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Abstract

Data shortages fuel controversy about an ongoing insect biodiversity crisis. Insects are immensely
cameradiverse and functionally critical for ecosystems, yet data on their trends remain patchy and
biased. Sensors, ranging from camera-equipped light traps to weather radar stations, are set to
transform data collection in entomology. Meanwhile, Al models that extract biological information
from sensors are improving at a startling rate. Realising the potential of automated monitoring
means progressing from proof-of-concept studies to scalable insect sensing systems. However,
stakeholders face severe operational challenges when adopting a growing suite of sensors,
models, and protocols for insect surveillance. Deployment of devices is not well co-ordinated, while
the risks of relying on Al are overlooked or understated. To achieve monitoring goals, common
pitfalls related to sensors and Al need to be exposed and avoided. Here, we trace a seven-step
path towards an effective transnational rollout of insect sensing systems. Step (1) reviews
strengths, weaknesses and synergies across visual, acoustic, radar and photonic sensors; (2)
confronts species determination—a key challenge for sensors and Al—suggesting how to improve
identification and make use of uncertain data; (3) promotes creating and sharing standardised,
labelled data, offering ecological insights and opportunities to train and evaluate Al; (4) ensures Al
is used to complement other resources, both human and digital, given it is not always the best tool
for the job; (5) highlights how and why Al models can fail, calling for shrewd approaches to model
training and routine evaluations; (6) aims to break barriers to wider uptake of technologies through
knowledge sharing, affordable design principles, and equitable computing infrastructures. Finally,
(7) emphasizes that any revolution in insect monitoring must be grounded in good sampling
design, with established monitoring schemes at its core. We set a trajectory for coordinated
development of insect sensing systems, focussing not only on technical performance, but on
integration with human expertise, case-based evaluation and harmonisation with historical
long-term datasets. We address fundamental challenges of sensors and Al for biodiversity
monitoring, producing recommendations that apply to all branches of the tree of life.

Keywords: Arthropods, artificial intelligence, computer vision, image classification, invertebrates,
machine learning, object detection, pollinators, remote sensing, signal processing
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Introduction

Insects form the bulk of macroscopic biodiversity on earth (Stork, 2018). They are extraordinarily
diverse, but also functionally indispensable, with roles as pollinators, decomposers, predators,
pests, and pest-control agents (Noriega et al., 2018). As such, recent reports of insect decline
have raised both economic and conservation concerns (Hallmann et al., 2017; Wagner, 2020).
However, the evidence is mixed: a global meta-analysis suggests decreases in terrestrial insects
and increases in freshwater insects (van Klink et al., 2020). Furthermore, the magnitude and
generality of trends across biomes, regions, and taxa is up for debate (Neff et al., 2022). One thing
is clear, though: available data only glimpse the complexity of insect life (Thomas, Hefin Jones &
Hartley, 2019), and are heavily biased towards Europe, North America, and certain taxa (e.g.
butterflies; Sanchez-Bayo & Wyckhuys, 2019). Meanwhile, international policy instruments such as
the Convention on Biological Diversity (United Nations, 1992), UN sustainable development goals
(United Nations, 2015), and the EU nature restoration regulation (Directorate-General for
Environment, 2022) demand comprehensive monitoring of the diversity and abundance of insects,
as well as underlying drivers of change.

Scaling of data collection needs to be cost-effective, as there are limited resources available for
insect monitoring (Geijzendorffer et al., 2016). Traditional monitoring methods, including malaise
traps, pan traps, pitfall traps, light traps, and visual surveys (Southwood, 1966; McCravy, 2018;
Montgomery et al., 2021), have built baseline datasets and fundamental understanding of insect
status and trends (Conrad et al., 2006; Brooks et al., 2012; Hallmann et al., 2017). However,
traditional monitoring schemes are difficult to expand, especially in tropical regions; manual
identification is skilled and laborious work, and local expertise is often a limiting factor (Sanchez
Herrera et al., 2024). Furthermore, most traditional methods, such as visual surveys and traps,
suffer from detectability and observer biases (e.g. Brereton et al., 2011), while others involve
excessive lethal sampling (Lévei & Ferrante, 2024). Methodological continuity is a priority for any
long-term monitoring effort (van Klink, 2024). Given their limitations in terms of human workload,
scalability, and lethality, traditional methods alone will not be sufficient to address major challenges
in entomology (Didham et al., 2020).

Novel technologies offer opportunities for more scalable, standardised and non-lethal insect
monitoring (van Klink et al., 2022; Chua et al., 2023; Lovei & Ferrante, 2024; Dyer et al., 2024),
and promise datasets that will transform our ecological understanding (Hartig et al., 2024; Gillespie
et al., 2025). Molecular methods allow identification of insects to high taxonomic resolution without
expert identification (Chua et al., 2023). DNA metabarcoding, in particular, involves extracting,
amplifying and sequencing DNA from a sample, followed by taxonomic assignment of sequences
according to reference libraries (Chua et al., 2023). This approach has successfully identified
insects in bulk samples of specimens (Mata et al., 2021; Buchner et al., 2025), as well as samples
of water, soil, air, gut contents, or flowers (Bohmann et al., 2014; Thomsen & Sigsgaard, 2019;
Chua et al., 2023). While molecular methods provide a powerful addition to the insect monitoring
toolbox, they also face a number of challenges, such as incomplete reference libraries, taxonomic
biases, limited capability to infer abundance, high infrastructure costs, and uncertainty about the
spatial and temporal origin of detected DNA (Alberdi et al., 2018; Deagle et al., 2019; Chua et al.,
2023). Furthermore, because molecular techniques require collecting physical samples, they are
limited by the frequency in which data can be collected and analysed; they typically provide
discrete snapshots in time rather than continuous observations.

Meanwhile, sensor-based methods show great promise to monitor insects continuously through
time. Cameras, microphones, radar, and lidar can offer real-time, non-invasive data that capture



the presence, biomass, movements and behaviours of insects (van Klink et al., 2024). Resulting
high-frequency time-series offer novel insights into biotic interactions, such as plant-insect
interactions (Naqvi et al., 2022; Mehrotra et al., 2024; Serra-Marin et al., 2025). Furthermore,
sensors can be affordable and operate autonomously, offering a very low cost per insect
observation (Brydegaard et al., 2024). The volume of data produced by sensors is challenging to
work with (Hgye et al., 2021), but emerging methods for automation, especially artificial
intelligence (Al; Box 1), are relieving bottlenecks in data processing. Clearly, insect sensing
systems could drive a step-change in the spatial and temporal scale of ecological monitoring
worldwide (Besson et al., 2022; Bauer, Tielens & Haest, 2024).

Box 1. What is Al, in the context of insect monitoring?

Artificial intelligence (Al) broadly refers to computational systems that reproduce human
skills, such as thinking, acting or interpreting data (Russell & Norvig, 2010). In the context
of ecological monitoring, Al usually refers to machine learning models that learn complex
patterns from training data, producing useful outputs, such as locations and identities of
organisms in images.

Al-based tools for insect monitoring are diverse, but share common features. Firstly, they
are data hungry; as a rule, Al models are trained on large datasets, usually including
annotations that describe the biological content of sensor data. Second, they are highly
complex; modern Al models tend to include millions of parameters, allowing them to learn
rich representations of training data and make accurate predictions about unseen data.
Notably, some data processing techniques useful in the context of entomology are not
considered Al—including human processing (Russo et al., 2021) and algorithmic
processing (Lurig et al., 2021).

While public perception of Al has been shaped by generative large language models such
as ChatGPT (OpenAl et al., 2023) and text-to-image models such as DALL-E (Ramesh et
al., 2022), Al models for insect monitoring have so far been specially trained to work for
specific taxa and contexts. The role of generalist foundation models in insect monitoring
is expected to grow rapidly in coming years (Box 5).

However, coordination is needed for insect sensing systems to reach their full potential. Hardware
designs and deployments are currently fragmented, and species identification remains unfeasible
for many taxa and technologies (HUppop et al., 2019; Hansen et al., 2020; Chiranjeevi et al.,
2025). Many datasets are published, but they are not always easy to find, use, or combine
(Schneider et al., 2023). Al models are improving rapidly, but are still not used effectively to
complement human expertise. Crucially, Al outputs are often viewed with skepticism, so guidance
is needed to deal with Al uncertainty transparently and systematically (Cowans et al., 2022).
Furthermore, automated methods developed in high-income countries may not be sufficiently
affordable and accessible to support insect monitoring schemes at a global scale (Brydegaard et
al., 2024).

Here, we provide seven steps for fruitful implementation of insect sensing systems, whether for
small scientific projects or global monitoring initiatives (Fig. 1). We provide guidance for choosing
the right sensors (Step 1), and set expectations for dealing with taxonomic uncertainty (Step 2).
We promote good practices for generating and sharing data (Step 3), and advocate a cautious
approach when integrating Al into a data processing workflow (Step 4). We highlight potential
pitfalls when training and using Al, and suggest how to avoid them and train more useful Al models
(Step 5). Finally, we consider the global accessibility of insect sensing systems (Step 6), which we
see as an extension to—not a replacement for—ongoing monitoring initiatives (Step 7).
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Figure 1. Insect monitoring without pitfalls: Seven steps for robust insect sensing systems.

