

Unstructured community science data reveal constriction of breeding distribution for a common montane bird across the Fennoscandian peninsula

Kristin M. Brunk^{1,2} and Torbjørn Ergon¹

⁵ ¹Centre for Ecological and Evolutionary Synthesis, Department of Biosciences,
⁶ University of Oslo

²Corresponding author: kristin.brunk@ibv.uio.no

February 13, 2026

⁹ Abstract

¹⁰ The threat of climate change is particularly acute for species in arctic and montane habi-
¹¹ tats, where changes are happening the most rapidly. Species are generally expected to shift
¹² their ranges northward and upslope in response to changing climates, but actual measured
¹³ shifts in species distributions have been nuanced and large quantities of data are needed to
¹⁴ accurately assess shifts. The growing availability of unstructured community science data is
¹⁵ an appealing solution to the problem of characterizing changes in species distributions, but
¹⁶ these data contain known biases that must be overcome to draw strong inference. Here, we
¹⁷ leveraged opportunistic, unstructured community science data from across the Fennoscan-
¹⁸ dian peninsula over the last 45 years to evaluate the hypothesis that the breeding distribu-
¹⁹ tion of a common and iconic montane bird, the bluethroat (*Luscinia svecica*), has shifted
²⁰ towards higher latitudes and elevations. We constructed non-detections of bluethroats us-
²¹ ing detections of 12 less notable 'background' avian species, which allowed us to analyze
²² over 500,000 observations within a robust spatio-temporal occupancy modeling framework.
²³ We found that bluethroat occupancy has declined substantially over the past four decades
²⁴ across Fennoscandia. The largest absolute declines in occupancy probability took place in
²⁵ areas with higher occupancy in the early years of the study, but the largest relative changes
²⁶ in occupancy took place at low latitudes and low elevations at high latitudes. Our work
²⁷ demonstrates that even common and globally stable species are at risk of breeding habitat
²⁸ loss under the looming threat of climate change and that unstructured community science
²⁹ data, when used thoughtfully, can fill important knowledge gaps about species responses to
³⁰ global change.

31 1 Introduction

32 Climate change is influencing species distributions on a global scale (Parmesan and Yohe,
33 2003; Chen et al., 2011), and species adapted to northern climates are acutely affected be-
34 cause the Arctic is warming as much as four times faster than the rest of the globe (Stuecker
35 et al., 2018; Rantanen et al., 2022). In general, species are expected to demonstrate lati-
36 tudinal and elevational movements in which their range boundaries shift towards the poles
37 and towards higher elevations to track their climatic niche (Thomas and Lennon, 1999; Chen
38 et al., 2011; Walther, 2010; Hickling et al., 2006). In reality, though, observed distribution
39 changes are nuanced. While many species ranges have shifted uphill or towards the poles,
40 others have remained seemingly constant, and some have actually shifted downslope or to-
41 wards the equator (Chen et al., 2011; Lenoir et al., 2010; Hickling et al., 2006). This variation
42 in responses to climate change is hardly surprising given that species distributions are in-
43 fluenced by a wealth of interacting abiotic and biotic factors (Hughes, 2000; Hällfors et al.,
44 2024; Archaux, 2004; Bateman et al., 2016; Tsiftsis et al., 2024), and geographic shifts in cli-
45 mate envelopes are only partly associated with latitude and elevation (Lenoir and Svenning,
46 2015; VanDerWal et al., 2013). Nevertheless, understanding how distributions are changing
47 is an essential part of understanding and responding to threats to biodiversity posed by rapid
48 changes in climatic conditions (Chen et al., 2011; Hovick et al., 2016). However, character-
49 izing changes in species distributions over large geographic areas can be challenging, due to
50 the need for large amounts of data over broad spatial and temporal scales.

51 The increasing quantity of community science data (also known as citizen science or
52 participatory science data) and the expansive geographic ranges encompassed by these data
53 make them an appealing solution to the problem of characterizing changes in species distribu-
54 tions (Theobald et al., 2015; Soroye et al., 2018). Community science data fall along a contin-
55 uum between structured data, resulting from coordinated survey efforts where participants

56 typically collect data following a standardized protocol designed to reduce various sources of
57 bias and allow estimation of metrics of interest (Hochachka et al., 2012; Altwegg and Nichols,
58 2019), and opportunistic data, resulting from casual observations of species reported with
59 varying amounts of associated metadata (Kamp et al., 2016). Structured data (e.g., resulting
60 from population monitoring schemes) have led to many important insights (Lehikoinen et al.,
61 2014; Rosenberg et al., 2019; Sauer et al., 2017), but can be time-consuming, difficult, and
62 expensive to organize and collect, especially at large spatial scales. Indeed, opportunistic
63 data are increasing the most rapidly in quantity and spatial coverage (Pocock et al., 2017),
64 but these data present an array of challenges for drawing strong inference (Johnston et al.,
65 2023) and may not match the power of structured data to characterize trends of interest
66 (Kamp et al., 2016).

67 Opportunistic data can be unstructured or semi-structured. Semi-structured data are
68 collected opportunistically, but also require observers to submit information about the ob-
69 servation process (e.g., checklists on eBird). Semi-structured data are increasingly used
70 to draw strong inference about bird distributions and population trends (Johnston et al.,
71 2025; Rosenberg et al., 2019). However, there is also a wealth of unstructured opportunistic
72 data with little to no information about the observation process. These data are typically
73 detection-only, meaning they include information about where species were observed but
74 not where effort was expended and a particular species was not observed. These data also
75 suffer from potential spatial and temporal bias, as well as bias resulting from observer be-
76 havior, such as a tendency to report exciting or notable species but not common or drab
77 species (Johnston et al., 2023; van Strien et al., 2013). Overcoming some of these sources
78 of bias could enhance our ability to draw inference from these large and readily-available
79 unstructured participatory science datasets.

80 Here, we leverage opportunistic, unstructured participatory science data to understand
81 whether the occupancy dynamics of a common montane bird, the bluethroat (*Luscinia sve-*

82 *cica svecica*), conform to expectations under climate change across the Fennoscandian penin-
83 sula. Specifically, we evaluate the hypothesis that the breeding distribution of the bluethroat
84 has shifted towards higher latitudes and higher elevations over the last 45 years. We do this
85 in an occupancy modeling framework (MacKenzie et al., 2018; MacKenzie et al., 2002) where
86 we infer non-detection of a notable species (the bluethroat) by assuming that observers who
87 report less notable ‘background’ species would also have reported the notable species if it
88 had been seen. In this way, we exploit observer bias towards reporting notable and exciting
89 species to transform opportunistic detection-only data into detection/non-detection (occu-
90 pancy data), allowing for stronger inference (conditioning on observations of common and
91 less notable species).

92 The bluethroat, a montane specialist dependent upon the shrubby ecotone between moun-
93 tain birch forest and tundra, is an interesting species for this work for two reasons. First, its
94 conservation status is somewhat uncertain in this region. Officially, the bluethroat is clas-
95 sified ‘least concern’ both globally (BirdLife International, 2019) and on national red lists
96 for Norway, Sweden, and Finland (Artdatabanken, 2020; Artsdatabanken, 2021; Hyvärinen
97 et al., 2019). However, there is some evidence that bluethroat abundance may have declined
98 in Norway (Lehikoinen et al., 2014) where the species was red-listed from 2015-2021 (Hen-
99 rikson and Hilmo, 2015; Artsdatabanken, 2021), and habitat specialists are generally more
100 at risk than generalists (Jiguet et al., 2010). Further, little information exists about changes
101 in the distribution of the bluethroat within Scandinavia over the past few decades (but see
102 (Couet et al., 2022)). Second, the bluethroat has functional traits that suggest opposing ex-
103 pectations about shifts in its geographic range over time. The bluethroat is a long-distance
104 migrant - bluethroats from Scandinavia most likely migrate along the Indo-European flyway
105 and winter in India (Lislevand et al., 2015) - and resident species have been shown to be
106 more likely to shift their ranges over time than migratory species (MacLean and Beissinger,
107 2017). However, bluethroats are also fairly short-lived and occur at high elevations, both

108 of which may lead to faster uphill shifts (Couet et al., 2022). Thus, our work seeks to fill
109 important knowledge gaps for the bluethroat, as well as improving inferences drawn from
110 opportunistic community science datasets.

111 2 Materials and Methods

112 2.1 Study area and observation data

113 We studied the bluethroat breeding distribution across the Fennoscandian peninsula of north-
114 ern Europe, including Norway, Sweden, and Finland, and our study period covered the
115 years 1980-2024. To improve computational efficiency, we only included regions where the
116 bluethroat historically breeds; specifically, we included data from all of Norway and we only
117 included data from north of 61° and 65° latitude for Sweden and Finland, respectively. This
118 area comprises $>740\ 000\ \text{km}^2$ and includes the entire range of the Scandinavian Mountains
119 (Scandes), as well as surrounding areas.

120 We downloaded species observation records from the Global Biodiversity Information Fa-
121 cility (GBIF), and filtered observations to meet our requirements. We downloaded species
122 records from Norway, Sweden, and Finland for the bluethroat and for 12 background species
123 (brambling [*Fringilla montifringilla*], fieldfare [*Turdus pilaris*], hooded crow [*Corvus cornix*],
124 meadow pipit [*Anthus pratensis*], common gull [*Larus canus*], northern wheatear [*Oenanthe
oenanthe*], common raven [*Corvus corax*], redshank [*Tringa totanus*], redwing [*Turdus ilia-
cus*], twite [*Carduelis flavirostris*], willow tit [*Poecile montanus*], and willow warbler [*Phyl-
loscopus trochilus*]) using the 'rgbif' package (Chamberlain et al., 2025) in R (R Core Team,
125 2024). We only included records made by human observers that included coordinates, had
126 no geospatial issues, and had $<500\text{m}$ coordinate uncertainty (to match the spatial scale
127 of our study). Our goal was to analyze changes in the bluethroat breeding distribution;
128 therefore, we only included data from 10 June to 14 July in our analysis, a period that
129 130 131

reflects the peak of the bluethroat breeding season in Scandinavia. In the end, our data included observations from 27 different datasets, but the vast majority of records came from Artsobservasjoner (56%; <https://www.artsobservasjoner.no/>) and Artportalen (19%; <https://www.artportalen.se/>), species reporting services from Norway and Sweden, respectively (?).

To compile records from the bluethroat and background species into detection histories, we overlaid the entire Fennoscandian peninsula with a tesselation of hexagonal grid cells, each of which were 1 km² in area. We selected 1 km² as the spatial scale to balance the tractability of the analysis with the need to minimize variation in elevation within grid cells, as well as to better capture any uncertainty in the observation locations. Then, we used a spatial join in the 'terra' package (Hijmans, 2024) to assign individual records to the corresponding hexagonal grid cell.

