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Abstract

Animals resolve conflict using an astonishing array of weapons — from electric fields
and sonic shockwaves to deadly venom and high-impact strikes. Most weapon
research has typically considered only a single weapon modality at a time with a
focus separately on weapons under sexual selection or natural selection. Further,
few studies have examined how weapons are integrated into the larger phenotype.
Thus, it is not surprising that major questions remain about why weapons have
evolved such extraordinary diversity in form and function. By synthesizing insights
across weapon modalities and research traditions, we identify key directions for
future research. We propose that animal weapons provide a powerful framework for

understanding how conflict drives the evolution of complex, integrated phenotypes.

Animal weapons provide diverse solutions to conflict

Conflict in nature is not anomalous but rather a central driver of adaptation. Animal
weapons (see Glossary) have evolved repeatedly to aid in the process of resolving
conflict. Weapons are traits that can be used to cause physical harm to others in the
process of competing for food and mates, subduing prey, and in self-protection. A
single weapon (e.g., the claw of a coconut crab, Birgus latro, [1]) may experience
natural selection, sexual selection, or both. Weapons are highly diverse and come in
multiple modalities [2], including mechanical, chemical, electrical, acoustic, and even
thermal weapons (Figure 1). Yet, research on animal weapons has typically focused
on one modality at a time and on weapons under similar forms of selection [3-6]. Our

objective with this manuscript is to take a more expansive view on animal weapons,
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with the goal of improving understanding of why nature has come up with such

diverse solutions to conflict.

Mechanical weapons are but one type of weapon

Elegant drawings in the Chauvet-Pont d'Arc Cave in France, dated over 30,000
years before present, depict the horns of woolly rhinoceros (Coelodonta antiquitatis),
steppe bison (Bison priscus), auroch (Bos primigenius), and ibex (Capra ibex). Many
of us picture such mammalian horns, as well as tusks, spurs, and talons, as
quintessential examples of animal weapons. We have typically referred to such
weapons as morphological weapons because they are extensions of an animal’s
morphology. Yet, the term “mechanical weapon” may be more appropriate for two
reasons. First, when used as weapons, they deliver force via direct contact with an
opponent. Second, all animal weapons are associated to some degree with
morphology. For example, chemical weapons, such as venoms, are typically
produced by glands. When Asian honeybees “cook” their predators, they use
vibrating muscle (Figure 1). Thus, for clarity, we will hereafter refer to weapons as

mechanical weapons if they are used directly to deliver force.

Our human visual bias makes it simple to identify mechanical weapons and
appreciate their immense diversity [e.g., 3], especially when they are extensions
from the body. Unsurprisingly, such weapons have received much attention in
theoretical and empirical research. However, mechanical weapons are but one
modality of animal weapon (Figure 1). While we mention mechanical, chemical,
electrical, acoustic, and thermal weapons here, we do not claim that this list of

weapon modalities is complete.
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Considering multiple weapon modalities simultaneously is important. Too often in
science, traits and phenomena are studied with a narrow focus. In doing so, we lose
the opportunity for a broad, coherent and structured understanding of the
complexities of living systems. New generalizations and predictive frameworks can
emerge when commonalities are recognized and when fields of study are inspired by
each other. We next provide an example of how the study of mechanical weapons
may benefit from examining the pursuits of those researchers engaged in the study

of chemical weapons.

Mechanical weapon composition, structure, and the ability to weather battle

The composition of chemical weapons is clearly paramount for their effectiveness.
For example, cone snails (Genus: Conus) hunt fish with a venom containing a mix of
multiple paralytic components. Yet, these compounds are insufficient to rapidly
immobilize prey; excitotoxins and other compounds must be involved, too. In fact,
many species have an entire suite of toxins that act differently in the envenomated
fish to increase the likelihood of a successful hunt; at least ~50,000 different

conotoxins exist in the Conus genus [7,8].