Scope

This synthetic review focuses on insect sensing systems. \We define these as acoustic or
electromagnetic wave sensors that continuously record insects in-situ (under field conditions),
including associated hardware, software and data processing pipelines. We prioritise systems that
sense a broad range of insect taxa, while giving some consideration to systems specialised on a
few species (e.g. agricultural pests). We do not include systems that tag insects, for example with
radio frequency identification (Barlow & O’Neill, 2020). While we centre our review on the topic of
insect monitoring, our guidelines (and many of the sensing systems) are applicable for a range of
other invertebrates and small animals.

Our scope excludes molecular methods (e.g. DNA metabarcoding), lab-based sensing systems
(e.g. imaging museum specimens or dead insects in preservative liquid), and traditional methods
(e.g. malaise trapping). However, these methods have their own strengths, provide important
context, and can often complement or enable insect sensing systems. For example, molecular



methods may provide taxonomic resolution not available to some insect sensing systems.
Meanwhile, lab-based sensing can generate vital training data for in-situ sensing. Finally,
traditional monitoring has massively progressed our understanding of insects and will continue to
do so; novel methods must build on this legacy, for example providing a spatio-temporal resolution
and coverage that is not reachable with traditional monitoring alone (van Klink et al., 2024).

1. Leverage the strengths of sensors

Sensing systems involving cameras, microphones, radar and lidar offer distinct strengths for
automated insect monitoring (Fig. 2). Some sensors excel at detecting and counting large numbers
of insects but have low taxonomic resolution, while others provide more detailed information about
taxonomic identity or ecological traits. Understanding these differences is crucial to design

effective monitoring strategies, and the correct choice of sensor(s) depends greatly on the purpose
and goals of the monitoring exercise. Furthermore, the use of attractants can increase the
efficiency of data collection by drawing more insects within range of the sensor (Bjerge et al., 2021;
Sittinger et al., 2024), however, it can also introduce biases, as taxa often vary in how they sense
attractants and move towards them. Below, we examine the relative strengths of four sensor
categories (Fig. 2), and consider how diverse technologies can complement each other in insect
monitoring.

Sensors excel in terms of consistency and continuity of data collection through time (van Klink et
al., 2022), but they also share a set of common challenges. Beyond challenges of species
identification and taxonomy (see Step 2), devices face risks of theft, damage or disturbance,
particularly in areas densely populated by humans or other animals. These risks scale with the
value and visibility of devices, and can be alleviated through strategic placement (Clarin et al.,
2014; Meek et al., 2019). Sensors are also operationally complex; off-the shelf systems are not
always available or suitable, while more adaptable do-it-yourself (DIY) systems require technical
expertise to assemble and use (Bjerge et al., 2021; Droissart et al., 2021; Sittinger et al., 2024).
Transport of DIY systems can also be complicated by customs and tax regulations; lithium
batteries are often restricted on aeroplanes, while most devices are not compatible with locally
available alkaline batteries.

A universal challenge for insect sensing devices is the lack of standardisation (van Klink, 2024).
Scalable, commercial solutions for automated insect monitoring are still absent, and most designs
rely on custom hardware and have limited user support (Bjerge et al., 2021; e.g. Droissart et al.,
2021; Sittinger et al., 2024; Chen et al., 2024). The most established devices for insects include
the DIOPSIS (van Klink et al., 2022) and UKCEH AMI (Roy et al., 2024), both of which have a high
price tag and require technical skills to maintain. While a range of devices are necessary to
monitor different taxa and environments, the fragmentation of system designs hinders
standardisation and data integration. Work is ongoing to build an ontology of insect sensing
devices, so that their parameters and quirks can be easily and transparently retrieved using data
exchange standards.
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performance for specialised Al, but models generalise poorly to novel communities and conditions.
(Green) Large datasets support training of Al models which reliably identify higher insect taxa and
distinctive species. Generalisable Al is deployed at scale, and some models are suitable for
embedded processing. Image credit from left to right: Jamie Alison (Song Meter Mini 2); Philip
Halling (weather radar); Baptiste Schmid (BirdScan MR1 radar); Meng Li (Scheimflug lidar);
Rigakis et al. (e-funnel trap; 2021); Jarek Scanferla (UKCEH AMI trap); Max Sittinger (DIY camera
trap); Quentin Geissmann (Sticky Pi); Pau Serra-Marin (automated camera system). Insect
sensing systems are highly diverse, and these descriptors are indicative, not definitive.

a. Cameras

Modern cameras operate by focusing light through a lens onto an image sensor, converting it into
an electrical signal, and storing it as a digital image or video. Image quality depends on lens type,
sensor resolution, and onboard image processing, all of which affect the capacity to detect and
identify insects or interpret their behaviours (Seimandi-Corda, Hood & Cook, 2024; Bjerge, Karstoft
& Haye, 2025).

Camera setups are typically tailored to specific goals, such as observing flowers (Droissart et al.,
2021; Alison et al., 2022), nests (Calvus et al., 2025), screens or platforms (Bjerge et al., 2021;
Sittinger et al., 2024) or baited locations (Preti, Verheggen & Angeli, 2021). They can also be
connected to traditional capture methods, including sticky cards or Malaise traps (Geissmann et
al., 2022; Chiavassa et al., 2024). Suitable devices range from trail and compact cameras (Steen,
2017; Naqvi et al., 2022) to action and security cameras (Seimandi-Corda et al., 2024;
Varga-Szilay, Szévényi & Pozsgai, 2024), smartphones (Ratnayake, Dyer & Dorin, 2021; Stefan et
al., 2025b), and DIY builds based on single-board computers like Raspberry Pi (Bjerge et al.,
2021; Droissart et al., 2021; Geissmann et al., 2022; Sittinger et al., 2024; Wittmann et al., 2024;
Serra-Marin et al., 2025; Szczygiet, Dent & Quitmeyer, 2025) or microcontrollers (Darras et al.,
2024). The DIY options support add-ons like environmental sensors, light sources, solar panels,
and customisable software. Image capture can be scheduled, or triggered by motion or on-device
Al-based detection (Steen, 2017; Gardiner, Rowlands & Simmons, 2025b).

Camera traps excel at non-invasive, continuous monitoring of insect presence, activity or
abundance, phenology, behaviour and morphology, particularly at times or in locations that are
difficult for human observers to reach. They support studies on pollination, predation, and habitat
use (Droissart et al., 2021; Bjerge, Mann & Haye, 2022; Stefan et al., 2025b), and enable
fine-scale temporal analyses (Steen, 2017; Geissmann et al., 2022; Sittinger et al., 2024).
High-resolution imagery allows species-level classification where distinctive features are visible
(Chiranjeevi et al., 2025; Bjerge et al., 2025). It also enables a potential by-catch of ecological and
environmental information (Pernat et al., 2024; Alison et al., 2024). However, detection and
classification are usually less reliable for smaller insects.

Commercial trail cameras often lack fine control over scheduling and are not optimised to detect
small, fast-moving insects (Pegoraro et al., 2020). DIY systems, while adaptable, usually require
expertise for assembling components and configuring software, posing a barrier for
non-specialists. Open hardware platforms and community-developed projects (Droissart et al.,
2021; e.g. Sittinger et al., 2024; Szczygiet et al., 2025) enable flexible, modular designs and can
improve reproducibility and uptake in the community, especially in conservation and citizen science
efforts (Sheard et al., 2024). Most systems are stationary, capturing imagery of an area smaller
than 1m?.

Video and image data can quickly exceed storage and processing capacity, and scheduled
recording may capture long stretches of irrelevant footage (Pegoraro et al., 2020). On the other



hand, motion-triggers or real-time detection models can reduce data volume (O’Shea-Wheller et
al., 2024; Sittinger et al., 2024; Darras et al., 2024; Bjerge et al., 2025), but may do so with a bias.
Detection tends to be easier against simple backgrounds than in complex natural settings (Stefan
et al., 2025a). Detection models are often task-specific, but new generalisable Al tools are
emerging (Svenning et al., 2025) as are platforms to increase their accessibility (e.g. Antenna).
Classification models, powered by citizen science datasets, are able to identify some large-bodied
taxa to species-level (Spiesman et al., 2021).

b. Acoustics

Passive acoustic monitoring (PAM) is the use of autonomous sound recording units to record
vibrations in air (Ross et al., 2023), water (Lamont et al., 2022), or solid substrates such as plant
tissues (Mehrotra et al., 2024). It is widely used in terrestrial and aquatic ecosystems to detect and
analyse animal sounds (Deichmann et al., 2018; Gibb et al., 2019; Darras et al., 2025). Advances
in affordable, programmable recording units and software tools have contributed to a surge in PAM
studies (Hill et al., 2018; Sugai et al., 2019; Kohlberg, Myers & Figueroa, 2024) although
invertebrates remain underrepresented, with only 23 of 460 terrestrial PAM studies targeting
insects (see also Mankin et al., 2011; reviewed by Sugai et al., 2019).