2.2 Occupancy modeling

To create repeated surveys for occupancy modeling, we split our primary season (10 June - 14 July) into five, week-long secondary survey periods (hereafter 'surveys'). We used a 7-day secondary survey period to avoid bias from varying survey effort throughout a week (e.g., surveys are more likely to occur on the weekend). Next, we used observations of background species to infer non-detections of bluethroats. If an observation of any background species was reported in a given grid cell in a given primary season and survey period, then that cell was considered 'surveyed' in that period. If a site was surveyed, it could then receive either a '0' if no bluethroat was reported, or a '1' if a bluethroat was also reported, during the same survey. This method of inferring non-detections relies upon the assumption that an observer who reported a common and drab background species would have also reported a bluethroat, which is brightly-colored and notable in our study region. Grid cells where a bluethroat was reported but no background species were reported were not considered surveyed and were

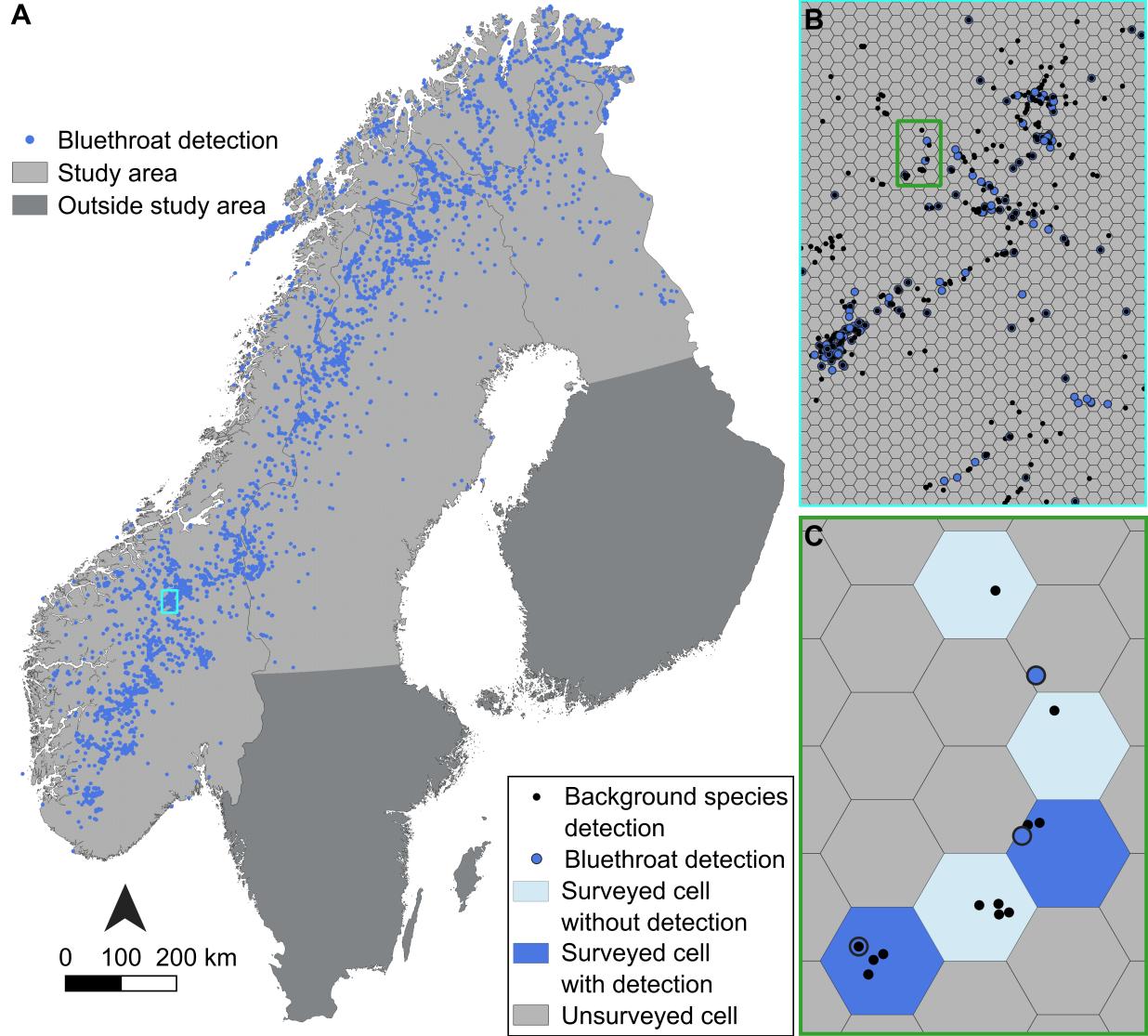


Figure 1: Map of the study area showing how individual observations were compiled to the level of 1-km hexagonal grid cells. (A) The entire study area and all bluethroat observations from the study period (1980-2024). (B) A view of many grid cells, along with observations of both background species (black) and bluethroats (blue). (C) Visualization of compiling observations to the grid cell level. We considered cells to be 'surveyed' (in a given year and survey) if a background species was reported there, and we considered cells to have a bluethroat detection if both a background species and a bluethroat were reported.

157 treated as missing data (Fig. 1). In this way, the resulting detection/non-detection data
158 only represent site \times years where at least one of the background species have been seen, but
159 by using a wide range of common and widely distributed background species (listed above),
160 we still maintain a wide inference space (see Fig. S1).

161 **2.2.1 Occupancy sub-model**

162 To investigate the hypothesis that the bluethroat breeding distribution has shifted northward
163 or upslope over the past 45 years, we used multiseason spatio-temporal occupancy models to
164 estimate occupancy probability depending on elevation, latitude, and time, while accounting
165 for heterogeneity in detection. Elevation and latitude both shape species distributions and
166 also influence each other's relationship with species distributions, so we included elevation,
167 latitude, and the interaction between them in the occupancy sub-model. We used eleva-
168 tion data from a 30-m global Digital Elevation Model with forests and buildings removed
169 (Hawker et al., 2022), and summarized it using the arithmetic mean within each 1-km grid
170 cell (Fig. S2). For latitude, we used the latitude of the centroid of each grid cell. We also
171 included a linear effect of year on the logit scale. Finally, we included the interaction effects
172 'year*latitude' and 'year*elevation' on occupancy probability to estimate changes in the lat-
173itudinal and elevational distribution of bluethroats over the past 45 years. Preliminary data
174 analysis indicated that including elevation as a quadratic predictor may not effectively cap-
175ture the non-linear relationship between bluethroat occupancy and elevation, and so we first
176 compared two models, one where we modeled elevation with a simple cubic spline and one
177 where we modeled the effect of elevation with a cubic spline and five degrees of freedom (*i.e.*,
178 a cubic spline with two knots) to account for non-linearity in the effect of elevation. Lastly,
179 with the previously determined structure for elevation, we fit a full interaction model with
180 a three-way interaction between year, latitude, and elevation, to investigate to what degree
181 occupancy had changed at a different rate across combinations of latitude and elevation.

Because occupancy dynamics at surveyed locations may not be independent and because our data consisted of repeated surveys at some of the same locations across years, we incorporated independent spatial and temporal random effects (Doser et al., 2022; Diana et al., 2023) in our occupancy sub-model to account for possible spatial and temporal autocorrelation. Specifically, we modeled the site-level effect as a spatial random effect using a nearest neighbor Gaussian Process (Doser et al., 2022; Datta et al., 2016) with an exponential covariance function and 10 nearest neighbors, and we modeled the year-level random effect as an auto-regressive (AR1) structured effect of year. For a more detailed description of the model formulation, see Appendix S1.

2.2.2 Detection sub-model

We also included covariates in the detection sub-model to account for factors impacting the detection probability of bluethroats. First, we included a different intercept for each secondary survey period because vocal behavior of the bluethroats changes across the season, and vocalizing birds are likely to have higher detectability. The detection model also included latitude, elevation, and their interaction, to account for any differences in detectability of bluethroats between denser birch forests present at lower elevations and more open tundra and heathland at higher elevations, a habitat difference which is also mediated by latitude. Lastly, we included an 'effort' covariate, computed as the total number of reports of any background species during the week (survey period), which we used as a proxy of the survey effort. Similar to list length analysis (Szabo et al., 2010), this covariate reflects both how many people visited a given site during a secondary replicate, as well as how much time they spent there, as longer lists (*i.e.*, more reports of background species) are produced when more effort is expended.

205 **2.2.3 Modeling procedure**

206 We implemented all models in the 'spOccupancy' package, v. 0.7.6 (Doser et al., 2022),
207 in the R Statistical Environment (R Core Team, 2024). We specified all fixed parameter
208 priors as $N(0, 2.72)$ Northrup and Gerber (2018). We specified the temporal variance prior
209 as inverse gamma (shape = 2, scale = 0.5), and we specified the temporal decay (*i.e.*, the
210 correlation between random effects that are one year apart) prior as uniform with limits of
211 -1 and 1. For the spatial variance parameter, we specified an inverse gamma prior (shape
212 = 2, scale = 1), and for the spatial decay parameter, we specified a uniform prior with a
213 lower limit of 3 divided by the maximum inter-site distance ($3/1782 = 0.0017$) and an upper
214 limit of 3 divided by the minimum inter-site distance ($3/0.54 = 5.56$), which allowed the
215 effective spatial range (the distance at which spatial correlation between sites is <0.05) to
216 be anywhere between the minimum and the maximum distance between our surveyed sites
217 (0.54 to 1782 km). Before inclusion in models, we centered and standardized latitude, year,
218 and effort (by subtracting the mean and dividing by two times the standard deviation), and
219 we centered elevation on 800 m and standardized it (by subtracting 800 and dividing by two
220 times the standard deviation) to improve model convergence.

221 We ran 3 chains of 50,000 iterations each, with a burn-in of 30,000 iterations and a
222 thinning rate of 40, for a total of 1500 posterior samples across all chains. We confirmed
223 model convergence using rhat values (confirmed all values were <1.1), as well as examining
224 traceplots of the chains for each parameter, and we conducted posterior predictive checks
225 (grouping by site and by survey) to ensure model adequacy. We used WAIC for all model
226 comparisons, and we selected the model with the lowest WAIC for drawing inference. Except
227 where noted, all results are reported with the posterior mean and 95% credible interval
228 (CRI). We used both the absolute change over time (*i.e.*, probability of occupancy in 2024
229 minus the probability of occupancy in 1980) and the relative change over time (*i.e.*, the odds
230 ratio 2024/1980) to fully characterize changes in occupancy over time in the context of our

231 hypothesis.

232 3 Results

233 3.1 Observation data

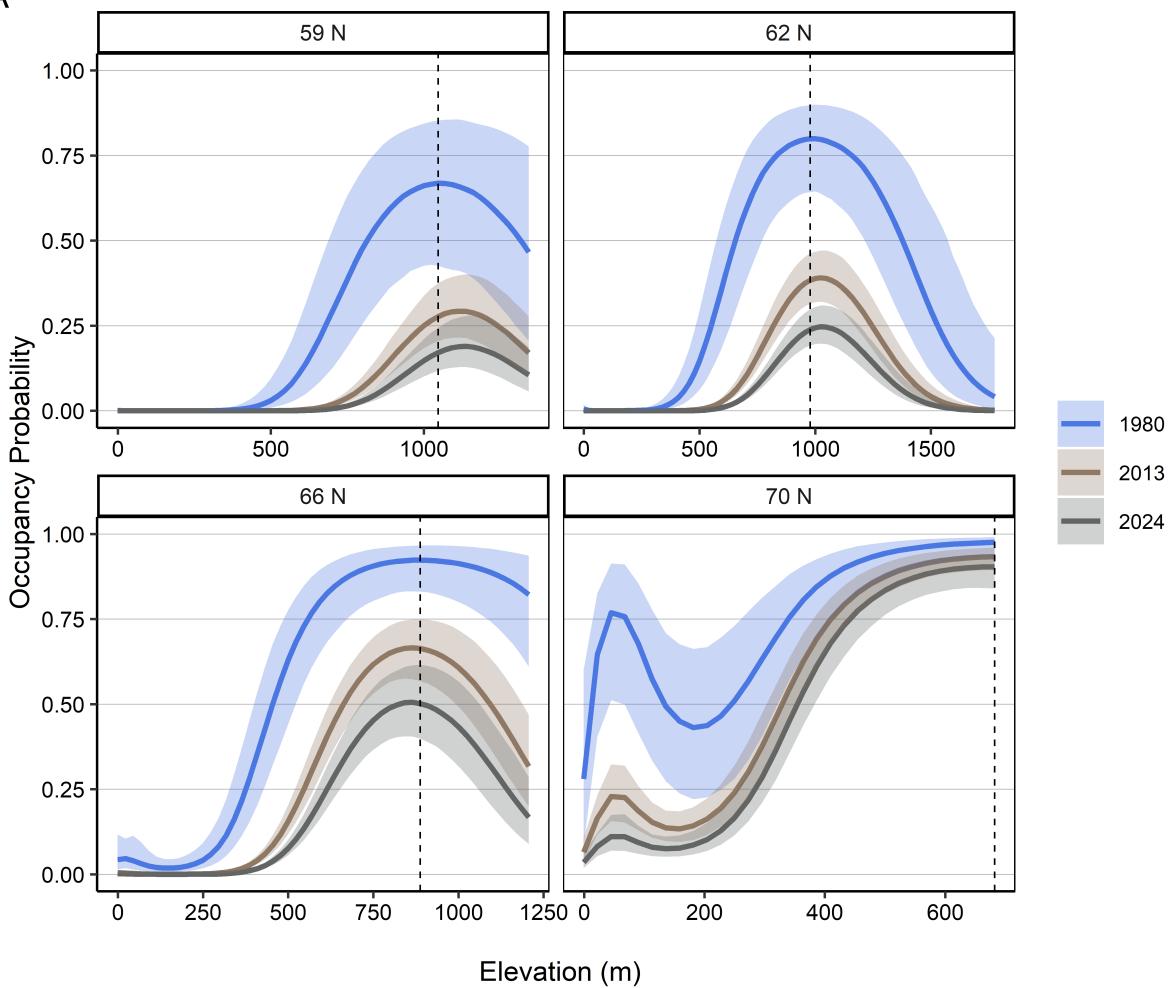
234 Our final dataset included 550,784 observations from 49,455 sites (*i.e.*, 1-km² hexagonal
235 grid cells) across Norway, Sweden, and Finland. The number of surveys per year generally
236 increased over the time period of the study (Fig. S3A), as did the number of surveys with
237 bluethroats detected (Fig. S3B). Among the years of the study, the proportion of sites with
238 bluethroat detections ranged from 3% (2024) to 18% (1981), and the average proportion of
239 sites with a bluethroat detection was 7.1% (sd = 3.7%; Fig. S3C)). Our data also included
240 many 'missing' surveys, as most sites were not surveyed every year, and those sites that were
241 surveyed often received effort in only one secondary sampling period (Fig. S4).

