

# A systematic map and comprehensive database of animal organ sizes

Félix P. Leiva, Luke Ockhuijsen, Jasmijn Polinder, Louise J. Schreyers, Jie Xiong  
and A. Jan Hendriks

Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands.

**E-MAIL OF CORRESPONDING AUTHOR (\*)**

Félix P. Leiva: [felixpleiva@gmail.com](mailto:felixpleiva@gmail.com)

**AUTHOR'S CONTACT (EMAIL; ORCID):**

Félix P. Leiva: [felixpleiva@gmail.com](mailto:felixpleiva@gmail.com); 0000-0003-0249-9274

Luke Ockhuijsen: luke.ockhuijsen@ru.nl; ORCID ID: 0009-0000-0598-8968

Jasmijn Polinder: [jasmijn.polinder@ru.nl](mailto:jasmijn.polinder@ru.nl); ORCID ID: 0009-0003-4572-9778

Louise J. Schreyers: louise.schreyers@ru.nl; ORCID ID: 0000-0002-2607-1494

Jie Xiong: [jie.xiong@ru.nl](mailto:jie.xiong@ru.nl); ORCID ID: 0009-0008-4595-7187

A. Jan Hendriks: jan.hendriks@ru.nl; ORCID ID: 0000-0002-4

20 **ABSTRACT**

21 The relationship between individual organ size and overall body size in animals is a  
22 fundamental biological phenomenon that spans multiple disciplines. However, a  
23 comprehensive synthesis of the sources of variation in organ-specific scaling remains  
24 lacking, even among mammals, the most extensively studied vertebrate group. We  
25 developed a systematic map and compiled a large database of paired organ and body  
26 size measurements. This database includes over 10,000 records from 366 species  
27 across eight animal classes. Our database provides size estimates for 53 organ types,  
28 categorised into 10 physiological systems, with most data derived from digestive,  
29 circulatory and excretory systems. In addition, we include extensive metadata to  
30 contextualise the original studies, which highlights gaps—such as the season of  
31 animal collection and life stage, both of which were among the least frequently  
32 reported. We anticipate this comprehensive and reproducible resource will offer a  
33 robust foundation for improving the parameterisation and cross-species applicability  
34 of simulation models based on physiological and kinetic principles, thereby advancing  
35 our understanding of organ size scaling across diverse taxa.

36

37 **Keywords:** scaling, interspecific, intraspecific, metadata, sex, life stage

38

39 **INTRODUCTION**

40 The manner in which individual organ dimensions change relative to overall body size  
41 is termed organ size scaling—a phenomenon fundamental to numerous biological  
42 disciplines<sup>1</sup>. Understanding how organ size scaling varies across taxa is essential for  
43 addressing key questions in comparative physiology and evolutionary biology, as well  
44 as ecotoxicology. This knowledge not only reveals broad patterns of anatomical  
45 organisation, but also provides a robust foundation in several research fields,  
46 including, but not limited to, physiology, developmental biology, functional  
47 morphology, and environmental sciences<sup>2–4</sup>.

48 In developmental biology, elucidating organ size scaling improves our  
49 understanding of how organisms maintain cellular function during growth, particularly  
50 as shifts in tissue proportions influence organ dimensions<sup>5</sup>. In physiology, organ size  
51 scaling is closely linked to metabolic rates and body size, thereby shaping critical  
52 processes including oxygen delivery, circulatory dynamics, thermoregulation, and  
53 consequently, organisms' responses to environmental changes<sup>1</sup>. From an  
54 evolutionary perspective, studies on organ scaling—particularly brain size—have  
55 stimulated debates surrounding long-standing evolutionary hypotheses<sup>6,7</sup>. These  
56 examples, alongside extensive research dating from Huxley's seminal studies<sup>8,9</sup> to  
57 contemporary research<sup>7,10–12</sup>, emphasise that scaling relationships lack universality.  
58 No single exponent characterises all patterns of organ scaling, as empirical data  
59 frequently reveal considerable intra and inter-specific variation and deviations from  
60 theoretical models<sup>13,14</sup>. Recognising this variation, within its biological and  
61 methodological context, is also important for identifying factors beyond body mass that  
62 explain these deviations. Such insights can ultimately help refine the parameterisation  
63 of simulation models based on physiological and kinetic principles<sup>15–18</sup>.

64 While the scaling of organ size is a widely studied phenomenon, most analyses  
65 have focused on limited range of taxonomic groups (e.g., birds and mammals) and  
66 specific organs (e.g., brain size). It is also important to recognise that much of the  
67 debate surrounding broader hypotheses, such as the *energy trade-off hypothesis*<sup>19</sup>  
68 and the *expensive tissue hypothesis*<sup>6</sup>, has driven the compilation of datasets for  
69 multiple organs, mainly in mammals<sup>7</sup>, or for single organs across various vertebrates  
70 and invertebrates groups<sup>20</sup>. However, to our knowledge, no existing databases provide

71 the necessary methodological context to better explain the variation and deviations  
72 from theoretical expectations observed in organ size scaling across different  
73 taxonomic groups.

74 This gap highlights the need to investigate whether organ-specific scaling  
75 occurs consistently among functionally similar organs, or whether incorporating  
76 ecological and other biological traits and methodological context can better explain  
77 observed patterns. Addressing these questions is crucial to uncover fundamental  
78 principles governing the design and evolution of biological systems across diverse  
79 taxa<sup>21</sup>. Nonetheless, the continued absence of centralised, standardised organ size  
80 datasets spanning a wide range of species hampers model parameterisation and limits  
81 our ability to generalise findings across taxa.

82 To address limitations in both taxonomic and organ coverage, we have  
83 developed a comprehensive database comprising paired data on organ and body size  
84 across a diverse range of invertebrate and vertebrate animals. The data, curated  
85 through a systematic review of the literature, encompass species from marine,  
86 freshwater, and terrestrial environments. Each entry includes biological details such  
87 as sex, age, life stage, and body size. The database also contains supplementary  
88 metadata outlining the methodological context of each study. Collectively, this  
89 resource is designed to support meta-analyses and comparative approaches on organ  
90 scaling at both inter- and intra-specific levels, and to enhance understanding of their  
91 physiological and evolutionary significance.

## 92 MATERIAL AND METHODS

93 We adhere to the Method Reporting with Initials for Transparency (MeRIT,  
94 <https://www.merit.help/>) guidelines developed by Nakagawa et al.<sup>22</sup> to enhance the  
95 clarity and transparency of our reporting and methodological descriptions. These  
96 guidelines employ authors' initials within the methods section to attribute specific tasks  
97 to individual contributors, thereby complementing the Contributor Roles Taxonomy  
98 (CRediT, <https://credit.niso.org/>) system.

### 99 Literature search

100 We searched the literature using ISI Web of Science (Core Collection,  
101 <https://www.webofscience.com/>) and Scopus (<https://www.scopus.com/>) to identify  
102 studies reporting paired data on organ dimensions and body size. The search was  
103 conducted on 23 January 2025, using Radboud University's institutional subscriptions.  
104 We included organs common to all vertebrates, as well as functionally similar organs  
105 in invertebrates<sup>23</sup>. Search terms were selected to cover specific lineages and  
106 categories based on diet, habitat, locomotion, and other relevant groups (e.g.,  
107 ruminants).

108 The keywords combination of Boolean terms used was: ("organ size" OR  
109 "organ weight\*" OR "organ volume" OR "organ length\*" OR "organ surface area" OR  
110 "organ exchange area" OR "layer thickness" OR "organ mass" OR "organ scaling" OR  
111 "anatomical scaling" OR body proportion) AND ("ileum" OR "gastrointestin\*" OR  
112 "digestive tract" OR "lung\*" OR "pulmonary" OR "brain" OR "kidney\*" OR "renal" OR  
113 "gut" OR "heart" OR "myocardi\*" OR "liver" OR "hepat\*" OR "intestin\*" OR "stomach"  
114 OR "gill\*" OR "branchi\*" OR "dorsal vessel\*" OR "pulsatile organ\*" OR "tracheal  
115 system\*" OR "nephridia" OR "gonad\*" OR "gangli\*" OR "pancreas" OR "spleen" OR  
116 "hepatopancreas" OR "thyroid" OR "pituitary" OR "thymus" OR "bone marrow" OR  
117 "muscle" OR "bone\*" OR "gland\*" OR "adipose depot" OR "visceral") AND ("fish\*" OR  
118 "reptil\*" OR "mammal\*" OR "bird\*" OR "amphibia\*" OR "vertebrate\*" OR "annelid\*" OR  
119 "mollusc\*" OR "mollusk\*" OR "arthropod\*" OR "echinoderm\*" OR "cephalopod\*" OR  
120 "insect\*" OR "crustacean\*" OR "primate\*" OR "rodent\*" OR "carnivore\*" OR  
121 "herbivore\*" OR "cetacean\*" OR "marsupial\*" OR "monotreme\*") AND ("body mass"  
122 OR "body size" OR "body weight" OR "scaling" OR "scal\*" OR "fat-free body mass"  
123 OR "fat-free body weight"). The full records were downloaded, including abstracts,  
124 keywords, and all relevant information, across all years and editions, and document  
125 types. Only references published in English were included in this study, and these  
126 were downloaded in BibTeX file format. Using ISI Web of Science, a total of 2,305  
127 records were identified, whilst in Scopus, 2,124 records were found (Figure S1).

## 128 **Literature screening**

129 To streamline the screening process, we used Rayyan<sup>24</sup>, a web-based platform that  
130 accelerates systematic reviews by reducing the time required for each screening  
131 stage. After removing duplicates ( $N = 1,061$ ), we implemented a two-step filtering

132 process based on keywords. First, we applied filters to identify terms related to specific  
133 organs. Next, we used additional filters to focus on size-related terms. These steps  
134 enabled us to detect relevant keywords within the title, abstract, and keyword sections  
135 of each reference.

136 To further refine our selection, we applied filters in Rayyan for both passive  
137 (e.g., "were measured", "were analysed") and active expressions (e.g., "we  
138 measured", "we analysed") to identify more easily whether an organ had been  
139 measured in each study. This approach enabled the identification of 660 relevant  
140 studies (Figure S1). Whenever possible, the PDF files of these references were  
141 downloaded, and inclusion was determined based on the criteria outlined below,  
142 following a full-text screening of each article.

#### 143 **Eligibility criteria**

144 Although our screening of titles and abstracts in the preceding step was as thorough  
145 as possible, most studies excluded at the full-text stage were not relevant to the aims  
146 of our systematic review. Over 200 studies were excluded because they either lacked  
147 relevant data or examined different organ-level traits. A key inclusion criterion was that  
148 studies must report paired data on both organ and body size. At this stage, 45 studies  
149 were excluded for not reporting body size. An additional 43 studies reported both body  
150 size and organ size, but the data were not paired; for example, organ size was reported  
151 separately for each sex, whereas body size was provided only as a mean for females  
152 and males combined.

153 Additionally, only primary research articles were included to ensure the use of  
154 original data and to give appropriate credit to primary sources, meaning that reviews  
155 were excluded from our study (N = 37). We also focused exclusively on extant,  
156 species-specific data to maintain consistency and comparability, thereby excluding  
157 genus-level data, hybrid species, extinct species, and studies focusing solely on  
158 foetuses (only studies including neonates and older life stages individuals were  
159 retained). In cases where studies involved various treatments (e.g., exposure to  
160 chemical treatments), only those reporting experimental control conditions, as defined  
161 in the original publication, were considered, to ensure comparability across studies in  
162 our database.

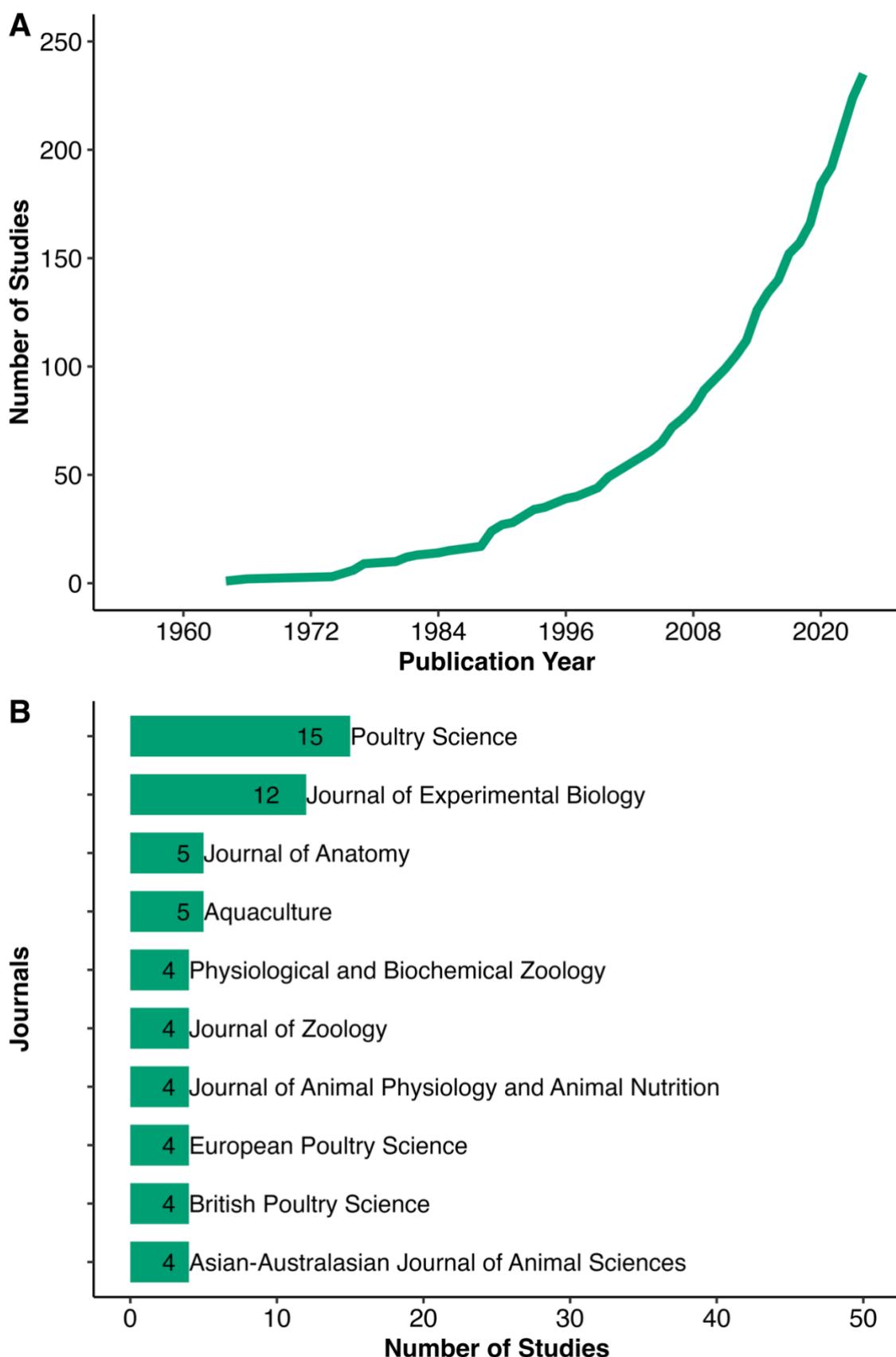
163 Applying these inclusion criteria, along with the exclusion of studies for which  
164 data could not be accessed (e.g., no PDF available or authors did not provide raw data  
165 after request), or that were duplicates, the final number of studies included in our  
166 database was 235. All primary articles used to construct the database have been  
167 referenced<sup>7,25–258</sup>. This practice establishes the most plausible starting point for  
168 encouraging the sharing of primary data<sup>259</sup>.

169 **Data extraction and metadata**

170 We extracted the mean values where available for paired body size and organ size in  
171 both invertebrates and vertebrates, along with their respective sample sizes and  
172 measures of dispersion, such as standard deviation, standard error, or confidence  
173 intervals. All data extractions were carried out by FPLeiva. Data on organ size and  
174 body mass available exclusively in tables or text were extracted directly. For data  
175 presented solely in figures, without accompanying text or tables, we used the  
176 metaDigitise package<sup>260</sup> to extract means and measures of dispersion. Furthermore,  
177 as our database also aims to explore sources of intraspecific (within-species) variation,  
178 we extracted raw data from scatter plots using WebPlotDigitizer v5.2<sup>261</sup> via its online  
179 platform (<https://automeris.io>). Additionally, we reviewed archived data from studies  
180 and extracted raw data from supplementary materials whenever available.

