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Abstract

The threat of climate change is particularly acute for species in arctic and montane habi-
tats, where changes are happening the most rapidly. Species are generally expected to shift
their ranges northward and upslope in response to changing climates, but actual measured
shifts in species distributions have been nuanced and large quantities of data are needed to
accurately assess shifts. The growing availability of unstructured community science data is
an appealing solution to the problem of characterizing changes in species distributions, but
these data contain known biases that must be overcome to draw strong inference. Here, we
leveraged opportunistic, unstructured community science data from across the Fennoscan-
dian peninsula over the last 45 years to evaluate the hypothesis that the breeding distribu-
tion of a common and iconic montane bird, the bluethroat (Luscinia svecica), has shifted
towards higher latitudes and elevations. We constructed non-detections of bluethroats us-
ing detections of 12 less notable ’background’ avian species, which allowed us to analyze
over 500,000 observations within a robust spatio-temporal occupancy modeling framework.
We found that bluethroat occupancy has declined substantially over the past four decades
across Fennoscandia. The largest absolute declines in occupancy probability took place in
areas with higher occupancy in the early years of the study, but the largest relative changes
in occupancy took place at low latitudes and low elevations at high latitudes. Our work
demonstrates that even common and globally stable species are at risk of breeding habitat
loss under the looming threat of climate change and that unstructured community science
data, when used thoughtfully, can fill important knowledge gaps about species responses to

global change.
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1 Introduction

Climate change is influencing species distributions on a global scale (Parmesan and Yohe,
2003; Chen et al., 2011), and species adapted to northern climates are acutely affected be-
cause the Arctic is warming as much as four times faster than the rest of the globe (Stuecker
et al., 2018; Rantanen et al., 2022). In general, species are expected to demonstrate lati-
tudinal and elevational movements in which their range boundaries shift towards the poles
and towards higher elevations to track their climatic niche (Thomas and Lennon, 1999; Chen
et al., 2011; Walther, 2010; Hickling et al., 2006). In reality, though, observed distribution
changes are nuanced. While many species ranges have shifted uphill or towards the poles,
others have remained seemingly constant, and some have actually shifted downslope or to-
wards the equator (Chen et al., 2011; Lenoir et al., 2010; Hickling et al., 2006). This variation
in responses to climate change is hardly surprising given that species distributions are in-
fluenced by a wealth of interacting abiotic and biotic factors (Hughes, 2000; Hallfors et al.,
2024; Archaux, 2004; Bateman et al., 2016; Tsiftsis et al., 2024), and geographic shifts in cli-
mate envelopes are only partly associated with latitude and elevation (Lenoir and Svenning,
2015; VanDerWal et al., 2013). Nevertheless, understanding how distributions are changing
is an essential part of understanding and responding to threats to biodiversity posed by rapid
changes in climatic conditions (Chen et al., 2011; Hovick et al., 2016). However, character-
izing changes in species distributions over large geographic areas can be challenging, due to
the need for large amounts of data over broad spatial and temporal scales.

The increasing quantity of community science data (also known as citizen science or
participatory science data) and the expansive geographic ranges encompassed by these data
make them an appealing solution to the problem of characterizing changes in species distribu-
tions (Theobald et al., 2015; Soroye et al., 2018). Community science data fall along a contin-

uum between structured data, resulting from coordinated survey efforts where participants
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typically collect data following a standardized protocol designed to reduce various sources of
bias and allow estimation of metrics of interest (Hochachka et al., 2012; Altwegg and Nichols,
2019), and opportunistic data, resulting from casual observations of species reported with
varying amounts of associated metadata (Kamp et al., 2016). Structured data (e.g., resulting
from population monitoring schemes) have led to many important insights (Lehikoinen et al.,
2014; Rosenberg et al., 2019; Sauer et al., 2017), but can be time-consuming, difficult, and
expensive to organize and collect, especially at large spatial scales. Indeed, opportunistic
data are increasing the most rapidly in quantity and spatial coverage (Pocock et al., 2017),
but these data present an array of challenges for drawing strong inference (Johnston et al.,
2023) and may not match the power of structured data to characterize trends of interest
(Kamp et al., 2016).

Opportunistic data can be unstructured or semi-structured. Semi-structured data are
collected opportunistically, but also require observers to submit information about the ob-
servation process (e.g., checklists on eBird). Semi-structured data are increasingly used
to draw strong inference about bird distributions and population trends (Johnston et al.,
2025; Rosenberg et al., 2019). However, there is also a wealth of unstructured opportunistic
data with little to no information about the observation process. These data are typically
detection-only, meaning they include information about where species were observed but
not where effort was expended and a particular species was not observed. These data also
suffer from potential spatial and temporal bias, as well as bias resulting from observer be-
havior, such as a tendency to report exciting or notable species but not common or drab
species (Johnston et al., 2023; van Strien et al., 2013). Overcoming some of these sources
of bias could enhance our ability to draw inference from these large and readily-available
unstructured participatory science datasets.

