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Abstract9

The threat of climate change is particularly acute for species in arctic and montane habi-10

tats, where changes are happening the most rapidly. Species are generally expected to shift11

their ranges northward and upslope in response to changing climates, but actual measured12

shifts in species distributions have been nuanced and large quantities of data are needed to13

accurately assess shifts. The growing availability of unstructured community science data is14

an appealing solution to the problem of characterizing changes in species distributions, but15

these data contain known biases that must be overcome to draw strong inference. Here, we16

leveraged opportunistic, unstructured community science data from across the Fennoscan-17

dian peninsula over the last 45 years to evaluate the hypothesis that the breeding distribu-18

tion of a common and iconic montane bird, the bluethroat (Luscinia svecica), has shifted19

towards higher latitudes and elevations. We constructed non-detections of bluethroats us-20

ing detections of 12 less notable ’background’ avian species, which allowed us to analyze21

over 500,000 observations within a robust spatio-temporal occupancy modeling framework.22

We found that bluethroat occupancy has declined substantially over the past four decades23

across Fennoscandia. The largest absolute declines in occupancy probability took place in24

areas with higher occupancy in the early years of the study, but the largest relative changes25

in occupancy took place at low latitudes and low elevations at high latitudes. Our work26

demonstrates that even common and globally stable species are at risk of breeding habitat27

loss under the looming threat of climate change and that unstructured community science28

data, when used thoughtfully, can fill important knowledge gaps about species responses to29

global change.30
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1 Introduction31

Climate change is influencing species distributions on a global scale (Parmesan and Yohe,32

2003; Chen et al., 2011), and species adapted to northern climates are acutely affected be-33

cause the Arctic is warming as much as four times faster than the rest of the globe (Stuecker34

et al., 2018; Rantanen et al., 2022). In general, species are expected to demonstrate lati-35

tudinal and elevational movements in which their range boundaries shift towards the poles36

and towards higher elevations to track their climatic niche (Thomas and Lennon, 1999; Chen37

et al., 2011; Walther, 2010; Hickling et al., 2006). In reality, though, observed distribution38

changes are nuanced. While many species ranges have shifted uphill or towards the poles,39

others have remained seemingly constant, and some have actually shifted downslope or to-40

wards the equator (Chen et al., 2011; Lenoir et al., 2010; Hickling et al., 2006). This variation41

in responses to climate change is hardly surprising given that species distributions are in-42

fluenced by a wealth of interacting abiotic and biotic factors (Hughes, 2000; Hällfors et al.,43

2024; Archaux, 2004; Bateman et al., 2016; Tsiftsis et al., 2024), and geographic shifts in cli-44

mate envelopes are only partly associated with latitude and elevation (Lenoir and Svenning,45

2015; VanDerWal et al., 2013). Nevertheless, understanding how distributions are changing46

is an essential part of understanding and responding to threats to biodiversity posed by rapid47

changes in climatic conditions (Chen et al., 2011; Hovick et al., 2016). However, character-48

izing changes in species distributions over large geographic areas can be challenging, due to49

the need for large amounts of data over broad spatial and temporal scales.50

The increasing quantity of community science data (also known as citizen science or51

participatory science data) and the expansive geographic ranges encompassed by these data52

make them an appealing solution to the problem of characterizing changes in species distribu-53

tions (Theobald et al., 2015; Soroye et al., 2018). Community science data fall along a contin-54

uum between structured data, resulting from coordinated survey efforts where participants55
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typically collect data following a standardized protocol designed to reduce various sources of56

bias and allow estimation of metrics of interest (Hochachka et al., 2012; Altwegg and Nichols,57

2019), and opportunistic data, resulting from casual observations of species reported with58

varying amounts of associated metadata (Kamp et al., 2016). Structured data (e.g., resulting59

from population monitoring schemes) have led to many important insights (Lehikoinen et al.,60

2014; Rosenberg et al., 2019; Sauer et al., 2017), but can be time-consuming, difficult, and61

expensive to organize and collect, especially at large spatial scales. Indeed, opportunistic62

data are increasing the most rapidly in quantity and spatial coverage (Pocock et al., 2017),63

but these data present an array of challenges for drawing strong inference (Johnston et al.,64

2023) and may not match the power of structured data to characterize trends of interest65

(Kamp et al., 2016).66

Opportunistic data can be unstructured or semi-structured. Semi-structured data are67

collected opportunistically, but also require observers to submit information about the ob-68

servation process (e.g., checklists on eBird). Semi-structured data are increasingly used69

to draw strong inference about bird distributions and population trends (Johnston et al.,70