181 For each study, we collected a range of methodological information (metadata)  
182 related to both organ size and body size. This list was further complemented with the  
183 taxonomy of the species. We collected metadata associated with the context in which  
184 the studies were conducted. This study context was categorised following the Society  
185 of Toxicologic Pathology's classification<sup>262</sup>, with an additional category for ecological  
186 and evolutionary studies. For wild collected animals, we also gathered metadata  
187 concerning the temporal (season of collection) and spatial origin (geographical  
188 coordinates) from which organ sizes were measured. When animals originated from  
189 wild populations, we extracted geographical coordinates. However, when the  
190 collection location was given as a place name (e.g., Calbuco, Chile), we used  
191 GeoNames (<https://www.geonames.org/>) to obtain approximate coordinates.

192 Where possible, we included all sources of within-species variation reported in  
193 the original studies, such as age, life stage, body size, sex, and the side (left or right)


194 of paired organs (e.g., lungs, kidneys, adrenal glands). These metadata not only allow  
195 for testing the robustness of conclusions emerging from specific analyses but also  
196 enable researchers to filter data based on their requirements or research questions.  
197 The latter was infrequently reported; in such cases, we assumed that studies not  
198 specifying organ side measured both sides. Regarding organ selection criteria, we  
199 only included studies reporting masses of complete organs rather than partial  
200 specimens. Although such cases were rare, this ensured rigorous comparability  
201 across all studies in our analysis. We aimed to use similar units for expressing organ  
202 mass. In a few cases, body sizes reported in length units were converted to wet body  
203 mass (grams) for certain fish species, using species-specific length-weight  
204 relationships obtained from FishBase<sup>263</sup>. In cases where it was not stated whether  
205 masses were measured using fresh or dried organ, we assumed they were weighed  
206 fresh, as was the case for most studies.

## 207 **Taxonomy and phylogeny**

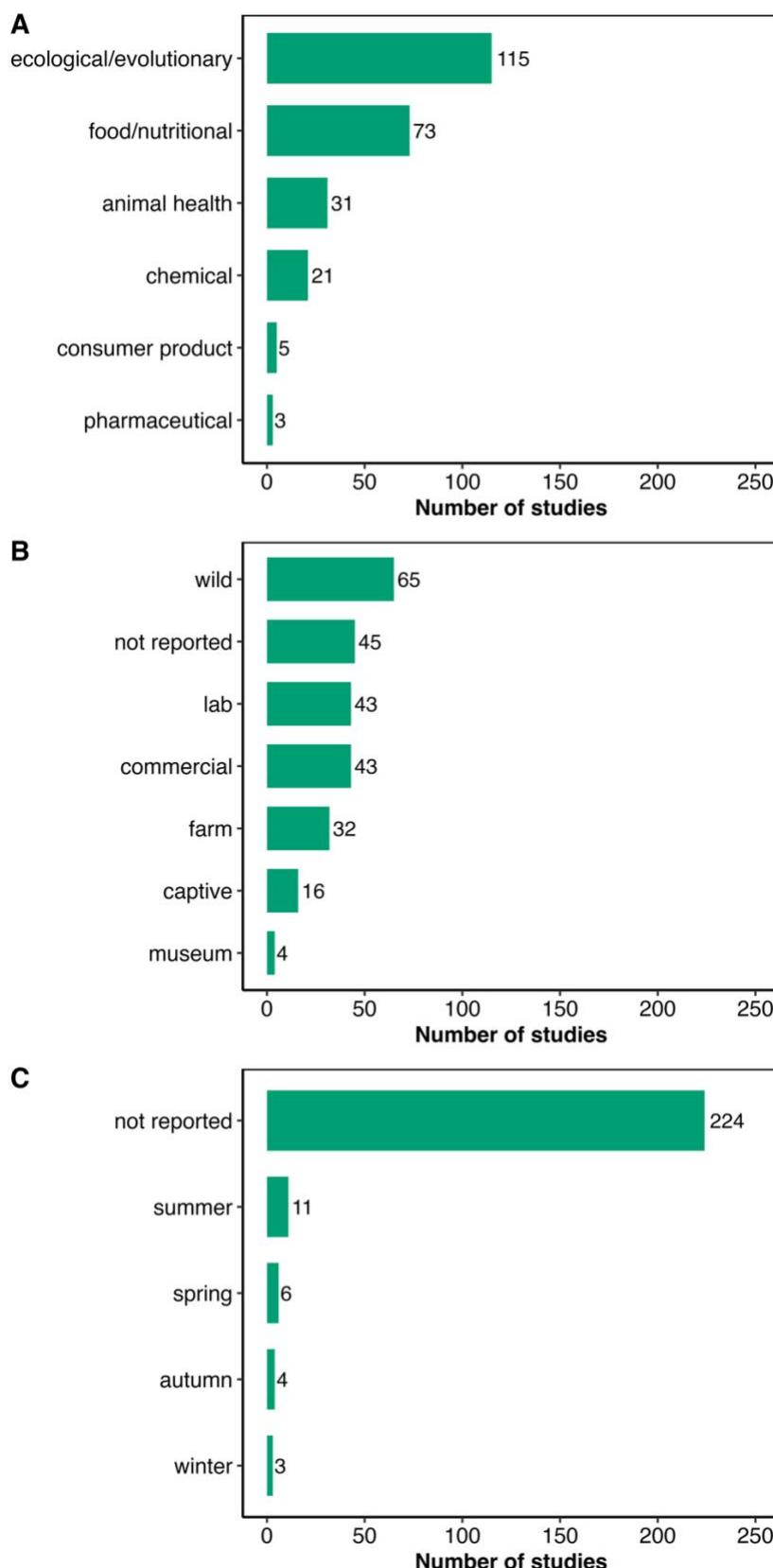
208 Species names were examined for synonyms and any recent updates that could affect  
209 their taxonomy. To achieve this, we used a taxonomic harmonisation procedure<sup>264</sup>,  
210 which was also applied to other traits<sup>265</sup>. This harmonisation involved three automated  
211 steps: first, species names were checked against the National Center for  
212 Biotechnology Information (NCBI) taxonomy database; second, any unmatched  
213 names were verified using the Integrated Taxonomic Information System (ITIS)  
214 database; and third, any remaining unmatched names were cross-checked with the  
215 Global Biodiversity Information Facility (GBIF) database. If a match was found, the  
216 corrected taxonomic name was re-checked through both NCBI and ITIS to ensure  
217 accurate classification. Ultimately, only species-level names were retained in the  
218 database, with subspecies grouped under their respective species. For species that  
219 could not be verified through this process, manual checks were conducted using  
220 additional online resources, such as FishBase<sup>263</sup>. We utilised the harmonised species  
221 list to retrieve the phylogenetic relationships of the species from Open Tree of Life<sup>266</sup>.  
222 All analyses were carried out in R version 4.3.2<sup>267</sup>.

## 223 **Data records**

224 After applying the distinct criteria inclusion, our database contains 10,702 records  
225 collected from studies published between 1964 and 2024 (Figure 1A). The most  
226 pronounced increase in the number of published studies occurred after 1975. By  
227 January 2025, the date of the literature search, the cumulative total had reached 235  
228 articles reporting paired data on organ and body size (Figure 1A); these constitute the  
229 total of articles included in this database. These studies were published across 154  
230 different journals. The greatest number of studies appeared in Poultry Science (15  
231 studies), followed by Journal of Experimental Biology (12 studies), with Journal of  
232 Anatomy and Aquaculture contributing five studies each. Several other journals—  
233 including Physiological and Biochemical Zoology, Journal of Zoology, Journal of  
234 Animal Physiology and Animal Nutrition, European Poultry Science, British Poultry  
235 Science, and Asian-Australasian Journal of Animal Sciences—contributed four studies  
236 each (Figure 1B). The remaining journals published fewer than four articles.



237


238 **Figure 1.** (A) Cumulative number of studies over time and (B) distribution of studies included in the  
239 organ size database across the top 10 journals.

240 Studies included in our database were categorised according to their study  
241 context into five groups (Figure 2A). Ecological and evolutionary studies were the most  
242 common, with 115 included, followed by those focused on food and nutritional aspects  
243 (73 studies), animal health (31 studies), and chemical analyses (21 studies). Studies  
244 categorised as consumer products or pharmaceuticals were least represented, with 5  
245 and 3 studies, respectively (Figure 2A).

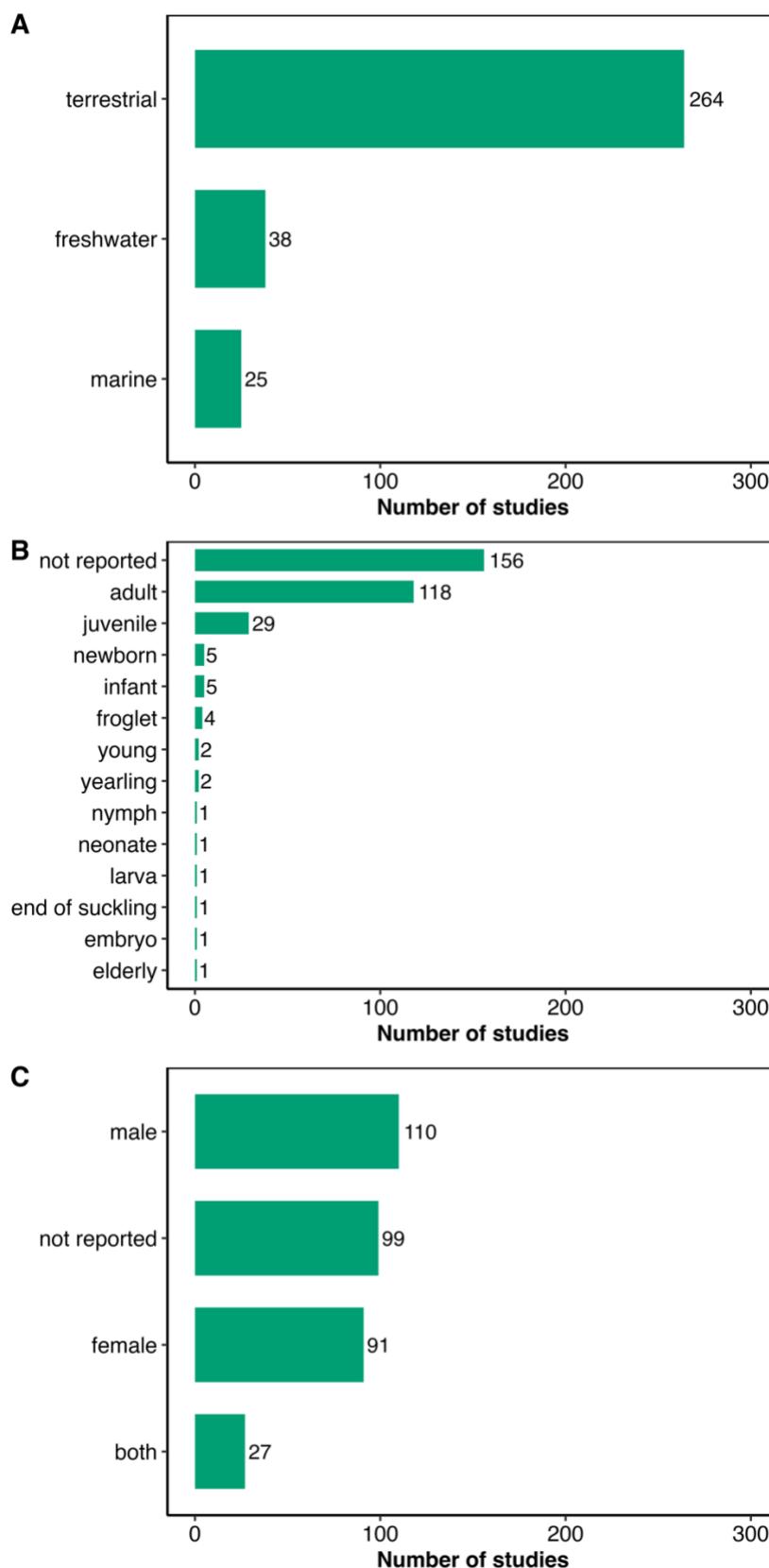
246 Regarding the species used to determine organ size, the majority were  
247 collected from wild populations (65 studies). Laboratory-reared animals (e.g., mice,  
248 rats) and commercially sourced animals (e.g., those purchased from a company) each  
249 represented the next largest sources (Figure 2B). Farm and captive animals were used  
250 in 32 and 16 studies, respectively, while extant specimens from museum collections  
251 were used to a lesser extent. Notably, the source of the animals could not be  
252 determined in 45 studies (Figure 2B).

253 For species collected from the wild, the season of collection was recorded when  
254 available. However, this information was not provided in most studies (224 studies)  
255 (Figure 2C).

256



257


258 **Figure 2.** Number of studies reporting organ size measurements according to study context (A), source  
 259 of specimens (B), and season of collection (C). Note: The sum of studies exceeds the total studies in  
 260 our database (235) because individual studies may report multiple categories (e.g., a single study using  
 261 both wild/lab animals), with each combination counted separately.

262        Most studies included in our database correspond to terrestrial species (Figure  
263    3A), with a smaller proportion involving aquatic species. Among the aquatic studies,  
264    freshwater species were more commonly represented (38 studies) than marine  
265    species (25 studies). Much of the information related to sex or life stage was largely  
266    absent from the published articles. This was especially true for life stage, which could  
267    not be determined in 156 studies. Adults and juveniles were the most frequently  
268    examined life stages, while earlier life stages were less studied, with fewer than 10  
269    studies for each (Figure 3B).

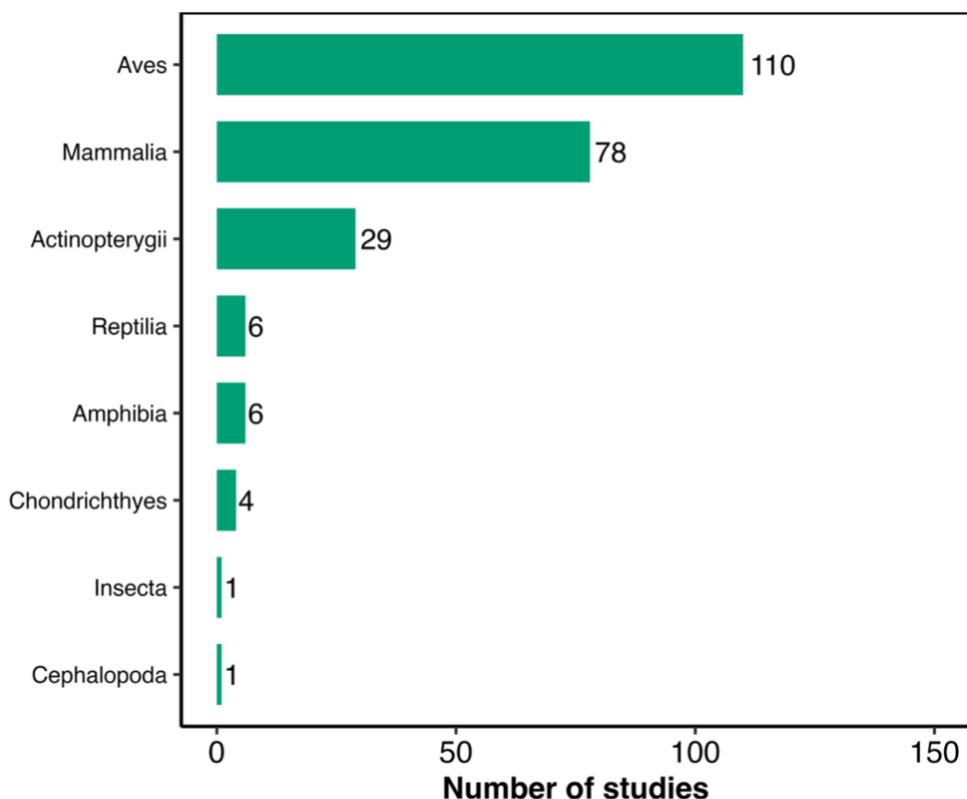
270        With respect to sex (Figure 3C), males were used in slightly more studies than  
271    females: 110 studies used only males, 91 studies used only females, and 27 studies  
272    included both sexes (Figure 3C).