The composition of chemical weapons is often characterized in exquisite detail, with
inquiry into the role that each existing compound may play in the weapon’s efficacy
[9]. In contrast to chemical weapons, mechanical weapons are typically
characterized simply by size, general descriptors of shape, and location on the body
— rather than directly what makes them effective in physical conflict. Yet, selection on
these weapons should be no less intricate in its focus on improved efficacy. Over
evolutionary time mechanical weapons are at least occasionally, often frequently,

tested in battle [5]. As such, their ability to transfer and withstand forces is a crucial
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part of their functioning and diversity, and many show the evolutionary hallmarks of
generations upon generations of selection via physical combat. For example, antlers
of elk (Cervus canadensis) are a complex composite and one of the toughest
biological materials known [10]. Biomechanical studies examining force, internal
architecture, and material composition have only been conducted in a handful of
taxa, mostly mammals [10,11,12; Figure 2] and crustaceans [e.g., 13,14,15]. These
properties are valuable to understand because they set upper limits on weapon size
and can reveal trade-offs between durability, weight, and energetic costs. Just like
the composition of chemical weapons, the composition of mechanical weapons can
be a less visible aspect of their biodiversity, but undoubtedly it is one of the most
important to fithess. While we highlight how the study of mechanical weapon
diversity can benefit from the approaches used in the study of chemical weapons,
there are undoubtedly many more lessons that can be gained by bringing together

perspectives across modalities and fields.

Weapons function as systems integrated within the phenotype

Regardless of modality, weapons are functionally integrated into the phenotype. For
example, the intricate cocktail of venom components would be of little use without a
venom-delivery mechanism such as a bite or sting [16]. Weapons typically require
numerous weapon-supportive traits [17] to be effective. As an illustrative example,
bombardier beetles (Genus: Brachinus) squirt a nearly 100°C irritating mixture of
benzoquinones from their abdomen, serving as both a thermal and a chemical
weapon. This potent weapon relies on glands that produce and store hydrogen

peroxide and hydroquinones separately. When the beetle is disturbed, it mixes the
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contents of the two glands in a heat-resistant chamber in the presence of catalysts.
The reaction generates heat and gas, driving the emission. The damage caused can
be fatal to attacking insects [18]. In this example, the morphological glands, the
chemical catalysts, and the behavior of directing the emission all serve as weapon-

supportive traits.

During the mating season, the crashing of male bighorn sheep (Ovis canadensis)
can be heard echoing throughout canyons in North America. Males rear up and
deliver blows with an impact force more than five times the load required to crack a
human skull. The horns of bighorn sheep would be of little use without combat
behaviors, as well as a suite of anatomical and physiological modifications

throughout the body that serve as weapon-supportive traits (Figure 2; [19]).

Weapons and their supportive traits together comprise weapon systems. Weapon
systems are integrated suites of traits, and they are likely to show similarities to other
phenotypically integrated systems. For example, petal size, shape, color, nectar
production, and stamen/pistil length can be tightly correlated in flowering plants.
These traits are genetically and functionally linked because they collectively affect
how well specific pollinators can access and transfer pollen. Selection acts on the
whole trait complex, not each trait independently [20]. To study phenotypic
integration of weapon systems, we can adopt approaches used in flowering plants
and other studies of phenotypic integration. Work in this area should measure
multiple components of the weapon system, analyzing how selection influences trait
covariation and integration. Some weapons serve a myriad of functions, while others
serve few. How weapon multifunctionality influences their integration is largely

unknown.
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Weapons are multifunctional

Multifunctionality in animal weapons may be more rule than exception. Consider the
following examples: the canine teeth of wolves, Canis lupus, are used as an
informative signal to conspecifics, in same-sex physical combat, to subdue prey, to
shear meat off bones during feeding, and in carcass defense against heterospecifics
[21,22]; the enlarged mandibles of the male Auckland tree wéta, Hemideima
thoracica, are used in fights over females and in foraging [23]; cnidarian sea
anemones (Order: Actiniaria) have evolved a versatile venom system that is used to
hunt, to engage in conspecific territorial disputes, and for defense [24]. As these
examples illustrate, traits can serve as sexually selected weapons while still being
used for other functions. A single weapon can experience selection from numerous
sources; it is the result of a summation of evolutionary forces that may be in
opposition or may be somewhat aligned. Thus, we may expect that a body part
serving very different functions (such as a leg used for locomotion as well as for
fighting [25]) may have lower phenotypic integration across its system of supportive
traits relative to those weapons with fewer or more aligned functions (such as use in

hunting prey and attacking conspecifics [see, e.g., 26]).