2025; Rosenberg et al., 2019). However, there is also a wealth of unstructured opportunistic71

data with little to no information about the observation process. These data are typically72

detection-only, meaning they include information about where species were observed but73

not where effort was expended and a particular species was not observed. These data also74

suffer from potential spatial and temporal bias, as well as bias resulting from observer be-75

havior, such as a tendency to report exciting or notable species but not common or drab76

species (Johnston et al., 2023; van Strien et al., 2013). Overcoming some of these sources77

of bias could enhance our ability to draw inference from these large and readily-available78

unstructured participatory science datasets.79

Here, we leverage opportunistic, unstructured participatory science data to understand80

whether the occupancy dynamics of a common montane bird, the bluethroat (Luscinia sve-81
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cica svecica), conform to expectations under climate change across the Fennoscandian penin-82

sula. Specifically, we evaluate the hypothesis that the breeding distribution of the bluethroat83

has shifted towards higher latitudes and higher elevations over the last 45 years. We do this84

in an occupancy modeling framework (MacKenzie et al., 2018; Mackenzie et al., 2002) where85

we infer non-detection of a notable species (the bluethroat) by assuming that observers who86

report less notable ‘background’ species would also have reported the notable species if it87

had been seen. In this way, we exploit observer bias towards reporting notable and exciting88

species to transform opportunistic detection-only data into detection/non-detection (occu-89

pancy data), allowing for stronger inference (conditioning on observations of common and90

less notable species).91

The bluethroat, a montane specialist dependent upon the shrubby ecotone between moun-92

tain birch forest and tundra, is an interesting species for this work for two reasons. First, its93

conservation status is somewhat uncertain in this region. Officially, the bluethroat is clas-94

sified ’least concern’ both globally (BirdLife International, 2019) and on national red lists95

for Norway, Sweden, and Finland (Artdatabanken, 2020; Artsdatabanken, 2021; Hyvärinen96

et al., 2019). However, there is some evidence that bluethroat abundance may have declined97

in Norway (Lehikoinen et al., 2014) where the species was red-listed from 2015-2021 (Hen-98

rikson and Hilmo, 2015; Artsdatabanken, 2021), and habitat specialists are generally more99

at risk than generalists (Jiguet et al., 2010). Further, little information exists about changes100

in the distribution of the bluethroat within Scandinavia over the past few decades (but see101

(Couet et al., 2022)). Second, the bluethroat has functional traits that suggest opposing ex-102

pectations about shifts in its geographic range over time. The bluethroat is a long-distance103

migrant - bluethroats from Scandinavia most likely migrate along the Indo-European flyway104

and winter in India (Lislevand et al., 2015) - and resident species have been shown to be105

more likely to shift their ranges over time than migratory species (MacLean and Beissinger,106

2017). However, bluethroats are also fairly short-lived and occur at high elevations, both107
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of which may lead to faster uphill shifts (Couet et al., 2022). Thus, our work seeks to fill108

important knowledge gaps for the bluethroat, as well as improving inferences drawn from109

opportunistic community science datasets.110

2 Materials and Methods111

2.1 Study area and observation data112

We studied the bluethroat breeding distribution across the Fennoscandian peninsula of north-113

ern Europe, including Norway, Sweden, and Finland, and our study period covered the114

years 1980-2024. To improve computational efficiency, we only included regions where the115

bluethroat historically breeds; specifically, we included data from all of Norway and we only116

included data from north of 61◦ and 65◦ latitude for Sweden and Finland, respectively. This117

area comprises >740 000 km2 and includes the entire range of the Scandinavian Mountains118

(Scandes), as well as surrounding areas.119

We downloaded species observation records from the Global Biodiversity Information Fa-120

cility (GBIF), and filtered observations to meet our requirements. We downloaded species121

records from Norway, Sweden, and Finland for the bluethroat and for 12 background species122

(brambling [Fringilla montifringilla], fieldfare [Turdus pilaris ], hooded crow [Corvus cornix ],123

meadow pipit [Anthus pratensis ], common gull [Larus canus ], northern wheatear [Oenanthe124

oenanthe], common raven [Corvus corax ], redshank [Tringa totanus ], redwing [Turdus ilia-125

cus ], twite [Carduelis flavirostris ], willow tit [Poecile montanus ], and willow warbler [Phyl-126

loscopus trochilus ]) using the ’rgbif’ package (Chamberlain et al., 2025) in R (R Core Team,127

2024). We only included records made by human observers that included coordinates, had128

no geospatial issues, and had <500m coordinate uncertainty (to match the spatial scale129

of our study). Our goal was to analyze changes in the bluethroat breeding distribution;130

therefore, we only included data from 10 June to 14 July in our analysis, a period that131
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reflects the peak of the bluethroat breeding season in Scandinavia. In the end, our data132

included observations from 27 different datasets, but the vast majority of records came133

from Artsobservasjoner (56%; https://www.artsobservasjoner.no/) and Artportalen (19%;134

https://www.artportalen.se/), species reporting services from Norway and Sweden, respec-135

tively (?).136

To compile records from the bluethroat and background species into detection histories,137

we overlaid the entire Fennoscandian peninsula with a tesselation of hexagonal grid cells,138

each of which were 1 km2 in area. We selected 1 km2 as the spatial scale to balance the139

tractability of the analysis with the need to minimize variation in elevation within grid140

cells, as well as to better capture any uncertainty in the observation locations. Then, we141

used a spatial join in the ’terra’ package (Hijmans, 2024) to assign individual records to the142

corresponding hexagonal grid cell.143

2.2 Occupancy modeling144

To create repeated surveys for occupancy modeling, we split our primary season (10 June -145

