

1 No seed size–number trade-off in European beech: 2 climate governs investment per seed

3

4 Katarzyna Kondrat*†¹, Patrycja Jerzyńska†¹, Urszula Eichert¹, Jakub Szymkowiak^{1,2,3}, Andrew
5 Hacket-Pain³, Tomaž Adamič⁴, Davide Ascoli¹⁰, Maciej K. Barczyk¹, Giada Bertini⁶, Maria Bogdańska¹,
6 Raul Bonal⁷, Thomas Caignard⁸, Francesco Chianucci⁶, Bruno De Cinti⁹, Jovana Devetaković¹⁰,
7 Samuel Egan⁵², Vera Fadrhonsova¹¹, Marcos Fernández-Martínez¹², Jessie J. Foest¹, Nikolaos M.
8 Fyllas¹³, Georg Gratzer¹⁴, Roger Grau-Andrés¹², Qingmin Han¹⁵, Jan Holík¹⁶, Valentin Journé¹⁷, Ju-
9 liane Kaiser¹⁸, Ewa Marzena Kalembska¹⁹, Evangelia Korakaki²⁰, Georges Kunstler²¹, Angelika Kölbl²²,
10 Mikolaj Lula²³, Ernst van der Maaten²⁴, Marieke van der Maaten-Theunissen²⁴, Catherine Massonnet⁴⁹,
11 Anđelina Gavranović Markić²⁵, Francesco Mezzavilla²⁶, Martina Mund²⁷, Anders Mårell²⁸, Thomas
12 A. Nagel⁴, Nikos Nanos²⁹, Anita Nussbaumer³⁰, Ciprian Palaghianu³¹, Timo Pampuch^{50,51}, Ion Catalin
13 Petritan³², Any Mary Petritan³³, Lukas Petrulaitis³⁴, Vladan Popović³⁵, Catalin Constantin Roibu³¹,
14 Christodoulos Sazeides³⁶, Wolfgang Schmidt³⁷, Bernhard Schuldt³⁸, Steffen Schulz¹⁸, Flavia Sicuriello⁹,
15 Gavriil Spyroglou³⁹, Juliane Stolz²⁴, Nickolay Tsvetanov⁴⁰, Stanislav Vacek⁴¹, Zdeněk Vacek⁴¹, Marie-
16 Claude Venner⁴², Samuel Venner⁴², Arne Verstraeten⁴³, Janna Wambganss⁴⁴, Robert Weigel⁴⁵, Angus
17 Wilkinson⁴⁶, Martin Wilmking¹⁸, Tzvetan Zlatanov⁴⁷, Povilas Žemaitis⁴⁸, Michał Bogdziewicz¹

18

19

20 *Corresponding author: katarzyna.kondrat@amu.edu.pl;†: joint first authors;

21

22 ¹Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University,
23 Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.

24 ²Population Ecology Research Unit, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz
25 University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.

26 ³Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool,
27 United Kingdom.

28 ⁴Biotechnical Faculty, Department of forestry and renewable forest resources, Ljubljana, Slovenia

29 ⁵Department of Agriculture, Forest and Food Sciences, Italy

30 ⁶CREA - Research Centre for Forestry and Wood, Arezzo, Italy

31 ⁷Dept. Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid,
32 Spain

33 ⁸UMR BIOGECO, Université de Bordeaux, INRAE, Pessac, France

34 ⁹Research Institute on Terrestrial Ecosystems, National Research Council ITALY

35 ¹⁰Faculty of Forestry, University of Belgrade, Serbia

36 ¹¹Forestry and Game Management Research Institute, Prague, Czech Republic

37 ¹²CREAF, Bellaterra, Catalonia, Spain

38 ¹³Department of Biology, National and Kapodistrian University of Athens, Greece

39 ¹⁴Institute of Forest Ecology, Department of Ecosystem Management, Climate and Biodiversity, BOKU University

40 ¹⁵Forestry and Forest Products Research Institute, Tsukuba, Japan

41 ¹⁶Department of Forest Ecology, Landscape Research Institute, Lidická 25/27, Brno 602 00, Czech Republic
42 ¹⁷Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
43 ¹⁸Institute of Botany and Landscape Ecology, Landscape Ecology and Ecosystem Dynamics, University of Greif-
44 swald
45 ¹⁹Institute of Dendrology Polish Academy of Sciences, Parkowa 5, Kórnik 62-035, Poland.
46 ²⁰Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization – ELGO DIMITRA, Athens,
47 Greece
48 ²¹Université Grenoble Alpes, INRAE, UR LESSEM, Saint-Martin-d'Hères, France
49 ²²Bavarian Forest National Park, Germany
50 ²³Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, Alnarp, Sweden
51 ²⁴Chair of Forest Growth and Woody Biomass Production, TU Dresden, Germany
52 ²⁵Croatian Forest Research Institute, Jastrebarsko, Croatia
53 ²⁶Independent researcher Silea, Italy
54 ²⁷Forestry Research and Competence Centre (FFK), ThüringenForst, Gotha, Germany
55 ²⁸INRAE, EFNO, F-45290, Nogent-sur-Vernisson, France
56 ²⁹Dept. Forestry and Natural Environment, Aristotle University of Thessaloniki, Greece
57 ³⁰Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
58 ³¹Forestry Faculty, Stefan cel Mare University of Suceava, Romania
59 ³²Faculty of Silviculture and Forest Engineering, University Transilvania of Brasov, Romania
60 ³³National Institute for Research and Development in Forestry “Marin Dracea”, Romania
61 ³⁴State Scientific Research Institute Nature Research Centre, Žaliujų Ežerų Str. 47, LT-08412 Vilnius, Lithuania
62 ³⁵Institute of Forestry, Belgrade, Serbia
63 ³⁶Department of Environment, University of the Aegean, Greece
64 ³⁷Department of Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Germany
65 ³⁸Chair of Forest Botany, TUD Dresden University of Technology, 01737 Tharandt, Germany
66 ³⁹Forest Research Institute, Hellenic Agricultural Organization – ELGO DIMITRA, Thessaloniki, Greece
67 ⁴⁰Department of Dendrology, Faculty of Forestry, University of Forestry, Sofia, Bulgaria
68 ⁴¹Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czech Republic
69 ⁴²LBBE, UMR 5558, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
70 ⁴³Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
71 ⁴⁴Research Institute for Forest Ecology and Forestry Rheinland-Pfalz, Trippstadt, Germany
72 ⁴⁵Ecological-Botanical Garden, University of Bayreuth, Germany
73 ⁴⁶Burnham Beeches and Stoke Common, City of London, UK
74 ⁴⁷Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences
75 ⁴⁸Lithuanian Research Centre for Agriculture and Forestry, Lithuania
76 ⁴⁹University of Lorraine, AGROPARISTECH, INRAE, UMR SILVA, 54280 Champenoux, France
77 ⁵⁰Weihenstephan-Triesdorf University of Applied Sciences (HSLU), Institute of Ecology and Landscape
78 ⁵¹Research Institute for Post-Mining Landscapes (FIB)
79 ⁵²TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 85354 Freising, Germany
80

81 **Key words**

82 | *Fagus sylvatica* | mast seeding | size–number trade-off | reproductive allocation | climatic gradients | nitrogen
83 limitation | seed provisioning |

85 Abstract

86 Mast-seeding trees can vary seed output by orders of magnitude among years, but it remains unclear whether
87 high seed production reduces per-seed investment, as predicted by fixed-budget allocation models. We quantified
88 individual seed production with seed mass in European beech across 2,792 trees and 123 populations spanning
89 the species' range and quantified seed protein and lipid content in 35 populations. Seed mass increased with seed
90 production, with seeds from high-seeding years being 14% heavier than those from low-seeding years, providing
91 no evidence for a seed size–number trade-off and instead supporting variable reproductive allocation. In contrast,
92 protein content decreased by 31% with increasing seed production, whereas lipid content increased (by 14%),
93 indicating that nitrogen becomes constraining at high reproductive output while carbon-based provisioning is
94 maintained. Climate further structured provisioning: seed mass and protein content were the lowest at climatic
95 range margins, being 28% and 32% lower, respectively, than at the center of the climatic range. These results
96 show that European beech can increase seed output without reducing per-seed biomass, but that nitrogen limitation
97 and climatic constraints may strengthen regeneration bottlenecks at both trailing and leading margins, especially as
98 climate warming intensifies.