Behavior may take the lead in weapon elaboration and diversification

Many weapons would be ineffective without their suite of weapon-supportive traits,
including specialized behaviors. Conversely, many behavioral examples of physical
conflict exist without obvious weapon elaboration [27]. For example, the common

bottlenose dolphin, Tursiops truncatus, uses ramming, scraping with non-
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exaggerated teeth, body slaps, and endurance [28]. Ring doves, Streptopelia risori,

engage in wing slapping and chest bumping [29]. Drosophila melanogaster fruit flies
tap or push each other using their forelegs [30]. In these cases, animal bodies show
no obvious signs of anatomical modification. Such examples highlight that behavior

may take the lead in the initial elaboration of animal weapons by shaping the

selective environments that individuals experience [see, e.g., 31,32].

Once a weapon begins to take form, behavior likely contributes to further
evolutionary diversification. For example, African antelope (Family: Bovidae) exhibit
spectacular horn diversity across species. This evolutionary diversification is likely at
least partially due to differences in fighting style and signaling across habitat types.
Open habitats are hypothesized to have selected for large, lateral weapons that are
visible to rivals from long distances. Such habitat allows space for fighting with large
weapons, because the animals have room to maneuver. In contrast, smaller,
forward-facing weapons are expected to have evolved in closed habitats where wide
horns would get tangled and where the reliance on weapons as signals is reduced

[33,34].

Changes in habitat and the fighting environment may stimulate large changes in how
animals engage in conflict. However, individuals within a species and in a single
context often exhibit differences in how they engage in competitive or agonistic
interactions [35]. Some individuals will direct and wield weapons more effectively
(i.e., more skillfully) in a certain context than will others, and it is largely unknown the
degree to which skill plays a role in contest success [36]. We also do not know how
skills are acquired. Do skillful parents produce skillful offspring? Are skills refined, for

example, through battle experience or juvenile play behavior? Foraging skills can be



208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

socially learned, allowing innovations to rapidly spread through populations [37], but

whether the same applies to fighting skills remains unclear.

Weapons as signals and consequences for diversification

One of the functions of many weapons is their use as signals of vigor, fighting ability,
or agonistic intention. For example, males of the red deer, Cervus elaphus, display
their antlers as they walk in parallel to each other, their behavior facilitating visual
assessment [38]. Signaling can help minimize the costs and risks of contests by
allowing an evaluation of probable outcomes, which can halt physical conflict before
further escalation [39,40]. When a weapon is used as a signal, this process can

contribute to weapon diversification. We describe three ways this can occur.

First, selection via signaling can lead to the evolution of different weapon features
than selection via physical conflict alone. For example, long fiddler crab claws are
effective visual signals to opponents, but long claw length is not helpful for fighting.
Males deliver gripping forces not at the tips of the claws but closer to the body at the
tubercles. Thus, the claw shape of fiddler crabs is molded by selection to serve both
as an effective signal and to be successful in fighting, which may result in some
compromises [41]. Second, another way that signaling can lead to the elaboration
and diversification of weapons is via runaway evolution via intra-sexual sexual
selection, which requires signals to be reliable and honest [42]. Unreliable or
dishonest signals may eventually arise [40] and are expected to put the brakes on
this process. Third, for a weapon to serve as a signal, it must be perceived. Yet,
perception is rarely perfect. We know very little about the sensory and cognitive

underpinnings involved in the assessment of weapons by rivals [see 43]. In some
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cases, there may be a disconnect between the information perceptually gleaned
from the signal and the weapon’s true effectiveness in battle [e.g., 44,45]. For
example, the ambient environmental conditions experienced by some populations,
such as the amount of or quality of light filtering through a canopy of vegetation, may
affect visual perception [43,46]. Further, accurate discrimination may require larger
relative differences in weapon sizes for weapons that are absolutely larger [Weber's
Law; 47]. Altogether, it is probable that assessment will sometimes be faulty, and this

can serve as another factor influencing weapon diversification.

Costs and constraints have consequences for weapon diversification

The benefit of possessing weapons is often apparent in this conflict-filled world.
Thus, it can seem surprising when animals lose or reduce weapons or over
evolutionary time [48]. Phylogenetic comparative analyses have shown that weapons
are highly labile over evolutionary time; they can increase in size and complexity, yet
equally-so, they may readily disappear [25,48,49]. To fully understand weapon
diversification, it is essential to consider why weapons, with all their advantages, may

become reduced or even lost over evolutionary time.