PAM devices capture sound across a variety of frequencies: Audible-range units (<20 kHz) can
capture crickets, bees, and some aquatic insects, while ultrasonic devices (>20 kHz) capture
signals from moths and katydids. Higher sampling rates allow recording of higher frequency
sounds, but increase storage demands and drain batteries, which limits deployment duration.
Devices range from lightweight, low-cost units like Audiomoth (~80g), to professional-grade
recorders like the SM4 (~1.2 kg with batteries). Microphone quality can limit detection of insects,
especially in the ultrasonic range, where low-end microphones can miss subtle insect sounds
(Riede & Balakrishnan, 2025). Whilst there are several automated hardware options for terrestrial
recording, the hydromoth is the principal low-cost option for freshwater environments, which
suffers from poor recording quality and low signal-to-noise ratio (Lamont et al., 2022). Contact
microphones and laser vibrometers can record vibrations in a substrate, revealing the presence of
insects living on plants (éturm et al., 2022; Mehrotra et al., 2024), in tree trunks, or underground
(Robinson et al., 2024).

PAM excels for loud or “soniferous” taxa, and where visual monitoring is difficult, for example in
habitats with dense vegetation, aquatic systems, and forest canopies (Sugai et al., 2019;
Desjonqueéres, Gifford & Linke, 2020). It enables large-scale, long-term surveys with low
disturbance and recording effort (Browning et al., 2017; Linke et al., 2018; Gibb et al., 2019; Penar,
Magiera & Klocek, 2020). While research has focused on Orthoptera and cicadas (Do Nascimento
et al., 2024; Madhusudhana, Klinck & Symes, 2024; Symes et al., 2024; Bennett et al., 2025;
Okamoto & Oguma, 2025), there is growing interest in other soniferous taxa, such as aquatic
insects (Desjonquéres et al., 2024), bees (Bota et al., 2022), and flies (Mukundarajan et al., 2017).
Combined with machine learning, PAM can uncover diel and seasonal activity patterns and
support behavioural or ecological inference (Lawson, Whitworth & Banks-Leite, 2022; Scarpelli et
al., 2023; Symes et al., 2024; Riede & Balakrishnan, 2025).

Data processing is a major bottleneck. The breadth and performance of automated processing
tools are improving; Al models are able to distinguish select Orthoptera and cicada species with
some success (Madhusudhana et al., 2024; Bennett et al., 2025; Okamoto & Oguma, 2025).
However, background noise is a major challenge, and models often perform poorly in new settings
(Tang et al., 2022). A limiting factor is the lack of training data for most species, especially in
tropical ecosystems (Riede & Balakrishnan, 2025). For manual processing, several software
options exist (Audacity, Raven, Whombat, (Rhinehart et al., 2024)), but insect-specific workflows
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remain scarce. Labelled insect sounds are often not shared (Zefa et al., 2022; Branding et al.,
2024; but see Acosta ef al., 2024; Rivas et al., 2025), so reference libraries are limited. However,
repositories like Xeno-canto facilitate data sharing, while open-source R packages like Rthoptera
(Rivas et al., 2025) enable generation of metrics and intuitive visualisations. Solutions that
expedite and standardise manual processing would support the development of reference libraries,
as well as characterisation of distinct types of bioacoustic signals (sonotypes).

c. Radar

Radar is an active remote sensing technology that emits radio waves and interprets the returning
signals reflected by objects. Initially developed for military use, radar has become a powerful tool
for studying aerial ecology, including insects (Chapman, Drake & Reynolds, 2011;
Shamoun-Baranes et al., 2021; Rhodes et al., 2022; Bauer et al., 2024). Technological and
algorithmic advances have enabled radar to deliver continuous data on insect flight patterns,
timing, direction, altitude, and spatial distribution, often reaching several kilometres into the
atmosphere (Drake & Reynolds, 2012; Chapman, Reynolds & Wilson, 2015; Haest et al., 2024;
Tielens & Kelly, 2024). These data support research on insect migration (Bauer et al., 2024,
Werber et al., 2025), orientation (Shi et al., 2021), phenology (Haest et al., 2024), behaviour (Gao
et al., 2020), biomass dynamics (Hu et al., 2016; Wotton et al., 2019), and environmental drivers
(Knop et al., 2023). However, a key limitation is that individuals can rarely be identified to a high
taxonomic resolution (Huppop et al., 2019).

Two radar types are primarily used in insect monitoring: small-scale vertical-looking radars and
large-scale weather surveillance radars (Bauer et al., 2024). Vertical-looking radars track individual
insects and record flight trajectories, wingbeat frequencies, and body size (Zaugg et al., 2008;
Drake, Hao & Wang, 2024). These systems are increasingly portable and commercially available
(Bauer et al., 2024). In contrast, weather radars capture biomass (Mungee et al., 2025) and
movements (Stepanian et al., 2016; Lukach et al., 2022, 2024) at regional scales but lack the
resolution for individual tracking.

Species identification remains challenging: weather radars inherently lack resolution (Drake, 2016;
Hao et al., 2020), while vertical-looking radars show promise but require improvements to radar
technology, signal interpretation (Gauthreaux & Diehl, 2020; Addison et al., 2022), and more
labelled datasets (Haest et al., 2021). Direct species-level identification will remain inherently
difficult, but can be achieved under certain conditions—for example using supplementary trait data
(e.g. Chapman et al., 2012; Hao et al., 2020). While insect detection with radar may be more
reliable for larger bodied insects, size-biases can be mitigated by simultaneously using
complementary radar types (Lochmann et al., 2024).

Radar data are generally processed using open-source tools (Dokter et al., 2019; Haest et al.,
2024; Kranstauber, Huybrechts & Desmet, 2025), usually through a combination of rule-based and
statistical approaches. However, Al methods are being developed, and stored recordings will
enable retrospective processing with new models (Sun et al., 2024). Meanwhile, ongoing
initiatives, including HIRAD, aim to consolidate radar entomology knowledge, developing
open-access tools and datasets for ecological applications (Bauer et al., 2024).

d. Photonics

Photonic sensing of insects involves recording how emitted photons, typically from lasers or LEDs,
reflect from insect bodies in situ (Brydegaard & Svanberg, 2018). This method leverages principles
from optical modulation spectroscopy and laser remote sensing to detect insects based on how
they scatter, absorb, or reflect light. While passive methods using scattered sunlight are possible
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(Jansson & Brydegaard, 2018), most systems rely on active illumination to ensure reliability across
lighting and weather conditions (Brydegaard et al., 2020; Rydhmer et al., 2024).

Photonic sensors can be deployed at various scales (Saha et al., 2023; Li et al., 2023b), ranging
from compact e-traps based on simple photo-interruption (Potamitis, Rigakis & Tatlas, 2017;
Potamitis et al., 2018; Preti et al., 2021; Rigakis et al., 2021), to short-range monitoring devices
(Rydhmer et al., 2024), to lidar systems that survey kilometre-long transects (Brydegaard et al.,
2016). The latter enables non-invasive monitoring of insect fluxes (individuals and biomass), flight
headings (Li et al., 2020), and dispersal (Manefjord et al., 2024). While generally recording smaller
volumes of space than radar, lidar captures fine-scale optical signatures such as wing membrane
nanostructures (Miller et al., 2023; Li et al., 2023a) and melanin absorption (Goh et al., 2021).
While many such features have primarily been studied under controlled conditions, they could be
quantified under field conditions in the future.

While they can be made weather-resistant (Chen et al., 2024), lidar systems are not yet
standardised, so comparison across studies is difficult. Comparability can be improved by
presenting general metrics like chitin or melanin pathlength (Li et al., 2023a; Manefjord et al.,
2024). Lidar systems also require specialised maintenance, and, like radar, can suffer from
atmospheric interference. Photonic sensors can generate hundreds of thousands of observations
daily but, as for other sensor types, detectability varies with the size and shape of insects (Yamoa
et al., 2025).

A lack of training data limits the utility of Al for data processing, though unsupervised methods like
hierarchical clustering can help to estimate diversity and reveal ecological patterns (Rydhmer et
al., 2024; Yamoa et al., 2025). Data processing generally focuses on extracting oscillation
frequencies (Brydegaard et al., 2020; Yamoa et al., 2025), spectral profiles (Li et al., 2022;
Manefjord et al., 2024), polarimetric properties (Genoud et al., 2019) and physical parameters of
insects (Muller et al., 2023). Species identity can sometimes be derived based on these properties,
but is limited by the absence of comprehensive optical property databases. An important step
forward is to express sensor-derived traits in Sl units, so that they can be matched with future
measurements derived manually in the lab.

e. Multimodal sensing

Sensing systems that combine data collection modalities can form more than the sum of their
parts. Several studies demonstrate technological synergies for in situ biodiversity monitoring, for
example between cameras and environmental DNA (Stothut et al., 2024; Tetzlaff et al., 2024).
However, studies that combine multiple sensor types are surprisingly rare—especially for insects
(Buxton et al., 2018; Wagele et al., 2022; Kline et al., 2025). Multimodal sensing can offer
synchronous and asynchronous synergies for biodiversity monitoring. Synchronous synergies
involve multiple sensor types recording in the same time and place. For example, recording the
same individual insects with multiple sensor types could improve identification using multimodal Al
(in line with previous work complementing images and DNA; Badirli et al., 2021), and even create
coveted labelled datasets for acoustics, radar and lidar sensing (Giuntini et al., 2024). On the other
hand, asynchronous synergies involve complementary insights from sensors that are not perfectly
aligned in space and time. For example, cameras and acoustics might capture complementary
sets of taxa (Buxton et al., 2018), while radar and lidar data might be complementary in terms of
spatial scale. Similarly, aerial environmental DNA (Roger et al., 2022) could provide taxonomic
context for entomological radar data, which have high taxonomic uncertainty (Haest et al., 2024).

