

1 **Title:** The incredible vulnerability that reproduction poses for plant species in a warming world

2 **Short title:** Plant reproduction under heat

3 **Authors:** Derek A. Denney^{1,2,*}, Annabelle L. Taylor^{3,*} Emily B. Josephs^{1,2,4}, John H. Willis³,

4 David B. Lowry^{1,2,4}

5 * These authors contributed equally to this work

6 * Corresponding authors: denneyde@msu.edu; annabelle.taylor@duke.edu

7 **Addresses:**

8 ¹Plant Resilience Institute, Michigan State University, East Lansing, MI, USA

9 ²Department of Plant Biology, Michigan State University, East Lansing, MI, USA

10 ³Biology Department, Duke University, Durham, NC, USA

11 ⁴Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA

12

13 **ORCIDs**

14 Derek A. Denney [0000-0001-5732-5656](https://orcid.org/0000-0001-5732-5656)

15 Annabelle L. Taylor 0009-0005-3888-6841

16 Emily B. Josephs [0000-0002-0889-1130](https://orcid.org/0000-0002-0889-1130)

17 John H. Willis 0000-0001-8368-234X

18 David B. Lowry 0000-0002-8182-1059

19

20 **Keywords:** Pollen development, seed filling, fitness, heat stress

21

22 **Author contributions:**

23 All authors conceived of the project, drafted, revised, and approved the manuscript.

24 **Abstract**

25 Temperatures are rising globally and threatening the persistence of natural plant populations.
26 Elevated temperatures disrupt gametogenesis, fertilization, and seed filling, often at lower
27 thresholds than those affecting photosynthesis, growth, or survival. While crop scientists have
28 found that key reproductive stages are particularly vulnerable to heat stress across plant
29 systems, ecological and evolutionary studies have largely focused on other fitness metrics to
30 estimate populations' resilience to warming. We advocate for integrating pollen and ovule
31 developmental metrics into ecological and evolutionary studies to improve predictions of plant
32 population dynamics under future climates. Such studies will offer not only a better
33 understanding of how natural populations will respond to increasing temperature stress, but also
34 are likely to reveal novel mechanistic insights that can be utilized to improve crop resilience in a
35 warming world.

36 **Introduction**

37 Anthropogenic climate change is causing elevated temperatures and increasingly severe heat
38 waves, pushing natural populations to their limits (Parmesan, 2006; Parmesan & Hanley, 2015).
39 While ecological and evolutionary biologists have long appreciated the consequences of climate
40 change, the underlying mechanisms of how and why populations will be impacted by heat are
41 still largely unexplored in natural plant populations (Haider et al., 2021).

42 It is broadly understood that temperatures above a critical threshold lead to irreversible damage
43 for plants (Jagadish, Way, and Sharkey 2021). However, it is often overlooked that even
44 modestly elevated temperatures can lead to reproductive failure. While plants can persist and
45 maintain vegetative growth under heat stress, even for temperatures as high as 60°C in some
46 species, the average optimal temperatures for gametophyte and seed development are
47 approximately 26°C in crops and horticultural plants (Nievola et al., 2017; Tushabe & Rosbakh,
48 2025). Crop scientists have recognized that the development of plant reproductive tissues -
49 especially pollen, ovules, and seed development - are generally the most vulnerable to rising
50 global temperatures (Chaturvedi et al., 2021; Zinn et al., 2010). Consequently, there has been
51 extensive research to understand the mechanisms underlying reproductive failure in the face of
52 heat stress (Table 1).

53 In contrast, ecological and evolutionary studies have not distinguished between the effects of
54 heat stress on vegetative growth and reproduction. These studies often focus on proxies of an
55 individual's fitness, using traits such as biomass, survival, and flower or fruit number (Wadgymar
56 et al., 2024). These proxies may not capture the full effects of elevated temperatures on
57 reproduction. Although some recent plant evolutionary ecology studies have recognized heat
58 impacts on plant reproductive development (Heiling & Koski, 2024; Tushabe et al., 2025),
59 important complementary insights from the crop literature remain underappreciated.

60 Here, we highlight the effects of heat on pollen and seed development and the reproductive
61 consequences of whole plant heat response mechanisms. Our goal is to inspire scientists to
62 incorporate the susceptibility of plant reproduction to heat into future ecological, evolutionary
63 and conservation research. Developing effective strategies to mitigate climate change will
64 require clarifying the underlying mechanisms of extinction due to warmer temperatures.

65 Moreover, future studies of genetic variation in reproductive heat tolerance within natural plant
66 populations are likely to inform crop science by revealing new mechanisms that enhance
67 reproductive resilience to elevated temperatures (Yeaman, 2025).

68 **Plant reproductive development is disrupted by exposure to heat**

69 Sexual reproduction is a complex process that can fail at multiple stages under heat stress
70 (Zinn et al., 2010). Extensive research on food crops and model species has begun to reveal
71 the mechanisms by which heat disrupts reproductive processes (Fig. 1). These research efforts
72 have led to the identification of heat-tolerant crop varieties (Chaudhary et al., 2020) and gene
73 families involved in heat-stress responses (Kan et al., 2023; Tiwari et al., 2022). However, crop-
74 centered research focusing on yield may be missing other indicators of success important to
75 natural systems. Additionally, crop and model systems are not always representative of natural
76 plant populations, particularly for perennials and rare species (Kooyers et al., 2025). Indeed,
77 crop scientists have begun looking to natural systems as an avenue to increase reproductive
78 resilience to heat stress (Phillips et al., 2025). Below we describe some of the key mechanisms
79 of reproductive development identified through crop research.