273

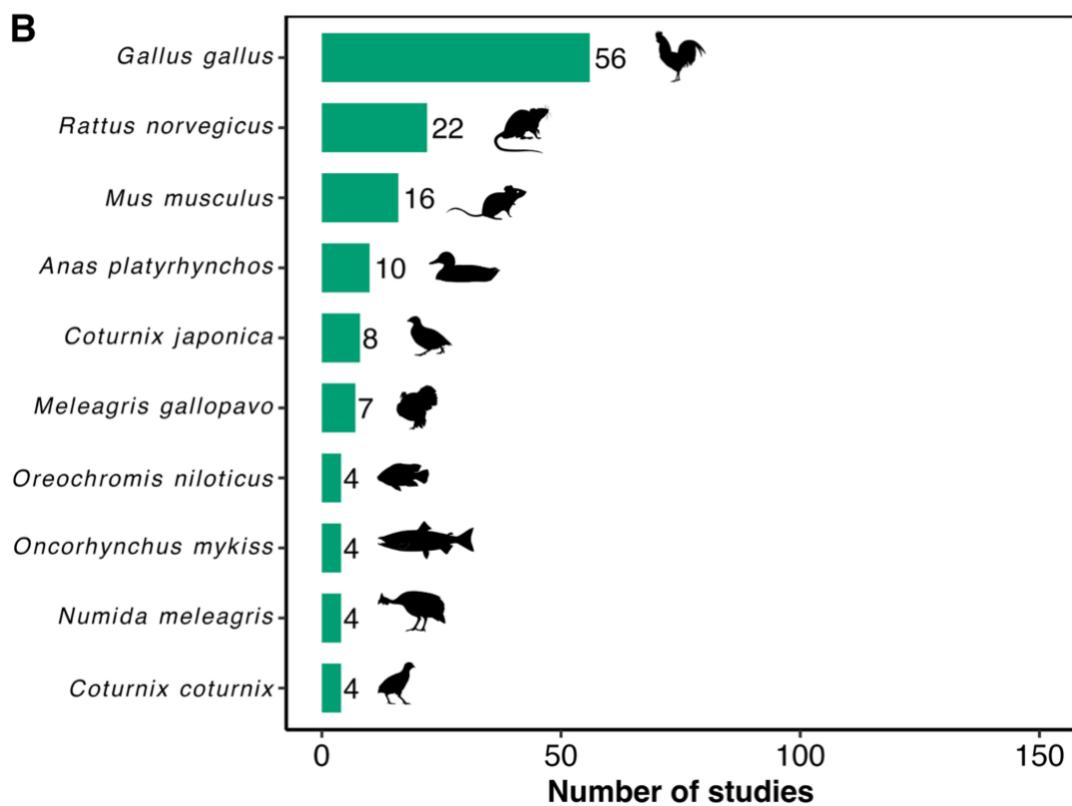
274



275


276 **Figure 3.** Number of studies reporting organ size measurements according to habitat (A), life stage (B)  
 277 and sex (C). Note: The sum of studies exceeds the total studies in our database (235) because  
 278 individual studies may report multiple categories (e.g., a single study covering both freshwater /marine  
 279 habitat), with each combination counted separately.

280 After completing the steps of taxonomic harmonisation, our database  
281 comprised 366 unique species, of which 363 are represented in the Open Tree of Life  
282 (OTL) phylogeny (Figure 6). Three species were not included in the OTL: the recently  
283 described octopus *Muusoctopus aegir*, which is not yet included in the tree, and two  
284 water shrews, *Neomys fodiens* and *Neomys anomalus*, both flagged as *incertae sedis*  
285 (i.e., their relationships are unknown or undefined).


286 From a taxonomic perspective, Aves was the most studied class in our  
287 database, represented by 110 studies. This was followed by Mammalia with 78  
288 studies, and Actinopterygii with 29 studies. The remaining classes were less well  
289 represented, each with six or fewer studies (Figure 4A). However, this pattern  
290 contrasts with the distribution of species in our database. When considering the  
291 number and percentage of species per class (Figure S2), Mammalia contains the  
292 greatest number of species (227), followed by Aves (71 species), representing 62%  
293 and 19.4% of the total species (366), respectively. Bony fishes (Actinopterygii) make  
294 up 6.6% of all species (24 species). All other classes each account for less than 4%  
295 of the total number of species (Figure S2).

296 The ten most studied species are shown in Figure 4B. *Gallus gallus* was the  
297 most studied species overall, followed by *Rattus norvegicus* (22 studies) and *Mus*  
298 *musculus* (16 studies). These were followed by *Anas platyrhynchos*, *Coturnix*  
299 *japonica*, and *Meleagris gallopavo*. All remaining species appeared in four or fewer  
300 studies (Figure 4B).

A



B



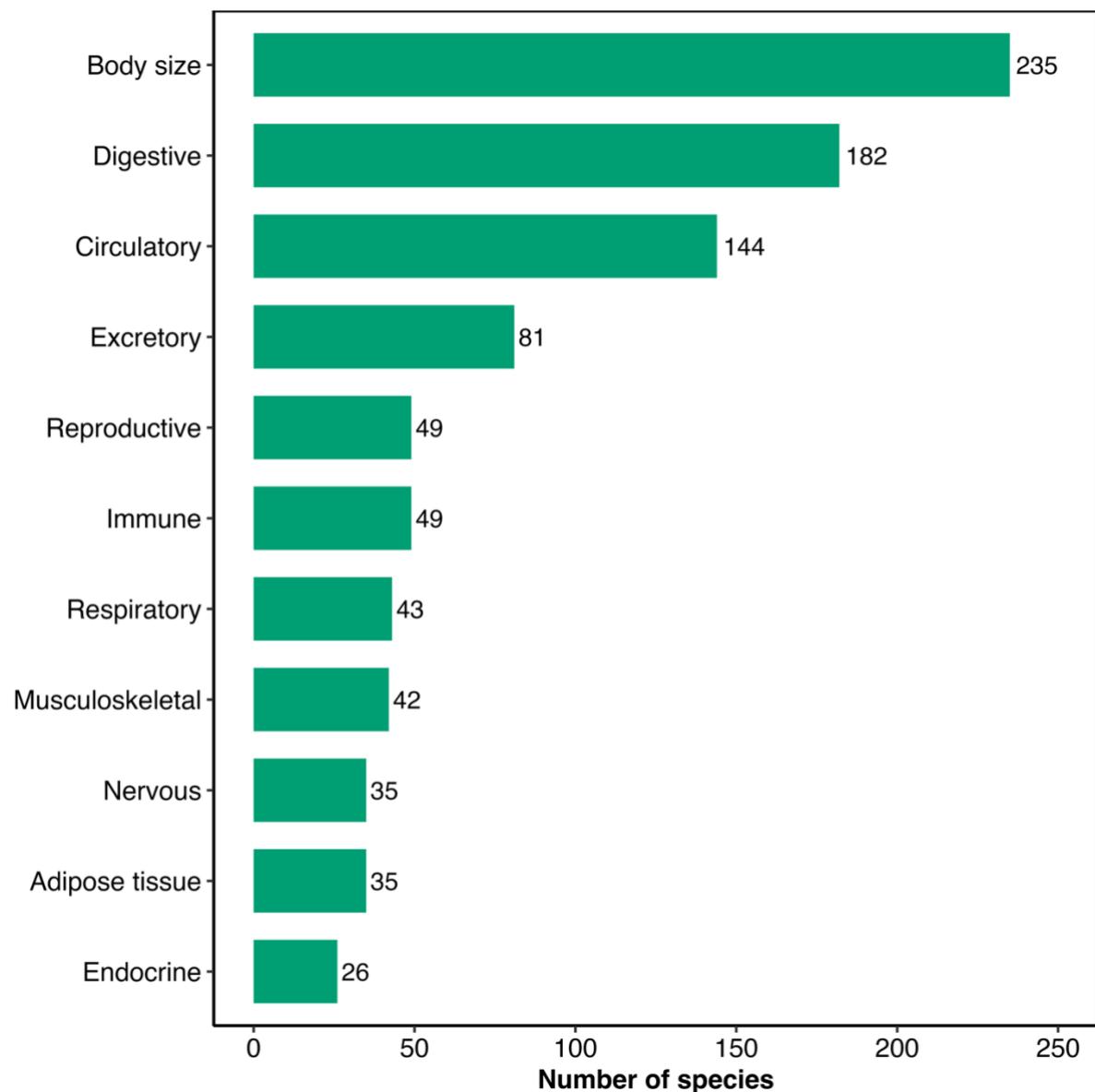
301

302 **Figure 4.** (A) Number of studies included in the organ size database, grouped by taxonomic class. (B)

303 Number of studies for each of the 10 most frequently represented species in the database. Silhouettes  
304 depict the same species shown in panel B and were sourced from [www.phylopic.org](http://www.phylopic.org) (public domain).

305 Our initial objective was to consider the widest possible variety of organs across  
306 different species of vertebrates and invertebrates. In total, we collected paired data for  
307 53 distinct organs (Table 1 and Figure S3). To facilitate visualisation, we further  
308 grouped these organs—guided by expert judgement—into ten systems that  
309 collectively capture the functional diversity of the organs included (Figure 5).

310


311 **Table 1.** Systems categories used to classify organs. We have retained the original system names as  
312 previously reported. In this instance (\*), the relevant system was estimated using 3D modelling.

| System category     | Examples                                                                                                                                                         |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Digestive           | liver, caecum, intestine, stomach, digestive tract, digestive system, jejunum, duodenum, gizzard, ileum, esophagus, colon, rectum, proventriculus, gut, pancreas |
| Excretory           | kidney, Malpighian tubules, ureter, bladder                                                                                                                      |
| Circulatory         | heart, ventricle, circulatory system and fat body*, spleen                                                                                                       |
| Immune              | thymus, bursa                                                                                                                                                    |
| Nervous             | brain, central nervous system, pituitary gland                                                                                                                   |
| Endocrine           | thyroid/parathyroid glands, adrenal glands, Harderian gland, salt gland                                                                                          |
| Respiratory         | lung, gill                                                                                                                                                       |
| Reproductive        | ovary, testes, gonad, uterus, prostate gland, oviduct, epididymides, reproductive system                                                                         |
| Musculoskeletal     | skeleton, bone, hind limb, fore limb, muscle, musculature                                                                                                        |
| Adipose/fat storage | adipose depot, fat                                                                                                                                               |

313

314 Of the ten system types included in our database, the digestive system (182  
315 studies), circulatory system (144), and excretory system (81) are the most extensively  
316 studied (Figure 5). Most of the remaining systems are each represented by between  
317 35 and 49 studies. The endocrine system is the least studied system, with only 26  
318 studies (Figure 5). Across all organs included in the database, the liver is the most  
319 frequently studied, featuring in 68.5% of studies and measured in 171 species (Figures  
320 S3 and 6, and supplementary information). The spleen, heart, and kidneys follow,  
321 having been measured in 94, 93, and 80 studies, respectively (Figure S3). Only one  
322 species, the rat (*Rattus norvegicus*), is represented across all system categories  
323 (Figure 6).

324



325

326 **Figure 5.** Number of studies included in the organ size database, grouped by system.



327

328 **Figure 6.** Phylogenetic relationships and system distribution among 363 species. Green bars represent  
 329 the systems that were measured in each species, while grey bars indicate missing data for a given  
 330 species. From the centre outwards: digestive, adipose tissue, circulatory, excretory, nervous,  
 331 musculoskeletal, reproductive, respiratory, endocrine, and immune systems. Silhouettes indicate major  
 332 taxonomic groups (sourced from [www.phylopic.org](http://www.phylopic.org), public domain).

333

334 To our knowledge, we have compiled the most comprehensive database of  
 335 paired organ size and body size data to date. We anticipate that this resource will  
 336 make a significant contribution to understanding the factors influencing organ size  
 337 scaling and will serve as a valuable foundation for future research into the  
 338 physiological and evolutionary significance of these relationships. By systematically  
 339 collecting paired data on organ and body size for both invertebrates and vertebrates,  
 340 our database provides a robust basis for improving the parameterisation and cross-  
 341 species applicability of simulation models grounded in physiological and kinetic

342 principles<sup>15–18</sup>. In turn, this enhances predictive accuracy and ecological relevance,  
343 supports more rigorous risk assessments, and facilitates simulations of chemical  
344 accumulation across a wide range of animal taxa.

345 **Technical validation**

346 As one researcher (FPLeiva) was responsible for extracting 100% of the data (10,604  
347 records), there is a potential risk of data entry errors. To ensure accuracy, minimise  
348 the risk of bias, and improve the reliability of the database, we conducted a double-  
349 check of approximately 28% of the entries (3,051 records). This double-checking  
350 process was performed by FPLeiva (8.05% of records, 863 records), LOckhuijsen  
351 (4.02%, 431 records), JPolinder (4.00%, 428 records), LJSchreyers (4.08%, 438  
352 records), JXiong (4.10%, 440 records), and AJHendriks (4.21%, 451 records). Any  
353 errors identified during the double-checking stage were corrected by FPLeiva, and  
354 corrections were incorporated prior to the release of the database. Additional steps  
355 included verifying the accuracy of the names of discrete variables and their units.

356 **Usage notes**

357 We have provided this database along with several metadata that thoroughly describe  
358 the context in which each paired measurement of organ size and body size was  
359 collected. This enables users to incorporate this methodological information, allowing  
360 them to assess the robustness of outputs from various analyses. Special attention  
361 should be paid to how filters are applied to select subsets of the data, depending on  
362 the specific analysis being conducted and research questions. For example, to  
363 evaluate the effect of sex on the scaling of different organs with body size, the available  
364 metadata should allow for filtering to include only those studies in which both male and  
365 female specimens are present.

366 All materials, including the database, R code, and additional supplementary  
367 content, are provided under the Creative Commons Attribution-NonCommercial-  
368 NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). Users are requested to  
369 cite this publication when utilising these resources, and are encouraged, where  
370 possible, to cite the original contributing articles to ensure appropriate attribution<sup>259</sup>.  
371 We have provided a file containing all references included in the database (.bib) to  
372 facilitate their inclusion in future research employing this database.

373

374 **Code availability**

375 The code used for generating the figures and tables in this study is available at  
376 [https://felixpleiva.github.io/organ\\_size\\_DB/](https://felixpleiva.github.io/organ_size_DB/). The data will be archived in Zenodo upon  
377 acceptance.

378 **Author contributions**

379 Conceptualization: FPLEiva; data curation: FPLEiva, LOckhuijsen, JPolinder,  
380 LJSchreyers, JXiong, AJHendriks; formal analysis: FPLEiva; funding acquisition:  
381 AJHendriks; investigation: FPLEiva; methodology: FPLEiva; project administration:  
382 FPLEiva, AJHendriks; resources: AJHendriks; software: FPLEiva; supervision:  
383 AJHendriks; validation: FPLEiva; visualization: FPLEiva; writing – original draft  
384 preparation: FPLEiva; writing – review and editing: FPLEiva, JPolinder, LJSchreyers,  
385 JXiong, AJHendriks.

