

1 **Cities alter the latitudinal diversity gradient of birds in North America**

2
3 Yuyang Xie¹, Xin Chen², Joseph R. Burger³, Allen H. Hurlbert^{1, 4}, Xiao Feng^{1*}

4
5 1. Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.

6 2. Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg,
7 MD 21532, USA

8 3. Department of Biology, University of Kentucky, Lexington, KY 40506, USA

9 4. Environment, Ecology, and Energy Program, University of North Carolina, Chapel Hill, NC
10 27599, USA

11
12 *Correspondence to email: fengxiao.sci@gmail.com

13
14
15 **Abstract**

16 The latitudinal diversity gradient (LDG) is a widely recognized biogeographic pattern, yet
17 its persistence under increasing human impacts remains unclear. Leveraging 17 million
18 eBird records, we investigated how urbanization alters LDGs in North America. We
19 quantified LDGs across 662 cities and their surroundings, and found that LDGs vary by
20 season and native status: non-native species exhibited weak or no LDG, whereas native
21 birds showed the strongest LDG during winter. Notably, native birds showed a
22 significantly flatter winter LDG in cities than in surrounding areas. Although human
23 population density generally reduced bird diversity, it exerted positive effects under cold
24 conditions in high latitudes. These findings indicate that urbanization can reshape classic
25 biodiversity patterns, with cities potentially acting as winter refuges for native birds at
26 higher latitudes.

27 **Keywords**

28 Latitudinal diversity gradient; Bird diversity; Urbanization; Human activities; Native status.

29

30

31 **Introduction**

32 Increasing human impacts are reshaping biodiversity patterns globally, with urbanization being
33 one of the most significant drivers of the change (1). It is well known that cities can attract
34 species of various traits at a local scale (2–4), though the impacts of urban environments on
35 large-scale ecological patterns, such as the latitudinal diversity gradient, remain poorly known
36 (5–8). Given the rapid increase of urbanization and human footprint across the globe, it is
37 crucial to have a better understanding of how urbanization influences these patterns (1, 7, 9,
38 10).

39

40 The latitudinal diversity gradient is one of the world's earliest recognized and striking
41 biogeographic patterns (11, 12). It describes the decrease of biodiversity from the equator to the
42 poles (13). The latitudinal diversity gradient is found widely across taxa (14) and forms the basis
43 of many fundamental theories in ecology and evolution about how diversity is maintained (15–
44 17). While this pattern is mainly observed under natural settings, the question remains,
45 however, whether and how this pattern will be maintained under increasing anthropogenic
46 modification of the earth's surface. Humans can directly modify natural environments that drive
47 natural biodiversity patterns, and human-generated conditions can also serve as additional
48 dimensions of environments that alter biodiversity distributions (18). Anthropogenic factors are
49 increasingly recognized for their role in breaking biogeographic boundaries (19) and shaping
50 biodiversity patterns (20). While the negative impacts of anthropogenic factors on biodiversity
51 are broadly known (such as species extinction (21) and range contraction (22)), urban areas
52 could also provide refuges and food sources for species in harsher environments (8, 23). How
53 these effects vary across space and time, how such effects differ for native and non-native
54 species, and how these effects together affect the natural latitudinal diversity gradient remain to
55 be addressed.

56

57 This study uses birds as an example to explore the potential impact of urbanization on the
58 latitudinal diversity gradient. As mobile and sensitive organisms, birds are often considered
59 important bioindicators of ecosystem health (24). Since birds are important to many ecosystem
60 services, such as pollination, seed dispersal, and pest control (25, 26), any shifts in bird
61 diversity could have both direct and indirect effects on broader ecological dynamics (27). In
62 addition, compared to other animal groups, birds are relatively easy to observe and identify and
63 have a well-established community of enthusiasts (28, 29). As a result, citizen science platforms
64 like eBird offer extensive and high-density bird diversity data (30), far surpassing data available
65 for other taxa (31). These make birds an ideal model group for studying macroecological
66 patterns under global changes (32).

67

68 We consider two alternative hypotheses for how urbanization could affect the latitudinal diversity
69 gradient. First, urbanization might decrease bird diversity compared with that in natural settings
70 in a generally consistent manner across latitude, resulting in different intercepts but similar
71 slopes. Alternatively, we hypothesize that the impact of human activities on bird diversity is not
72 consistent across latitude; humans could potentially provide support for bird survival under cold
73 situations (e.g., via food subsidy and refuge habitat), such that the latitudinal gradient of bird
74 diversity is shallower in urban compared to natural settings. To test this hypothesis, we

75 processed hundreds of millions of bird checklist data from the world's largest birding citizen
76 science platform, eBird (<http://www.ebird.org>), in North America between 2015 and 2019 (Fig.
77 1). We investigated the latitudinal patterns of bird diversity across hundreds of cities and
78 compared that with city surroundings. We note that city surroundings are used as reference
79 conditions to approximate more natural environments, but they could still include suburban
80 areas that experience low to moderate human impacts compared with urban cores; however,
81 since human activities have considerably modified 50 to 70% of Earth's land surface (33–35),
82 truly "pristine" ecosystems are inherently rare (36). We also distinguish the diversity in breeding
83 and wintering seasons, as well as for species of native and non-native status. This study
84 discovered significant influences of humans in reshaping biodiversity patterns.
85

86 **Results**

87 **The latitudinal gradients of bird diversity**

88 We found varied latitudinal patterns for bird diversity depending on native/non-native status and
89 observation season (Fig. 2A-D & S2A-D). Native bird diversity exhibited a strong negative
90 relationship in the wintering season (decreasing diversity with latitude, $p < 0.001$ in both cities
91 and city surrounding areas, Fig. 2B) and a moderately strong positive relationship in the
92 breeding season ($p = 0.003$ for cities and 0.005 for city surroundings Fig. 2A). Non-native
93 species generally showed no significant relationship with latitude regardless of season or city
94 versus natural setting ($p = 0.99$ in breeding season and $p = 0.09$ in wintering city surroundings,
95 Figs. 2C, D), except for a significant but weak negative ($p = 0.02$) latitudinal trend in the
96 wintering season in city surroundings (Figs. 2D). The latitudinal patterns based on the literature
97 approach (see Methods) are largely consistent with results based on the strict sampling
98 approach. The area of a city or its surrounding always had a significant positive effect on bird
99 diversity regardless of season or native status ($p < 0.001$). After controlling for the effect of area,
100 the effects of latitude on native diversity remain significant, while the effects on non-native
101 diversity were either less pronounced or non-significant (Fig. S3).
102

103 **Differing latitudinal trends between cities and city surroundings in wintering native bird 104 diversity**

105 Interestingly, we found that in winter, latitudinal trends of native bird diversity in cities and city
106 surroundings were statistically different ($p < 0.001$), with the trend in cities flatter than that in city
107 surroundings; thus, the two latitudinal trend lines show a distinct "crossover" (Figs. 2B & S2B).
108 The difference in latitudinal trends was further confirmed by a significant negative interaction
109 between latitude and location type (city/surrounding) for native diversity in the wintering season
110 ($p < 0.001$, Fig. S3). This interaction term was not significant for native diversity in the breeding
111 season, nor for non-native diversity in any season (Fig. S3). Further, we found a significant
112 relationship between the native diversity difference (diversity of a city minus diversity of its
113 surrounding) and latitude in the wintering season (Figs. 2F, S2F & S4); as latitude increases,
114 the diversity difference also significantly increases (Figs. 2F & S2F). Species diversity in the
115 surrounding areas is generally higher than in the city at lower latitudes; however, at higher
116 latitudes and cooler climates, diversity in the city gradually approaches or slightly exceeds that
117 of the surrounding areas (Fig. 2F). Results based on the literature approach are largely
118 consistent with results based on the strict sampling approach.

119

120 **Direct and indirect effects of human population density, vegetation, and temperature on**
121 **bird diversity**122 Human population density serves as a strong proxy for urbanization (i.e., cities have higher
123 human population density than their surroundings, $p < 0.001$, Figs. S5 & S6). Human population
124 density shows a negative direct effect on native bird diversity in winter [estimated coefficient
125 (marked as “ β ” in the following) = -0.03, $p < 0.001$, Fig. 3C], but it has no significant effect during
126 the breeding season ($p = 0.14$, Fig. 3A) or on non-native bird diversity ($p = 0.70$ in wintering
127 season while $p = 0.10$ in breeding season, Fig. 3B, D).

128

129 Temperature is strongly negatively correlated with latitude in both seasons ($p < 0.001$; Figs. S5
130 & S6). Temperature has a significant positive direct effect on both native and non-native bird
131 diversity in winter ($p < 0.001$ for native birds while $p = 0.03$ for non-native birds) but negative
132 direct effect in summer ($p < 0.001$). Among these effects of temperature, the positive effect on
133 native bird diversity in winter has the largest absolute effect size ($\beta = 0.79$, $p < 0.001$, Fig. 3C).

134

135 Normalized Difference Vegetation Index (NDVI), a proxy of vegetation conditions and
136 productivity, generally shows a positive effect on native and non-native bird diversity in breeding
137 and wintering seasons ($\beta = 0.09-0.10$, $p < 0.001$, Fig. 3A, C and D), with an exception of non-
138 native birds in the breeding season ($\beta = -0.14$, $p < 0.001$, Fig. 3B).

139

140 Human population density can also indirectly influence bird diversity via the pathway of
141 increasing temperature ($\beta = 0.01$, $p = 0.004$ in breeding season while $p < 0.001$ in wintering
142 season, Fig. 3) and reducing NDVI ($\beta = -0.30$ in breeding season and -0.05 in winter, $p < 0.05$,
143 Fig. 3). Temperature can also indirectly influence bird diversity via the pathway of altering
144 vegetation ($\beta = -0.38$ in breeding season and $\beta = 0.85$ in winter, $p < 0.05$, Fig. 3).

145

146 Overall, considering both direct and indirect pathways (Fig. S7), higher latitude (and its
147 associated temperature gradient) leads to reduced bird diversity in the cold season but
148 increased diversity in the warm season, with the pattern strongest for native species in winter,
149 matching the sharper winter latitudinal gradient (Fig. 2B). Human population density consistently
150 depresses native bird diversity in both seasons, whereas non-native diversity shows a weak
151 negative association in the cold season but a strong positive association in the warm season.
152 This pattern also indicates that the within-city vs. outside-city difference in native bird diversity is
153 overall more frequently below zero (Fig. 2E, F). Results based on the literature approach are
154 largely consistent with results based on the strict sampling approach.

155

156 **Positive association between human population density and native bird diversity in**
157 **wintering season**158 In particular, we included the interaction term between temperature and human population
159 density into the SEMs to examine whether the interplay between latitude-structured temperature
160 gradients and urbanization shapes patterns of bird diversity. Notably, this interaction term was
161 only significant for native bird diversity in the wintering season ($p < 0.001$, Fig. 3). According to
162 the visualized human-temperature interaction effects, in winter, as temperature decreases, the

163 negative effect of higher human population density on native bird diversity weakens and
164 gradually shifts toward a positive effect (Figs. 4 & S9). This pattern was not evident for non-
165 native birds in winter (Fig. 3). Also, in the breeding season, the effects of human population
166 density on native/non-native diversity were negative regardless of temperature (Fig. 3).
167
168 The human-temperature interaction term also had a significant and relatively strong negative
169 effect on NDVI in winter (Fig. 3). As temperature decreases, the effect of human factors on
170 vegetation conditions (e.g., greenness) also tends to shift from negative to positive (Fig. 10).
171 Because NDVI in winter was positively associated with bird diversity (Fig. 3), potential human-
172 driven increases in greenness in colder regions may also indirectly help increase bird diversity.
173
174 Results above reinforce the pattern: the latitudinal gradients of native bird diversity in cities vs.
175 their surroundings were different in winter (Fig. 2A), and the city-city surrounding diversity
176 difference uniquely exhibits a significant latitudinal gradient (Fig. 2B). This further supports our
177 hypothesis that, while intensive human impacts tend to reduce bird diversity overall, in harsh
178 cold conditions they can also create settings that help birds cope with winter stress; this shift is
179 most evident for native species.
180

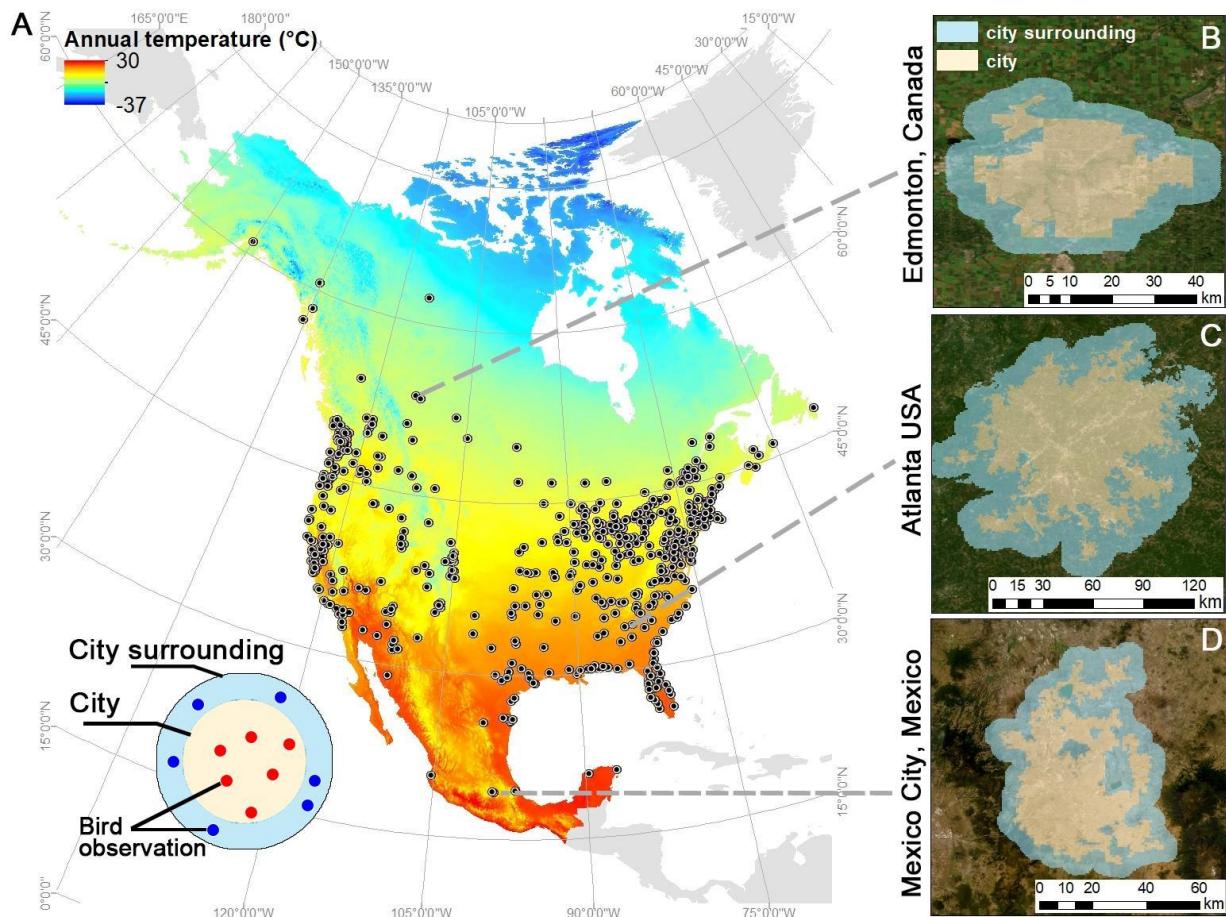
181 **Discussion**

182 This study provides an overall picture and compelling evidence that urbanization can
183 significantly alter classic latitudinal biodiversity patterns, however, this effect depends on the
184 season and the origin of the species. Our results indicate that, while the latitudinal gradient of
185 native bird diversity is significantly flatter in cities compared to surrounding areas, such deviation
186 is most obvious during the wintering season. The different pattern of latitudinal diversity gradient
187 inside and outside the city core suggests that cities may act as “shelters” for native birds at
188 higher latitudes. The buffering effects of city environments with stronger and more focused
189 human activities could potentially relieve the harsh conditions of cold season, thus increasing
190 bird diversity and resulting in a weakened latitudinal gradient of native bird diversity in cities.
191