14 July) into five, week-long secondary survey periods (hereafter ’surveys’). We used a 7-day146

secondary survey period to avoid bias from varying survey effort throughout a week (e.g.,147

surveys are more likely to occur on the weekend). Next, we used observations of background148

species to infer non-detections of bluethroats. If an observation of any background species149

was reported in a given grid cell in a given primary season and survey period, then that cell150

was considered ’surveyed’ in that period. If a site was surveyed, it could then receive either151

a ’0’ if no bluethroat was reported, or a ’1’ if a bluethroat was also reported, during the same152

survey. This method of inferring non-detections relies upon the assumption that an observer153

who reported a common and drab background species would have also reported a bluethroat,154

which is brightly-colored and notable in our study region. Grid cells where a bluethroat was155

reported but no background species were reported were not considered surveyed and were156
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Figure 1: Map of the study area showing how individual observations were compiled to the
level of 1-km hexagonal grid cells. (A) The entire study area and all bluethroat observations
from the study period (1980-2024). (B) A view of many grid cells, along with observations
of both background species (black) and bluethroats (blue). (C) Visualization of compiling
observations to the grid cell level. We considered cells to be ’surveyed’ (in a given year
and survey) if a background species was reported there, and we considered cells to have a
bluethroat detection if both a background species and a bluethroat were reported.
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treated as missing data (Fig. 1). In this way, the resulting detection/non-detection data157

only represent site×years where at least one of the background species have been seen, but158

by using a wide range of common and widely distributed background species (listed above),159

we still maintain a wide inference space (see Fig. S1).160

2.2.1 Occupancy sub-model161

To investigate the hypothesis that the bluethroat breeding distribution has shifted northward162

or upslope over the past 45 years, we used multiseason spatio-temporal occupancy models to163

estimate occupancy probability depending on elevation, latitude, and time, while accounting164

for heterogeneity in detection. Elevation and latitude both shape species distributions and165

also influence each other’s relationship with species distributions, so we included elevation,166

latitude, and the interaction between them in the occupancy sub-model. We used eleva-167

tion data from a 30-m global Digital Elevation Model with forests and buildings removed168

(Hawker et al., 2022), and summarized it using the arithmetic mean within each 1-km grid169

cell (Fig. S2). For latitude, we used the latitude of the centroid of each grid cell. We also170

included a linear effect of year on the logit scale. Finally, we included the interaction effects171

’year*latitude’ and ’year*elevation’ on occupancy probability to estimate changes in the lat-172

itudinal and elevational distribution of bluethroats over the past 45 years. Preliminary data173

analysis indicated that including elevation as a quadratic predictor may not effectively cap-174

ture the non-linear relationship between bluethroat occupancy and elevation, and so we first175

compared two models, one where we modeled elevation with a simple cubic spline and one176

where we modeled the effect of elevation with a cubic spline and five degrees of freedom (i.e.,177

a cubic spline with two knots) to account for non-linearity in the effect of elevation. Lastly,178

with the previously determined structure for elevation, we fit a full interaction model with179

a three-way interaction between year, latitude, and elevation, to investigate to what degree180

occupancy had changed at a different rate across combinations of latitude and elevation.181

9



Because occupancy dynamics at surveyed locations may not be independent and because182

our data consisted of repeated surveys at some of the same locations across years, we incor-183

porated independent spatial and temporal random effects (Doser et al., 2022; Diana et al.,184

2023) in our occupancy sub-model to account for possible spatial and temporal autocorrela-185

tion. Specifically, we modeled the site-level effect as a spatial random effect using a nearest186

neighbor Gaussian Process (Doser et al., 2022; Datta et al., 2016) with an exponential co-187

variance function and 10 nearest neighbors, and we modeled the year-level random effect as188

an auto-regressive (AR1) structured effect of year. For a more detailed description of the189

model formulation, see Appendix S1.190

2.2.2 Detection sub-model191

We also included covariates in the detection sub-model to account for factors impacting192

the detection probability of bluethroats. First, we included a different intercept for each193

secondary survey period because vocal behavior of the bluethroats changes across the season,194

and vocalizing birds are likely to have higher detectability. The detection model also included195

latitude, elevation, and their interaction, to account for any differences in detectability of196

bluethroats between denser birch forests present at lower elevations and more open tundra197

and heathland at higher elevations, a habitat difference which is also mediated by latitude.198

Lastly, we included an ’effort’ covariate, computed as the total number of reports of any199

background species during the week (survey period), which we used as a proxy of the survey200

effort. Similar to list length analysis (Szabo et al., 2010), this covariate reflects both how201

many people visited a given site during a secondary replicate, as well as how much time they202

spent there, as longer lists (i.e., more reports of background species) are produced when203

more effort is expended.204
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2.2.3 Modeling procedure205