386 **Acknowledgements**

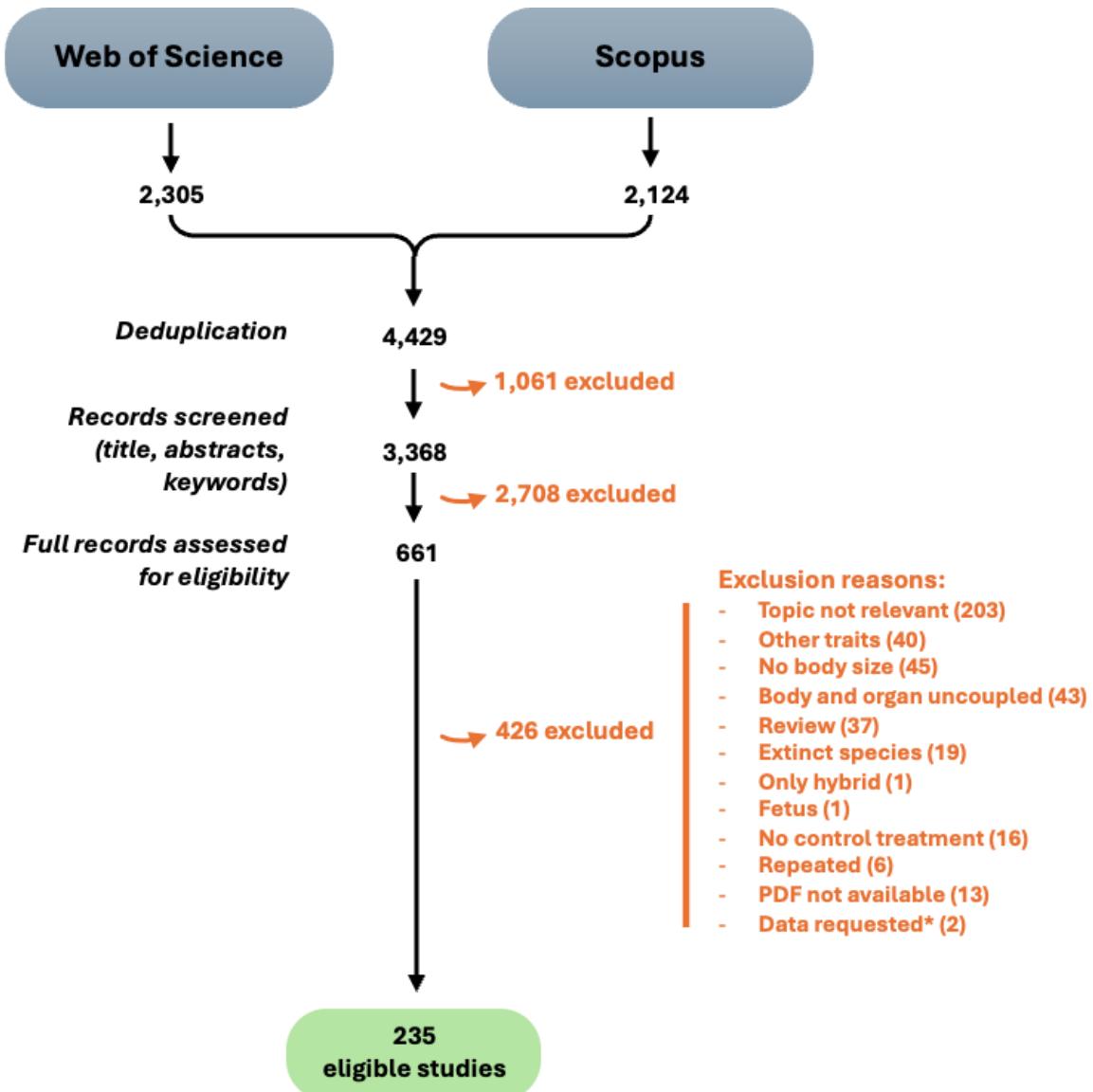
387 This work was funded by the European Union (ERC, PowerOfSize ERC-2023-ADG ID  
388 = 101141238) granted to A. Jan Hendriks. Views and opinions expressed are however  
389 those of the author(s) only and do not necessarily reflect those of the European Union  
390 or the European Research Council. Neither the European Union nor the granting  
391 authority can be held responsible for them.

392 **Competing interests**

393 The authors declare no conflict of interest or competing interests

394 **Supplementary data**

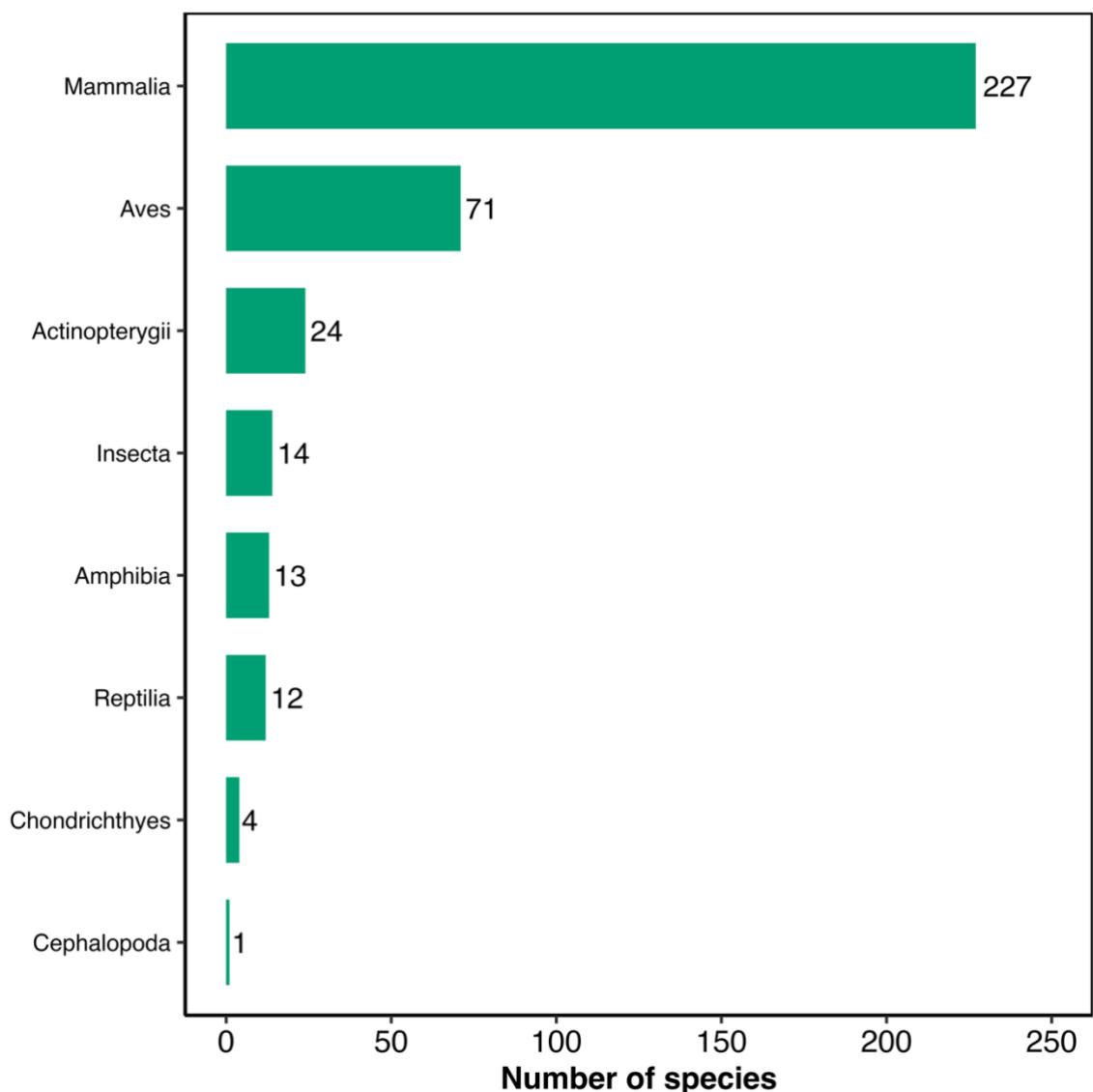
395 Supplementary data to this article can be found in the GitHub repository associated to  
396 manuscript: [https://github.com/felixpleiva/organ\\_size\\_DB](https://github.com/felixpleiva/organ_size_DB)


397

## SUPPLEMENTARY INFORMATION

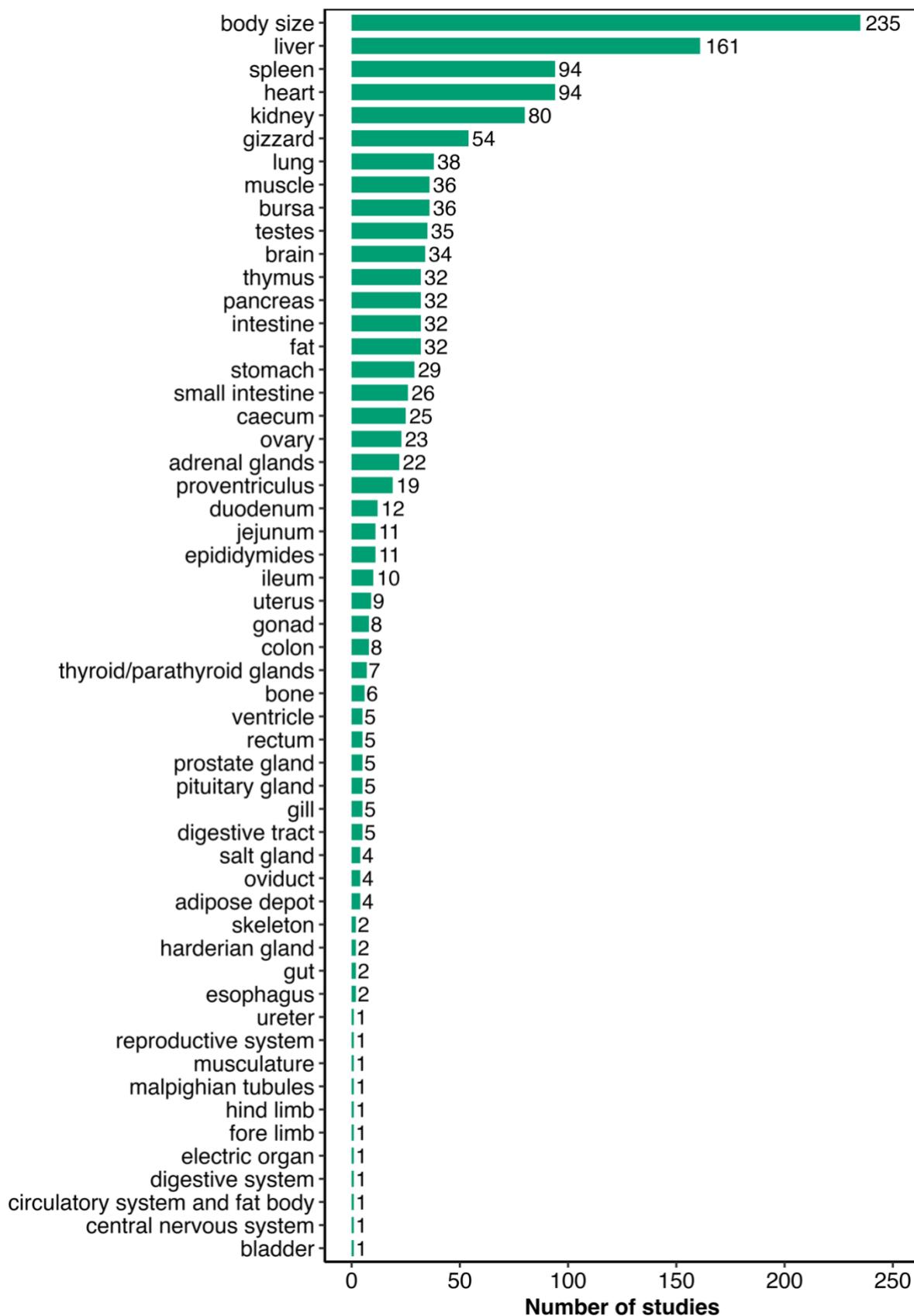
### 398 **Supplementary methods**

399 We conducted preliminary literature searches to refine our selection process, with the  
400 aim of achieving a manageable number of references for screening. These pilot  
401 searches took place on 23 January 2025. The initial results yielded 27,113 references  
402 from ISI Web of Science and 51,593 from Scopus. By refining our keyword  
403 combinations through these pilot tests, we reduced the results to 770 and 4,744  
404 references, respectively. No filters—such as language or publication year—were  
405 applied during these searches.


406 To ensure comprehensive coverage, we also applied the same keyword  
407 combinations to ProQuest Dissertation & Theses Global to include grey literature.  
408 However, even after refining our search terms, this approach still retrieved over 23,000  
409 references, which was unmanageable for our purposes. Consequently, we limited our  
410 final search to the ISI Web of Science and Scopus databases, as these platforms have  
411 been shown to index most of articles (e.g., see<sup>268</sup>).  
412



413


414 **Figure S1.** PRISMA-type diagram<sup>269</sup> showing the systematic and non-systematic literature search  
 415 reporting organ size and body size pairs data. (\*) We have not received responses from the  
 416 corresponding author at the time of the manuscript submission.

417



418  
419  
420

**Figure S2.** Number of species included in the organ size database, grouped by taxonomic class



423 **REFERENCES**

424 1. Schmidt-Nielsen, K. *Animal Physiology: Adaptation and Environment*. (Cambridge  
425 University Press, New York, USA, 1997).

426 2. Penzo-Méndez, A. I. & Stanger, B. Z. Organ-size regulation in mammals. *Cold Spring  
427 Harbor Perspectives in Biology* **7**, a019240 (2015).

428 3. Gokhale, R. H. & Shingleton, A. W. Size control: the developmental physiology of body  
429 and organ size regulation. *WIREs Developmental Biology* **4**, 335–356 (2015).

430 4. Stanger, B. Z. The biology of organ size determination. *Diabetes Obesity Metabolism* **10**,  
431 16–22 (2008).

432 5. Cobham, A. E. & Mirth, C. K. The development of body and organ shape. *BMC Zool* **5**,  
433 14 (2020).

434 6. Aiello, L. C. & Wheeler, P. The expensive-tissue hypothesis: the brain and the digestive  
435 system in human and primate evolution. *Current Anthropology* **36**, 199–221 (1995).

436 7. Navarrete, A., van Schaik, C. P. & Isler, K. Energetics and the evolution of human brain  
437 size. *Nature* **480**, 91-U252 (2011).

438 8. Huxley, J. S. Constant differential growth-ratios and their significance. *Nature* **114**, 895–  
439 896 (1924).

440 9. Huxley, J. S. *Problems of Relative Growth*. (Lincoln Mac Veagh-The Dial Press, New  
441 York, 1932).

442 10. Brody, S. *Bioenergetic and Growth. With Special Reference to the Efficiency Complex in  
443 Domestic Animals*. (Hafner Publishing Company, INC., New York, USA, 1945).

444 11. Gould, S. J. Geometric Similarity in Allometric Growth: A Contribution to the Problem of  
445 Scaling in the Evolution of Size. *The American Naturalist* **105**, 113–136 (1971).

446 12. Antoł, A. & Kozłowski, J. Scaling of organ masses in mammals and birds: phylogenetic  
447 signal and implications for metabolic rate scaling. *ZooKeys* **982**, 149 (2020).

448 13. Glazier, D. S. Beyond the ‘3/4-power law’: variation in the intra-and interspecific scaling  
449 of metabolic rate in animals. *Biological Reviews* **80**, 611–662 (2005).

450 14. Uyeda, J. C., Pennell, M. W., Miller, E. T., Maia, R. & McClain, C. R. The evolution of  
451 energetic scaling across the vertebrate tree of life. *The American Naturalist* **190**, 185–  
452 199 (2017).

453 15. Wang, J. *et al.* A Generalized Physiologically Based Kinetic Model for Fish for  
454 Environmental Risk Assessment of Pharmaceuticals. *Environ. Sci. Technol.* **56**, 6500–  
455 6510 (2022).

456 16. Grech, A. *et al.* Generic physiologically-based toxicokinetic modelling for fish: Integration  
457 of environmental factors and species variability. *Science of the Total Environment* **651**,  
458 516–531 (2019).

459 17. Lautz, L. S., Dorne, J. L. C. M., Oldenkamp, R., Hendriks, A. J. & Ragas, A. M. J.  
460 Generic physiologically based kinetic modelling for farm animals: Part I. Data collection  
461 of physiological parameters in swine, cattle and sheep. *Toxicology Letters* **319**, 95–101  
462 (2020).

463 18. Kooijman, S. A. L. M. *Dynamic Energy Budget Theory for Metabolic Organisation*.  
464 (Cambridge Univ. Press, Cambridge, 2010).

465 19. Isler, K. & van Schaik, C. Costs of encephalization: the energy trade-off hypothesis  
466 tested on birds. *Journal of Human Evolution* **51**, 228–243 (2006).

467 20. Herberstein, M. E. *et al.* AnimalTraits - a curated animal trait database for body mass,  
468 metabolic rate and brain size. *Scientific Data* **9**, 265 (2022).

469 21. West, G. B., Woodruff, W. H. & Brown, J. H. Allometric scaling of metabolic rate from  
470 molecules and mitochondria to cells and mammals. *Proceedings of the National  
471 Academy of Sciences of the United States of America* **99**, 2473–2478 (2002).