242 3.2 Occupancy

243 We found that the best structure for the elevation effect included a cubic spline and two knots
244 (ΔWAIC between models = 365), and we found that a model with a three-way interaction
245 between year, latitude, and elevation best modeled changes in breeding season occupancy
246 over the past 45 years (ΔWAIC between two-way and three-way interaction models = 4).
247 Posterior distributions for the occupancy parameters in the final model are in Fig. S5. Post-
248 erior predictive checks indicated that model fit was adequate overall. When grouping by
249 site, posterior predictive checks for a handful of years indicated that the model produced
250 data with more variability than we observed, suggesting that credible intervals may be con-
251 servative.

252 Latitude and elevation mediated each other's relationships with occupancy. At low and

A



B

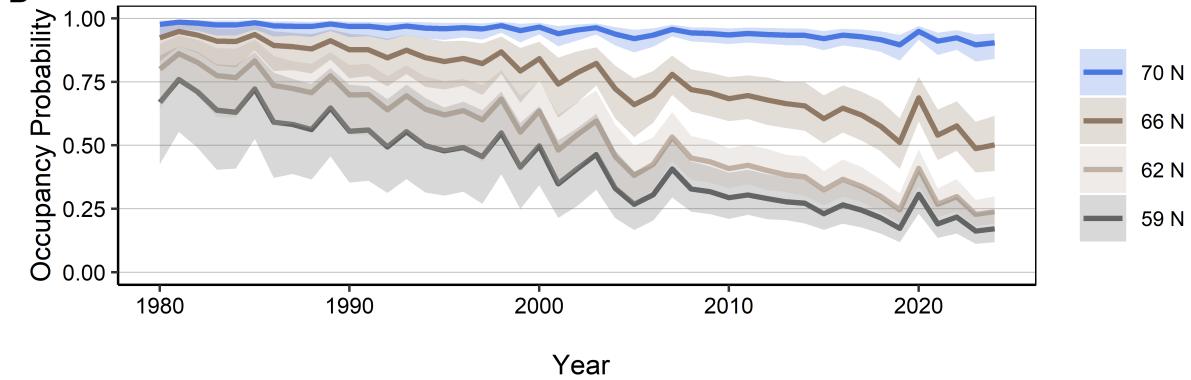


Figure 2: (A) The association between occupancy and elevation at four representative latitudes (panels) and three time steps (colors) with 95% credible intervals. Dashed vertical lines represent the elevation with the highest predicted occupancy at each latitude in 1980 (the first year of the study). (B) For the elevation at each latitude with the peak predicted occupancy in 1980 (dashed vertical lines in A), predicted occupancy over the 45 years of the study with 95% credible intervals.

253 mid-latitudes, occupancy was typically hump-shaped, reaching a peak at mid-elevations, with
254 the elevation of the peak differing across latitudes. However, at high latitudes, occupancy
255 peaked at high elevations (Fig. 2A). We note that at high latitudes, the range of elevation
256 present in the dataset was from approximately 0 to 800 m, compared to an approximately
257 1500 m range of elevation at mid-latitudes. At the highest latitudes (*i.e.*, 70-72°N), there
258 was also a smaller peak in occupancy at lower elevations, but this peak was greatly reduced
259 in later years of the study (Fig. 2A). At lower latitudes (*e.g.*, 59°N and 62°N in 2A), we also
260 predicted an upward shift over time in the elevation where the highest predicted occupancy
261 occurred. For example, at 59°N the elevation with the highest predicted occupancy was
262 1047 m in 1980, but increased to 1138 m by 2024. Similarly, at 62°N, the elevation with
263 highest predicted occupancy shifted from 978 m to 1023 m from 1980 to 2024. However, we
264 saw no change at 70°N, and a subtle downhill shift in the elevation with the peak predicted
265 occupancy at 66°N (887 m to 864 m from 1980 to 2024; 2A).

266 Occupancy of bluethroats notably declined across Fennoscandia over the 45 years of the
267 study (Fig. 2, Fig. 3, Fig. 4, Fig. 5), and combinations of latitude and elevation played
268 roles in shaping these changes in occupancy (Fig. 3). Considering a site at average latitude
269 (63.6°) and 800 m elevation, the odds of occupancy declined by a factor of 0.94 (or 6%, CRI:
270 0.92-0.95, 5-8%) after one year, leading to a reduction in the odds of occupancy by a factor
271 of 0.52 (48%, CRI: 0.44-0.60, 40-56%) after 10 years. While occupancy in early years of the
272 study was high across a large swath of latitude/elevation combinations, by 2024, occupancy
273 was typically low below 64° latitude (Fig 3A). Unsurprisingly, model uncertainty was also
274 higher in the early years of the analysis when data were more sparse (Fig 3B). In general,
275 the probability of occupancy declined the most in areas where occupancy was higher at the
276 start of the study (Fig. 3C), but the ratio of the odds of occupancy in 2024 versus 1980
277 revealed that areas with both low elevation and low latitude were predicted to have the
278 largest relative changes (Fig. 3D). However, many of these sites had low occupancy at the

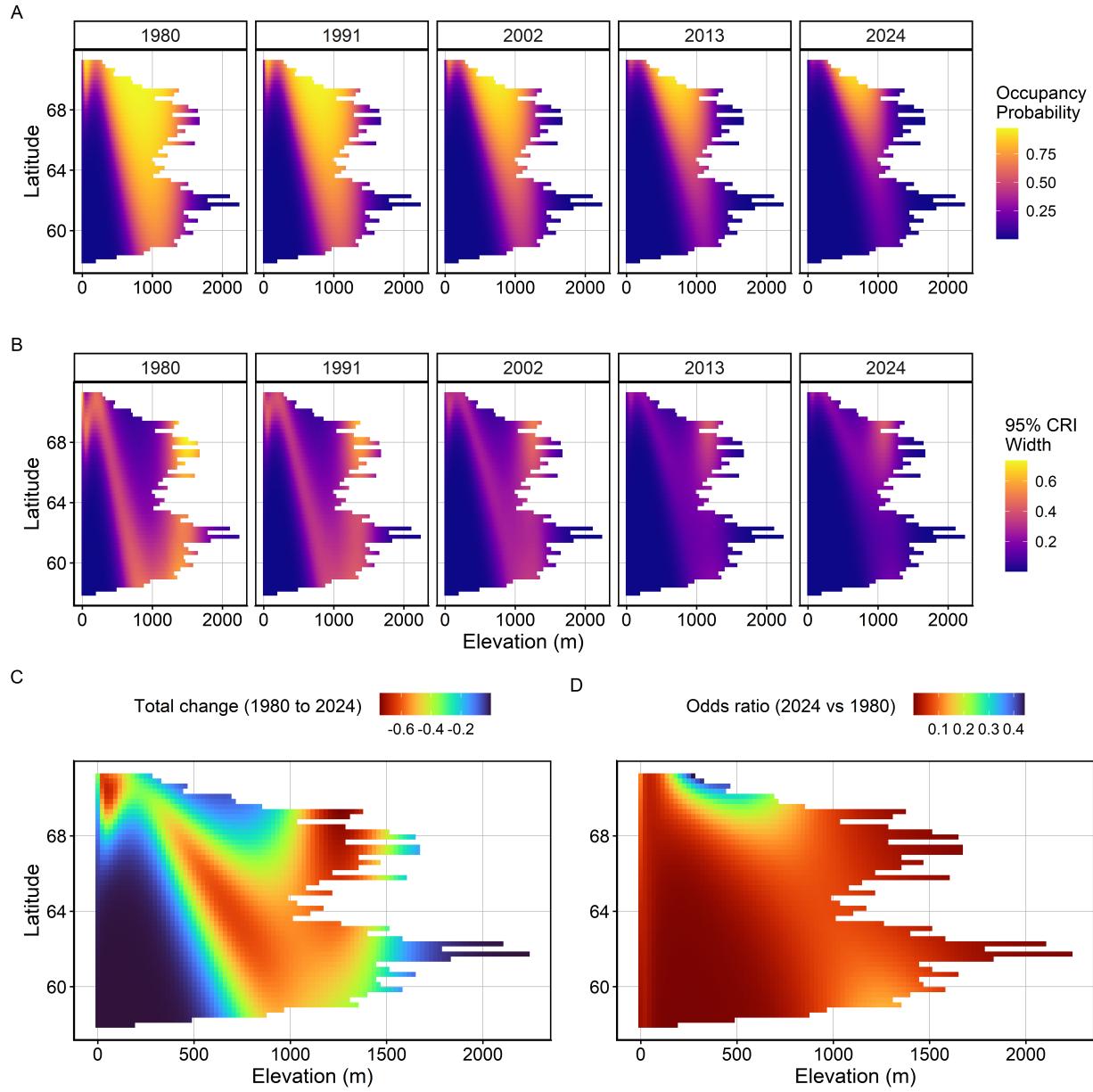


Figure 3: Contour plot showing how bluethroat occupancy probability declined across the range of latitudes and elevations present in the study area from 1980-2024. (A) Bluethroat occupancy probability predicted for five time-steps. (B) The width of the 95% credible intervals for the same 5 time steps. (C) The absolute change in occupancy probability from the first year of the study (1980) to the last year of the study (2024). (D) The ratio of the odds of occupancy for 2024 versus 1980, showing the relative change in occupancy from the beginning to the end of the study.

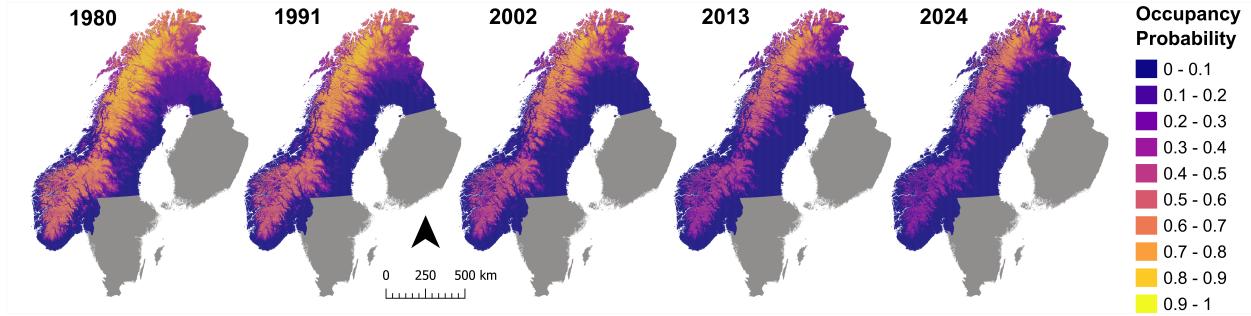


Figure 4: Predicted occupancy probability across the study area for five time-steps of 11 years.

beginning of the study such that occupancy probability changed from close to zero in 1980 to even closer to zero in 2024, and thus the total (absolute) change in occupancy probability was lower in these areas. The odds ratios demonstrated that high latitude sites had lower relative change, as did mid- to high-elevation sites at lower latitudes (Fig. 3D).