80

81 Pollen development is widely regarded as the most heat-sensitive stage of reproduction (Zinn et
82 al., 2010). Although the exact reasons for this sensitivity are not fully understood, several key
83 patterns are found across plant species. For example, nutritive tapetal tissue within the anther
84 breaks down rapidly when exposed to heat during microsporogenesis, leading to pollen

85 inviability (Chaturvedi et al., 2021). Additionally, heat can interfere with meiosis and proper
86 chromosomal segregation (Bomblies et al., 2015; De Jaeger-Braet & Schnittger, 2024; Khaitova
87 et al., 2024; Lohani et al., 2025), leading to a reduction in viable microspores. These failures are
88 rarely visible in common ecological fitness metrics like plant size and flower number, but they
89 have profound effects on plant fitness.

90

91 Ovule development also suffers from heat stress (Jagadish, 2020; Sage et al., 2015). However,
92 fewer studies have explored the effects of heat on the pistil (Resentini et al., 2023; Wang et al.,
93 2021). As such, our understanding of heat-induced ovule dysfunction remains limited and is
94 mostly derived from a small number of studies on crop plants (Wang et al., 2021). These studies
95 found that heat exposure can cause abnormal embryo sac development (Shi et al., 2022),
96 reduced ovule viability (Djanaguiraman et al., 2018) and increased sterility through excessive
97 callose deposition in the ovary (Zhang et al., 2018). Such dysfunction may be masked by
98 apparently normal pistil structures, meaning female reproductive failure may go undetected in
99 common ecological assessments of fitness.

100

101 Although most people focus on pollen, fertilization and embryogenesis are also sensitive to heat
102 (Sankaranarayanan et al., 2020). Heat exposure can accelerate embryo development, leading
103 to a mismatch between seed coat and endosperm production and, ultimately, seed abortion
104 (Máková et al., 2022). Crucially, seed development can remain impaired even under favorable
105 conditions if plants experienced elevated temperatures during earlier reproductive stages (Cope
106 et al., 2023; Kooyers, Genung, et al., 2025; Resentini et al., 2023; Tushabe et al., 2023).

107

108 Despite these reproductive sensitivities, the consequences of inviable pollen, dysfunctional
109 ovules, or aborted seeds often go undetected when fitness is assessed using metrics such as
110 flowering time, flowering duration, flower number (Gaudinier & Blackman, 2020) or fecundity

111 measures such as fruit number (Buckley et al., 2021; Tushabe et al., 2025). To better
112 understand how climate change shapes plant performance and evolutionary trajectories,
113 ecological and evolutionary studies should explicitly account for the effects of elevated
114 temperature on pollen, ovule, and seed development.

115 **Whole plant mechanisms affecting reproduction**

116 While heat can directly disrupt gametophyte and seed development (Fig. 1), these processes
117 are also vulnerable to physiological shifts that occur in other parts of the plant in response to
118 elevated temperatures. For example, leaf exposure to elevated temperatures can reduce
119 sucrose and other important metabolites supplied to developing reproductive structures,
120 resulting in the failure of pollen development (Santiago et al., 2021), or an imbalance in
121 hormone signaling molecules can prevent successful fertilization (Ali & Muday, 2024;
122 Sankaranarayanan et al., 2020). Ecological and evolutionary studies have, for the most part,
123 overlooked this whole-plant perspective, but it is critical for understanding how heat affects
124 reproduction. In this section, we briefly highlight some of the whole-plant mechanisms involved
125 in heat stress and their downstream effects on reproductive development (Fig 1).

126

127 Heat stress can affect whole plant physiology through oxidative stress and hormonal changes.
128 Heat induces both systemic oxidative stress and localized reactive oxygen species (ROS)
129 accumulation in rapidly developing sink tissues, including floral organs. While moderate
130 increases in ROS throughout the plant can promote stress tolerance (Huang et al., 2019; Mittler
131 et al., 2022), excessive ROS accumulation in the flower causes early tapetum degradation in
132 the anther (Santiago et al. 2021), reduces pollen production and viability (Lohani et al., 2025),
133 suppresses pollen tube growth, and reduces fertilization efficiency (Ali & Muday, 2024; Wang et
134 al., 2021). Hormonal disruption further contributes to reproductive failure. Auxin is essential for
135 anther and pollen development and elevated temperatures reduce auxin (Ozga et al., 2017),

136 leading to reduced pollen viability and sterility even under mild heat stress (Chaturvedi et al.,
137 2021; Jing et al., 2023). Mild heat stress can also induce ethylene production in leaves, which
138 interacts with auxin and ROS pathways (Huang et al., 2023) and affects reproductive
139 development by promoting premature fruit senescence or delaying ripening (Savada et al.,
140 2017).

141
142 Beyond these molecular and hormonal effects, heat stress impacts broader physiological
143 processes including carbon assimilation and source-sink dynamics. Photosynthesis is sensitive
144 to elevated temperatures, but stomatal regulation can prevent reductions in carbon assimilation
145 and increases in photorespiration due to decreased Rubisco activity, maintaining
146 photosynthesis (Dusenge et al., 2019; Kan et al., 2023). However, source-sink dynamics are
147 often disrupted at lower temperature thresholds than photosynthesis (Soltani et al., 2019). The
148 allocation of non-structural carbon into sugars and starch is disrupted at lower temperature
149 thresholds than those required to impair photosynthesis, leading to a net carbon deficit despite
150 ongoing photosynthesis (Du et al., 2020; Fatichi et al., 2014). Floral structures act as strong
151 resource sinks (Santiago et al., 2021; Shen et al., 2023) and when source-sink dynamics are
152 perturbed during reproductive development, plants can experience pollen sterility, seed abortion
153 (Liu et al., 2021), and reduced seed production (Miret et al., 2024). Heat exposure has also
154 been shown to reduce seed size, weight, number and overall seed quality due to reallocation of
155 carbon away from maturing fruits during seed filling (Niu et al., 2021; Resentini et al., 2023;
156 Wang et al., 2021).

