

1 Title

2
3 A macroevolutionary gene network reveals diapause evolutionary dynamics beyond the circadian
4 clock and predicts microevolution

5

6

7

8 *Saurav Baral¹, Sridhar Halali², Mats Ittonen^{1,3}, Klaus Fisher⁴, Karl Gotthard¹, and Christopher*
9 *Wheat¹**

10

11

12

13 ¹ Stockholm University, Department of Zoology, 10691 Stockholm, Sweden

14 ² Biodiversity & Evolution Unit, Dept. of Biology, Lund University, Sweden

15 ³ Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia

16 ⁴ Institute for integrated natural Sciences, department of Biology, Zoology, University of Koblenz-
17 landau, Koblenz, Germany

18

19

20 Abstract

21 Diapause is an alternative developmental pathway evolved independently in many insects to
22 synchronize life cycles with resource abundance. While subsets of this essential phenotype have
23 long been studied at a single species level, the genomic basis of the full diapause syndrome remains
24 poorly understood. Remaining unknown is whether convergent diapause syndromes employ
25 shared mechanisms. This paucity of insights has fueled a long-standing debate about how life cycle
26 synchronization evolves. Using a comparative genomic analysis spanning diverse diapause
27 transitions in butterflies, we identified a large network of coevolving genes unique to diapausing
28 species. The network is composed of functional modules spanning circadian regulation,
29 metabolism, and cell cycle control. We tested whether this macroevolutionary scale network
30 predicts microevolutionary dynamics, hypothesizing that this network is the polygenic architecture
31 underlying the diapause syndrome. Analyses revealed that allelic variation in the diapause network
32 is significantly enriched in signatures of local adaptation across latitudes, but only in diapausing
33 species. Thus, we empirically show that diapause evolves through modular, coevolving gene
34 networks, components of which regulate species/population specific diapause phenotypes. This
35 novel perspective on this complex phenotype opens a new horizon of inquiry for understanding
36 seasonal adaptation across evolutionary scales, while demonstrating the power of using
37 comparative genomics to dissect polygenic phenotypes.

38

39 Keywords

40 diapause, comparative genomics, butterflies, circadian clock, coevolutionary gene network,
41 macro-to-micro evolution

42

43

44 **Introduction (3000 words)**

45 Many temperate insects synchronize their life cycles with seasonal variation in resource abundance
46 using an environmentally-induced dormancy called diapause(1, 2). Diapause is a state of low
47 physiological activity involving metabolic suppression, developmental arrest, and increased stress
48 resistance, enabling survival until favorable conditions return(3–5). Understanding the genetic
49 basis of diapause and how it evolves is a long sought-after goal, with a “diapause toolkit” used
50 across species often envisioned(6), but whether such a coherent set of genes exists has been called
51 into question(7). Nevertheless, mechanistic insights into diapause hold the potential to reveal how
52 a key innovation in life-cycle regulation has evolved, which can inform modeling of insect
53 population responses to diverse anthropogenic challenges(1, 3, 8, 9).

54 Diapause is a syndrome(4), integrating a wide array of phenotypes and trade-offs: arresting
55 development, slowing biological time, enhancing cellular homeostasis, and increasing resistance
56 to stress, often resulting in delayed maturation, reduced reproductive investment, and extended
57 lifespan. There are likely many different ways to achieve this alternative life-history pathway,
58 leading some researchers to expect that rather than individual genes being shared across
59 independently evolved diapause phenotypes, functional pathways themselves might be a more
60 coherent analysis framework(7). This complexity of the diapause syndrome challenges
61 mechanistic dissection of its origin and evolutionary dynamics due to (a) its polygenic nature(7,
62 10) and (b) a recognized gap in evolutionary biology, the micro-to-macro evolutionary gap(11).
63 Syndromes, like diapause and other complex phenotypes, are readily observed on a
64 macroevolutionary scale, yet these innovations often lack relevant trait variation for the full
65 syndrome within species(12). Without relevant microevolutionary variation, establishing genotype
66 to phenotype connections is severely constrained(6). Hence, while dissection of the intra-specific
67 variation can help build models of what is required for subsets of syndrome phenotypes, the ability
68 of such insights to inform upon the origins and evolutionary dynamics of syndromes as a whole is
69 limited. Thus, a new approach is needed to study the evolution of the diapause syndrome.

70 These challenges are well exemplified in Lepidoptera, wherein numerous population genomic,
71 physiological, and transcriptomic studies have sought mechanistic insights into diapause traits.
72 While genomic comparisons between populations (or strains) differing in diapause induction
73 thresholds often find strong evidence for a role of alleles in circadian clock genes(13, 14), diapause
74 physiology via transcriptomic studies consistently reveal diverse functional pathways associated
75 with the developmental regulation of diapause(15). Despite this impressive progress, remaining
76 unknown are the genetic mechanisms influencing diapause evolution beyond its induction, and
77 whether these mechanisms are shared across diverse species (6, 7). Further, while diapause is
78 known to have evolved independently many times and manifests at different life stages (egg, larva,
79 pupa, or adult) across insect species(4, 5), generally unknown across insects is whether species
80 within the same family have a shared or independent origin of diapause.

81 **Comparative analysis of diapause**

82 Here we address these aforementioned challenges using recent advances in both comparative
83 genomics(16) and detailed reconstructions of diapause syndrome evolution in butterflies(17, 18).
84 Butterflies (superfamily Papilioidea) now have more than 100 high-quality genomes available
85 spanning nearly 100 MY of evolution and well-defined ecological traits(17–20). This combination
86 offers a unique and powerful framework wherein comparative genomic analyses can be used to

87 bridge the micro-to-macro evolutionary gap to reveal the genetic mechanisms underlying complex
88 syndromes, such as diapause in insects.

89 We began by gathering high-quality genomes from species with known diapause phenotypes and
90 assessing correlations between the evolutionary rate of protein-coding genes with
91 presence/absence of diapause. Our dataset includes 89 species from four major families spanning
92 nearly 100 MY of evolution (Fig. 1, A and B; table S1). Diapause in these species spans ~16
93 independent evolutionary transitions of the diapause syndrome, which manifests across four
94 different life stages (Fig. 1B;(17). We approach this complexity by using a binary encoding of
95 species having or lacking diapause, searching for general insights into diapause mechanisms.

96 **Evolutionary rates of diverse genes are correlated with diapause**

97 In order to gain general insights into diapause evolution, our sampling timescale spans at least 100
98 million generations. This covers a vastly deeper temporal horizon than previous large-scale
99 comparative genomics projects (e.g., while taxonomic sampling in the mammalian-focused
100 Zoonomia project spanned nearly 100 MY of evolution, those species' generation times were >>
101 1 year)(16). At this evolutionary scale, alignments of putatively regulatory regions fail to pass
102 rigorous quality filtering(21), limiting our analysis to a total of 4,571 single-copy orthologs that
103 could be aligned with high confidence. These were used to assess whether any of these genes have
104 evolved at different rates along branches leading to species with and without diapause (while
105 accounting for rate variation among genes as well as phylogenetic non-independence). For this we
106 calculated Rho, which measures the correlation between each gene's relative evolutionary rate in
107 relation to the presence or absence of diapause tip traits. Here, evolutionary rate estimation uses
108 the total amount of genetic change (i.e. analyses are not based upon dN or dS values). Genes with
109 significant positive Rho values indicate increased evolutionary rate in diapausing lineages (Fig.
110 2A; table S7). In contrast, genes with significant negative Rho values evolve slower in diapausing
111 lineages(16, 22, 23).

