

1 Opinion

2 **Towards an integrated understanding of animal weapons**

3 Authors:

- 4 1. **Christine W. Miller**, Department of Zoology, University of Cambridge, UK, ORCID: 0000-0003-1359-5624, cwm30@cam.ac.uk
- 5 2. **Dominic Cram**, University of East Anglia, UK, ORCID: 0000-0002-8790-8294, d.cram@uea.ac.uk
- 6 3. **Sarah M. Lane**, School of Biological and Marine Sciences, University of Plymouth, UK ORCID: 0000-0002-3797-3178, sarah.lane@plymouth.ac.uk
- 7 4. **#Romain Boisseau**, Department of Ecology & Evolution, University of Lausanne, Switzerland, ORCID: 0000-0003-4317-1064, romain.boisseau@unil.ch
- 8 5. **#Sophia Fitzgerald**, Division of Biological Sciences, University of Montana, USA, ORCID: 0009-0007-6776-4856, sophia.fitzgerald@umconnect.umt.edu
- 9 6. **#Nicole Lopez**, Division of Biological Sciences, University of Montana, USA, 0000-0002-6579-7765, nicole1.lopez@umconnect.umt.edu
- 10 7. **#Allen J. Moore**, Department of Entomology, University of Georgia, USA, ORCID: 0000-0002-1498-3322, ajmoore@uga.edu
- 11 8. **#Christina J. Painting**, Te Aka Mātuatua School of Science, University of Waikato, Hamilton, New Zealand, ORCID: 0000-0003-0701-2648, chrissie.painting@waikato.ac.nz
- 12 9. **#Alexandre V. Palaoro**, Department of Zoology, Universidade Federal do Paraná (UFPR), Brazil, ORCID: 0000-0002-8629-0728, alexandre.palaoro@gmail.com
- 13 10. **#Michael Ryan**, Department of Integrative Biology, University of Texas, USA, ORCID: 0000-0002-6381-9545, mryan@utexas.edu
- 14 11. **#Ummat Somjee**, Department of Integrative Biology, University of Texas, USA, ORCID: 0000-0002-5130-3605, ummat.s@gmail.com
- 15 12. **#Camille Thomas-Bulle**, Department of Biological Sciences, University of Denver, CO, USA & Department of Ecology & Evolution, University of Lausanne, Switzerland, ORCID: 0000-0002-9042-5066, camille.thomas.bulle@gmail.com
- 16 13. **Douglas Emlen**, Division of Biological Sciences, University of Montana, USA, ORCID: 0000-0003-2549-7319, doug.emlen@mso.umt.edu
- 17 14. **David Labonte**, Department of Bioengineering, Imperial College London, UK, ORCID: 0000-0002-1952-8732, d.labonte@imperial.ac.uk

37 # denotes equal contributions

38 Correspondence: cwm30@cam.ac.uk (C.W. Miller); www.millerlab.net

39 Keywords: male-male competition, armament, horn, antler, sexual selection

40

41 **Abstract**

42 Animals resolve conflict using an astonishing array of weapons – from electric fields
43 and sonic shockwaves to deadly venom and high-impact strikes. Most weapon
44 research has typically considered only a single weapon modality at a time with a
45 focus separately on weapons under sexual selection or natural selection. Further,
46 few studies have examined how weapons are integrated into the larger phenotype.
47 Thus, it is not surprising that major questions remain about why weapons have
48 evolved such extraordinary diversity in form and function. By synthesizing insights
49 across weapon modalities and research traditions, we identify key directions for
50 future research. We propose that animal weapons provide a powerful framework for
51 understanding how conflict drives the evolution of complex, integrated phenotypes.

52

53 **Animal weapons provide diverse solutions to conflict**

54 Conflict in nature is not anomalous but rather a central driver of adaptation. **Animal**
55 **weapons** (see Glossary) have evolved repeatedly to aid in the process of resolving
56 conflict. Weapons are traits that can be used to cause physical harm to others in the
57 process of competing for food and mates, subduing prey, and in self-protection. A
58 single weapon (e.g., the claw of a coconut crab, *Birgus latro*, [1]) may experience
59 natural selection, sexual selection, or both. Weapons are highly diverse and come in
60 multiple modalities [2], including mechanical, chemical, electrical, acoustic, and even
61 thermal weapons (Figure 1). Yet, research on animal weapons has typically focused
62 on one modality at a time and on weapons under similar forms of selection [3-6]. Our
63 objective with this manuscript is to take a more expansive view on animal weapons,

64 with the goal of improving understanding of why nature has come up with such
65 diverse solutions to conflict.

66

67 **Mechanical weapons are but one type of weapon**

68 Elegant drawings in the Chauvet-Pont d'Arc Cave in France, dated over 30,000
69 years before present, depict the horns of woolly rhinoceros (*Coelodonta antiquitatis*),
70 steppe bison (*Bison priscus*), auroch (*Bos primigenius*), and ibex (*Capra ibex*). Many
71 of us picture such mammalian horns, as well as tusks, spurs, and talons, as
72 quintessential examples of animal weapons. We have typically referred to such
73 weapons as morphological weapons because they are extensions of an animal's
74 morphology. Yet, the term "mechanical weapon" may be more appropriate for two
75 reasons. First, when used as weapons, they deliver force via direct contact with an
76 opponent. Second, all animal weapons are associated to some degree with
77 morphology. For example, chemical weapons, such as venoms, are typically
78 produced by glands. When Asian honeybees "cook" their predators, they use
79 vibrating muscle (Figure 1). Thus, for clarity, we will hereafter refer to weapons as
80 mechanical weapons if they are used directly to deliver force.