472 22. Nakagawa, S. *et al.* Method Reporting with Initials for Transparency (MeRIT) promotes  
473 more granularity and accountability for author contributions. *Nature Communications*  
474 **14**, 1788 (2023).

475 23. Reiber, C. L. & McGaw, I. J. A review of the “open” and “closed” circulatory systems:  
476 new terminology for complex invertebrate circulatory systems in light of current  
477 findings. *International Journal of Zoology* **2009**, 1–8 (2009).

478 24. Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. Rayyan—a web and  
479 mobile app for systematic reviews. *Syst Rev* **5**, 210 (2016).

480 25. Beischer, D. & Furry, D. *Saimiri sciureus* as experimental animal. *Anatomical Record*  
481 **148**, 615+ (1964).

482 26. Snedecor, J. & Camyre, M. Interaction of thyroid hormone and androgen on body weight  
483 comb and liver in cockerels. *General and Comparative Endocrinology* **6**, 276+ (1966).

484 27. Poupa, O., Gesser, H., Jonsson, S. & Sullivan, L. Coronary-supplied compact shell of  
485 ventricular myocardium in salmonids: Growth and enzyme pattern. *Comparative  
486 Biochemistry and Physiology – Part A: Physiology* **48**, 85–88 (1974).

487 28. Holeton, G. F. Respiratory morphometrics of white and red blooded antarctic fish.  
488 *Comparative Biochemistry and Physiology – Part A: Physiology* **54**, 215–219 (1976).

489 29. Kawahara, T. & Saito, K. Genetic parameters of organ and body weights in Japanese  
490 quail. *Poultry Science* **55**, 1247–1252 (1976).

491 30. Snyder, G. Respiratory characteristics of whole-blood and selected aspects of circulatory  
492 physiology in common short-nosed fruit bat, *Cynopterus brachyotis*. *Respiration  
493 Physiology* **28**, 239–247 (1976).

494 31. Elias, M. F. Relative maturity of cebus and squirrel monkeys at birth and during infancy.  
495 *Developmental Psychobiology* **10**, 519–528 (1977).

496 32. Gulyas, B., Hodgen, G., Tullner, W. & Ross, G. Effects of fetal or maternal  
497 hypophysectomy on endocrine organs and body-weight in infant rhesus monkeys  
498 (*Macaca mulatta*) - with particular emphasis on oogenesis. *Biology of Reproduction* **16**,  
499 216–227 (1977).

500 33. Owen, M. & Cook, W. A. Variations in body weight, wing length and condition of Mallard  
501 *Anas platyrhynchos platyrhynchos* and their relationship to environmental changes.  
502 *Journal of Zoology* **183**, 377–395 (1977).

503 34. Aire, T. A. Morphometric study of the avian adrenal gland. *Journal of Anatomy* **131**, 19–  
504 23 (1980).

505 35. Meyer, J. A quantitative comparison of the parts of the brains of 2 australian marsupials  
506 and some eutherian mammals. *Brain Behavior and Evolution* **18**, 60–71 (1981).

507 36. Silverin, B. Reproductive effort, as expressed in body and organ weights, in the pied  
508 flycatcher. *Ornis Scandinavica* **12**, 133–139 (1981).

509 37. Shertzer, H. G., Hall, J. E. & Seed, J. R. Hepatic microsomal alterations during chronic  
510 trypanosomiasis in the field vole, *Microtus montanus*. *Molecular and Biochemical  
511 Parasitology* **6**, 25–32 (1982).

512 38. Hughes, M. Osmoregulation in nestling glaucous-winged gulls. *Condor* **86**, 390–395  
513 (1984).

514 39. Edwin, N. Quantitative estimation of islet tissue of pancreas in spinifex hopping mouse  
515 (*Notomys alexis*). *Journal of Zoology* **206**, 191–201 (1985).

516 40. Ostrowski, A. & Garling, D. Influences of anabolic hormone-treatment and dietary-protein  
517 - energy ratio on condition and muscle deposition of rainbow-trout. *Progressive Fish-  
518 Culturist* **50**, 136–140 (1988).

519 41. Kruska, D. The brain of the basking shark (*Cetorhinus maximus*). *Brain Behavior and  
520 Evolution* **32**, 353–363 (1988).

521 42. Tian, S. & Baracos, V. E. Effect of Escherichia coli infection on growth and protein  
522 metabolism in broiler chicks (*Gallus domesticus*). *Comparative Biochemistry and  
523 Physiology – Part A: Physiology* **94**, 323–331 (1989).

524 43. Warui, C. N. Light microscopic morphometry of the kidneys of fourteen avian species.  
525 *Journal of Anatomy* **162**, 19–31 (1989).

526 44. Goldstein, D. & Braun, E. Structure and concentrating ability in the avian kidney.  
527 *American Journal of Physiology* **256**, R501–R509 (1989).

528 45. Gjerde, B. Body traits in rainbow trout .1. Phenotypic means and standard deviations  
529 and sex effects. *Aquaculture* **80**, 7–24 (1989).

530 46. Hester, P., Kohl, H. & Mcmurtry, J. Plasma-insulin and glucagon-levels and leg  
531 measurements of lame turkeys. *Poultry Science* **68**, 1294–1298 (1989).

532 47. Drabek, C. Heart and ventricle weights of Antarctic penguins. *Canadian Journal of*  
533 *Zoology* **67**, 2602–2604 (1989).

534 48. Oftedal, O., Bowen, W., Widdowson, E. & Boness, D. Effects of suckling and the  
535 postsuckling fast on weights of the body and internal organs of harp and hooded seal  
536 pups. *Biology of the Neonate* **56**, 283–300 (1989).

537 49. Hughes, M. & Winkler, D. Osmoregulation in nestling California gulls at Mono Lake,  
538 California. *Comparative Biochemistry and Physiology A-Molecular & Integrative*  
539 *Physiology* **95**, 567–571 (1990).

540 50. Militzer, K., Herberg, L. & Buttner, D. The ontogeny of skin and organ characteristics in  
541 the syrian golden-hamster .2. Body and organ weights as well as blood-glucose and  
542 plasma-insulin levels. *Experimental Pathology* **40**, 139–153 (1990).

543 51. Gibson, R., Bailey, C., Kubena, L., Huff, W. & Harvey, R. Impact of L-phenylalanine  
544 supplementation on the performance of 3-week-old broilers fed diets containing  
545 ochratoxin-a .1. Effects on body-weight, feed conversion, relative organ weight, and  
546 mortality. *Poultry Science* **69**, 414–419 (1990).

547 52. Maina, J., Thomas, S. & Hyde, D. A morphometric study of the lungs of different sized  
548 bats - correlations between structure and function of the chiropteran lung. *Philosophical*  
549 *Transactions of the Royal Society B-Biological Sciences* **333**, 31–50 (1991).

550 53. Sabo, V., Boda, K., Guryeva, T. & Dadashova, O. Changes in the body and organ mass  
551 of Japanese Quail after a 7-day exposure to microgravity. *Acta Veterinaria Brno* **61**,  
552 109–113 (1992).

553 54. Virgl, J. & Messier, F. The ontogeny of body-composition and gut morphology in free-  
554 ranging muskrats. *Canadian Journal of Zoology-Revue Canadienne De Zoologie* **70**,  
555 1381–1388 (1992).

556 55. Wideman, R. & Nissley, A. Kidney structure and responses of 2 commercial single comb  
557 white leghorn strains to saline in the drinking-water. *British Poultry Science* **33**, 489–  
558 504 (1992).

559 56. Piersma, T., Koolhaas, A. & Dekkinga, A. Interactions between stomach structure and  
560 diet choice in shorebirds. *Auk* **110**, 552–564 (1993).

561 57. Steudel, K. & Beattie, J. Scaling of cursoriality in mammals. *Journal of Morphology* **217**,  
562 55–63 (1993).

563 58. Monsi, A., Cecil, H. & Bakst, M. Aspects of biological changes in breeder toms after  
564 treatment with subcutaneous cadmium injection - alterations in body and selected  
565 organ weights. *Journal of Applied Animal Research* **4**, 1–11 (1993).

566 59. Benavides, A., Cancino, J. & Ojeda, F. Ontogenetic changes in gut dimensions and  
567 macroalgal digestibility in the marine herbivorous fish, *Aplodactylus punctatus*.  
568 *Functional Ecology* **8**, 46–51 (1994).

569 60. Murai, A., Furuse, M. & Okumura, J. Role of dietary  $\gamma$ -linolenic acid in liver lipid  
570 metabolism in Japanese quail. *British Poultry Science* **36**, 821–827 (1995).

571 61. Sheikh-Eldin, M., De Silva, S. S., Anderson, T. A. & Gooley, G. Physical characteristics,  
572 and proximate composition of oocytes, liver and muscle of wild caught and tank-reared  
573 Macquarie perch. *Aquaculture International* **3**, 172–185 (1995).

574 62. O'Brien, G. Comparative morphology of the pituitary gland in Australian flying foxes  
575 (Megachiroptera: Genus *Pteropus*). *Anatomical Record* **244**, 70–77 (1996).

576 63. Bishop, C., Butler, P., ElHaj, A., Egginton, S. & Loonen, M. The morphological  
577 development of the locomotor and cardiac muscles of the migratory barnacle goose  
578 (*Branta leucopsis*). *Journal of Zoology* **239**, 1–15 (1996).

579 64. Gehrs, B., Riddle, M., Williams, W. & Smialowicz, R. Alterations in the developing  
580 immune system of the F344 rat after perinatal exposure to 2,3,7,8-tetrachlorodibenzo-  
581 p-dioxin .1. Effects on the fetus and the neonate. *Toxicology* **122**, 219–228 (1997).

582 65. Hörstgen-Schwark, G. & Langholz, H.-J. Prospects of selecting for late maturity in tilapia  
583 (*Oreochromis niloticus*) III. A selection experiment under laboratory conditions.  
584 *Aquaculture* **167**, 123–133 (1998).

585 66. Hammond, K. & Janes, D. The effects of increased protein intake on kidney size and  
586 function. *Journal of Experimental Biology* **201**, 2081–2090 (1998).

587 67. Hoffman, A., Jenson, C., Lien, G. & McKim, J. Individual tissue weight to total body  
588 weight relationships and total, polar, and nonpolar lipids in tissues of hatchery lake  
589 trout. *Transactions of the American Fisheries Society* **128**, 178–181 (1999).

590 68. Stewardson, C., Hemsley, S., Meyer, M., Canfield, P. & Maindonald, J. Gross and  
591 microscopic visceral anatomy of the male Cape fur seal, *Arctocephalus pusillus pusillus*  
592 (Pinnipedia: Otariidae), with reference to organ size and growth. *Journal of Anatomy*  
593 **195**, 235–255 (1999).

594 69. Langseth, I., Moe, B., Fyhn, M., Gabrielsen, G. & Bech, C. Flexibility of basal metabolic  
595 rate in arctic breeding kittiwakes (*Rissa tridactyla*). in *Life in the Cold* (eds Heldmaier,  
596 G. & Klingenspor, M.) 471–477 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2000).

597 70. Oka, N. & Okuyama, M. Nutritional status of dead oiled rhinoceros auklets (*Cerorhinca*  
598 *monocerata*) in the southern Japan Sea. *Marine Pollution Bulletin* **40**, 340–347 (2000).

599 71. Little, B., Kemp, P., Bost, R., Snell, L. & Peterman, M. Abnormal allometric size of vital  
600 body organs among sudden infant death syndrome victims. *American Journal of*  
601 *Human Biology* **12**, 382–387 (2000).

602 72. Zihlman, A. & McFarland, R. Body mass in lowland gorillas: A quantitative analysis.  
603 *American Journal of Physical Anthropology* **113**, 61–78 (2000).

604 73. Hughes, M., Smits, J., Elliott, J. & Bennett, D. Morphological and pathological effects of  
605 cadmium ingestion on Pekin ducks exposed to saline. *Journal of Toxicology and*  
606 *Environmental Health-Part A* **61**, 591–608 (2000).

607 74. Selman, C., Lumsden, S., Bünger, L., Hill, W. & Speakman, J. Resting metabolic rate  
608 and morphology in mice (*Mus musculus*) selected for high and low food intake. *Journal*  
609 *of Experimental Biology* **204**, 777–784 (2001).

610 75. Kalorey, D., Kurkure, N., Sakhare, P., Warke, S. & Ali, M. Effect of growell on  
611 performance, organ weight and serum trace element profile of broilers. *Asian-*  
612 *Australasian Journal of Animal Sciences* **14**, 677–679 (2001).

613 76. Viveros, A., Brenes, A., Elices, R., Arija, I. & Canales, R. Nutritional value of raw and  
614 autoclaved *kabuli* and *desi* chickpeas (*Cicer arietinum* L.) for growing chickens. *British*  
615 *Poultry Science* **42**, 242–251 (2001).

616 77. Nyska, A., Nold, J., Johnson, J. & Abdo, K. Lysosomal-storage disorder induced by  
617 Elmiron following 90-days gavage administration in rats and mice. *Toxicologic*  
618 *Pathology* **30**, 178–187 (2002).

619 78. Nespolo, R., Bacigalupe, L., Sabat, P. & Bozinovic, F. Interplay among energy  
620 metabolism, organ mass and digestive enzyme activity in the mouse-opossum  
621 *Thylamys elegans*: the role of thermal acclimation. *Journal of Experimental Biology*  
622 **205**, 2697–2703 (2002).

623 79. Smirnov, V. Normalized brain weight as a characteristic of the relationship between the  
624 body and brain weights in birds. *Russian Journal of Ecology* **33**, 309–314 (2002).

625 80. López-Calleja, M., Fernández, M. & Bozinovic, F. The integration of energy and nitrogen  
626 balance in the hummingbird *Sephanoides sephaniodes*. *Journal of Experimental*  
627 *Biology* **206**, 3349–3359 (2003).

628 81. Odell, J., Chappell, M. & Dickson, K. Morphological and enzymatic correlates of aerobic  
629 and burst performance in different populations of Trinidadian guppies *Poecilia*  
630 *reticulata*. *Journal of Experimental Biology* **206**, 3707–3718 (2003).

631 82. Stuermer, I. *et al.* Intraspecific allometric comparison of laboratory gerbils with  
632 Mongolian gerbils trapped in the wild indicates domestication in *Meriones unguiculatus*  
633 (Milne-Edwards, 1867) (Rodentia: Gerbillinae). *Zoologischer Anzeiger* **242**, 249–266  
634 (2003).

635 83. Njobeh, P., Iji, P., Nsahlai, I. & Slippers, S. The effects of storage condition and  
636 preservatives on maize-based diets for broiler chickens. *South African Journal of*  
637 *Animal Science* **34**, 274–281 (2004).

638 84. Karasov, W., Pinshow, B., Starck, J. & Afik, D. Anatomical and histological changes in  
639 the alimentary tract of migrating blackcaps (*Sylvia atricapilla*): A comparison among

640 fed, fasted, food-restricted, and refed birds. *Physiological and Biochemical Zoology* **77**,  
641 149–160 (2004).

642 85. Liu, Y. *et al.* The development of the lymphoid organs of flounder, *Paralichthys*  
643 *olivaceus*, from hatching to 13 months. *Fish & Shellfish Immunology* **16**, 621–632  
644 (2004).

645 86. Steyermark, A., Miamen, A., Feghahati, H. & Lewno, A. Physiological and morphological  
646 correlates of among-individual variation in standard metabolic rate in the leopard frog  
647 *Rana pipiens*. *Journal of Experimental Biology* **208**, 1201–1208 (2005).

648 87. Khan, A., Bachaya, H., Khan, M. & Mahmood, F. Pathological effects of formalin (37%  
649 formaldehyde) feeding in female Japanese quails (*Coturnix coturnix japonica*). *Human*  
650 & *Experimental Toxicology* **24**, 415–422 (2005).

651 88. Mahadevan, B. *et al.* Dibenzo[a,l]pyrene induced DNA adduct formation in lung tissue in  
652 vivo. *Cancer Letters* **227**, 25–32 (2005).

653 89. Wayland, M., Gilchrist, H. & Neugebauer, E. Concentrations of cadmium, mercury and  
654 selenium in common eider ducks in the eastern Canadian arctic: Influence of  
655 reproductive stage. *Science of the Total Environment* **351**, 323–332 (2005).