99 Introduction

100 The existence of trade-offs is a fundamental feature of ecological strategies (Stearns, 1989). Given finite resources,
101 organisms must allocate them among growth, storage, and reproduction, and even within these domains, resources
102 may be divided differentially (Genet *et al.*, 2009; Thomas, 2011; Hartmann *et al.*, 2020; Cope *et al.*, 2021). For
103 plants, one important allocation problem lies in the balance between producing many small seeds or fewer large
104 ones, the seed size–number trade-off (Smith & Fretwell, 1974; Muller-Landau, 2010). Life-history theory predicts
105 that for a given reproductive effort, producing larger seeds necessarily reduces their number, generating a negative
106 relationship between seed number and seed mass, as described by Smith-Fretwell model (Smith & Fretwell, 1974).
107 Across species the trade-off is clearly observed, and small-seeded species clearly produce more seeds (Leishman
108 & Leishman, 2001; Henery & Westoby, 2001; Muller-Landau *et al.*, 2008; Qiu *et al.*, 2022). Within species,
109 however, empirical results are mixed (Guo *et al.*, 2010). This question is particularly relevant for mast-seeding
110 trees, where seed output can vary by orders of magnitude among years (Bogdziewicz *et al.*, 2025), and the ecological
111 consequences of such fluctuations depend not only on seed number but also on how seed size is maintained or
112 altered across years. For example, a 30% decrease in seed mass in high-seeding years in the subtropical *Castanopsis*
113 *fargesii* translated into a fivefold decrease in germination rate, canceling the benefits of masting such as reduced
114 seed predation (Huang *et al.*, 2021).

115 Mast-seeding species pose an interesting case for the seed number–seed size tradeoff because their reproductive
116 effort varies enormously among years. For example, a single European beech (*Fagus sylvatica*) or white spruce
117 (*Picea glauca*) individual may produce 250,000+ seeds in a high-seeding year, while a tussock of *Chionochloa*

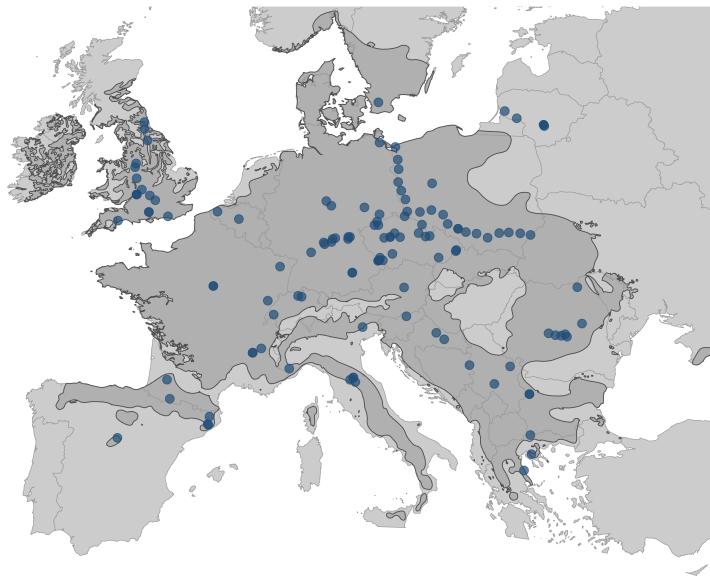
118 can produce >15,000 flowers, yet in failure years reproductive investment approaches zero (Hacket-Pain *et al.*,
119 2022; Bogdziewicz *et al.*, 2025). This fluctuation is interpreted as interannually variable reproductive allocation
120 (Bogdziewicz *et al.*, 2024), with high-seeding years involving a larger fraction of resources devoted to reproduction,
121 often at the expense of stored reserves, growth, or defense (Han *et al.*, 2011; Redmond *et al.*, 2019; Gonzalez *et al.*,
122 2023; Hacket-Pain *et al.*, 2025). If reproductive allocation indeed varies strongly across years, then increases in
123 seed number do not need to come at the expense of seed size. Under the allocation theory, when the resource
124 budget is limited, seed number is expected to fluctuate whereas seed size is constrained by stabilizing selection
125 on offspring survival (Smith & Fretwell, 1974; Sadras, 2007). Consistent with this prediction, crop analyses show
126 seed number varies far more than seed size; for instance, in wheat, seed number per plant variation of ~7,980%
127 was associated with grain size variation of only ~7% (Sadras, 2007).

128 Importantly, in mast-seeding trees, initiation of reproductive allocation starts long before the optimal conditions
129 for seed development are known. Floral initiation typically occurs in the year preceding seed maturation (Journé
130 *et al.*, 2025; Hirsch *et al.*, 2025), and thus before the resource pool available for seed filling is realized. As a result,
131 even when reproductive allocation increases in mast years, subsequent environmental constraints during seed
132 development may limit the extent to which all initiated seeds can be fully provisioned (Espelta *et al.*, 2008; Pearse
133 *et al.*, 2015). Under such circumstances, rather than aborting excess reproductive structures, trees may respond by
134 reducing per-seed investment, allowing a larger fraction of initiated seeds to mature at smaller size. Indeed, while
135 empirical tests in mast-seeding plants remain scarce, available evidence is partially consistent with this expectation.
136 Seed mass declined with increasing seed production in *Pinus armandii* (Wang & Ives, 2017), *Castanopsis fargesii*
137 (Huang *et al.*, 2021), and in high-crop individuals of *Quercus ilex* (Bonal *et al.*, 2007). In contrast, seed size
138 did not decline with larger crops in *Quercus lobata* (Koenig *et al.*, 2009). Taken together, the available evidence
139 suggests that increases in seed number can coincide with reduced per-seed investment, potentially diminishing the
140 ecological benefits typically attributed to mast seeding.

141 Beyond variation in seed mass, the orders-of-magnitude variation in seed number characteristic of mast
142 seeding may also alter the storage compounds (e.g. protein and lipid content) of individual seeds. Increased
143 plant biomass production is often associated with reduced concentrations of macro- and micronutrients (Kaspari
144 & Welti, 2024). In mast-seeding trees, however, resource-budget models suggest that sufficient accumulation of
145 reserves crucial for reproduction, particularly nitrogen, is required to initiate mass-flowering years (Miyazaki *et al.*,
146 2014; Sala *et al.*, 2012; Han & Kabeya, 2017). Such storage could buffer seed nutrient composition against large
147 increases in reproductive output, maintaining protein content even when the biomass of produced seeds increases
148 sharply. However, as for seed mass, this buffering is contingent on the temporal decoupling between reproductive
149 commitment and seed development. Because flower initiation precedes seed maturation by a year (Journé *et al.*,
150 2025; Hirsch *et al.*, 2025), plants may commit to more seeds than can be fully provisioned if conditions during seed
151 development are unfavorable, resulting in reduced per-seed investment. Which components of seed provisioning
152 are reduced under such conditions depends on which resources constrain seed development. In contrast to nitrogen-

153 rich compounds such as proteins, lipid provisioning is less likely to be constrained, particularly if seed mass is
154 maintained, as carbon supply is largely branch-autonomous and carbon limitation of reproduction is unlikely in
155 temperate trees (Hoch, 2005; Han & Kabeya, 2017).

156 Beyond resource constraints associated with variable seed number, the environment in which seeds develop
157 also shapes how much a tree invests per seed. The Smith–Fretwell model implies that environmental conditions
158 can shift the optimal seed size, leading to adaptive differentiation among populations (Smith & Fretwell, 1974).
159 For example, *Prunus virginiana* shows habitat-specific optima: plants in riparian sites produced many smaller
160 seeds, where frugivore-mediated dispersal favored high seed number, whereas on dry slopes plants produced fewer
161 but larger seeds, where seedling establishment was the limiting stage (Parciak, 2002). In contrast, broad-scale
162 geographic patterns in seed mass are more often interpreted as responses to environmental constraints than as local
163 adaptation. Across and within species, seed mass commonly declines toward colder climates, most frequently along
164 latitudinal gradients (Moles *et al.*, 2007; Liu *et al.*, 2013; Frenne *et al.*, 2013). Because latitude covaries strongly
165 with temperature, this pattern is generally attributed to thermal limitation. In a meta-analysis, De Frenne *et al.*
166 (2013) showed that intraspecific seed mass increases with temperature, consistent with longer growing seasons,
167 prolonged seed development, and reduced frost risk. In long-lived masting trees, these climatic effects on seed
168 mass have rarely been evaluated together with variation in seed number, despite the potential for large fluctuations
169 in fecundity to directly influence per-seed investment.


170 Here, we test whether European beech expresses a seed size–number trade-off, and how seed provisioning
171 varies across climatic gradients. We quantified seed production and seed mass in 123 populations across the
172 species’ range and assessed protein and lipid composition in 35 of these populations. If high-seeding years reflect
173 increased reproductive allocation rather than reallocation within a fixed resource budget, seed mass should be
174 maintained even as seed output increases. Conversely, declines in seed mass in high-seeding years would indicate
175 short-term constraints on per-seed provisioning, consistent with temporal decoupling between floral initiation and
176 seed development. Such declines are expected to carry fitness costs, as heavier European beech seeds germinate
177 more successfully and produce larger seedlings (Pawlowski *et al.*, 2024). Across climatic gradients, we expected
178 seed mass, protein, and lipid content to reflect constraints on seed development, with heavier, better-provisioned
179 seeds in regions with longer growing seasons and favorable thermal conditions, and reduced mass and nutrient
180 concentrations toward climatic margins of the species’ range, where growing seasons are shorter, temperatures are
181 suboptimal, or heat and drought limit seed filling. With respect to protein and lipid content, we predicted contrasting
182 responses of proteins and lipids. Protein content was expected to be maintained, or to decline in high-seeding
183 years and toward climatic margins if nitrogen storage fails to buffer reproductive investment. In contrast, lipid
184 concentrations were expected to show little variation with either seed number or climate, given that reproduction
185 in temperate trees is unlikely to be carbon-limited.