81 Our human visual bias makes it simple to identify mechanical weapons and
82 appreciate their immense diversity [e.g., 3], especially when they are extensions
83 from the body. Unsurprisingly, such weapons have received much attention in
84 theoretical and empirical research. However, mechanical weapons are but one
85 modality of animal weapon (Figure 1). While we mention mechanical, chemical,
86 electrical, acoustic, and thermal weapons here, we do not claim that this list of
87 weapon modalities is complete.

88 Considering multiple weapon modalities simultaneously is important. Too often in
89 science, traits and phenomena are studied with a narrow focus. In doing so, we lose
90 the opportunity for a broad, coherent and structured understanding of the
91 complexities of living systems. New generalizations and predictive frameworks can
92 emerge when commonalities are recognized and when fields of study are inspired by
93 each other. We next provide an example of how the study of mechanical weapons
94 may benefit from examining the pursuits of those researchers engaged in the study
95 of chemical weapons.

96 **Mechanical weapon composition, structure, and the ability to weather battle**
97 The composition of chemical weapons is clearly paramount for their effectiveness.
98 For example, cone snails (Genus: *Conus*) hunt fish with a venom containing a mix of
99 multiple paralytic components. Yet, these compounds are insufficient to rapidly
100 immobilize prey; excitotoxins and other compounds must be involved, too. In fact,
101 many species have an entire suite of toxins that act differently in the envenomated
102 fish to increase the likelihood of a successful hunt; at least ~50,000 different
103 conotoxins exist in the *Conus* genus [7,8].
104 The composition of chemical weapons is often characterized in exquisite detail, with
105 inquiry into the role that each existing compound may play in the weapon's efficacy
106 [9]. In contrast to chemical weapons, mechanical weapons are typically
107 characterized simply by size, general descriptors of shape, and location on the body
108 – rather than directly what makes them effective in physical conflict. Yet, selection on
109 these weapons should be no less intricate in its focus on improved efficacy. Over
110 evolutionary time mechanical weapons are at least occasionally, often frequently,
111 tested in battle [5]. As such, their ability to transfer and withstand forces is a crucial

112 part of their functioning and diversity, and many show the evolutionary hallmarks of
113 generations upon generations of selection via physical combat. For example, antlers
114 of elk (*Cervus canadensis*) are a complex composite and one of the toughest
115 biological materials known [10]. Biomechanical studies examining force, internal
116 architecture, and material composition have only been conducted in a handful of
117 taxa, mostly mammals [10,11,12; Figure 2] and crustaceans [e.g., 13,14,15]. These
118 properties are valuable to understand because they set upper limits on weapon size
119 and can reveal trade-offs between durability, weight, and energetic costs. Just like
120 the composition of chemical weapons, the composition of mechanical weapons can
121 be a less visible aspect of their biodiversity, but undoubtedly it is one of the most
122 important to fitness. While we highlight how the study of mechanical weapon
123 diversity can benefit from the approaches used in the study of chemical weapons,
124 there are undoubtedly many more lessons that can be gained by bringing together
125 perspectives across modalities and fields.

126

127 Weapons function as systems integrated within the phenotype

128 Regardless of modality, weapons are functionally integrated into the phenotype. For
129 example, the intricate cocktail of venom components would be of little use without a
130 venom-delivery mechanism such as a bite or sting [16]. Weapons typically require
131 numerous **weapon-supportive traits** [17] to be effective. As an illustrative example,
132 bombardier beetles (Genus: *Brachinus*) squirt a nearly 100°C irritating mixture of
133 benzoquinones from their abdomen, serving as both a thermal and a chemical
134 weapon. This potent weapon relies on glands that produce and store hydrogen
135 peroxide and hydroquinones separately. When the beetle is disturbed, it mixes the

136 contents of the two glands in a heat-resistant chamber in the presence of catalysts.
137 The reaction generates heat and gas, driving the emission. The damage caused can
138 be fatal to attacking insects [18]. In this example, the morphological glands, the
139 chemical catalysts, and the behavior of directing the emission all serve as weapon-
140 supportive traits.

141 During the mating season, the crashing of male bighorn sheep (*Ovis canadensis*)
142 can be heard echoing throughout canyons in North America. Males rear up and
143 deliver blows with an impact force more than five times the load required to crack a
144 human skull. The horns of bighorn sheep would be of little use without combat
145 behaviors, as well as a suite of anatomical and physiological modifications
146 throughout the body that serve as weapon-supportive traits (Figure 2; [19]).

147 Weapons and their supportive traits together comprise **weapon systems**. Weapon
148 systems are integrated suites of traits, and they are likely to show similarities to other
149 phenotypically integrated systems. For example, petal size, shape, color, nectar
150 production, and stamen/pistil length can be tightly correlated in flowering plants.
151 These traits are genetically and functionally linked because they collectively affect
152 how well specific pollinators can access and transfer pollen. Selection acts on the
153 whole trait complex, not each trait independently [20]. To study phenotypic
154 integration of weapon systems, we can adopt approaches used in flowering plants
155 and other studies of phenotypic integration. Work in this area should measure
156 multiple components of the weapon system, analyzing how selection influences trait
157 covariation and integration. Some weapons serve a myriad of functions, while others
158 serve few. How weapon multifunctionality influences their integration is largely
159 unknown.