Similar patterns were reflected when we estimated occupancy across the Fennoscandian peninsula for the years of the study, but spatial and temporal random effects also contributed to occupancy predictions (Fig. 4). The posterior mean of the spatial variance was 5.24 (95% CRI: 4.51 - 6.08; spatial sd = 2.29, 95% CRI: 2.12-2.47) and the posterior mean of the spatial decay was 0.00169 (95% CRI: 0.00168 - 0.00171) on the logit scale. The posterior for the spatial decay was tightly pushed against the lower bound. The spatial random effects suggest rather high variance between sites over a large spatial range, which suggests they may reflect environmental factors not accounted for in the fixed part of the model that are themselves auto-correlated. Plots of the spatial random effects show quite localized areas with stronger effects (Fig. S6A). In particular, fixed effects tended to underestimate occupancy in the west and overestimate it in the east (Fig. S6A), which may correspond to specific habitat conditions at these sites such as a lower treeline in the west due to higher winter precipitation. We estimated the posterior mean for the temporal variance as 0.11 (95% CRI 0.06 - 0.21; temporal sd = 0.33, 95% CRI 0.24-0.46), and the temporal decay as

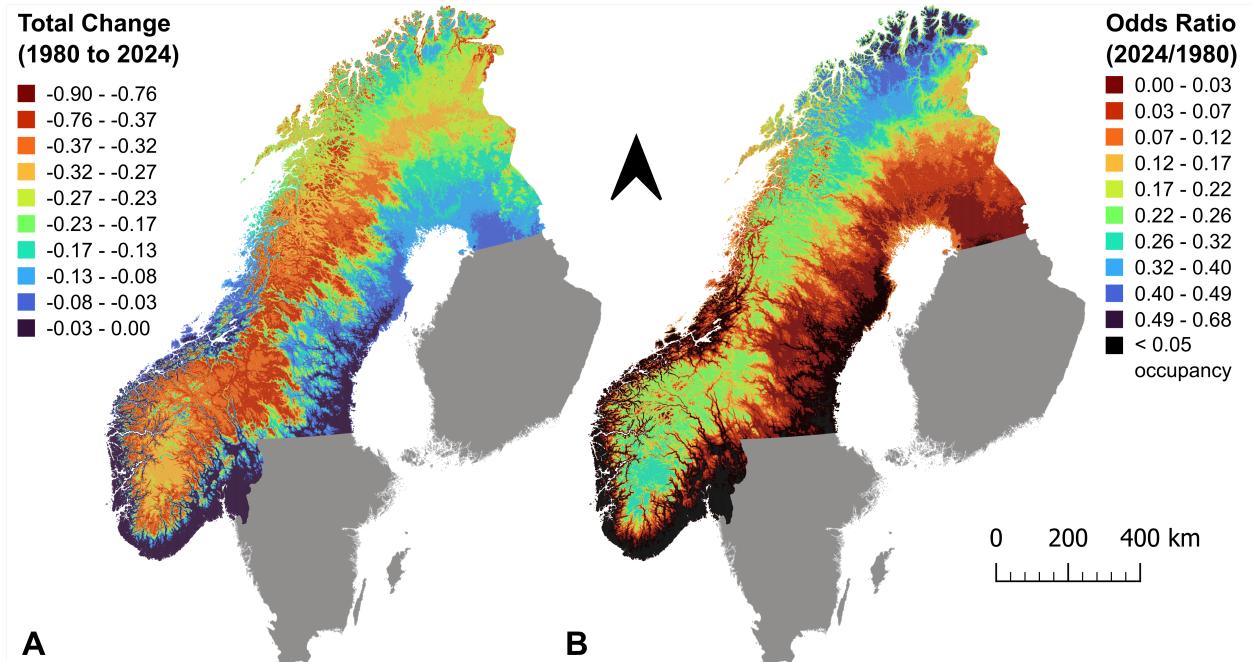


Figure 5: Change in occupancy from the first year of the study (1980) to the last year of the study (2024). (A) The change in the probability of occupancy from 1980 to 2024 showing which areas have experienced the largest absolute declines in probability of occupancy. (B) The ratio of odds for 2024 versus 1980 showing which areas experience the largest relative declines in occupancy. Note that areas with < 0.05 (5%) predicted probability of occupancy in 1980 are masked with black to aid interpretation.

297 -0.04 (95% CRI -0.3 - 0.23). These estimates corresponded to small temporal random effects
 298 where the 95% CRI usually overlapped zero (Fig. S6B). In the context of these effects, our
 299 model indicates that occupancy has declined across the entire study area, with the largest
 300 absolute changes in occupancy probability occurring at low- to mid-latitude sites and in
 301 coastal areas in the far north (Fig. 5A). Some strongholds of higher occupancy remain in
 302 the north, particularly in Troms and Finnmark in Norway and Lappland in Sweden, and
 303 in smaller localized pockets of mid- to high elevation at low- to mid-latitudes in southern
 304 Norway, where odds ratios indicate that occupancy is changing more slowly (Fig. 5B).

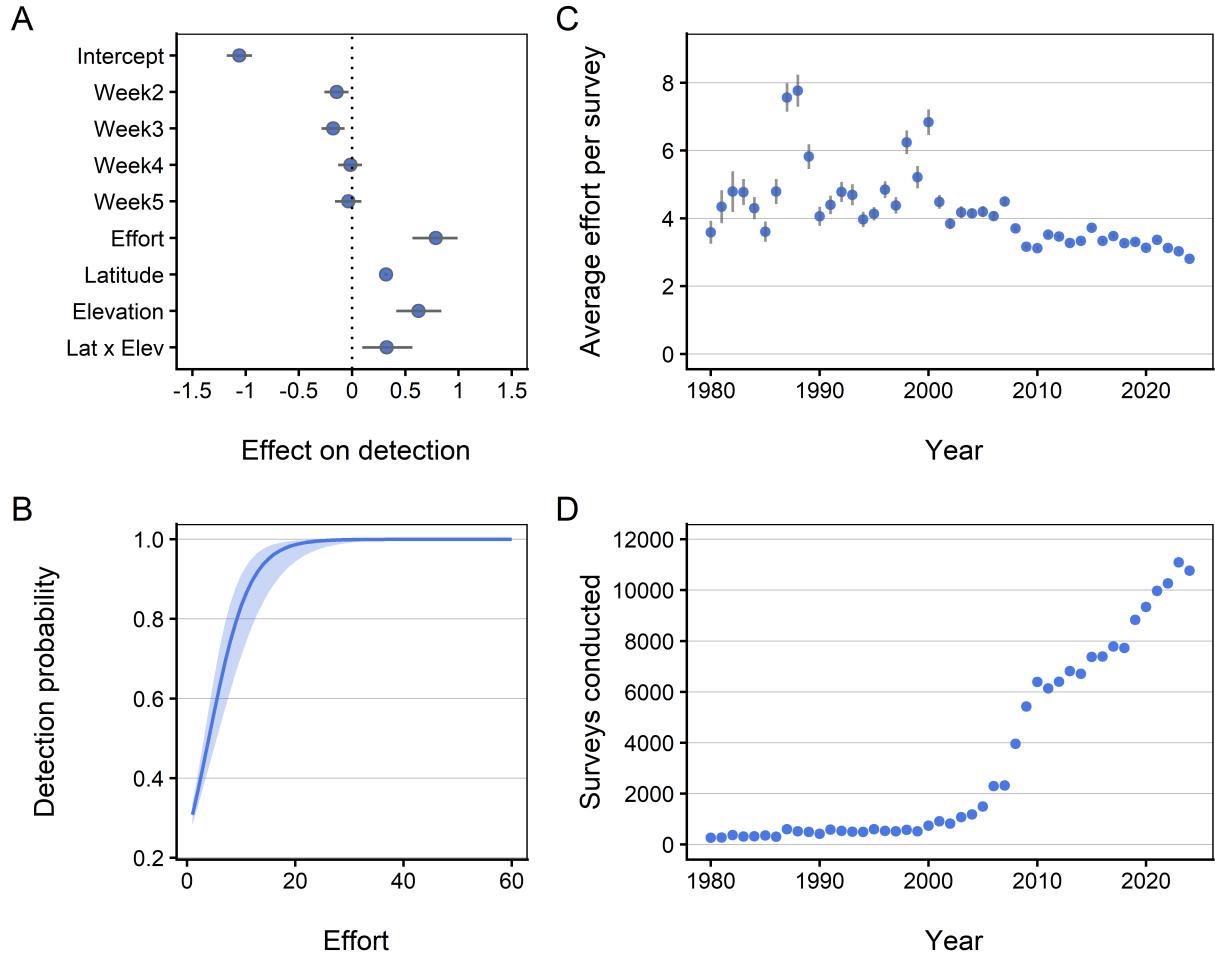


Figure 6: (A) Effect size and 95% credible interval for all parameters in the detection submodel (logit scale; units are change per two standard deviation change in the predictor). (B) The association between effort and detection probability, where effort is measured as the number of reports of background species during a given survey. (C) Average effort (number of reports of background species) per survey in each year, represented by the mean and standard error across all 49,455 survey sites. (D) The count of the number of surveys conducted in each year of the study.

305 **3.3 Detection**

306 Detection probability at an average site (*i.e.*, 63.6° latitude, mean effort, 800 m elevation)
307 ranged from 0.22 in week 3 to 0.26 in week 1, and effort, latitude, elevation, and the inter-
308 action between latitude and elevation all had positive effects on detection probability (Fig.
309 6A). Effort, in particular, showed a strong positive relationship with detection probability,
310 such that more than 20 reports of background species within a given secondary sampling
311 period resulted in nearly perfect detection of bluethroats (Fig. 6B). However, most sites
312 received considerably less effort than that. Average effort (number of reports of background
313 species per survey) ranged from 2.8 (in 2024) to 7.8 (in 1988) reports (Fig. 6C). Notably, the
314 number of surveys conducted increased substantially over the years (Fig. 6D). Most surveyed
315 sites were only surveyed once in a given year (Fig. S4), and many sites only received effort
316 in a small number of years.

317 **4 Discussion**

318 The declines we observed in bluethroat occupancy largely coincide with expectations under
319 climate change - sites at higher latitudes and higher elevations generally experienced smaller
320 relative declines occupancy (*i.e.*, had higher odds ratios). However, high latitude sites and
321 high elevation sites at lower latitudes also often had higher occupancy probability to be-
322 gin with, leading to these areas also experiencing some of the highest absolute declines in
323 occupancy probability over the course of our study. In essence, these results suggest that
324 areas at high latitudes and high elevations at low to mid-latitudes function as refugia where
325 occupancy changes more slowly, but occupancy is declining even in these refugia. Upward
326 shifts in peak occupancy towards higher elevations in the southern portions of the study area
327 further support the role of climate change in the decline.

328 Notably, we only observed declines in occupancy over time, never increases. Overall,

329 the amount of habitat occupied by breeding bluethroats declined dramatically across the 45
330 years of our study. This pattern matches the expectation for many montane organisms -
331 species already living at high altitudes may not have anywhere to shift to as climate change
332 progresses, termed the 'escalator to extinction' (Urban, 2018; Marris, 2007; Sekercioglu et al.,
333 2008). The decline we documented in bluethroat occupancy is a reminder that even 'common'
334 species are under threat from climate change, a pattern also reflected in other areas (Inger
335 et al., 2015; Dupont and Dobson, 2025).

336 While we examined occupancy and not abundance, given the generally positive rela-
337 tionship between abundance and occupancy (Gaston et al., 2000; Zuckerberg et al., 2009)
338 especially among long-distance migrants (Manne and Veit, 2020), it is probable that the
339 decline in occupancy we observed over the 45 years of our study is accompanied by reduced
340 abundance, as well. Structured monitoring data from 2002 to 2012(Lehikoinen et al., 2014)
341 and 2002 to 2014 (Lehikoinen et al., 2019) indicated non-significant declines in bluethroat
342 abundance across Fennoscandia, with some evidence of a small decline in Norway 2002 to
343 2012. The longer temporal scale and the high spatial resolution of our study provides more
344 context for these analyses. It is possible that bluethroat abundance declined more quickly
345 in the early part of our study period before stabilizing in the latter period, but the tem-
346 poral random effects (Fig . S5B) do not seem to indicate this pattern. Another hint at
347 a waning source population is the steady decline of a peripheral population of red-spotted
348 bluethroats in the Krkonoše Mountains, Czech Republic, which is dependent upon immi-
349 gration from populations in Sweden and Norway (Damnjanović et al., 2024; Johnsen et al.,
350 2006), to only a few breeding pairs (Damnjanović et al., 2024). Notably, the white-spotted
351 bluethroat (*Luscinia svecica cyanecula*), which breeds in lowland wetlands throughout Cen-
352 tral Europe, is experiencing a population and range expansion and has even established a
353 breeding population in southern Sweden (Andersson, 2022; Petras and Vrezec, 2022).