157 Disruption of signaling pathways and source-sink mechanisms by elevated temperatures has
158 significant implications for reproduction, yet these dynamics are often overlooked in ecological
159 and evolutionary studies. For example, meta-analyses have found correlations between
160 biomass, warming, and fruit production (e.g. Dobson & Zarnetske, 2025; Younginger et al.,

161 2017), inadvertently encouraging researchers to treat growth traits as useful proxies for fruit
162 production. However, crop studies show that even short-term heat exposure drastically reduces
163 pollen viability and seed set, despite plants producing more flowers or fruits in these conditions
164 (Lohani et al., 2022, 2025). Further, ecological studies that only evaluate the tolerance of
165 already formed pollen grains to heat overlook the role that whole-plant processes play in the
166 success or failure of pollen formation in the first place. As a consequence, ignoring the role of
167 whole-plant responses in reproductive development can lead to overestimates of plant fitness
168 and misleading predictions about persistence under climate change.

169 **Integrating reproductive development into ecological and evolutionary research**

170 For decades, plant ecologists have investigated the effects of elevated temperatures on plant
171 populations, often focusing on shifts in phenology (CaraDonna et al., 2014; Inouye, 2020;
172 Parmesan, 2006; Price & Waser, 1998), altered patterns of selection (Anderson et al., 2025;
173 Colautti & Barrett, 2013; Etterson, 2004; Franks et al., 2018; Santangelo et al., 2022; Vtipil &
174 Sheth, 2020) and phenotypic plasticity (Arnold et al., 2022; Atkin et al., 2006; Chevin et al.,
175 2010; Nicotra et al., 2010). These studies have documented global trends such as shifting
176 flowering times (Parmesan, 2006), altered life-history strategies (Boyko et al., 2023), conferred
177 stress resistance through transgenerational plasticity (Donelson et al., 2018), and the potential
178 for adaptive evolution (Anderson et al., 2025; Kooyers et al., 2025). The detrimental effects of
179 elevated temperatures on pollen development and seed filling in natural populations are
180 generally unknown, yet are likely to play a major role in how those systems will respond to
181 future climates. Now is the time for ecological and evolutionary studies to incorporate our
182 understanding of the most sensitive life-history stages into future research.

183 First and foremost, it is crucial for ecologists and evolutionary biologists to recognize the critical
184 vulnerability of plant reproduction to elevated temperatures. Many studies have focused on the

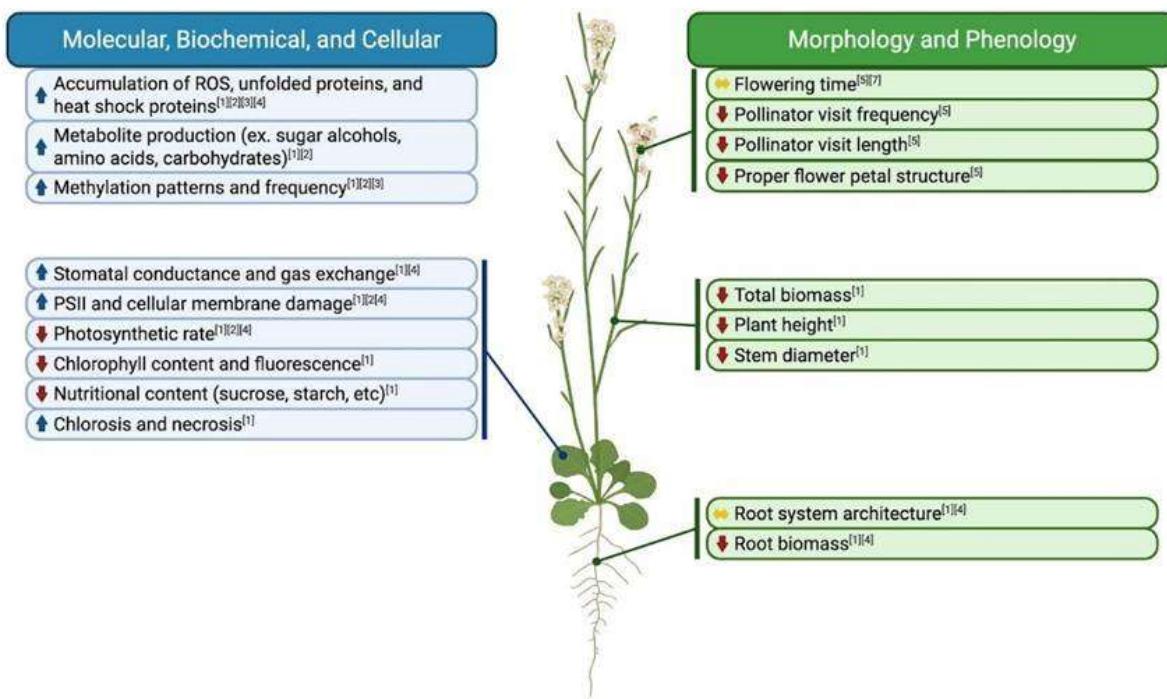
185 effects of heat on photosynthesis, while reproduction will be negatively impacted at lower
186 temperatures than photosynthesis (Liu et al., 2021; Soltani et al., 2019). Evaluation of the
187 temperature ranges where populations can and cannot successfully reproduce will be
188 necessary to predict extinction risk with future climate change. One crucial aspect of this
189 research will be the intersection of phenology with reproductive sensitivity. Many natural
190 populations of plants already flower during cooler parts of the season to avoid the negative
191 impacts of high temperatures on reproduction (Luo et al., 2025). Future shifts in phenology
192 through plasticity and evolution are expected and these shifts may protect populations from
193 increasing temperatures. However, changes in phenology may not be sufficient to avoid heat
194 waves and hotter parts of the year. For those populations, selection for higher reproductive
195 resilience will occur, with local reproductive failure and extinction occurring for populations
196 without sufficient standing genetic variation for resilience.