Beyond light, sound, and radio, other sensing modalities can also be used in specific contexts. For
example, changes in capacitance can be used to detect insects walking over a surface (Scherer,
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Vitzthumecker & Bierl, 2022), crawling through tubes (Campbell, Dahn & Ryan, 2005), or feeding
(Itskov et al., 2014). Multimodality generally increases both cost and complexity. However, using
one type of sensor to trigger another, for example using an infrared beam to trigger a camera, can
offer savings in terms of power or storage (Hobbs & Brehme, 2017).

2. Adopt taxonomic pragmatism

Species identification has always been a major challenge in entomology. There are at least 5.5
million insect species globally, of which 80% remain undescribed (Stork, 2018). Furthermore,
species compositions of insect communities are highly uneven, meaning that most species are
rare, and thus difficult to record (Preston, 1962). Monitoring of insects is also severely biased
towards certain geographic regions and taxa (Rocha-Ortega, Rodriguez & Cdérdoba-Aguilar, 2021).
Small-bodied taxa are rarely monitored, and even meticulous morphological identifications can
result in aggregation or “lumping” of cryptic species complexes (Li & Wiens, 2023).

The challenge of identifying insect species is amplified when using only sensor data, which can
lack fine-grained morphological features. It can be very difficult for human specialists to distinguish
species in visual imagery (Stefan et al., 2025b), let alone lidar or radar signals (Rydhmer et al.,
2022; Drake et al., 2024). Identification is further complicated with the use of Al. Al models
inevitably make errors, especially for rare species, owing to bias, missing taxa and class
imbalances in training datasets (Buda, Maki & Mazurowski, 2018; Gharaee et al., 2023). Overall,
taxonomy is probably the single greatest challenge faced by insect sensing systems.

A key part of the solution is taxonomic pragmatism: specifically, we need to identify species
wherever possible, but find ways to work with taxonomically uncertain data. Species-level data are
a priority: many applications, from species conservation to surveillance of pests and invasives, fully
depend on species identification. Fortunately, some species can be successfully identified through
Al processing of images and sounds (Bjerge et al., 2023a; Symes et al., 2024; Jain et al., 2025).
Furthermore, in photonics, multi- and hyper-spectral analysis reveal features of insects that are
invisible to the human eye, offering new ways to distinguish species and even sexes (Miiller et al.,
2023; Li et al., 2023a, 2025). However, to maximise the species-level performance of Al models, a
priority is to develop and use training datasets verified by morphological or DNA-based
identification (Kirkeby et al., 2021; Step 3; Gharaee et al., 2023).

Where species identification is not possible, there are still opportunities to leverage the scale and
resolution of sensor data. Higher taxa or functional groups are usually distinguishable with
sensors. Cameras can record visits by different pollinator guilds through seasonal or day-night
cycles (Alison et al., 2022; Anderson, Rotheray & Mathews, 2023). Acoustic indices or sonotypes
help to reveal broad patterns in the activity and diversity of insects (Gomez-Morales &
Acevedo-Charry, 2022; Scarpelli et al., 2023). Similarly, radar data capture mass migrations of
insects in a range of size classes (Jeffries et al., 2013; Hu et al., 2016; Wotton et al., 2019).
Careful aggregation of species can yield indicators that are both inclusive and interpretable
(Outhwaite et al., 2019, 2020). Indeed, several of the strongest indicators of insect decline have
involved taxonomically coarse data (Brooks et al., 2012; Hallmann et al., 2017), which insect
sensing systems can generate in unprecedented quantities (Werber et al., 2025).

Taxonomic pragmatism should not take the form of analytical shortcuts. Working with taxonomic
uncertainty means training models that effectively identify insects at both high (Mazen, 2023) and
low taxonomic ranks (Bjerge et al., 2022), producing outputs at the highest reasonable taxonomic
resolution (Step 5). Species-level records help to build species abundance indicators (Kissling et
al., 2018), while higher-level records shed light on wider community biomass, composition and
function—for example, by cross-referencing with insect trait databases (Horren et al., 2022).
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Trait-based approaches can capture ecosystem processes using data spanning multiple taxonomic
ranks (Moretti et al., 2017). However, such analyses rely heavily on transparent use of taxonomic
backbones (Step 3; August et al., 2015).

Above all, taxonomic pragmatism depends on quantification of uncertainty during identification. It is
rare for Al models to communicate uncertainty effectively (Gawlikowski et al., 2023), and they
sometimes express higher confidence when they are out of their comfort zone (Box 2). More
reliable uncertainty measures could reduce the impact of Al identification errors during
downstream analyses, but also flag uncertain records for expert review within a
human-in-the-loop workflow (Step 4).

Box 2. Al doesn’t know what it doesn’t know

Al classifiers often output a “confidence score” between 0 and 1, but this should not be
assumed to represent the probability of a correct identification. Confidence scores are a
good indicator of Al uncertainty (Chen et al., 2025), but they must be interpreted with
caution.

Confidence scores reflect how strongly an Al classifier favours a known class. However,
the Al's internal representation of the real world is incomplete: the model hasn’t been
trained to recognise every possible species in every possible position. As a result,
incorrect identifications can be spuriously assigned high confidence values, particularly for
unfamiliar species, or familiar species in unfamiliar contexts (Nguyen, Yosinski & Clune,
2015; Hein, Andriushchenko & Bitterwolf, 2019).

How, then, should we quantify Al uncertainty when processing data from novel
deployments? One option is to use a small, but representative, labelled dataset from novel
deployment to capture model overconfidence, bias, and even calibrate confidence values
(Wang, Feng & Zhang, 2021; Gawlikowski et al., 2023; Wood & Kahl, 2024). However, Al
models of the future should be trained to flag inputs that fall outside their experience
(Gawlikowski et al., 2023), using methods such as Monte Carlo dropout (Gal &
Ghahramani, 2015).

3. Create, curate and share labelled data

Labels are essential, representing biological information to sensor data. They can be generated by
humans or Al models, and take many forms, for example species IDs attached to bounding boxes,
or behavioral descriptors attached to time segments. Human-generated labels, often called
annotations, are generally treated as ground truth; they are the gold-standard for training and
validating Al models, though sometimes associated with error of their own (Austen et al., 2016;
Foody, 2024). However, manual annotation is costly, demanding many human working hours, and
forms a severe bottleneck for data processing. Despite advances in Al for machine-generation of
labels, the demand for annotations is greater than ever (Box 3). The question is not whether to
annotate, but what to annotate and how: the answer depends on what annotations will be used for,
as well as which labelled datasets are already available (Blair et al., 2024).
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Box 3. Paradoxically, the rise of Al means more work on annotation—not less.

Al is expected to revolutionise entomology by reducing the need for manual annotation of
sensor data (Heye et al., 2021). This is true in relative terms, as Al models can automate
an increasing share of data processing. However, according to Jevon’s paradox, greater
efficiency in using a resource can lead to an increase in its consumption (Polimeni &
Polimeni, 2006). Similarly, the rise of Al streamlines data processing, but drives a
disproportionate increase in demand for labelled data to create more and better Al models
(Hellendoorn & Sawant, 2022; Woodruff et al., 2023). This phenomenon is exacerbated by
the fact that labelled data drive the development of the next generation of Al models.
Demand for annotated data is high because:
1. Awareness of the potential of sensors and Al is widespread. Stakeholders are
eager to collect and use sensor data, and deploy Al models.
2. Annotations are required to train new and better Al models. For example,
more training data can improve performance of classifiers for rare species.
3. Annotations are essential for measuring Al model performance. We should
never blindly trust Al; annotations are key for benchmarking and evaluation.
4. Where Al fails, annotation is a reliable path to ecological data. Al is not viable
for all sensors and contexts, and annotated data can be analysed biologically.

It is rarely feasible to manually annotate all data generated by a sensor. Instead, it is often
necessary to select strategic subsets of the data to achieve annotation goals. Annotations can be
used (i) to train Al models, (ii) to evaluate Al outputs, or (iii) as a direct source of biological data.
Where the aim is to improve Al model performance, a good strategy is to increase representation
of species or conditions where models perform poorly (Koch et al., 2022). If annotations are used
to evaluate an Al model in a new context (Cowans et al., 2022; Wood & Kahl, 2024), a good
strategy is to subset data evenly across space, time or taxa to fully represent the new context.
When annotations are for biological analysis, a good strategy is to target regions and periods of
ecological interest, such as open flowers for pollinators (Alison et al., 2022). For non-visual
methods it is particularly difficult to generate reliable ground truth annotations; the process may
involve proactively recording known species in the field (Gradisek et al., 2017) or in cages
(Rydhmer et al., 2024), or combining multiple recording methods (Van Doren et al., 2023; Giuntini
et al., 2024). It is always important to annotate some sensor data where insects are absent,
providing true negatives that form a counterfactual for training and evaluation of Al.