Here, we leverage opportunistic, unstructured participatory science data to understand

whether the occupancy dynamics of a common montane bird, the bluethroat (Luscinia sve-



82

83

84

85

86

87

88

89

90

91

92

93

04

95

96

97

98

99

100

101

102

103

104

105

106

107

cica svecica), conform to expectations under climate change across the Fennoscandian penin-
sula. Specifically, we evaluate the hypothesis that the breeding distribution of the bluethroat
has shifted towards higher latitudes and higher elevations over the last 45 years. We do this
in an occupancy modeling framework (MacKenzie et al., 2018; Mackenzie et al., 2002) where
we infer non-detection of a notable species (the bluethroat) by assuming that observers who
report less notable ‘background’ species would also have reported the notable species if it
had been seen. In this way, we exploit observer bias towards reporting notable and exciting
species to transform opportunistic detection-only data into detection/non-detection (occu-
pancy data), allowing for stronger inference (conditioning on observations of common and
less notable species).

The bluethroat, a montane specialist dependent upon the shrubby ecotone between moun-
tain birch forest and tundra, is an interesting species for this work for two reasons. First, its
conservation status is somewhat uncertain in this region. Officially, the bluethroat is clas-
sified ’least concern’ both globally (BirdLife International, 2019) and on national red lists
for Norway, Sweden, and Finland (Artdatabanken, 2020; Artsdatabanken, 2021; Hyvérinen
et al., 2019). However, there is some evidence that bluethroat abundance may have declined
in Norway (Lehikoinen et al., 2014) where the species was red-listed from 2015-2021 (Hen-
rikson and Hilmo, 2015; Artsdatabanken, 2021), and habitat specialists are generally more
at risk than generalists (Jiguet et al., 2010). Further, little information exists about changes
in the distribution of the bluethroat within Scandinavia over the past few decades (but see
(Couet et al., 2022)). Second, the bluethroat has functional traits that suggest opposing ex-
pectations about shifts in its geographic range over time. The bluethroat is a long-distance
migrant - bluethroats from Scandinavia most likely migrate along the Indo-European flyway
and winter in India (Lislevand et al., 2015) - and resident species have been shown to be
more likely to shift their ranges over time than migratory species (MacLean and Beissinger,

2017). However, bluethroats are also fairly short-lived and occur at high elevations, both
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of which may lead to faster uphill shifts (Couet et al., 2022). Thus, our work seeks to fill
important knowledge gaps for the bluethroat, as well as improving inferences drawn from

opportunistic community science datasets.

2 Materials and Methods

2.1 Study area and observation data

We studied the bluethroat breeding distribution across the Fennoscandian peninsula of north-
ern Europe, including Norway, Sweden, and Finland, and our study period covered the
years 1980-2024. To improve computational efficiency, we only included regions where the
bluethroat historically breeds; specifically, we included data from all of Norway and we only
included data from north of 61° and 65° latitude for Sweden and Finland, respectively. This
area comprises >740 000 km? and includes the entire range of the Scandinavian Mountains
(Scandes), as well as surrounding areas.

We downloaded species observation records from the Global Biodiversity Information Fa-
cility (GBIF), and filtered observations to meet our requirements. We downloaded species
records from Norway, Sweden, and Finland for the bluethroat and for 12 background species
(brambling |Fringilla montifringilla), fieldfare | Turdus pilaris|, hooded crow |Corvus corniz|,
meadow pipit [Anthus pratensis|, common gull [Larus canus|, northern wheatear |Oenanthe
oenanthe|, common raven |Corvus coraz|, redshank |Tringa totanus|, redwing | Turdus ilia-
cus|, twite [Carduelis flavirostris|, willow tit [Poecile montanus|, and willow warbler |Phyl-
loscopus trochilus|) using the 'rgbif’ package (Chamberlain et al., 2025) in R (R Core Team,
2024). We only included records made by human observers that included coordinates, had
no geospatial issues, and had <500m coordinate uncertainty (to match the spatial scale
of our study). Our goal was to analyze changes in the bluethroat breeding distribution;

therefore, we only included data from 10 June to 14 July in our analysis, a period that
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reflects the peak of the bluethroat breeding season in Scandinavia. In the end, our data
included observations from 27 different datasets, but the vast majority of records came
from Artsobservasjoner (56%; https://www.artsobservasjoner.no/) and Artportalen (19%;
https://www.artportalen.se/), species reporting services from Norway and Sweden, respec-
tively (7).