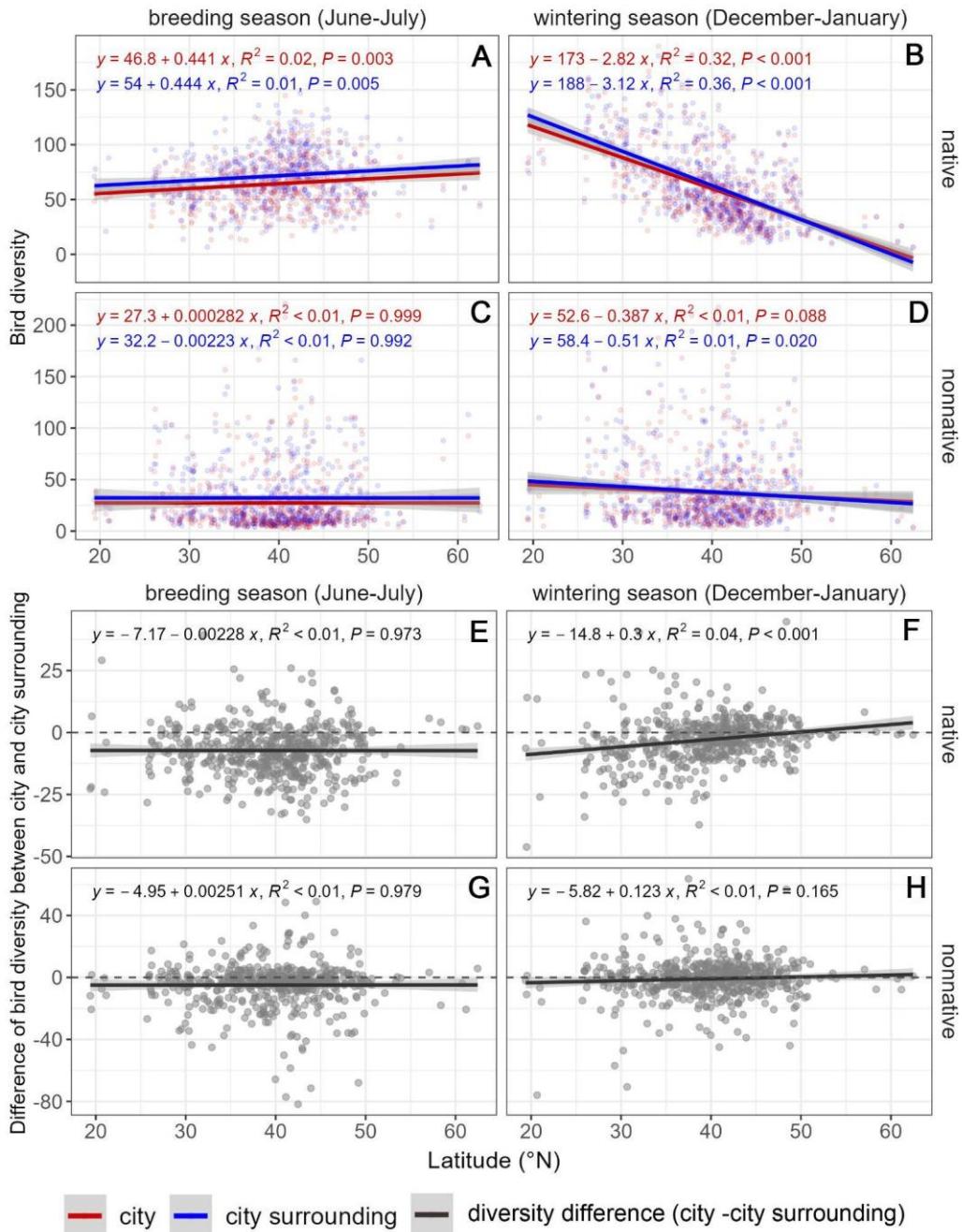
192 In contrast, this pattern is weaker and less consistent for non-native species across seasons.
193 On the other side, temperature is likely not a limiting factor in the breeding season (37, 38), and
194 the diversity of non-native species could be determined by other factors such as disturbance
195 and land-use change (39, 40).
196

197 Nevertheless, high human population density, especially in cities, typically had a negative effect
198 on native bird diversity (41, 42). We found that the diversity of birds, especially native species, is
199 generally lower in cities than in surrounding areas, particularly in the warmer regions in low
200 latitudes (Fig. 2). While a city often acts as a “human filter” that removes sensitive and
201 specialized species (43), extreme cold conditions can be an even stronger filter in natural
202 environments, especially for endotherms like birds (44). Active organisms may face resource
203 shortages and run short of food under extreme cold; staying warm would cost more energy (44,
204 45). This energy loss can cause death or lower reproduction in natural environments (46), and
205 overwintering energetics constrain distributions of species (44, 47). In these contexts, the
206 thermal advantages and stable food supplies of cities may outweigh the costs of habitat

207 degradation for many native birds, allowing them to overwinter in regions that would experience
208 extreme cold conditions. Higher human population density in cities can increase particular food
209 resources such as garbage and the chance of direct feeding (48, 49). This reduces birds'
210 reliance on natural foods that are often blocked by snow and ice in cold conditions, decreasing
211 the predation pressure and making foraging easier (50). In contrast, denser buildings resulting
212 from higher human population can create warm microclimates in cold seasons (51, 52) (53, 54).
213 These microclimates provide safe shelter from wind and snow, as well as additional refugia that
214 are much safer than city surroundings (55). Together, these changes extend the time available
215 for activity and improve access to resources, raising birds' energy efficiency in winter. However,
216 during warmer seasons or at lower latitudes, the support provided by human activities is no
217 longer a necessity, as food availability and survival conditions are no longer constrained by
218 extreme cold.

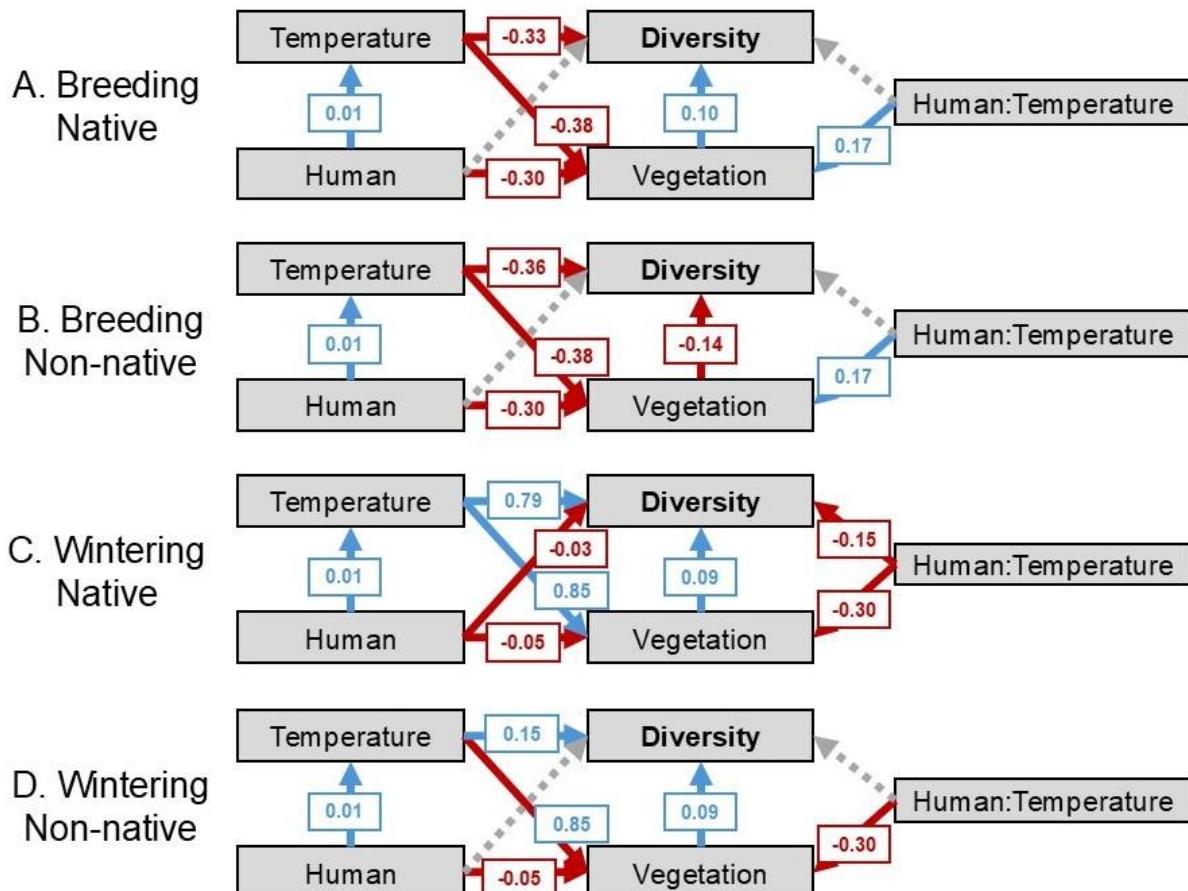

219
220 There are distinct latitudinal diversity patterns for native and non-native birds. Non-native bird
221 diversity consistently lacked a significant relationship with human population density across
222 seasons (Fig. 3); moreover, unlike native species, the impact of human population density on
223 non-native diversity did not exhibit significant variation or even trend reversal across warm and
224 cold conditions. This highlights the different ecological drivers for native and non-native birds.
225 Non-native species have a greater ability to exploit human-altered environments and habitats
226 that most native species rarely use (56, 57). Thus, it could be inferred that non-native birds have
227 already been filtered for high tolerance to human disturbance and are decoupled from natural
228 climatic constraints to some extent (58).

229
230 Productivity is known to have a positive relationship with bird diversity (23, 59, 60), though we
231 found an interesting modification of this relationship in urban settings and different temperature
232 regimes. First, we found an overall positive correlation between NDVI (representing vegetation
233 conditions and productivity) and temperature at the annual scale (Fig. S7), but considerable
234 seasonal variations, with a negative correlation during the breeding season and a positive
235 correlation during the wintering season (Fig. 3). Such relationships and variations are consistent
236 with the literature that warm conditions support vegetation greening (61), while excessive heat
237 in summer can trigger water stress and reduce photosynthesis, leading to lower vegetation
238 greenness and carbon gain (62). Second, urbanization poses a significant intervention on the
239 relationship between vegetation and bird diversity. Urbanization and human activities have led
240 to widespread conversion of vegetated cover to impervious surfaces at large scales (63), and
241 here we found a negative relationship between vegetation condition measured by NDVI and
242 human population density (Fig. 3). However, similar to bird diversity, we found a significant
243 effect of human-temperature interaction on NDVI in winter (Fig. S10), suggesting the effect of
244 human activities on vegetation shifts from negative to positive under extreme cold. Humans
245 could bring up an artificial greenness by intentionally selecting evergreen species and providing
246 management subsidies (e.g., winter protection measures) (64, 65) that may buffer against the
247 seasonal "browning" in natural settings. Since vegetation serves as a crucial source of food and
248 shelter for birds (59), human activities can exert a positive indirect effect on bird diversity by
249 maintaining or introducing functional vegetation such as artificial green belts during winter.
250 Notably, during the climatically favorable breeding season, non-native bird diversity exhibited a


251 negative relationship with NDVI, in contrast to the pattern observed in native species. It is
252 possible that high-quality green spaces are more likely to be occupied by native species, and
253 successful invasive non-native species tend to occupy artificial habitats that native species
254 cannot utilize during this period (66, 67).

255
256 In summary, we find a clear difference in the latitudinal gradients of native bird diversity between
257 cities and their surroundings during winter. High human population density mostly has a
258 negative effect on bird diversity, though such negative effects weaken at high latitude and partly
259 reverse toward a positive effect under cold conditions, thus resulting in a flatter latitudinal
260 pattern of native bird diversity. Our findings have important implications for ecological and
261 biogeographic studies: anthropogenic factors should be included as additional dimensions of
262 ecological niches, not just to account for the multifaceted role of direct human impact, but also
263 to consider their interactions with classic abiotic factors (18). While cities only occupy ~3% of
264 terrestrial land area (68), human activities have considerably modified 50 to 70% of Earth's land
265 surface (34, 69, 70). Given the ongoing and projected rapid urban expansion (71, 72), our study
266 calls for leveraging the positive effects of cities in support of biodiversity conservation (e.g.,
267 promoting bird-friendly green landscaping designs) (73), where cities may serve as "stepping
268 stones" or critical wintering outposts (74) or facilitate range shift under global changes (75).

269
270



273 **Figure 1. Spatial distributions of the 519 North American cities and their surrounding**
 274 **areas involved in the study.** A city-surrounding is defined to have the same area as a city. We
 275 included the paired city and its surrounding in this study if adequate eBird observations are
 276 available and they meet the strict sampling approach (see Methods). This study also considered
 277 an alternative data filtering method (literature approach) with 662 cities included (Fig. S1). Three
 278 examples of cities and their surroundings are shown in panels b-d. Bird diversity in cities and
 279 their surroundings is calculated from the eBird observations via a rarefaction approach.
 280

