reconstruction of fundamental niches
Estimating the fundamental niche from field data is complicated by two filters: biotic interactions,
which constrain the realized distribution, and observational errors, which distort detection.
Consequently, ecological field data rarely reflect pure environmental potential (Soberdn, 2007). Yet,
recovering this baseline is essential for forecasting species responses to novel environments. In this
example, we use mrangr to simulate a known ground truth and systematically evaluate whether
statistical models can penetrate these biological and observational layers to reliably reconstruct the

fundamental niche.

Spatially autocorrelated environmental variables were generated using Gaussian Random Fields via
the K_sim() function. The metacommunity consisted of 5 virtual species. For each species, the
fundamental niche (carrying capacity, K) was defined as a log-linear function of the environmental
covariates, ensuring a known ground truth for species-environment relationships. To model the
realized niche, we generated asymmetric interaction matrices (a) where off-diagonal elements were
drawn from a normal distribution N(0,62%). We systematically varied the interaction strength
parameter, §, across a gradient to simulate metacommunities ranging from purely abiotic-driven (§ =

0) to highly interactive systems (§ = 3).

Simulations were initialized with abundances drawn from a Poisson distribution with expectations
equal to the local carrying capacity (A = K). The system was evolved for 50 time steps, with the first
10 steps serving as a burn-in period to allow the community to reach a quasi-equilibrium state. To
replicate the spatiotemporal structure of empirical monitoring datasets, we employed the 'virtual
ecologist' module across the subsequent 40 time steps. We sampled 10% of the available site-time
combinations (prop = 0.1)and introduced observational error using a binomial distribution with

detection probability p = 0.5, mimicking the imperfect detection typical of wildlife surveys.
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We attempted to reconstruct the fundamental niche from the sampled realized abundances using
Generalized Linear Mixed Models (GLMMs) fitted via the g1mmTMB package. The models included the
true environmental covariates as predictors. We evaluated the performance of these reconstructions

against the true fundamental niche (K) using three metrics:

1. Bias of §: The absolute difference between the estimated environmental coefficient and the

true coefficient used to generate K.

2. Sign agreement: The proportion of simulations where the model correctly identified the

direction of the environmental response (positive/negative).

3. Correlation with K: The Spearman rank correlation between the spatially predicted

abundance surface and the true carrying capacity map.

Our simulations demonstrate that interaction strength substantially impairs the statistical recovery of
the fundamental niche. As the interaction strength increased, the spatial correlation between the
reconstructed niche and the true carrying capacity declined non-linearly, effectively uncoupling
realized abundance from environmental potential (Figure 4c). Concurrently, the absolute bias in
estimated environmental coefficients (f ) rose (Figure 4a), indicating that biotic constraints
systematically distort the perceived magnitude of environmental preferences. Most critically, under
strong biotic regulation, the sign agreement dropped toward 0.5 (Figure 4b), equivalent to random
guessing. This implies that in highly interactive communities, standard correlative models frequently
misidentify positive environmental associations as negative (and vice versa), yielding spurious niche

estimates driven by community dynamics rather than abiotic suitability.
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Figure 4. Influence of biotic interaction strength on the accuracy of fundamental niche estimation by
the virtual ecologist. Interaction strength is defined as the mean absolute value of off-diagonal
elements in the interaction matrix. Estimation performance is evaluated via: (a) absolute bias of slope
estimates (f); (b) sign agreement (proportion of estimated slopes matching the true sign); and
(c) correlation between estimated abundances and true carrying capacity (K ). Points represent
individual metacommunities. Solid lines indicate the median and shaded regions represent the
interquartile range, modelled using a Gaussian Location-Scale GAM (GAMLSS). Dashed horizontal lines

indicate reference values for optimal performance (zero bias or perfect agreement/correlation).

6. Conclusions

The metacommunity concept has traditionally been categorized into four major paradigms: species
sorting, mass effects, patch dynamics, and neutral theory (Leibold et al., 2004). While recent
theoretical work has moved toward a unified process-based metacommunity framework,
operationalization of this synthesis in a flexible simulation environment remains a challenge. Here, we
address this by conceptually reducing metacommunity dynamics into three axes—space, time, and
species—linked by fundamental ecological processes. Specifically, mrangr integrates population
growth (temporal dynamics), dispersal (spatial dynamics), and biotic interactions (interspecific

dynamics).
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Although this abstraction is necessarily simplified, mrangr captures both the biotic interactions that
drive local species coexistence, and the spatio-temporal population dynamics that determine
community assembly while allowing for mechanistic flexibility. Crucially, this flexibility is grounded in
the decoupling of the fundamental and realized niche. By defining environmental potential and biotic
interactions as distinct, independent inputs, the package ensures that the realized niche emerges
dynamically from their interplay rather than being an implicit artifact of suitability maps. Furthermore,
incorporating stochasticity into each process enables the generation of parameter distributions from

replicated simulations, facilitating robust statistical inference.

mrangr provides a user-friendly and flexible framework for spatially explicit metacommunity
simulation. Its distinguishing features include support for arbitrary biotic interaction structures, fully
spatially explicit environments, and an integrated observation process model. This enables precise
mechanistic control over the primary processes driving community dynamics, allowing researchers to
replicate established patterns while exploring complex frontiers—such as the disentanglement of
abiotic filtering from competition, the interplay between niche and fitness differences, or the

spatiotemporal dynamics of species invasions.
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