186 Methods

187 **Study species** European beech is an economically and ecologically important forest-forming tree, distributed
188 from the mountains of the Mediterranean to southern Scandinavia and eastwards to Poland and the Carpathians
189 (Packham *et al.*, 2012). It is a wind-pollinated, masting species. Masting benefits European beech by enhancing
190 pollination efficiency and reducing seed predation (Nilsson & Wästljung, 1987; Bogdziewicz *et al.*, 2020). Mast
191 years are also characterized by a shift in allocation from radial growth towards reproduction (Hacket-Pain *et al.*,
192 2025). Seeds are dispersed mainly by scatter-hoarding animals such as rodents and jays (Zwolak *et al.*, 2016;
193 Wróbel *et al.*, 2022). Storage materials of beech seeds include mainly fat and proteins, constituting up to 40 and
194 20% of dry weight, respectively (Prasad & Gülz, 1989; Kalemba *et al.*, 2019). Seeds lack long-term dormancy,
195 germinate the following spring, and seed size and provisioning are crucial for seedling survival under shade and
196 drought stress, with larger seeds translating into more vigorous seedlings (Pawłowski *et al.*, 2024). Among seed
197 storage materials, proteins, the main nitrogen source are crucial for early seedling establishment (Kalemba *et al.*,
198 2019). Embryonic axes completely deplete proteins while elongating to a length of 15 mm, and seedlings with 20
199 mm and longer embryonic axes deplete proteins from cotyledon (Kalemba *et al.*, 2019).

200 **Seed production and mass data** We sampled seeds in 2023 and 2024, from 2,792 individual co-dominant
201 to dominant trees, at 123 sites spanning the natural distribution of European beech across Europe (Fig. 1). At 30
202 of these sites, no viable seeds were recorded during the study, resulting in a final sample of 1,906 trees at 93 sites.
203 Most sites included 20–30 dominant or co-dominant trees, while two plots, one in Poland and another two in the
204 UK, contributed larger samples of 100 trees each. For each tree, we measured diameter breast height (DBH) and
205 assigned a shading class on a five-level ordinal scale (1 = fully shaded, 5 = fully exposed) to describe canopy light
206 exposure (Clark *et al.*, 2021).

207 Seeds were collected from the forest floor beneath the crown of each tree shortly after seedfall using a
208 standardized 3.5-minute search (Foest *et al.*, 2025). The ground below each tree was searched for seeds for 3.5
209 min and seeds were later classified as sound, empty with formed pericarps (not pollinated), or damaged by *Cydia*
210 sp. moth. Only filled (pollinated) seeds that were not infested/predated were retained for analysis presented in
211 this study. All viable seeds from each tree were weighed individually to the nearest 0.001 g after air-drying at
212 room temperature for four weeks. We chose air-drying rather than oven-drying in order to preserve samples for
213 subsequent analyses of proteins and lipids. To verify that this approach did not bias seed mass estimates, we
214 oven-dried a subset of seeds for 24 hours at 80 °C and compared mass before and after drying. Seed mass decreased
215 by 7% on average after oven-drying, and this percentage loss was consistent across sites and years (SD of the %
216 decline = 0.0055).

Figure 1: Map of the 123 study sites where European beech seed production was measured in 2023–2024. Each point represents one study site (N trees = 2,792). The darker gray area indicates the natural distribution of European beech. The climate space covered by our sample is shown in Fig. S1.

217 **Climate data and growing season metrics** Daily weather data for each site were obtained from the
 218 corresponding 0.1° grid cell of the E-OBS dataset (Cornes *et al.*, 2018). To determine growing season length, we
 219 first averaged daily minimum temperature across all years from 1950 to 2024 to obtain long-term daily means for
 220 each site (Körner & Basler, 2010). The start and end of the growing season were then defined as the first and last
 221 day of the year when long-term daily means exceed 5 °C and growing-season length was calculated as the number
 222 of days between them (Körner & Hiltbrunner, 2018; Körner, 2021). The 5 °C threshold is based on Körner (2021)
 223 and follows from the cessation of cambial activity below 5 °C (Cabon *et al.*, 2020). Within the site-specific growing
 224 season length, we calculated mean-growing season temperature and mean-growing season precipitation for our
 225 observation period using weather data from 1950 to 2024.

226 **Seed nutrient content** Protein and lipid content were determined for 4830 seeds collected in 2023 from a
 227 subset of randomly selected 35 sites, where at least 10 viable seeds were available for protein and lipid content
 228 analyses.

229 Ten whole seeds per tree (N = 483) were extracted from the pericarp and seed coat and ground in liquid
 230 nitrogen. Samples of 100 mg were used for protein determination, and samples of 200 mg were used for lipid
 231 determination.

232 To extract proteins, samples were extracted in 0.5 mL of 60 mM Tris–HCl buffer (pH 6.8) containing 10% (v/v)
 233 glycerol and 2% (w/v) SDS, following the protocol of Stone and Gifford (Stone & Gifford, 1997). The homogenate
 234 was centrifuged at 18,000 × g for 20 min. Protein content was determined using the 2-D Quant Kit, with bovine
 235 serum albumin used as a standard.

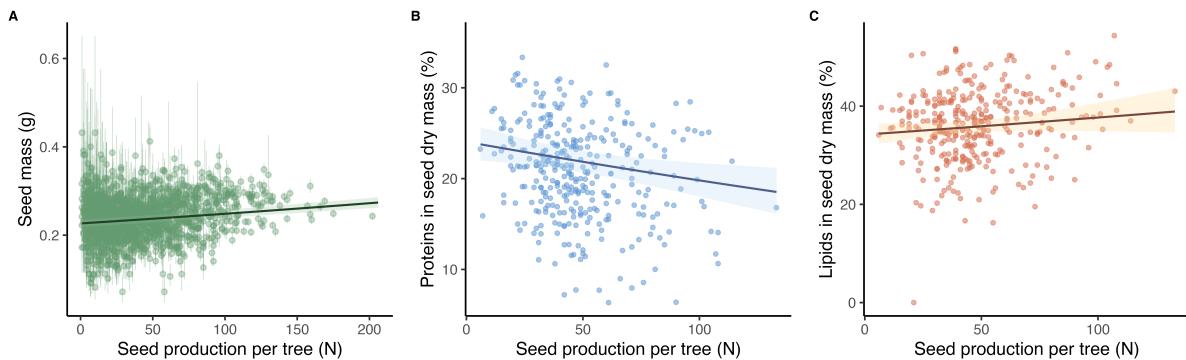
236 Lipids were extracted using chloroform:methanol [2:1 (v/v)] supplemented with 0.05% butylated hydroxy-
237 toluene (BHT), according to Freeman *et al.* 1966. The homogenate was mixed with an aqueous phase containing
238 1 M potassium chloride and left overnight at 4 °C to allow phase separation. The lower phase (chloroform containing
239 lipids) was collected, dried by vacuum distillation, and the resulting oil was weighed.

240 **Analysis** To examine the relationship between individual seed mass, seed production, and climate, we fitted a
241 generalized linear mixed model (GLMM) with seed mass as the response variable, while tree ID nested with site ID
242 were included as random intercepts. The model was fitted with a Gamma error distribution and a log link. Fixed
243 effects included annual, tree-level seed production, shading class, DBH and climatic predictors, i.e., the long-term
244 averages of growing season length, mean growing-season temperature, and mean-growing season precipitation. In
245 addition, we included interaction terms between growing season length and growing season climate (temperature
246 and precipitation). All predictors were standardized to a zero mean and unit variance prior to analysis to facilitate
247 comparison of effect sizes.

248 To analyze variation in seed protein and lipid content, we fitted two additional GLMMs with seed protein
249 content or seed lipid content (both expressed as percentage of dry mass) as response variables. The fixed-effects
250 structure was the same as in the seed-mass model. Because protein and lipid content data were available for a single
251 year only, year was not included as a random effect. These models were fitted using a Beta error distribution with
252 a logit link.

253 Collinearity among predictors was assessed using variance inflation factors (VIF) calculated with the `car`
254 package, and all predictors showed low collinearity ($VIF < 1.6$) (Fox *et al.*, 2024). Mean growing season precipitation
255 and its interaction with growing-season length had no significant effect in the models, and were excluded from
256 further analyses. All analyses were conducted in R version 4.2.3 (R Core Team, 2023), and the models were fitted
257 using the `glmmTMB` package version 1.1.7 (Brooks *et al.*, 2017).