To compile records from the bluethroat and background species into detection histories,
we overlaid the entire Fennoscandian peninsula with a tesselation of hexagonal grid cells,
each of which were 1 km? in area. We selected 1 km? as the spatial scale to balance the
tractability of the analysis with the need to minimize variation in elevation within grid
cells, as well as to better capture any uncertainty in the observation locations. Then, we
used a spatial join in the ’terra’ package (Hijmans, 2024) to assign individual records to the

corresponding hexagonal grid cell.

2.2  Occupancy modeling

To create repeated surveys for occupancy modeling, we split our primary season (10 June -
14 July) into five, week-long secondary survey periods (hereafter 'surveys’). We used a 7-day
secondary survey period to avoid bias from varying survey effort throughout a week (e.g.,
surveys are more likely to occur on the weekend). Next, we used observations of background
species to infer non-detections of bluethroats. If an observation of any background species
was reported in a given grid cell in a given primary season and survey period, then that cell
was considered ’surveyed’ in that period. If a site was surveyed, it could then receive either
a ’'0’ if no bluethroat was reported, or a "1’ if a bluethroat was also reported, during the same
survey. This method of inferring non-detections relies upon the assumption that an observer
who reported a common and drab background species would have also reported a bluethroat,
which is brightly-colored and notable in our study region. Grid cells where a bluethroat was

reported but no background species were reported were not considered surveyed and were
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Figure 1: Map of the study area showing how individual observations were compiled to the
level of 1-km hexagonal grid cells. (A) The entire study area and all bluethroat observations
from the study period (1980-2024). (B) A view of many grid cells, along with observations
of both background species (black) and bluethroats (blue). (C) Visualization of compiling
observations to the grid cell level. We considered cells to be 'surveyed’ (in a given year
and survey) if a background species was reported there, and we considered cells to have a
bluethroat detection if both a background species and a bluethroat were reported.
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treated as missing data (Fig. 1). In this way, the resulting detection/non-detection data
only represent sitexyears where at least one of the background species have been seen, but
by using a wide range of common and widely distributed background species (listed above),

we still maintain a wide inference space (see Fig. S1).

2.2.1 Occupancy sub-model

To investigate the hypothesis that the bluethroat breeding distribution has shifted northward
or upslope over the past 45 years, we used multiseason spatio-temporal occupancy models to
estimate occupancy probability depending on elevation, latitude, and time, while accounting
for heterogeneity in detection. Elevation and latitude both shape species distributions and
also influence each other’s relationship with species distributions, so we included elevation,
latitude, and the interaction between them in the occupancy sub-model. We used eleva-
tion data from a 30-m global Digital Elevation Model with forests and buildings removed
(Hawker et al., 2022), and summarized it using the arithmetic mean within each 1-km grid
cell (Fig. S2). For latitude, we used the latitude of the centroid of each grid cell. We also
included a linear effect of year on the logit scale. Finally, we included the interaction effects
'year*latitude’ and ’year*elevation’ on occupancy probability to estimate changes in the lat-
itudinal and elevational distribution of bluethroats over the past 45 years. Preliminary data
analysis indicated that including elevation as a quadratic predictor may not effectively cap-
ture the non-linear relationship between bluethroat occupancy and elevation, and so we first
compared two models, one where we modeled elevation with a simple cubic spline and one
where we modeled the effect of elevation with a cubic spline and five degrees of freedom (i.e.,
a cubic spline with two knots) to account for non-linearity in the effect of elevation. Lastly,
with the previously determined structure for elevation, we fit a full interaction model with
a three-way interaction between year, latitude, and elevation, to investigate to what degree

occupancy had changed at a different rate across combinations of latitude and elevation.
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Because occupancy dynamics at surveyed locations may not be independent and because
our data consisted of repeated surveys at some of the same locations across years, we incor-
porated independent spatial and temporal random effects (Doser et al., 2022; Diana et al.,
2023) in our occupancy sub-model to account for possible spatial and temporal autocorrela-
tion. Specifically, we modeled the site-level effect as a spatial random effect using a nearest
neighbor Gaussian Process (Doser et al., 2022; Datta et al., 2016) with an exponential co-
variance function and 10 nearest neighbors, and we modeled the year-level random effect as
an auto-regressive (AR1) structured effect of year. For a more detailed description of the

model formulation, see Appendix S1.