160

161 Weapons are multifunctional

162 Multifunctionality in animal weapons may be more rule than exception. Consider the
163 following examples: the canine teeth of wolves, *Canis lupus*, are used as an
164 informative signal to conspecifics, in same-sex physical combat, to subdue prey, to
165 shear meat off bones during feeding, and in carcass defense against heterospecifics
166 [21,22]; the enlarged mandibles of the male Auckland tree wētā, *Hemideima*
167 *thoracica*, are used in fights over females and in foraging [23]; cnidarian sea
168 anemones (Order: Actiniaria) have evolved a versatile venom system that is used to
169 hunt, to engage in conspecific territorial disputes, and for defense [24]. As these
170 examples illustrate, traits can serve as **sexually selected weapons** while still being
171 used for other functions. A single weapon can experience selection from numerous
172 sources; it is the result of a summation of evolutionary forces that may be in
173 opposition or may be somewhat aligned. Thus, we may expect that a body part
174 serving very different functions (such as a leg used for locomotion as well as for
175 fighting [25]) may have lower phenotypic integration across its system of supportive
176 traits relative to those weapons with fewer or more aligned functions (such as use in
177 hunting prey and attacking conspecifics [see, e.g., 26]).

178

179 Behavior may take the lead in weapon elaboration and diversification

180 Many weapons would be ineffective without their suite of weapon-supportive traits,
181 including specialized behaviors. Conversely, many behavioral examples of physical
182 conflict exist without obvious weapon elaboration [27]. For example, the common
183 bottlenose dolphin, *Tursiops truncatus*, uses ramming, scraping with non-

184 exaggerated teeth, body slaps, and endurance [28]. Ring doves, *Streptopelia risori*,
185 engage in wing slapping and chest bumping [29]. *Drosophila melanogaster* fruit flies
186 tap or push each other using their forelegs [30]. In these cases, animal bodies show
187 no obvious signs of anatomical modification. Such examples highlight that behavior
188 may take the lead in the initial elaboration of animal weapons by shaping the
189 selective environments that individuals experience [see, e.g., 31,32].

190 Once a weapon begins to take form, behavior likely contributes to further
191 evolutionary diversification. For example, African antelope (Family: Bovidae) exhibit
192 spectacular horn diversity across species. This evolutionary diversification is likely at
193 least partially due to differences in fighting style and signaling across habitat types.
194 Open habitats are hypothesized to have selected for large, lateral weapons that are
195 visible to rivals from long distances. Such habitat allows space for fighting with large
196 weapons, because the animals have room to maneuver. In contrast, smaller,
197 forward-facing weapons are expected to have evolved in closed habitats where wide
198 horns would get tangled and where the reliance on weapons as signals is reduced
199 [33,34].

200 Changes in habitat and the fighting environment may stimulate large changes in how
201 animals engage in conflict. However, individuals within a species and in a single
202 context often exhibit differences in how they engage in competitive or agonistic
203 interactions [35]. Some individuals will direct and wield weapons more effectively
204 (i.e., more skillfully) in a certain context than will others, and it is largely unknown the
205 degree to which skill plays a role in contest success [36]. We also do not know how
206 skills are acquired. Do skillful parents produce skillful offspring? Are skills refined, for
207 example, through battle experience or juvenile play behavior? Foraging skills can be

208 socially learned, allowing innovations to rapidly spread through populations [37], but
209 whether the same applies to fighting skills remains unclear.

210

211 Weapons as signals and consequences for diversification

212 One of the functions of many weapons is their use as signals of vigor, fighting ability,
213 or agonistic intention. For example, males of the red deer, *Cervus elaphus*, display
214 their antlers as they walk in parallel to each other, their behavior facilitating visual
215 assessment [38]. Signaling can help minimize the costs and risks of contests by
216 allowing an evaluation of probable outcomes, which can halt physical conflict before
217 further escalation [39,40]. When a weapon is used as a signal, this process can
218 contribute to weapon diversification. We describe three ways this can occur.

219 First, selection via signaling can lead to the evolution of different weapon features
220 than selection via physical conflict alone. For example, long fiddler crab claws are
221 effective visual signals to opponents, but long claw length is not helpful for fighting.
222 Males deliver gripping forces not at the tips of the claws but closer to the body at the
223 tubercles. Thus, the claw shape of fiddler crabs is molded by selection to serve both
224 as an effective signal and to be successful in fighting, which may result in some
225 compromises [41]. Second, another way that signaling can lead to the elaboration
226 and diversification of weapons is via runaway evolution via intra-sexual sexual
227 selection, which requires signals to be reliable and honest [42]. Unreliable or
228 dishonest signals may eventually arise [40] and are expected to put the brakes on
229 this process. Third, for a weapon to serve as a signal, it must be perceived. Yet,
230 perception is rarely perfect. We know very little about the sensory and cognitive
231 underpinnings involved in the assessment of weapons by rivals [see 43]. In some

232 cases, there may be a disconnect between the information perceptually gleaned
233 from the signal and the weapon's true effectiveness in battle [e.g., 44,45]. For
234 example, the ambient environmental conditions experienced by some populations,
235 such as the amount of or quality of light filtering through a canopy of vegetation, may
236 affect visual perception [43,46]. Further, accurate discrimination may require larger
237 relative differences in weapon sizes for weapons that are absolutely larger [Weber's
238 Law; 47]. Altogether, it is probable that assessment will sometimes be faulty, and this
239 can serve as another factor influencing weapon diversification.