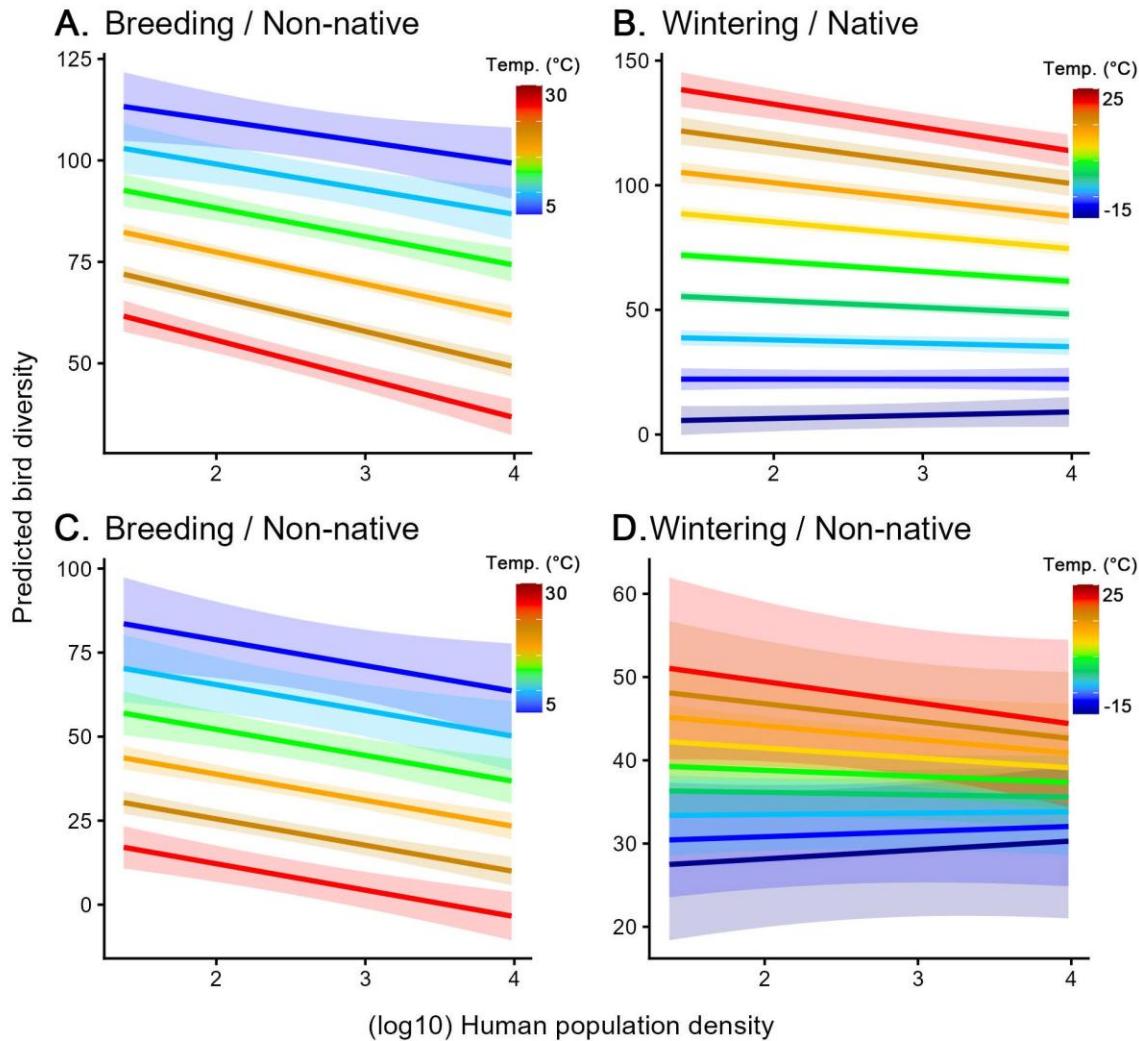

281
282
283
284
285
286
287
288
289
290

Figure 2. Latitudinal patterns of bird species diversity in North American cities and surrounding areas across different seasons and native statuses. (A-D) Scatter plot of bird diversity in cities (red) or city surroundings (blue) and their linear relationships with latitude. (E-H) Scatter plot of diversity difference (diversity of a city - diversity of its surrounding) and their linear relationships with latitude. Results of different seasons (breeding, wintering) are shown in columns, and results of native/non-native statuses are shown in rows, respectively. Results based on the strict sampling approach are shown here; results based on the literature approach are shown in Fig. S2.

291
292
293
294
295
296
297
298
299
300
301
302
303

Figure 3. Structural Equation Models (SEMs) for bird diversity across different seasons and native/non-native status. The model illustrates the direct and indirect pathways of the core variables: temperature, human population density (marked as Human), vegetation conditions measured by Normalized Difference Vegetation Index (marked as Vegetation), and the interaction between temperature and human population density (Human:Temperature) on bird diversity. Red and blue solid arrows represent significant positive and negative pathways ($p < 0.05$), respectively, with path coefficients indicating standardized effect sizes on the arrows. Non-significant pathways are represented by dashed arrows. The results of the complete SEM pathways (including latitude, area, and city location) are displayed in Fig. S5. Results based on the strict sampling approach are shown here; SEMs based on the literature approach are shown in Fig. S6.

304
305
306
307
308
309
310
311
312
313

Figure 4. Marginal response of bird diversity to the interaction between human population density and temperature across different observation seasons and native/non-native statuses. The figure shows the linear responses of bird diversity to human population density (Human) at different temperature levels (coded in the gradients of colors), assuming all other variables are held constant at their median. The lines indicate the fitted regression lines based on these predicted results. The shaded areas represent the 95% confidence intervals of the lines fitted. Only results based on a strict sampling approach are shown here; results based on the literature approach are shown in Fig. S9.

314 **Methods**

315 In this study, we calculated bird diversity in hundreds of cities and their surrounding areas
316 across North America based on eBird, one of the world's largest citizen-science-driven
317 biodiversity databases. We distinguished bird diversity by native and non-native and by
318 breeding and wintering seasons to quantify the latitudinal gradient, respectively. We also
319 investigated the environmental drivers (temperature, human population density, vegetation
320 conditions, and their interactions) of the diversity gradient using structural equation models
321 (SEMs) and evaluated their differences between native and non-native and between breeding
322 and wintering seasons. All of the analyses were performed using the R language (v 4.4.0).
323

324 **Collecting bird observations from eBird**

325 We downloaded bird observation data from eBird (accessed on Sep. 21, 2021). Specifically, we
326 used the eBird Basic Dataset (EBD) (76) and kept the data collected during 2015-2019, when a
327 large number of records were consistently collected over that period and the collection efforts
328 were not impacted by the COVID-19 pandemic (77, 78). We limited our study area to North
329 America (Mexico, United States, and Canada), where collecting efforts from eBird were largest
330 in quantity, as well as good spatial consistency and fewer spatial gaps (79). The cities across
331 North America also fall along a latitudinal gradient from 16 to 71°N that makes the study area an
332 ideal system to explore bird latitudinal diversity. We retained ~228 million records collected
333 between 2015 and 2019 in North America. Those records were further refined to ~5-17 million in
334 the following analysis.
335

336 We performed a series of steps to clean and standardize the eBird data following the
337 methodology used in existing literature. We removed the unvetted data that have been flagged
338 as potentially erroneous based on date, location, or count by the eBird review process (80). We
339 restricted the data to "complete checklist" when the observer reported all species detected by
340 sight and by ear to the best of their ability (80-82). A complete checklist helps better understand
341 detection probabilities and, with a large enough sample, can serve as a substitute for absence
342 data (81). The checklists were further restricted to those collected with the "stationary,"
343 "traveling," or "area" protocols; a stationary survey requires an observer to remain stationary in
344 an area (\leq 30 m diameter); a traveling survey involves observations made over a known period
345 of time while traveling a known distance ($>$ 30 m); and an area survey involves thoroughly
346 searching an area with a known size. The three protocols represent common survey methods in
347 the eBird dataset (81) characterized by recorded sampling effort and large spatial coverage.
348 The regionally unique protocols (e.g., California Brown Pelican Survey) or incidental
349 observations that do not include or distance/area components were excluded. To minimize the
350 variation of sampling effort and make the observation data more comparable (83, 84), we
351 restricted the start times to daylight hours to be between 05:00 and 20:00 (84). We further
352 developed two strategies for filtering the data to decrease the variation of sampling effort, and
353 thus a more robust diversity evaluation. The first strategy used filtering criteria that have been
354 used in the literature to ensure more robust evaluations (literature approach); more specifically,
355 we restricted the total search time to be >6 minutes (85) and < 3 hours (84), and restricted
356 traveling survey to be <5 miles (or 8.1 km) (84, 86) and area survey to be < 56 km 2 (82). Building
357 upon this strategy, we developed a more strict strategy (strict sampling approach); we restricted

358 the total search time to be between 30 and 60 minutes; to reduce the uncertainty caused by
359 fatigue from long-term monitoring, and the distance and range of the traveling survey and area
360 survey are halved compared to the former, which are < 2.5 mile (or 4.1 km) and < 28 km²,
361 respectively. We removed duplicated checklists when checklists were shared between multiple
362 observers based on observation group ID (85). The resultant data set consisted of ~227 million
363 checklists for the literature approach and ~46 million for the strict sampling approach.

364

365 **Native and seasonal status**

366 Human-mediated introduction of species has been happening at a global scale, and that
367 constitutes a signal in affecting species richness (87). This is especially pronounced for areas
368 under high intensity of human impacts, such as cities studied here (8, 88). Therefore, we
369 distinguished the eBird data as native and non-native observations (see paragraph below)
370 because geographic distribution and diversity of native and non-native species could be driven
371 by different environmental factors (89). In addition, since many birds are migratory and the
372 richness can be season-dependent (90), we distinguished the observations into breeding
373 season (June-July) and wintering season (December-January), based on the date of the
374 observation event. The temporal window of the breeding and wintering season mimics the
375 timing of two long-standing bird survey initiatives, which is mid-December to early January for
376 the Christmas Bird Count (8) and (mostly) June for the Breeding Bird Survey (91).

377

378 We further integrated the two schemes (native/non-native and breeding/wintering) that led to
379 four different categories. An observation during the breeding season (June-July) will be further
380 classified as “breeding-native” or “breeding-non-native,” depending on if the location of the
381 observation falls in the IUCN range map (“origin” field was coded as native or historical range
382 and “season” field was coded as resident or breeding season) (92). Similarly, an observation
383 during the wintering season (December-January) will be classified as “wintering-native” or
384 “wintering-non-native,” depending on if the location of the observation falls in the IUCN range
385 map (“origin” field was coded as native or historical range and “season” field was coded as
386 resident or wintering season). We recognized that IUCN range polygons are sometimes coarse
387 and may miss fine-scale range edges (93). Therefore, observations falling slightly outside the
388 edge will be labeled as “non-native” under our method, which could potentially overestimate the
389 non-native category. The potential misclassifications should mainly occur near range edges;
390 broad-scale patterns based on range maps would not be strongly affected by the details (94,
391 95). An alternative approach, such as expanding the range map with a spatial buffer, may be
392 able to partly mitigate the issue, though the size of the spatial buffer can be subjective, and the
393 varied uncertainties embedded in each range map can be further amplified with a uniform
394 buffer. Further, the presences outside the IUCN range could represent recent range expansions
395 (thus non-native in the strict sense), which can be correlated with human impacts (96).

396 Therefore, we didn’t do further modification of the IUCN range maps and considered this the
397 most parsimonious strategy to investigate the signals behind native and non-native diversity.

398

399 We recognize the presence of different definitions of non-native status (97). For example, a
400 species native or endemic to Africa will be considered as non-native in North America. However,
401 there are also cases that are less clear-cut. A species native to an area of the U.S. could be

402 observed outside their (historically known) home range in the U.S., though this can be caused
403 by natural expansion or human introductions; this leads to a blurry context: are those
404 observations native (as they are still found in the native country or continent) or non-native (as
405 they are outside the known home range)? Thus, the definition of "non-native" could be scale
406 dependent. Another complication is the long-distance migration (of birds and bats) that
407 increases the difficulty in defining native range; further, individuals of a migratory species may
408 not migrate for various reasons and may reside in the same or a new location that provides
409 suitable conditions (98, 99). Nevertheless, we did not directly distinguish species as native or
410 non-native to North America; instead, we defined native/non-native at the level of observations:
411 if an observation meets the "expectation" of IUCN range ranges (i.e., falls inside the expected
412 range boundary given a season), it is considered as native; otherwise, it is considered as non-
413 native. We expect this classification scheme to better capture the potential environmental
414 drivers of bird diversity.

415
416 Since eBird and IUCN use different taxonomic reference systems (100), we have resolved the
417 naming inconsistency between them using Avibase (101), a large taxonomic database that
418 organizes authoritative avian taxonomic concepts from 151 taxonomic checklists (including the
419 ones used by IUCN and eBird). The majority of the cases were 1-1 matches, meaning a
420 scientific name from IUCN is uniquely matched with a scientific name in eBird. When a scientific
421 name from IUCN was matched with multiple scientific names in eBird, the eBird observations
422 would be considered as one species. When a scientific name from eBird was matched with
423 multiple scientific names in IUCN, the IUCN range maps of the multiple species would be
424 considered as one species. The unified scientific names were used to calculate bird diversity in
425 the next step.

426

427 **Cities and city surroundings**

428 We used urban areas in North America and their surroundings as study units to calculate bird
429 diversity. The boundaries of 4,789 urban areas in Mexico, the United States, and Canada were
430 downloaded, respectively, from Natural Earth (102), U.S. Census Bureau (103), Statistics
431 Canada (104). Such areas consist of high population density and urban land use, resulting in a
432 representation of the "urban footprint" (105). We also created spatial buffers around cities to
433 represent urban surroundings (hereafter city surroundings) equal in area to their respective
434 cities. Because of the complexity of urban footprint shapes, there was no single buffer distance
435 that universally resulted in a surrounding area of equal area; thus, for each city, we created a
436 series of 400 spatial buffers ranging from 0.01 to 2 times the width of a focal city, where the
437 width was calculated as the square root of the city area. We then chose the buffer that resulted
438 in an area closest to the city area. If a city surrounding overlaps with another city nearby, the
439 overlapped area would be excluded when calculating the area of a city surrounding; this step is
440 to avoid including highly urbanized areas in a city surrounding.

441

442 **Standardized bird diversity**

443 We calculated bird diversity for cities and city surroundings based on the eBird observations that
444 fall within their respective polygons. Sampling bias is broadly recognized in citizen science data
445 (106), and higher sampling intensity can be positively related to the species diversity. Therefore,

446 we adopted Hill numbers (or the effective number of species, $q = 0$), an intuitive and statistically
447 rigorous alternative to other diversity indices (107, 108), to measure bird diversity in cities or city
448 surroundings. This method builds upon the relationship between cumulative observation effort
449 and total diversity, i.e., the more observations lead to higher diversity, and diversity will reach
450 saturation when all species are observed given high observation efforts. We did not use the
451 count information from eBird data because of the potential uncertainty and inconsistency. Since
452 two sites could have different species pools and different sampling efforts, a direct comparison
453 of the observed richness can be inappropriate. A better comparison could be based on the
454 same sampling effort. This relies on an estimated sampling effort and species richness curve;
455 this is also termed rarefaction when the site with higher sampling effort is rarefied to the lower
456 sampling effort of the other site, or extrapolation when the site with lower sampling effort is
457 extrapolated to the higher sampling effort (108). This approach was further improved by
458 considering the degree of sample completeness (109). Here we used the iNext package
459 (version 2.0.20) to calculate Hill numbers (107) and used the rarefaction approach to compare
460 bird diversity between each pair of a city and its surrounding at the lower completeness (or
461 coverage). For each pair of a city and its surroundings, such calculation was performed for the 4
462 different combinations of native and seasonal status defined above. To avoid scenarios of
463 inadequate data, we excluded a pair of a city and its surrounding, if the number of eBird
464 checklists in that city or its surrounding was below a threshold for any combination of native and
465 seasonal status. The threshold was 20 for the literature approach, and the resultant data
466 consisted of ~17 million eBird checklists across 662 pairs of cities and their surroundings. When
467 using the strict sampling approach, we set the threshold for the number of eBird checklists to 10
468 to prevent the data from being too sparse, and the resultant data set finally consisted of ~5
469 million eBird checklists across 519 pairs of cities and their surroundings. In the main text, we
470 mostly present the following results based on the strict sampling approach, while the results
471 based on the literature approach are similar and are provided in the supplementary materials.
472

473 **Latitudinal pattern of bird diversity**

474 To provide an overview of latitudinal gradients in bird diversity, we first performed linear
475 regressions against latitude for both cities and city surroundings, with comparisons made
476 between native and non-native species across different seasons (Fig. 2). We then calibrated
477 linear mixed models to investigate the effects of city environment on the latitudinal gradient of
478 bird diversity. Here we used cities to represent areas under greater human impact, and used
479 city surroundings as reference conditions to approximate more natural environments. We note
480 that city surroundings could still include suburban areas that experience low to moderate human
481 impacts compared with urban cores; however, since human activities have considerably
482 modified 50 to 70% of Earth's land surface (33–35), truly natural areas can be rare (36). We
483 investigated if cities and city surroundings have different latitudinal gradients of bird diversity. In
484 the linear mixed model, we used bird diversity as the dependent variable; latitude, the category
485 of city/city surrounding, and area as fixed effects; and the identity of the pair of cities and their
486 surroundings as the random effect. We also included an interaction between latitude and
487 city/city surroundings to capture the potential nonstationary effect of cities on bird diversity. The
488 linear mixed model was fit for the four different datasets (native/non-native status and
489 wintering/breeding season) using the "lmerTest" (110) R packages. The latitude of the centroid

490 of a city polygon was used to represent the latitude of a pair of a city and its surrounding. In
491 addition, we calculated the difference of the standardized bird diversity between each pair of city
492 and surrounding, and performed a linear fit with latitude and city area as independent variables
493 to evaluate if the effect of city on diversity varies across latitude.