2.2.2 Detection sub-model

We also included covariates in the detection sub-model to account for factors impacting
the detection probability of bluethroats. First, we included a different intercept for each
secondary survey period because vocal behavior of the bluethroats changes across the season,
and vocalizing birds are likely to have higher detectability. The detection model also included
latitude, elevation, and their interaction, to account for any differences in detectability of
bluethroats between denser birch forests present at lower elevations and more open tundra
and heathland at higher elevations, a habitat difference which is also mediated by latitude.
Lastly, we included an ’effort’ covariate, computed as the total number of reports of any
background species during the week (survey period), which we used as a proxy of the survey
effort. Similar to list length analysis (Szabo et al., 2010), this covariate reflects both how
many people visited a given site during a secondary replicate, as well as how much time they
spent there, as longer lists (i.e., more reports of background species) are produced when

more effort is expended.

10
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2.2.3 Modeling procedure

We implemented all models in the ’spOccupancy’ package, v. 0.7.6 (Doser et al., 2022),
in the R Statistical Environment (R Core Team, 2024). We specified all fixed parameter
priors as N(0,2.72) Northrup and Gerber (2018). We specified the temporal variance prior
as inverse gamma (shape = 2, scale = 0.5), and we specified the temporal decay (i.e., the
correlation between random effects that are one year apart) prior as uniform with limits of
-1 and 1. For the spatial variance parameter, we specified an inverse gamma prior (shape
= 2, scale = 1), and for the spatial decay parameter, we specified a uniform prior with a
lower limit of 3 divided by the maximum inter-site distance (3/1782 = 0.0017) and an upper
limit of 3 divided by the minimum inter-site distance (3/0.54 = 5.56), which allowed the
effective spatial range (the distance at which spatial correlation between sites is <0.05) to
be anywhere between the minimum and the maximum distance between our surveyed sites
(0.54 to 1782 km). Before inclusion in models, we centered and standardized latitude, year,
and effort (by subtracting the mean and dividing by two times the standard deviation), and
we centered elevation on 800 m and standardized it (by subtracting 800 and dividing by two
times the standard deviation) to improve model convergence.

We ran 3 chains of 50,000 iterations each, with a burn-in of 30,000 iterations and a
thinning rate of 40, for a total of 1500 posterior samples across all chains. We confirmed
model convergence using rhat values (confirmed all values were <1.1), as well as examining
traceplots of the chains for each parameter, and we conducted posterior predictive checks
(grouping by site and by survey) to ensure model adequacy. We used WAIC for all model
comparisons, and we selected the model with the lowest WAIC for drawing inference. Except
where noted, all results are reported with the posterior mean and 95% credible interval
(CRI). We used both the absolute change over time (i.e., probability of occupancy in 2024
minus the probability of occupancy in 1980) and the relative change over time (i.e., the odds

ratio 2024,/1980) to fully characterize changes in occupancy over time in the context of our

11
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hypothesis.

3 Results

3.1 Observation data

Our final dataset included 550,784 observations from 49,455 sites (i.e., 1-km? hexagonal
grid cells) across Norway, Sweden, and Finland. The number of surveys per year generally
increased over the time period of the study (Fig. S3A), as did the number of surveys with
bluethroats detected (Fig. S3B). Among the years of the study, the proportion of sites with
bluethroat detections ranged from 3% (2024) to 18% (1981), and the average proportion of
sites with a bluethroat detection was 7.1% (sd = 3.7%; Fig. S3C)). Our data also included
many 'missing’ surveys, as most sites were not surveyed every year, and those sites that were

surveyed often received effort in only one secondary sampling period (Fig. S4).

3.2 Occupancy

We found that the best structure for the elevation effect included a cubic spline and two knots
(AWAIC between models = 365), and we found that a model with a three-way interaction
between year, latitude, and elevation best modeled changes in breeding season occupancy
over the past 45 years (AWAIC between two-way and three-way interaction models = 4).
Posterior distributions for the occupancy parameters in the final model are in Fig. S5. Pos-
terior predictive checks indicated that model fit was adequate overall. When grouping by
site, posterior predictive checks for a handful of years indicated that the model produced
data with more variability than we observed, suggesting that credible intervals may be con-
servative.

Latitude and elevation mediated each other’s relationships with occupancy. At low and

12
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Figure 2: (A) The association between occupancy and elevation at four representative lat-
itudes (panels) and three time steps (colors) with 95% credible intervals. Dashed vertical
lines represent the elevation with the highest predicted occupancy at each latitude in 1980
(the first year of the study). (B) For the elevation at each latitude with the peak predicted
occupancy in 1980 (dashed vertical lines in A1) 3 predicted occupancy over the 45 years of the
study with 95% credible intervals.
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mid-latitudes, occupancy was typically hump-shaped, reaching a peak at mid-elevations, with
the elevation of the peak differing across latitudes. However, at high latitudes, occupancy
peaked at high elevations (Fig. 2A). We note that at high latitudes, the range of elevation
present in the dataset was from approximately 0 to 800 m, compared to an approximately
1500 m range of elevation at mid-latitudes. At the highest latitudes (i.e., 70-72°N), there
was also a smaller peak in occupancy at lower elevations, but this peak was greatly reduced
in later years of the study (Fig. 2A). At lower latitudes (e.g., 59°N and 62°N in 2A), we also
predicted an upward shift over time in the elevation where the highest predicted occupancy
occurred. For example, at 59°N the elevation with the highest predicted occupancy was
1047 m in 1980, but increased to 1138 m by 2024. Similarly, at 62°N, the elevation with
highest predicted occupancy shifted from 978 m to 1023 m form 1980 to 2024. However, we
saw no change at 70°N, and a subtle downhill shift in the elevation with the peak predicted
occupancy at 66°N (887 m to 864 m from 1980 to 2024; 2A).