240

241 Costs and constraints have consequences for weapon diversification

242 The benefit of possessing weapons is often apparent in this conflict-filled world.
243 Thus, it can seem surprising when animals lose or reduce weapons or over
244 evolutionary time [48]. Phylogenetic comparative analyses have shown that weapons
245 are highly labile over evolutionary time; they can increase in size and complexity, yet
246 equally-so, they may readily disappear [25,48,49]. To fully understand weapon
247 diversification, it is essential to consider why weapons, with all their advantages, may
248 become reduced or even lost over evolutionary time.

249 Venom, for example, is a dynamically evolving weapon; the loss of genetic capacity
250 to produce certain component toxins is surprisingly common [e.g., 9,50]. Venom is a
251 multi-component, functional trait used by one organism to interfere with the
252 homeostatic processes of another, generally to facilitate feeding or deter predators or
253 competitors. The composition of venom actively coevolves with the physiology of
254 prey animals in a coevolutionary arms race. As prey become resistant, there may be
255 strong selection for novel components with greater efficacy. Components that are

256 less effective, in turn, are expected to be lost if there is a cost to their production,
257 maintenance, and/or storage [51].

258 Weapons, especially sexually selected weapons, can be associated with steep costs
259 [52,53] and sexually antagonistic effects [54]. The weapon cost-benefit relationship
260 may be altered by biotic and abiotic environmental change, such as resource
261 defensibility, habitat structure, temperature stress, or parasite load – and all of these
262 can vary readily across space and time. In some such contexts, costs of weapons
263 may exceed benefits. When they do, natural selection may reverse or slow weapon
264 elaboration.

265 Weapon reduction or loss is not necessarily the only outcome when weapons are
266 costly. Instead, selection may lead to the evolution of **weapon compensatory traits**
267 [55-57]. Weapon compensatory traits can be distinguished from supportive traits in
268 that they alleviate costs that are not directly linked to effective weapon deployment,
269 such as the energetic costs of walking or flying with large horns or mandibles.
270 Compensation may manifest as novel or modified structures, physiology, behavior, or
271 performance [55]. For example, electric eels, Genus *Electrophorus*, can generate
272 large electrical discharges – up to 600 volts – without injuring themselves [58]. The
273 ability to avoid self-electrocution is hypothesized to be due to compensatory traits
274 including the ability to control and channel electricity. These traits include the
275 separation and insulation of electric organs and the ability to reduce current flow
276 within the body.

277 Weapon diversification is not only shaped by costs; it can also be shaped by
278 constraints such as those arising from phylogeny, architecture, and development
279 [59]. Such constraints may at least partially explain why some taxa have evolved

280 chemical instead of acoustic weapons, and why weapons are found only on some
281 locations on the body. Biomechanical constraints may help explain why the evolution
282 of weapons in highly flight-dependent species is limited. For example, specialized
283 weapons are rare in bird species that rely upon efficient flight as their main form of
284 locomotion [60]. Further, even though male damselflies (Suborder: Zygoptera) and
285 butterflies (Superfamily: Papilioidea) compete for territories, they do so while
286 lacking obvious weapons [61,62]. Instead, such animals, as well as the dolphin,
287 dove, and fruit fly mentioned earlier, engage in conflict with wings, beaks, teeth, and
288 tails that may show little indication of being modified for fighting.

289

290 **Concluding Remarks**

291 Conflict is rife in nature, and animal weapons showcase highly diverse solutions to
292 conflict. Yet research has traditionally focused on a narrow subset of highly visible
293 mechanical traits, often studied in isolation and under similar selective contexts. By
294 adopting a broader perspective that integrates multiple weapon modalities, we argue
295 that animal weapons are best understood as distinct evolutionary solutions to conflict
296 that nonetheless share common underlying principles (see **Outstanding**
297 **Questions**). Across modalities, weapons are shaped by selection on performance,
298 embedded within integrated phenotypic systems, and constrained by costs, trade-
299 offs, and limits imposed by development, biomechanics, and perception.

300 A key insight emerging from this synthesis is that weapons do not evolve alone.
301 Their efficacy and elaboration depend on suites of weapon-supportive and
302 compensatory traits, including behavior and skill, which may precede, facilitate, or
303 constrain morphological elaboration. Moreover, the widespread multifunctionality of

304 weapons means that their evolution reflects the cumulative outcome of often
305 competing selective pressures, rather than optimization for any single function.
306 These dynamics may help explain both the extraordinary diversity of animal
307 weapons and their striking evolutionary lability, including repeated reduction and
308 loss.
309 Future progress will be enhanced by the use of experimental and comparative
310 approaches that bridge research traditions. Integrating biomechanics, physiology,
311 behavior, and phylogenetics and considering multiple weapon modalities will allow
312 researchers to move beyond descriptive classifications toward broadly predictive
313 frameworks for weapon evolution. Such approaches promise not only to clarify why
314 particular weapon types evolve in some lineages and not others, but also to
315 illuminate general principles of phenotypic integration, adaptation, and diversification.
316 In this way, animal weapons provide a powerful lens through which to understand
317 how conflict shapes the evolution of complex biological systems.