112 A total of 59 genes have evolutionary rates significantly correlated with diapause (q-value < 0.1;
113 p < 0.0017; Fig. 2A), with 25 having a positive association (Rho > 0), while the rest are negatively
114 associated (Rho < 0). Notably, four of the 25 outliers showing strong positive evolutionary rates
115 associated with diapause are the core circadian clock genes *period* (*per*) (Rho = 0.30, p-value =
116 0.00001), *timeless* (*tim*) (Rho = 0.25, p-value = 0.0015), *clock* (Rho = 0.28, p-value = 0.0007), and
117 *cycle* (Rho = 0.24, p-value = 0.0009). These macroevolutionary results are strikingly concordant
118 with diverse microevolutionary-level studies that commonly report associations and causal
119 connections between allelic variation in these clock genes and diapause induction phenotypes
120 across diverse Lepidoptera and other insects(14, 24, 25). Beyond providing strong validation for
121 our comparative analysis, finding that the evolutionary rate of multiple clock genes is positively
122 associated with diapause formally integrates diverse species level insights, suggesting that the
123 clock genes are best viewed as parts of an interconnected gene network. We next sought to further
124 explore these significant Rho genes to gain mechanistic insights into the diapause syndrome.

125 Gene set enrichment analyses (GSEA) using gene ontology (GO) terms on the positive Rho genes
126 (n = 25) revealed an enrichment for circadian processes, while negative Rho genes (n = 34) were
127 enriched for metabolism and development functions (Fig. 2C). After removing the 4 clock genes
128 (*per*, *tim*, *clock* and *cycle*), GSEA on the remaining positive Rho genes (n=21) revealed an
129 enrichment of negative regulators of tissue development (fig. S4). Using functional annotations
130 from *Drosophila melanogaster*, these 25 positive Rho genes fall into seven subjective groups:
131 circadian regulation/clock genes (4 genes), chromatin regulation (4 genes), membrane receptors

132 and signaling (3 genes), membrane and vesicle transport (4 genes), core metabolism (4 genes),
133 cytoskeletal and developmental morphogenesis (4 genes), and protein and DNA maintenance (2
134 genes) (table S12). These non-clock, positive Rho genes associated with diapause evolution
135 represent the first glimpse of previously unknown genes and genetic pathways potentially
136 impacting diapause evolution, demonstrating a route beyond a circadian clock focus. However,
137 like many in the non-model genomics community, we find GO term analyses and functional
138 annotations inferred across deep evolutionary time to be of limited value for *post-hoc* functional
139 insights (especially when annotations primarily rely upon species lacking a coherent diapause
140 phenotype). Given the power of our approach to uncover both known and novel genes associated
141 with the diapause syndrome beyond circadian regulation, and the limitations of GO term analyses,
142 we next explored alternative routes to study the genetic mechanisms of diapause evolution.

143

144 **Evolutionary Rate Correlations**

145 Genes encode products that have intimate functional interactions with other loci (e.g., via protein-
146 protein, metabolic pathway or gene regulatory network connectivity). Because genes evolve while
147 maintaining these interactions, genes coevolve with their interacting partners. Macroevolutionary
148 analysis of correlations in evolutionary rates between genes can reveal such co-evolutionary
149 networks and provides a powerful means of predicting gene function(26, 27). Measures of
150 evolutionary rate covariation (ERC) estimate the strength of correlation in evolutionary rates
151 between two genes, across all the branches of a phylogenetic tree (while correcting for
152 phylogenetic relatedness). High ERC values indicate co-evolving genes, suggesting either
153 functional interactions, co-regulation, physical interactions, or shared evolutionary
154 constraints(27).

155 Using our dataset of evolutionary rates for 4,571 genes (Fig. 2), we computed 10,444,735 pairwise
156 ERC values across three dataset partitions (Fig. 3F): the full species set ($n = 89$), only diapausing
157 species ($n = 54$), only non-diapausing species ($n = 35$). Circadian clock genes were used to verify
158 and calibrate our ERC results, as their protein-protein and regulatory interactions are well
159 documented and conserved across Bilateria (fig. S11) (28, 29). Components of the circadian clock
160 that physically interact (*period*, *timeless*, *cry2*, *clock* and *cycle*; Fig. 3, D, G, H) exhibit strong co-
161 evolutionary dynamics (ERC values > 0.4), while those with only regulatory interactions are
162 weaker (Fig. 3, E, G, H). Going forward, to discover the gene networks potentially underlying
163 diapause evolution, we used this empirically derived threshold between genes (ERC > 0.4) as our
164 co-evolving cutoff, which represents the top 0.52 % of all ERC values (Fig. 3F, red line; fig. S12).

165

166 **Evolutionary dynamics of the circadian clock in diapausing lineages**

167 Whether circadian clock genes might be evolving differently in diapausing vs. non-diapausing
168 lineages has long been implied in the literature but never formally quantified. We find that specific
169 components of the circadian clock exhibit stronger coevolution in diapausing lineages. For
170 example, in the diapausing species set, the ERC for *period* - *timeless* is 0.66, while in the non-
171 diapausing set this is weaker (0.38). In the full dataset of all species ($n = 89$), the *period* - *timeless*
172 ERC is intermediate between the previous values (0.60). Extending ERC analyses across all the
173 core circadian clock genes (*period*, *timeless*, *cry1*, *cry2*, *clock* and *cycle*) reveals a strong
174 interconnected network of coevolution in diapausing lineages not seen in non-diapausing lineages
175 (Fig. 3I). Thus, different evolutionary dynamics are acting upon these core clock genes when
176 evolving in lineages with vs. without diapause. This insight advances the debate regarding to what
177 extent the evolutionary dynamics of the circadian clock are associated with seasonality(30). Our

178 results support the hypothesis that core components of the circadian clock are part of a coevolving
179 network of diapause genes.

180

181 **Evolutionary dynamics beyond the clock: the Rho-gene network**

182 Given the power of ERC analysis to detect expected coevolutionary dynamics (e.g., the interacting
183 circadian clock genes; Fig. 3H) and provide novel insights (Fig. 3I), analyses were extended to
184 identify the full set of coevolving genes associated with the 25 genes significantly associated with
185 diapause (positive Rho genes, Fig. 2B). The network of coevolving genes in diapausing lineages
186 comprises two sets of 14 and 2 genes each, with core clock genes being part of the larger set (Fig.
187 4A). Non-diapausing lineages lack such a large co-evolving network, having only two small sets
188 of 4 and 3 genes, with clock genes comprising the smaller set (just *period*, *clock* and *cycle*; Fig.
189 4A). The genes comprising the large coevolutionary network in diapausing lineages (n=14 genes)
190 are hereafter referred to as the “Rho-gene network”. The emergence of Rho-gene network from
191 our macroevolutionary analysis is intriguing, as it suggests evolutionary dynamics in diapausing
192 lineages that include and extend beyond clock genes.