197 While there is now broad recognition of the deleterious impacts of elevated temperatures on
198 reproduction by crop scientists, the mechanisms by which this failure occurs are still not fully
199 understood. Natural populations present an opportunity to identify the underlying mechanisms,
200 an important goal for both conservation and improvement of crop resilience. In particular,
201 natural systems with short generation times and well-established genetic resources represent a
202 critical opportunity to identify the ultimate causes of reproductive failure in elevated
203 temperatures, along with identifying the genes harboring standing genetic variation for resilience
204 (Kooyers et al., 2025). Studies in those systems could clarify the relative contributions of
205 source-sink relationships, meiosis, tapetal development, and other factors on pollen
206 vulnerability. Further, studies in those systems may uncover why nighttime temperatures are so
207 critical for successful pollen formation and seed filling. Elevated nighttime temperatures have
208 reduced yield in several major crops, including soybean, rice, maize, and wheat (Giménez et al.,
209 2025; Thenveetil et al., 2025) but the consequences of shrinking diurnal temperature ranges

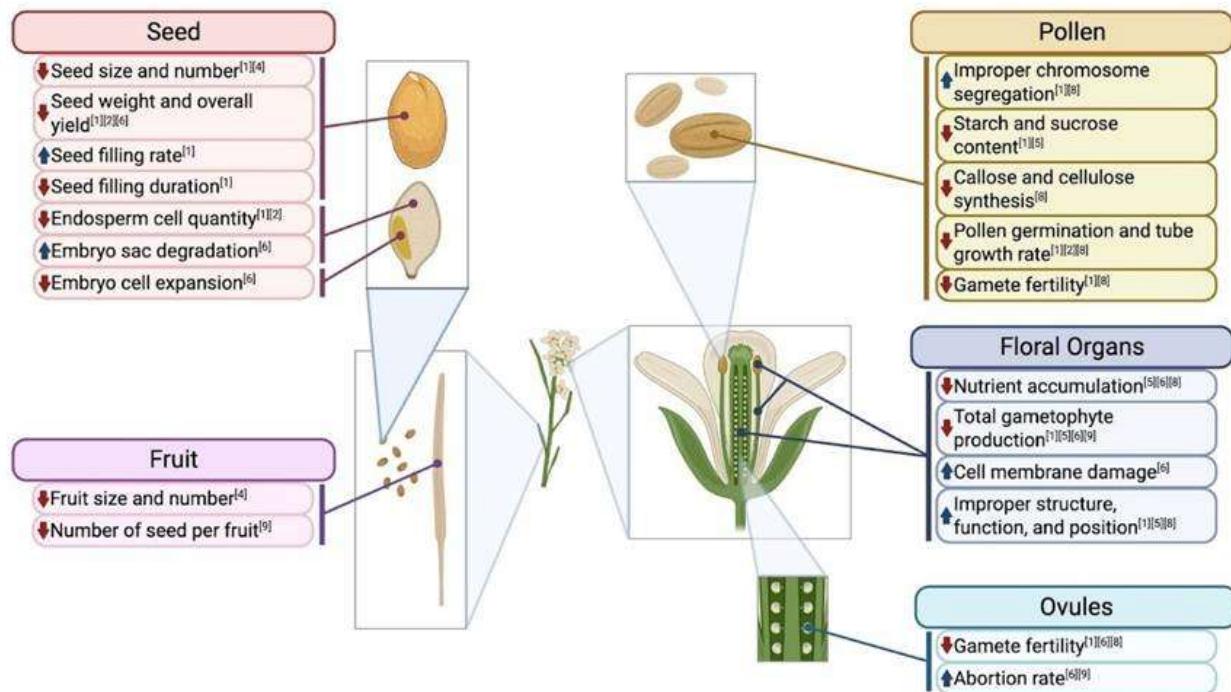
210 remain poorly understood. Studies incorporating nighttime warming and its effects on
211 reproductive development will provide valuable insight for ecological and evolutionary research
212 while also informing crop improvement efforts.

213 Going forward, studies of warming climate impacts on natural populations should aim to
214 incorporate quantification of the impacts of temperature on reproduction. While fully dissecting
215 the underlying physiological mechanisms may be impractical for the many species in natural
216 plant communities, simpler measurements can be highly informative in documenting the impacts
217 of heat stress on reproduction. Quantification of both pollen viability and seed filling are
218 relatively straightforward and inexpensive measurements that can be made through staining
219 pollen and weighing fruits. These measurements, conducted under controlled temperature
220 manipulations in the field or greenhouse, can then be used to inform our predictions of how
221 natural populations will be impacted by warming. For systems amenable to experimental
222 manipulation, evolutionary biologists should aim to quantify the genetic variation in reproductive
223 tolerance to elevated temperatures, identify the underlying alleles, and model how natural
224 populations will respond evolutionarily through gene flow, genetic drift, and natural selection.
225 Incorporating these approaches will provide a more complete understanding of the impacts of
226 heat on plant populations and inform strategies to preserve biodiversity.

227 **Acknowledgements**


228 Thanks to the Lowry and Josephs labs for constructive feedback on this manuscript. This work
229 was supported by funding from the MSU Plant Resilience Institute and a National Institutes of
230 Health grant (R35 GM142829) to E.B.J.

231 **Table 1**


232 Effects of elevated temperature and heat stress on plants. This table contains a non-exhaustive
233 list of recent reviews related to the mechanisms and effects of elevated temperature and heat
234 stress on various stages related to plant reproductive development in crop species.

Structure	References
Whole plant	Datta et al., 2024; Haider et al., 2021; Jagadish et al., 2021; Kan et al., 2023; Zhang et al., 2021
Whole flower	Ali & Muday, 2024; Resentini et al., 2023; Sinha et al., 2021; van der Kooi et al., 2019; Walsh et al., 2019, Walters et al., 2022
Pollen	Althiab-Almasaud et al., 2024; Chaturvedi et al., 2021; Liu et al., 2021; Lohani et al., 2025; Mesihovic et al., 2016
Pistil	Y. Wang et al., 2021, Resentini et al., 2023

1A: Whole Plant Heat Response

1B: Reproductive Heat Response

236

237 **Figure 1**

238 Generalized plant responses to heat stress. A. Heat stress can impose a variety of effects on
 239 the whole plant by molecular, cellular or physiological mechanisms. B. Within reproductive
 240 tissues, heat stress is generally detrimental to production of gametes, fertilization, and seed
 241 production. Phenotypic increases are indicated with blue arrow, decreasing with red arrow, or
 242 variable changes with yellow arrow. Superscripts represent references; see references for full
 243 citation. [1] Chaudhary et al., 2020 [2] Kan et al., 2023 [3] Haider et al., 2021 [4] Jagadish et al.,
 244 2021 [5] Walters et al., 2022 [6] Wang et al., 2021 [7] Sinha et al., 2021 [8] Chaturvedi et al.,
 245 2021 [9] Ali & Muday 2024.