494

495 **Explaining the factors affecting bird diversity**

496 We investigated the effects of temperature, human population density, and the Normalized
497 Difference Vegetation Index (NDVI) in cities and their surroundings on bird diversity. Latitude
498 determines the temperature gradient, which is known as one of the major drivers of the
499 latitudinal diversity gradient (16). Compared with temperature, productivity is recognized as a
500 stronger and less variable driver for species diversity (111), especially for birds (60). Thus, we
501 used Normalized Difference Vegetation Index (NDVI), a proxy of vegetation conditions,
502 including structural characteristics such as leaf area index and fractional vegetation (112), as an
503 indicator of net primary productivity (60). Human population density directly reflects the level of
504 urbanization (113) and is a surrogate measure of human impacts on nature and biodiversity
505 (105, 114, 115).

506

507 We compiled temperature, human population, and NDVI datasets at 1 km resolution from
508 CHELSA v2.1 (116), WorldPop global mosaics R2025A v1 (117) and MOD13A3 V6.1 (117,
509 118). CHELSA and MOD13A3 are monthly datasets. We first calculated the multi-year average
510 for each month from 2015 to 2019, then calculated the average for the breeding (June-July) and
511 winter (December-January) seasons. Next, we used the polygons of cities or surrounding areas
512 to calculate the mean value of each city or its surrounding. WorldPop is an annual dataset. We
513 first calculated the average for 2015-2019, then used the polygons of cities or surrounding areas
514 to calculate the sum of the covered grids, divided by the polygon area to obtain the mean
515 population density. In subsequent model analyses, we log10-transformed human population
516 density, considering that population density spans orders of magnitude and is highly right-
517 skewed because of a small number of extremely high-density megacities (119). We also
518 included area as a predictor together with environmental variables.

519

520 We constructed a series of linear mixed models and Structural Equation Models (SEMs) to
521 capture the direct or indirect effects of environmental factors on bird diversity. We hypothesized
522 that temperature and human impacts are directly related to latitude gradients of diversity (120).
523 The distinction between city and city surroundings can directly affect human population density
524 (121, 122) and vegetation conditions (123), which subsequently affect bird diversity.
525 Furthermore, we introduced the effects of the interaction between human population density and
526 temperature into the model to test whether the effects of human population density on bird
527 diversity (and vegetation) varies as temperature changes. The fixed effects of each path in the
528 SEM are represented by equations 1-4. We also included the identity of a pair of cities and their
529 surroundings as a random effect in equations 1-4 to account for other unaccounted
530 environmental or anthropogenic variations. We performed SEMs for the four different
531 combinations of native and seasonal status defined above. The analyses were based on the
532 “lmerTest” (110) and “piecewiseSEM” (124) R packages.

533

534 In the key path directly linked to bird diversity (eqn.1), temperature, log10-transformed human
535 population density, the interaction between the two, and vegetation conditions (measured by
536 NDVI) were considered. We also included the area of cities or surroundings to control for the
537 species-area relationship (5, 10). The second path (eqn. 2) reflects that vegetation conditions
538 (measured by NDVI) are potentially shaped by both human activities and temperature and their
539 interactions. This path can potentially capture the indirect effects of temperature and human
540 population density on bird diversity via impacting vegetation conditions. The third path
541 represents the association between temperature and latitude and also represents the potential
542 impact of urbanization (represented by human population density) on regional temperature
543 (125). The fourth equation aims to account for the higher human population density in cities than
544 in city surroundings.

545

546 *Diversity ~ Human + Temperature + Vegetation + Human: Temperature + Area [eqn. 1]*

547 *Vegetation ~ Human + Temperature + Human: Temperature [eqn. 2]*

548 *Temperature ~ Human + Latitude [eqn. 3]*

549 *HumanPop ~ City/surrounding [eqn. 4]*

550

551 We further visualized the effects of the interaction between human population density and
552 temperature using the “visreg” R package (v2.8.0) (126). We plotted the predicted values of bird
553 diversity or NDVI along a gradient of human population density, conditioned on different
554 temperatures.

555

556

557

References

- 558 1. M. C. Urban, M. Alberti, L. De Meester, Y. Zhou, B. C. Verrelli, M. Szulkin, C. Schmidt, A. M. Savage, P. Roberts, L. R. Rivkin, E. P. Palkovacs, J. Munshi-South, A. N. Malesis, N. C. Harris, K. M. Gotanda, C. J. Garroway, S. E. Diamond, S. D. Roches, A. Charmantier, K. I. Brans, Interactions between climate change and urbanization will shape the future of biodiversity. *Nat. Clim. Chang.* **14**, 436–447 (2024).
- 563 2. M. F. J. Aronson, C. H. Nilon, C. A. Lepczyk, T. S. Parker, P. S. Warren, S. S. Cilliers, M. A. Goddard, A. K. Hahs, C. Herzog, M. Katti, F. A. La Sorte, N. S. G. Williams, W. Zipperer, Hierarchical filters determine community assembly of urban species pools. *Ecology* **97**, 2952–2963 (2016).
- 566 3. O. A. Adedoja, R. E. Mallinger, Can trait matching inform the design of pollinator-friendly urban green spaces? A review and synthesis of the literature. *Ecosphere* **15** (2024).
- 569 4. J. Jokimäki, J. Suhonen, M.-L. Jokimäki-Kaisanlahti, P. Carbó-Ramírez, Effects of urbanization on breeding birds in European towns: Impacts of species traits. *Urban Ecosyst.* **19**, 1565–1577 (2016).
- 570 5. M. Ferenc, O. Sedláček, R. Fuchs, M. Dinetti, M. Fraissinet, D. Storch, Are cities different? Patterns of species richness and beta diversity of urban bird communities and regional species assemblages in Europe: Urban bird species richness and beta diversity. *Glob. Ecol. Biogeogr.* **23**, 479–489 (2014).
- 573 6. J. D. Haight, S. J. Hall, M. Fidino, S. A. Adalsteinsson, A. A. Ahlers, J. Angstmann, W. J. B. Anthonysamy, E. Biro, M. K. Collins, B. Dugelby, T. Gallo, A. M. Green, L. Hartley, M. J. Jordan, C. A. M. Kay, E. W. Lehrer, R. A. Long, B. MacDougall, S. B. Magle, D. E. Minier, C. Mowry, M. Murray, K. Nininger, M. E. Pendergast, K. R. Remine, T. Ryan, C. Salsbury, H. A. Sander, C. J. Schell, Ç. H. Sekercioğlu, C. J. Shier, K. C. Simon, C. C. St Clair, T. Stankowich, C. J. Stevenson, L. Wayne, D. Will, J. Williamson, L. Wilson, A. J. Zellmer, J. S. Lewis, Urbanization, climate and species traits shape mammal communities from local to continental scales. *Nat. Ecol. Evol.* **7**, 1654–1666 (2023).
- 580 7. C. T. Panter, V. N. Naude, F. Barbar, A. Amar, Continental scale dietary patterns in a New World raptor using web-sourced photographs. *PLoS One* **19**, e0304740 (2024).
- 582 8. A. C. Murthy, T. S. Fristoe, J. R. Burger, Homogenizing effects of cities on North American winter bird diversity. *Ecosphere* **7**, e01216 (2016).
- 584 9. N. B. Grimm, D. Foster, P. Groffman, J. M. Grove, C. S. Hopkinson, K. J. Nadelhoffer, D. E. Pataki, D. P. C. Peters, The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. *Front. Ecol. Environ.* **6**, 264–272 (2008).
- 587 10. K. Uchida, R. V. Blakey, J. R. Burger, D. S. Cooper, C. A. Niesner, D. T. Blumstein, Urban biodiversity and the importance of scale. *Trends Ecol. Evol.* **36**, 123–131 (2021).
- 589 11. B. A. Hawkins, Ecology's oldest pattern? *Trends Ecol. Evol.* **16**, 470 (2001).
- 590 12. M. R. Willig, D. M. Kaufman, R. D. Stevens, Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. *Annu. Rev. Ecol. Evol. Syst.* **34**, 273–309 (2003).
- 592 13. H. Hillebrand, On the generality of the latitudinal diversity gradient. *Am. Nat.* **163**, 192–211 (2004).
- 593 14. E. R. Lawrence, D. J. Fraser, Latitudinal biodiversity gradients at three levels: Linking species richness, population richness and genetic diversity. *Glob. Ecol. Biogeogr.* **29**, 770–788 (2020).
- 595 15. N. L. Kinlock, L. Prowant, E. M. Herstoff, C. M. Foley, M. Akin-Fajjiye, N. Bender, M. Umarani, H. Y. Ryu, B. Şen, J. Gurevitch, Explaining global variation in the latitudinal diversity gradient: Meta-analysis confirms known patterns and uncovers new ones. *Glob. Ecol. Biogeogr.* **27**, 125–141 (2018).

599 16. M. Pontarp, L. Bunnefeld, J. S. Cabral, R. S. Etienne, S. A. Fritz, R. Gillespie, C. H. Graham, O.
600 Hagen, F. Hartig, S. Huang, R. Jansson, O. Maliet, T. Münkemüller, L. Pellissier, T. F. Rangel, D.
601 Storch, T. Wiegand, A. H. Hurlbert, The latitudinal diversity gradient: Novel understanding through
602 mechanistic Eco-evolutionary models. *Trends Ecol. Evol.* **34**, 211–223 (2019).

603 17. J. H. Brown, Why are there so many species in the tropics? *J. Biogeogr.* **41**, 8–22 (2014).

604 18. X. Feng, A. T. Peterson, L. J. Aguirre-López, J. R. Burger, X. Chen, M. Papeş, Rethinking ecological
605 niches and geographic distributions in face of pervasive human influence in the Anthropocene. *Biol.
606 Rev. Camb. Philos. Soc.* **99**, 1481–1503 (2024).

607 19. C. Capinha, F. Essl, H. Seebens, D. Moser, H. M. Pereira, BIOGEOGRAPHY. The dispersal of alien
608 species redefines biogeography in the Anthropocene. *Science* **348**, 1248–1251 (2015).

609 20. F. Keck, T. Peller, R. Alther, C. Barouillet, R. Blackman, E. Capo, T. Chonova, M. Couton, L.
610 Fehlinger, D. Kirschner, M. Knüsel, L. Muneret, R. Oester, K. Tapolczai, H. Zhang, F. Altermatt, The
611 global human impact on biodiversity. *Nature* **641**, 395–400 (2025).

612 21. C. Finn, F. Grattarola, D. Pincheira-Donoso, More losers than winners: investigating Anthropocene
613 defaunation through the diversity of population trends. *Biol. Rev. Camb. Philos. Soc.* **98**, 1732–1748
614 (2023).

615 22. S. Pineda-Munoz, Y. Wang, S. K. Lyons, A. B. Tóth, J. L. McGuire, Mammal species occupy different
616 climates following the expansion of human impacts. *Proc. Natl. Acad. Sci. U. S. A.* **118**,
617 e1922859118 (2021).

618 23. M. T. J. Johnson, J. Munshi-South, Evolution of life in urban environments. *Science* **358** (2017).

619 24. P. H. Becker, “Chapter 19 biomonitoring with birds” in *Trace Metals and Other Contaminants in the
620 Environment*, B. A. Markert, A. M. Breure, H. G. Zechmeister, Eds. (Elsevier, 2003) vol. 6 of *Trace
621 Metals and Other Contaminants in the Environment*, pp. 677–736.

622 25. M. Mariyappan, M. Rajendran, S. Velu, A. D. Johnson, G. K. Dinesh, K. Solaimuthu, Sankar,
623 Ecological role and ecosystem services of birds: A review. *International Journal of Environment and
624 Climate Change* **13**, 76–87 (2023).

625 26. C. J. Whelan, D. G. Wenny, R. J. Marquis, Ecosystem services provided by birds. *Ann. N. Y. Acad.
626 Sci.* **1134**, 25–60 (2008).

627 27. M. Barbet-Massin, W. Jetz, The effect of range changes on the functional turnover, structure and
628 diversity of bird assemblages under future climate scenarios. *Glob. Chang. Biol.* **21**, 2917–2928
629 (2015).

630 28. Ç. H. Şekercioğlu, Promoting community-based bird monitoring in the tropics: Conservation,
631 research, environmental education, capacity-building, and local incomes. *Biol. Conserv.* **151**, 69–73
632 (2012).

633 29. M. Barrow, *A Passion for Birds: American Ornithology after Audubon* (Princeton University Press,
634 USA, 2000).

635 30. B. L. Sullivan, J. L. Aycrigg, J. H. Barry, R. E. Bonney, N. Bruns, C. B. Cooper, T. Damoulas, A. A.
636 Dhondt, T. Dietterich, A. Farnsworth, D. Fink, J. W. Fitzpatrick, T. Fredericks, J. Gerbracht, C.
637 Gomes, W. M. Hochachka, M. J. Iliff, C. Lagoze, F. A. La Sorte, M. Merrifield, W. Morris, T. B.
638 Phillips, M. Reynolds, A. D. Rodewald, K. V. Rosenberg, N. M. Trautmann, A. Wiggins, D. W.
639 Winkler, W.-K. Wong, C. L. Wood, J. Yu, S. Kelling, The eBird enterprise: An integrated approach to
640 development and application of citizen science. *Biol. Conserv.* **169**, 31–40 (2014).

641 31. J. Troudet, P. Grandcolas, A. Blin, R. Vignes-Lebbe, F. Legendre, Taxonomic bias in biodiversity

642 data and societal preferences. *Sci. Rep.* **7**, 9132 (2017).

643 32. J. F. M. Rodrigues, C. A. Botero, The global determinants of climate niche breadth in birds. *Nat.*
644 *Commun.* **16**, 3685 (2025).

645 33. A. D. Barnosky, E. A. Hadly, J. Bascompte, E. L. Berlow, J. H. Brown, M. Fortelius, W. M. Getz, J.
646 Harte, A. Hastings, P. A. Marquet, N. D. Martinez, A. Mooers, P. Roopnarine, G. Vermeij, J. W.
647 Williams, R. Gillespie, J. Kitzes, C. Marshall, N. Matzke, D. P. Mindell, E. Revilla, A. B. Smith,
648 Approaching a state shift in Earth's biosphere. *Nature* **486**, 52–58 (2012).

649 34. E. W. Sanderson, K. Fisher, N. Robinson, D. Sampson, A. Duncan, L. Royte, The march of the
650 human footprint, *EcoEvoRxiv* (2022). <https://doi.org/10.32942/osf.io/d7rh6>.

651 35. O. Venter, E. W. Sanderson, A. Magrach, J. R. Allan, J. Beher, K. R. Jones, H. P. Possingham, W. F.
652 Laurance, P. Wood, B. M. Fekete, M. A. Levy, J. E. M. Watson, Sixteen years of change in the global
653 terrestrial human footprint and implications for biodiversity conservation. *Nat. Commun.* **7**, 12558
654 (2016).

655 36. C. M. Kennedy, J. R. Oakleaf, D. M. Theobald, S. Baruch-Mordo, J. Kiesecker, Managing the middle:
656 A shift in conservation priorities based on the global human modification gradient. *Glob. Chang. Biol.*
657 **25**, 811–826 (2019).