Occupancy of bluethroats notably declined across Fennoscandia over the 45 years of the
study (Fig. 2, Fig. 3, Fig. 4, Fig. 5), and combinations of latitude and elevation played
roles in shaping these changes in occupancy (Fig. 3). Considering a site at average latitude
(63.6°) and 800 m elevation, the odds of occupancy declined by a factor of 0.94 (or 6%, CRI:
0.92-0.95, 5-8%) after one year, leading to a reduction in the odds of occupancy by a factor
of 0.52 (48%, CRI: 0.44-0.60, 40-56%) after 10 years. While occupancy in early years of the
study was high across a large swath of latitude/elevation combinations, by 2024, occupancy
was typically low below 64° latitude (Fig 3A). Unsurprisingly, model uncertainty was also
higher in the early years of the analysis when data were more sparse (Fig 3B). In general,
the probability of occupancy declined the most in areas where occupancy was higher at the
start of the study (Fig. 3C), but the ratio of the odds of occupancy in 2024 versus 1980
revealed that areas with both low elevation and low latitude were predicted to have the

largest relative changes (Fig. 3D). However, many of these sites had low occupancy at the
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Figure 3: Contour plot showing how bluethroat occupancy probability declined across the
range of latitudes and elevations present in the study area from 1980-2024. (A) Bluethroat
occupancy probability predicted for five time-steps. (B) The width of the 95% credible
intervals for the same 5 time steps. (C) The absolute change in occupancy probability from
the first year of the study (1980) to the last year of the study (2024). (D) The ratio of the
odds of occupancy for 2024 versus 1980, showing the relative change in occupancy from the

beginning to the end of the study.
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Figure 4: Predicted occupancy probability across the study area for five time-steps of 11
years.

beginning of the study such that occupancy probability changed from close to zero in 1980
to even closer to zero in 2024, and thus the total (absolute) change in occupancy probability
was lower in these areas. The odds ratios demonstrated that high latitude sites had lower
relative change, as did mid- to high-elevation sites at lower latitudes (Fig. 3D).

Similar patterns were reflected when we estimated occupancy across the Fennoscandian
peninsula for the years of the study, but spatial and temporal random effects also contributed
to occupancy predictions (Fig. 4). The posterior mean of the spatial variance was 5.24 (95%
CRI: 4.51 - 6.08; spatial sd = 2.29, 95% CRI: 2.12-2.47) and the posterior mean of the
spatial decay was 0.00169 (95% CRI: 0.00168 - 0.00171) on the logit scale. The posterior for
the spatial decay was tightly pushed against against the lower bound. The spatial random
effects suggest rather high variance between sites over a large spatial range, which suggests
they may reflect environmental factors not accounted for in the fixed part of the model
that are themselves auto-correlated. Plots of the spatial random effects show quite localized
areas with stronger effects (Fig. S6A). In particular, fixed effects tended to underestimate
occupancy in the west and overestimate it in the east (Fig. S6A), which may correspond to
specific habitat conditions at these sites such as a lower treeline in the west due to higher
winter precipitation. We estimated the posterior mean for the temporal variance as 0.11

(95% CRI 0.06 - 0.21; temporal sd = 0.33, 95% CRI 0.24-0.46), and the temporal decay as

16
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Figure 5: Change in occupancy from the first year of the study (1980) to the last year of the
study (2024). (A) The change in the probability of occupancy from 1980 to 2024 showing
which areas have experienced the largest absolute declines in probability of occupancy. (B)
The ratio of odds for 2024 versus 1980 showing which areas experience the largest relative
declines in occupancy. Note that areas with < 0.05 (5%) predicted probability of occupancy
in 1980 are masked with black to aid interpretation.