258 **Results**

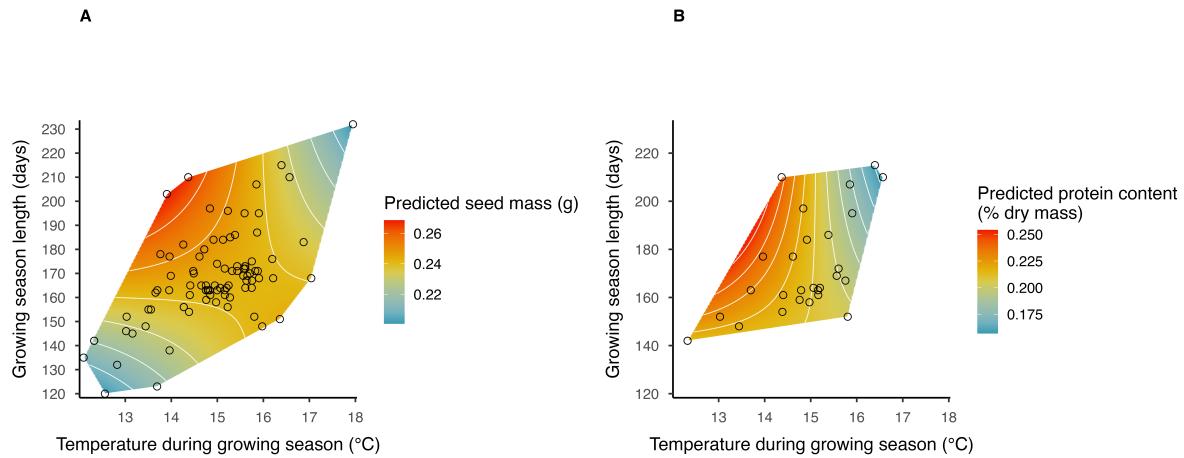

259 **Seed number relationship with seed mass, protein, and lipid content**

260 Seed mass varied substantially across the 52,861 seeds measured from 1,906 trees, ranging from 0.012 g to 0.709
261 g. Seed production per tree had a positive relationship with seed mass (Table 1, Fig. 2). The estimated seed mass
262 for low seed production (10 seeds per tree $^{-1}$ yr^{-1} , based on a standardized 3.5-minute ground collection) was 0.23
263 g, while it increased to 0.26 g (~14%) for high seed production (200 seeds per tree $^{-1}$ yr^{-1} per ground collection).
264 Lipid content also increased with higher seed production. For instance, the estimated lipid content for low seed
265 production (10 seeds tree $^{-1}$ yr^{-1}) was 34.8% and it increased to 39.7% (i.e. by 14%) for high seed production (200
266 seeds tree $^{-1}$ yr^{-1}). In contrast, the protein content declined with increasing seed production (Table 1, Fig. 2). For
267 example, the estimated proportion of protein in seed dry mass for low seed production (10 seeds tree $^{-1}$ yr^{-1}) was

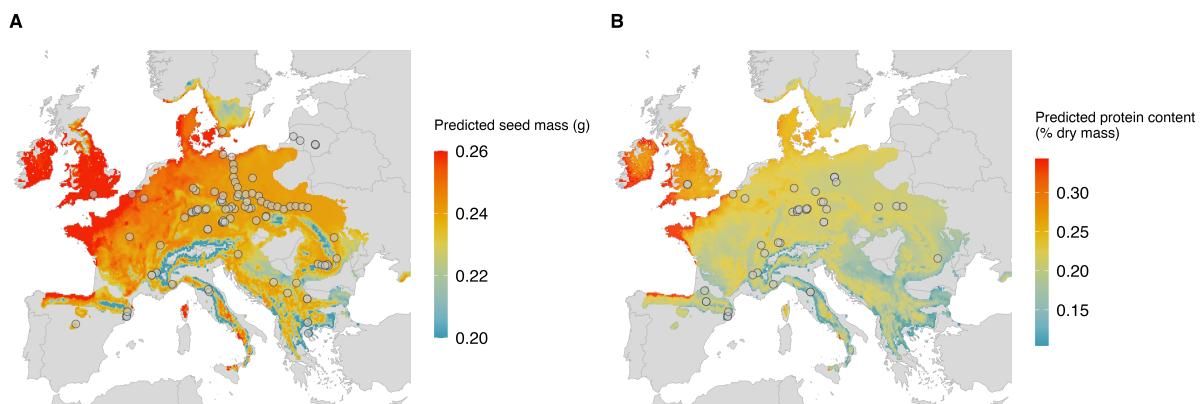
268 0.24, while it decreased to 0.16 (by ~31%) for high seed production (200 seeds tree⁻¹ yr⁻¹). Tree size (DBH) and
 269 shading class had a weak, but significant negative effect on lipid content, but not on seed mass or protein content.
 270 For example, the estimated lipid content for small trees (32 cm DBH) was 38.4%, decreasing by 4.9% to 33.5% in
 271 large trees (75 cm DBH) (Table 1). Tree size categories correspond to the 10th and 90th percentiles of the observed
 272 diameter at breast hight (DBH) distribution (Fig. S2).

Table 1: Models summary. Predictors were z-standardized prior to the analysis. Generalized linear mixed models were fitted with a log link (Gamma for seed mass; Beta for protein and lipid content). Significant effects ($p < 0.05$) are shown in bold. GS stands for growing season. Coefficients are shown on the link scale; standard errors in parentheses. Models included tree-ID nested within site-ID random intercepts. $N_{\text{tree}} = 1,906$, $N_{\text{site}} = 93$.

Predictor	Model A: Seed mass		Model B: Protein %		Model C: Lipid %	
	Estimate (SE)	p	Estimate (SE)	p	Estimate (SE)	p
Intercept	-1.413 (0.019)	< 0.001	1.285 (0.038)	< 0.001	-0.562 (0.032)	< 0.001
Seed number	0.036 (0.003)	< 0.001	-0.052 (0.019)	0.007	0.079 (0.029)	0.006
Shading class	0.001 (0.004)	0.803	0.011 (0.015)	0.498	-0.049 (0.022)	0.027
DBH	0.003 (0.004)	0.549	-0.005 (0.018)	0.785	-0.060 (0.026)	0.021
Temperature (GS)	-0.018 (0.021)	0.405	-0.119 (0.0469)	0.011	-0.034 (0.040)	0.402
Growing season length	0.027 (0.023)	0.239	0.010 (0.049)	0.839	-0.005 (0.042)	0.905
Precipitation (GS)	-0.012 (0.015)	0.438	0.044 (0.031)	0.147	0.021 (0.029)	0.460
Temp (GS) \times GS length	-0.025 (0.011)	0.026	-0.104 (0.0323)	< 0.001	-0.026 (0.028)	0.368


Figure 2: Seed mass and lipid content increase, while protein content decreases with increasing seed production. (A) Relationship between seed production per tree and individual seed mass. Seed production represents the number of seeds collected per tree during a standardized 3.5-minute ground search (Foest *et al.*, 2025). (B) Relationship between annual seed production per tree and seed protein content. (C) Relationship between annual seed production per tree and seed lipid content. Points represent tree-level mean seed mass with 95% confidence intervals (A) or tree-level measurements of protein and lipid content (B, C), and solid lines show the generalized linear mixed-model predictions with 95% confidence intervals. Models included tree ID and site ID as random intercepts (seed mass: $N_{\text{tree}} = 1,906$, $N_{\text{site}} = 93$; protein and lipid content: $N_{\text{tree}} = 419$, $N_{\text{site}} = 35$).

273 Climate relationship with seed mass, protein, and lipid content


274 Growing season length and mean annual temperature jointly influenced seed mass (Table 1). In consequence, seed
275 mass was estimated to be lowest (~0.18-0.20 g) at the sampled climatic range margins, i.e., sites characterized by
276 short growing seasons (less than 150 days) and low growing season temperatures (less than 14 °C), as well as at
277 sites with very long growing seasons (above 210 days) and high temperatures (above 17 °C) (Fig. 3A). Seed mass
278 peaked (~0.25 g) at sites characterized by intermediate conditions, i.e., either long growing seasons (180-210 days)
279 and mild temperatures (~14 °C), or shorter growing seasons (150-160 days) and warm temperatures (16–17 °C)
280 (Fig. 3A).

281 These joint climatic effects translated into a clear spatial structure across the European range (Fig. 4). Predicted
282 seed mass was high (~0.24 g) across large parts of western and central Europe, with particularly high values (~0.26
283 g) in the British Isles and along Atlantic-influenced regions of western Europe, where mild temperatures coincide
284 with extended but not extreme growing seasons. In contrast, lower seed mass (~0.20-0.22 g) was predicted
285 toward northern (Scandinavia) and high-elevation margins characterized by short and cool growing seasons, as
286 well as toward southern and southeastern margins (Balkans) where very long growing seasons coincide with high
287 temperatures.

288 Growing season length and growing season temperature jointly influenced protein proportion in seed dry
289 mass (Table 1). Protein proportion was highest (~0.24-0.25 %) at sites characterized by long growing seasons
290 (180-210 days) and intermediate growing season temperatures (approximately 13-14 °C) (Fig. 3B). In contrast,
291 protein proportion declined toward warmer conditions, reaching lowest values (~0.17-0.18) at sites with high
292 growing season temperatures (above 16-17 °C) and long growing season length (Fig. 3B). Generally, the effects of
293 temperature and growing seasons length on protein content of seeds largely mirrored the effects of climate on seed
294 mass.