Well-documented annotation protocols are vital to ensure quality and reproducibility. Processing
tasks include classification, detection, segmentation, measurement or description of insects (Fig.
3), with outputs ranging from a taxonomic ID linked to a recording (Madhusudhana et al., 2024) to
a pixel mask highlighting insects in an image ((Svenning et al., 2025); see Fig. 3: Segmentation).
Protocols should capture methodological choices that affect reproducibility; especially details
related to annotation scope. For example, when is a signal considered too small or weak to
annotate? How are the boundaries of an annotation defined? A gold-standard approach is to
consult multiple annotators, allowing uncertainty in the human-defined ground truth to be
quantified. This gives context when evaluating an Al model: if two human annotators only agree in
90% of cases, models should not be expected to exceed 90% accuracy. There are a wide variety
of viable software tools for annotation, many of which are free and open source (LabelStudio,
CVAT, VIA, RoboFlow, Whombat, WildTrax), while platforms like Zooniverse allow crowdsourced
annotations from multiple users (Willi et al., 2019).
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Tasks & example outputs

file: mothl.png
gbif_id: 5115771
name: Lithosia quadra

Classify

{"moths": [
[425,126, 617,371],
[657,528,762,783],
[49, 474, 305, 786,
[23, 0, 239, 156]]

}

JSON format, Pascal VOC
coordinate convention

Detect

length
20.0
18.6
20.8
7.3

Prompt: Is it possible to
determine the sex of this
Lithosia quadra moth?”

Output: The sex is easily
identified by its strong sexual
dimorphism: males have a
yellow-orange thorax and
grey forewings, while females
have entirely yellow-orange
wings with black spots.

Describe Measure Segment

Figure 3. Data processing tasks
such as classification, detection,
segmentation, measurement and
description can be performed by
humans, or using automated
processing tools such as Al.
These tasks output labels in
various formats: classification
may produce a table with the ID
of the insect in each input image;
detection may produce an output
for each input image, with
coordinates of the bounding
boxes of each detected object.
Outputs can also be more
complex: in segmentation, image
masks or polygons are
generated for each object. For
measurement, the objects are
assigned a value according to
the trait desired. Tasks
exemplified here for visual
imagery exist in similar forms for
acoustic, radar, and lidar
sensing. Detections,
segmentations and
measurements in the Figure
were derived using the flatbug
model (Svenning et al., 2025),
while the description was
generated using the Gemini 2.5
Pro model (Comanici et al.,
2025).
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Large volumes of data and labels are already being generated by insect sensing systems, both in
research and industry, yet they are not always shared according to FAIR principles: Findability,
Accessibility, Interoperability and Reusability (Wilkinson et al., 2016). While some datasets are
published specifically for Al applications (Gharaee et al., 2023), other Al-relevant datasets become
available as side effects of research, education and community engagement (August et al., 2015;
Unger et al., 2021; Wilson et al., 2023). Datasets accompanying scientific publications are often
persistent and findable in general-purpose data repositories, such as Zenodo. Data sharing
platforms such as Agouti or Wildlife Insights (Ahumada et al., 2020) have extended reach, catering
to a broad ecological audience, but place no emphasis on insects. A catalogue of annotated insect
datasets would help to leverage synergies between them, especially to train generalised
entomological Al models that perform in a wide variety of contexts (Schneider et al., 2023). For
example, Svenning et al. (2025) curated 23 arthropod image datasets, enabling a highly
generalised model for arthropod detection and segmentation. Similarly, the TreeOfLife-10M
dataset collates the iNat21, BioScan-1M (Gharaee et al., 2023) and Encyclopedia of Life datasets
to advance general organism classification, especially at higher taxonomic ranks (Stevens et al.,
2023). Still, the accessibility, interoperability and reusability of data ultimately depends on
well-defined, shared metadata and standards (Box 4). Development of, and adherence to,
community standards is absolutely vital for scalability, yet remains an under-resourced frontier.

Box 4. Integrating standards for Al and biodiversity is crucial

While metadata provides context or details about data, standards provide common
terminology and structure with which to store and share data. At the heart of a data
standard is a set of well-defined terms, such as scientificName and captureMethod, that
link to established ontologies, such as community agreed taxonomic, life-history or
anatomical concepts (Yoder et al., 2010). A data standard can also define structures and
formats for data: the CamTrapDP standard provides tables for Deployments, Media and
Observations, with a JavaScript Object Notation (JSON) format to describe them
(Bubnicki et al., 2024). Data standards are diverse and usually tailored to specific
applications.

Standards for Al

Most Al tools used in ecology were not originally designed for ecological data. Standards
for Al training datasets capture basic details on the location and class of entities in
2-dimensional images—for example the Pascal VOC format (Everingham et al., 2014).
Standards for insect sensing systems are more complex, but can incorporate Al data
standards—for example to specify the formatting of bounding box coordinates ( Fig. 3:
Detection). Furthermore, to preserve the provenance of Al predictions, we need to
reference models and metadata using unique resource identifiers (leveraging platforms
such as kaggle and huggingface).

Standards for biodiversity

Biodiversity data brings unique challenges, especially representing taxonomic concepts
and authorities (Sandall et al., 2023). Taxonomic backbones—centralised checklists of
biological names, capturing each taxon's lineage, authority and synonyms—are crucial.
The GBIF backbone taxonomy collates a huge number of other taxon lists and is widely
used in research across many branches of the tree of life (August et al., 2015; GBIF
Secretariat, 2023; Roy et al., 2024). The Biodiversity Information Standards community
develops, ratifies and promotes standards specifically for biodiversity data. These include
the Darwin Core standard, built to enable interoperability of global biodiversity data
(Wieczorek et al., 2012).
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Standards for insect sensing systems

The Darwin Core standard is designed for primary occurrences of species in nature,
especially opportunistic wildlife recording data. However, insect sensing systems generate
highly structured data, and require metadata about hardware, media, deployments, Al and
identification uncertainty which cannot be expressed in Darwin Core. Some progress has
been made with Audiovisual Core (previously the Audubon Core; Morris et al., 2013)
which is tailored specifically to biodiversity media, including terms that cover image
metadata and regions of images containing organisms. Furthermore, the recently ratified
Humboldt extension to Darwin Core provides terms to describe the spatial, temporal and
taxonomic scope of sampling events (Guralnick, Walls & Jetz, 2018). Most recently,
CamTrap DP is a standard based on Darwin Core which is being adapted for insect
camera traps and passive acoustic monitoring (Bubnicki et al., 2024; Reyserhove, Norton
& Desmet, 2025).

4. Delegate to Al with care

Given the hype around Al (Pollock et al., 2025), it is easily seen as the solution to every data
processing challenge (Placani, 2024). However, Al is not a panacea for insect sensing systems:
some sensors are less “Al-enabled” than others (Fig. 2), and integrating Al into monitoring
pipelines is far from trivial (Schneider et al., 2023). Al models are costly to develop, energy
intensive (Luccioni, Jernite & Strubell, 2023), and not well suited to all situations or tasks.
Furthermore, there are many ethical issues around the development and use of Al (Taffel, Bedford
& Mann, 2022). Before rushing to assign every task to Al, proper consideration must be given to
non-Al or hybrid solutions. We recommend always asking two key questions: (1) Is Al best suited
for the task? (2) What is the role of Al in the workflow?

Is Al best suited for the task?

Al models are candidates for many data processing tasks (e.g. Fig. 3), but their availability and
performance varies across sensors, tasks and domains. Furthermore, they must be measured
against their competition—for example algorithmic processing (Box 5) and human processing.
The suitability of Al for data processing depends on the context; for some tasks, such as insect
detection using radar, annotated data are not widely available to train Al models (Gauthreaux &
Diehl, 2020; Haest et al., 2021). As such, algorithmic processing, with calibration by experts,
remains the standard approach to extract entomological data from radar and lidar (Dokter et al.,
2019; Chen et al., 2024). On the other extreme, annotated images of insects are so abundant that
foundation models—broad generalist Al—are now extremely useful for image-based monitoring
(Box 6).
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Box 5. Algorithmic processing can be a viable alternative to Al

Algorithmic processing (also called signal processing; Lurig et al., 2021) is rule-based
processing to transform raw sensor data into biologically meaningful information. It differs
from Al in that it does not rely on large training datasets, drawing instead on small
calibration datasets, expert knowledge and sensor-specific logic. Being simpler than Al,
algorithmic processing is usually highly explainable. It is commonly used to process radar
or lidar data, including methods for thresholding, filtering and feature extraction (e.g.
edges or echoes). It can also be used to preprocess data before using Al.

Algorithmic processing is particularly effective where:
1. The signal-to-noise ratio is high. When sensor data are not highly variable or
noisy, a simple rule might be sufficient to extract useful information.
2. Computing resources are limited. Algorithmic processing requires modest
computational resources, and can usually be deployed on low-powered devices.
3. Training data are scarce. In the absence of large labelled datasets, Al
approaches are generally less viable.

Task complexity also determines the suitability of Al for data processing (Fig. S1). For simple,

repetitive tasks with a high signal-to-noise ratio, algorithmic processing can automate analysis

with minimal training data (Lurig et al., 2021). As the complexity and scope of the task increases,

and more sensor data are created, annotated and shared, Al gradually becomes a viable solution.
For example, it is much harder to detect insects in images of flowers and vegetation (Bjerge et al.,
2023a; Stefan et al., 2025a) than in images of an illuminated screen (Roy et al., 2024); the former
task is currently not always achievable with Al, while the latter is simple enough that an algorithmic

thresholding method may suffice (Bjerge et al., 2021). When tasks lack sufficient training data for
Al and are too complex for algorithmic processing, human processing becomes necessary to

expand the training data and generate ecological insights (Fig. S1; Step 3).