193 Using our Rho-gene network to investigate diapause evolution allows moving beyond candidate
194 genes and towards a formal network level analysis that captures the breadth of genes involved in
195 the full diapause syndrome. While members of the Rho-gene network are significantly associated
196 with the evolution of diapause (Fig. 2B), each of these genes is also potentially coevolving with a
197 larger set of genes. Discovering this larger network holds potential for studying the evolution of a
198 complex phenotype like the diapause syndrome. If selection on the diapause syndrome during
199 evolution acts primarily at the network level, selection on individual genes may be diffuse and the
200 contribution of genes within the network variable across species(7). Such diffuse signals are
201 difficult to detect on a microevolutionary scale, challenging to reconcile across independent
202 species-level studies, and generally hampered by gene functional annotations that lack gene set
203 grouping for the trait of interest. To formally address these challenges, we use the identified Rho-
204 gene network to develop a formal hypotheses framework for studying the evolution of diapause,
205 deriving a macroevolutionary informed gene set for *a priori* testing that is fundamentally different
206 from the *post-hoc* analyses of gene ontology term groupings in GSEAs.

207 Starting with the Rho-gene network (n = 14 genes), additional genes were retained from the full
208 dataset (n=4,557 genes) if they exhibited strong co-evolutionary signatures (ERC > 0.4 in the
209 diapausing taxa subset) with any of the Rho-gene network members. This yielded a coevolving
210 network of 504 genes, hereafter referred to as the “expanded Rho-gene network”. Gene ontology-
211 based enrichment analysis was largely unhelpful in revealing the biological function of this larger
212 network (fig. S3). Instead, we took a network-based approach based on ERC values to detect
213 modularity within the expanded Rho-gene network (Fig. 4B). Stochastic block model-based
214 clustering identified eleven modules (table S10) within the expanded Rho-gene network. Each of
215 these modules is enriched in genes that belong to different biological processes (fig. S8). For
216 example, Cluster 8 (n = 29 genes) is enriched for circadian processes (*period*, *timeless*, *clock*, etc.),
217 while Cluster 10 (n = 26 genes) is enriched in cell division and cell cycle regulators. Taken
218 together, these coevolutionary modules span the different physiological aspects of the diapause
219 syndrome, potentially revealing the modular architecture through which diapause evolves.

220 A putative diapause syndrome “toolkit” would be expected to include processes such as cell cycle
221 arrest, metabolic suppression, and heightened stress and defense responses, reflecting themes that
222 recur across species(7). Comparative work across a broader range of species within and outside
223 Papilioidea will be critical to determine whether the gene clusters and pathways identified here

224 represent general mechanisms of diapause evolution. Notably, several candidate genes previously
225 implicated in diapause in taxa beyond Lepidoptera were absent from our expanded Rho network
226 (table S14). While this absence could reflect butterfly-specific features of diapause regulation, it
227 more likely indicates that shared biological processes, rather than identical genes, underlie
228 diapause across lineages. Similar conclusions have emerged from diverse transcriptomic studies,
229 which show that pathway-level rather than gene-level conservation may better characterize the
230 evolution of diapause(6, 7). These insights underscore the importance of adopting a network
231 framework for comparative assessments of the diapause syndrome, in which species may rely on
232 different components of interconnected gene clusters to achieve similar phenotypic outcomes.
233 Such a perspective cautions against assuming that candidate genes identified in one lineage will
234 apply universally and highlights the value of investigating trait evolution through the lens of co-
235 evolving gene networks rather than isolated loci.

236

237 **Microevolution**

238 To further explore the utility of our network framework for understanding the convergent evolution
239 of the diapause syndrome, we tested whether the expanded Rho-gene network, identified at a
240 macroevolutionary level, is enriched in signatures of local adaptation arising from
241 microevolutionary dynamics across diverse butterfly species. For this, we used population
242 genomic analyses of geographically distinct populations in three species with, and one without
243 diapause (Fig. 4C). Diapause phenotypes have either been shown to differ between these
244 populations (31, 32) or on similar geographic scales (33, 34). We then tested whether there was a
245 significant enrichment of expanded Rho-gene network (n= 504) in genomic regions exhibiting
246 signatures of local adaptation (top 5% F_{ST} outlier loci; similar results using top 1% outliers are in
247 fig. S16). Genes in the expanded Rho-gene network were significantly enriched in three species
248 with diapause compared to 1000 random sets of 504 genes and distributed across the whole
249 genome (Fig. 4C), with roughly one-third (34%; n= 95) common across the three diapausing
250 species (Fig. 4D). However, no such enrichment was seen in our non-diapausing species (*Papilio*
251 *polytes*). The intersection genes from diapausing species are distributed across the eleven modules
252 produced by the SBM clustering of the expanded Rho-gene network (fig. S10). These results not
253 only provide empirical support for our macroevolutionary predictions, but also reinforce the view
254 that the diapause syndrome has a modular genetic architecture, shaped by ongoing
255 microevolutionary dynamics that give rise to the coevolving gene modules of the diapause
256 syndrome.

257 **Conclusion/Discussion**

258 While species-level studies have made great strides in discovering mechanisms of diapause
259 functioning, these advances primarily derive from candidate gene knockout studies and
260 investigations of large effect alleles, which often differ across taxa (table S15) (6). Attempts to
261 extrapolate from these mechanistic findings to general evolutionary insights have been challenging
262 (1, 30), exemplified by the ongoing debates about the relative role of circadian clock components,
263 their functioning, and the possible role of additional physiological or metabolic mechanisms'
264 contribution to diapause (35–37). Here we have taken a fundamentally different integrative
265 approach that bridges macro- and microevolutionary scales. We identified a clade-specific gene
266 coevolutionary network that is independent of functional annotations, enabling formal hypothesis
267 testing at both the macro- and microevolutionary levels. This design allowed us to move beyond
268 *post hoc* gene set comparisons via GSEA to test *a priori* predictions directly, providing a powerful

269 and generalizable framework for understanding how complex adaptive phenotypes evolve. In
270 doing so, we establish a quantitative and empirical connection between deep evolutionary history
271 and contemporary genetic variation, something long called for but rarely achieved in evolutionary
272 biology.

273 We posit that the diapause syndrome has evolved via a network of coevolving genes. While we
274 find that coevolutionary patterns of the core circadian clock differ markedly in diapausing versus
275 non-diapausing lineages, our analysis suggests that clock genes are just one component of a much
276 broader network involving multiple interconnected genetic modules. This represents a major
277 conceptual shift in the study of diapause genetics, moving beyond contemplating a “process
278 governed by a small toolkit of timing genes” towards a polygenic and modular system that
279 integrates metabolic, developmental, and regulatory networks arising from deep evolutionary
280 history.

281 The macro-to-micro comparative framework developed here offers a novel route to establishing
282 genotype-to-phenotype associations for complex traits that can be readily extended to other
283 complex phenotypes. By applying this methodology to the diapause syndrome, which overlaps
284 with other correlated traits, including adaptations to latitude, wet-dry seasonal cycles, migration,
285 and life-history timing, we showcase the robustness and versatility of our framework in capturing
286 both long-term evolutionary patterns and recent population-level variation. As high-quality
287 genomic data continue to expand across the tree of life, future work incorporating denser genomic
288 sampling within clades and broader ecological representation, coupled with similar comparative
289 approaches, holds great promise for mechanistic dissection of complex phenotypes in a statistically
290 rigorous way, even in non-model systems.

291

292

293 **References**

294 1. D. L. Denlinger, *Insect Diapause* (Cambridge university press, Cambridge, United
295 Kingdom, 2022).

296 2. D. Posledovich, T. Toftegaard, C. Wiklund, J. Ehrlén, K. Gotthard, Latitudinal variation in
297 diapause duration and post-winter development in two pierid butterflies in relation to
298 phenological specialization. *Oecologia* **177**, 181–190 (2015).