656 90. Cabuk, M., Bozkurt, M., Alcicek, A., Akbas, Y. & Kucukyilmaz, K. Effect of a herbal  
657 essential oil mixture on growth and internal organ weight of broilers from young and old  
658 breeder flocks. *South African Journal of Animal Science* **36**, 135–141 (2006).

659 91. Figueiredo-Fernandes, A. M., Fontainhas-Fernandes, A. A., Monteiro, R. A. F., Reis-  
660 Henriques, M. A. & Rocha, E. Temperature and gender influences on the hepatic  
661 stroma (and associated pancreatic acini) of Nile tilapia, *Oreochromis niloticus*  
662 (Teleostei, Cichlidae): A stereological analysis by light microscopy. *Journal of*  
663 *Morphology* **267**, 221–230 (2006).

664 92. Schilling, N. & Petrovitch, A. Postnatal allometry of the skeleton in *Tupaia glis*  
665 (Scandentia: Tupaiidae) and *Galea musteloides* (Rodentia: Caviidae) -: A test of the  
666 three-segment limb hypothesis. *Zoology* **109**, 148–163 (2006).

667 93. Shafey, T. M., Al-Mufarej, S. & Al-Batshan, H. A. Effect of electric field during incubation  
668 of eggs on the immune responses of hatched chickens. *Electromagnetic Biology and*  
669 *Medicine* **25**, 163–175 (2006).

670 94. Albers, P. *et al.* Chlorfenapyr and mallard ducks: Overview, study design, macroscopic  
671 effects, and analytical chemistry. *Environmental Toxicology and Chemistry* **25**, 438–  
672 445 (2006).

673 95. Fernandez-Navarro, M., Peragon, J., Esteban, F. J., de la Higuera, M. & Lupiañez, J. A.  
674 Maslinic acid as a feed additive to stimulate growth and hepatic protein-turnover rates  
675 in rainbow trout (*Onchorhynchus mykiss*). *Comparative Biochemistry and Physiology A-*  
676 *Molecular & Integrative Physiology* **144**, 130–140 (2006).

677 96. Smith, N. C., Wilson, A. M., Jespers, K. J. & Payne, R. C. Muscle architecture and  
678 functional anatomy of the pelvic limb of the ostrich (*Struthio camelus*). *Journal of*  
679 *Anatomy* **209**, 765–779 (2006).

680 97. Clauss, M. *et al.* Observations on the length of the intestinal tract of African *Loxodonta*  
681 *africana* (Blumenbach 1797) and Asian elephants *Elephas maximus* (Linne 1735).  
682 *European Journal of Wildlife Research* **53**, 68–72 (2007).

683 98. Clauss, M. *et al.* Intraspecific macroscopic digestive anatomy of ring-tailed lemurs  
684 (*Lemur catta*), including a comparison of frozen and formalin-stored specimens.  
685 *Primates* **62**, 431–441 (2021).

686 99. Murphy, M. T. A cautionary tale: Cryptic sexual size dimorphism in a socially  
687 monogamous passerine. *Auk* **124**, 515–525 (2007).

688 100. Hassanali, J., Pokhriyal, G. & Mwasina, P. Comparative analysis of selected linear  
689 measurements of human and baboon brains. *European Journal of Anatomy* **11**, 9–16  
690 (2007).

691 101. Phelps, Q. E., Powell, K. A., Chipps, S. R. & Willis, D. W. A method for determining  
692 stomach fullness for planktivorous fishes. *North American Journal of Fisheries*  
693 *Management* **27**, 932–935 (2007).

694 102. Oddone, M. C., Norbis, W., Mancini, P. L. & Amorim, A. F. Sexual development and  
695 reproductive cycle of the Eyespot skate *Atlantoraja cyclophora* (Regan, 1903)  
696 (Chondrichthyes: Rajidae: Arhynchobatinae), in southeastern Brazil. *Acta Adriatica* **49**,  
697 73–87 (2008).

698 103. Brkic, D. V., Vitorovic, S. Lj., Gasic, S. M. & Nesovic, N. K. Carbofuran in water:  
699 Subchronic toxicity to rats. *Environmental Toxicology and Pharmacology* **25**, 334–341  
700 (2008).

701 104. McCallan, B. M., Westman, W., Crowther, M. S. & Dickman, C. R. Morphology, growth  
702 and reproduction in the Australian house mouse: differential effects of moderate  
703 temperatures. *Biological Journal of the Linnean Society* **94**, 21–30 (2008).

704 105. Dutil, J.-D., Jabouin, C., Larocque, R., Desrosiers, G. & Blier, P. U. Atlantic cod (*Gadus*  
705 *morhua*) from cold and warm environments differ in their maximum growth capacity at  
706 low temperatures. *Canadian Journal of Fisheries and Aquatic Sciences* **65**, 2579–2591  
707 (2008).

708 106. Han, X.-Y., Huang, Q.-C., Li, W.-F., Jiang, J.-F. & Xu, Z.-R. Changes in growth  
709 performance, digestive enzyme activities and nutrient digestibility of cherry valley ducks  
710 in response to aflatoxin B<sub>1</sub> levels. *Livestock Science* **119**, 216–220 (2008).

711 107. Han, J. *et al.* Organ Mass Variation in a Toad Headed Lizard *Phrynocephalus vlangalii*  
712 in Response to Hypoxia and Low Temperature in the Qinghai-Tibet Plateau, China.  
713 *PLOS ONE* **11**, (2016).

714 108. Owerkowicz, T., Elsey, R. M. & Hicks, J. W. Atmospheric oxygen level affects growth  
715 trajectory, cardiopulmonary allometry and metabolic rate in the American alligator  
716 (*Alligator mississippiensis*). *Journal of Experimental Biology* **212**, 1237–1247 (2009).

717 109. Sherwood, C. C. *et al.* Neocortical neuron types in Xenarthra and Afrotheria:  
718 Implications for brain evolution in mammals. *Brain Structure and Function* **213**, 301–  
719 328 (2009).

720 110. Sulikowski, J. A., Cicia, A. M., Kneebone, J. R., Natanson, L. J. & Tsang, P. C. W. Age  
721 and size at sexual maturity of the smooth skate *Malacoraja senta* from the western Gulf  
722 of Maine. *Journal of Fish Biology* **75**, 2832–2838 (2009).

723 111. Matulka, R. A. *et al.* The safety of PolyGlycopleX® (PGX®) as shown in a 90-day  
724 rodent feeding study. *Nutrition journal* **8**, (2009).

725 112. Biswas, B. K. *et al.* Dietary protein and lipid requirements for the Pacific bluefin tuna  
726 *Thunnus orientalis* juvenile. *Aquaculture* **288**, 114–119 (2009).

727 113. Biswas, S. *et al.* Salinity negatively correlates with the production and immunity of  
728 chicken: A molecular insight for food security and safety issues. *Helijon* **10**, (2024).

729 114. Konca, Y., Kirkpinar, F. & Mert, S. Effects of Mannan-oligosaccharides and Live Yeast  
730 in Diets on the Carcass, Cut Yields, Meat Composition and Colour of Finishing  
731 Turkeys. *Asian-Australasian Journal of Animal Sciences* **22**, 550–556 (2009).

732 115. Vaanholt, L. M., Daan, S., Schubert, K. A. & Visser, G. H. Metabolism and aging:  
733 effects of cold exposure on metabolic rate, body composition, and longevity in mice.  
734 *Physiological and Biochemical Zoology* **82**, 314–324 (2009).

735 116. Akhtar, N., Srivastava, M. K. & Raizada, R. B. Assessment of chlorpyrifos toxicity on  
736 certain organs in rat, *Rattus norvegicus*. *Journal of Environmental Biology* **30**, 1047–  
737 1053 (2009).

738 117. Johnston, S. D. *et al.* Studies of male reproduction in the Greater Bilby *Macrotis lagotis*.  
739 *Australian Zoologist* **35**, 315–330 (2010).

740 118. Schwarm, A. *et al.* Function, size and form of the gastrointestinal tract of the collared  
741 *Pecari tajacu* (Linnaeus 1758) and white-lipped peccary *Tayassu pecari* (Link 1795).  
742 *European Journal of Wildlife Research* **56**, 569–576 (2010).

743 119. Ndlovu, M., Cumming, G. S., Hockey, P. A. R. & Bruinzeel, L. W. Phenotypic flexibility  
744 of a southern African duck *Alopochen aegyptiaca* during moult: do northern hemisphere  
745 paradigms apply? *Journal of Avian Biology* **41**, 558–564 (2010).

746 120. Li, Y.-G., Yan, Z.-C. & Wang, D.-H. Physiological and biochemical basis of basal  
747 metabolic rates in Brandt's voles (*Lasionopodomys brandtii*) and Mongolian gerbils

748 (*Meriones unguiculatus*). *Comparative Biochemistry and Physiology A-Molecular &*

749 *Integrative Physiology* **157**, 204–211 (2010).

750 121. Li, S.-J. *et al.* Occurrence and pathology of mycotoxins in commercial parrot feeds.

751 *World Mycotoxin Journal* **6**, 449–453 (2013).

752 122. Li, D. *et al.* Effects of Supplementation of 25-Hydroxyvitamin D<sub>3</sub> as a Vitamin D<sub>3</sub>

753 Substitute on Performance, Bone Traits, and Egg Quality of Laying Hens from 1 Day to

754 72 Weeks of Age. *Agriculture-Basel* **13**, (2023).

755 123. Oehme, M. *et al.* Dietary supplementation of glutamate and arginine to Atlantic salmon

756 (*Salmo salar* L.) increases growth during the first autumn in sea. *Aquaculture* **310**, 156–

757 163 (2010).

758 124. Hemmeryckx, B., Himmelreich, U., Hoylaerts, M. F. & Lijnen, H. R. Impact of Clock

759 Gene *Bmal1* Deficiency on Nutritionally Induced Obesity in Mice. *Obesity* **19**, 659–661

760 (2011).

761 125. Castellano, C.-A., Audet, I., Laforest, J.-P., Matte, J. J. & Suh, M. Fish oil diets alter the

762 phospholipid balance, fatty acid composition, and steroid hormone concentrations in

763 testes of adult pigs. *Theriogenology* **76**, 1134–1145 (2011).

764 126. Cortes, P. A., Franco, M., Sabat, P., Quijano, S. A. & Nespolo, R. F. Bioenergetics and

765 intestinal phenotypic flexibility in the microbiotherid marsupial (*Dromiciops gliroides*)

766 from the temperate forest in South America. *Comparative Biochemistry and Physiology*

767 *A-Molecular & Integrative Physiology* **160**, 117–124 (2011).

768 127. Hartwig, W., Rosenberger, A. L., Norconk, M. A. & Owl, M. Y. Relative brain size, gut

769 size, and evolution in New World monkeys. *Anatomical Record-Advances in Integrative*

770 *Anatomy and Evolutionary Biology* **294**, 2207–2221 (2011).

771 128. Bernacki, Z., Bawej, M. & Kokoszynski, D. Carcass Composition and Breast Muscle

772 Microstructure in Guinea Fowl (*Numida meleagris* L.) of Different Origin. *Folia*

773 *Biologica-Krakow* **60**, 175–179 (2012).

774 129. Kasperska, D., Kokoszynski, D., Korytkowska, H. & Mistrzak, M. Effect of age and sex  
775 on digestive tract morphometry of Guinea fowl (*Numida meleagris* L.). *Folia Biologica*  
776 **60**, 45–49 (2012).

777 130. Sgueo, C., Wells, M. E., Russell, D. E. & Schaeffer, P. J. Acclimatization of seasonal  
778 energetics in northern cardinals (*Cardinalis cardinalis*) through plasticity of metabolic  
779 rates and ceilings. *Journal of Experimental Biology* **215**, 2418–2424 (2012).

780 131. Halle, I. & Ebrahem, M. Influence of Vitamin B<sub>12</sub> and Cobalt on performance of laying  
781 hens. *Landbauforschung-Journal of Sustainable and Organic Agricultural Systems* **62**,  
782 111–116 (2012).

783 132. Zeng, L.-Q., Li, F.-J., Fu, S.-J., Cao, Z.-D. & Zhang, Y.-G. Effect of feeding on the  
784 function and structure of the digestive system in juvenile southern catfish (*Silurus*  
785 *meridionalis* Chen). *Fish Physiology and Biochemistry* **38**, 1459–1475 (2012).

786 133. Norin, T. & Malte, H. Intraspecific Variation in Aerobic Metabolic Rate of Fish: Relations  
787 with Organ Size and Enzyme Activity in Brown Trout. *Physiological and Biochemical*  
788 *Zoology* **85**, 645–656 (2012).

789 134. Konca, Y. & Beyzi, S. B. Effect of free choice feeding based on emmer, triticale and  
790 wheat to Japanese Quail (*Coturnix coturnix caponica*) on performance, inner organs  
791 and intestinal viscosity. *Scientific Papers-Series D-Animal Science* **56**, 113–119 (2013).

792 135. Wilkanowska, A., Kokoszyński, D. & Cieślińska, J. Body conformation and  
793 morphometry of some internal organs of Pharaoh quail of different ages. *Journal of*  
794 *Central European Agriculture* **14**, 358–368 (2013).

795 136. Xie, W. *et al.* Effect of -aminobutyric acid on growth performance and immune function  
796 in chicks under beak trimming stress. *Animal Science Journal* **84**, 121–129 (2013).

797 137. Indresh, H. C., Devegowda, G., Ruban, S. W. & Shivakumar, M. C. Effects of high  
798 grade bentonite on performance, organ weights and serum biochemistry during  
799 aflatoxicosis in broilers. *Veterinary World* **6**, 313–317 (2013).

800 138. Huang, Q., Zhang, Y., Liu, S., Wang, W. & Luo, Y. Intraspecific Scaling of the Resting  
801 and Maximum Metabolic Rates of the Crucian Carp (*Carassius auratus*). *PLOS ONE* **8**,  
802 (2013).

803 139. Lou, S. *et al.* Altitudinal Variation in Digestive Tract Length in Yunnan Pond Frog  
804 (*Pelophylax pleuraden*). *Asian Herpetological Research* **4**, 263–267 (2013).

805 140. Al-Sarar, A. S., Abobakr, Y., Bayoumi, A. E., Hussein, H. I. & Al-Ghothemi, M.  
806 Reproductive toxicity and histopathological changes induced by lambda-cyhalothrin in  
807 male mice. *Environmental Toxicology* **29**, 750–762 (2014).

808 141. Damaziak, K. *et al.* Effect of genotype on selected quality attributes of Turkey bone.  
809 *European Poultry Science* **78**, (2014).

810 142. Hashim, M., Abidin, D. A. Z., Simon, K. D. & Ghaffar, M. Abd. Food consumption and  
811 digestion time estimation of spotted scat, *Scatophagus argus*, using X-radiography  
812 technique. *AIP Conference Proceedings* **1614**, 745–749 (2014).

813 143. Ebrahem, M. *et al.* Effect of increasing concentrations of deoxynivalenol (DON) in diet  
814 on health and performance of laying hens of different genetic background. *European*  
815 *Poultry Science* **78**, (2014).

816 144. Ebrahem, M. *et al.* Effect of *Fusarium toxin* contaminated wheat on health, nutrient  
817 digestibility and semen quality of adult cockerels. *European Poultry Science* **78**, (2014).

818 145. Petri, I., Dumbell, R., Scherbarth, F., Steinlechner, S. & Barrett, P. Effect of Exercise on  
819 Photoperiod-Regulated Hypothalamic Gene Expression and Peripheral Hormones in  
820 the Seasonal Dwarf Hamster *Phodopus sungorus*. *PLOS ONE* **9**, (2014).

821 146. Jang, I.-S., Ko, Y.-H., Moon, Y.-S. & Sohn, S.-H. Effects of Vitamin C or E on the Pro-  
822 inflammatory Cytokines, Heat Shock Protein 70 and Antioxidant Status in Broiler  
823 Chicks under Summer Conditions. *Asian-Australasian Journal of Animal Sciences* **27**,  
824 749–756 (2014).

825 147. Chikumba, N. & Chimonyo, M. Effects of Water Restriction on the Growth Performance,  
826 Carcass Characteristics and Organ Weights of Naked Neck and Ovambo Chickens of  
827 Southern Africa. *Asian-Australasian Journal of Animal Sciences* **27**, 974–980 (2014).