-0.04 (95% CRI-0.3 - 0.23). These estimates corresponded to small temporal random effects
where the 95% CRI usually overlapped zero (Fig. S6B). In the context of these effects, our
model indicates that occupancy has declined across the entire study area, with the largest
absolute changes in occupancy probability occurring at low- to mid-latitude sites and in
coastal areas in the far north (Fig. 5A). Some strongholds of higher occupancy remain in
the north, particularly in Troms and Finnmark in Norway and Lappland in Sweden, and

in smaller localized pockets of mid- to high elevation at low- to mid-latitudes in southern

Norway, where odds ratios indicate that occupancy is changing more slowly (Fig. 5B).
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Figure 6: (A) Effect size and 95% credible interval for all parameters in the detection sub-
model (logit scale; units are change per two standard deviation change in the predictor).
(B) The association between effort and detection probability, where effort is measured as
the number of reports of background species during a given survey. (C) Average effort
(number of reports of background species) per survey in each year, represented by the mean
and standard error across all 49,455 survey sites. (D) The count of the number of surveys
conducted in each year of the study.
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3.3 Detection

Detection probability at an average site (i.e., 63.6° latitude, mean effort, 800 m elevation)
ranged from 0.22 in week 3 to 0.26 in week 1, and effort, latitude, elevation, and the inter-
action between latitude and elevation all had positive effects on detection probability (Fig.
6A). Effort, in particular, showed a strong positive relationship with detection probability,
such that more than 20 reports of background species within a given secondary sampling
period resulted in nearly perfect detection of bluethroats (Fig. 6B). However, most sites
received considerably less effort than that. Average effort (number of reports of background
species per survey) ranged from 2.8 (in 2024) to 7.8 (in 1988) reports (Fig. 6C). Notably, the
number of surveys conducted increased substantially over the years (Fig. 6D). Most surveyed
sites were only surveyed once in a given year (Fig. S4), and many sites only received effort

in a small number of years.

4 Discussion

The declines we observed in bluethroat occupancy largely coincide with expectations under
climate change - sites at higher latitudes and higher elevations generally experienced smaller
relative declines occupancy (i.e., had higher odds ratios). However, high latitude sites and
high elevation sites at lower latitudes also often had higher occupancy probability to be-
gin with, leading to these areas also experiencing some of the highest absolute declines in
occupancy probability over the course of our study. In essence, these results suggest that
areas at high latitudes and high elevations at low to mid-latitudes function as refugia where
occupancy changes more slowly, but occupancy is declining even in these refugia. Upward
shifts in peak occupancy towards higher elevations in the southern portions of the study area
further support the role of climate change in the decline.

Notably, we only observed declines in occupancy over time, never increases. Overall,
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the amount of habitat occupied by breeding bluethroats declined dramatically across the 45
years of our study. This pattern matches the expectation for many montane organisms -
species already living at high altitudes may not have anywhere to shift to as climate change
progresses, termed the ’escalator to extinction’ (Urban, 2018; Marris, 2007; Sekercioglu et al.,
2008). The decline we documented in bluethroat occupancy is a reminder that even ’'common’
species are under threat from climate change, a pattern also reflected in other areas (Inger
et al., 2015; Dupont and Dobson, 2025).

While we examined occupancy and not abundance, given the generally positive rela-
tionship between abundance and occupancy (Gaston et al., 2000; Zuckerberg et al., 2009)
especially among long-distance migrants (Manne and Veit, 2020), it is probable that the
decline in occupancy we observed over the 45 years of our study is accompanied by reduced
abundance, as well. Structured monitoring data from 2002 to 2012(Lehikoinen et al., 2014)
and 2002 to 2014 (Lehikoinen et al., 2019) indicated non-significant declines in bluethroat
abundance across Fennoscandia, with some evidence of a small decline in Norway 2002 to
2012. The longer temporal scale and the high spatial resolution of our study provides more
context for these analyses. It is possible that bluethroat abundance declined more quickly
in the early part of our study period before stabilizing in the latter period, but the tem-
poral random effects (Fig . S5B) do not seem to indicate this pattern. Another hint at
a waning source population is the steady decline of a peripheral population of red-spotted
bluethroats in the Krkonose Mountains, Czech Republic, which is dependent upon immi-
gration from populations in Sweden and Norway (Damnjanovi¢ et al., 2024; Johnsen et al.,
2006), to only a few breeding pairs (Damnjanovié¢ et al., 2024). Notably, the white-spotted
bluethroat (Luscinia svecica cyanecula), which breeds in lowland wetlands throughout Cen-
tral Europe, is experiencing a population and range expansion and has even established a
breeding population in southern Sweden (Andersson, 2022; Petras and Vrezec, 2022).