318 **Boxes**

319 **Glossary**

320 Animal Weapon: A weapon is a trait that can be used to cause physical harm to
321 others in the context of competitive or agonistic interactions

322 Sexually selected weapon: A weapon can be described as sexually selected if
323 variation in its expression has led to fitness differences associated with non-random
324 success in the competition for access to gametes for fertilization (based on [63])

325 Weapon compensatory trait: Weapon compensatory traits mitigate the costs
326 associated with the development, use, or maintenance of weapons

327 Weapon-supportive trait: Weapon-supportive traits enable weapon function and
328 improve their effectiveness.

329 Weapon system: Weapon systems include one or more animal weapons alongside
330 their array of weapon-supportive traits

331

332 **Declaration of interests**

333 The authors declare no competing interests.

334 **Acknowledgments**

335 We used the Delphi technique (Supplementary Information), to generate ideas and
336 decide on the areas of focus for this manuscript. This work was inspired by work
337 funded by the US National Science Foundation (IOS-2226881) to C.W.M. Thanks
338 also to Janice Yan for providing comments on a previous version.

339

340 **References**

- 341 1. Oka, S.-i. et al. (2016) A mighty claw: pinching force of the coconut crab, the
342 largest terrestrial crustacean. *PLoS ONE* 11, e0166108
- 343 2. Lane, S.M. (2018) What is a weapon? *Integr. Comp. Biol.* 58, 1055–1063
- 344 3. Emlen, D.J. (2008) The evolution of animal weapons. *Annu. Rev. Ecol. Evol.*
345 *Syst.* 39, 387–413
- 346 4. Geist, V. (1966) The evolution of horn-like organs. *Behaviour* 26, 175–214
- 347 5. McCullough, E.L. et al. (2016) Why sexually selected weapons are not
348 ornaments. *Trends Ecol. Evol.* 31, 742–751
- 349 6. Palaoro, A.V. and Peixoto, P.E.C. (2022) The hidden links between animal
350 weapons, fighting style, and their effect on contest success: a meta-analysis.
Biol. Rev. 97, 1948–1966
- 351 7. Olivera, B.M. and Cruz, L.J. (2001) Conotoxins, in retrospect. *Toxicon* 39, 7–
353 14
- 354 8. Terlau, H. et al. (1996) Strategy for rapid immobilization of prey by a fish-
355 hunting marine snail. *Nature* 381, 148–151
- 356 9. Dowell, N.L. et al. (2016) The deep origin and recent loss of venom toxin
357 genes in rattlesnakes. *Curr. Biol.* 26, 2434–2445
- 358 10. Launey, M.E. et al. (2010) Mechanistic aspects of the fracture toughness of
359 elk antler bone. *Acta Biomater.* 6, 1505–1514
- 360 11. Kitchener, A.C. (2021) Fighting and the mechanical design of horns and
361 antlers. In *Biomechanics in Animal Behaviour* (A.C. Kitchener, ed.), pp. 291–
362 314, Garland Science
- 363 12. Wheatley, B.B. et al. (2023) How the geometry and mechanics of bighorn
364 sheep horns mitigate the effects of impact and reduce the head injury
365 criterion. *Bioinspir. Biomim.* 18, 026005
- 366 13. Swanson, B.O. et al. (2013) Evolutionary variation in the mechanics of fiddler
367 crab claws. *BMC Evol. Biol.* 13, 137
- 368 14. Qian, Z. et al. (2018) Structure, mechanical properties and surface
369 morphology of the snapping shrimp claw. *J. Mater. Sci.* 53, 10666–10678
- 370 15. Patek, S.N. and Caldwell, R.L. (2005) Extreme impact and cavitation forces of
371 a biological hammer: strike forces of the peacock mantis shrimp
Odontodactylus scyllarus. *J. Exp. Biol.* 208, 3655–3664

373 16. Jenner, R.A. et al. (2025) What is animal venom? Rethinking a manipulative
374 weapon. *Trends Ecol. Evol.* 40, 852-861

375 17. Okada, Y. et al. (2012) Effect of weapon-supportive traits on fighting success
376 in armed insects. *Anim. Behav.* 83, 1001–1006

377 18. Eisner, T. and Aneshansley, D.J. (1999) Spray aiming in the bombardier
378 beetle: photographic evidence. *Proc. Natl. Acad. Sci. U.S.A.* 96, 9705–9709

379 19. Kitchener, A.C. (1988) An analysis of the forces of fighting of the blackbuck
380 (*Antilope cervicapra*) and the bighorn sheep (*Ovis canadensis*) and the
381 mechanical design of the horn of bovids. *J. Zool.* 214, 1–20

382 20. Herrera, C.M. (2001) Deconstructing a floral phenotype: do pollinators select
383 for corolla integration in *Lavandula latifolia*? *J. Evol. Biol.* 14, 574–584

384 21. Harrington, F.H. et al. (2003) Wolf communication. In *Wolves: Behavior,*
385 *Ecology, and Conservation* (L.D. Mech and L. Boitani, eds), pp. 66–103, Univ.
386 Chicago Press

387 22. Tallian, A. et al. (2022) Of wolves and bears: seasonal drivers of interference
388 and exploitation competition between apex predators. *Ecol. Monogr.* 92,
389 e1498