We implemented all models in the ’spOccupancy’ package, v. 0.7.6 (Doser et al., 2022),206

in the R Statistical Environment (R Core Team, 2024). We specified all fixed parameter207

priors as N(0, 2.72) Northrup and Gerber (2018). We specified the temporal variance prior208

as inverse gamma (shape = 2, scale = 0.5), and we specified the temporal decay (i.e., the209

correlation between random effects that are one year apart) prior as uniform with limits of210

-1 and 1. For the spatial variance parameter, we specified an inverse gamma prior (shape211

= 2, scale = 1), and for the spatial decay parameter, we specified a uniform prior with a212

lower limit of 3 divided by the maximum inter-site distance (3/1782 = 0.0017) and an upper213

limit of 3 divided by the minimum inter-site distance (3/0.54 = 5.56), which allowed the214

effective spatial range (the distance at which spatial correlation between sites is <0.05) to215

be anywhere between the minimum and the maximum distance between our surveyed sites216

(0.54 to 1782 km). Before inclusion in models, we centered and standardized latitude, year,217

and effort (by subtracting the mean and dividing by two times the standard deviation), and218

we centered elevation on 800 m and standardized it (by subtracting 800 and dividing by two219

times the standard deviation) to improve model convergence.220

We ran 3 chains of 50,000 iterations each, with a burn-in of 30,000 iterations and a221

thinning rate of 40, for a total of 1500 posterior samples across all chains. We confirmed222

model convergence using rhat values (confirmed all values were <1.1), as well as examining223

traceplots of the chains for each parameter, and we conducted posterior predictive checks224

(grouping by site and by survey) to ensure model adequacy. We used WAIC for all model225

comparisons, and we selected the model with the lowest WAIC for drawing inference. Except226

where noted, all results are reported with the posterior mean and 95% credible interval227

(CRI). We used both the absolute change over time (i.e., probability of occupancy in 2024228

minus the probability of occupancy in 1980) and the relative change over time (i.e., the odds229

ratio 2024/1980) to fully characterize changes in occupancy over time in the context of our230
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hypothesis.231

3 Results232

3.1 Observation data233

Our final dataset included 550,784 observations from 49,455 sites (i.e., 1-km2 hexagonal234

grid cells) across Norway, Sweden, and Finland. The number of surveys per year generally235

increased over the time period of the study (Fig. S3A), as did the number of surveys with236

bluethroats detected (Fig. S3B). Among the years of the study, the proportion of sites with237

bluethroat detections ranged from 3% (2024) to 18% (1981), and the average proportion of238

sites with a bluethroat detection was 7.1% (sd = 3.7%; Fig. S3C)). Our data also included239

many ’missing’ surveys, as most sites were not surveyed every year, and those sites that were240

surveyed often received effort in only one secondary sampling period (Fig. S4).241

3.2 Occupancy242

We found that the best structure for the elevation effect included a cubic spline and two knots243

(∆WAIC between models = 365), and we found that a model with a three-way interaction244

between year, latitude, and elevation best modeled changes in breeding season occupancy245

over the past 45 years (∆WAIC between two-way and three-way interaction models = 4).246

Posterior distributions for the occupancy parameters in the final model are in Fig. S5. Pos-247

terior predictive checks indicated that model fit was adequate overall. When grouping by248

site, posterior predictive checks for a handful of years indicated that the model produced249

data with more variability than we observed, suggesting that credible intervals may be con-250

servative.251

Latitude and elevation mediated each other’s relationships with occupancy. At low and252
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Figure 2: (A) The association between occupancy and elevation at four representative lat-
itudes (panels) and three time steps (colors) with 95% credible intervals. Dashed vertical
lines represent the elevation with the highest predicted occupancy at each latitude in 1980
(the first year of the study). (B) For the elevation at each latitude with the peak predicted
occupancy in 1980 (dashed vertical lines in A), predicted occupancy over the 45 years of the
study with 95% credible intervals. 13



mid-latitudes, occupancy was typically hump-shaped, reaching a peak at mid-elevations, with253

the elevation of the peak differing across latitudes. However, at high latitudes, occupancy254

peaked at high elevations (Fig. 2A). We note that at high latitudes, the range of elevation255

present in the dataset was from approximately 0 to 800 m, compared to an approximately256

1500 m range of elevation at mid-latitudes. At the highest latitudes (i.e., 70-72◦N), there257

was also a smaller peak in occupancy at lower elevations, but this peak was greatly reduced258

in later years of the study (Fig. 2A). At lower latitudes (e.g., 59◦N and 62◦N in 2A), we also259

predicted an upward shift over time in the elevation where the highest predicted occupancy260

occurred. For example, at 59◦N the elevation with the highest predicted occupancy was261