828 148. Enok, S., Slay, C., Abe, A. S., Hicks, J. W. & Wang, T. Intraspecific scaling of arterial  
829 blood pressure in the Burmese python. *Journal of Experimental Biology* **217**, 2232–  
830 2234 (2014).

831 149. Seidavi, A., Asadpour, L., Dadashbeiki, M. & Payan-Carreira, R. Effects of Dietary Fish  
832 Oil and Green Tea Powder Supplementation on Broiler Chickens Immunity. *Acta  
833 Scientiae Veterinariae* **42**, (2014).

834 150. Celeste Funes, S. *et al.* Effect of fasting in the digestive system: Histological study of  
835 the small intestine in house sparrows. *Tissue & Cell* **46**, 356–362 (2014).

836 151. Beaufrene, A. M. *et al.* Long-term intermittent glutamine supplementation repairs  
837 intestinal damage (structure and functional mass) with advanced age: Assessment with  
838 plasma citrulline in a rodent model. *Journal of Nutrition Health & Aging* **18**, 814–819  
839 (2014).

840 152. Mueller, J. *et al.* Relative heart size in two rodent species increases with elevation:  
841 reviving Hesse's rule. *Journal of Biogeography* **41**, 2211–2220 (2014).

842 153. Naya, D. E. *et al.* Digestive morphology of two species of *Abrothrix* (Rodentia,  
843 Cricetidae): comparison of populations from contrasting environments. *Journal of  
844 Mammalogy* **95**, 1222–1229 (2014).

845 154. Begum, M., Hossain, M. M. & Kim, I. H. Effects of caprylic acid and *Yucca schidigera*  
846 extract on growth performance, relative organ weight, breast meat quality,  
847 haematological characteristics and caecal microbial shedding in mixed sex Ross 308  
848 broiler chickens. *Veterinarni Medicina* **60**, 635–643 (2015).

849 155. Ibrahim, M. Y. *et al.*  $\alpha$ -Mangostin from *Cratoxylum arborescens*: An *in vitro* and *in vivo*  
850 toxicological evaluation. *Arabian Journal of Chemistry* **8**, 129–137 (2015).

851 156. Singh, R., Mandal, A. B., Sharma, M. & Biswas, A. Effect of varying levels of dietary  
852 ochratoxin A on the performance of broiler chickens. *Indian Journal of Animal Sciences*  
853 **85**, 296–300 (2015).

854 157. Snelling, E. P., Taggart, D. A., Maloney, S. K., Farrell, A. P. & Seymour, R. S. Biphasic  
855 Allometry of Cardiac Growth in the Developing Kangaroo *Macropus fuliginosus*.  
856 *Physiological and Biochemical Zoology* **88**, 216–225 (2015).

857 158. Park, J. H. & Kim, I. H. The effects of the supplementation of *Bacillus subtilis* RX7 and  
858 B2A strains on the performance, blood profiles, intestinal *Salmonella* concentration,  
859 noxious gas emission, organ weight and breast meat quality of broiler challenged with  
860 *Salmonella typhimurium*. *Journal of Animal Physiology and Animal Nutrition* **99**, 326–  
861 334 (2015).

862 159. Park, J. H. & Kim, I. H. Effects of a protease and essential oils on growth performance,  
863 blood cell profiles, nutrient retention, ileal microbiota, excreta gas emission, and breast  
864 meat quality in broiler chicks. *Poultry Science* **97**, 2854–2860 (2018).

865 160. Park, J. H. & Kim, I. H. Effects of dietary *Achyranthes japonica* extract supplementation  
866 on the growth performance, total tract digestibility, cecal microflora, excreta noxious  
867 gas emission, and meat quality of broiler chickens. *Poultry Science* **99**, 463–470  
868 (2020).

869 161. Zhu, H.-J. *et al.* A 90 day safety assessment of genetically modified rice expressing  
870 Cry1Ab/1Ac protein using an aquatic animal model. *Journal of Agricultural and Food  
871 Chemistry* **63**, 3627–3633 (2015).

872 162. Zhu, Y. W. *et al.* Effects of dietary rapeseed meal inclusion levels on growth  
873 performance, organ weight, and serum biochemical parameters in Cherry Valley ducks.  
874 *Poultry Science* **98**, 6888–6896 (2019).

875 163. Martinez, Y. *et al.* Growth Performance, Organ Weights and Some Blood Parameters of  
876 Replacement Laying Pullets Fed with Increasing Levels of Wheat Bran. *Brazilian  
877 Journal of Poultry Science* **17**, 347–353 (2015).

878 164. Chen, X. *et al.* Effects of Transgenic *cry1Ca* Rice on the Development of *Xenopus  
879 laevis*. *PLOS ONE* **10**, (2015).

880 165. Matur, E. *et al.* The effects of environmental enrichment and transport stress on the  
881 weights of lymphoid organs, cell-mediated immune response, heterophil functions and  
882 antibody production in laying hens. *Animal Science Journal* **87**, 284–292 (2016).

883 166. Wang, J.-Q., Wang, J.-J., Wu, X.-J., Zheng, W.-H. & Liu, J.-S. Short photoperiod  
884 increases energy intake, metabolic thermogenesis and organ mass in silky starlings  
885 *Sturnus sericeus*. *Zoological Research* **37**, 75–83 (2016).

886 167. Wang, Y. *et al.* Transcriptome analysis of the effects of fasting caecotrophy on hepatic  
887 lipid metabolism in New Zealand rabbits. *Animals* **9**, (2019).

888 168. Wang, T. *et al.* Ovary transcriptomic analysis reveals regulation effects of dietary fish oil  
889 on hormone, lipid, and glucose metabolism in female adult spotted scat (*Scatophagus*  
890 *argus*). *Frontiers in Marine Science* **9**, (2022).

891 169. Sirsat, S. K. G., Sirsat, T. S., Price, E. R. & Dzialowski, E. M. Post-hatching  
892 development of mitochondrial function, organ mass and metabolic rate in two  
893 ectotherms, the American alligator (*Alligator mississippiensis*) and the common  
894 snapping turtle (*Chelydra serpentina*). *Biology Open* **5**, 443–451 (2016).

895 170. Rose, K. A., Codd, J. R. & Nudds, R. L. Differential sex-specific walking kinematics in  
896 leghorn chickens (*Gallus gallus domesticus*) selectively bred for different body size.  
897 *Journal of Experimental Biology* **219**, 2525–2533 (2016).

898 171. Juskiewicz, J. *et al.* The effects of dietary dried fruit pomaces on growth performance  
899 and gastrointestinal biochemistry of turkey pouls. *Journal of Animal Physiology and*  
900 *Animal Nutrition* **100**, 967–976 (2016).

901 172. Brijs, J. *et al.* Cardiac remodeling and increased central venous pressure underlie  
902 elevated stroke volume and cardiac output of seawater-acclimated rainbow trout.  
903 *American Journal of Physiology - Regulatory Integrative and Comparative Physiology*  
904 **312**, R31–R39 (2017).

905 173. Dala-Corte, R. B., Becker, F. G. & Melo, A. S. Riparian integrity affects diet and  
906 intestinal length of a generalist fish species. *Marine and Freshwater Research* **68**,  
907 1272–1281 (2017).

908 174. Frost, A.-M., Jacobsen, I. P. & Bennett, M. B. The diet of the coffin ray, *Hynos*  
909 *monopterygius* (Shaw, 1795), and predation mode inferred from jaw, dentition and  
910 electric organ morphology. *Marine and Freshwater Research* **68**, 1193–1198 (2017).

911 175. Polilov, A. A. & Makarova, A. A. The scaling and allometry of organ size associated  
912 with miniaturization in insects: a case study for Coleoptera and Hymenoptera. *Scientific*  
913 *Reports* **7**, 43095 (2017).

914 176. Karami, S., Sabzalian, M. R., Khorsandi, L. & Rahimmalek, M. Safety Assessment of a  
915 New Pigmented Safflower Seed Coat (A82) by a Feeding Study on Rat. *Brazilian*  
916 *Archives of Biology and Technology* **60**, (2017).

917 177. Qin, G. *et al.* Toxicological evaluation of silver nanoparticles and silver nitrate in rats  
918 following 28 days of repeated oral exposure. *Environmental Toxicology* **32**, 609–618  
919 (2017).

920 178. Hu, S.-N., Zhu, Y.-Y., Lin, L., Zheng, W.-H. & Liu, J.-S. Temperature and photoperiod  
921 as environmental cues affect body mass and thermoregulation in Chinese bulbuls,  
922 *Pycnonotus sinensis*. *Journal of Experimental Biology* **220**, 844–855 (2017).

923 179. Torrecillas, S. *et al.* Combined replacement of fishmeal and fish oil in European sea  
924 bass (*Dicentrarchus labrax*): Production performance, tissue composition and liver  
925 morphology. *Aquaculture* **474**, 101–112 (2017).

926 180. Mutibvu, T., Chimonyo, M. & Halimani, T. E. Tonic immobility, heterophil to lymphocyte  
927 ratio, and organ weights in slow-growing chickens. *Journal of Applied Poultry Research*  
928 **26**, 226–235 (2017).

929 181. Hennig, M., Fiedler, S., Jux, C., Thierfelder, L. & Drenckhahn, J.-D. Prenatal  
930 Mechanistic Target of Rapamycin Complex 1 (m TORC1) Inhibition by Rapamycin  
931 Treatment of Pregnant Mice Causes Intrauterine Growth Restriction and Alters  
932 Postnatal Cardiac Growth, Morphology, and Function. *Journal of the American Heart  
933 Association* **6**, (2017).

934 182. Gao, Y. *et al.* Nonclinical safety of astilbin: A 4-week oral toxicity study in rats with  
935 genotoxicity, chromosomal aberration, and mammalian micronucleus tests. *Food and*  
936 *Chemical Toxicology* **107**, 1–9 (2017).

937 183. Lei, X. J. *et al.* Influence of exogenous multi-enzymes in broiler chickens fed on maize-  
938 wheat-soybean meal-based diets. *European Poultry Science* **81**, (2017).

939 184. Musundire, M. T., Halimani, T. E. & Chimonyo, M. Effect of age and sex on carcass  
940 characteristics and internal organ weights of scavenging chickens and helmeted guinea  
941 fowls. *Journal of Applied Animal Research* **46**, 860–867 (2018).

942 185. Njoya, E. M. *et al.* Acute and sub-chronic toxicity evaluation of the aqueous extract of  
943 *Codiaeum variegatum* leaves on *Wistar albino* rodents of both sexes. *Journal of*  
944 *Complementary Medicine Research* **7**, 108–114 (2018).

945 186. Upadhyaya, S. D., Lee, J. S., Jung, K. J. & Kim, I. H. Influence of emulsifier blends  
946 having different hydrophilic-lipophilic balance value on growth performance, nutrient  
947 digestibility, serum lipid profiles, and meat quality of broilers. *Poultry Science* **97**, 255–  
948 261 (2018).

949 187. Momeneh, T. & Torki, M. Effects of *in ovo* Injection of Vitamins B<sub>6</sub> and B<sub>12</sub> in Fertile  
950 Eggs Subjected to Ethanol Stress on Hatching Traits, Performance and Visceral  
951 Organs of Broiler Chicks Reared under Cold Stress Condition. *Iranian Journal of*  
952 *Applied Animal Science* **8**, 491–498 (2018).

953 188. Hussain, M., Mirza, M. A., Nawaz, H., Asghar, M. & Ahmed, G. Effect of exogenous  
954 protease, mannanase, and xylanase supplementation in corn and high protein corn  
955 DDGS based diets on growth performance, intestinal morphology and nutrient  
956 digestibility in broiler chickens. *Brazilian Journal of Poultry Science* **21**, (2019).

957 189. Eme, J. *et al.* Scaling of major organs in hatchling female American alligators (*Alligator*  
958 *mississippiensis*). *Journal of Experimental Zoology Part A-Ecological and Integrative*  
959 *Physiology* **331**, 38–51 (2019).

960 190. Caldart, V. M., Loebens, L., Carvalho Brum, A. J., Bataioli, L. & Cechin, S. Z.  
961 Reproductive Cycle, Size and Age at Sexual Maturity, and Sexual Dimorphism in the

962 Stream-Breeding Frog *Crossodactylus schmidti* (Hylodidae). *South American Journal of*  
963 *Herpetology* **14**, 1–11 (2019).

964 191. de Jenlis, A. B. *et al.* Impacts of Subchronic, High-Level Noise Exposure on Sleep and  
965 Metabolic Parameters: A Juvenile Rodent Model. *Environmental Health Perspectives*  
966 **127**, (2019).

967 192. Mathot, K. J. *et al.* Evolutionary design of a flexible, seasonally migratory, avian  
968 phenotype: why trade gizzard mass against pectoral muscle mass? *Proceedings of the*  
969 *Royal Society B-Biological Sciences* **286**, (2019).

970 193. Zhang, C., Chen, K. K., Zhao, X. H., Wang, C. & Geng, Z. Y. Effect of l-theanine on the  
971 growth performance, immune function, and jejunum morphology and antioxidant status  
972 of ducks. *Animal* **13**, 1145–1153 (2019).

973 194. Sommers, A. S., Rogers, E. J. & McGuire, L. P. Migration and reproduction are  
974 associated with similar degrees of phenotypic flexibility in an insectivorous bat.  
975 *Oecologia* **190**, 747–755 (2019).

976 195. Chikachev, R. The index of the hearts squad Carnivora, as an indicator of predator  
977 ecology. *Ecological and Biological Well-Being of Flora and Fauna (EBWFF-2020)* **203**,  
978 (2020).

979 196. Deyno, S. *et al.* Acute and sub-acute toxicity of *Echinops kebericho* decoction in rats.  
980 *Bmc Complementary Medicine and Therapies* **20**, (2020).

981 197. Won, S. *et al.* Effects of *Bacillus subtilis* WB60 and *Lactococcus lactis* on Growth,  
982 Immune Responses, Histology and Gene Expression in Nile Tilapia, *Oreochromis*  
983 *niloticus*. *Microorganisms* **8**, (2020).

984 198. Zhai, S. *et al.* Effect of dietary *Moringa* stem meal level on growth performance,  
985 slaughter performance and serum biochemical parameters in geese. *Journal of Animal*  
986 *Physiology and Animal Nutrition* **104**, 126–135 (2020).

987 199. Mwaniki, Z., Shoveller, A. K., Huber, L.-A. & Kiarie, E. G. Complete replacement of  
988 soybean meal with defatted black soldier fly larvae meal in Shaver White hens feeding

989 program (28-43 wks of age): impact on egg production, egg quality, organ weight, and  
990 apparent retention of components. *Poultry Science* **99**, 959–965 (2020).

991 200. Thigpen, C., Best, L. & Camarata, T. Comparative morphology and allometry of select  
992 extant cryptodiran turtle kidneys. *Zoomorphology* **139**, 111–121 (2020).

993 201. Ao, X. & Kim, I. H. Effects of grape seed extract on performance, immunity, antioxidant  
994 capacity, and meat quality in Pekin ducks. *Poultry Science* **99**, 2078–2086 (2020).

995 202. Ao, X. & Kim, I. H. Effects of *Achyranthes bidentata* polysaccharides on performance,  
996 immunity, antioxidant capacity, and meat quality in Pekin ducks. *Poultry Science* **99**,  
997 4884–4891 (2020).

998 203. Bae, S. J. *et al.*  $\alpha$ -linolenic acid-enriched cold-pressed perilla oil suppress high-fat diet-  
999 induced hepatic steatosis through amelioration of the ER stress-mediated autophagy.  
1000 *Molecules* **25**, (2020).

1001 204. Kadokura, K., Tomita, T., Kobayashi, M., Mitsui, T. & Suruga, K. Effect of fish paste  
1002 products “Hanpen” intake in Sprague-Dawley rats. *Food Science & Nutrition* **8**, 2773–  
1003 2779 (2020).

1004 205. Kadokura, K., Tomita, T. & Suruga, K. Effect of fish paste products, fish balls ‘tsumire’,  
1005 intake in Sprague-Dawley rats. *Journal of Nutritional Science* **10**, (2021).

1006 206. Jagdale, P. R. *et al.* Safety evaluation of Ochratoxin A and Citrinin after 28 days  
1007 repeated dose oral exposure to Wistar rats. *Regulatory Toxicology and Pharmacology*  
1008 **115**, (2020).