246

247 **Literature Cited**

248 Ali, M. F., & Muday, G. K. (2024). Reactive oxygen species are signaling molecules that
249 modulate plant reproduction. *Plant, Cell & Environment*, 47(5), 1592–1605.

250 <https://doi.org/10.1111/pce.14837>

251 Anderson, J. T., DeMarche, M. L., Denney, D. A., Breckheimer, I., Santangelo, J., & Wadgymar,
252 S. M. (2025). Adaptation and gene flow are insufficient to rescue a montane plant under climate
253 change. *Science*, 388(6746), 525–531. <https://doi.org/10.1126/science.adr1010>

254 Arnold, P. A., Wang, S., Catling, A. A., Kruuk, L. E. B., & Nicotra, A. B. (2022). Patterns of
255 phenotypic plasticity along a thermal gradient differ by trait type in an alpine plant. *Functional
256 Ecology*, 36(9), 2412–2428. <https://doi.org/10.1111/1365-2435.14128>

257 Atkin, O. K., Loveys, B. R., Atkinson, L. J., & Pons, T. L. (2006). Phenotypic plasticity and
258 growth temperature: Understanding interspecific variability. *J Exp Bot*, 57(2), 267–281.

259 <https://doi.org/10.1093/jxb/erj029>

260 Bomblies, K., Higgins, J. D., & Yant, L. (2015). Meiosis evolves: Adaptation to external and
261 internal environments. *New Phytologist*, 208(2), 306–323. <https://doi.org/10.1111/nph.13499>

262 Boyko, J. D., Hagen, E. R., Beaulieu, J. M., & Vasconcelos, T. (2023). The evolutionary
263 responses of life-history strategies to climatic variability in flowering plants. *New Phytologist*,
264 240(4), 1587–1600. <https://doi.org/10.1111/nph.18971>

265 Buckley, L. B., Schoville, S. D., & Williams, C. M. (2021). Shifts in the relative fitness
266 contributions of fecundity and survival in variable and changing environments. *Journal of
267 Experimental Biology*, 224(Suppl_1), jeb228031. <https://doi.org/10.1242/jeb.228031>

268 CaraDonna, P. J., Iler, A. M., & Inouye, D. (2014). Shifts in flowering phenology reshape a
269 subalpine plant community. *Proceedings of the National Academy of Sciences*, 111(13), 4916–
270 4921

271 Chaturvedi, P., Wiese, A. J., Ghatak, A., Záveská Drábková, L., Weckwerth, W., & Honys, D.
272 (2021). Heat stress response mechanisms in pollen development. *New Phytologist*, 231(2),
273 571–585. <https://doi.org/10.1111/nph.17380>

274 Chaudhary, S., Devi, P., Bhardwaj, A., Jha, U. C., Sharma, K. D., Prasad, P. V. V., Siddique, K.
275 H. M., Bindumadhava, H., Kumar, S., & Nayyar, H. (2020). Identification and Characterization of
276 Contrasting Genotypes/Cultivars for Developing Heat Tolerance in Agricultural Crops: Current
277 Status and Prospects. *Frontiers in Plant Science*, 11. <https://doi.org/10.3389/fpls.2020.587264>

278 Chevin, L. M., Lande, R., & Mace, G. M. (2010). Adaptation, plasticity, and extinction in a
279 changing environment: Towards a predictive theory. *PLoS Biol*, 8(4), e1000357.
280 <https://doi.org/10.1371/journal.pbio.1000357>

281 Colautti, R. I., & Barrett, S. C. (2013). Rapid adaptation to climate facilitates range expansion of
282 an invasive plant. *Science*, 342(6156), 364–366. <https://doi.org/10.1126/science.1242121>

283 Cope, O. L., Zehr, L. N., Agrawal, A. A., & Wetzel, W. C. (2023). The timing of heat waves has
284 multiyear effects on milkweed and its insect community. *Ecology*, 104(4), e3988.
285 <https://doi.org/10.1002/ecy.3988>

286 De Jaeger-Braet, J., & Schnittger, A. (2024). Heating up meiosis – chromosome recombination
287 and segregation under high temperatures. *Current Opinion in Plant Biology*, 80, 102548.
288 <https://doi.org/10.1016/j.pbi.2024.102548>

289 Djanaguiraman, M., Perumal, R., Jagadish, S. v. k., Ciampitti, I. a., Welti, R., & Prasad, P. v. v.
290 (2018). Sensitivity of sorghum pollen and pistil to high-temperature stress. *Plant, Cell and*
291 *Environment*, 41(5), 1065–1082. <https://doi.org/10.1111/pce.13089>

292 Dobson, K. C., & Zarnetske, P. L. (2025). A global meta-analysis of passive experimental
293 warming effects on plant traits and community properties. *Global Change Biology*, 31(6),
294 e70306. <https://doi.org/10.1111/gcb.70306>

295 Donelson, J. M., Salinas, S., Munday, P. L., & Shama, L. N. S. (2018). Transgenerational
296 plasticity and climate change experiments: Where do we go from here? *Global Change Biology*,
297 24(1), 13–34. <https://doi.org/10.1111/gcb.13903>

298 Du, Y., Lu, R., & Xia, J. (2020). Impacts of global environmental change drivers on non-
299 structural carbohydrates in terrestrial plants. *Functional Ecology*, 34(8), 1525–1536.
300 <https://doi.org/10.1111/1365-2435.13577>