Our results suggest that climate change may play some role in declining bluethroat oc-
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cupancy, but the question remains what proximate factors are responsible for the decline.
Climate change can affect species directly through abiotic mechanisms (e.g. heat stress,
drought stress, etc.), but also, and perhaps even more importantly, indirectly through biotic
mechanisms such as phenological mismatches, novel interactions with species shifting or ex-
panding their ranges, or changes in prey availability (Cahill et al., 2013; Ockendon et al.,
2014). Changes to breeding habitat may be one important factor to consider. Bluethroats
are habitat specialists whose breeding distribution is dependent upon the ecotone between
mountain birch forest and tundra. This ecotone is, in turn, shaped by complicated dynam-
ics between climate, herbivory and domestic grazing, topography, and vegetation (Bryn and
Potthoff, 2018; Mienna et al., 2024; Speed et al., 2010) and is rapidly changing in some areas,
with advancing treelines and loss of tundra occurring more rapidly in southern Fennoscandia
(Nygaard et al., 2022; Hofgaard et al., 2009). Bluethroats are also insectivores, which are
declining across Europe (Bowler et al., 2019), and long-distance migrants, which may be
less able to shift their breeding phenology to match changing spring phenology (Both et al.,
2006; Sgraker et al., 2022), leading to declining populations ((Mgller et al., 2008; Both et al.,
2006), but see also Knudsen et al. (2011)). Interestingly, studies in the region have shown
that long-distance migrants do not have more negative population trends than short-distance
or resident species (Lehikoinen et al., 2014) and that migratory behavior is not as good a
predictor of altitudinal range shifts as life history (Couet et al., 2022). In summary, more
work, likely across multiple spatial scales, is necessary to identify depressed vital rates (e.g.,
adult survival, fecundity, etc.) and establish causal relationships between bluethroat declines
and proximate mechanisms.

To our knowledge, this the first study to exploit bias towards reporting notable’ (e.g.,
rare, exciting, or culturally important) species to construct non-detections, and our results
demonstrate that unstructured community science data can fill important knowledge gaps

about population trends across space and time. Occupancy models are a robust method for
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drawing inference from messy community science datasets (Johnston et al., 2021; Isaac et al.,
2014; Hochachka et al., 2023), especially because they allow for the inclusion of covariates
that describe the detection process. Given its positive association with detection probability,
the number of observations of background species reported was seemingly a reasonable proxy
for survey effort, the inclusion of which likely also helped account for the general increase
in survey effort across the 45 years of the study. Furthermore, the somewhat low detection
probability (< 0.3) and strong covariate effects in our study underscore the importance of
correcting for imperfect detection. However, information about non-detections is required
in order to take advantage of this powerful class of models, and many readily-available
community science datasets are detection-only.

It is obviously most desirable to have data where non-detections are explicitly recorded,
such as when reported data are guaranteed to be 'complete checklists’(Johnston et al., 2021;
Kéry et al., 2010). However, when databases do not include information about whether
‘complete checklists’ are reported or not, as has until recently been the case for the Norwegian
and Swedish reporting portals, we believe that our approach of inferring non-detections from
the reporting of much less 'notable’ species is robust. van Strien et al. (2010, 2013) also
constructed non-detections from detection-only data, but they used reports of any other
dragonfly species to infer non-detections of focal dragonfly species (van Strien et al., 2010,
2013). This assumption may hold for dragonflies, where an observer with knowledge of one
species may be assumed to have knowledge of others, but it is likely less valid for birds where
observers with little experience may be more likely to report a bright and easy-to-identify
species and many observers may be more likely to report rare or exciting species (Backstrom
et al., 2025). In our specific application, we find it highly unlikely that birders who report
any of the background species would not report the iconic bluethroat if observed. It is
also important to note that such cases would only contribute to lower detection probability

and not bias the occupancy estimates, as long as the model captures the major sources of
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variation in detection probability. One probable source of bias, however, is the the tendency
of observers to initiate a checklist list only after seeing a notable species (Backstrom et al.,
2025). This would lead to an over-representation of checklists that include the notable focal
species also among checklists that include the less notable background species. This tendency
could lead to an overestimation of occupancy; however, large scale geographic and temporal
patterns will only be biased if the over-representation is substantially different in different
regions, or changes systematically over time. We do not see any reasons for this being the
case in our study.

The obvious limitation of our method is that it can only be applied to 'notable’ species;
however, 'notable’ species are often those that researchers may be explicitly interested in
modeling due to protected status, rarity, or cultural importance. We demonstrated the
method here for just one notable species in the Fennoscandian peninsula, but this method
could be applied to any notable species of any taxa or geographic distribution where the

assumption applies.