354 Our results suggest that climate change may play some role in declining bluethroat oc-

cupancy, but the question remains what proximate factors are responsible for the decline. Climate change can affect species directly through abiotic mechanisms (e.g. heat stress, drought stress, etc.), but also, and perhaps even more importantly, indirectly through biotic mechanisms such as phenological mismatches, novel interactions with species shifting or expanding their ranges, or changes in prey availability (Cahill et al., 2013; Ockendon et al., 2014). Changes to breeding habitat may be one important factor to consider. Bluethroats are habitat specialists whose breeding distribution is dependent upon the ecotone between mountain birch forest and tundra. This ecotone is, in turn, shaped by complicated dynamics between climate, herbivory and domestic grazing, topography, and vegetation (Bryn and Potthoff, 2018; Mienna et al., 2024; Speed et al., 2010) and is rapidly changing in some areas, with advancing treelines and loss of tundra occurring more rapidly in southern Fennoscandia (Nygaard et al., 2022; Hofgaard et al., 2009). Bluethroats are also insectivores, which are declining across Europe (Bowler et al., 2019), and long-distance migrants, which may be less able to shift their breeding phenology to match changing spring phenology (Both et al., 2006; Søraker et al., 2022), leading to declining populations ((Møller et al., 2008; Both et al., 2006), but see also Knudsen et al. (2011)). Interestingly, studies in the region have shown that long-distance migrants do not have more negative population trends than short-distance or resident species (Lehikoinen et al., 2014) and that migratory behavior is not as good a predictor of altitudinal range shifts as life history (Couet et al., 2022). In summary, more work, likely across multiple spatial scales, is necessary to identify depressed vital rates (e.g., adult survival, fecundity, etc.) and establish causal relationships between bluethroat declines and proximate mechanisms.

To our knowledge, this the first study to exploit bias towards reporting 'notable' (e.g., rare, exciting, or culturally important) species to construct non-detections, and our results demonstrate that unstructured community science data can fill important knowledge gaps about population trends across space and time. Occupancy models are a robust method for

381 drawing inference from messy community science datasets (Johnston et al., 2021; Isaac et al.,
382 2014; Hochachka et al., 2023), especially because they allow for the inclusion of covariates
383 that describe the detection process. Given its positive association with detection probability,
384 the number of observations of background species reported was seemingly a reasonable proxy
385 for survey effort, the inclusion of which likely also helped account for the general increase
386 in survey effort across the 45 years of the study. Furthermore, the somewhat low detection
387 probability (< 0.3) and strong covariate effects in our study underscore the importance of
388 correcting for imperfect detection. However, information about non-detections is required
389 in order to take advantage of this powerful class of models, and many readily-available
390 community science datasets are detection-only.

391 It is obviously most desirable to have data where non-detections are explicitly recorded,
392 such as when reported data are guaranteed to be 'complete checklists' (Johnston et al., 2021;
393 Kéry et al., 2010). However, when databases do not include information about whether
394 'complete checklists' are reported or not, as has until recently been the case for the Norwegian
395 and Swedish reporting portals, we believe that our approach of inferring non-detections from
396 the reporting of much less 'notable' species is robust. van Strien et al. (2010, 2013) also
397 constructed non-detections from detection-only data, but they used reports of any other
398 dragonfly species to infer non-detections of focal dragonfly species (van Strien et al., 2010,
399 2013). This assumption may hold for dragonflies, where an observer with knowledge of one
400 species may be assumed to have knowledge of others, but it is likely less valid for birds where
401 observers with little experience may be more likely to report a bright and easy-to-identify
402 species and many observers may be more likely to report rare or exciting species (Backstrom
403 et al., 2025). In our specific application, we find it highly unlikely that birders who report
404 any of the background species would *not* report the iconic bluethroat if observed. It is
405 also important to note that such cases would only contribute to lower detection probability
406 and not bias the occupancy estimates, as long as the model captures the major sources of

407 variation in detection probability. One probable source of bias, however, is the the tendency
408 of observers to initiate a checklist list only after seeing a notable species (Backstrom et al.,
409 2025). This would lead to an over-representation of checklists that include the notable focal
410 species also among checklists that include the less notable background species. This tendency
411 could lead to an overestimation of occupancy; however, large scale geographic and temporal
412 patterns will only be biased if the over-representation is substantially different in different
413 regions, or changes systematically over time. We do not see any reasons for this being the
414 case in our study.

415 The obvious limitation of our method is that it can only be applied to 'notable' species;
416 however, 'notable' species are often those that researchers may be explicitly interested in
417 modeling due to protected status, rarity, or cultural importance. We demonstrated the
418 method here for just one notable species in the Fennoscandian peninsula, but this method
419 could be applied to any notable species of any taxa or geographic distribution where the
420 assumption applies.

421 5 Conclusions

422 Unstructured community science data are readily available in large quantities and across
423 large spatial and temporal extents, but they are also subject to many potential biases (John-
424 ston et al., 2021; Bird et al., 2014). Variability in observer behavior is a central challenge
425 to maximizing the utility of unstructured community science data (Johnston et al., 2023;
426 Schmidt et al., 2023), but the number of studies explicitly focused on understanding the be-
427 havior of contributors to community science databases is increasing (Kolstoe and Cameron,
428 2017; Backstrom et al., 2025; Tulloch and Szabo, 2012; Callaghan et al., 2021; Bowler et al.,
429 2022). The power of unstructured data to detect trends will always be lower than that of
430 structured data resulting from well-designed survey protocols (Kamp et al., 2016; Altwegg

⁴³¹ and Nichols, 2019); however, our results demonstrate that an understanding of the biases
⁴³² present in community science data can be leveraged to take advantage of these massive
⁴³³ datasets. Our uncovering of a decline in bluethroat occupancy over the past 45 years further
⁴³⁴ demonstrates that these data can be used to fill important knowledge gaps about species
⁴³⁵ trends in light of rapid global change.

436 **References**

437 Altwegg, R., and J. D. Nichols, 2019: Occupancy models for citizen-
438 science data. *Methods in Ecology and Evolution*, **10** (1), 8–21, , _eprint:
439 <https://onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.13090>.

440 Andersson, R., 2022: Invandringsförloppet hos vitstjärnig blåhake *Luscinia svecica cyanecula*
441 på svenska västkusten. *Ornis Svecica*, **32**, 5–13,

442 Archaux, F., 2004: Breeding upwards when climate is becoming warmer:
443 no bird response in the French Alps. *Ibis*, **146** (1), 138–144, , _eprint:
444 <https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1474-919X.2004.00246.x>.

445 Artdatabanken, S., 2020: Rödlistade arter i Sverige 2020. Tech. rep., SLU, Uppsala, 242 pp.

446 Artsdatabanken, 2021: Norsk rødliste for arter 2021. Tech. rep., Artsdatabanken, Trondheim,
447 210 pp.

448 Backstrom, L. J., R. L. Drake, H. Worthington, and A. Johnston, 2025: Detections of Rare
449 Species Lead Citizen Scientists to Initiate Data Recording. *Diversity and Distributions*,
450 **31** (10), e70103,

451 Bateman, B. L., A. M. Pidgeon, V. C. Radeloff, J. VanDerWal, W. E. Thogmartin, S. J.
452 Vavrus, and P. J. Heglund, 2016: The pace of past climate change vs. potential bird
453 distributions and land use in the United States. *Global Change Biology*, **22** (3), 1130–
454 1144, , _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.13154>.

455 Bird, T. J., and Coauthors, 2014: Statistical solutions for error and bias in global citizen
456 science datasets. *Biological Conservation*, **173**, 144–154,

457 BirdLife International, 2019: *Luscinia svecica*. Tech. rep.,

458 Both, C., S. Bouwhuis, C. M. Lessells, and M. E. Visser, 2006: Climate change and popula-
459 tion declines in a long-distance migratory bird. *Nature*, **441** (7089), 81–83,

460 Bowler, D. E., H. Heldbjerg, A. D. Fox, M. de Jong, and K. Böhning-
461 Gaese, 2019: Long-term declines of European insectivorous bird populations
462 and potential causes. *Conservation Biology*, **33** (5), 1120–1130, , _eprint:
463 <https://onlinelibrary.wiley.com/doi/10.1111/cobi.13307>.

464 Bowler, D. E., and Coauthors, 2022: Decision-making of citizen scientists when recording
465 species observations. *Scientific Reports*, **12** (1), 11 069,

466 Bryn, A., and K. Potthoff, 2018: Elevational treeline and forest line dynamics in Norwegian
467 mountain areas – a review. *Landscape Ecology*, **33** (8), 1225–1245,

468 Cahill, A. E., and Coauthors, 2013: How does climate change cause extinction? *Proceedings*
469 *of the Royal Society B: Biological Sciences*, **280** (1750), 20121 890,

470 Callaghan, C. T., A. G. B. Poore, M. Hofmann, C. J. Roberts, and H. M. Pereira, 2021:
471 Large-bodied birds are over-represented in unstructured citizen science data. *Scientific*
472 *Reports*, **11** (1), 19 073,

473 Chamberlain, S., V. Barve, D. McGlinn, D. Oldoni, P. Desmet, L. Geffert, and K. Ram,
474 2025:

475 Chen, I.-C., J. K. Hill, R. Ohlemüller, D. B. Roy, and C. D. Thomas, 2011: Rapid Range
476 Shifts of Species Associated with High Levels of Climate Warming. *Science*, **333** (6045),
477 1024–1026,

478 Couet, J., E.-L. Marjakangas, A. Santangeli, J. A. Kålås, Lindström, and A. Lehikoinen,
479 2022: Short-lived species move uphill faster under climate change. *Oecologia*, **198** (4),
480 877–888, doi:10.1007/s00442-021-05094-4.

481 Damnjanović, D., M. Nazarizadeh, M. M. Wisniewska, V. Pavel, B. Chutný, A. Johnsen,
482 M. Nováková, and J. Štefka, 2024: Limited genetic depletion despite extinction risk: ge-
483 nomic diversity of a peripheral population of red-spotted bluethroats in Central Europe.
484 *Zoological Journal of the Linnean Society*, **201** (4), zlae094,

485 Datta, A., S. Banerjee, A. O. Finley, and A. E. Gelfand, 2016: Hierarchical Nearest-Neighbor
486 Gaussian Process Models for Large Geostatistical Datasets. *Journal of the American Sta-
487 tistical Association*, **111** (514), 800–812,

488 Diana, A., E. B. Dennis, E. Matechou, and B. J. T. Morgan, 2023: Fast Bayesian inference
489 for large occupancy datasets. *Biometrics*, **79** (3), 2503–2515,

490 Doser, J. W., A. O. Finley, M. Kéry, and E. F. Zipkin, 2022: spOccupancy: An R package for
491 single-species, multi-species, and integrated spatial occupancy models. *Methods in Ecology
492 and Evolution*, **13** (8), 1670–1678,

493 Dupont, G., and A. Dobson, 2025: North American bird declines are driven by reductions
494 in common species. *Science Advances*, **11** (31), eadw8971,

495 Finley, A. O., A. Datta, B. D. Cook, D. C. Morton, H. E. Andersen, and S. Baner-
496 jee, 2019: Efficient Algorithms for Bayesian Nearest Neighbor Gaussian Processes.
497 *Journal of Computational and Graphical Statistics*, **28** (2), 401–414, , _eprint:
498 <https://doi.org/10.1080/10618600.2018.1537924>.

499 Gaston, K. J., T. M. Blackburn, J. J. Greenwood, R. D. Gregory, R. M. Quinn, and J. H.
500 Lawton, 2000: Abundance–occupancy relationships. *Journal of Applied Ecology*, **37** (s1),
501 39–59, , _eprint: [https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-
2664.2000.00485.x](https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-
502 2664.2000.00485.x).

503 Hawker, L., P. Uhe, L. Paulo, J. Sosa, J. Savage, C. Sampson, and J. Neal, 2022: A 30

504 m global map of elevation with forests and buildings removed. *Environmental Research
505 Letters*, **17 (2)**, 024016,

506 Henrikson, S., and O. Hilmo, 2015: Norsk rødliste for arter 2015. Tech. rep., Artsdatabanken,
507 Norge, 193 pp.

508 Hickling, R., D. B. Roy, J. K. Hill, R. Fox, and C. D. Thomas, 2006: The distributions
509 of a wide range of taxonomic groups are expanding polewards. *Global Change Biology*,
510 **12 (3)**, 450–455, , _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2486.2006.01116.x>.