Figure 3: Seed mass peaks under intermediate growing-season conditions, whereas seed protein proportion decreases toward warmer and longer growing seasons. The color surface represents model-estimated A) seed mass, and B) % protein in seed dry mass, with warmer colors indicating higher values. Black circles show observed site-level combinations of mean growing-season temperature and growing-season length, which define the convex hull of the data. Note that the axes range in panel B were adjusted to match that in panel A, as the range of values in panel B was narrower; the climate conditions represent the long-term norms, not annual variation.

Figure 4: Seed mass and seed protein content peak in Atlantic and Atlantic-temperate regions of western Europe. Predicted individual seed mass (g) (panel A) and % protein in seed dry mass (panel B) values are shown across the European distribution of European beech based on the fitted GLMM. Predictions were generated for each grid cell within the beech distribution using site-level mean growing-season temperature and mean growing-season length. Other co-variates were held constant at their reference values, with total seed production and DBH fixed at its median value across sites and shading class fixed at its most frequent level. Study sites at which seeds mass (panel A, N = 93 sites) and protein content (B, N = 35 sites) were measured are shown as gray points. Color scale indicates predicted seed mass or protein content, with warmer colors representing higher values.

295 **Discussion**

296 Our results show that European beech can increase seed output without reducing seed mass, while revealing nitrogen
297 availability and climate as key constraints on seed provisioning. Contrary to predictions of fixed-budget allocation
298 models (Smith & Fretwell, 1974), individual seed mass increased with higher seed output, indicating that mast years
299 involve an increase in reproductive allocation rather than redistribution within a constant resource pool allocated
300 to reproduction. This provides rare, range-wide empirical support for a long-standing assumption that has been
301 difficult to quantify in long-lived trees (Kelly, 1994; Bogdziewicz *et al.*, 2025). In contrast to seed mass, increased
302 seed production was associated with reduced protein content but higher lipid concentrations, implying that carbon
303 supply for seed filling is not limiting, whereas nitrogen becomes constraining at high reproductive output. This is
304 consistent with the view that nitrogen is a key resource limiting reproduction in temperate trees (Pearse *et al.*, 2016;
305 Abe *et al.*, 2016; Han & Kabeya, 2017). Finally, seed mass and protein content declined toward the climatic margins
306 of the species' range, a pattern with asymmetric demographic consequences: reduced provisioning is expected to
307 exacerbate regeneration failure at the trailing edge while constraining establishment and spread at the leading edge.

308 Our results demonstrate that European beech does not exhibit a seed size–number trade-off. Allocation models
309 predict that, under a fixed reproductive budget, increasing seed number must come at the cost of reduced seed
310 size (Smith & Fretwell, 1974). Instead, we observed a positive association between seed output and seed mass,
311 consistent with a scenario in which reproductive allocation increases in high-seeding years. Similar patterns have
312 been reported in other mast-fruiting trees, including *Quercus lobata*, where seed size was also maintained across
313 large variation in crop size (Koenig *et al.*, 2009). In contrast, declining seed mass with increasing seed production
314 has been documented in several other masting species (e.g. Bonal *et al.*, 2007; Wang & Ives, 2017; Huang *et al.*,
315 2021), indicating that mast seeding does not universally relax size–number trade-offs. This heterogeneity suggests
316 that species differ in the extent to which reproductive investment can be increased during mast years. Although the
317 small number of available studies precludes generalization, plausible drivers include differences in nutrient storage
318 capacity, particularly nitrogen (Miyazaki *et al.*, 2014; Han *et al.*, 2025), the degree of temporal decoupling between
319 floral initiation and seed development (Hirsch *et al.*, 2025), and life-history strategies governing abortion versus
320 provisioning of initiated seeds (Pearse *et al.*, 2016). In addition, masting species differ in how flexibly resources
321 can be diverted away from other functions, such as growth or defense, during high-reproductive years (Barczyk
322 *et al.*, 2025; Hirsch *et al.*, 2026). Comparative analyses across masting species will be required to determine which
323 of these mechanisms explains why some species maintain seed size under high reproductive output while others do
324 not.

325 While variable reproductive allocation explains why seed mass is maintained in mast years, our results also
326 show spatial structuring of seed provisioning across the species' climatic range. Seed mass and protein content
327 increased with growing-season temperature and growing-season length, but only up to intermediate values of both,
328 resulting in a climatic optimum characterized by moderately warm summers and long growing seasons. This is
329 consistent with intraspecific syntheses showing larger seeds in warmer environments, where longer seasons and

330 reduced frost risk allow more complete seed filling (Frenne *et al.*, 2013), but it also indicates that high temperatures
331 constrain provisioning. Similar responses have been reported in temperate and Mediterranean oaks, including *Q.*
332 *robur* and *Q. ilex*, in which seed mass increases toward warmer regions (Bogdziewicz *et al.*, 2019; Moreira *et al.*,
333 2021). Variation in seed size of this magnitude (30% in our study across climates) can have substantial fitness
334 consequences: experimental and comparative studies show that a 5-11% difference in seed mass is associated with
335 0.5-2% increase in germination success, establishment, or early survival, particularly under stressful conditions
336 (Gómez, 2004). Importantly, seeds produced at climatic margins in our study were both smaller and poorer in
337 protein, a combination that is likely to further reduce germination capacity and early seedling performance, as
338 nitrogen content directly constrains enzymatic activity during germination and early growth (Milberg & Lamont,
339 1997; Leishman & Leishman, 2001; Muffler *et al.*, 2021; Pawłowski *et al.*, 2024). Beyond direct effects on
340 provisioning, seed size also mediates biotic interactions (Lichti *et al.*, 2017; Wróbel *et al.*, 2022). Smaller seeds
341 are less likely to be cached and buried by small mammals (Lichti *et al.*, 2017), a process that enhances germination
342 and seedling establishment (Zwolak *et al.*, 2016). Thus, the climate-driven reductions in seed mass and nitrogen
343 content may lower effective dispersal and establishment at range margins, tightening regeneration bottlenecks and
344 limiting both persistence at the trailing edge and the northward advance under ongoing climate warming.

345 Protein content declined as seed output increased, whereas lipid content and seed mass increased. This pattern
346 supports the view that carbon rarely limits seed filling in temperate trees, whereas nitrogen can (Hoch, 2005; Pearse
347 *et al.*, 2016; Han & Kabeya, 2017). Experimental source–sink manipulations show that fruiting branchlets in
348 temperate trees can sustain fruit development without importing carbon from the rest of the tree, consistent with
349 branch-level carbon autonomy (Hoch, 2005). Stable carbon supply during reproduction is further supported by
350 isotope and seasonal non-structural carbohydrates evidence, indicating that fruit production in masting broadleaves
351 does not rely on mobilizing stored carbon reserves (Hoch *et al.*, 2013). By contrast, multiple studies point to stronger
352 constraints on mineral nutrients: in a masting pine, large crop production caused measurable depletion of stored
353 N and P, demonstrating that reproduction can deplete nutrient pools over timescales longer than the seed-filling
354 season (Sala *et al.*, 2012). In *Fagus crenata*, masting is linked to large N investment into reproductive organs and
355 to N-limitation for subsequent reproductive commitment, such as reduced N status of winter buds and constraints
356 on flower primordia formation (Han *et al.*, 2008; Miyazaki *et al.*, 2014; Abe *et al.*, 2016). Experimental fruit
357 removal in *Quercus ilex* similarly prevented seasonal depletion of leaf N, while starch dynamics did not indicate
358 carbohydrate depletion in fruiting trees, again separating nutrient limitation from carbon limitation (Roncé *et al.*,
359 2020, 2023). In this context, our observation that protein (N-rich) provisioning declines with high fecundity, while
360 lipid provisioning (largely carbon-based) is maintained, is consistent with a scenario in which beech can sustain
361 carbon supply for seed biomass and lipid deposition, but progressively dilutes N allocation per seed as reproductive
362 demand increases.

363 Several aspects of our study design should be considered when interpreting these results. Our inference is based
364 on extensive spatial replication rather than long time series: seed production and seed mass were measured over two

365 years, and seed nutrient composition in a single year. While this limits direct inference about temporal dynamics
366 within individual populations, the broad geographic coverage encompassed the full range of interannual variation in
367 seed production documented in a 45-year beech monitoring study using comparable count methods (Bogdziewicz
368 *et al.*, 2020; Hacket-Pain *et al.*, 2025). This indicates that the variation required to detect seed size–number
369 relationships and provisioning patterns was captured at the species level. Furthermore, spatial variation in seed
370 protein content may also reflect long-term differences in nitrogen availability across Europe. Atmospheric nitrogen
371 deposition is highly heterogeneous, with consistently higher inputs in Western and parts of Central Europe than in
372 Northern and Eastern regions, broadly overlapping with the geographic patterns of seed mass and protein content
373 observed here (Sanczuk *et al.*, 2024). Although seed filling in European beech is primarily governed by internal
374 nitrogen storage and remobilization and is largely decoupled from short-term soil nitrogen dynamics (Han & Kabeya,
375 2017), sustained nitrogen inputs may influence the size of internal nitrogen pools over longer timescales. Testing
376 this hypothesis would require integrating spatially explicit nitrogen deposition data with multi-year measurements
377 of seed provisioning. Finally, while our spatial coverage spanned most of the European range of beech, some
378 regions were underrepresented, including the southernmost parts of the species’ range in southern Italy and Sicily,
379 where climatic stress may be strongest. These limitations highlight the need for multi-year studies combining seed
380 production, provisioning, and experimental assessments of seedling performance to fully resolve the demographic
381 consequences of variation in seed mass and nutrient composition across space and time.