Venom, for example, is a dynamically evolving weapon; the loss of genetic capacity
to produce certain component toxins is surprisingly common [e.g., 9,50]. Venom is a
multi-component, functional trait used by one organism to interfere with the
homeostatic processes of another, generally to facilitate feeding or deter predators or
competitors. The composition of venom actively coevolves with the physiology of
prey animals in a coevolutionary arms race. As prey become resistant, there may be

strong selection for novel components with greater efficacy. Components that are

10
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less effective, in turn, are expected to be lost if there is a cost to their production,

maintenance, and/or storage [51].

Weapons, especially sexually selected weapons, can be associated with steep costs
[52,53] and sexually antagonistic effects [54]. The weapon cost-benefit relationship
may be altered by biotic and abiotic environmental change, such as resource
defensibility, habitat structure, temperature stress, or parasite load — and all of these
can vary readily across space and time. In some such contexts, costs of weapons
may exceed benefits. When they do, natural selection may reverse or slow weapon

elaboration.

Weapon reduction or loss is not necessarily the only outcome when weapons are
costly. Instead, selection may lead to the evolution of weapon compensatory traits
[55-57]. Weapon compensatory traits can be distinguished from supportive traits in
that they alleviate costs that are not directly linked to effective weapon deployment,
such as the energetic costs of walking or flying with large horns or mandibles.
Compensation may manifest as novel or modified structures, physiology, behavior, or
performance [55]. For example, electric eels, Genus Electrophorus, can generate
large electrical discharges — up to 600 volts — without injuring themselves [58]. The
ability to avoid self-electrocution is hypothesized to be due to compensatory traits
including the ability to control and channel electricity. These traits include the
separation and insulation of electric organs and the ability to reduce current flow

within the body.

Weapon diversification is not only shaped by costs; it can also be shaped by
constraints such as those arising from phylogeny, architecture, and development

[59]. Such constraints may at least partially explain why some taxa have evolved

11
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chemical instead of acoustic weapons, and why weapons are found only on some
locations on the body. Biomechanical constraints may help explain why the evolution
of weapons in highly flight-dependent species is limited. For example, specialized
weapons are rare in bird species that rely upon efficient flight as their main form of
locomotion [60]. Further, even though male damselflies (Suborder: Zygoptera) and
butterflies (Superfamily: Papilionoidea) compete for territories, they do so while
lacking obvious weapons [61,62]. Instead, such animals, as well as the dolphin,
dove, and fruit fly mentioned earlier, engage in conflict with wings, beaks, teeth, and

tails that may show little indication of being modified for fighting.

Concluding Remarks

Conflict is rife in nature, and animal weapons showcase highly diverse solutions to
conflict. Yet research has traditionally focused on a narrow subset of highly visible
mechanical traits, often studied in isolation and under similar selective contexts. By
adopting a broader perspective that integrates multiple weapon modalities, we argue
that animal weapons are best understood as distinct evolutionary solutions to conflict
that nonetheless share common underlying principles (see Outstanding
Questions). Across modalities, weapons are shaped by selection on performance,
embedded within integrated phenotypic systems, and constrained by costs, trade-

offs, and limits imposed by development, biomechanics, and perception.

A key insight emerging from this synthesis is that weapons do not evolve alone.
Their efficacy and elaboration depend on suites of weapon-supportive and
compensatory traits, including behavior and skill, which may precede, facilitate, or

constrain morphological elaboration. Moreover, the widespread multifunctionality of

12
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weapons means that their evolution reflects the cumulative outcome of often
competing selective pressures, rather than optimization for any single function.
These dynamics may help explain both the extraordinary diversity of animal
weapons and their striking evolutionary lability, including repeated reduction and

loss.

Future progress will be enhanced by the use of experimental and comparative
approaches that bridge research traditions. Integrating biomechanics, physiology,
behavior, and phylogenetics and considering multiple weapon modalities will allow
researchers to move beyond descriptive classifications toward broadly predictive
frameworks for weapon evolution. Such approaches promise not only to clarify why
particular weapon types evolve in some lineages and not others, but also to
illuminate general principles of phenotypic integration, adaptation, and diversification.
In this way, animal weapons provide a powerful lens through which to understand

how conflict shapes the evolution of complex biological systems.
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Boxes
Glossary

Animal Weapon: A weapon is a trait that can be used to cause physical harm to
others in the context of competitive or agonistic interactions

Sexually selected weapon: A weapon can be described as sexually selected if
variation in its expression has led to fitness differences associated with non-random
success in the competition for access to gametes for fertilization (based on [63])

Weapon compensatory trait: Weapon compensatory traits mitigate the costs
associated with the development, use, or maintenance of weapons

Weapon-supportive trait: Weapon-supportive traits enable weapon function and
improve their effectiveness.