390 23. Farnworth, B. et al. (2023) Exaggerated mandibles are correlated with
391 enhanced foraging efficacy in male Auckland tree wētā. *Biol. Lett.* 19,
392 20230207

393 24. Menezes, C. and Thakur, N.L. (2022) Sea anemone venom: ecological
394 interactions and bioactive potential. *Toxicon* 208, 31–46

395 25. Miller, C.W. et al. (2024) The evolution of multi-component weapons in leaf-
396 footed bugs. *Evolution* 78, 635–651

397 26. Rosas-Guerrero, V. et al. (2011) Influence of pollination specialization and
398 breeding system on floral integration and phenotypic variation in *Ipomoea*.
399 *Evolution* 65, 350–364

400 27. Guo, X. and Dukas, R. (2020) The cost of aggression in an animal without
401 weapons. *Ethology* 126, 24–31

402 28. Scott, E.M. et al. (2005) Aggression in bottlenose dolphins: evidence for
403 sexual coercion, male–male competition, and female tolerance through
404 analysis of tooth-rake marks and behaviour. *Behaviour* 142, 21–44

405 29. Vowles, D. and Harwood, D. (1966) The effect of exogenous hormones on
406 aggressive and defensive behaviour in the ring dove (*Streptopelia risoria*). *J.*
407 *Endocrinol.* 36, 35–51

408 30. Dierick, H.A. (2007) A method for quantifying aggression in male *Drosophila*
409 *melanogaster*. *Nat. Protoc.* 2, 2712–2718

410 31. Duckworth, R.A. (2009) The role of behavior in evolution: a search for
411 mechanism. *Evol. Ecol.* 23, 513–531

412 32. Wcislo, W.T. (2021) A dual role for behavior in evolution and shaping
413 organismal selective environments. *Annu. Rev. Ecol. Evol. Syst.* 52, 343–362

414 33. Lundrigan, B. (1996) Morphology of horns and fighting behavior in the family
415 Bovidae. *J. Mammal.* 77, 462–475

416 34. Bro-Jørgensen, J. (2007) The intensity of sexual selection predicts weapon
417 size in male bovids. *Evolution* 61, 1316–1326

418 35. Caton, N.R. and Dixson, B.J. (2022) Human third-party observers accurately
419 track fighting skill and vigour along their unique paths to victory. *Sci. Rep.* 12,
420 14841

421 36. Briffa, M. and Lane, S.M. (2017) The role of skill in animal contests: a
422 neglected component of fighting ability. *Proc. R. Soc. B* 284, 20171596

423 37. Aplin, L.M. et al. (2015) Experimentally induced innovations lead to persistent
424 culture via conformity in wild birds. *Nature* 518, 538–541

425 38. Clutton-Brock, T.H. et al. (1979) The logical stag: adaptive aspects of fighting
426 in red deer (*Cervus elaphus*). *Anim. Behav.* 27, 211–225

427 39. Smith, J.M. (1974) The theory of games and the evolution of animal conflicts.
428 *J. Theor. Biol.* 47, 209–221

429 40. Searcy, W.A. and Nowicki, S. (2010) *The Evolution of Animal Communication*.
430 Princeton Univ. Press

431 41. Dennenmoser, S. and Christy, J.H. (2013) The design of a beautiful weapon:
432 compensation for opposing sexual selection on a trait with two functions.
433 *Evolution* 67, 1181–1188

434 42. Moore, A.J. et al. (2022) Runaway evolution from male–male competition.
435 *Ecol. Lett.* 25, 295–306

436 43. Ryan, M.J. and Cummings, M.E. (2013) Perceptual biases and mate choice.
437 *Annu. Rev. Ecol. Evol. Syst.* 44, 437–459

438 44. Backwell, P.R. et al. (2000) Dishonest signalling in a fiddler crab. *Proc. R.*
439 *Soc. B* 267, 719–724

440 45. Caves, E.M. et al. (2018) Categorical perception of colour signals in a
441 songbird. *Nature* 560, 365–367

442 46. Endler, J.A. (1993) The color of light in forests and its implications. *Ecol.*
443 *Monogr.* 63, 1–27

444 47. Akre, K.L. and Johnsen, S. (2014) Psychophysics and the evolution of
445 behavior. *Trends Ecol. Evol.* 29, 291–300

446 48. Wiens, J.J. (2001) Widespread loss of sexually selected traits: how the
447 peacock lost its spots. *Trends Ecol. Evol.* 16, 517–523

448 49. Van Kleeck-Hann, M. and Wiens, J.J. (2023) Macroevolution of sexually
449 selected weapons in chameleons. *Evolution* 77, 2277–2290

450 50. Surm, J.M. et al. (2024) Venom trade-off shapes interspecific interactions,
451 physiology, and reproduction. *Sci. Adv.* 10, eadk3870

452 51. Evans, E.R. et al. (2019) Venom costs and optimization in scorpions. *Front.*
453 *Ecol. Evol.* 7, 196

454 52. Somjee, U. et al. (2018) The hidden cost of sexually selected traits: the
455 metabolic expense of maintaining a sexually selected weapon. *Proc. R. Soc.*
456 *B* 285, 20181685

457 53. Joseph, P.N. et al. (2018) Males that drop a sexually selected weapon grow
458 larger testes. *Evolution* 72, 113–122

459 54. Łukasiewicz, A. et al. (2020) Sexually selected male weapon is associated
460 with lower inbreeding load but higher sex load in the bulb mite. *Evolution* 74,
461 1851–1855