299 3. V. Koštál, Eco-physiological phases of insect diapause. *Journal of Insect Physiology* **52**,
300 113–127 (2006).

301 4. M. J. Tauber, C. A. Tauber, S. Masaki, *Seasonal Adaptations of Insects* (Oxford Univ.
302 Press, New York, 1986).

303 5. K. Wilsterman, M. A. Ballinger, C. M. Williams, A unifying, eco-physiological framework
304 for animal dormancy. *Functional Ecology* **35**, 11–31 (2021).

305 6. G. J. Ragland, P. A. Armbruster, M. E. Meuti, Evolutionary and functional genetics of
306 insect diapause: a call for greater integration. *Current Opinion in Insect Science* **36**, 74–81
307 (2019).

308 7. D. L. Denlinger, Insect diapause: from a rich history to an exciting future. *Journal of
309 Experimental Biology* **226**, jeb245329 (2023).

310 8. K. J. Emerson, W. E. Bradshaw, C. M. Holzapfel, Complications of complexity: integrating
311 environmental, genetic and hormonal control of insect diapause. *Trends in Genetics* **25**,
312 217–225 (2009).

313 9. D. Hernández-Carrasco, J. M. Tylianakis, D. A. Lytle, J. D. Tonkin, Ecological and
314 evolutionary consequences of changing seasonality. *Science* **388**, eads4880 (2025).

315 10. E. J. Dowle, T. H. Q. Powell, M. M. Doellman, P. J. Meyers, M. B. Calvert, K. K. O.
316 Walden, H. M. Robertson, S. H. Berlocher, J. L. Feder, D. A. Hahn, G. J. Ragland,
317 Genome-wide variation and transcriptional changes in diverse developmental processes
318 underlie the rapid evolution of seasonal adaptation. *Proc. Natl. Acad. Sci. U.S.A.* **117**,
319 23960–23969 (2020).

320 11. J. Rolland, L. F. Henao-Diaz, M. Doebeli, R. Germain, L. J. Harmon, L. L. Knowles, L. H.
321 Liow, J. E. Mank, A. Machac, S. P. Otto, M. Pennell, N. Salamin, D. Silvestro, M.
322 Sugawara, J. Uyeda, C. E. Wagner, D. Schluter, Conceptual and empirical bridges between
323 micro- and macroevolution. *Nat Ecol Evol* **7**, 1181–1193 (2023).

324 12. A. Wagner, The molecular origins of evolutionary innovations. *Trends in Genetics* **27**, 397–
325 410 (2011).

326 13. G. M. Kozak, C. B. Wadsworth, S. C. Kahne, S. M. Bogdanowicz, R. G. Harrison, B. S.
327 Coates, E. B. Dopman, Genomic Basis of Circannual Rhythm in the European Corn Borer
328 Moth. *Current Biology* **29**, 3501–3509.e5 (2019).

329 14. S. Zheng, Y. Wang, G. Li, S. Qin, Z. Dong, X. Yang, X. Xu, G. Fang, M. Li, S. Zhan,
330 Functional polymorphism of CYCLE underlies the diapause variation in moths. *Science*
331 **388**, eado2129 (2025).

332 15. P. Pruijscher, P. Lehmann, S. Nylin, K. Gotthard, C. W. Wheat, Extensive transcriptomic
333 profiling of pupal diapause in a butterfly reveals a dynamic phenotype. *Molecular Ecology*
334 **31**, 1269–1280 (2022).

335 16. M. J. Christmas, I. M. Kaplow, D. P. Genereux, M. X. Dong, G. M. Hughes, X. Li, P. F.
336 Sullivan, A. G. Hindle, G. Andrews, J. C. Armstrong, M. Bianchi, A. M. Breit, M.
337 Diekhans, C. Fanter, N. M. Foley, D. B. Goodman, L. Goodman, K. C. Keough, B.
338 Kirilenko, A. Kowalczyk, C. Lawless, A. L. Lind, J. R. S. Meadows, L. R. Moreira, R. W.
339 Redlich, L. Ryan, R. Swofford, A. Valenzuela, F. Wagner, O. Wallerman, A. R. Brown, J.
340 Damas, K. Fan, J. Gatesy, J. Grimshaw, J. Johnson, S. V. Kozyrev, A. J. Lawler, V. D.
341 Marinescu, K. M. Morrill, A. Osmanski, N. S. Paulat, B. N. Phan, S. K. Reilly, D. E.
342 Schäffer, C. Steiner, M. A. Supple, A. P. Wilder, M. E. Wirthlin, J. R. Xue, Zoonomia
343 Consortium§, B. W. Birren, S. Gazal, R. M. Hubley, K.-P. Koepfli, T. Marques-Bonet, W.
344 K. Meyer, M. Nweeia, P. C. Sabeti, B. Shapiro, A. F. A. Smit, M. S. Springer, E. C.
345 Teeling, Z. Weng, M. Hiller, D. L. Levesque, H. A. Lewin, W. J. Murphy, A. Navarro, B.
346 Paten, K. S. Pollard, D. A. Ray, I. Ruf, O. A. Ryder, A. R. Pfenning, K. Lindblad-Toh, E.
347 K. Karlsson, G. Andrews, J. C. Armstrong, M. Bianchi, B. W. Birren, K. R. Bredemeyer,
348 A. M. Breit, M. J. Christmas, H. Clawson, J. Damas, F. Di Palma, M. Diekhans, M. X.
349 Dong, E. Eizirik, K. Fan, C. Fanter, N. M. Foley, K. Forsberg-Nilsson, C. J. Garcia, J.
350 Gatesy, S. Gazal, D. P. Genereux, L. Goodman, J. Grimshaw, M. K. Halsey, A. J. Harris,
351 G. Hickey, M. Hiller, A. G. Hindle, R. M. Hubley, G. M. Hughes, J. Johnson, D. Juan, I. M.
352 Kaplow, E. K. Karlsson, K. C. Keough, B. Kirilenko, K.-P. Koepfli, J. M. Korstian, A.
353 Kowalczyk, S. V. Kozyrev, A. J. Lawler, C. Lawless, T. Lehmann, D. L. Levesque, H. A.
354 Lewin, X. Li, A. Lind, K. Lindblad-Toh, A. Mackay-Smith, V. D. Marinescu, T. Marques-
355 Bonet, V. C. Mason, J. R. S. Meadows, W. K. Meyer, J. E. Moore, L. R. Moreira, D. D.
356 Moreno-Santillan, K. M. Morrill, G. Muntané, W. J. Murphy, A. Navarro, M. Nweeia, S.
357 Ortmann, A. Osmanski, B. Paten, N. S. Paulat, A. R. Pfenning, B. N. Phan, K. S. Pollard,
358 H. E. Pratt, D. A. Ray, S. K. Reilly, J. R. Rosen, I. Ruf, L. Ryan, O. A. Ryder, P. C. Sabeti,
359 D. E. Schäffer, A. Serres, B. Shapiro, A. F. A. Smit, M. Springer, C. Srinivasan, C. Steiner,
360 J. M. Storer, K. A. M. Sullivan, P. F. Sullivan, E. Sundström, M. A. Supple, R. Swofford,
361 J.-E. Talbot, E. Teeling, J. Turner-Maier, A. Valenzuela, F. Wagner, O. Wallerman, C.
362 Wang, J. Wang, Z. Weng, A. P. Wilder, M. E. Wirthlin, J. R. Xue, X. Zhang, Evolutionary
363 constraint and innovation across hundreds of placental mammals. *Science* **380**, eabn3943
364 (2023).