1009 207. Wickramasuriya, S. S. *et al.* Physiological effects of a tallow-incorporated diet  
1010 supplemented with an emulsifier and microbial lipases on broiler chickens. *Frontiers in  
1011 Veterinary Science* **7**, (2020).

1012 208. Perry, W. B. *et al.* Disentangling the effects of sex, life history and genetic background  
1013 in Atlantic salmon: growth, heart and liver under common garden conditions. *Royal  
1014 Society Open Science* **7**, (2020).

1015 209. Siddiqui, Z. & Desai, K. Sub-Acute Toxicity Study of a Type-I Pyrethroid Permethrin on  
1016 Testis of *Mus Musculus*. *International Journal of Life Science and Pharma Research*  
1017 **10**, P37–P43 (2020).

1018 210. Ding, X., Yang, C., Wang, P., Yang, Z. & Ren, X. Effects of star anise (*Illicium verum*  
1019 Hook. f) and its extractions on carcass traits, relative organ weight, intestinal  
1020 development, and meat quality of broiler chickens. *Poultry Science* **99**, 5673–5680  
1021 (2020).

1022 211. Baumgart, J. *et al.* Using multidimensional scaling in model choice for congenital  
1023 oesophageal atresia: similarity analysis of human autopsy organ weights with those  
1024 from a comparative assessment of Aachen Minipig and Pietrain piglets. *Laboratory*  
1025 *Animals* **54**, 576–587 (2020).

1026 212. Maretta, I. *et al.* Effect of *Averrhoa bilimbi* fruit filtrate and shrimp paste mixture on  
1027 performance, gut microbes and blood profile of broilers. *Jurnal Ilmu Ternak Dan*  
1028 *Veteriner* **25**, 182–189 (2020).

1029 213. Ferner, K. Early postnatal lung development in the eastern quoll (*Dasyurus viverrinus*).  
1030 *Anatomical Record* **304**, 2823–2840 (2021).

1031 214. He, L. *et al.* Exogenous and Endogenous Serine Deficiency Exacerbates Hepatic Lipid  
1032 Accumulation. *Oxidative Medicine and Cellular Longevity* **2021**, (2021).

1033 215. Adeyemi, K. D., Oseni, A., I. & Asogwa, T. N. Onionskin waste versus synthetic  
1034 additives in broiler diet: influence on production indices, oxidative status, caecal  
1035 bacteria, immune indices, blood chemistry and meat quality. *Italian Journal of Animal*  
1036 *Science* **20**, 587–599 (2021).

1037 216. Adeyemi, K. *et al.* Dietary supplementation of *Solanum aethiopicum* and *Solanecio*  
1038 *biafrae* leaves alters stress and immune responses, antioxidant status, and meat  
1039 quality in broilers raised in a hot-dry environment. *British Poultry Science* **63**, 82–90  
1040 (2022).

1041 217. Peillod, C. *et al.* Toxic Effects of Fumonisins, Deoxynivalenol and Zearalenone Alone  
1042 and in Combination in Ducks Fed the Maximum EU Tolerated Level. *Toxins* **13**, (2021).

1043 218. Mohtashami, M. A., Khalaji, S. & Yari, M. Effect of fiber source and carbohydrase  
1044 enzyme on chukar partridge growth performance, blood characteristics, digestive  
1045 enzyme activity, cecal microbial population and ileal morphology. *Animal Feed Science*  
1046 and *Technology* **277**, (2021).

1047 219. Ye, X. *et al.* Metabolic scaling: individual versus intraspecific scaling of Nile tilapia  
1048 (*Oreochromis niloticus*). *Journal of Comparative Physiology B-Biochemical Systems*  
1049 and *Environmental Physiology* **191**, 721–729 (2021).

1050 220. Goel, A., Ncho, C. M., Jeong, C.-M. & Choi, Y.-H. Embryonic Thermal Manipulation and  
1051 *in ovo* Gamma-Aminobutyric Acid Supplementation Regulating the Chick Weight and  
1052 Stress-Related Genes at Hatch. *Frontiers in Veterinary Science* **8**, (2022).

1053 221. Thanabalan, A. & Kiarie, E. G. Body weight, organ development and jejunal  
1054 histomorphology in broiler breeder pullets fed n-3 fatty acids enriched diets from hatch  
1055 through to 22 weeks of age. *Poultry Science* **101**, (2022).

1056 222. Dang, D. X. *et al.* Quercetin extracted from Sophora japonica flower improves growth  
1057 performance, nutrient digestibility, cecal microbiota, organ indexes, and breast quality  
1058 in broiler chicks. *Animal Bioscience* **35**, 577–586 (2022).

1059 223. Matsuda, I., Takano, T., Shintaku, Y. & Clauss, M. Gastrointestinal morphology and  
1060 ontogeny of foregut-fermenting primates. *American Journal of Biological Anthropology*  
1061 **177**, 735–747 (2022).

1062 224. Shukla, A. *et al.* Exposure to ethion alters rhythmic dynamicity of milieu interior of  
1063 poultry following exposure at cage system of rearing in Ruhelkhand climatic zone.  
1064 *Biological Rhythm Research* **53**, 676–688 (2022).

1065 225. Kouatcho, F. D. *et al.* Valorization of cricket, *Acheta domesticus* (Linnaeus, 1758), flour  
1066 as a source of dietary protein in Japanese quail, *Coturnix japonica* (Temminck and  
1067 Schlegel, 1849), farming. *Journal of Advanced Veterinary and Animal Research* **9**,  
1068 310–322 (2022).

1069 226. Amato, R., Gardin, J. F., Tooze, J. A. & Cline, J. M. Organ weights in relation to age  
1070 and sex in cynomolgus monkeys (*Macaca fascicularis*). *Toxicologic Pathology* **50**, 574–  
1071 590 (2022).

1072 227. Chang, Y. H., Sheftel, B., I. & Jensen, B. Anatomy of the heart with the highest heart  
1073 rate. *Journal of Anatomy* **241**, 173–190 (2022).

1074 228. Itgen, M. W., Siegel, D. S., Sessions, S. K., Mueller, R. L. & Natalie, G. R. Genome size  
1075 drives morphological evolution in organ-specific ways. *Evolution* **76**, 1453–1468 (2022).

1076 229. Pandey, S. K. *et al.* Short-term toxicity study of 1-aminobenzotraizole, a CYP inhibitor,  
1077 in Wistar rats. *Drug and Chemical Toxicology* **45**, 1597–1605 (2022).

1078 230. Forrester, G. E. & Finley, R. J. Host-parasite Interactions between a Copepod  
1079 (*Pharodes tortugensis*) and Small Reef-associated Gobies (*Coryphopterus*) in the  
1080 British Virgin Islands. *Zoological Studies* **61**, (2022).

1081 231. Ayasi, H. *et al.* Effect of corn silage and alfalfa meal as alternative induced molt  
1082 methods to improving *Salmonella enteritidis* resistance in laying hens. *Poultry Science*  
1083 **101**, (2022).

1084 232. Bean-Hodgins, L., Mohammadigheisar, M., Edwards, A. M. & Kiarie, E. G. Comparative  
1085 impact of conventional and alternative gut health management programs on  
1086 gastrointestinal responses in broiler chickens raised in commercial and research  
1087 settings. *Journal of Applied Poultry Research* **31**, (2022).

1088 233. Ali, A. *et al.* Mitigative potential of novel *Lactobacillus plantarum* TISTR 2076 against  
1089 the aflatoxins-associated oxidative stress and histopathological alterations in liver and  
1090 kidney of broiler chicks during the entire growth period. *Toxins* **14**, (2022).

1091 234. Radhi, K. S. *et al.* Growth performance of broiler chickens fed diets supplemented with  
1092 amylase and protease enzymes individually or combined. *Open Veterinary Journal* **13**,  
1093 1425–1435 (2023).

1094 235. Song, X. *et al.* Effects of reduced-protein diets with protease supplementation on  
1095 growth, carcass yield, intestinal morphology, organ development, nutrient digestibility,  
1096 and blood biochemical of broiler chickens. *Translational Animal Science* **7**, (2023).

1097 236. Song, J. *et al.* Comparison of repeated toxicity of polyhexamethyleneguanidine  
1098 phosphate, a causative agent of humidifier disinfectant tragedy, in young and adult  
1099 mice. *Scientific Reports* **14**, (2024).

1100 237. Rahmawati, O. M. *et al.* Effect of unripe banana flour as a functional feed ingredient on  
1101 growth performance, internal organ relative weight and carcass traits of broilers.  
1102 *Veterinary Medicine and Science* **9**, 851–859 (2023).

1103 238. Wahid, S. T., Lee, B. G. & Kim, I. H. Effect of purified fish oil supplementation on  
1104 growth performance, meat quality and blood profile in broilers. *Journal of animal*  
1105 *physiology and animal nutrition* **107**, 723–732 (2023).

1106 239. Abdullah, A. I., Abdulla, I. T. & Waheed, I. N. Effects of feeding oak acorn flour on  
1107 hematology and serum biochemical profile, and carcass characteristics of Japanese  
1108 quail. *Egyptian Journal of Veterinary Science* **54**, 309–321 (2023).

1109 240. Kithama, M. *et al.* Growth performance, organ weight, and plasma metabolites in broiler  
1110 chickens fed corn-soybean meal diet containing berry pomaces and fed without or with  
1111 multienzymes supplement. *Poultry Science* **102**, (2023).

1112 241. Lochi, G. M. *et al.* Effect of selenium nanoparticles and chitosan on production  
1113 performance and antioxidant integrity of heat-stressed broiler. *Biological Trace Element*  
1114 *Research* **201**, 1977–1986 (2023).

1115 242. Teichert, N. *et al.* Biogeographical snapshot of life-history traits of European silver eels:  
1116 insights from otolith microchemistry. *Aquatic Sciences* **85**, (2023).

1117 243. Sittiya, J., Chimtong, S. & Sriwarcharameta, P. Effects of crude oligosaccharide extract  
1118 from agricultural by-products on the performance and gut development of broilers.  
1119 *Animal Bioscience* **36**, 891–898 (2023).

1120 244. Jesus, A. de S. *et al.* Comparative gastrointestinal organ lengths among Amazonian  
1121 primates (Primates: Platyrrhini). *American Journal of Biological Anthropology* **181**, 440–  
1122 453 (2023).

1123 245. Schwartz, N. E. *et al.* Selective breeding for high voluntary exercise in mice increases  
1124 maximal ( $\dot{V}O_{2,\text{max}}$ ) but not basal metabolic rate. *Journal of Experimental Biology* **226**,  
1125 (2023).

1126 246. Kim, K.-T. *et al.* Two weeks dose range-finding and four weeks repeated dose oral  
1127 toxicity study of a novel reversible monoamine oxidase B inhibitor KDS2010 in  
1128 cynomolgus monkeys. *Toxicological Research* **39**, 693–709 (2023).

1129 247. Golikov, A. V. *et al.* A review of the genus *Muusoctopus* (Cephalopoda: Octopoda) from  
1130 Arctic waters. *Zoological Letters* **9**, (2023).

1131 248. Javed, M., Ahmed, W., Khan, A. & Rabbani, I. Comparison of efficacy of fermented  
1132 garlic and orlistat (lipase inhibitor) in obesity management using an experimental rodent  
1133 model. *Foods* **12**, (2023).

1134 249. Mishra, P., Das, R., Chaudhary, A., Mishra, B. & Jha, R. Effects of microalgae, with or  
1135 without xylanase supplementation, on growth performance, organs development, and  
1136 gut health parameters of broiler chickens. *Poultry Science* **102**, (2023).

1137 250. Shutler, D., Mahoney, S., Jamieson, S. E., Gilchrist, H. G. & Mallory, M. L. Annual  
1138 patterns of body, tissue, and organ mass variation in long-tailed ducks *Clangula*  
1139 *hyemalis*. *Arctic Science* (2024) doi:10.1139/as-2024-0010.

1140 251. Adedeji, A. O. *et al.* Comparative impact of various fasting periods on the welfare of  
1141 Sprague-Dawley rats with or without supplementation. *Toxicologic Pathology* **52**, 21–34  
1142 (2024).

1143 252. Silva, B. C. R., Paulino, M. T. F., da Silva, L. A. L., Andrade, J. M. de M. & Marcato, S.  
1144 M. Black soldier fly (*Hermetia illucens*) larvae meal improves quail growth performance.  
1145 *Tropical Animal Health and Production* **56**, (2024).

1146 253. Mosto, M. C., Picasso, M. B. J., Tudisca, A. M. & Krone, O. Hindlimb myology in two  
1147 piscivorous raptorial birds: a quantitative comparison of the osprey and the white-tailed  
1148 sea eagle (Aves, Accipitriformes). *Journal of Zoology* **323**, 240–252 (2024).

1149 254. Balamayooran, G. *et al.* Age and sex associated organ weight differences in  
1150 vervets/African green monkeys (*Chlorocebus aethiops sabaeus*). *Journal of Medical*  
1151 *Primateology* **53**, (2024).

1152 255. Wegner, M. *et al.* The influence of genotype and sex on carcass composition, meat  
1153 quality, digestive system morphometry and leg bone dimensions in Japanese quails (*C.*  
1154 *coturnix japonica*). *Scientific Reports* **14**, (2024).

1155 256. Cufadar, Y. *et al.* Impacts of *Bacillus* probiotics on productive performance and egg  
1156 quality criteria in laying Japanese quails. *Journal of Applied Poultry Research* **33**,  
1157 (2024).

1158 257. Champati, A. *et al.* Dietary concoction of formic acid and thymol and its effects on zoo-  
1159 technical performance, immunity, jejunal architecture and gut health in Turkey.  
1160 *Research in Veterinary Science* **179**, (2024).

1161 258. Bao, H. *et al.* Safety evaluation of aqueous extract from *Valeriana officinalis* L. roots:  
1162 Genotoxicity, acute, subchronic and teratology toxicity. *Journal of Ethnopharmacology*  
1163 **335**, (2024).

1164 259. Leiva, F. P. *et al.* ShareTrait: a data portal for making trait data interoperable and  
1165 reusable. Zenodo <https://doi.org/10.5281/zenodo.8138904> (2025).

1166 260. Pick, J. L., Nakagawa, S. & Noble, D. W. Reproducible, flexible and high-throughput  
1167 data extraction from primary literature: The metaDigitise r package. *Methods in Ecology*  
1168 *and Evolution* **10**, 426–431 (2019).

1169 261. Rohatgi, A. WebPlotDigitizer. (2025).

1170 262. Michael, B. *et al.* Evaluation of Organ Weights for Rodent and Non-Rodent Toxicity  
1171 Studies: A Review of Regulatory Guidelines and a Survey of Current Practices.  
1172 *Toxicologic Pathology* **35**, 742–750 (2007).

1173 263. Froese, R. & Pauly, D. FishBase. World Wide Web electronic publication.  
1174 [www.fishbase.org](http://www.fishbase.org), (ver. 04/2025). (2025).

1175 264. Lenoir, J. *et al.* Species better track climate warming in the oceans than on land. *Nature*  
1176 *Ecology & Evolution* **4**, 1044–1059 (2020).

1177 265. Leiva, F. P., Verberk, W. C. E. P., Calosi, P., Rezende, E. L. & Mark, F. C. MetaR, a  
1178 global database on metabolic rates of ectotherms. Preprint at  
1179 <https://doi.org/10.32942/X2Z022> (2024).

1180 266. Hinchliff, C. E. *et al.* Synthesis of phylogeny and taxonomy into a comprehensive tree  
1181 of life. *Proceedings of the National Academy of Sciences* **112**, 12764–12769 (2015).

1182 267. R Development Core Team. R: A language and environment for statistical computing.  
1183 R Foundation for Statistical Computing, Vienna, Austria. (2023).

1184 268. Pottier, P. *et al.* A comprehensive database of amphibian heat tolerance. *Scientific  
1185 Data* **9**, 600 (2022).

1186 269. Haddaway, N. R., Page, M. J., Pritchard, C. C. & McGuinness, L. A. PRISMA2020: An  
1187 R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with  
1188 interactivity for optimised digital transparency and Open Synthesis. *Campbell  
1189 Systematic Reviews* **18**, e1230 (2022).

1190