301 Dusenge, M. E., Duarte, A. G., & Way, D. A. (2019). Plant carbon metabolism and climate
302 change: Elevated CO₂ and temperature impacts on photosynthesis, photorespiration and
303 respiration. *New Phytol*, 221(1), 32–49. <https://doi.org/10.1111/nph.15283>

304 Etterson, J. R. (2004). Evolutionary potential of *Chamaecrista fasciculata* in relation to climate
305 change. I. Clinal patterns of selection along an environmental gradient in the great plains.
306 *Evolution*, 58(7), 1446–1458. <https://doi.org/10.1111/j.0014-3820.2004.tb01726.x>

307 Fatichi, S., Leuzinger, S., & Körner, C. (2014). Moving beyond photosynthesis: From carbon
308 source to sink-driven vegetation modeling. *New Phytologist*, 201(4), 1086–1095.

309 Franks, S. J., Hamann, E., & Weis, A. E. (2018). Using the resurrection approach to understand
310 contemporary evolution in changing environments. *Evol Appl*, 11(1), 17–28.

311 <https://doi.org/10.1111/eva.12528>

312 Gaudinier, A., & Blackman, B. K. (2020). Evolutionary processes from the perspective of
313 flowering time diversity. *New Phytologist*, 225(5), 1883–1898. <https://doi.org/10.1111/nph.16205>

314 Giménez, V. D., Serrago, R. A., Kettler, B., García, G. A., Impa, S. M., Krishna Jagadish, S. V.,
315 Prasad, P. V. V., Miralles, D. J., & Ciampitti, I. A. (2025). Nighttime warming affects yields of
316 major grain crops: A global meta-analysis. *Field Crops Research*, 334, 110142.

317 <https://doi.org/10.1016/j.fcr.2025.110142>

318 Haider, S., Iqbal, J., Naseer, S., Yaseen, T., Shaukat, M., Bibi, H., Ahmad, Y., Daud, H., Abbasi,
319 N. L., & Mahmood, T. (2021). Molecular mechanisms of plant tolerance to heat stress: Current
320 landscape and future perspectives. *Plant Cell Reports*, 40(12), 2247–2271.

321 <https://doi.org/10.1007/s00299-021-02696-3>

322 Heiling, J. M., & Koski, M. H. (2024). Divergent gametic thermal performance and floral warming
323 across an elevation gradient. *Evolution*, 78(4), 665–678. <https://doi.org/10.1093/evolut/qpad237>

324 Huang, H., Ullah, F., Zhou, D.-X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS regulation of
325 plant development and stress responses. *Frontiers in Plant Science*, 10–2019.

326 <https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2019.00800>

327 Huang, J., Zhao, X., Bürger, M., Chory, J., & Wang, X. (2023). The role of ethylene in plant
328 temperature stress response. *Trends in Plant Science*, 28(7), 808–824.

329 <https://doi.org/10.1016/j.tplants.2023.03.001>

330 Inouye, D. W. (2020). Effects of climate change on alpine plants and their pollinators. *Ann N Y*
331 *Acad Sci*, 1469(1), 26–37. <https://doi.org/10.1111/nyas.14104>

332 Jagadish, S. V. K. (2020). Heat stress during flowering in cereals – effects and adaptation
333 strategies. *New Phytologist*, 226(6), 1567–1572. <https://doi.org/10.1111/nph.16429>

334 Jagadish, S. V. K., Way, D. A., & Sharkey, T. D. (2021). Plant heat stress: Concepts directing
335 future research. *Plant, Cell & Environment*, 44(7), 1992–2005.
336 <https://doi.org/10.1111/pce.14050>

337 Jing, H., Wilkinson, E. G., Sageman-Furnas, K., & Strader, L. C. (2023). Auxin and abiotic
338 stress responses. *Journal of Experimental Botany*, 74(22), 7000–7014.
339 <https://doi.org/10.1093/jxb/erad325>

340 Kan, Y., Mu, X.-R., Gao, J., Lin, H.-X., & Lin, Y. (2023). The molecular basis of heat stress
341 responses in plants. *Molecular Plant*, 16(10), 1612–1634.
342 <https://doi.org/10.1016/j.molp.2023.09.013>

343 Khaitova, L. C., Mikulkova, P., Pecinkova, J., Kalidass, M., Heckmann, S., Lermontova, I., &
344 Riha, K. (2024, April 17). *Heat stress impairs centromere structure and segregation of meiotic*
345 *chromosomes in Arabidopsis*. eLife; eLife Sciences Publications Limited.
346 <https://doi.org/10.7554/eLife.90253>

347 Kooyers, N. J., Anderson, J. T., Angert, A. L., Avolio, M. L., Campbell, D. R., Exposito-Alonso,
348 M., Juenger, T. E., Moeller, D. A., Napier, J. D., & Sheth, S. N. (2025). Responses to climate
349 change – insights and limitations from herbaceous plant model species. *New Phytologist*,
350 *n/a(n/a)*. <https://doi.org/10.1111/nph.70468>

351 Kooyers, N. J., Genung, M. A., Innes, S. G., Turcu, A., Hinrichs, D. M., LeBlanc, B. J., &
352 Patterson, C. M. (2025). Heat waves decrease fitness and alter maternal provisioning in natural
353 populations of *mimulus guttatus*. *American Journal of Botany*, 112(8), e70087.
354 <https://doi.org/10.1002/ajb2.70087>

355 Liu, S., Li, Z., Wu, S., & Wan, X. (2021). The essential roles of sugar metabolism for pollen
356 development and male fertility in plants. *The Crop Journal*, 9(6), 1223–1236.
357 <https://doi.org/10.1016/j.cj.2021.08.003>

358 Lohani, N., Singh, M. B., & Bhalla, P. L. (2022). Short-term heat stress during flowering results
359 in a decline in canola seed productivity. *Journal of Agronomy and Crop Science*, 208(4), 486–
360 496. <https://doi.org/10.1111/jac.12534>