462 55. Husak, J.F. and Swallow, J.G. (2011) Compensatory traits and the evolution of
463 male ornaments. *Behaviour* 148, 1–29

464 56. Oufiero, C. and Garland, T., Jr. (2007) Evaluating performance costs of
465 sexually selected traits. *Funct. Ecol.* 21, 676–689

466 57. Weber, J.N. et al. (2023) Evolution of horn length and lifting strength in the
467 Japanese rhinoceros beetle *Trypoxylus dichotomus*. *Curr. Biol.* 33, 4285–
468 4297

469 58. Catania, K.C. (2019) The astonishing behavior of electric eels. *Front. Integr.*
470 *Neurosci.* 13, 23

471 59. Gould, S.J. and Lewontin, R.C. (1979) The spandrels of San Marco and the
472 Panglossian paradigm: a critique of the adaptationist programme. *Proc. R.*
473 *Soc. B* 205, 581–598

474 60. Menezes, J.C. and Palaoro, A.V. (2022) Flight hampers the evolution of
475 weapons in birds. *Ecol. Lett.* 25, 624–634

476 61. Waage, J.K. (1988) Confusion over residency and the escalation of damselfly
477 territorial disputes. *Anim. Behav.* 36, 586–595

478 62. Kemp, D.J. and Wiklund, C. (2001) Fighting without weaponry: a review of
479 male–male contest competition in butterflies. *Behav. Ecol. Sociobiol.* 49, 429–
480 442

481 63. Shuker, D.M. and Kvarnemo, C. (2021) The definition of sexual selection.
482 *Behav. Ecol.* 32, 781–794

483 64. Packer, C. (1979) Male dominance and reproductive activity in *Papio anubis*.
484 *Anim. Behav.* 27, 37–45

485 65. Schendel, V. et al. (2019) The diversity of venom: the importance of behavior
486 and venom system morphology in understanding its ecology and evolution.
487 *Toxins* 11, 666

488 66. Kingston, A.C. et al. (2022) Snapping shrimp have helmets that protect their
489 brains by dampening shock waves. *Curr. Biol.* 32, 3576–3583

490 67. Ono, M. et al. (1995) Unusual thermal defence by a honeybee against mass
491 attack by hornets. *Nature* 377, 334–336

492 68. Stabentheiner, A. et al. (2007) Thermal behaviour of honeybees during
493 aggressive interactions. *Ethology* 113, 995–1006

494 69. Huang, W. et al. (2017) Hierarchical structure and compressive deformation
495 mechanisms of bighorn sheep (*Ovis canadensis*) horn. *Acta Biomater.* 64, 1–
496 14

497 70. Drake, A. et al. (2016) Horn and horn core trabecular bone of bighorn sheep
498 rams absorbs impact energy and reduces brain cavity accelerations during
499 high-impact ramming. *Acta Biomater.* 44, 41–50

500

501 **Figure Legends**

502 **Figure 1. Five weapon modalities** (from left to right). *Mechanical weapons* are
503 used to transfer potentially damaging forces via direct physical contact and include
504 structures such as the canines of the olive baboon, *Papio anubis* [64]. *Chemical*
505 *weapons* are bioactive compounds that can subdue or harm others, and these
506 weapons include venoms [65]. Snails in the genus *Conus* use a small harpoon to
507 transfer a mix of bioactive compounds that subdues prey [8]. *Electrical weapons*
508 include the electrical discharge of electric eels, genus *Electrophorus*. Fascinatingly,
509 this weapon first stimulates prey to move and so reveal itself, and then to freeze,
510 aiding its capture [58]. *Acoustic weapons* include the acoustic shockwaves produced
511 by pistol shrimp and other snapping shrimp in the Family Alpheidae. To employ this
512 weapon, a specialized claw is rapidly shut. The collapse of a cavitation bubble
513 generates an acoustic shockwave with extremely high sound pressure levels,
514 reaching up to 218 decibels [66]. The shockwave can kill and injure both prey and
515 conspecific competitors. *Thermal weapons* include the process by which Japanese
516 honeybees, *Apis cerana japonica*, “cook” their enemy. When a predatory Asian
517 hornet is captured, often more than 500 bees rapidly engulf the hornet in a ball. They
518 vibrate their wing muscles to produce heat, reaching 47 °C, which proves lethal to
519 the hornet but not to the bees [67,68]. Illustrations by A. Whitney Fletcher.

520

521 **Figure 2. The weapon system of bighorn sheep (*Ovis canadensis*)**. In the cool
522 autumn air in North America, the breath of bighorn sheep is visible as males assess,
523 push, and kick each other. As contests escalate, males rear up on their hindlegs and
524 crash their head into that of their opponent (above) at a speed that can reach 9 m/s.
525 Mechanical weapons, the horns and the skull, provide the primary points of contact,

526 supporting an impact force up to 3400 N [69] (below). The tapered spiral geometry of
527 the horn and the spongy trabecular bone material within the horn and skull serve to
528 absorb impact [12,70] Weapon-supportive traits may include physiological
529 modifications, such as modulation of hormones and metabolic rate, and adaptations
530 of the sensory system which allow males to evaluate opponents and decide which
531 males to attack. Illustrations by David Tuss.

Towards an integrated understanding of animal weapons

Outstanding Questions

To what degree are evolutionary principles shared across different weapon modalities?