365 17. S. Halali, E. Yapar, C. W. Wheat, N. Wahlberg, K. Gotthard, N. Chazot, S. Nylin, P.
366 Lehmann, Tempo and mode of winter diapause evolution in butterflies. *Evolution Letters* **9**,
367 125–136 (2025).

368 18. C. J. Wright, L. Stevens, A. Mackintosh, M. Lawniczak, M. Blaxter, Comparative
369 genomics reveals the dynamics of chromosome evolution in Lepidoptera. *Nat Ecol Evol* **8**,
370 777–790 (2024).

371 19. The Darwin Tree of Life Project Consortium, M. Blaxter, N. Mieszkowska, F. Di Palma, P.
372 Holland, R. Durbin, T. Richards, M. Beriman, P. Kersey, P. Hollingsworth, W. Wilson, A.
373 Twyford, E. Gaya, M. Lawniczak, O. Lewis, G. Broad, K. Howe, M. Hart, P. Flicek, I.
374 Barnes, Sequence locally, think globally: The Darwin Tree of Life Project. *Proc. Natl.
375 Acad. Sci. U.S.A.* **119**, e2115642118 (2022).

376 20. C. Wright, N. Wahlberg, R. Vila, M. Mutanen, P. Matos-Maraví, K. Lucek, I. Kleckova, L.
377 Dapporto, V. Dinca, C. Bruschini, C. Wheat, M. Vila, L. Torrado-Blanco, V. Todisco, M.
378 Rindos, P. Nguyen, P. Mulhair, S. Kamenova, M. Hicks, M. Espeland, I. Drinnenberg, M.
379 Doblas-Bajo, R. Bailey, P. P. Community, M. Blaxter, J. Meier, Project Psyche: Generating
380 and utilising reference genomes for all Lepidoptera in Europe. *Biodiversity* [Preprint]
381 (2025). <https://doi.org/10.32942/X2S35P>.

382 21. C. Bortoluzzi, C. J. Wright, S. Lee, T. Cousins, T. A. L. Genez, D. Thybert, F. J. Martin, L.
383 Haggerty, The Darwin Tree of Life Project Consortium, M. Blaxter, R. Durbin, Lepidoptera
384 genomics based on 88 chromosomal reference sequences informs population genetic
385 parameters for conservation. [Preprint] (2023). <https://doi.org/10.1101/2023.04.14.536868>.

386 22. A. Kowalczyk, W. K. Meyer, R. Partha, W. Mao, N. L. Clark, M. Chikina, RERconverge:
387 an R package for associating evolutionary rates with convergent traits. *Bioinformatics* **35**,
388 4815–4817 (2019).

389 23. A. Kowalczyk, R. Partha, N. L. Clark, M. Chikina, Pan-mammalian analysis of molecular
390 constraints underlying extended lifespan. *eLife* **9**, e51089 (2020).

391 24. E. Dalla Benetta, L. W. Beukeboom, L. Van De Zande, Adaptive Differences in Circadian
392 Clock Gene Expression Patterns and Photoperiodic Diapause Induction in *Nasonia*
393 *vitripennis*. *The American Naturalist* **193**, 881–896 (2019).

394 25. M. Jin, Y. Peng, J. Peng, S. Yu, C. Wu, X. Yang, J. Zhu, O. Infante, Q. Xu, H. Wang, K.
395 Wu, Y. Xiao, A supergene controls facultative diapause in the crop pest *Helicoverpa*
396 *armigera*. *Cell Reports* **43**, 114939 (2024).

397 26. N. L. Clark, E. Alani, C. F. Aquadro, Evolutionary rate covariation reveals shared
398 functionality and coexpression of genes. *Genome Res.* **22**, 714–720 (2012).

399 27. J. Little, M. Chikina, N. L. Clark, Evolutionary rate covariation is a reliable predictor of co-
400 functional interactions but not necessarily physical interactions. *eLife* **12**, RP93333 (2024).

401 28. D. Brady, A. Saviane, S. Cappellozza, F. Sandrelli, The Circadian Clock in Lepidoptera.
402 *Front. Physiol.* **12**, 776826 (2021).

403 29. J. Kotwica-Rolinska, L. Chodáková, V. Smýkal, M. Damulewicz, J. Provazník, B. C.-H.
404 Wu, M. Hejníková, D. Chvalová, D. Doležel, Loss of Timeless Underlies an Evolutionary
405 Transition within the Circadian Clock. *Molecular Biology and Evolution* **39**, msab346
406 (2022).

407 30. K. Gotthard, C. W. Wheat, Diapause: Circadian Clock Genes Are at It Again. *Current
408 Biology* **29**, R1245–R1246 (2019).

409 31. I. M. Aalberg Haugen, K. Gotthard, Diapause induction and relaxed selection on alternative
410 developmental pathways in a butterfly. *Journal of Animal Ecology* **84**, 464–472 (2015).

411 32. O. Lindestad, C. W. Wheat, S. Nylin, K. Gotthard, Local adaptation of photoperiodic
412 plasticity maintains life cycle variation within latitudes in a butterfly. *Ecology* **100**, e02550
413 (2019).

414 33. I. Siemers, L. Von Schmalensee, S. Ziesemer, K. Gotthard, P. Lehmann, Predictable local
415 adaptation in butterfly photoperiodism but not thermal performance along a latitudinal
416 cline. *Ecosphere* **15**, e4842 (2024).

417 34. M. Ittonen, A. Hagelin, C. Wiklund, K. Gotthard, Local adaptation to seasonal cues at the
418 fronts of two parallel, climate-induced butterfly range expansions. *Ecology Letters* **25**,
419 2022–2033 (2022).

420 35. W. E. Bradshaw, M. C. Fletcher, C. M. Holzapfel, Clock-talk: have we forgotten about
421 geographic variation? *J Comp Physiol A* **210**, 649–666 (2024).

422 36. S. G. Goto, Photoperiodic time measurement, photoreception, and circadian clocks in insect
423 photoperiodism. *Appl Entomol Zool* **57**, 193–212 (2022).

424 37. D. S. Saunders, Dormancy, Diapause, and the Role of the Circadian System in Insect
425 Photoperiodism. *Annu. Rev. Entomol.* **65**, 373–389 (2020).

426

427

428 **Acknowledgments:**

429 We thank Alexandra Hagelin, Matthew Nielsen, and Christer Wiklund for help with catching
430 wild butterflies and Carolin Gierer for help with preparing samples for sequencing. We thank
431 Project Psyche (<https://www.projectpsyche.org/>) for sharing their genomic resources for this
432 work. We acknowledge support from the National Genomics Infrastructure in Stockholm funded
433 by Science for Life Laboratory, the Knut and Alice Wallenberg Foundation and the Swedish
434 Research Council, and NAISS for assistance with massively parallel sequencing and access to
435 the UPPMAX computational infrastructure. No AI-assistance was used in the writing of this
436 manuscript.