382 In summary, our study indicate that the large interannual variation in seed production in European beech is
383 accommodated through changes in reproductive allocation rather than through a trade-off between seed number
384 and seed mass. By increasing seed mass at high seed output, beech departs from predictions of fixed-budget
385 allocation models, while declining protein content reveals nitrogen, rather than carbon, as the principal constraint
386 on seed provisioning. Importantly, the absence of a seed size–number trade-off implies that the ecological benefits
387 of masting in beech are not reduced by diminished per-seed biomass, but post-germination growth can be reduced
388 by lower protein provisioning. Germination trials with diverse seed provenances across a range of seed production
389 investment are thus an important next research step. The decline in seed mass and nitrogen content toward climatic
390 margins identifies a pathway through which climate can constrain regeneration at climatic range edges, as well as
391 migration in response to climate change.

392 Acknowledgments

393 This study was supported by the Polish National Science Centre grant 2019/35/D/NZ8/00050 and European Union
394 (ERC, ForestFuture, 101039066; EC, FECUND, 101244227). NN and GS acknowledge support from Project
395 76237 (University Forest Management Fund). JJF was also supported by the Foundation for Polish Science (FNP).
396 MFM and RGA were supported by the European Research Council project ERC-StG-2022 101076740 STOIKOS.
397 MFM was also supported by a Ramón y Cajal fellowship (RYC2021-031511-I) funded by the Spanish Ministry of

398 Science and Innovation, the NextGenerationEU program of the European Union and the Spanish plan of recovery,
399 transformation and resilience. JK, SS, and MW were supported by the Waldklimafond (BMEL and BMUV), project
400 WaldPULS. AMP was supported by PN23090301, funded by the Romanian Ministry of Research, Innovation, and
401 Digitalization. Views and opinions expressed are however, those of the authors only and do not necessarily reflect
402 those of the European Union or the European Research Council. Neither the European Union nor the granting
403 authority can be held responsible for them. We thank Lidia Przybylska for administrative support and assistance
404 with seed sorting. We are very grateful for the support provided by the many national forestry authorities, which
405 cannot all be named here individually, and for granting access and allowing sampling.

406

407 **Author Contributions Statement**

408 MB, AHP, KK, PJ, and JSz designed the study. KK, PJ, UE, JSz, and EMK conducted the analysis. KK and MB
409 co-wrote the first draft of the manuscript. All other authors contributed to data collection. All authors contributed
410 to the interpretation of the analysis, revised the draft, and gave final approval for publication.

411

412 **Declaration of interests**

413 No competing interests to declare.

414

415 **Data Availability Statement**

416 The data and code supporting this study are available in Figshare (<https://doi.org/10.6084/m9.figshare.31331731>).

417 **References**

418 Abe, T., Tachiki, Y., Kon, H., Nagasaka, A., Onodera, K., Minamino, K. *et al.* (2016). Parameterisation and
419 validation of a resource budget model for masting using spatiotemporal flowering data of individual trees.
420 *Ecology Letters*, 19, 1129–1139.

421 Barczyk, M.K., Bogdziewicz, M., Drobniak, S.M., Bogdańska, M., Eichert, U., Foest, J.J. *et al.* (2025). Growth–
422 reproduction trade-offs are common but changing in woody plants: a meta-analysis. *Manuscript*. Preprint /
423 unpublished manuscript.

424 Bogdziewicz, M., Espelta, J.M. & Bonal, R. (2019). Tolerance to seed predation mediated by seed size increases
425 at lower latitudes in a mediterranean oak. *Annals of Botany*, 123, 707–714.

426 Bogdziewicz, M., Kelly, D., Ascoli, D., Caignard, T., Chianucci, F., Crone, E.E. *et al.* (2024). Evolutionary ecology
427 of masting: mechanisms, models, and climate change. *Trends in Ecology & Evolution*, 39, 851–862.

428 Bogdziewicz, M., Kelly, D., Thomas, P.A., Lageard, J.G.A. & Hacket-Pain, A. (2020). Climate warming disrupts
429 mast seeding and its fitness benefits in European beech. *Nature Plants*, 6, 88–94.

430 Bogdziewicz, M., Kelly, D., Zwolak, R., Szymkowiak, J. & Hacket-Pain, A. (2025). Dynamics, Mechanisms, and
431 Consequences of Mast Seeding. *Annual Review of Ecology, Evolution, and Systematics*, 56, 119–144.

432 Bonal, R., Muñoz, A. & Díaz, M. (2007). Satiation of predispersal seed predators: The importance of considering
433 both plant and seed levels. *Evolutionary Ecology*, 21, 367–380.

434 Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A. *et al.* (2017). glmmTMB
435 balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. *The R
436 Journal*, 9, 378–400.

437 Cabon, A., Peters, R.L., Fonti, P., Martínez-Vilalta, J. & Cáceres, M.D. (2020). Temperature and water potential
438 co-limit stem cambial activity along a steep elevational gradient. *New Phytologist*, 226, 1325–1340.

439 Clark, J.S., Andrus, R., Aubry-Kientz, M., Bergeron, Y., Bogdziewicz, M., Bragg, D.C. *et al.* (2021). Continent-
440 wide tree fecundity driven by indirect climate effects. *Nature Communications*, 12, 1–11.

441 Cope, O.L., Keefover-Ring, K., Kruger, E.L. & Lindroth, R.L. (2021). Growth–defense trade-offs shape population
442 genetic composition in an iconic forest tree species. *Proceedings of the National Academy of Sciences*, 118.

443 Cornes, R.C., van der Schrier, G., van den Besselaar, E.J. & Jones, P.D. (2018). An ensemble version of the e-obs
444 temperature and precipitation data sets. *Journal of Geophysical Research: Atmospheres*, 123, 9391–9409.

445 Espelta, J.M., Cortés, P., Molowny-Horas, R., Sánchez-Humanes, B. & Retana, J. (2008). Masting mediated by
446 summer drought reduces acorn predation in mediterranean oak forests. *Ecology*, 89, 805–817.

447 Foest, J.J., Bogdziewicz, M., Caignard, T., Hadad, M., Thomas, P.A. & Hacket-Pain, A. (2025). Comparing two
448 ground-based seed count methods and their effect on masting metrics. *Forest Ecology and Management*, 581,
449 122551.

450 Fox, J., Weisberg, S., Price, B., Adler, D., Bates, D., Baud-Bovy, G. *et al.* (2024). car: Companion to Applied
451 Regression.

452 Freeman, A.C., Good, P., Davis, H.F., Chisum, P. & Fowler, S.D. (1966). Methodology for the separation o plant
453 lipids and application to spinach leaf and chloroplast lamellae. *Journal of the American Oil Chemists' Society*,
454 43, 223–231.

455 Frenne, P.D., Graae, B.J., Rodríguez-Sánchez, F., Kolb, A., Chabrerie, O., Decocq, G. *et al.* (2013). Latitudinal
456 gradients as natural laboratories to infer species' responses to temperature. *Journal of Ecology*, 101, 784–795.

457 Genet, H., Bréda, N. & Dufrêne, E. (2009). Age-related variation in carbon allocation at tree and stand scales in
458 beech (*Fagus sylvatica* L.) and sessile oak (*Quercus petraea* (Matt.) Liebl.) using a chronosequence approach.
459 *Tree Physiology*, 30, 177–192.

460 Gonzalez, A.D., Pearse, I.S. & Redmond, M.D. (2023). Increased aridity is associated with stronger tradeoffs in
461 ponderosa pine vital functions. *Ecology*, 104, e4120.

462 Guo, H., Mazer, S.J. & Du, G. (2010). Geographic variation in seed mass within and among nine species of
463 *Pedicularis* (Orobanchaceae): effects of elevation, plant size and seed number per fruit. *Journal of Ecology*, 98,
464 1232–1242.

465 Gómez, J.M. (2004). Bigger Is Not Always Better: Conflicting Selective Pressures on Seed Size in *Quercus Ilex*.
466 *Evolution*, 58, 71–80.

467 Hacket-Pain, A., Foest, J.J., Pearse, I.S., LaMontagne, J.M., Koenig, W.D., Vacchiano, G. *et al.* (2022). Mastree+:
468 Time-series of plant reproductive effort from six continents. *Global Change Biology*, 28, 3066–3082.