658 37. J. Seoane, S. Villén-Pérez, L. M. Carrascal, Environmental determinants of seasonal changes in bird
659 diversity of Mediterranean oakwoods. *Ecol. Res.* **28**, 435–445 (2013).

660 38. A. H. Hurlbert, J. P. Haskell, The effect of energy and seasonality on avian species richness and
661 community composition. *Am. Nat.* **161**, 83–97 (2003).

662 39. F. C. Soares, M. Panisi, H. Sampaio, E. Soares, A. Santana, G. M. Buchanan, A. I. Leal, J. M.
663 Palmeirim, R. F. Lima, Land-use intensification promotes non-native species in a tropical island bird
664 assemblage: Land-use intensification promotes non-native species. *Anim. Conserv.*, doi:
665 10.1111/acv.12568 (2020).

666 40. A. S. MacDougall, R. Turkington, Are invasive species the drivers or passengers of change in
667 degraded ecosystems? *Ecology* **86**, 42–55 (2005).

668 41. T. Newbold, L. N. Hudson, S. L. L. Hill, S. Contu, I. Lysenko, R. A. Senior, L. Börger, D. J. Bennett,
669 A. Choimes, B. Collen, J. Day, A. De Palma, S. Díaz, S. Echeverría-Londoño, M. J. Edgar, A.
670 Feldman, M. Garon, M. L. K. Harrison, T. Alhusseini, D. J. Ingram, Y. Itescu, J. Kattge, V. Kemp, L.
671 Kirkpatrick, M. Kleyer, D. L. P. Correia, C. D. Martin, S. Meiri, M. Novosolov, Y. Pan, H. R. P. Phillips,
672 D. W. Purves, A. Robinson, J. Simpson, S. L. Tuck, E. Weiher, H. J. White, R. M. Ewers, G. M.
673 Mace, J. P. W. Scharlemann, A. Purvis, Global effects of land use on local terrestrial biodiversity.
674 *Nature* **520**, 45–50 (2015).

675 42. M. F. J. Aronson, F. A. La Sorte, C. H. Nilon, M. Katti, M. A. Goddard, C. A. Lepczyk, P. S. Warren,
676 N. S. G. Williams, S. Cilliers, B. Clarkson, C. Dobbs, R. Dolan, M. Hedblom, S. Klotz, J. L.
677 Kooijmans, I. Künn, I. Macgregor-Fors, M. McDonnell, U. Mörtberg, P. Pysek, S. Siebert, J.
678 Sushinsky, P. Werner, M. Winter, A global analysis of the impacts of urbanization on bird and plant
679 diversity reveals key anthropogenic drivers. *Proc. Biol. Sci.* **281**, 20133330 (2014).

680 43. S. B. Lerman, D. L. Narango, R. Andrade, P. S. Warren, A. M. Grade, K. Straley, “Wildlife in the city:
681 human drivers and human consequences” in *Urban Ecology: Its Nature and Challenges* (CABI, UK,
682 2020), pp. 37–66.

683 44. D. Gudex-Cross, L. Zhu, S. R. Keyser, B. Zuckerberg, J. N. Pauli, V. C. Radeloff, E. Fleishman,
684 Winter conditions structure extratropical patterns of species richness of amphibians, birds and
685 mammals globally. *Glob. Ecol. Biogeogr.* **31**, 1366–1380 (2022).

686 45. T. S. Fristoe, J. R. Burger, M. A. Balk, I. Khalil, C. Hof, J. H. Brown, Metabolic heat production and
687 thermal conductance are mass-independent adaptations to thermal environment in birds and
688 mammals. *Proc. Natl. Acad. Sci. U. S. A.* **112**, 15934–15939 (2015).

689 46. J. T. Irwin, R. E. Lee Jr, Cold winter microenvironments conserve energy and improve overwintering
690 survival and potential fecundity of the goldenrod gall fly, *Eurosta solidaginis*. *Oikos* **100**, 71–78
691 (2003).

692 47. M. M. Humphries, D. W. Thomas, J. R. Speakman, Climate-mediated energetic constraints on the
693 distribution of hibernating mammals. *Nature* **418**, 313–316 (2002).

694 48. P. Clergeau, J.-P. L. Savard, G. Mennechez, G. Falardeau, Bird abundance and diversity along an
695 urban-rural gradient: A comparative study between two cities on different continents. *Condor* **100**,
696 413–425 (1998).

697 49. D. Oro, M. Genovart, G. Tavecchia, M. S. Fowler, A. Martínez-Abraín, Ecological and evolutionary
698 implications of food subsidies from humans. *Ecol. Lett.* **16**, 1501–1514 (2013).

699 50. E. Shochat, S. Lerman, E. Fernández-Juricic, “Birds in urban ecosystems: Population dynamics,
700 community structure, biodiversity, and conservation” in *Agronomy Monographs* (American Society of
701 Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI, USA,
702 2015), pp. 75–86.

703 51. P. Huang, D. Zheng, Y. Yan, W. Xu, Y. Zhao, Z. Huang, Y. Ding, Y. Lin, Z. Zhu, Z. Chen, W. Fu,
704 Effects of landscape features on bird community in winter urban parks. *Animals (Basel)* **12**, 3442
705 (2022).

706 52. C. Chiquet, J. W. Dover, P. Mitchell, Birds and the urban environment: the value of green walls.
707 *Urban Ecosyst.* **16**, 453–462 (2013).

708 53. J. R. Stark, J. D. Fridley, Microclimate-based species distribution models in complex forested terrain
709 indicate widespread cryptic refugia under climate change. *Glob. Ecol. Biogeogr.* **31**, 562–575 (2022).

710 54. F. Zellweger, E. Sulmoni, J. T. Malle, A. Baltensweiler, T. Jonas, N. E. Zimmermann, C. Ginzler, D.
711 N. Karger, P. De Frenne, D. Frey, C. Webster, Microclimate mapping using novel radiative transfer
712 modelling. *Biogeosciences* **21**, 605–623 (2024).

713 55. K. Kurucz, J. J. Purger, P. Batáry, Urbanization shapes bird communities and nest survival, but not
714 their food quantity. *Glob. Ecol. Conserv.* **26**, e01475 (2021).

715 56. C. González-Lagos, L. Cardador, D. Sol, Invasion success and tolerance to urbanization in birds.
716 *Ecography (Cop.)* **44**, 1642–1652 (2021).

717 57. L. Cardador, T. M. Blackburn, Human-habitat associations in the native distributions of alien bird
718 species. *J. Appl. Ecol.* **56**, 1189–1199 (2019).

719 58. J. J. Hellmann, J. E. Byers, B. G. Bierwagen, J. S. Dukes, Five potential consequences of climate
720 change for invasive species. *Conserv. Biol.* **22**, 534–543 (2008).

721 59. S. Sulaiman, N. H. N. Mohamad, S. Idilfitri, Contribution of vegetation in urban parks as habitat for
722 selective bird community. *Procedia Soc. Behav. Sci.* **85**, 267–281 (2013).

723 60. A. H. Hurlbert, E. P. White, Disparity between range map- and survey-based analyses of species
724 richness: patterns, processes and implications: Range map- vs. survey-based species richness. *Ecol.
725 Lett.* **8**, 319–327 (2005).

726 61. S. Ruehr, T. F. Keenan, C. Williams, Y. Zhou, X. Lu, A. Bastos, J. G. Canadell, I. C. Prentice, S.
727 Sitch, C. Terrer, Evidence and attribution of the enhanced land carbon sink. *Nat. Rev. Earth Environ.*

728 4, 518–534 (2023).

729 62. J. Jin, F. Guo, S. Sippel, Q. Zhu, W. Wang, B. Gu, Y. Wang, Concurrent and lagged effects of spring
730 greening on seasonal carbon gain and water loss across the Northern Hemisphere. *Int. J.*
731 *Biometeorol.* **64**, 1343–1354 (2020).

732 63. L. Zhang, L. Yang, C. M. Zohner, T. W. Crowther, M. Li, F. Shen, M. Guo, J. Qin, L. Yao, C. Zhou,
733 Direct and indirect impacts of urbanization on vegetation growth across the world's cities. *Sci Adv* **8**,
734 eabo0095 (2022).

735 64. R. Wang, J. Zhao, Effects of evergreen trees on landscape preference and perceived restorativeness
736 across seasons. *Landsc. Res.* **45**, 649–661 (2020).

737 65. D. Hope, C. Gries, W. Zhu, W. F. Fagan, C. L. Redman, N. B. Grimm, A. L. Nelson, C. Martin, A.
738 Kinzig, Socioeconomics drive urban plant diversity. *Proc. Natl. Acad. Sci. U. S. A.* **100**, 8788–8792
739 (2003).

740 66. D. Hernández-Brito, M. Carrete, A. G. Popa-Lisseanu, C. Ibáñez, J. L. Tella, Crowding in the city:
741 losing and winning competitors of an invasive bird. *PLoS One* **9**, e100593 (2014).

742 67. E. Shochat, S. B. Lerman, J. M. Anderies, P. S. Warren, S. H. Faeth, C. H. Nilon, Invasion,
743 competition, and biodiversity loss in urban ecosystems. *Bioscience* **60**, 199–208 (2010).

744 68. R. A. McManamay, C. R. Vernon, M. Chen, I. Thompson, Z. Khan, K. B. Narayan, Dynamic urban
745 land extensification is projected to lead to imbalances in the global land-carbon equilibrium.
746 *Commun. Earth Environ.* **5**, 70 (2024).

747 69. A. D. Barnosky, E. A. Hadly, J. Bascompte, E. L. Berlow, J. H. Brown, M. Fortelius, W. M. Getz, J.
748 Harte, A. Hastings, P. A. Marquet, N. D. Martinez, A. Mooers, P. Roopnarine, G. Vermeij, J. W.
749 Williams, R. Gillespie, J. Kitzes, C. Marshall, N. Matzke, D. P. Mindell, E. Revilla, A. B. Smith,
750 Approaching a state shift in Earth's biosphere. *Nature* **486**, 52–58 (2012).

751 70. O. Venter, E. W. Sanderson, A. Magrach, J. R. Allan, J. Beher, K. R. Jones, H. P. Possingham, W. F.
752 Laurance, P. Wood, B. M. Fekete, M. A. Levy, J. E. M. Watson, Sixteen years of change in the global
753 terrestrial human footprint and implications for biodiversity conservation. *Nat. Commun.* **7**, 12558
754 (2016).

755 71. G. Chen, X. Li, X. Liu, Y. Chen, X. Liang, J. Leng, X. Xu, W. Liao, Y. 'an Qiu, Q. Wu, K. Huang,
756 Global projections of future urban land expansion under shared socioeconomic pathways. *Nat.*
757 *Commun.* **11**, 537 (2020).

758 72. J. R. Burger, J. H. Brown, J. W. Day Jr, T. P. Flanagan, E. D. Roy, The central role of energy in the
759 urban transition: Global challenges for sustainability. *Biophys. Econ. Resour. Qual.* **4** (2019).

760 73. T. Beatley, *The Bird-Friendly City: Creating Safe Urban Habitats* (Island Press, 2020).

761 74. J. Jokimäki, M.-L. Kaisanlahti-Jokimäki, Residential areas support overwintering possibilities of most
762 bird species. *Ann. Zool. Fennici* **49**, 240–256 (2012).

763 75. M. Le Louarn, P. Clergeau, D. Strubbe, M. Deschamps-Cottin, Dynamic species distribution models
764 reveal spatiotemporal habitat shifts in native range-expanding versus non-native invasive birds in an
765 urban area. *J. Avian Biol.* **49**, jav–01527 (2018).

766 76. eBird, eBird Basic Dataset. Version: EBD_rel-Jan-2024. Cornell Lab of Ornithology, Ithaca, New
767 York. March 2024, (2024).

768 77. H. Qiao, M. C. Orr, Q. Yang, X. Zhan, F. Lei, A. C. Hughes, Global Birdwatching Data Reveal
769 Uneven Consequences of the COVID-19 Pandemic (2022). <https://doi.org/10.2139/ssrn.4229513>.

770 78. W. M. Hochachka, H. Alonso, C. Gutiérrez-Expósito, E. Miller, A. Johnston, Regional variation in the
771 impacts of the COVID-19 pandemic on the quantity and quality of data collected by the project eBird.
772 *Biol. Conserv.* **254**, 108974 (2021).

773 79. G. Zhang, Spatial and Temporal Patterns in Volunteer Data Contribution Activities: A Case Study of
774 eBird. *ISPRS International Journal of Geo-Information* **9**, 597 (2020).

775 80. "EBird Basic Dataset Metadata v1.14;" <https://www.scribd.com/document/855010075/EBird-Basic-Dataset-Metadata-v1-14>.

776 81. B. L. Sullivan, C. L. Wood, M. J. Iliff, R. E. Bonney, D. Fink, S. Kelling, eBird: A citizen-based bird
777 observation network in the biological sciences. *Biol. Conserv.* **142**, 2282–2292 (2009).

779 82. D. Fink, T. Auer, A. Johnston, V. Ruiz-Gutierrez, W. M. Hochachka, S. Kelling, Modeling avian full
780 annual cycle distribution and population trends with citizen science data. *Ecol. Appl.* **30**, e02056
781 (2020).

782 83. C. T. Callaghan, D. E. Bowler, S. A. Blowes, J. M. Chase, M. B. Lyons, H. M. Pereira, Quantifying
783 effort needed to estimate species diversity from citizen science data. *Ecosphere* **13** (2022).

784 84. D. Fink, W. M. Hochachka, B. Zuckerberg, D. W. Winkler, B. Shaby, M. A. Munson, G. Hooker, M.
785 Riedewald, D. Sheldon, S. Kelling, Spatiotemporal exploratory models for broad-scale survey data.
786 *Ecol. Appl.* **20**, 2131–2147 (2010).

787 85. F.-Y. Shen, T.-S. Ding, J.-S. Tsai, Comparing avian species richness estimates from structured and
788 semi-structured citizen science data. *Sci. Rep.* **13**, 1214 (2023).

789 86. V. A. Steen, C. S. Elphick, M. W. Tingley, An evaluation of stringent filtering to improve species
790 distribution models from citizen science data. *Divers. Distrib.* **25**, 1857–1869 (2019).

791 87. N. Boivin, *Human and Human-Mediated Species Dispersals through Time: Introduction and Overview*
792 (Cambridge University Press, Cambridge, 2017).

793 88. R. Lourenço, C. Godinho, P. A. Salgueiro, R. R. Silva, P. F. Pereira, Estimating changes in
794 distribution trend of alien birds in urban areas using citizen science data. *Urban Ecosyst.*, doi:
795 10.1007/s11252-024-01577-3 (2024).

796 89. Y. M. Buckley, J. Catford, Does the biogeographic origin of species matter? Ecological effects of
797 native and non-native species and the use of origin to guide management. *J. Ecol.* **104**, 4–17 (2016).

798 90. C. Both, C. A. M. Van Turnhout, R. G. Bijlsma, H. Siepel, A. J. Van Strien, R. P. B. Foppen, Avian
799 population consequences of climate change are most severe for long-distance migrants in seasonal
800 habitats. *Proc. Biol. Sci.* **277**, 1259–1266 (2010).

801 91. U.S. Geological Survey, About North American Breeding Bird Survey (BBS) (2023).
802 <https://www.pwrc.usgs.gov/bbs/about/>.

803 92. IUCN, METADATA: Digital distribution maps on the iucn red list of threatened species (2017).
804 https://nc.iucnredlist.org/redlist/resources/files/1539099276-METADATA_for_Digital_Distribution_Maps_of_The_IUCN_Red_List_of_Threatened_Species_.pdf.