Box 6. Foundation Al will shape the insect sensing systems of the future

Foundation models are Al that are adapted to perform a variety of tasks. They are trained
on broad, multimodal datasets, usually comprising vast amounts of text and visual
imagery (Bommasani et al., 2021). Self-supervision is often used to improve
generalisation, whereby parts of the training data are obscured and the model learns to
reconstruct them (He ef al., 2021). Foundation models include generalist Al such as
GPT-5, but also Al that are broad-specialists in specific domains such as biomedicine
(Zhang et al., 2024) or biodiversity (Stevens et al., 2023). Notably, foundation models use
extremely high numbers of parameters, and consume orders of magnitude more
processing power than task-specific Al (Luccioni et al., 2023).

It is increasingly feasible to delegate basic insect monitoring tasks to generalist Al.
Foundation vision-language models such as GroundingDINO (Liu et al., 2023), CountGD
(Amini-Naieni, Han & Zisserman, 2024), and SAM 2 (Ravi et al., 2024) are capable of
detecting, counting and segmenting insects in many types of images (Devlin et al., 2025).
Similarly, with cautious prompt-engineering, GPT models can describe and classify
images (Miao et al., 2025) or help to analyse or interpret data (Potamitis, 2023;
Kendall-Bar et al., 2025). However, such generalist models very rarely identify insect

18



species, and demonstrate strong biases about insects (Moser, Krogmann & Wanke,
2025).

Meanwhile, broad-specialist foundation models are beginning to excel at difficult tasks,
such as fine-grained classification. BioCLIP 2 is a vision-language model generalizing
across the tree of life (Stevens et al., 2023; Gu et al., 2025) which has proven effective for
moth species classification, albeit with a small amount of additional training (Gardiner et
al., 2025a). While a new foundation model for arthropods may be on the horizon (Nguyen
et al., 2024; Truong et al., 2025), a priority is to curate benchmark datasets to properly
test out-of-the-box performance of foundation models (Wu et al., 2019; Schneider et al.,
2023).

What is the role of Al in the workflow?

Al models can be characterised based on their task—e.g. detection, classification and
measurement of insects (Fig. 3)—but also their role; that is, how they complement other elements,
including humans, to achieve monitoring goals (Fig. 4). This affects how, when, and where Al
models should be deployed. For example, if Al predictions are used to directly generate a
population index for an annual report, models can run long after data collection on a
high-performance computer, while training should prioritise accuracy over speed ( Fig. 4). On the
other hand, Al can assume the role of a “trigger mechanism” to enable reactive monitoring of
ecological phenomena, such as pollinator behaviour (Ratnayake et al., 2022). This role demands
an Al that runs in real time, perhaps even on-device for embedded processing (Sittinger et al.,
2024, also known as edge processing; Darras et al., 2024). Embedded processing is trending
across animal ecology (Kline et al., 2024) and entomology (Bjerge et al., 2025) but it has many
limitations. We advise caution before adopting on-device processing for many applications, and
raw data should usually be retained for future verification (Box 7).
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Figure 4. Al can take on a variety of roles in an insect monitoring workflow. In some roles,
lightweight models must process data in real-time—perhaps even adjacent to the sensor for

embedded (or edge) processing (left side). In others, larger models are run some time after data

collection on high-performance computing servers (right side). Some roles demand independent
working (outer routes); others demand frequent interaction with humans (inner routes).

Understanding the role of Al in insect sensing systems is crucial to optimise when, where and how

models are deployed



Box 7: An edge case? Embedded Al is powerful, though not always practical

Embedded processing (or edge processing) means processing sensor data locally, for
example with Al models running on compact computers attached to the sensor. By
processing data in real time, devices can keep track of environmental
developments—such as the presence of insects—and react autonomously. Bjerge et al.
(2025) demonstrate the potential of embedded Al for real-time detection, classification and
tracking of night-flying insects, even identifying moths to species-level. Similar models
could be used to generate alerts of high-priority events, such as pest attacks, to enable
rapid management interventions (Preti et al., 2021). They could also enable data
dashboards to give immediate feedback and help to promote efforts to monitor insects.

A popular use case of embedded Al is for triggered or reactive sampling ( Fig. 4). This can
maximise the information content of captured media, for example by only recording when
insects are detected (Gardiner et al., 2025b). This can be effective where Al models are
very accurate (e.g. Sittinger et al., 2024) and data storage or bandwidth is limited.
However, Al models cannot reliably detect insects in many contexts (Stefan et al., 2025a),
especially under strict computational constraints. When adopting triggered sampling, we
propose maintaining a small stream of representative, unfiltered sensor data (Fig. 5).
These data enable us to quantify the false negatives of Al models, and may even include
a useful ecological by-catch (Alison et al., 2024).

Whatever the use case, embedded processing comes at a cost. Compact computers
can be affordable, but power consumption can more than double when running embedded
Al (Bjerge et al., 2025), necessitating a reliable energy supply. Projects should consider
the trade-offs involved; investment in embedded processing could reduce data storage
costs, but also the number of devices that can be deployed within a given budget.
Similarly, investment in embedded Al could be better directed toward powerful centralised
Al, or improved data management, compression and cold-storage.

Al is often seen as displacing humans in data processing workflows, but humans and Al should
perform distinct roles as a part of a complementary team. Humans in particular should take
responsibility for critical decisions, and their taxonomic expertise and experience is indispensable
(Dyer et al., 2024). Human expertise and Al efficiency may be best exploited using a
human-in-the-loop approach; Frequent interactions between humans and Al models can improve
model performance (using active learning feedback loops), but also streamline human processing
(Mosqueira-Rey et al., 2023; Kath et al., 2024). Casting Al in a supporting role is especially useful,
as even error-prone models can simplify and accelerate human processing. Naturally, different
data processing roles call for different qualifications, with implications for Al model selection and
training.

One supporting role for Al could be that of an early warning system (Fig. 4), for example to detect
outbreaks of pests such as the red palm weevil (Rhynchophorus ferrugineus) in palm plantations.
Al can be used to detect pests in real-time, with human experts on-call to manually validate
detections (Passias et al., 2024). This role may call for specific training targets: a high recall model
would make sure pest outbreaks are not missed, at the cost of a few more false positives. These
false positives could be efficiently filtered out by human experts, and used to improve model
performance in an active learning feedback loop (Mosqueira-Rey et al., 2023).

A less time-critical role would be that of an identification co-pilot (Fig. 4). Reliable species-level
identification with Al is not feasible across all taxa, sensors and domains (Step 2). However, a
general order-level image classifier is within reach (Schneider et al., 2023). As such, Al can take
on the role of detecting and sorting insects in sensed media, facilitating review by a suitable
taxonomic expert. The process might mirror a taxonomically tiered sorting system, as used in
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some insect monitoring programs (Karlsson et al., 2020), with sorting at higher tiers being carried
out by Al. A desirable model would readily process the most distinctive species, but flag unfamiliar
ones for further review (Hogeweg et al., 2024). Of course, experts are not a prerequisite for
human-in-the-loop approaches; Al models can also aid citizen scientists with simpler tasks, such
as flagging images or audio files that contain animal signals (Willi et al., 2019; Sheard et al., 2024).

5. Hold Al to account

If applied with care, Al is an increasingly useful processing tool. However, Al models can fail in
surprising ways, in spite of—and sometimes owing to—their efficiency and complexity. Some Al
pitfalls have roots in statistical autocorrelation; much like statistical models, Al readily exploits
non-generalisable correlations in space and time, so we must be vigilant when splitting training
and test datasets (Box 8). Despite advances in the field of explainable Al (Mosqueira-Rey et al.,
2023; Chiaburu, HauRer & Bielmann, 2024), it is not always clear how Al models function and
why they make mistakes. However, flawed Al is still useful if errors can be quantified and
understood (Funosas et al., 2026). Robust evaluation improves interpretation of uncertain Al
outputs, and helps us train more reliable models for the future.

Box 8. Too clever by half: Overfitting, shortcut learning and data leakage in Al

Al systems can achieve impressive accuracy. However, they can fail following slight changes to
input data—even just a few pixels in an image (Su, Vargas & Sakurai, 2019). Such failures arise
when models learn patterns in the training dataset too specifically (overfitting), or learn the
wrong patterns (shortcut learning & data leakage; Geirhos et al., 2020).

Overfitting

As a rule, an Al model is trained by performing a task hundreds of times using a training dataset.
Ideally, it learns general patterns that transfer to new, real-world data. However, the model often
learns noise or quirks in that particular dataset, meaning it performs well for training examples
but poorly for new ones. This process is called overfitting, and can lead us to overestimate how
models will perform in real-world situations. Overfitting happens quickly when models are large,
and when training datasets are small or biased. To measure and prevent overfitting, a portion of
data is withheld from training and used for validation and testing of the model (Blair et al., 2024).

Shortcut learning and data leakage

Most Al models are trained to find efficient strategies to perform tasks—not necessarily rigorous
ones. Shortcut learning occurs when a model uses superficial clues, rather than diagnostic
features, to perform a task (e.g. classifying a species based on an indicative background, rather
than morphology). Where such clues are accidentally included in the training data, this is called
data leakage (Geirhos et al., 2020). A famous example in medicine showed that Al can use
hospital-specific symbols in images to “cheat” in diagnosis (Zech et al., 2018). Similar issues
could occur in ecology, for example if images of the same insect are included across training,
validation and test datasets. While shortcut learning places emphasis on the behavior of the
model, data leakage emphasises problems in the training, validation and test data.