Weapon system: Weapon systems include one or more animal weapons alongside
their array of weapon-supportive traits

14
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Figure Legends

Figure 1. Five weapon modalities (from left to right). Mechanical weapons are
used to transfer potentially damaging forces via direct physical contact and include
structures such as the canines of the olive baboon, Papio anubis [64]. Chemical
weapons are bioactive compounds that can subdue or harm others, and these
weapons include venoms [65]. Snails in the genus Conus use a small harpoon to
transfer a mix of bioactive compounds that subdues prey [8]. Electrical weapons
include the electrical discharge of electric eels, genus Electrophorus. Fascinatingly,
this weapon first stimulates prey to move and so reveal itself, and then to freeze,
aiding its capture [58]. Acoustic weapons include the acoustic shockwaves produced
by pistol shrimp and other snapping shrimp in the Family Alpheidae. To employ this
weapon, a specialized claw is rapidly shut. The collapse of a cavitation bubble
generates an acoustic shockwave with extremely high sound pressure levels,
reaching up to 218 decibels [66]. The shockwave can kill and injure both prey and
conspecific competitors. Thermal weapons include the process by which Japanese
honeybees, Apis cerana japonica, “cook” their enemy. When a predatory Asian
hornet is captured, often more than 500 bees rapidly engulf the hornet in a ball. They
vibrate their wing muscles to produce heat, reaching 47 °C, which proves lethal to

the hornet but not to the bees [67,68]. lllustrations by A. Whitney Fletcher.

Figure 2. The weapon system of bighorn sheep (Ovis canadensis). In the cool

autumn air in North America, the breath of bighorn sheep is visible as males assess,
push, and kick each other. As contests escalate, males rear up on their hindlegs and
crash their head into that of their opponent (above) at a speed that can reach 9 m/s.

Mechanical weapons, the horns and the skull, provide the primary points of contact,
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supporting an impact force up to 3400 N [69] (below). The tapered spiral geometry of
the horn and the spongy trabecular bone material within the horn and skull serve to
absorb impact [12,70] Weapon-supportive traits may include physiological
modifications, such as modulation of hormones and metabolic rate, and adaptations
of the sensory system which allow males to evaluate opponents and decide which

males to attack. lllustrations by David Tuss.
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Outstanding Questions

Towards an integrated understanding of animal weapons

Outstanding Questions

To what degree are evolutionary principles shared across different weapon
modalities?

Comparisons across mechanical, chemical, electrical, acoustic, and thermal
weapons is needed to determine to what degree common rules govern performance,

costs, and diversification.

How does selection act on weapons as integrated systems rather than isolated
traits?

Understanding how weapon components, supportive traits, and compensatory traits
covary under selection will require multivariate approaches that explicitly measure

integration across morphology, physiology, behavior, and performance.

How does weapon multifunctionality influence evolutionary outcomes?
Because many weapons serve multiple roles, future research should examine how
competing selective pressures shape trade-offs, constrain optimization, and alter

phenotypic integration within weapon systems.

What role does behavior play in initiating and diversifying animal weapons?
Behavior may precede morphological elaboration by shaping the selective
environment experienced during conflict, yet the conditions under which behavior

leads or follows weapon evolution remain poorly understood.

How important are skill, learning, and experience in determining weapon
effectiveness?

Variation in how individuals wield weapons may strongly influence contest outcomes,



but fighting skill is rarely quantified. Moreover, the extent to which fighting skill is

heritable, learned, or socially transmitted is largely unknown.

How do constraints shape the distribution of weapon types across taxa?
Phylogenetic, developmental, and biomechanical constraints may limit which
weapon modalities can evolve in certain clades, yet these constraints are rarely

tested explicitly.

How does perception influence the evolution of weapons as signals?
Sensory and cognitive limitations may decouple weapon appearance from contest

performance, potentially shaping diversification through imperfect assessment.
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