806 93. I. Maréchaux, A. S. L. Rodrigues, A. Charpentier, The value of coarse species range maps to inform
807 local biodiversity conservation in a global context. *Ecography (Cop.)* **40**, 1166–1176 (2017).

808 94. B. A. Hawkins, M. Rueda, M. Á. Rodríguez, What do range maps and surveys tell us about diversity
809 patterns? *Folia Geobot.* **43**, 345–355 (2008).

810 95. P. V. C. Mathias, C. V. Mendonça, T. F. L. V. Rangel, J. A. F. Diniz-Filho, Sensitivity of

macroecological patterns of South American parrots to differences in data sources. *Global Ecology and Biogeography* **13**, 193–198 (2004).

96. A. J. Jensen, B. R. Goldstein, M. V. Cove, K. Pacifici, E. Kierepka, B. Rooney, W. McShea, R. Kays, Mammals on the margins: Identifying the drivers and limitations of range expansion. *Glob. Chang. Biol.* **31**, e70222 (2025).

97. R. T. Lemoine, J.-C. Svenning, Nateness is not binary—a graduated terminology for native and non-native species in the Anthropocene. *Restor. Ecol.* **30** (2022).

98. A.-S. Bonnet-Lebrun, A. Manica, A. S. L. Rodrigues, Effects of urbanization on bird migration. *Biol. Conserv.* **244**, 108423 (2020).

99. K. Geluso, Winter Activity of Brazilian Free-Tailed Bats (*Tadarida brasiliensis*) at Carlsbad Cavern, New Mexico. *Southwest. Nat.* **53**, 243–247 (2008).

100. X. Feng, B. J. Enquist, D. S. Park, B. Boyle, D. D. Breshears, R. V. Gallagher, A. Lien, E. A. Newman, J. R. Burger, B. S. Maitner, C. Merow, Y. Li, K. M. Huynh, K. Ernst, E. Baldwin, W. Foden, L. Hannah, P. M. Jørgensen, N. J. B. Kraft, J. C. Lovett, P. A. Marquet, B. J. McGill, N. Morueta-Holme, D. M. Neves, M. M. Núñez-Regueiro, A. T. Oliveira-Filho, R. K. Peet, M. Pillet, P. R. Roehrdanz, B. Sandel, J. M. Serra-Díaz, I. Šimová, J.-C. Svenning, C. Violette, T. D. Weitemier, S. Wiser, L. López-Hoffman, A. Hurlbert, A review of the heterogeneous landscape of biodiversity databases: Opportunities and challenges for a synthesized biodiversity knowledge base. *Glob. Ecol. Biogeogr.* **31**, 1242–1260 (2022).

101. D. Lepage, G. Vaidya, R. Guralnick, Avibase - a database system for managing and organizing taxonomic concepts. *Zookeys* **420**, 117–135 (2014).

102. Natural Earth, Populated Places (2017). <https://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-populated-places/>.

103. U.S. Census Bureau, TIGER/Line Shapefile, 2017, 2010 nation, U.S., 2010 Census Urban Area National (2017). <https://catalog.data.gov/dataset/tiger-line-shapefile-2017-2010-nation-u-s-2010-census-urban-area-national>.

104. Federal Electoral District Boundary File, Boundary Files, 2016 Census. Statistics Canada Catalogue no. 92-160-X (2016). <https://open.canada.ca/data/en/dataset/84a9b280-ede5-42df-a98a-62489eb46aa8/resource/613e560f-026e-428c-af19-f156d6bf6918>.

105. J. R. Burger, J. G. Okie, I. A. Hatton, V. P. Weinberger, M. Shrestha, K. J. Liedtke, T. Be, A. R. Cruz, X. Feng, C. Hinojo-Hinojo, A. S. M. G. Kibria, K. C. Ernst, B. J. Enquist, Global city densities: Re-examining urban scaling theory. *Front. Conserv. Sci.* **3** (2022).

106. A. C. Hughes, M. C. Orr, K. Ma, M. J. Costello, J. Waller, P. Provoost, Q. Yang, C. Zhu, H. Qiao, Sampling biases shape our view of the natural world. *Ecography* **44**, 1259–1269 (2021).

107. T. C. Hsieh, K. H. Ma, A. Chao, iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). *Methods Ecol. Evol.* **7**, 1451–1456 (2016).

108. A. Chao, N. J. Gotelli, T. C. Hsieh, E. L. Sander, K. H. Ma, R. K. Colwell, A. M. Ellison, Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. *Ecol. Monogr.* **84**, 45–67 (2014).

109. A. Chao, L. Jost, Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. *Ecology* **93**, 2533–2547 (2012).

110. A. Kuznetsova, P. B. Brockhoff, R. H. B. Christensen, LmerTest package: Tests in linear mixed effects models. *J. Stat. Softw.* **82**, 1–26 (2017).

854 111. E. Bohdalková, A. Toszogyova, I. Šímová, D. Storch, Universality in biodiversity patterns:
855 variation in species–temperature and species–productivity relationships reveals a prominent role of
856 productivity in diversity gradients. *Ecography (Cop.)* **44**, 1366–1378 (2021).

857 112. A. J. Fairbairn, S. Katholnigg, T. Leichtle, L. Merkens, L. Schroll, W. W. Weisser, S. T. Meyer,
858 NDVI and vegetation volume as predictors of urban bird diversity. *Sci Rep* **15**, 12863 (2025).

859 113. W. R. Turner, T. Nakamura, M. Dinetti, Global urbanization and the separation of humans from
860 nature. *Bioscience* **54**, 585 (2004).

861 114. J. R. Burger, V. P. Weinberger, P. A. Marquet, Extra-metabolic energy use and the rise in human
862 hyper-density. *Sci. Rep.* **7**, 43869 (2017).

863 115. C. Liao, Y. Luo, X. Tang, Z. Ma, B. Li, Effects of human population density on the pattern of
864 terrestrial nature reserves in China. *Global Ecology and Conservation* **20**, e00762 (2019).

865 116. D. N. Karger, O. Conrad, J. Böhner, T. Kawohl, H. Kreft, R. W. Soria-Auza, N. E. Zimmermann,
866 H. P. Linder, M. Kessler, Climatologies at high resolution for the earth's land surface areas. *Sci Data*
867 **4**, 170122 (2017).

868 117. M. Bondarenko, R. Priyatikanto, N. Tejedor-Garavito, W. Zhang, T. McKeen, A. Cunningham,
869 Woods T Hilton, D. Cihan, B. Nosatiuk, T. Brinkhoff, A. Tatem, A. Sorichetta, The spatial distribution
870 of population in 2015-2030 at a resolution of 30 arc (approximately 1km at the equator) R2025A
871 version v1 Global Demographic Data Project - Funded by The Bill and Melinda Gates Foundation
872 (INV-045237), (2025); <https://doi.org/10.5258/SOTON/WP00845>.

873 118. K. Didan, MODIS/Terra Vegetation Indices Monthly L3 Global 1km SIN Grid V061, (2021);
874 <https://doi.org/10.5067/MODIS/MOD13A3.061>.

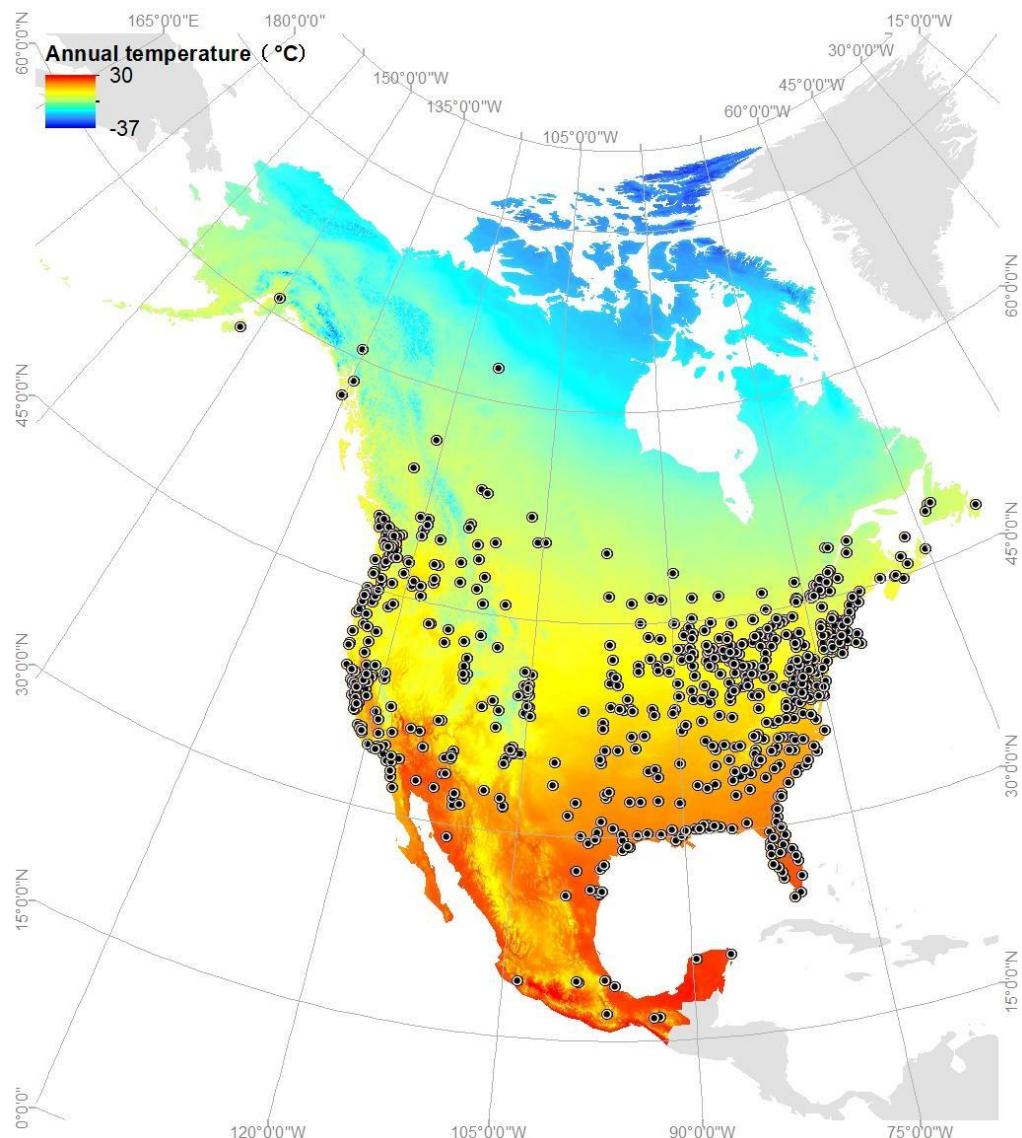
875 119. K. Huang, M. Lu, Nested economies of scale in global city mass, *arXiv [physics.soc-ph]* (2025).
876 <http://arxiv.org/abs/2507.03960>.

877 120. Y. Zhang, Y. G. Song, C. Y. Zhang, T. R. Wang, T. H. Su, Latitudinal diversity gradient in the
878 changing world: retrospectives and perspectives. *Diversity (Basel)* (2022).

879 121. C. Clark, Urban Population Densities. *J. R. Stat. Soc. Ser. A* **114**, 490 (1951).

880 122. A. H. Hawley, Population density and the city. *Demography* **9**, 521–529 (1972).

881 123. Y. Chen, T. Lin, Y. Zheng, J. Zhang, Z. Jia, H. Geng, M. Lin, X. Yao, Y. Liu, Urbanization-induced
882 vegetation phenological changes: Variability across vegetation types and zones in China. *Urban For.*
883 *Urban Green.* **107**, 128782 (2025).


884 124. J. S. Lefcheck, piecewiseSEM: Piecewise structural equation modelling inr for ecology, evolution,
885 and systematics. *Methods Ecol. Evol.* **7**, 573–579 (2016).

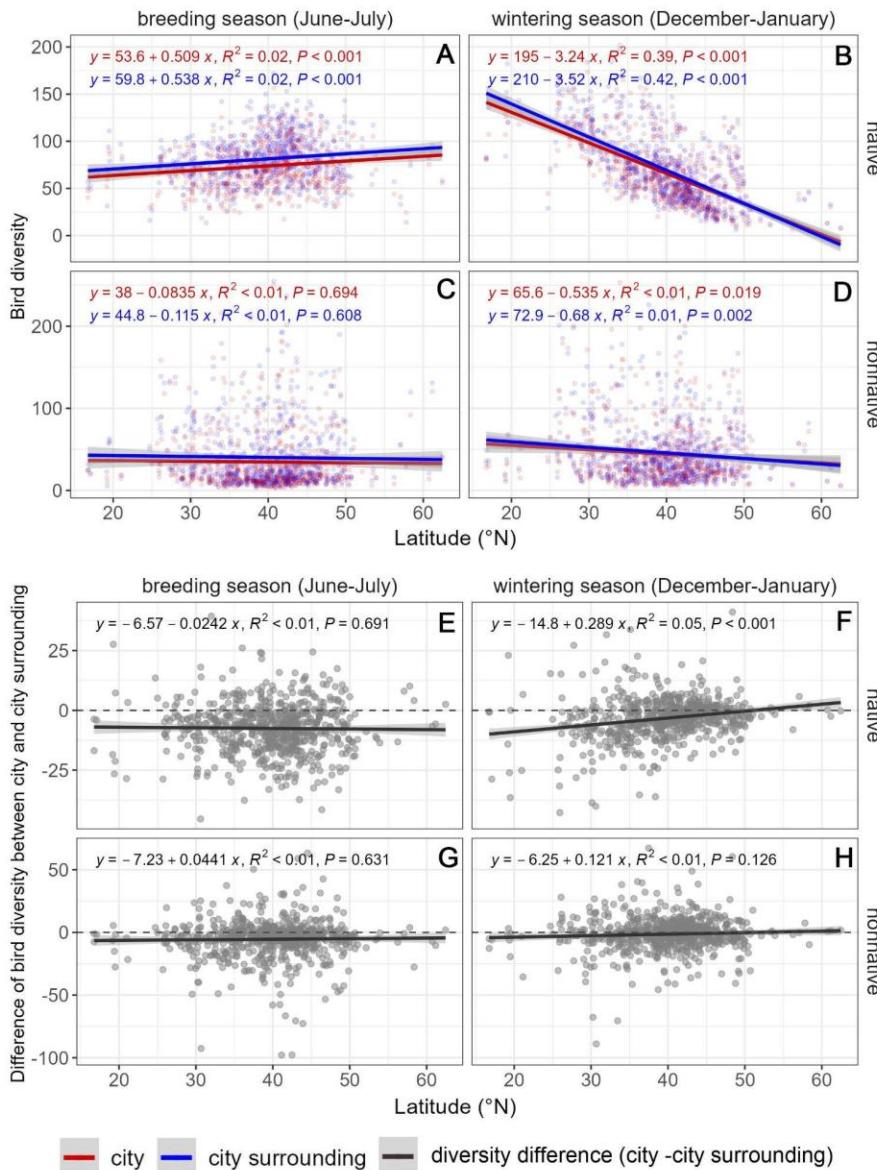
886 125. S. Chapman, J. E. M. Watson, A. Salazar, M. Thatcher, C. A. McAlpine, The impact of
887 urbanization and climate change on urban temperatures: a systematic review. *Landsc. Ecol.* **32**,
888 1921–1935 (2017).

889 126. P. Breheny, W. Burchett, Visualization of regression models using visreg. (2017).