As with overfitting, shortcut learning and data leakage produce models that appear to perform
well, but fail to generalise to new contexts (Kapoor & Narayanan, 2023). They tend to be most
problematic where sensor data have persistent features, for example background conditions,
that distract Al models during training and application (Beery, Van Horn & Perona, 2018).
Shortcut learning and data leakage can be diagnosed by evaluating models using
out-of-distribution data, such as images with novel backgrounds (Bernett et al., 2024).
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To properly confront Al uncertainty, we need to be more open about it. A key issue is that models
are trained and evaluated using similar data, giving an unrealistic impression of performance in
novel contexts. Crucially, there is a lack of accepted benchmark datasets to fairly evaluate
different models (Schneider et al., 2023; Branding et al., 2024 for acoustics; but see Nguyen et al.,
2024 for vision). Bjerge et al. (2023a) demonstrate issues with siloed evaluation: they trained a
model to detect insects in images, achieving an F1 score of 0.932 on their own test dataset.
However, when evaluating the model for insect classes not present in training and test data, only
~80% of insects were detected. Similarly, Stefan et al. (2025a) found considerable drops in model
performance when exposing models to background conditions and insect sizes that differed from
the training data. In general, it is good practice to report evaluation results in detail. Publishing
performance for each class, context, or specimen in a benchmark dataset helps to clarify how
often models fail, and for which types of inputs (Burnell et al., 2023).

Crucially, to understand Al uncertainty, we need to encourage evaluation using out-of-distribution
(o.0.d.) data. Validation and test datasets are assumed to be independent and identically
distributed (i.i.d.) to training data. Ideally, real-world data would also meet this assumption, but this
is very rarely the case (Geirhos et al., 2020). Real-world data are often 0.0.d.: they differ from the
training data based on distinct background conditions, new locations, or even shifts in the
rank-abundance of taxa. Evaluation with 0.0.d. data helps determine whether an Al model has
learned the intended features, so that it can generalise well to new conditions within the target
domain. Svenning et al. (2025) evaluate their arthropod detection model across 23 distinct
imaging systems, highlighting how o0.0.d. evaluation can be carried out and presented during
model development.

Importantly, 0.0.d. evaluation is not just for model developers; it may be most useful during model
deployment, using data from the context in which Al is being applied (see Appendix S1 for a
hypothetical example). Annotating a subset of data processed by a model enables quality control
of Al outputs (Fig. 5, golden arrows), allowing quantification of false-positives and false-negatives
(Cowans et al., 2022) and even calibration of confidence scores ((Wood & Kahl, 2024); Box 2).
This evaluation and quality control process generates annotations to train new Al models (see
Step 3), but also helps us make sense of unverified Al predictions. Error rates can be accounted
for, and it is even possible to explicitly model the Al-detectability of species (Cowans et al., 2022).
While o0.0.d. evaluation is always insightful, it can be expensive. As a minimum, Al users should
consider whether training data differ from the application context, and how this may impact model
performance.

Holding Al to account means assessing its reliability, but also improving its performance. A very
common approach is fine-tuning—a kind of transfer learning where an existing model is
re-trained on a dataset relevant to a specific task (Kumar et al., 2022). However, there is room for
innovation to address more fundamental weaknesses of Al for insect monitoring. For example,
models often struggle to perform well against unseen backgrounds. Algorithms that leverage
frame-to-frame motion could improve detection in novel contexts (Ratnayake et al., 2021; Bjerge,
Frigaard & Karstoft, 2023b). Alternatively, unlabelled data from novel backgrounds could be used
to improve model generalisation, through unsupervised domain adaptation (Kay et al., 2025).
Data augmentation is also crucial, artificially increasing the variability of the training data through
rotation, cropping, color-shifting, or inclusion of synthetic data (Beery et al., 2020; Schneider et al.,
2023). In acoustics, augmentation can involve playback re-recordings, or simulation of target and
non-target sounds (Madhusudhana et al., 2024; Okamoto & Oguma, 2025).

Many breakthroughs in Al for insect monitoring involve multimodal approaches, such as
supplementing sensor data with taxonomic descriptors (Stevens et al., 2023; Gu et al., 2025) or
DNA sequences (Badirli et al., 2021; Gharaee et al., 2023, 2024). By leveraging the hierarchy of
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the tree of life, multimodal learning can improve inference using sensor data alone. It can even
enable Al to identify taxa not present in the training data, through zero-shot learning (Schneider et
al., 2023). Multimodal approaches also improve uncertainty quantification; Al models are often
confronted with species or phenotypes not present in the training data, and hierarchical
classification enables models to provide coarse taxonomic labels where appropriate (Bjerge et al.,
2023c). Alternatively, models can flag specimens that fall outside of their comfort zone (called
novelty or 0.0.d. detection; Lee et al., 2018), highlighting where annotation could rapidly improve
model performance (Koch et al., 2022). Beyond descriptive or genetic labels, geographic and
temporal labels can also improve Al model performance. They can be used, as by human experts,
to effectively narrow the list of possible taxa based on distribution and phenology (Terry, Roy &
August, 2020).

Finally, an important innovation in Al for insect monitoring is embedding-based modelling. Existing
Al, especially foundation models (Box 6), can be used to generate compressed
representations—or embeddings—of sensor data. Then, further models can rapidly explore
high-dimensional relationships across those embeddings. This enables effective and
computationally-efficient novelty detection, as well as classification of new taxa with very few
additional training data (Hogeweg et al., 2024). Furthermore, training small linear classifiers using
embeddings from pre-trained models is an efficient form of transfer learning. So-called “linear
probing” trains new models for specific insect monitoring tasks, while retaining some of the
generality of the original models (Kumar et al., 2022). BioCLIP 2 embeddings are useful for insect
classification (Gardiner et al., 2025a), while BirdNet and Perch embeddings could be useful for
acoustic monitoring of insects (Ghani et al., 2023).
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Figure 5. Annotation isn’t just for model training—it also helps to capture uncertainty.
Strategically annotating a subset of recorded data (golden arrows) can allow bias correction, for
example by calibrating Al confidence scores (Wood & Kahl, 2024) or using false-positive models
(Cowans et al., 2022). Evaluation permits robust ecological conclusions despite uncertainty in Al
predictions
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6. Make technologies accessible

In order to be useful, automated monitoring technologies need to be accessible to researchers and
practitioners on the ground. However, technology and Al development for biodiversity monitoring is
highly concentrated in the global North (Chan et al., 2021). This limits access to technology and
training in the global South and for marginalised groups (Speaker et al., 2022), and reduces the
availability and relevance of Al models for tropical ecosystems (Pollock et al., 2025). There is a
clear risk for existing disparities to be made worse, so that the most biodiverse regions of the world
continue to have reduced capacity for biodiversity monitoring (Collen et al., 2008; Ocampo-Ariza et
al., 2023).

A variety of technical, financial and socio-economic barriers threaten global adoption of sensors
and Al for insect monitoring. First, the complexity of Al, software and hardware is a major barrier to
uptake. Many ecologists lack training in not only Al, but also handling of large datasets involved in
Al training and data-processing (Kendall-Bar et al., 2025). A lack of training compounds with a
fast-evolving landscape of both software and hardware related to sensors for insects (van Klink et
al., 2024). Most hardware setups are custom-made rather than off-the-shelf products, so that even
collection of data requires considerable expertise. Scaling insect sensing systems means more
focus on training and community feedback, and a greater emphasis on ease of use and technical
support (including sustainable software development; Durdik et al., 2012). Specifically, overcoming
deployment biases depends on equitable Global North-South partnerships that include capacity
building, skills sharing, community engagement, and knowledge exchange (Haelewaters, Hofmann
& Romero-Olivares, 2021; Sanchez Herrera et al., 2024).

Financial costs related to sensors and Al form another major barrier. For PAM, relatively
affordable sensors are available, with commercial devices costing <€150 (Hill et al., 2018).
However, other systems are much more expensive; high-end camera systems can cost upwards of
€5,000 per device. This is prohibitively expensive in many parts of the world, where there may be
added costs for insurance, security and replacement of damaged or stolen equipment; a recent
deployment of 20 time-lapse cameras on a mountain in South Africa involved hiring guards for
24-hour security (Alison et al., 2024). Radar and lidar sensors are often even more expensive (Fig.
2), resulting in large gaps in coverage at global scales (Heistermann, Jacobi & Pfaff, 2013). To
ensure coverage in low-income countries, system development should use a process of
“innovation through simplification”, while automated monitoring programmes should converge on
the most affordable hardware (Brydegaard et al., 2024).