1047 m in 1980, but increased to 1138 m by 2024. Similarly, at 62◦N, the elevation with262

highest predicted occupancy shifted from 978 m to 1023 m form 1980 to 2024. However, we263

saw no change at 70◦N, and a subtle downhill shift in the elevation with the peak predicted264

occupancy at 66◦N (887 m to 864 m from 1980 to 2024; 2A).265

Occupancy of bluethroats notably declined across Fennoscandia over the 45 years of the266

study (Fig. 2, Fig. 3, Fig. 4, Fig. 5), and combinations of latitude and elevation played267

roles in shaping these changes in occupancy (Fig. 3). Considering a site at average latitude268

(63.6◦) and 800 m elevation, the odds of occupancy declined by a factor of 0.94 (or 6%, CRI:269

0.92-0.95, 5-8%) after one year, leading to a reduction in the odds of occupancy by a factor270

of 0.52 (48%, CRI: 0.44-0.60, 40-56%) after 10 years. While occupancy in early years of the271

study was high across a large swath of latitude/elevation combinations, by 2024, occupancy272

was typically low below 64◦ latitude (Fig 3A). Unsurprisingly, model uncertainty was also273

higher in the early years of the analysis when data were more sparse (Fig 3B). In general,274

the probability of occupancy declined the most in areas where occupancy was higher at the275

start of the study (Fig. 3C), but the ratio of the odds of occupancy in 2024 versus 1980276

revealed that areas with both low elevation and low latitude were predicted to have the277

largest relative changes (Fig. 3D). However, many of these sites had low occupancy at the278
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Figure 3: Contour plot showing how bluethroat occupancy probability declined across the
range of latitudes and elevations present in the study area from 1980-2024. (A) Bluethroat
occupancy probability predicted for five time-steps. (B) The width of the 95% credible
intervals for the same 5 time steps. (C) The absolute change in occupancy probability from
the first year of the study (1980) to the last year of the study (2024). (D) The ratio of the
odds of occupancy for 2024 versus 1980, showing the relative change in occupancy from the
beginning to the end of the study.
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Figure 4: Predicted occupancy probability across the study area for five time-steps of 11
years.

beginning of the study such that occupancy probability changed from close to zero in 1980279

to even closer to zero in 2024, and thus the total (absolute) change in occupancy probability280

was lower in these areas. The odds ratios demonstrated that high latitude sites had lower281

relative change, as did mid- to high-elevation sites at lower latitudes (Fig. 3D).282

Similar patterns were reflected when we estimated occupancy across the Fennoscandian283

peninsula for the years of the study, but spatial and temporal random effects also contributed284

to occupancy predictions (Fig. 4). The posterior mean of the spatial variance was 5.24 (95%285

CRI: 4.51 - 6.08; spatial sd = 2.29, 95% CRI: 2.12-2.47) and the posterior mean of the286

spatial decay was 0.00169 (95% CRI: 0.00168 - 0.00171) on the logit scale. The posterior for287

the spatial decay was tightly pushed against against the lower bound. The spatial random288

effects suggest rather high variance between sites over a large spatial range, which suggests289

they may reflect environmental factors not accounted for in the fixed part of the model290

that are themselves auto-correlated. Plots of the spatial random effects show quite localized291

areas with stronger effects (Fig. S6A). In particular, fixed effects tended to underestimate292

occupancy in the west and overestimate it in the east (Fig. S6A), which may correspond to293

specific habitat conditions at these sites such as a lower treeline in the west due to higher294

winter precipitation. We estimated the posterior mean for the temporal variance as 0.11295

(95% CRI 0.06 - 0.21; temporal sd = 0.33, 95% CRI 0.24-0.46), and the temporal decay as296
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Figure 5: Change in occupancy from the first year of the study (1980) to the last year of the
study (2024). (A) The change in the probability of occupancy from 1980 to 2024 showing
which areas have experienced the largest absolute declines in probability of occupancy. (B)
The ratio of odds for 2024 versus 1980 showing which areas experience the largest relative
declines in occupancy. Note that areas with < 0.05 (5%) predicted probability of occupancy
in 1980 are masked with black to aid interpretation.

-0.04 (95% CRI -0.3 - 0.23). These estimates corresponded to small temporal random effects297

where the 95% CRI usually overlapped zero (Fig. S6B). In the context of these effects, our298

model indicates that occupancy has declined across the entire study area, with the largest299

absolute changes in occupancy probability occurring at low- to mid-latitude sites and in300

coastal areas in the far north (Fig. 5A). Some strongholds of higher occupancy remain in301

the north, particularly in Troms and Finnmark in Norway and Lappland in Sweden, and302

in smaller localized pockets of mid- to high elevation at low- to mid-latitudes in southern303

Norway, where odds ratios indicate that occupancy is changing more slowly (Fig. 5B).304
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Figure 6: (A) Effect size and 95% credible interval for all parameters in the detection sub-
model (logit scale; units are change per two standard deviation change in the predictor).
(B) The association between effort and detection probability, where effort is measured as
the number of reports of background species during a given survey. (C) Average effort
(number of reports of background species) per survey in each year, represented by the mean
and standard error across all 49,455 survey sites. (D) The count of the number of surveys
conducted in each year of the study.
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3.3 Detection305