361 Lohani, N., Singh, M. B., & Bhalla, P. L. (2025). Deciphering the vulnerability of pollen to heat
362 stress for securing crop yields in a warming climate. *Plant, Cell & Environment*, 48(4), 2549–
363 2580. <https://doi.org/10.1111/pce.15315>

364 Luo, X., Liu, X., Zheng, N., Song, C., & He, Y. (2025). Molecular mechanisms of temperature-
365 mediated flowering regulation: From *Arabidopsis* to short-day crops. *Plant, Cell & Environment*,
366 48(9), 7020–7037. <https://doi.org/10.1111/pce.15678>

367 Mácová, K., Prabhullachandran, U., Štefková, M., Spyroglou, I., Pěnčík, A., Endlová, L., Novák,
368 O., & Robert, H. S. (2022). Long-term high-temperature stress impacts on embryo and seed
369 development in *brassica napus*. *Frontiers in Plant Science*, 13.
370 <https://doi.org/10.3389/fpls.2022.844292>

371 Miret, J. A., Griffiths, C. A., & Paul, M. J. (2024). Sucrose homeostasis: Mechanisms and
372 opportunity in crop yield improvement. *Journal of Plant Physiology*, 294, 154188.
373 <https://doi.org/10.1016/j.jplph.2024.154188>

374 Mittler, R., Zandalinas, S. I., Fichman, Y., & Breusegem, F. (2022). Reactive oxygen species
375 signalling in plant stress responses. *Nature Reviews Molecular Cell Biology*, 23(10), 663–679.

376 <https://doi.org/10.1038/s41580-022-00499-2>

377 Nicolao, R., Bashir, I., Castro, C. M., & Heiden, G. (2025). Evaluation of diploid wild potatoes
378 pollen traits under heat stress. *Potato Research*. <https://doi.org/10.1007/s11540-025-09878-6>

379 Nicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E. J., Mathesius, U., Poot,
380 P., Purugganan, M., Richards, C. L., Valladares, F., & van Kleunen, M. (2010). Plant phenotypic
381 plasticity in a changing climate. *Trends in Plant Science*, 15(12), 684–692.

382 Nievola, C. C., Carvalho, C. P., Carvalho, V., & Rodrigues, E. (2017). Rapid responses of plants
383 to temperature changes. *Temperature*, 4(4), 371–405.

384 <https://doi.org/10.1080/23328940.2017.1377812>

385 Niu, S., Du, X., Wei, D., Liu, S., Tang, Q., Bian, D., Zhang, Y., Cui, Y., & Gao, Z. (2021). Heat
386 stress after pollination reduces kernel number in maize by insufficient assimilates. *Frontiers in
387 Genetics, Volume 12-2021*.

388 <https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2021.728166>

389 Ozga, J. A., Kaur, H., Savada, R. P., & Reinecke, D. M. (2017). Hormonal regulation of
390 reproductive growth under normal and heat-stress conditions in legume and other model crop
391 species. *Journal of Experimental Botany*, 68(8), 1885–1894. <https://doi.org/10.1093/jxb/erw464>

392 Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. *Annual
393 Review of Ecology, Evolution, and Systematics*, 37(1), 637–669.

394 <https://doi.org/10.1146/annurev.ecolsys.37.091305.110100>

395 Parmesan, C., & Hanley, M. E. (2015). Plants and climate change: Complexities and surprises.

396 *Ann Bot*, 116(6), 849–864. <https://doi.org/10.1093/aob/mcv169>

397 Phillips, A., Schultz, C. J., & Burton, R. A. (2025). New crops on the block: Effective strategies

398 to broaden our food, fibre, and fuel repertoire in the face of increasingly volatile agricultural

399 systems. *Journal of Experimental Botany*, 76(8), 2043–2063. <https://doi.org/10.1093/jxb/eraf023>

400 Price, M. V., & Waser, N. M. (1998). Effects of experimental warming on plant reproductive

401 phenology in a subalpine meadow. *Ecology*, 79(4), 1261–1271. [https://doi.org/10.1890/0012-9658\(1998\)079%255B1261:EOEWOP%255D2.0.CO;2](https://doi.org/10.1890/0012-9658(1998)079%255B1261:EOEWOP%255D2.0.CO;2)

403 Resentini, F., Orozco-Arroyo, G., Cucinotta, M., & Mendes, M. A. (2023). The impact of heat

404 stress in plant reproduction. *Frontiers in Plant Science*, 14, 1271644.

405 <https://doi.org/10.3389/fpls.2023.1271644>

406 Sage, T. L., Bagha, S., Lundsgaard-Nielsen, V., Branch, H. A., Sultmanis, S., & Sage, R. F.

407 (2015). The effect of high temperature stress on male and female reproduction in plants. *Field*

408 *Crops Research*, 182, 30–42. <https://doi.org/10.1016/j.fcr.2015.06.011>

409 Sankaranarayanan, S., Ju, Y., & Kessler, S. A. (2020). Reactive oxygen species as mediators of

410 gametophyte development and double fertilization in flowering plants. *Frontiers in Plant*

411 *Science*, 11. <https://doi.org/10.3389/fpls.2020.01199>

412 Santangelo, J. S., Ness, R. W., Cohan, B., Fitzpatrick, C. R., Innes, S. G., Koch, S., Miles, L. S.,

413 Munim, S., Peres-Neto, P. R., Prashad, C., Tong, A. T., Aguirre, W. E., Akinwole, P. O., Alberti,

414 M., Álvarez, J., Anderson, J. T., Anderson, J. J., Ando, Y., Andrew, N. R., ... Johnson, M. T. J.

415 (2022). Global urban environmental change drives adaptation in white clover. *Science*,