5 Conclusions

Unstructured community science data are readily available in large quantities and across
large spatial and temporal extents, but they are also subject to many potential biases (John-
ston et al., 2021; Bird et al., 2014). Variability in observer behavior is a central challenge
to maximizing the utility of unstructured community science data (Johnston et al., 2023;
Schmidt et al., 2023), but the number of studies explicitly focused on understanding the be-
havior of contributors to community science databases is increasing (Kolstoe and Cameron,
2017; Backstrom et al., 2025; Tulloch and Szabo, 2012; Callaghan et al., 2021; Bowler et al.,
2022). The power of unstructured data to detect trends will always be lower than that of

structured data resulting from well-designed survey protocols (Kamp et al., 2016; Altwegg
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and Nichols, 2019); however, our results demonstrate that an understanding of the biases
present in community science data can be leveraged to take advantage of these massive
datasets. Our uncovering of a decline in bluethroat occupancy over the past 45 years further
demonstrates that these data can be used to fill important knowledge gaps about species

trends in light of rapid global change.
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6 Appendix S1. Occupancy model formulation

We implemented our spatio-temporal occupancy models using the 'stPGOcc’ function in the
spOccupancy package Doser et al. (2022) in the R Statistical Environment R Core Team
(2024).

Explanation of subscripts used in the model:

j=1,..,J (sites)

t=1,..,T (years)

k=1,.., K (surveys)

6.1 Occupancy sub-model (ecological process)

We formulated our occupancy model as

2+ ~ Bernoulli(e); )

logit(v+) = X8 + w; + m

where z;; represents the latent (unobserved) true occupancy state of site j in year ¢, 1,
is the probability of occupancy at site j in year t, 3 is a vector of coefficients for covariate
effects (including an intercept) and x;; is a row-vector of the covariate values at site j in
year t. w; and 7, are the multivariate normal spatial and temporal random effects.

Spatial random effects (w;) were estimated using a Nearest Neighbor Gaussian Process
(NNGP) Datta et al. (2016); Finley et al. (2019); Doser et al. (2022), with an exponential

2 and

covariance structure. In this model, the variance of the random effects is constant, o
the correlation between random effects at two sites at a distance d apart is exp(—¢d), where
the ¢ represents the rate at which the correlation decays. Thus, the distance at which the

spatial autocorrelation falls below 0.05 is —1og(0.05)/¢ ~ 3/¢, which may be interpreted

as the spatial extent of the autocorrelation (used for selecting reasonable upper and lower
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bounds for the prior probability distribution of ¢).
We modeled the temporal random effects (7;) using an AR1 auto regressive structure.

The covariance between two time points ¢y and t; is thus

orplt
where 02 is the temporal variance (magnitude) and p is the correlation between two successive
years (one time unit).

In the final occupancy sub-model, the covariates included were latitude, year, elevation

(represented by a cubic spline with 2 knots), and the three-way interaction between them.

6.2 Detection sub-model (observation process)

We formulated the detection model as

Yjrk ~ Bernoulli(p; ¢ xzj+)

logit(pjik) = Vjuree

where y;;  is the detection/non-detection (1/0) observation at site j in year ¢ and survey k.
pj.tx is the probability of observing a bluethroat, given that it is present, for site j in year ¢
and survey k. a is a vector of detection coefficients, and row vector v, ; holds the covariate
values at site j in year ¢t and survey k.

In the detection sub-model, we estimated a separate intercept for each week, as well as
including effort (the number of reports of background species in a given survey (i.e., week),

latitude, elevation, and the interaction between latitude and elevation as covariates.
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Figure S7: Maps showing reports of background species for the whole study period (left)
and reports of bluethroats and background species for the middle year of the study (2013,
right), as an example of the dataset.
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Figure S8: Map showing the mean elevation for each 1-km hexagonal grid cell in the
Fennoscandian peninsula, derived from a 30-m global Digital Elevation Model with forests
and buildings removed.
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Figure S9: Visualization of the number of surveys each year across all sites. (A) shows
the number of surveys where background species were detected (i.e. the number of sites
surveyed), and (B) shows the number of surveys during which bluethroats were detected.
(C) shows the naive proportion of sites that had bluethroat detections in each year of the
study, calculated as the number of sites where bluethroats were detected at least once divided
by the total number of sites surveyed in that496ar.
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Figure S10: We used observations from one week (7 days) as a 'survey’ in this study. This
histogram shows the surveyed sites in each year and the number of sites with each number
of surveys (1-5). Most surveyed sites had only one week with effort (i.e., background species
reported) in a given year, but some sites were surveyed multiple times allowing for estimation
of detection probabilities. Our primary survey period was 10 June - 1 July (5 weeks), so the
maximum number of surveys in a given year was 5.
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Figure S11: Full posterior distributions for all the occupancy covariate coefficients. The
center blue section depicts the 50% credible interval, the darker brown represents the 95%
credible interval, and the light brown represents the 99% credible interval. All predictor
variables were standardized prior to model fitting by subtracting the mean and dividing by 2
standard deviations. Effect sizes are thus change in log-odds for occupancy per two standard
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