Detection probability at an average site (i.e., 63.6◦ latitude, mean effort, 800 m elevation)306

ranged from 0.22 in week 3 to 0.26 in week 1, and effort, latitude, elevation, and the inter-307

action between latitude and elevation all had positive effects on detection probability (Fig.308

6A). Effort, in particular, showed a strong positive relationship with detection probability,309

such that more than 20 reports of background species within a given secondary sampling310

period resulted in nearly perfect detection of bluethroats (Fig. 6B). However, most sites311

received considerably less effort than that. Average effort (number of reports of background312

species per survey) ranged from 2.8 (in 2024) to 7.8 (in 1988) reports (Fig. 6C). Notably, the313

number of surveys conducted increased substantially over the years (Fig. 6D). Most surveyed314

sites were only surveyed once in a given year (Fig. S4), and many sites only received effort315

in a small number of years.316

4 Discussion317

The declines we observed in bluethroat occupancy largely coincide with expectations under318

climate change - sites at higher latitudes and higher elevations generally experienced smaller319

relative declines occupancy (i.e., had higher odds ratios). However, high latitude sites and320

high elevation sites at lower latitudes also often had higher occupancy probability to be-321

gin with, leading to these areas also experiencing some of the highest absolute declines in322

occupancy probability over the course of our study. In essence, these results suggest that323

areas at high latitudes and high elevations at low to mid-latitudes function as refugia where324

occupancy changes more slowly, but occupancy is declining even in these refugia. Upward325

shifts in peak occupancy towards higher elevations in the southern portions of the study area326

further support the role of climate change in the decline.327

Notably, we only observed declines in occupancy over time, never increases. Overall,328
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the amount of habitat occupied by breeding bluethroats declined dramatically across the 45329

years of our study. This pattern matches the expectation for many montane organisms -330

species already living at high altitudes may not have anywhere to shift to as climate change331

progresses, termed the ’escalator to extinction’ (Urban, 2018; Marris, 2007; Sekercioglu et al.,332

2008). The decline we documented in bluethroat occupancy is a reminder that even ’common’333

species are under threat from climate change, a pattern also reflected in other areas (Inger334

et al., 2015; Dupont and Dobson, 2025).335

While we examined occupancy and not abundance, given the generally positive rela-336

tionship between abundance and occupancy (Gaston et al., 2000; Zuckerberg et al., 2009)337

especially among long-distance migrants (Manne and Veit, 2020), it is probable that the338

decline in occupancy we observed over the 45 years of our study is accompanied by reduced339

abundance, as well. Structured monitoring data from 2002 to 2012(Lehikoinen et al., 2014)340

and 2002 to 2014 (Lehikoinen et al., 2019) indicated non-significant declines in bluethroat341

abundance across Fennoscandia, with some evidence of a small decline in Norway 2002 to342

2012. The longer temporal scale and the high spatial resolution of our study provides more343

context for these analyses. It is possible that bluethroat abundance declined more quickly344

in the early part of our study period before stabilizing in the latter period, but the tem-345

poral random effects (Fig . S5B) do not seem to indicate this pattern. Another hint at346

a waning source population is the steady decline of a peripheral population of red-spotted347

bluethroats in the Krkonoše Mountains, Czech Republic, which is dependent upon immi-348

gration from populations in Sweden and Norway (Damnjanović et al., 2024; Johnsen et al.,349

2006), to only a few breeding pairs (Damnjanović et al., 2024). Notably, the white-spotted350

bluethroat (Luscinia svecica cyanecula), which breeds in lowland wetlands throughout Cen-351

tral Europe, is experiencing a population and range expansion and has even established a352

breeding population in southern Sweden (Andersson, 2022; Petras and Vrezec, 2022).353

Our results suggest that climate change may play some role in declining bluethroat oc-354
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cupancy, but the question remains what proximate factors are responsible for the decline.355

Climate change can affect species directly through abiotic mechanisms (e.g. heat stress,356

drought stress, etc.), but also, and perhaps even more importantly, indirectly through biotic357

mechanisms such as phenological mismatches, novel interactions with species shifting or ex-358

panding their ranges, or changes in prey availability (Cahill et al., 2013; Ockendon et al.,359

2014). Changes to breeding habitat may be one important factor to consider. Bluethroats360

are habitat specialists whose breeding distribution is dependent upon the ecotone between361

mountain birch forest and tundra. This ecotone is, in turn, shaped by complicated dynam-362

ics between climate, herbivory and domestic grazing, topography, and vegetation (Bryn and363

Potthoff, 2018; Mienna et al., 2024; Speed et al., 2010) and is rapidly changing in some areas,364

with advancing treelines and loss of tundra occurring more rapidly in southern Fennoscandia365