437 **Funding:**

438 Carl Tryggers Foundation 17:163 (KG), Wenner-Gren Foundations UPD2023-0064 (CW),
439 Swedish Research Council 2022-04507 (CW) and 2021-04258 (KG), Bolin Centre for Climate
440 Research (KG, MI), Marie Skłodowska-Curie Actions Postdoctoral fellowship (Grant Agreement
441 ID: 101104682) (SH)

442 **Author contributions:**

443 Conceptualization: SB, CW

444 Methodology: SB, CW

445 Investigation: SBB, DLA, MPW, WCB

446 Visualization: SB, SH

447 Sample acquisition: MI, KF, KG

448 Funding acquisition: CW, KG, MI

449 Supervision: CW

450 Writing – original draft: SB, CW

451 Writing – review & editing: SB, CW, SH, MI, KG

452 **Competing interests:** Authors declare that they have no competing interests.

453 **Data and materials availability:**

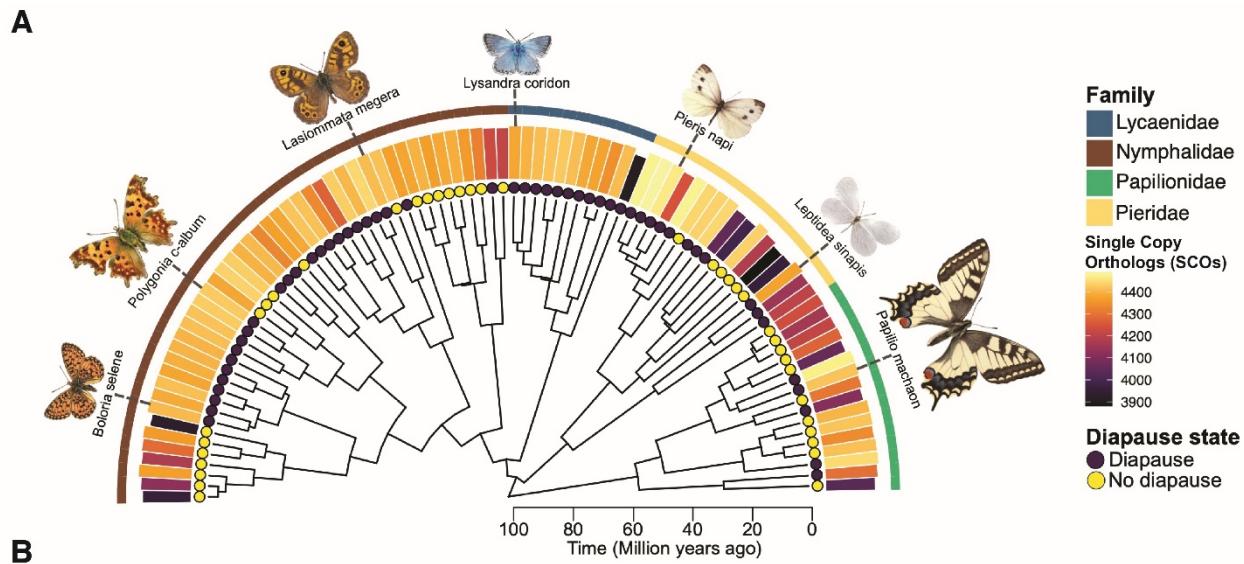
454 Sequence read data are available from NIH Short Read Archive under the following accessions:
455 *Lasiommata merera* (PRJNA1371628), *Pararge aegeria* (PRJEB49416 and PRJNA484116),
456 *Pieris napi* (PRJNA449143), and *Papilio polytes* (PRJNA1166847). Scripts and intermediate files
457 are deposited in Zenodo for reproducibility (10.5281/zenodo.17776754).