Comparisons across mechanical, chemical, electrical, acoustic, and thermal weapons is needed to determine to what degree common rules govern performance, costs, and diversification.

How does selection act on weapons as integrated systems rather than isolated traits?

Understanding how weapon components, supportive traits, and compensatory traits covary under selection will require multivariate approaches that explicitly measure integration across morphology, physiology, behavior, and performance.

How does weapon multifunctionality influence evolutionary outcomes?

Because many weapons serve multiple roles, future research should examine how competing selective pressures shape trade-offs, constrain optimization, and alter phenotypic integration within weapon systems.

What role does behavior play in initiating and diversifying animal weapons?

Behavior may precede morphological elaboration by shaping the selective environment experienced during conflict, yet the conditions under which behavior leads or follows weapon evolution remain poorly understood.

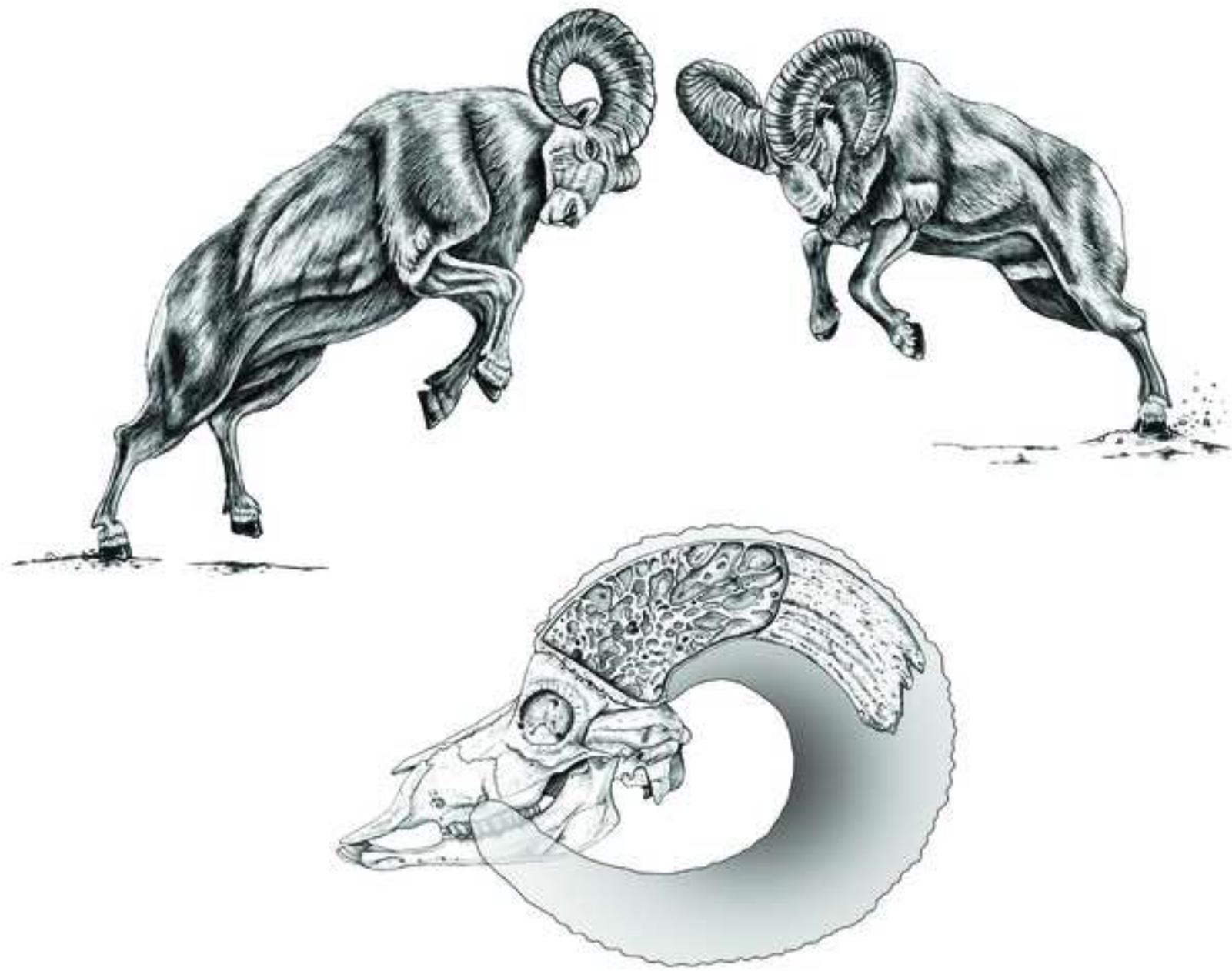
How important are skill, learning, and experience in determining weapon effectiveness?

Variation in how individuals wield weapons may strongly influence contest outcomes,

but fighting skill is rarely quantified. Moreover, the extent to which fighting skill is heritable, learned, or socially transmitted is largely unknown.

How do constraints shape the distribution of weapon types across taxa?

Phylogenetic, developmental, and biomechanical constraints may limit which weapon modalities can evolve in certain clades, yet these constraints are rarely tested explicitly.


How does perception influence the evolution of weapons as signals?

Sensory and cognitive limitations may decouple weapon appearance from contest performance, potentially shaping diversification through imperfect assessment.

Figure 1

Figure 2