(Nygaard et al., 2022; Hofgaard et al., 2009). Bluethroats are also insectivores, which are366

declining across Europe (Bowler et al., 2019), and long-distance migrants, which may be367

less able to shift their breeding phenology to match changing spring phenology (Both et al.,368

2006; Søraker et al., 2022), leading to declining populations ((Møller et al., 2008; Both et al.,369

2006), but see also Knudsen et al. (2011)). Interestingly, studies in the region have shown370

that long-distance migrants do not have more negative population trends than short-distance371

or resident species (Lehikoinen et al., 2014) and that migratory behavior is not as good a372

predictor of altitudinal range shifts as life history (Couet et al., 2022). In summary, more373

work, likely across multiple spatial scales, is necessary to identify depressed vital rates (e.g.,374

adult survival, fecundity, etc.) and establish causal relationships between bluethroat declines375

and proximate mechanisms.376

To our knowledge, this the first study to exploit bias towards reporting ’notable’ (e.g.,377

rare, exciting, or culturally important) species to construct non-detections, and our results378

demonstrate that unstructured community science data can fill important knowledge gaps379

about population trends across space and time. Occupancy models are a robust method for380
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drawing inference from messy community science datasets (Johnston et al., 2021; Isaac et al.,381

2014; Hochachka et al., 2023), especially because they allow for the inclusion of covariates382

that describe the detection process. Given its positive association with detection probability,383

the number of observations of background species reported was seemingly a reasonable proxy384

for survey effort, the inclusion of which likely also helped account for the general increase385

in survey effort across the 45 years of the study. Furthermore, the somewhat low detection386

probability (< 0.3) and strong covariate effects in our study underscore the importance of387

correcting for imperfect detection. However, information about non-detections is required388

in order to take advantage of this powerful class of models, and many readily-available389

community science datasets are detection-only.390

It is obviously most desirable to have data where non-detections are explicitly recorded,391

such as when reported data are guaranteed to be ’complete checklists’(Johnston et al., 2021;392

Kéry et al., 2010). However, when databases do not include information about whether393

’complete checklists’ are reported or not, as has until recently been the case for the Norwegian394

and Swedish reporting portals, we believe that our approach of inferring non-detections from395

the reporting of much less ’notable’ species is robust. van Strien et al. (2010, 2013) also396

constructed non-detections from detection-only data, but they used reports of any other397

dragonfly species to infer non-detections of focal dragonfly species (van Strien et al., 2010,398

2013). This assumption may hold for dragonflies, where an observer with knowledge of one399

species may be assumed to have knowledge of others, but it is likely less valid for birds where400

observers with little experience may be more likely to report a bright and easy-to-identify401

species and many observers may be more likely to report rare or exciting species (Backstrom402

et al., 2025). In our specific application, we find it highly unlikely that birders who report403

any of the background species would not report the iconic bluethroat if observed. It is404

also important to note that such cases would only contribute to lower detection probability405

and not bias the occupancy estimates, as long as the model captures the major sources of406
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variation in detection probability. One probable source of bias, however, is the the tendency407

of observers to initiate a checklist list only after seeing a notable species (Backstrom et al.,408

2025). This would lead to an over-representation of checklists that include the notable focal409

species also among checklists that include the less notable background species. This tendency410

could lead to an overestimation of occupancy; however, large scale geographic and temporal411

patterns will only be biased if the over-representation is substantially different in different412

regions, or changes systematically over time. We do not see any reasons for this being the413

case in our study.414

The obvious limitation of our method is that it can only be applied to ’notable’ species;415

however, ’notable’ species are often those that researchers may be explicitly interested in416

modeling due to protected status, rarity, or cultural importance. We demonstrated the417

method here for just one notable species in the Fennoscandian peninsula, but this method418

could be applied to any notable species of any taxa or geographic distribution where the419

assumption applies.420

5 Conclusions421

Unstructured community science data are readily available in large quantities and across422

large spatial and temporal extents, but they are also subject to many potential biases (John-423

ston et al., 2021; Bird et al., 2014). Variability in observer behavior is a central challenge424

to maximizing the utility of unstructured community science data (Johnston et al., 2023;425

Schmidt et al., 2023), but the number of studies explicitly focused on understanding the be-426

havior of contributors to community science databases is increasing (Kolstoe and Cameron,427

2017; Backstrom et al., 2025; Tulloch and Szabo, 2012; Callaghan et al., 2021; Bowler et al.,428

2022). The power of unstructured data to detect trends will always be lower than that of429

structured data resulting from well-designed survey protocols (Kamp et al., 2016; Altwegg430
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and Nichols, 2019); however, our results demonstrate that an understanding of the biases431

present in community science data can be leveraged to take advantage of these massive432

datasets. Our uncovering of a decline in bluethroat occupancy over the past 45 years further433

demonstrates that these data can be used to fill important knowledge gaps about species434

trends in light of rapid global change.435
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6 Appendix S1. Occupancy model formulation680