416 375(6586), 1275–1281. <https://doi.org/10.1126/science.abk0989>

417 Santiago, J. P., Soltani, A., Bresson, M. M., Preiser, A. L., Lowry, D. B., & Sharkey, T. D.
418 (2021). Contrasting anther glucose-6-phosphate dehydrogenase activities between two bean
419 varieties suggest an important role in reproductive heat tolerance. *Plant, Cell & Environment*,
420 44(7), 2185–2199. <https://doi.org/10.1111/pce.14057>

421 Savada, R. P., Ozga, J. A., Jayasinghe, C. P. A., Waduthanthri, K. D., & Reinecke, D. M.
422 (2017). Heat stress differentially modifies ethylene biosynthesis and signaling in pea floral and
423 fruit tissues. *Plant Molecular Biology*, 95(3), 313–331. <https://doi.org/10.1007/s11103-017-0653-1>

425 Shen, S., Ma, S., Wu, L., Zhou, S.-L., & Ruan, Y.-L. (2023). Winners take all: Competition for
426 carbon resource determines grain fate. *Trends in Plant Science*, 28(8), 893–901.
427 <https://doi.org/10.1016/j.tplants.2023.03.015>

428 Shi, W., Yang, J., Kumar, R., Zhang, X., Impa, S. M., Xiao, G., & Jagadish, S. V. K. (2022). Heat
429 stress during gametogenesis irreversibly damages female reproductive organ in rice. *Rice*, 15,
430 32. <https://doi.org/10.1186/s12284-022-00578-0>

431 Sinha, R., Fritschi, F. B., Zandalinas, S. I., & Mittler, R. (2021). The impact of stress combination
432 on reproductive processes in crops. *Plant Science*, 311, 111007.
433 <https://doi.org/10.1016/j.plantsci.2021.111007>

434 Soltani, A., Weraduwage, S. M., Sharkey, T. D., & Lowry, D. B. (2019). Elevated temperatures
435 cause loss of seed set in common bean (*Phaseolus vulgaris* L.) potentially through the
436 disruption of source-sink relationships. *BMC Genomics*, 20(1), 312.
437 <https://doi.org/10.1186/s12864-019-5669-2>

438 Thenveetil, N., Bheemanahalli, R., Kharel, T. P., Reddy, K. N., Gao, W., & Reddy, K. R. (2025).
439 Drought and high nighttime temperature impact on soybean seed yield and quality under

440 ambient and elevated CO₂ environments. *Scientific Reports*, 15(1), 36679.

441 <https://doi.org/10.1038/s41598-025-20392-0>

442 Tiwari, M., Kumar, R., Min, D., & Jagadish, S. V. K. (2022). Genetic and molecular mechanisms

443 underlying root architecture and function under heat stress—A hidden story. *Plant, Cell &*

444 *Environment*, 45(3), 771–788. <https://doi.org/10.1111/pce.14266>

445 Tushabe, D., Altmann, F., Koehler, E., Woods, S., Kahl, S., & Rosbakh, S. (2025). Adaptation

446 and acclimation of gametophytic traits to heat stress in a widely distributed wild plant along a

447 steep climatic gradient. *Ecology and Evolution*, 15(4), 71199.

448 <https://doi.org/10.1002/ece3.71199>

449 Tushabe, D., Altmann, F., Koehler, E., Woods, S., & Rosbakh, S. (2023). Negative effects of

450 high-temperature stress on gametophyte performance and their consequences for seed

451 reproduction in wild plants. *Environmental and Experimental Botany*, 216, 105532.

452 <https://doi.org/10.1016/j.envexpbot.2023.105532>

453 Tushabe, D., & Rosbakh, S. (2025). Patterns and drivers of pollen temperature tolerance. *Plant,*

454 *Cell and Environment*, 48(2), 1366–1379. <https://doi.org/10.1111/pce.15207>

455 Vtipil, E. E., & Sheth, S. N. (2020). A resurrection study reveals limited evolution of phenology in

456 response to recent climate change across the geographic range of the scarlet monkeyflower.

457 *Ecology and Evolution*, 10(24), 14165–14177. <https://doi.org/10.1002/ece3.7011>

458 Wadgymar, S. M., Sheth, S., Josephs, E., DeMarche, M., & Anderson, J. (2024). Defining

459 fitness in evolutionary ecology. *International Journal of Plant Sciences*, 185(3), 218–227.

460 <https://doi.org/10.1086/729360>

461 Walters, J., Zavalnitskaya, J., Isaacs, R., & Szendrei, Z. (2022). Heat of the moment: Extreme
462 heat poses a risk to bee–plant interactions and crop yields. *Current Opinion in Insect Science*,
463 52, 100927. <https://doi.org/10.1016/j.cois.2022.100927>

464 Wang, Y., Impa, S. M., Sunkar, R., & Jagadish, S. V. K. (2021). The neglected other half—Role
465 of the pistil in plant heat stress responses. *Plant, Cell & Environment*, 44(7), 2200–2210.
466 <https://doi.org/10.1111/pce.14067>

467 Yeaman, S. (2025). Can wild plant adaptations help crops tolerate heat? *Science*, 388(6752),
468 1148–1150. <https://doi.org/10.1126/science.adw3673>

469 Younginger, B. S., Sirová, D., Cruzan, M. B., & Ballhorn, D. J. (2017). Is biomass a reliable
470 estimate of plant fitness? *Applications in Plant Sciences*, 5(2), 1600094.
471 <https://doi.org/10.3732/apps.1600094>

472 Zhang, L., Ferguson, L., & Whiting, M. D. (2018). Temperature effects on pistil viability and fruit
473 set in sweet cherry. *Scientia Horticulturae*, 241, 8–17.
474 <https://doi.org/10.1016/j.scienta.2018.06.039>

475 Zinn, K. E., Tunc-Ozdemir, M., & Harper, J. F. (2010). Temperature stress and plant sexual
476 reproduction: Uncovering the weakest links. *Journal of Experimental Botany*, 61(7), 1959–1968.
477 <https://doi.org/10.1093/jxb/erq053>