511

512 Hijmans, R. J., 2024:

513 Hochachka, W. M., D. Fink, R. A. Hutchinson, D. Sheldon, W.-K. Wong, and S. Kelling,
514 2012: Data-intensive science applied to broad-scale citizen science. *Trends in Ecology &
515 Evolution*, **27 (2)**, 130–137,

516 Hochachka, W. M., V. Ruiz-Gutierrez, and A. Johnston, 2023: Considerations for fitting
517 occupancy models to data from eBird and similar volunteer-collected data. *Ornithology*,
518 **140 (4)**, ukad035,

519 Hofgaard, A., L. Dalen, and H. Hytteborn, 2009: Tree recruitment above the treeline and
520 potential for climate-driven treeline change. *Journal of Vegetation Science*, **20 (6)**, 1133–
521 1144,

522 Hovick, T. J., B. W. Allred, D. A. McGranahan, M. W. Palmer, R. Dwayne Elmore, and
523 S. D. Fuhlendorf, 2016: Informing conservation by identifying range shift patterns across
524 breeding habitats and migration strategies. *Biodiversity and Conservation*, **25 (2)**, 345–
525 356,

526 Hughes, L., 2000: Biological consequences of global warming: is the signal already apparent?

527 *Trends in Ecology & Evolution*, **15** (2), 56–61,

528 Hyvärinen, E., A. Juslén, E. Kemppainen, A. Uddström, and U.-M. Liukko, 2019: The 2019

529 Red List of Finnish Species. Tech. rep., Ympäristöministeriö & Suomen ympäristökeskus,

530 Helsinki, 704 pp.

531 Hälfors, M. H., and Coauthors, 2024: Recent range shifts of moths, butterflies, and birds

532 are driven by the breadth of their climatic niche. *Evolution Letters*, **8** (1), 89–100,

533 Inger, R., R. Gregory, J. P. Duffy, I. Stott, P. Voříšek, and K. J. Gas-

534 ton, 2015: Common European birds are declining rapidly while less abun-

535 dant species' numbers are rising. *Ecology Letters*, **18** (1), 28–36, , _eprint:

536 <https://onlinelibrary.wiley.com/doi/10.1111/ele.12387>.

537 Isaac, N. J. B., A. J. van Strien, T. A. August, M. P. de Zeeuw, and D. B.

538 Roy, 2014: Statistics for citizen science: extracting signals of change from noisy

539 ecological data. *Methods in Ecology and Evolution*, **5** (10), 1052–1060, , _eprint:

540 <https://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12254>.

541 Jiguet, F., R. D. Gregory, V. Devictor, R. E. Green, P. Voříšek, A. Van Strien, and D. Couvet,

542 2010: Population trends of European common birds are predicted by characteristics of

543 their climatic niche. *Global Change Biology*, **16** (2), 497–505,

544 Johnsen, A., and Coauthors, 2006: Molecular and phenotypic divergence in the bluethroat

545 (*Luscinia svecica*) subspecies complex. *Molecular Ecology*, **15** (13), 4033–4047, , _eprint:

546 <https://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2006.03075.x>.

547 Johnston, A., E. Matechou, and E. B. Dennis, 2023: Outstanding challenges and future direc-

548 tions for biodiversity monitoring using citizen science data. *Methods in Ecology and Evolution*,

549 *tion*, **14** (1), 103–116, , _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.13834>.

550

551 Johnston, A., and Coauthors, 2021: Analytical guidelines to increase the value of community
552 science data: An example using eBird data to estimate species distributions. *Diversity and*
553 *Distributions*, **27** (7), 1265–1277,

554 Johnston, A., and Coauthors, 2025: North American bird declines are greatest where species
555 are most abundant. *Science*, **388** (6746), 532–537,

556 Kamp, J., S. Oppel, H. Heldbjerg, T. Nyegaard, and P. F. Donald, 2016: Un-
557 structured citizen science data fail to detect long-term population declines of com-
558 mon birds in Denmark. *Diversity and Distributions*, **22** (10), 1024–1035, , _eprint:
559 <https://onlinelibrary.wiley.com/doi/pdf/10.1111/ddi.12463>.

560 Knudsen, E., and Coauthors, 2011: Challenging claims in the study of migra-
561 tory birds and climate change. *Biological Reviews*, **86** (4), 928–946, , _eprint:
562 <https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-185X.2011.00179.x>.

563 Kolstoe, S., and T. A. Cameron, 2017: The Non-market Value of Birding Sites and the
564 Marginal Value of Additional Species: Biodiversity in a Random Utility Model of Site
565 Choice by eBird Members. *Ecological Economics*, **137**, 1–12,

566 Kéry, M., J. A. Royle, H. Schmid, M. Schaub, B. Volet, G. Häfliger, and N. Zbinden, 2010:
567 Site-Occupancy Distribution Modeling to Correct Population-Trend Estimates Derived
568 from Opportunistic Observations. *Conservation Biology*, **24** (5), 1388–1397, , _eprint:
569 <https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1523-1739.2010.01479.x>.

570 Lehikoinen, A., M. Green, M. Husby, J. A. Kålås, and Lindström, 2014: Common montane
571 birds are declining in northern Europe. *Journal of Avian Biology*, **45** (1), 3–14, , _eprint:
572 <https://nsojournals.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1600-048X.2013.00177.x>.

573 Lehikoinen, A., and Coauthors, 2019: Declining population trends of European mountain
574 birds. *Global Change Biology*, **25** (2), 577–588, doi:10.1111/gcb.14522.

575 Lenoir, J., and J.-C. Svenning, 2015: Climate-related range shifts – a global multidimensional
576 synthesis and new research directions. *Ecography*, **38** (1), 15–28, , _eprint:
577 <https://nsojournals.onlinelibrary.wiley.com/doi/pdf/10.1111/ecog.00967>.

578 Lenoir, J., and Coauthors, 2010: Going against the flow: potential mechanisms for unexpected
579 downslope range shifts in a warming climate. *Ecography*, **33** (2), 295–303, , _eprint:
580 <https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1600-0587.2010.06279.x>.

581 Lislevand, T., B. Chutný, I. Byrkjedal, V. Pavel, M. Briedis, P. Adamik, and
582 S. Hahn, 2015: Red-spotted Bluethroats *Luscinia s. svecica* migrate along the Indo-
583 European flyway: a geolocator study. *Bird Study*, **62** (4), 508–515, , _eprint:
584 <https://doi.org/10.1080/00063657.2015.1077781>.

585 Mackenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. Andrew, and C. a. Langtimm,
586 2002: Estimating Site Occupancy Rates When Detection Probabilities Are Less Than
587 One. **83** (8), 2248–2255.

588 MacKenzie, D. I., J. D. Nichols, A. Royle, K. H. Pollock, L. L. Bailey, and J. E. Hines, 2018:
589 *Occupancy Estimation and Modeling*. Elsevier Academic Press.

590 MacLean, S. A., and S. R. Beissinger, 2017: Species' traits as predictors of range shifts under
591 contemporary climate change: A review and meta-analysis. *Global Change Biology*, **23** (10), 4094–4105, , _eprint:
592 <https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.13736>.

594 Manne, L. L., and R. R. Veit, 2020: Temporal changes in abundance–occupancy
595 relationships over 40 years. *Ecology and Evolution*, **10** (2), 602–611, , _eprint:
596 <https://onlinelibrary.wiley.com/doi/pdf/10.1002/ece3.5505>.

597 Marris, E., 2007: The escalator effect. *Nature Climate Change*, **1** (712), 94–96,

598 Mienna, I. M., K. Klanderud, E. Næsset, T. Gobakken, and O. M. Bollandsås,
599 2024: Quantifying the roles of climate, herbivory, topography, and vegetation on
600 tree establishment in the treeline ecotone. *Ecosphere*, **15** (4), e4845, , _eprint:
601 <https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/ecs2.4845>.

602 Møller, A. P., D. Rubolini, and E. Lehikoinen, 2008: Populations of migratory bird species
603 that did not show a phenological response to climate change are declining. *Proceedings of
604 the National Academy of Sciences*, **105** (42), 16 195–16 200,

605 Northrup, J. M., and B. D. Gerber, 2018: A comment on priors for Bayesian occupancy
606 models. *PLOS ONE*, **13** (2), e0192819,

607 Nygaard, P. H., F. Bøhler, B.-H. Øyen, and B. Tveite, 2022: Long-term spatiotem-
608 poral dynamics in a mountain birch (*Betula pubescens* ssp. *czerepanovii*) forest
609 in south-east Norway. *Plant-Environment Interactions*, **3** (4), 155–169, , _eprint:
610 <https://onlinelibrary.wiley.com/doi/pdf/10.1002/pei3.10087>.

611 Ockendon, N., and Coauthors, 2014: Mechanisms underpinning climatic im-
612 pacts on natural populations: altered species interactions are more impor-
613 tant than direct effects. *Global Change Biology*, **20** (7), 2221–2229, , _eprint:
614 <https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.12559>.

615 Parmesan, C., and G. Yohe, 2003: A globally coherent fingerprint of climate change impacts
616 across natural systems. *Nature*, **421**, 37–42,

617 Petras, T., and A. Vrezec, 2022: Long-Term Ringing Data on Migrating Passerines Reveal
618 Overall Avian Decline in Europe. *Diversity*, **14** (11), 905,

619 Pocock, M. J. O., J. C. Tweddle, J. Savage, L. D. Robinson, and H. E. Roy, 2017: The
620 diversity and evolution of ecological and environmental citizen science. *PLOS ONE*, **12** (4),
621 e0172579,

622 R Core Team, 2024: R: A language and environment for statistical computing.

623 Rantanen, M., A. Y. Karpechko, A. Lipponen, K. Nordling, O. Hyvärinen, K. Ruosteenoja,
624 T. Vihma, and A. Laaksonen, 2022: The Arctic has warmed nearly four times faster than
625 the globe since 1979. *Communications Earth & Environment*, **3** (1), 1–10,

626 Rosenberg, K. V., and Coauthors, 2019: Decline of the North American avifauna. *Science*,
627 **366** (6461), 120–124, doi:10.1126/science.aaw1313.

628 Sauer, J. R., and Coauthors, 2017: The first 50 years of the North American Breeding Bird
629 Survey. *The Condor*, **119** (3), 576–593,

630 Schmidt, B. R., S. S. Cruickshank, C. Bühler, and A. Bergamini, 2023: Observers are a key
631 source of detection heterogeneity and biased occupancy estimates in species monitoring.
632 *Biological Conservation*, **283**, 110102,

633 Sekercioglu, C. H., S. H. Schneider, J. P. Fay, and S. R. Loarie, 2008: Climate
634 Change, Elevational Range Shifts, and Bird Extinctions. *Conservation Biology*, **22** (1),
635 140–150, , _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1523-1739.2007.00852.x>.

637 Soroye, P., N. Ahmed, and J. T. Kerr, 2018: Opportunistic citizen science data
638 transform understanding of species distributions, phenology, and diversity gradients
639 for global change research. *Global Change Biology*, **24** (11), 5281–5291, , _eprint:
640 <https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.14358>.

641 Speed, J. D. M., G. Austrheim, A. J. Hester, and A. Mysterud, 2010: Experimental ev-
642 idence for herbivore limitation of the treeline. *Ecology*, **91** (11), 3414–3420, , _eprint:
643 <https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/09-2300.1>.

644 Stuecker, M. F., and Coauthors, 2018: Polar amplification dominated by local forcing and
645 feedbacks. *Nature Climate Change*, **8** (12), 1076–1081,

646 Szabo, J. K., P. A. Vesk, P. W. J. Baxter, and H. P. Possingham, 2010: Re-
647 gional avian species declines estimated from volunteer-collected long-term data us-
648 ing List Length Analysis. *Ecological Applications*, **20** (8), 2157–2169, , _eprint:
649 <https://onlinelibrary.wiley.com/doi/pdf/10.1890/09-0877.1>.

650 Søraker, J. S., and Coauthors, 2022: Resident bird species track inter-annual variation
651 in spring phenology better than long-distance migrants in a subalpine habitat. *Climate
652 Change Ecology*, **3**, 100 050,

653 Theobald, E. J., and Coauthors, 2015: Global change and local solutions: Tapping the
654 unrealized potential of citizen science for biodiversity research. *Biological Conservation*,
655 **181**, 236–244,

656 Thomas, C. D., and J. J. Lennon, 1999: Birds extend their ranges northwards. *Nature*,
657 **399** (6733), 213–213,

658 Tsiftsis, S., Z. Štípková, M. Rejmánek, and P. Kindlmann, 2024: Predictions of species distri-
659 butions based only on models estimating future climate change are not reliable. *Scientific
660 Reports*, **14** (1), 25 778,

661 Tulloch, A. I. T., and J. K. Szabo, 2012: A behavioural ecology approach to understand
662 volunteer surveying for citizen science datasets. *Emu - Austral Ornithology*, **112** (4), 313–
663 325,

664 Urban, M. C., 2018: Escalator to extinction. *Proceedings of the National Academy of Sci-*
665 *ences*, **115** (47), 11871–11873,

666 van Strien, A. J., T. Termaat, D. Groenendijk, V. Mensing, and M. Kéry, 2010: Site-
667 occupancy models may offer new opportunities for dragonfly monitoring based on daily
668 species lists. *Basic and Applied Ecology*, **11** (6), 495–503,

669 van Strien, A. J., C. A. van Swaay, and T. Termaat, 2013: Opportunistic citizen science
670 data of animal species produce reliable estimates of distribution trends if analysed with
671 occupancy models. *Journal of Applied Ecology*, **50** (6), 1450–1458,

672 VanDerWal, J., H. T. Murphy, A. S. Kutt, G. C. Perkins, B. L. Bateman, J. J. Perry, and
673 A. E. Reside, 2013: Focus on poleward shifts in species' distribution underestimates the
674 fingerprint of climate change. *Nature Climate Change*, **3** (3), 239–243,

675 Walther, G.-R., 2010: Community and ecosystem responses to recent climate change. *Phi-
676 losophical Transactions of the Royal Society B: Biological Sciences*, **365** (1549), 2019–2024,

677 Zuckerberg, B., W. F. Porter, and K. Corwin, 2009: The consistency and stability of
678 abundance-occupancy relationships in large-scale population dynamics. *Journal of Ani-
679 mal Ecology*, **78** (1), 172–181,

680 6 Appendix S1. Occupancy model formulation

681 We implemented our spatio-temporal occupancy models using the 'stPGOcc' function in the
682 spOccupancy package Doser et al. (2022) in the R Statistical Environment R Core Team
683 (2024).