We implemented our spatio-temporal occupancy models using the ’stPGOcc’ function in the681

spOccupancy package Doser et al. (2022) in the R Statistical Environment R Core Team682

(2024).683

Explanation of subscripts used in the model:684

j = 1, ..., J (sites)685

t = 1, ..., T (years)686

k = 1, ..., K (surveys)687

6.1 Occupancy sub-model (ecological process)688

We formulated our occupancy model as689

zj,t ∼ Bernoulli(ψj,t)

logit(ψj,t) = xj,tβ + ωj + ηt

where zj,t represents the latent (unobserved) true occupancy state of site j in year t, ψj,t690

is the probability of occupancy at site j in year t, β is a vector of coefficients for covariate691

effects (including an intercept) and xj,t is a row-vector of the covariate values at site j in692

year t. ωj and ηt are the multivariate normal spatial and temporal random effects.693

Spatial random effects (ωj) were estimated using a Nearest Neighbor Gaussian Process694

(NNGP) Datta et al. (2016); Finley et al. (2019); Doser et al. (2022), with an exponential695

covariance structure. In this model, the variance of the random effects is constant, σ2, and696

the correlation between random effects at two sites at a distance d apart is exp(−ϕd), where697

the ϕ represents the rate at which the correlation decays. Thus, the distance at which the698

spatial autocorrelation falls below 0.05 is − log(0.05)/ϕ ≈ 3/ϕ, which may be interpreted699

as the spatial extent of the autocorrelation (used for selecting reasonable upper and lower700
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bounds for the prior probability distribution of ϕ).701

We modeled the temporal random effects (ηt) using an AR1 auto regressive structure.702

The covariance between two time points t0 and t1 is thus703

σ2
Tρ

|t0−t1|

where σ2
T is the temporal variance (magnitude) and ρ is the correlation between two successive704

years (one time unit).705

In the final occupancy sub-model, the covariates included were latitude, year, elevation706

(represented by a cubic spline with 2 knots), and the three-way interaction between them.707

6.2 Detection sub-model (observation process)708

We formulated the detection model as709

yj,t,k ∼ Bernoulli(pj,t,kzj,t)

710

logit(pj,t,k) = vj,t,kα

where yj,t,k is the detection/non-detection (1/0) observation at site j in year t and survey k.711

pj,t,k is the probability of observing a bluethroat, given that it is present, for site j in year t712

and survey k. α is a vector of detection coefficients, and row vector vj,t,k holds the covariate713

values at site j in year t and survey k.714

In the detection sub-model, we estimated a separate intercept for each week, as well as715

including effort (the number of reports of background species in a given survey (i.e., week),716

latitude, elevation, and the interaction between latitude and elevation as covariates.717
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7 Supplemental figures718

Figure S7: Maps showing reports of background species for the whole study period (left)
and reports of bluethroats and background species for the middle year of the study (2013,
right), as an example of the dataset.
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Figure S8: Map showing the mean elevation for each 1-km hexagonal grid cell in the
Fennoscandian peninsula, derived from a 30-m global Digital Elevation Model with forests
and buildings removed.
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Figure S9: Visualization of the number of surveys each year across all sites. (A) shows
the number of surveys where background species were detected (i.e. the number of sites
surveyed), and (B) shows the number of surveys during which bluethroats were detected.
(C) shows the naive proportion of sites that had bluethroat detections in each year of the
study, calculated as the number of sites where bluethroats were detected at least once divided
by the total number of sites surveyed in that year.40



Figure S10: We used observations from one week (7 days) as a ’survey’ in this study. This
histogram shows the surveyed sites in each year and the number of sites with each number
of surveys (1-5). Most surveyed sites had only one week with effort (i.e., background species
reported) in a given year, but some sites were surveyed multiple times allowing for estimation
of detection probabilities. Our primary survey period was 10 June - 1 July (5 weeks), so the
maximum number of surveys in a given year was 5.
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Figure S11: Full posterior distributions for all the occupancy covariate coefficients. The
center blue section depicts the 50% credible interval, the darker brown represents the 95%
credible interval, and the light brown represents the 99% credible interval. All predictor
variables were standardized prior to model fitting by subtracting the mean and dividing by 2
standard deviations. Effect sizes are thus change in log-odds for occupancy per two standard
deviations change in the predictor variable. The five elevation parameters represent the B-
spline terms for the elevation portion of the model, but these terms do not have a specific
interpretation individually.

42



Figure S12: Plots of the (A) spatial and (B) temporal random effects and 95% CRI from the
model output.

43


	Introduction
	Materials and Methods
	Study area and observation data
	Occupancy modeling
	Occupancy sub-model
	Detection sub-model
	Modeling procedure


	Results
	Observation data
	Occupancy
	Detection

	Discussion
	Conclusions
	Appendix S1. Occupancy model formulation
	Occupancy sub-model (ecological process)
	Detection sub-model (observation process)

	Supplemental figures