469 Hacket-Pain, A., Szymkowiak, J., Journé, V., Barczyk, M.K., Thomas, P.A., Lageard, J.G.A. *et al.* (2025). Growth
470 decline in European beech associated with temperature-driven increase in reproductive allocation. *Proceedings
471 of the National Academy of Sciences*, 122, e2423181122.

472 Han, Q. & Kabeya, D. (2017). Recent developments in understanding mast seeding in relation to dynamics of
473 carbon and nitrogen resources in temperate trees. *Ecological Research*, 32, 771–778.

474 Han, Q., Kabeya, D. & Hoch, G. (2011). Leaf traits, shoot growth and seed production in mature *Fagus sylvatica*
475 trees after 8 years of CO₂ enrichment. *Annals of Botany*, 107, 1405–1411.

476 Han, Q., Kabeya, D., Iio, A. & Kakubari, Y. (2008). Masting in *Fagus crenata* and its influence on the nitrogen
477 content and dry mass of winter buds. *Tree Physiology*, 28, 1269–1276.

478 Han, Q., Kabeya, D., Inagaki, Y., Noguchi, K., Fujii, K. & Satake, A. (2025). Fruiting phenology uncoupled from
479 seasonal soil nitrogen supply in masting *Fagus crenata* trees. *Plant and Soil*, 509, 237–248.

480 Hartmann, H., Bahn, M., Carbone, M. & Richardson, A.D. (2020). Plant carbon allocation in a changing world –
481 challenges and progress: introduction to a virtual issue on carbon allocation: Introduction to a virtual issue on
482 carbon allocation. *New Phytologist*, 227, 981–988.

483 Henery, M.L. & Westoby, M. (2001). Seed mass and seed nutrient content as predictors of seed output variation
484 between species. *Oikos*, 92, 479–490.

485 Hirsch, M., Greiner-Müller, E., Boden, S., Hillenmeyer, K., Mattes, A., Schuler, J. *et al.* (2026). Drought and
486 masting affect growth allocation along the stem axis in beech, oak, fir and spruce in temperate forests. *Trees*, 40,
487 27.

488 Hirsch, M., Puhlmann, H., Klemmt, H.J. & Seifert, T. (2025). Modelling fructification intensity at the tree level
489 reveals species-specific effects of tree age, social status and crown defoliation across major european tree species.
490 *European Journal of Forest Research*, 144, 1505–1522.

491 Hoch, G. (2005). Fruit-bearing branchlets are carbon autonomous in mature broad-leaved temperate forest trees.
492 *Plant, Cell & Environment*, 28, 651–659.

493 Hoch, G., Siegwolf, R.T., Keel, S.G., Körner, C. & Han, Q. (2013). Fruit production in three masting tree species
494 does not rely on stored carbon reserves. *Oecologia*, 171, 653–662.

495 Huang, L., Jin, C., Zhou, L., Song, K., Qian, S., Lin, D. *et al.* (2021). Benefit versus cost trade-offs of masting across
496 seed-to-seedling transition for a dominant subtropical forest species. *Journal of Ecology*, 109, 3087–3098.

497 Journé, V., Kelly, D., Hacket-Pain, A., Pearse, I.S., Szymkowiak, J., Foest, J.J. *et al.* (2025). Weather drivers of
498 reproductive variability in perennial plants and their implications for climate change risks. *Nature Communications*,
499 16, 9226.

500 Kalemba, E.M., Bagniewska-Zadworna, A., Suszka, J. & Pukacka, S. (2019). Dehydration sensitivity at the early
501 seedling establishment stages of the european beech (*fagus sylvatica* l.). *Forests*, 10.

502 Kaspari, M. & Welti, E.A. (2024). Nutrient dilution and the future of herbivore populations. *Trends in Ecology &*
503 *Evolution*, 39, 809–820.

504 Kelly, D. (1994). The evolutionary ecology of mast seeding. *Trends in Ecology & Evolution*, 9, 465–470.

505 Koenig, W.D., Knops, J.M., Carmen, W.J. & Sage, R.D. (2009). No trade-off between seed size and number in the
506 valley oak *quercus lobata*. *American Naturalist*, 173, 682–688.

507 Körner, C. (2021). The cold range limit of trees. *Trends in Ecology and Evolution*, 36, 979–989.

508 Körner, C. & Basler, D. (2010). Phenology under global warming. *Science*, 327, 1461–1462.

509 Körner, C. & Hiltbrunner, E. (2018). The 90 ways to describe plant temperature. *Perspectives in Plant Ecology,
510 Evolution and Systematics*, 30, 16–21.

511 Leishman, M.R. & Leishman, M.R. (2001). Does the seed size/number trade-off model determine plant community
512 structure? An assessment of the model mechanisms and their generality. *Oikos*, 93, 294–302.

513 Lichti, N.I., Steele, M.A. & Swihart, R.K. (2017). Seed fate and decision-making processes in scatter-hoarding
514 rodents. *Biological Reviews*, 92, 474–504.

515 Liu, J., Bai, Y., Lamb, E.G., Simpson, D., Liu, G., Wei, Y. *et al.* (2013). Patterns of Cross-Continental Variation
516 in Tree Seed Mass in the Canadian Boreal Forest. *PLOS ONE*, 8, e61060.

517 Milberg, P. & Lamont, B.B. (1997). Seed/cotyledon size and nutrient content play a major role in early performance
518 of species on nutrient-poor soils. *New Phytologist*, 137, 665–672.

519 Miyazaki, Y., Maruyama, Y., Chiba, Y., Kobayashi, M.J., Joseph, B., Shimizu, K.K. *et al.* (2014). Nitrogen as
520 a key regulator of flowering in *fagus crenata*: understanding the physiological mechanism of masting by gene
521 expression analysis. *Ecology Letters*, 17, 1299–1309.

522 Moles, A.T., Ackerly, D.D., Twedde, J.C., Dickie, J.B., Smith, R., Leishman, M.R. *et al.* (2007). Global patterns
523 in seed size. *Global Ecology and Biogeography*, 16, 109–116.

524 Moreira, X., Abdala-Roberts, L., Bruun, H.H., Covelo, F., de Frenne, P., Galmán, A. *et al.* (2021). Latitudinal
525 variation in seed predation correlates with latitudinal variation in seed defensive and nutritional traits in a
526 widespread oak species. *Annals of Botany*, 125, 881–890.

527 Muffler, L., Schmeddes, J., Weigel, R., Barbata, A., Beil, I., Bolte, A. *et al.* (2021). High plasticity in germination
528 and establishment success in the dominant forest tree *fagus sylvatica* across europe. *Global Ecology and*
529 *Biogeography*, 30, 1583–1596.

530 Muller-Landau, H.C. (2010). The tolerance-fecundity trade-off and the maintenance of diversity in seed size.
531 *Proceedings of the National Academy of Sciences of the United States of America*, 107, 4242–4247.

532 Muller-Landau, H.C., Wright, S.J., Calderón, O., Condit, R. & Hubbell, S.P. (2008). Interspecific variation in
533 primary seed dispersal in a tropical forest. *Journal of Ecology*, 96, 653–667.

534 Nilsson, S.G. & Wästljung, U. (1987). Seed Predation and Cross-Pollination in Mast-Seeding Beech (*Fagus*
535 *Sylvatica*) Patches. *Ecology*, 68, 260–265.

536 Packham, J.R., Thomas, P.A., Atkinson, M.D. & Degen, T. (2012). Biological Flora of
537 the British Isles: *Fagus sylvatica*. *Journal of Ecology*, 100, 1557–1608. *eprint*:
538 <https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2745.2012.02017.x>.

539 Parciak, W. (2002). Environmental Variation in Seed Number, Size, and Dispersal of a Fleshy-Fruited Plant.
540 *Ecology*, 83, 780–793.

541 Pawłowski, T.A., Suszka, J., Mucha, J., Zadworny, M., Alipour, S., Kurpisz, B. *et al.* (2024). Climate legacy in
542 seed and seedling traits of European beech populations. *Frontiers in Plant Science*, 15, 1355328.

543 Pearse, I.S., Koenig, W.D., Funk, K.A. & Pesendorfer, M.B. (2015). Pollen limitation and flower abortion in a
544 wind-pollinated, masting tree. *Ecology*, 96, 587–593.

545 Pearse, I.S., Koenig, W.D. & Kelly, D. (2016). Mechanisms of mast seeding: resources, weather, cues, and
546 selection. *New Phytologist*, 212, 546–562.

547 Prasad, R.B.N. & Gülz, P.G. (1989). Composition of lipids of beech (*fagus sylvatica* L.) seed oil. *Zeitschrift für*
548 *Naturforschung C*, 44, 735–738.

549 Qiu, T., Andrus, R., Aravena, M.C., Ascoli, D., Bergeron, Y., Berretti, R. *et al.* (2022). Limits to reproduction
550 and seed size-number trade-offs that shape forest dominance and future recovery. *Nature Communications*, 13,
551 1–12.

552 R Core Team (2023). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical
553 Computing, Vienna, Austria.

554 Redmond, M.D., Davis, T.S., Ferrenberg, S. & Wion, A.P. (2019). Resource allocation trade-offs in a mast-seeding
555 conifer: piñon pine prioritizes reproduction over defence. *AoB PLANTS*, 11, plz070.