684 Explanation of subscripts used in the model:

685 $j = 1, \dots, J$ (sites)

686 $t = 1, \dots, T$ (years)

687 $k = 1, \dots, K$ (surveys)

688 6.1 Occupancy sub-model (ecological process)

689 We formulated our occupancy model as

$$z_{j,t} \sim \text{Bernoulli}(\psi_{j,t})$$

$$\text{logit}(\psi_{j,t}) = \mathbf{x}_{j,t}\boldsymbol{\beta} + \omega_j + \eta_t$$

690 where $z_{j,t}$ represents the latent (unobserved) true occupancy state of site j in year t , $\psi_{j,t}$
691 is the probability of occupancy at site j in year t , $\boldsymbol{\beta}$ is a vector of coefficients for covariate
692 effects (including an intercept) and $\mathbf{x}_{j,t}$ is a row-vector of the covariate values at site j in
693 year t . ω_j and η_t are the multivariate normal spatial and temporal random effects.

694 Spatial random effects (ω_j) were estimated using a Nearest Neighbor Gaussian Process
695 (NNGP) Datta et al. (2016); Finley et al. (2019); Doser et al. (2022), with an exponential
696 covariance structure. In this model, the variance of the random effects is constant, σ^2 , and
697 the correlation between random effects at two sites at a distance d apart is $\exp(-\phi d)$, where
698 the ϕ represents the rate at which the correlation decays. Thus, the distance at which the
699 spatial autocorrelation falls below 0.05 is $-\log(0.05)/\phi \approx 3/\phi$, which may be interpreted
700 as the spatial extent of the autocorrelation (used for selecting reasonable upper and lower

701 bounds for the prior probability distribution of ϕ).

702 We modeled the temporal random effects (η_t) using an AR1 auto regressive structure.

703 The covariance between two time points t_0 and t_1 is thus

$$\sigma_T^2 \rho^{|t_0 - t_1|}$$

704 where σ_T^2 is the temporal variance (magnitude) and ρ is the correlation between two successive
705 years (one time unit).

706 In the final occupancy sub-model, the covariates included were latitude, year, elevation
707 (represented by a cubic spline with 2 knots), and the three-way interaction between them.

708 6.2 Detection sub-model (observation process)

709 We formulated the detection model as

$$y_{j,t,k} \sim \text{Bernoulli}(p_{j,t,k} z_{j,t})$$

710

$$\text{logit}(p_{j,t,k}) = \mathbf{v}_{j,t,k} \boldsymbol{\alpha}$$

711 where $y_{j,t,k}$ is the detection/non-detection (1/0) observation at site j in year t and survey k .

712 $p_{j,t,k}$ is the probability of observing a bluethroat, given that it is present, for site j in year t
713 and survey k . $\boldsymbol{\alpha}$ is a vector of detection coefficients, and row vector $\mathbf{v}_{j,t,k}$ holds the covariate
714 values at site j in year t and survey k .

715 In the detection sub-model, we estimated a separate intercept for each week, as well as
716 including effort (the number of reports of background species in a given survey (*i.e.*, week),
717 latitude, elevation, and the interaction between latitude and elevation as covariates.

⁷¹⁸ 7 Supplemental figures

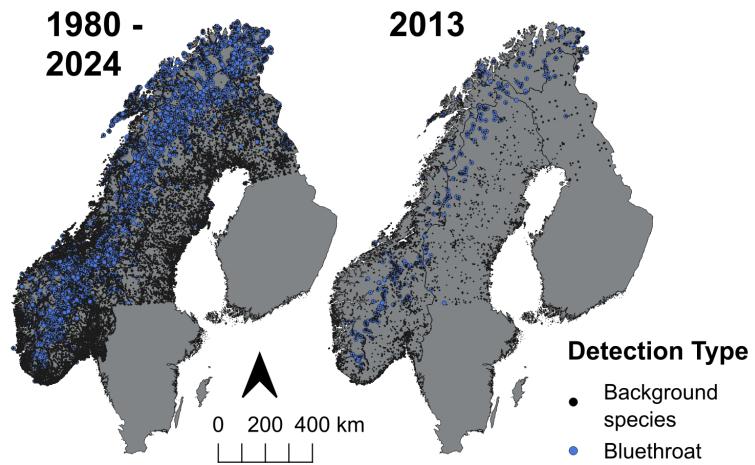


Figure S7: Maps showing reports of background species for the whole study period (left) and reports of bluethroats and background species for the middle year of the study (2013, right), as an example of the dataset.

Elevation (meters)

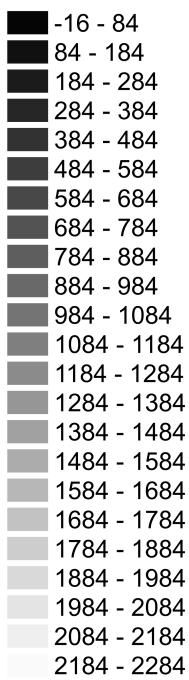
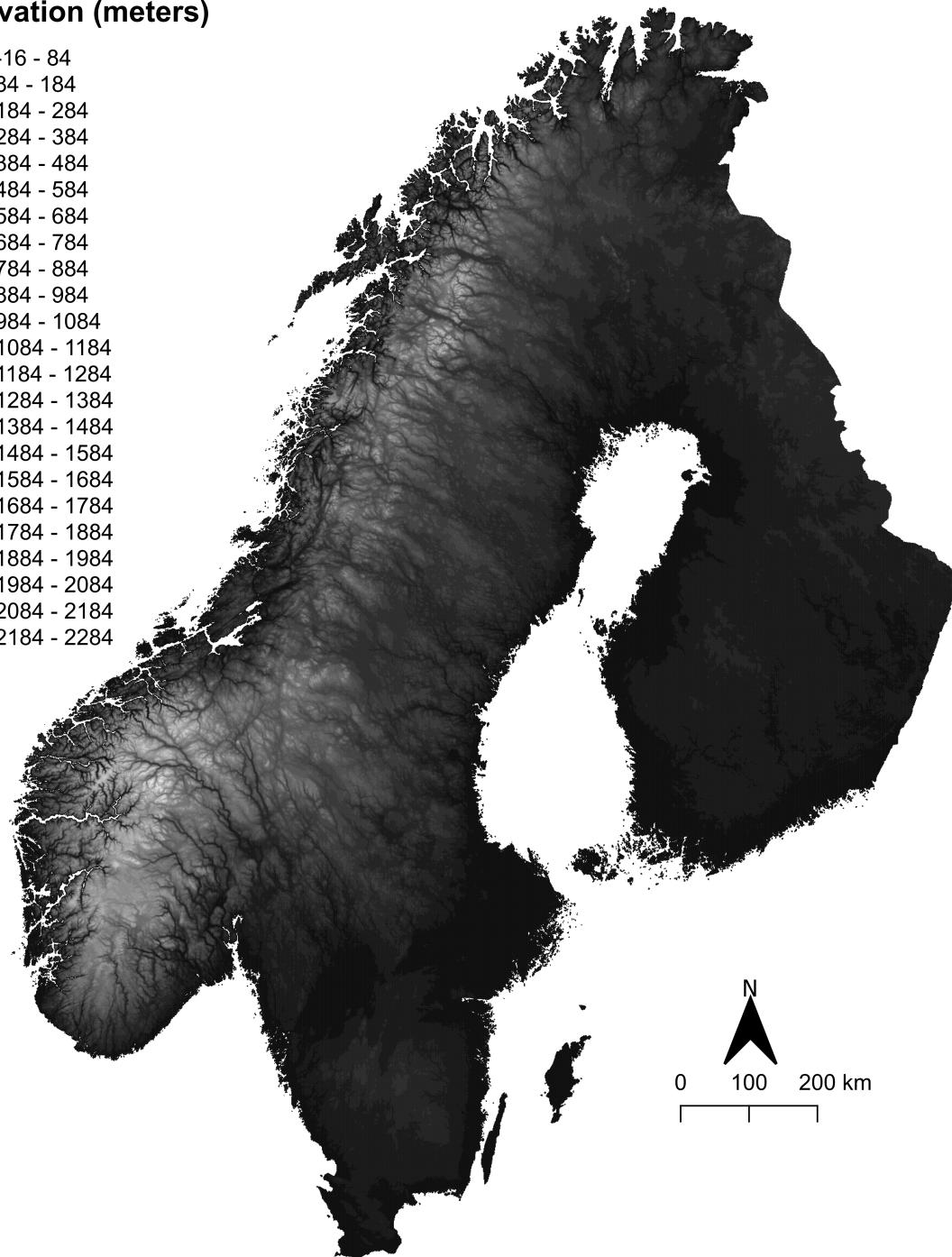


Figure S8: Map showing the mean elevation for each 1-km hexagonal grid cell in the Fennoscandian peninsula, derived from a 30-m global Digital Elevation Model with forests and buildings removed.

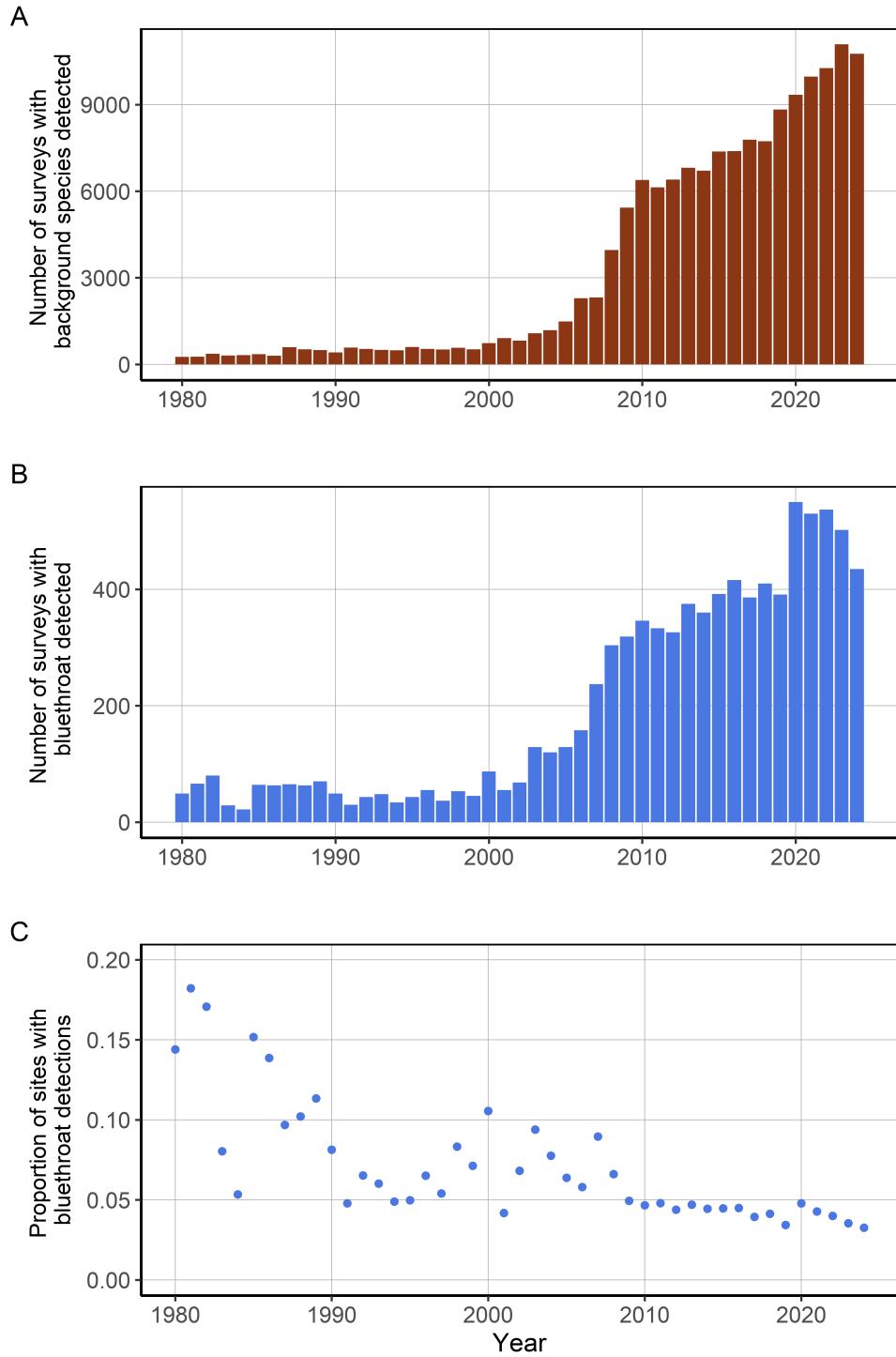


Figure S9: Visualization of the number of surveys each year across all sites. (A) shows the number of surveys where background species were detected (*i.e.* the number of sites surveyed), and (B) shows the number of surveys during which bluethroats were detected. (C) shows the naive proportion of sites that had bluethroat detections in each year of the study, calculated as the number of sites where bluethroats were detected at least once divided by the total number of sites surveyed in that year.