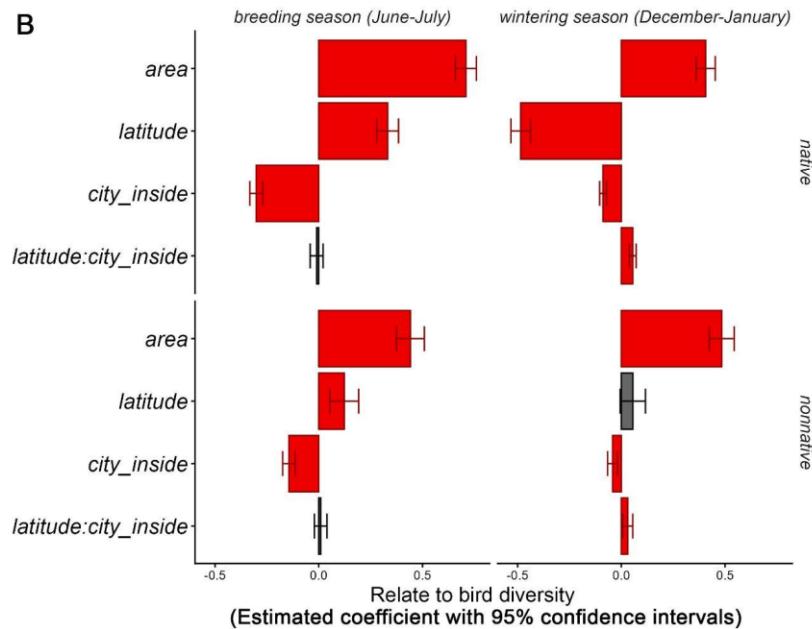
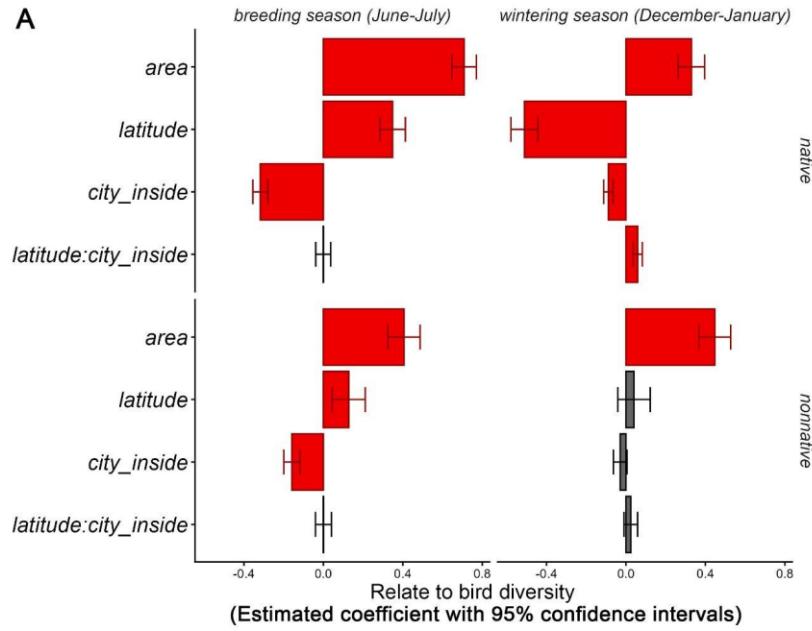
890

891 **Supplementary Information**

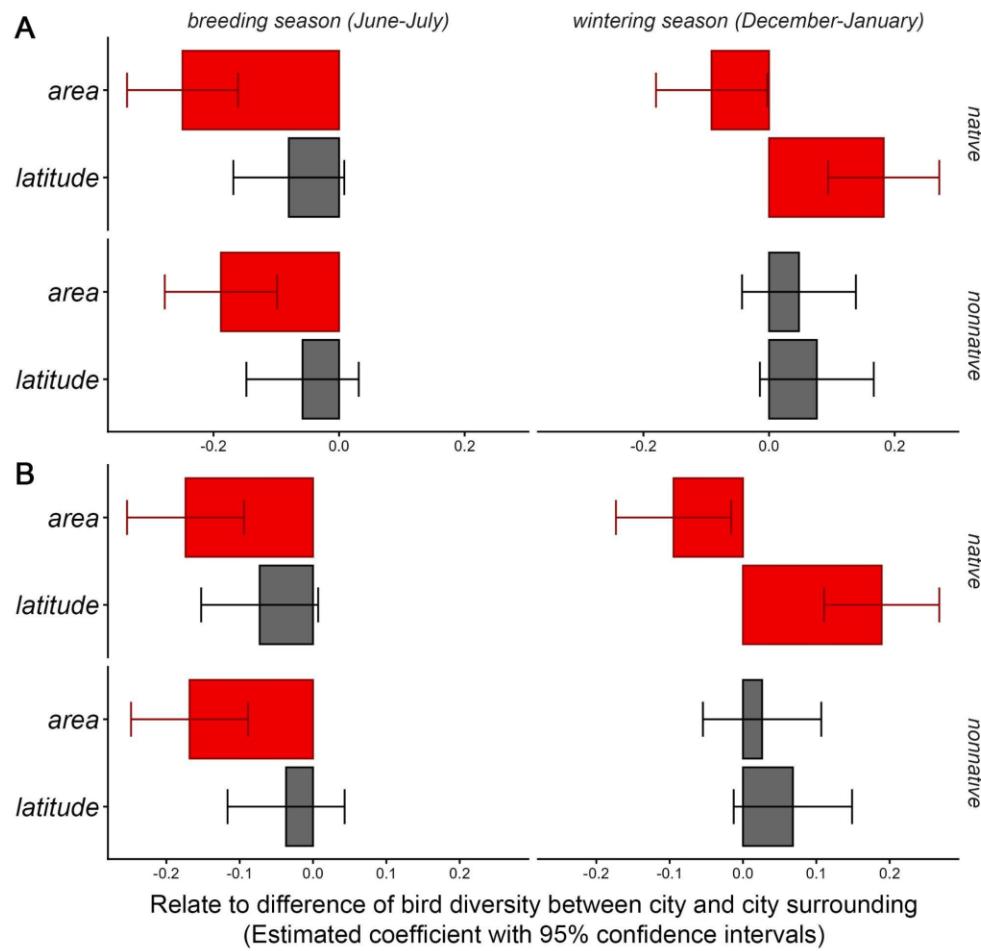
892

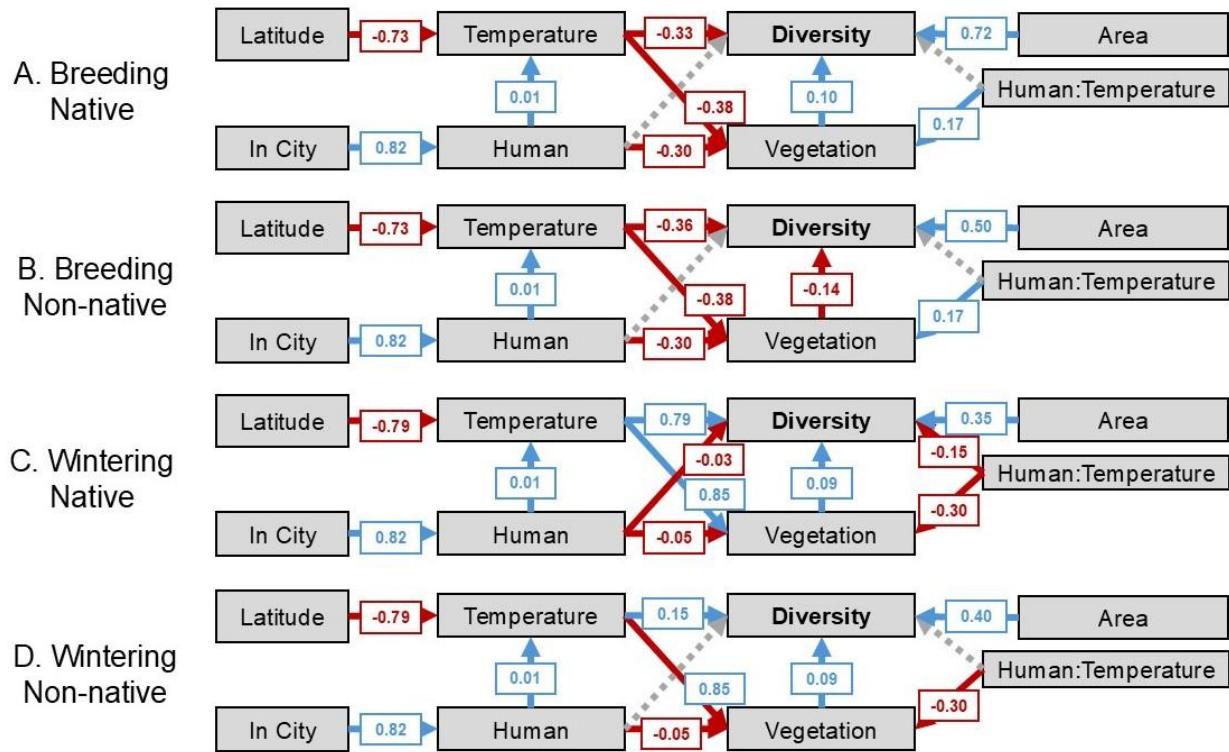

893 **Fig. S1. An overview of 662 North American cities and their surrounding areas involved**
894 **in the study.** A city-surrounding area has the same area as a city. A pair of a city and its
895 surroundings will be included in this study if adequate eBird observations are available and they
896 meet the literature approach (see Methods). Bird diversity in cities and their surroundings is
897 calculated from the eBird observations via a rarefaction approach.