556 Roncé, I.L., Dardevet, E., Venner, S., Schönbeck, L., Gessler, A., Chuine, I. *et al.* (2023). Reproduction alternation
557 in trees: testing the resource depletion hypothesis using experimental fruit removal in *Quercus ilex*. *Tree*
558 *Physiology*, 43, 952–964.

559 Roncé, I.L., Toïgo, M., Dardevet, E., Venner, S., Limousin, J.M. & Chuine, I. (2020). Resource manipulation
560 through experimental defoliation has legacy effects on allocation to reproductive and vegetative organs in *Quercus*
561 *ilex*. *Annals of Botany*, 126, 1165.

562 Sadras, V.O. (2007). Evolutionary aspects of the trade-off between seed size and number in crops. *Field Crops*
563 *Research*, 100, 125–138.

564 Sala, A., Hopping, K., McIntire, E.J., Delzon, S. & Crone, E.E. (2012). Masting in whitebark pine (*Pinus albicaulis*)
565 depletes stored nutrients. *New Phytologist*, 196, 189–199.

566 Sanczuk, P., Verheyen, K., Lenoir, J., Zellweger, F., Lembrechts, J.J., Rodríguez-Sánchez, F. *et al.* (2024).
567 Unexpected westward range shifts in european forest plants link to nitrogen deposition. *Science*, 386, 193–198.

568 Smith, C.C. & Fretwell, S.D. (1974). The optimal balance between size and number of offspring. *American*
569 *Naturalist*, 108, 499–506.

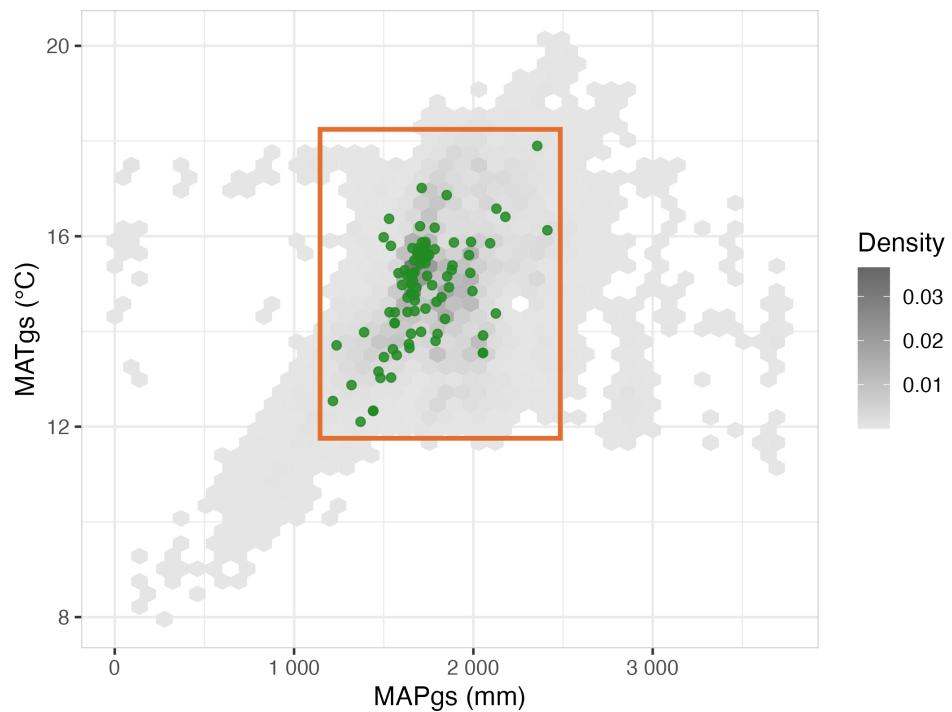
570 Stearns, S.C. (1989). Trade-Offs in Life-History Evolution. *Functional Ecology*, 3, 259–268.

571 Stone, S.L. & Gifford, D.J. (1997). Structural and Biochemical Changes in Loblolly Pine (*Pinus taeda* L.) Seeds
572 During Germination and Early-Seedling Growth. I. Storage Protein Reserves. *International Journal of Plant*
573 *Sciences*, 11, plz070.

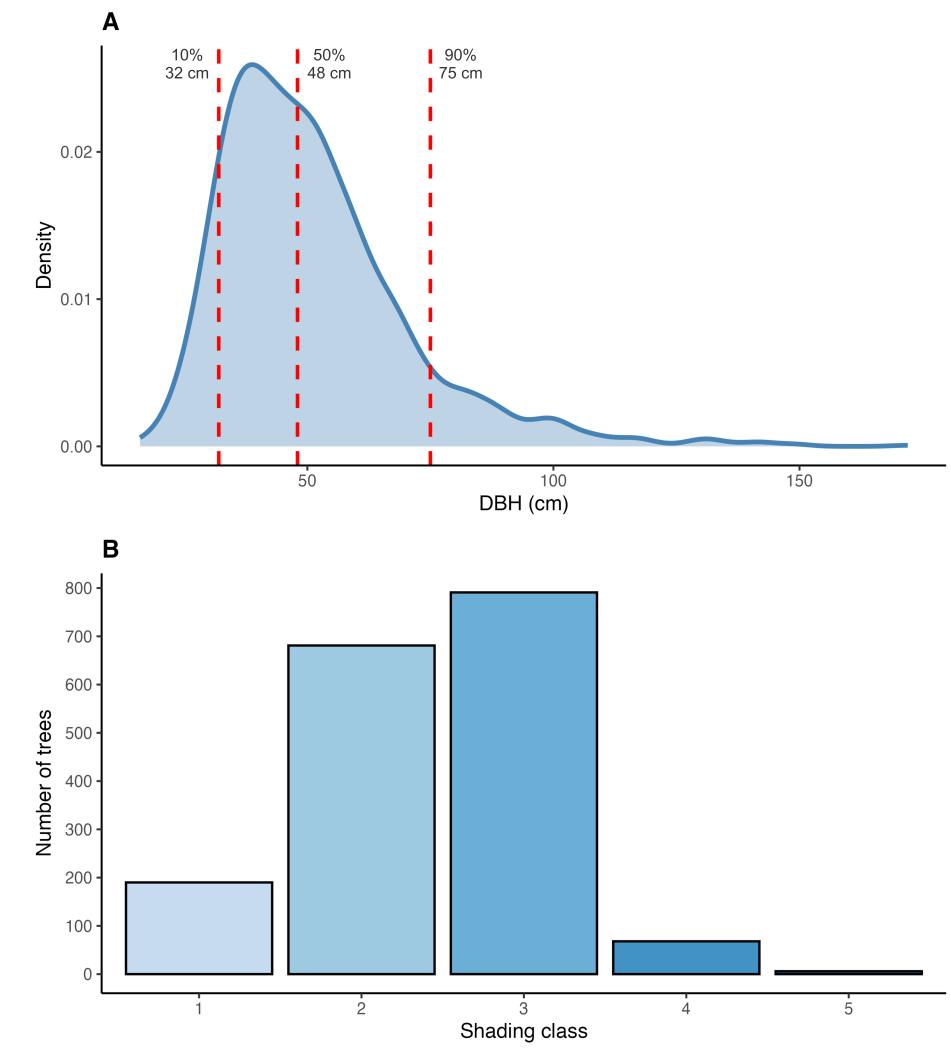
574 Thomas, S.C. (2011). *Age-Related Changes in Tree Growth and Functional Biology: The Role of Reproduction*,
575 pp. 33–64.

576 Wang, B. & Ives, A.R. (2017). Tree-to-tree variation in seed size and its consequences for seed dispersal versus
577 predation by rodents. *Oecologia*, 183, 751–762.

578 Wróbel, A., Kurek, P., Bogdziewicz, M., Dobrowolska, D. & Zwolak, R. (2022). Avian dispersal of an invasive oak
579 is modulated by acorn traits and the presence of a native oak. *Forest Ecology and Management*, 505, 119866.


580 Zwolak, R., Bogdziewicz, M., Wróbel, A. & Crone, E.E. (2016). Advantages of masting in European beech: timing
581 of granivore satiation and benefits of seed caching support the predator dispersal hypothesis. *Oecologia*, 180,
582 749–758.

583 **Supporting Information**


584 **Authors:** Kondrat et al.

585

586 **No seed size–number trade-off in European beech: climate governs investment per seed**

Figure S1: Climate coverage of sampled sites within the European beech climatic distribution. Each green point represents one population and the orange rectangle denotes the climatic envelope spanned by the sampled sites. Grey hexagons show the density of grid cells across the European beech range derived from E-OBS climate data, plotted as mean growing-season temperature (MATgs) against mean growing-season precipitation (MAPgs).

Figure S2: Distribution of tree size and shading conditions across the study dataset (A) Density distribution of diameter at breast height (DBH) for all sampled trees. Dashed vertical lines indicate the 10th, 50th (median), and 90th percentiles. (B) Frequency distribution of trees across shading classes.