458 **Supplementary Materials**

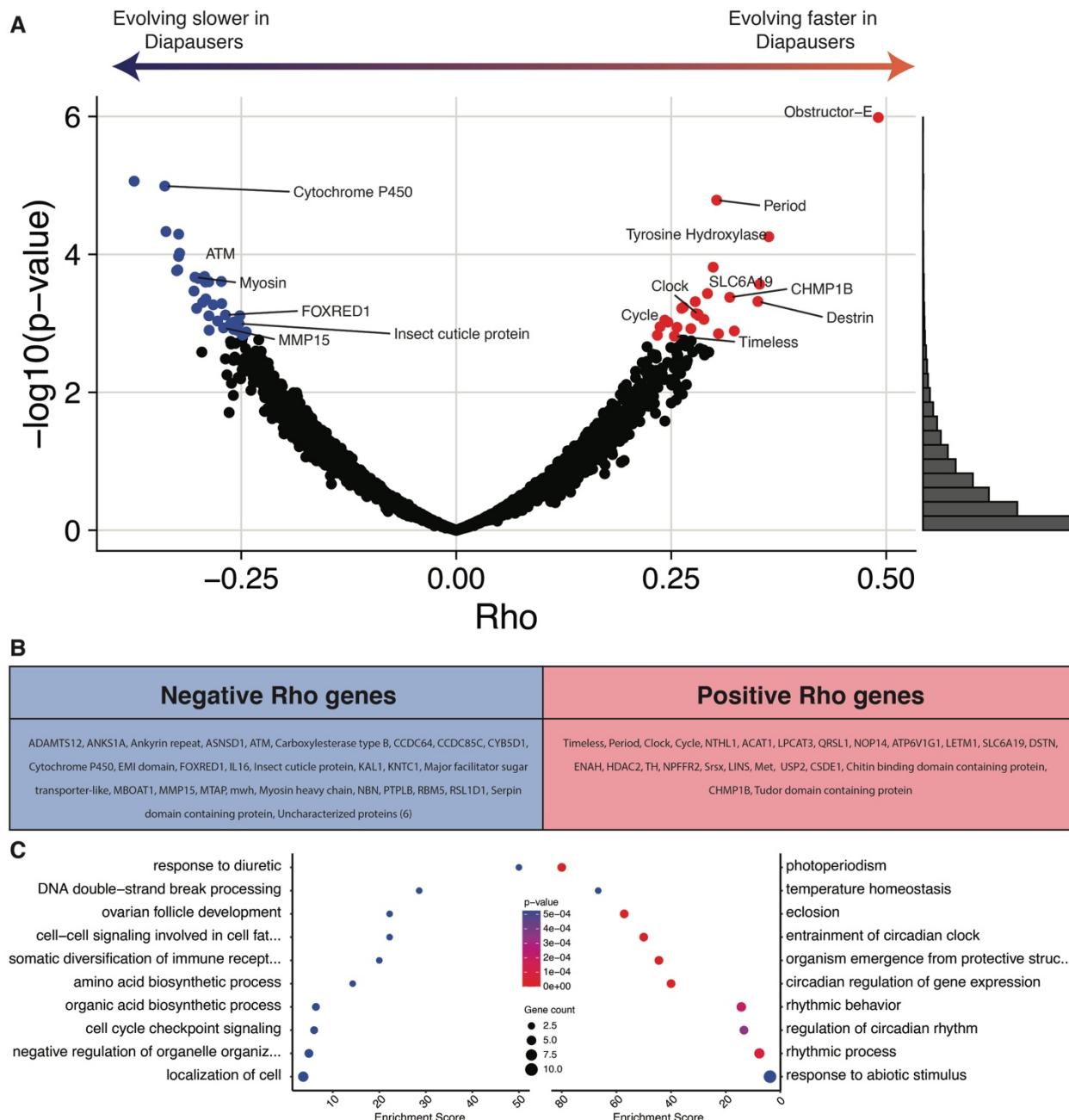
459

460 Materials and Methods

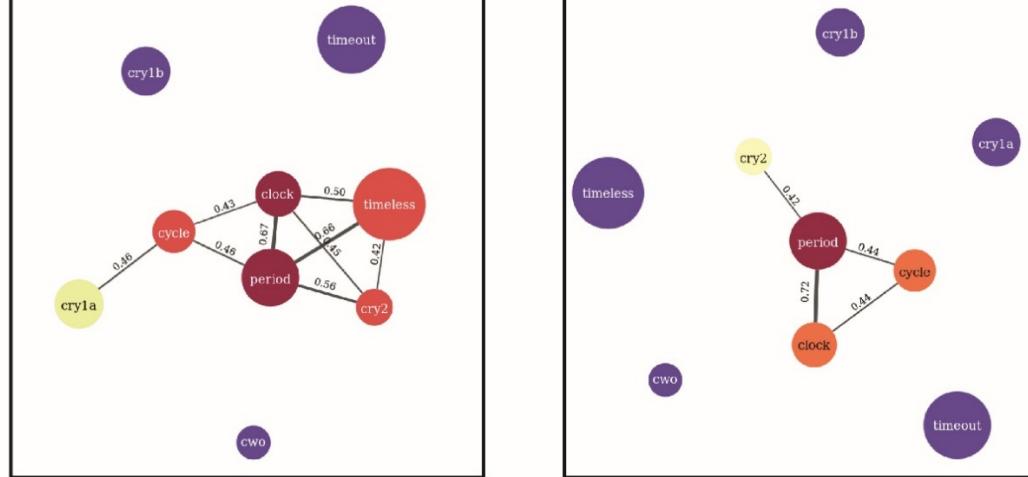
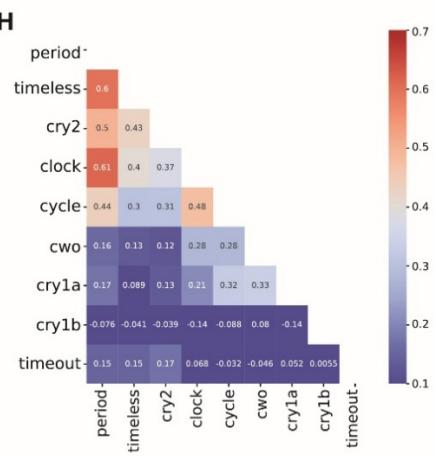
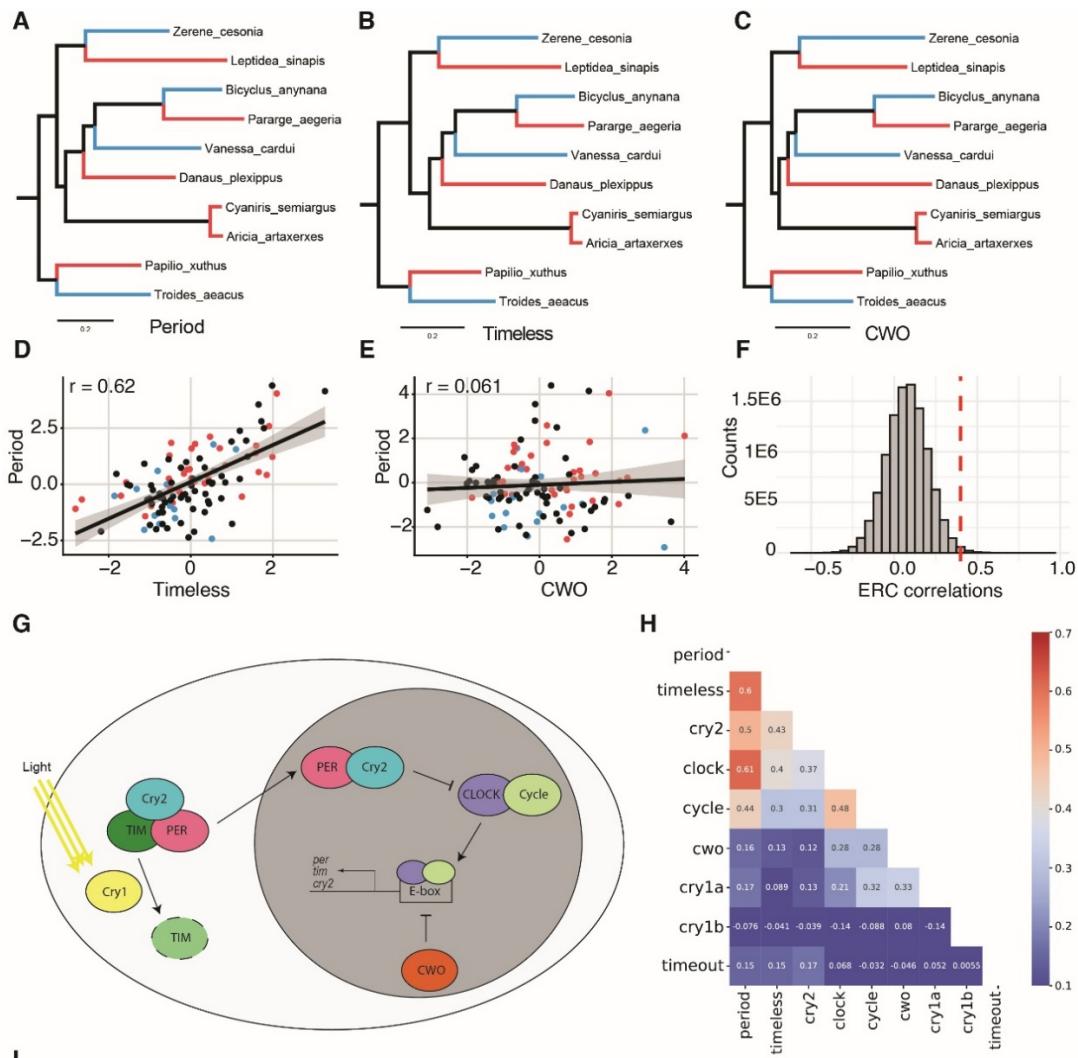
461 Supplementary Text


462 Figs. S1 to S15

463 Tables S1 to S16


464 References

465




466

470 **Fig. 1. Convergent evolution of diapause across butterflies at multiple developmental stages.**
471 (A) The evolutionary relationships among studied butterfly species in a time-calibrated, radial
472 phylogeny. Concentric tracts display, from the tip (1) the diapause phenotype (purple - diapause
473 and yellow – no diapause), (2) the number of single copy orthologous genes used per species, and
474 (3) the butterfly family classification. (B) Comparison of average lifespans in exemplar butterfly
475 species in our dataset that exhibit diapause at different developmental stages, compared with direct
476 development when species have facultative diapause induction (i.e., both pathways).
477