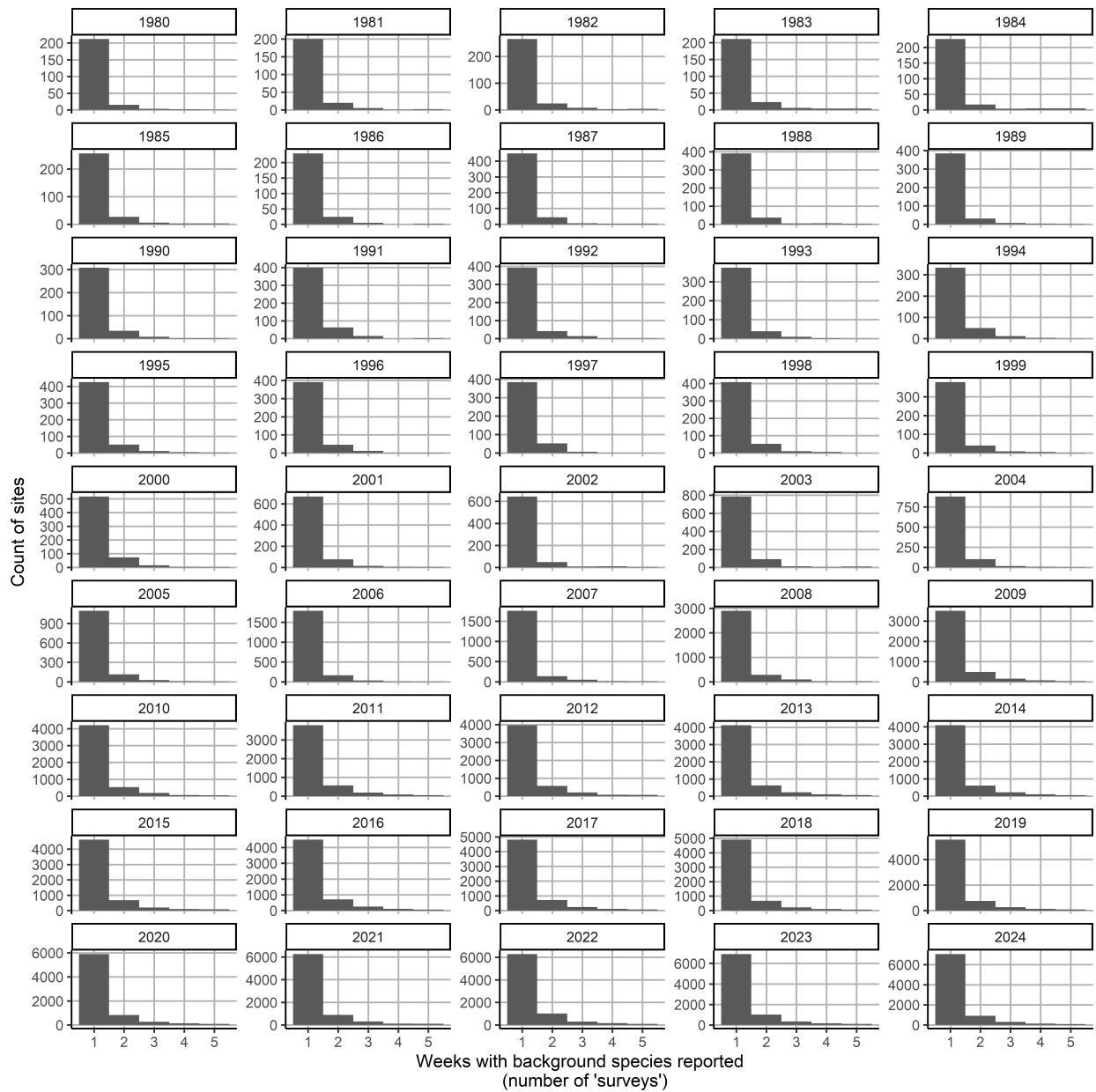


Figure S10: We used observations from one week (7 days) as a 'survey' in this study. This histogram shows the surveyed sites in each year and the number of sites with each number of surveys (1-5). Most surveyed sites had only one week with effort (*i.e.*, background species reported) in a given year, but some sites were surveyed multiple times allowing for estimation of detection probabilities. Our primary survey period was 10 June - 1 July (5 weeks), so the maximum number of surveys in a given year was 5.

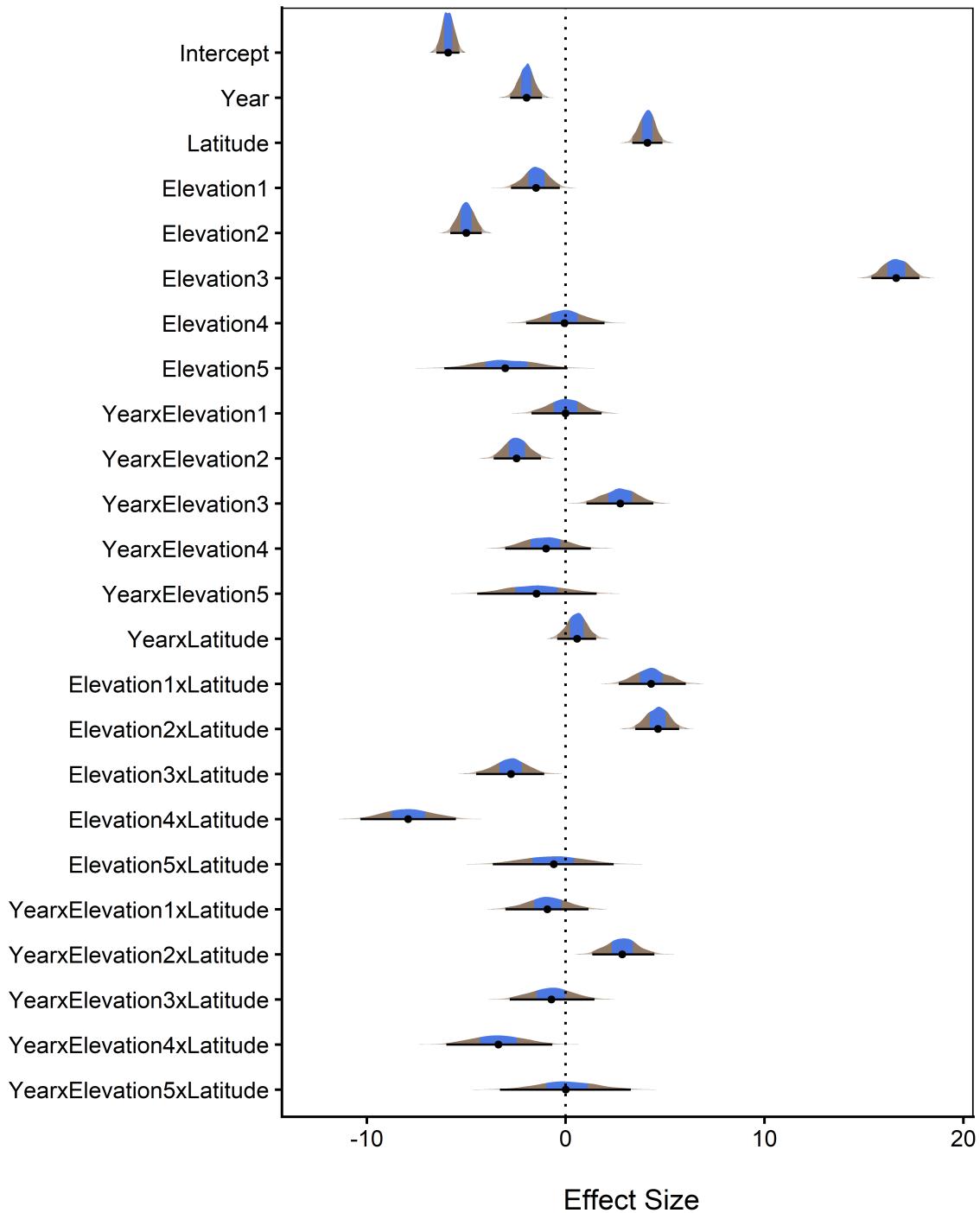


Figure S11: Full posterior distributions for all the occupancy covariate coefficients. The center blue section depicts the 50% credible interval, the darker brown represents the 95% credible interval, and the light brown represents the 99% credible interval. All predictor variables were standardized prior to model fitting by subtracting the mean and dividing by 2 standard deviations. Effect sizes are thus change in log-odds for occupancy per two standard deviations change in the predictor variable.⁴² The five elevation parameters represent the B-spline terms for the elevation portion of the model, but these terms do not have a specific interpretation individually.

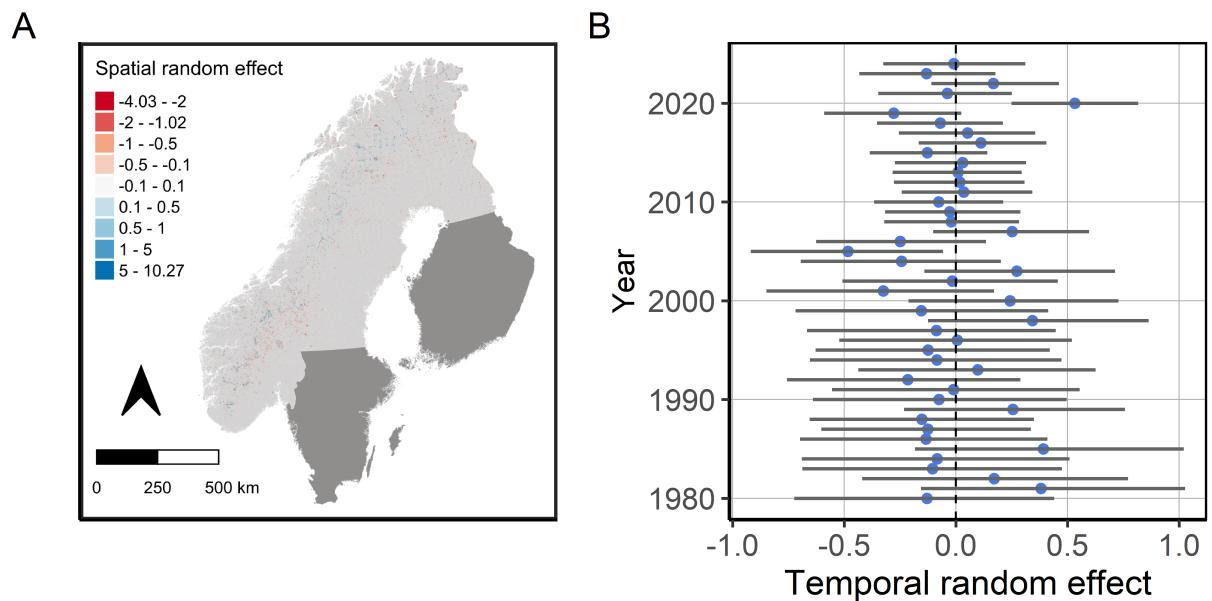


Figure S12: Plots of the (A) spatial and (B) temporal random effects and 95% CRI from the model output.