Even if hardware-related costs are reduced, for example through industrial production of sensors
(Hill et al., 2018), costs related to data processing and storage may still be prohibitive. Deploying
Al is costly in terms of both computation and energy consumption, especially when using highly
generalised foundation models (Luccioni et al., 2023). Training or fine-tuning Al models is also
expensive, and sometimes cost-prohibitive without suitable computing infrastructure (Hellendoorn
& Sawant, 2022). Use of smaller, task-specific Al models—including specialised image
classifiers—can help to make systems affordable and energy-efficient. However, access to
computing infrastructures is a far-reaching issue that is exacerbated by needs to store and access
increasing volumes of data. Growing datasets bring rising costs for insect sensing systems, with
some already occupying terabytes (Gu et al., 2025). Such barriers could be addressed
fundamentally through more equitable international sharing of computational resources.
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/. Support systematic monitoring

Systematic monitoring involves repeated, standardised surveys of insect biodiversity, ideally at
strategically or randomly selected sites, and is the gold-standard for long-term biodiversity
monitoring (Conrad et al., 2006; Brereton et al., 2011). A key example of this is the UK Butterfly
Monitoring Scheme, which has monitored butterflies repeatedly at sites across the UK since 1976
(Brereton et al., 2011). Systematic monitoring underpins key indicators used to track the
biodiversity crisis (Butchart et al., 2010). Furthermore, international policy structures, such as the
Kunming-Montreal Global Biodiversity Framework decision 15/5 (2022) and the European Nature
Restoration Law (2022), emphasise the need for systematic monitoring to track progress towards
biodiversity targets. Patterns and trends in biodiversity can be derived using opportunistic data
(van Strien, van Swaay & Termaat, 2013; Outhwaite et al., 2020), but fixed-effort, systematic
observations are more repeatable and information rich (Isaac & Pocock, 2015). Crucially,
systematic random sampling is the most direct way to make unbiased inferences about unsampled
areas (Boyd, Powney & Pescott, 2023).

How can automated methods support systematic monitoring of insects? First, they can be
deployed much more widely, and according to rigorous sampling strategies. Until now, sensors for
insects and other wildlife have mostly been placed opportunistically (Burton et al., 2015). While
some sensors have practical constraints on their placement, contributing to spatial biases (Bowler
et al., 2025), there is clear scope to target deployments of smaller sensors to better achieve
monitoring goals. When scaling up deployments, we should strive to delineate spatial sampling
units (for example, habitats or features of interest) and deploy sensors so that we represent them
evenly and transparently. Automated methods allow for scalable monitoring with lower person-hour
costs, increased sampling frequency, and reduced need for lethal sampling (van Klink et al., 2022).
Rigorous sampling strategies are the last piece of the puzzle to maximise the scientific contribution
of sensors, and fully leverage their potential for standardisation (Hoye et al., 2025).

Second, insect sensing systems should build on existing monitoring schemes, according to
established site selection protocols. We echo previous assertions that automated methods should
improve and expand on, rather than replace, existing insect monitoring initiatives (Dyer et al.,
2024). By building on and harmonising with existing datasets, sensor deployments deliver much
greater value—both immediately and in the derivation of trends in future. Furthermore, long-term
monitoring faces a constant funding crisis, despite calls to expand collection of long-term data to
understand insect biodiversity change (Harvey et al., 2020; Didham et al., 2020; Mammola et al.,
2020). Automated monitoring and Al are proving highly fundable areas of research, not least due
to their potential for biocredit markets (Ford et al., 2024). Well-aligned automated monitoring
should scale-up existing monitoring schemes, but also help fund the continuation of traditional
monitoring and coveted long-term datasets.

Third, work is needed to integrate data collected by automated methods, which often differ from
many traditional approaches. Some of the longest-running time series of insect populations were
produced using traditional methods such as light traps (moths; Conrad et al., 2006; Macgregor et
al., 2021), suction traps (Bell, Blumgart & Shortall, 2020), and line transects (butterflies; Brereton
et al., 2011). Traditional datasets are clearly not replicated by automated systems (but see
Chiavassa et al., 2024), so calibrating new datasets with old ones is crucial. Data integration refers
to statistical approaches that analyse multiple data sources within a single analytical framework,
leveraging all available information to improve ecological inference (Miller et al., 2019; Isaac et al.,
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2020). It involves integrated modelling approaches that account for differing assumptions, biases,
and scales of data collection (Yen ef al., 2019). It has been successfully used in species
distribution modelling, for example to combine presence-only and abundance data (Pagel et al.,
2014; Fithian et al., 2015). However, studies integrating time series from multiple sources are still
rare (e.g. Bowler et al., 2019; Hertzog et al., 2021), and we need to move beyond ensemble or
synthesis-based approaches toward modelling frameworks that draw on multiple sources of data.

Finally, we need to recognise that sensors are not a panacea in insect monitoring. In most cases,
sensors alone do not capture features necessary for species-level identification (see Step 2). Many
insect monitoring questions will continue to demand the time of taxonomic specialists, and may
gain little from sensor-based approaches (Engel et al., 2021). Here, sensors might support
systematic monitoring by focussing on identification and monitoring of common species, freeing up
taxonomists for tasks beyond the scope of current Al (Alison & Hgye, 2024). Systematic
monitoring schemes of the future might build on the strengths of both traditional and automated
approaches using a tiered approach: many low-cost, high-frequency, taxonomically-coarse sentinel
sensor stations could support a network of core monitoring stations, which combine traditional
approaches with molecular methods and high-cost sensors.

Conclusions

1. Automated biodiversity monitoring with sensors promises to massively increase the
availability and affordability of data, whether for biodiversity assessments, trend estimation,
agricultural monitoring or ecological research. Companies promising to provide automated
monitoring services are already emerging worldwide.

2. However, successful automated monitoring of insects requires a coordinated and thoughtful
approach; work is needed to confront harsh realities of sensors and Al and bring them up
to standard for large-scale deployment. Our attention should be focused on affordable
hardware design, agreed protocols, and standardized, annotated datasets.

3. There are limits to what we can expect from Al. We highlight some often neglected caveats,
not least ethical concerns. Crucially, Al identification is constrained to morphologically
distinct species with large quantities of labelled sensor data. Models must not be blindly
trusted, and are most useful following shrewd, case-based evaluations.

4. Human resources are an underappreciated component of insect sensing systems. While
sensors and Al can contribute to species monitoring and discovery, human expertise
remains a key limiting factor. In short, the role of Al is to complement human
workflows—not consume them.

5. Creative use of sensors and Al can improve species detection and identification, whether
by leveraging hyperspectral signals, multimodal methods or data augmentation. On the
other hand, uncertain identifications can be explored at coarse taxonomic ranks, exploiting
the extraordinary spatiotemporal scales and resolutions of sensor data.

6. Deployed in the right places, and with sufficient investment in data management, insect
sensing systems can enhance our knowledge of insect biodiversity beyond imagination.
However, this vision will only be realised through harmonisation with, and further
investment in, existing long-term datasets and systematic monitoring schemes.
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Glossary

Term Explanation

Annotation, Biological information attached to sensor data (e.g.:

Label species presence, identity or behaviour), often used for
training, validating, or evaluating Al models.
Human-generated labels are often called annotations.

Algorithmic Processing, Extracting meaningful information from raw sensor data

Signal Processing using rule-based, mathematical and statistical

techniques. One example could be filtering or
modification of digital images by means of algorithms and
filter matrices (kernels).

Artificial Intelligence (Al) Computational systems that perform tasks typically
requiring human intelligence. Often refers to machine
learning models that learn complex patterns from large
training datasets to carry out data processing tasks.
Benchmark (dataset) A curated dataset with associated annotations. Used to
compare performance of data processing tools for a
specific task, under a set of known constraints and
assumptions.

Domain Entities, contexts and data structures that are in scope
for a given data processing task. Can include taxa,
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backgrounds, environmental conditions, recording
parameters and file types. An Al model has a source
domain, captured by the training dataset, but is tested
and applied in target domains. Where source and target
domains differ (domain shift) performance may decline.

Embedded processing,
Edge processing

Data processing done locally to the sensor device, e.g.
on a compact computer. Used to prioritize which data to
store or transfer, and for real-time updates or changes to
system behaviour.

Foundation models

Large Al models, trained on vast and often multimodal
datasets (e.g. text, audio, images), well-suited to general
tasks.

Ground truth, Direct observations considered to be true, as opposed to

Ground reference inferred. Can be derived using meticulous calibration or
expert annotation.

Generalisation The ability of a model or monitoring system to perform

well when applied to taxa, environments or conditions
that differ from those seen during training or calibration.

Insect sensing systems

Acoustic and/or electromagnetic sensors that
continuously record insects in-situ (under field
conditions), including associated hardware, software and
data processing pipelines.

Human-in-the-loop

A workflow where human expertise is incorporated to
validate, correct or refine outputs of automated data
processing. Permits verified records, quality control and
feedback loops to train Al.

Machine Learning (ML)

A class of algorithms to train models that learn complex
patterns from data to make predictions.

Multimodality The use or integration of multiple data types or sensing
modalities (e.g. imagery, audio, radar, optical signals,
DNA, text descriptors) within a single monitoring system
or analytical framework.

Segmentation A data processing task that involves separating or

“segmenting” regions of an image based on shared
properties, for example separating foreground insects
from one another, and from their background. The output
is often a set of bounding polygons or pixel masks.

Signal-to-noise ratio

The relative strength of biologically relevant signals
compared to irrelevant environmental or sensor noise.

Standards Sets of terms, structures and formats for storing and
sharing data relevant to a specific field or application.
Transfer learning The process of re-training an Al model for a new task

while leveraging features learned for a previous task.
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