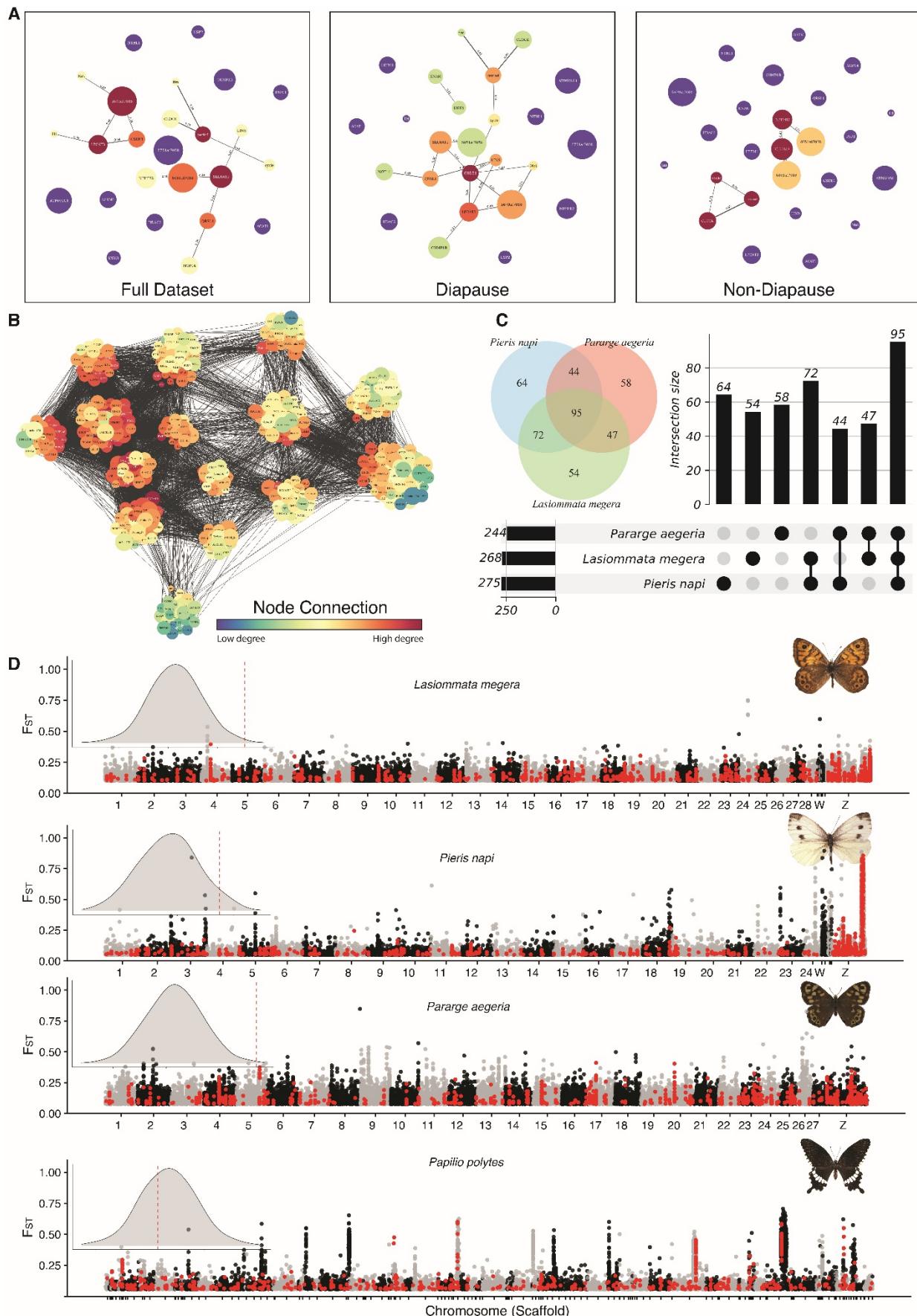


Fig 2. Correlation between relative evolutionary rates and diapause identifies candidate genes associated with diapause evolution across butterflies. (A) Distribution of correlation between relative evolutionary rates with diapause phenotype (Rho) across single copy genes. The histogram in the margin shows the spread of Rho values. Genes significantly correlated with diapause ($q\text{-value} < 0.1$; table S7), are highlighted (red: positive and blue: negative). (B) A list of genes with significant positive (red) and negative (blue) Rho values. (C) Gene Ontology enrichment analysis of the positively and negatively correlated gene sets. Dot plots display enriched biological processes, colored by $p\text{-value}$ and sized by gene count. Positively associated genes are enriched for circadian processes (right), while negatively associated genes are linked to metabolism and development (left).

492 **Fig 3. Evolutionary dynamics of circadian clock components differ between diapausing and**
493 **non-diapausing butterflies.** (A-C) Evolution rates on a subset of species trees for *period*,
494 *timeless*, and *cwo*, colored by diapause phenotype (red = diapausing, blue = non-diapausing). (D-
495 E) Pairwise rate correlations per branch between core circadian genes (*period* vs. *timeless*, and
496 *period* vs. *cwo*), documenting differences in rate covariation (shown without phylogenetic
497 correction). (F) Distribution of ERC values across all gene pairs (n=10,444,735), highlighting the
498 abundance of low correlation values and our coevolving cut-off threshold (ERC = 0.4, top 0.52 %
499 of interactions). (G) Schematic of the Lepidopteran circadian clock network, showing known
500 molecular interactions between clock proteins and their feedback loops(28). (H) Pairwise ERC
501 matrix among circadian clock genes, highlighting variation in their co-evolutionary interactions.
502 (I) Network diagrams of circadian clock genes (nodes: circles), where genes are connected when
503 $ERC > 0.4$ (edges with ERC value), for the diapausing (left) and non-diapausing (right) datasets.
504 Diapausing species exhibit a larger network of ERC connectivity among core circadian clock
505 genes, suggesting strong coevolution under selective pressure related to the diapause syndrome.

506
507

509 **Fig 4. Co-evolutionary network of diapause-associated genes and cross-species comparison**
510 **of their variation in butterflies**

511 (A) ERC networks among genes significantly associated with diapause (n = 25; Rho-genes with
512 ERC > 0.4), constructed separately for diapausing, non-diapausing, and all species. Diapausing
513 species exhibit markedly higher ERC connectivity among Rho-genes, forming the largest
514 connected component comprising 14 genes. (B) ERC network of genes (n = 504; expanded Rho-
515 gene network) co-evolving (ERC > 0.4) with those in the largest connected Rho-gene module (n
516 = 14) from diapausing species, clustered using a stochastic block model (SBM). Node color
517 represents connectivity (degree), from low (blue) to high (red), highlighting potential hub genes
518 that may play key roles in diapause regulation. (C) UpSet plot and Venn diagram illustrating the
519 number of overlapping genes among the species-specific intersection set (expanded Rho-gene
520 network among outliers) across the three diapausing butterfly species, revealing that a substantial
521 fraction of outlier genes are shared across three species with a diapause syndrome. (D) The top 5%
522 F_{ST} outliers between two geographically distinct populations very likely to differ in critical
523 photoperiod and diapause syndrome, across three butterfly species: *Lasiommata megera* ($F_{ST} >$
524 0.101), *Pieris napi* ($F_{ST} > 0.05$), *Pararge aegeria* ($F_{ST} > 0.076$), and two populations of *Papilio*
525 *polytes* ($F_{ST} > 0.058$) which lacks a diapause syndrome. Genes from the expanded Rho-gene
526 network are highlighted in red indicating their location among outlier loci. For each species, an
527 inset histogram shows the distribution of the number of genes in random sets (n = 504; 1000
528 replicates) drawn from the SCOs dataset that intersect with outlier loci. The dotted red line marks
529 the position of the species-specific intersection set (expanded Rho-gene network among outliers),
530 containing 268, 275, 244, and 303 genes corresponding to the p-values 0.006, 0.056, 0.002, and
531 0.66 for *L. megera*, *P. napi*, *P. aegeria*, and *P. polytes*, respectively.

532
533

534