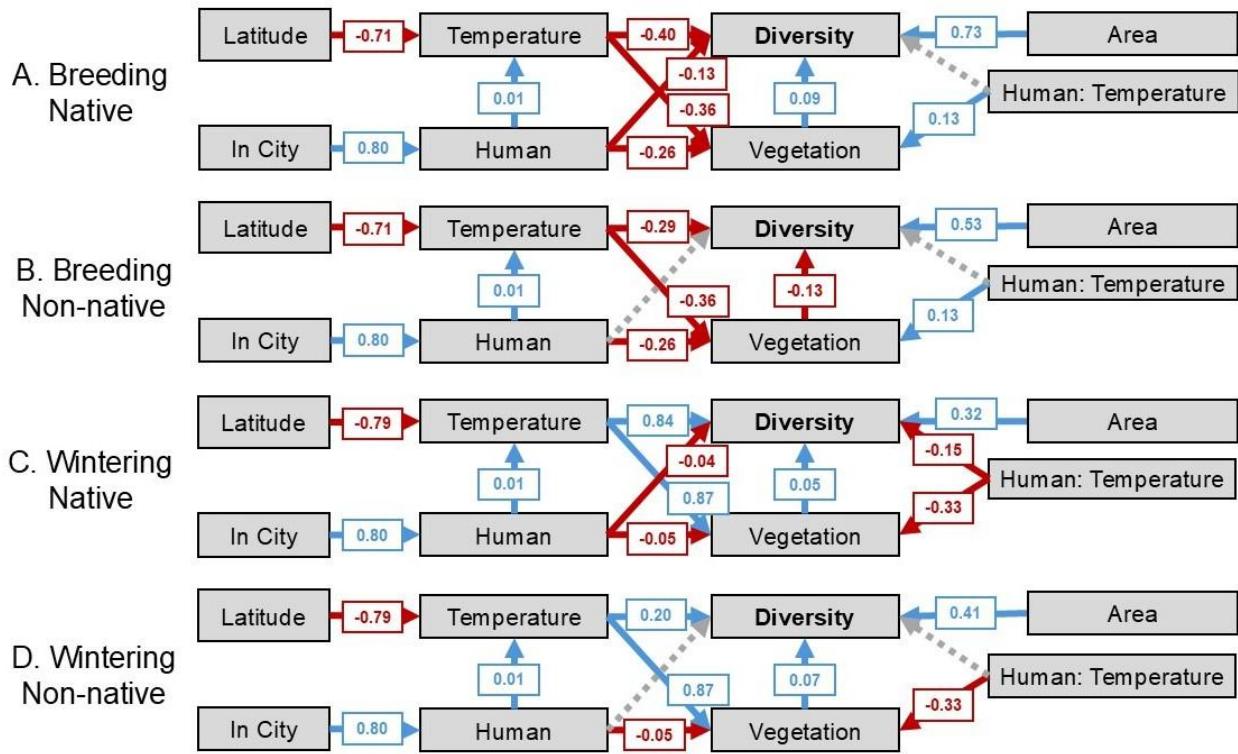
898

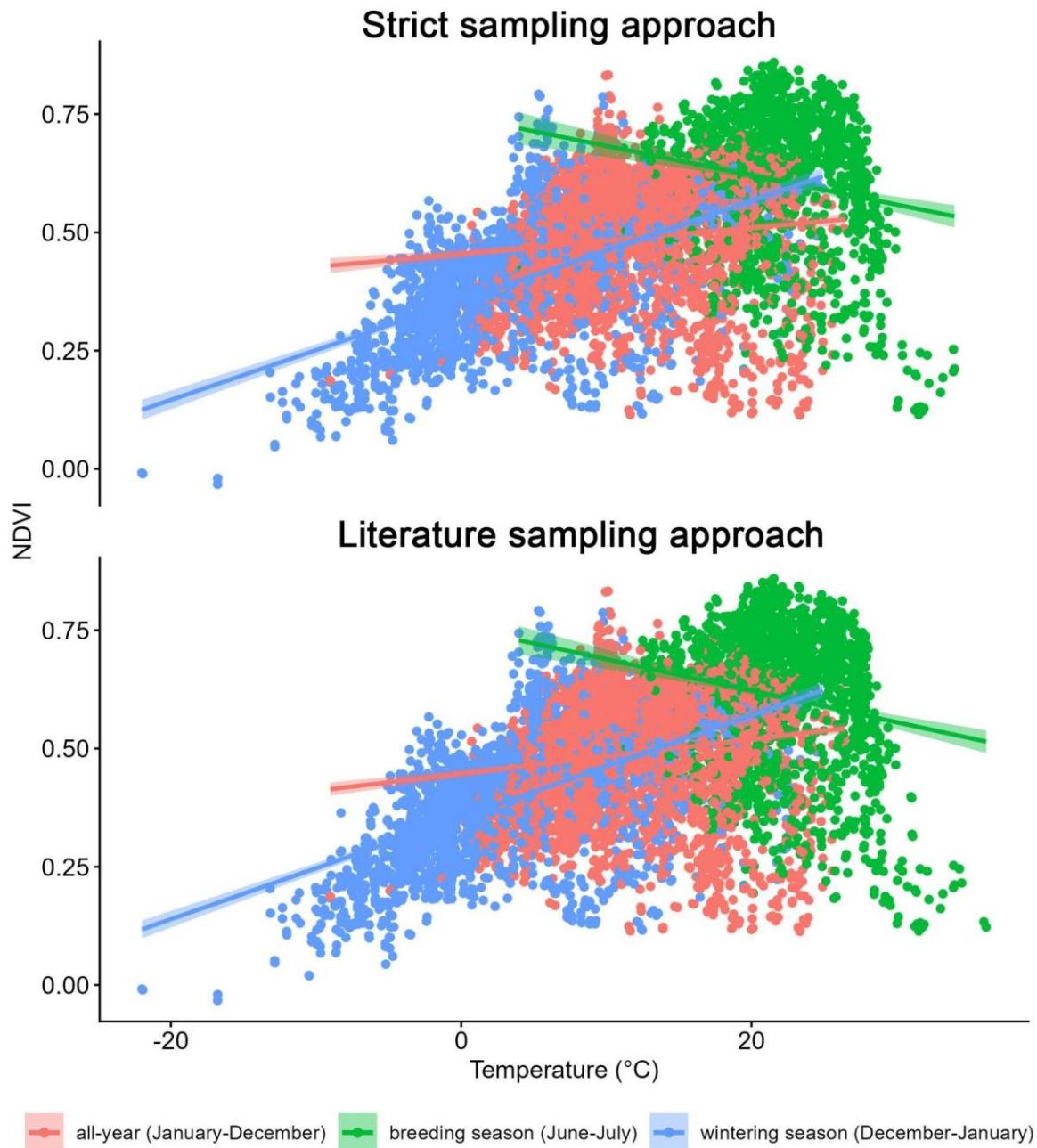


899

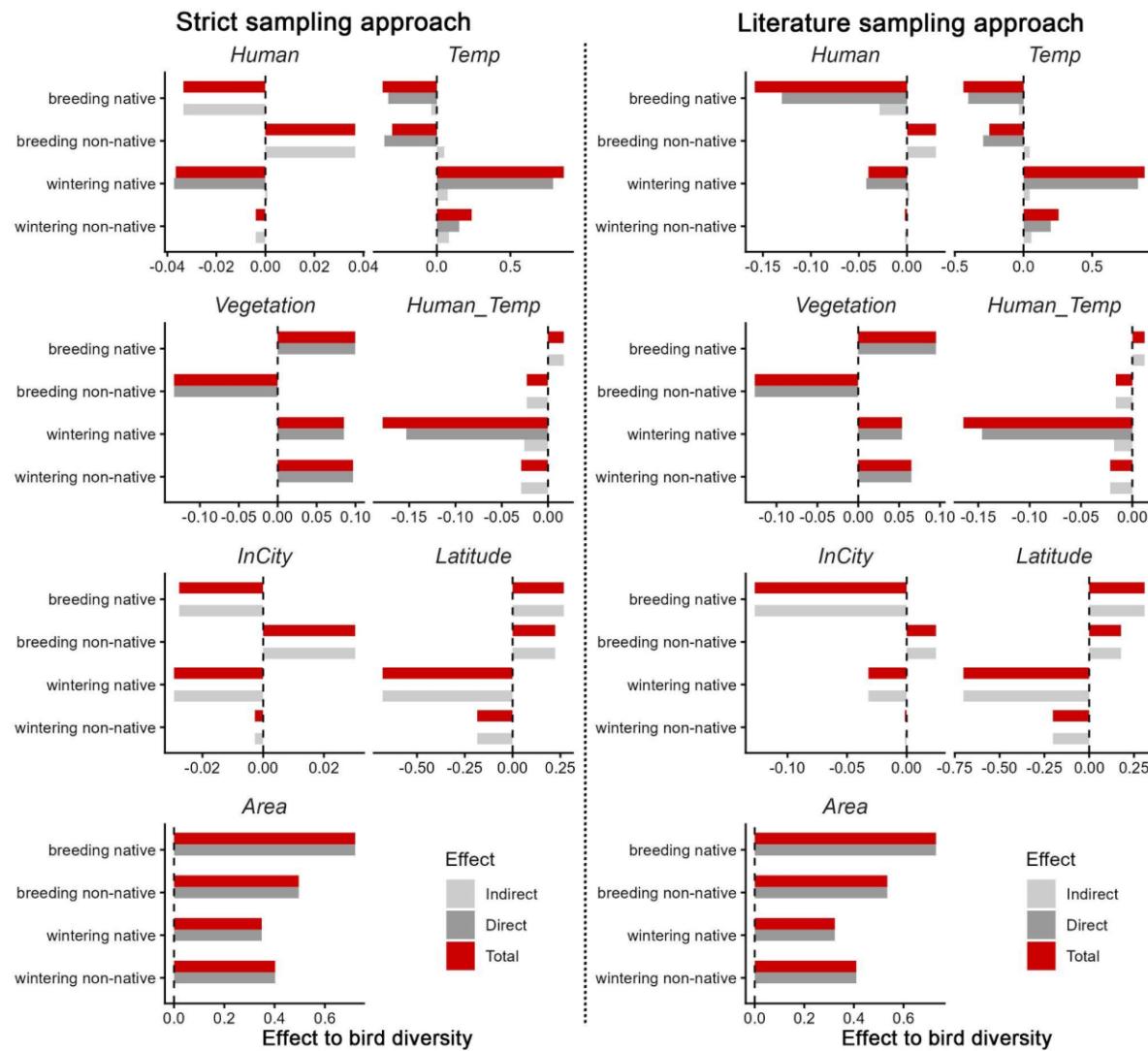
900

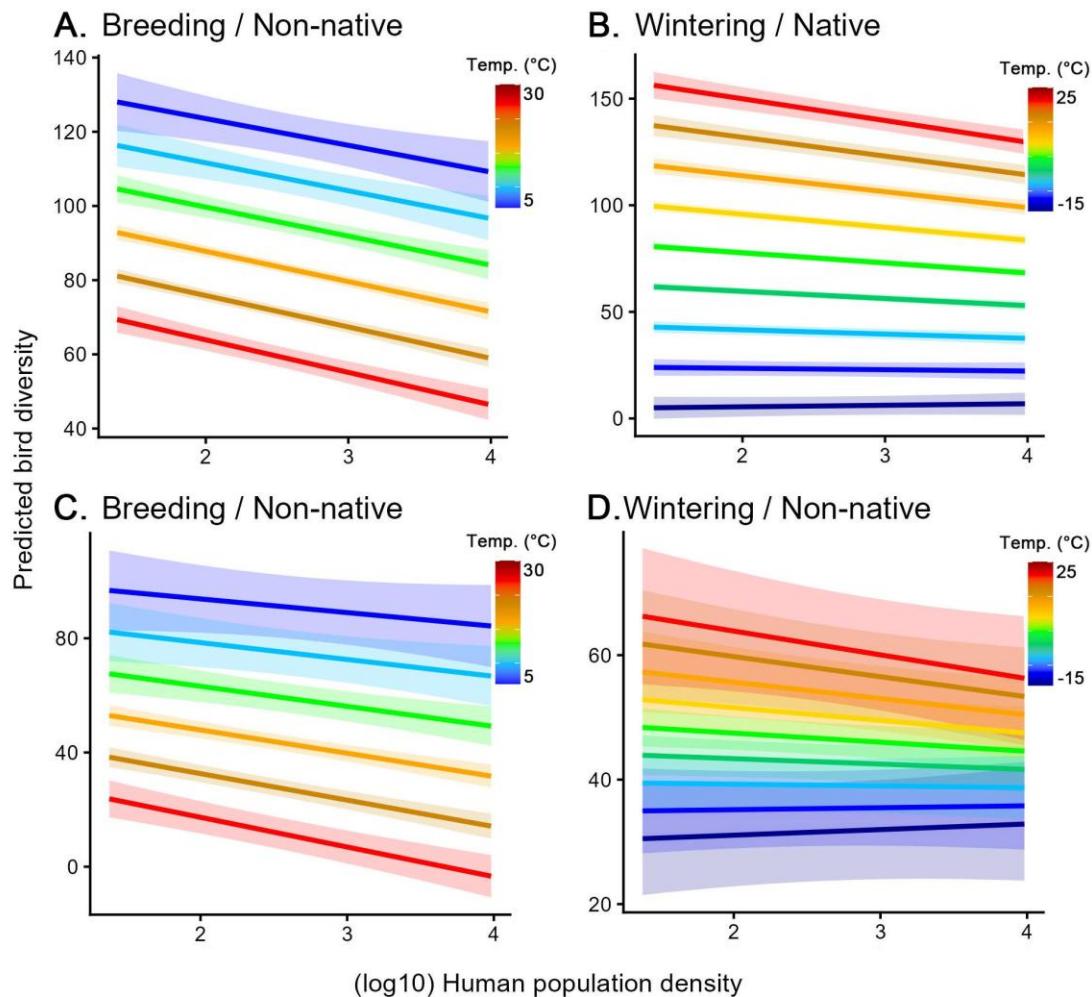

901


Fig. S2 Latitudinal patterns of bird species diversity in North American cities and surrounding areas based on literature sampling approach. (A-D) Scatter plot of bird diversity in cities (red) or city surroundings (blue) and the linear fitness with latitude. **(E-H)** Scatter plot of difference in bird diversity between the city and its surrounding areas (city minus surrounding) and the linear fitness with latitude. For both group A and B, the two columns represent different seasons (breeding, wintering), and the two rows represent different native status (native, nonnative).


Fig. S3 Summary of the linear mixed models based on strict (A) and literature (B) sampling approaches. The bar chart indicates the standardized regression coefficients of the fixed effects, and the error bars represent the 95% confidence intervals of each coefficient. The dependent variable is the bird diversity (i.e. bird species richness). The fixed effects include area, latitude, the category of city/city surrounding (city_inside), and the interaction between latitude and city/city surrounding (latitude:city_inside). The name of the city (and its surrounding) is used as a random effect. Red color indicates significant effect ($p < 0.05$), while gray indicates non-significant effect ($p > 0.05$).


Fig. S4 Summary of the linear models based on strict (A) and literature (B) sampling approaches. The bar chart indicates the standardized regression coefficients of the dependent variables, and the error bars represent the 95% confidence intervals of each coefficient. For each model, the dependent variable is the difference of bird diversity (bird species richness) between the city and its surrounding areas (city minus surrounding). The independent variables include the area and latitude. Red color indicates significant effect ($p < 0.05$), while gray color indicates non-significant effect ($p > 0.05$).


Fig. S5 Explanation of the Structural Equation Models (SEMs) for bird diversity across seasons and different native status based on the strict sampling approach. The model illustrates the direct and indirect pathways of the core predictors: temperature, log10-transformed population density (Human), NDVI (Vegetation), as well as the interaction between temperature and human activity (Human:Temperature) on bird diversity. Geographical predictors such as latitude, area, and urban location are also included. Red and blue solid arrows represent significant negative and positive pathways ($p < 0.05$), respectively, with the corresponding path coefficients indicating standardized effect sizes on the arrows. Non-significant pathways are represented by gray dashed arrows.


Fig. S6 Explanation of the Structural Equation Models (SEMs) for bird diversity across seasons and different native status based on the literature sampling approach. The model illustrates the direct and indirect pathways of the core predictors: temperature, log10-transformed population density (Human), NDVI (Vegetation), as well as the interaction between temperature and human activity (Human:Temperature) on bird diversity. Geographical predictors such as latitude, area, and urban location are also included. Red and blue solid arrows represent significant negative and positive pathways ($p < 0.05$), respectively, with the corresponding path coefficients indicating standardized effect sizes on the arrows. Non-significant pathways are represented by gray dashed arrows.

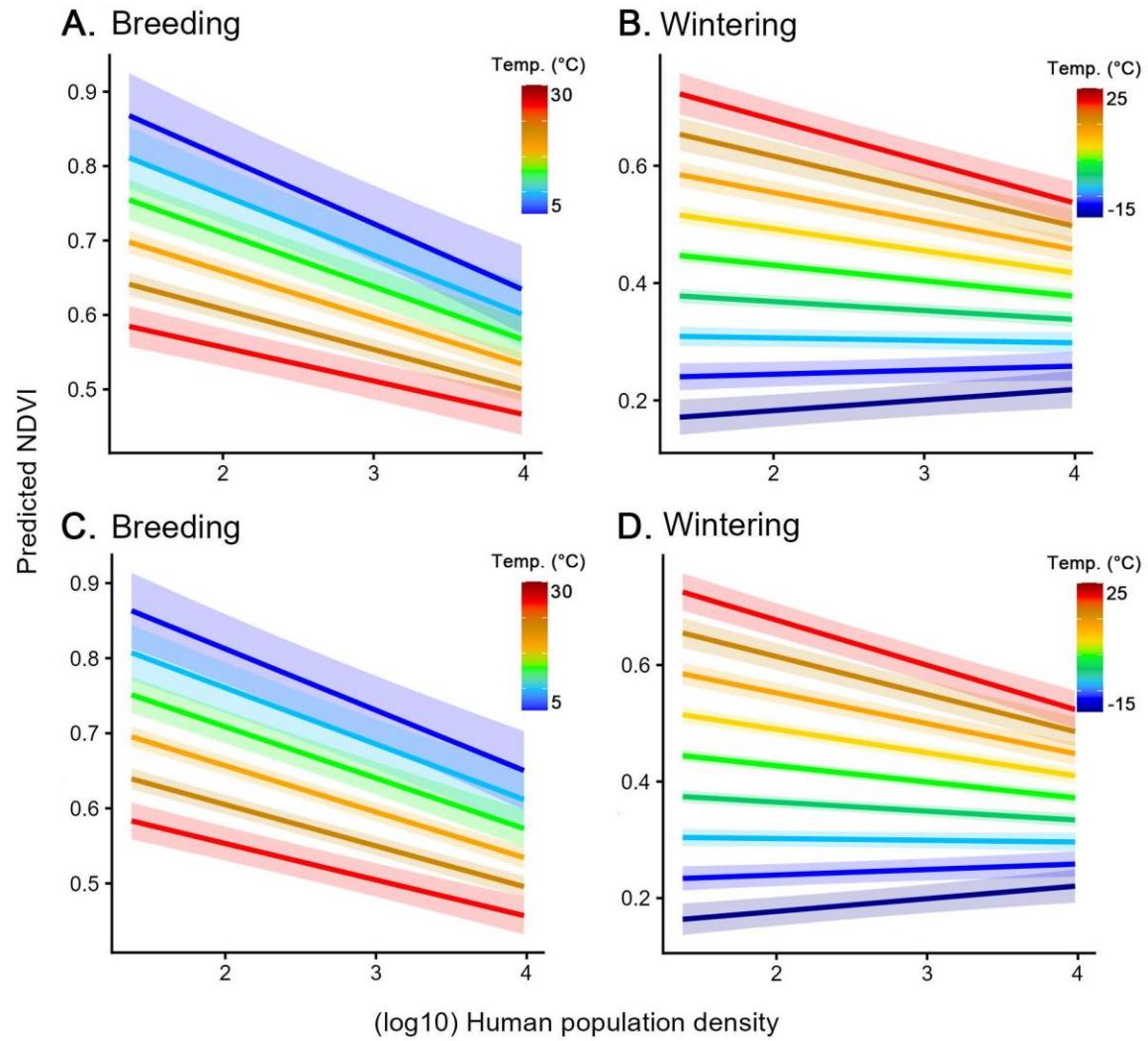

Fig. S7 The linear relationships between vegetation (NDVI) and temperature across different seasons based on the strict and literature sampling selections. All linear relationships are statistically significant ($p < 0.05$).

Fig. S8 The direct, indirect, and total (direct + indirect) effects of each predictor on bird diversity quantified by the Structural Equation Models (SEMs). Direct effects are defined as standardized path coefficients from each predictor to bird diversity, whereas indirect effects are calculated as the sum of products of standardized path coefficients along all mediated pathways linking each predictor to bird diversity.

Fig. S9 Marginal response of bird diversity to the interaction between human population density and temperature across different observation seasons and native/non-native statuses based on the literature sampling approach. The figure shows the linear responses of bird diversity to log10-transformed human population density (Human) at different temperature levels (coded in the gradients of colors), assuming all other variables are held constant at their means (median for other variables except Human and temperature). The lines indicate the fitted regression lines based on these predicted results. The shaded areas represent the 95% confidence intervals of the lines fitted.

1
2 **Fig. S10 Marginal responses of vegetation to the interaction between humans (\log_{10} -
3 transformed population density) and temperature across seasons based on strict (A, B)
4 and literature (C, D) sampling selection, respectively.** The figure shows the linear response
5 of NDVI to humans at different temperature levels (coded in the gradients of colors) while
6 holding all other variables constant at their medians. The shaded area represents the 95%
7 confidence interval of each fitted line.