

1 (Manuscript under review in Molecular Ecology)

2

3 **Interplay of diet, heat stress, and the microbiome shapes health and escape behavior in**

4 **amphibian larvae**

5

6 Paula C. Eterovick^{1,5}, Julian Glos², Franziska Burkart¹, Jörg Overmann^{1,3}, Katharina

7 Ruthsatz^{4,5}

8

9 ¹*Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH,*

10 *Inhoffenstraße 7 B, 38124 Braunschweig, Germany*

11 ²*Institute of Cell and System Biology, Universität Hamburg, Martin-Luther-King-Platz 3,*

12 *20146, Hamburg, Germany*

13 ³*SNSB – Staatliche Naturwissenschaftliche Sammlungen Bayerns, Menzinger Str. 71, 80638*

14 *München, Germany*

15 ⁴*Ecology, Evolution, and Development Group, Department of Wetland Ecology, Doñana*

16 *Biological Station, CSIC, C. Américo Vespucio 26, 41092 Seville, Spain*

17 ⁵*Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106*

18 *Braunschweig, Germany*

19

20 Corresponding author: Paula C. Eterovick, paula.cabral.eterovick@dsmz.de

21

22

23 **Abstract**
24
25 What animals eat modulates their microbiome and is fundamental to their health.
26 Microbiomes can improve hosts' ability to cope with environmental stressors, including
27 increased temperatures and altered food quantity and quality associated with climate change.
28 Using a multifactorial experimental design, we tested whether three diets with increasing
29 amounts of protein, fat, and components of animal origin (designated low-, intermediate-, and
30 high-quality), two rearing temperatures (18 °C or 24.5 °C), and exposure or not to a heat wave
31 (28 °C for 48 h) shaped the gut bacterial community of amphibian larvae (*Rana temporaria*).
32 We then examined how the treatments, associated shifts in gut bacterial communities, and
33 predicted metabolic pathways related to larvae nutrient assimilation (isotopic signatures),
34 health (body condition and developmental rate), and escape behavior. Larvae maintained their
35 body condition and developed faster at 24.5 °C, with higher diet quality (i.e., reduced
36 herbivory) further accelerating development at this temperature. The intermediate-quality diet
37 reduced the ability of larvae to react to an aversive stimulus at 24.5 °C, but this effect did not
38 occur in larvae exposed to the heat wave. The heat wave may have triggered an increase in the
39 abundance of *Klebsiella*, together with an increase in the myo-inositol degradation pathway,
40 which influences cell membrane fluidity and signaling and may increase attention levels.
41 Similar outcomes in host performance under most experimental conditions highlight the
42 potential plasticity of the bacterial community and the presence of alternative enterotypes
43 with functionally redundant metabolic capacities compatible with host health.
44
45 *Key-words:* Food quality, thermal stress, bacteria, escape behavior, developmental plasticity,
46 behavioral plasticity, gut-brain-axis, *Rana temporaria*
47
48

49 **Introduction**

50

51 What animals eat shapes their available energy, growth, and development, ultimately
52 affecting their likelihood of survival (e.g., Kupferberg, 1997; Wang et al., 2015; Llobat and
53 Marín-García, 2022). Beyond its nutritional value, food intake also influences the microbiome
54 - the diverse community of microorganisms (Archaea, Bacteria, Fungi, Protists, Viruses), their
55 metabolites, and interactions (Berg et al., 2020) - that inhabit animal guts (Tuddenham and
56 Sears, 2015) and contribute critically to nutrient assimilation and host health (McFall-Ngai et
57 al., 2013). Animals and their mutualistic or commensal microbial partners have likely been
58 co-evolving since the origin of the animal kingdom (McFall-Ngai et al., 2013). This long-
59 standing association expanded the metabolic potential of animals, enabling the use of
60 otherwise inaccessible food resources and tightly linking host and microbiome genomes
61 (McFall-Ngai et al., 2013). The gut microbiome supports digestion and the assimilation of end
62 products by host cells (Perry et al., 2020) and may further influence the host's ability to cope
63 with environmental stress by regulating specific metabolic pathways (Fontaine and Kohl,
64 2023). Because microbiomes respond more rapidly to changing conditions than host genomes,
65 they act as key mediators of animal resilience to environmental stress.

66 Human activities and resulting climate change have created a world in which wildlife
67 faces multiple stressors that compromise individual health, drive population declines, and can
68 ultimately trigger species extinctions (Ruddiman, 2013; McCallum, 2015). Climate change
69 encompasses not only increasing mean temperatures but also transient temperature extremes,
70 altered precipitation patterns, droughts, and shifts in food webs, food quality, and food
71 availability (IPCC, 2023; Hardison and Eliason, 2024). Animals are exposed to both
72 prolonged elevated temperatures and short-term heat waves, with responses varying according
73 to the intensity and duration of thermal stress (Carreira et al., 2016). The increasing
74 occurrence of heat waves in Europe, Asia, and Australia (IPCC, 2023) highlights their likely
75 importance for the fate of species under climate change.

76 Emerging evidence suggests that gut microbes play a role in mediating heat tolerance in
77 ectotherms. Conversely, impoverished microbiomes may reduce ectotherm tolerance to
78 thermal extremes (Fontaine et al., 2022; Fontaine and Kohl, 2023). Shifts in microbiome
79 composition can modify host thermal resilience by influencing metabolic pathways, oxidative
80 stress resistance, and energy balance. For example, pathways linked to amino acid metabolism
81 - often enriched in hosts with diverse microbiomes - may allow hosts to use bacteria-derived
82 amino acids as additional energy sources during thermal stress (Fontaine and Kohl, 2023).

83 Even species with comparatively high warming tolerance may experience costs at higher
84 temperatures (Duarte et al., 2012). Temperature changes can alter predator-prey dynamics
85 (Seifert et al., 2014), affect key physiological processes, and influence nutrient assimilation
86 (Croll and Watts, 2004). This can lead to shifts in foraging behavior and food preferences
87 (Carreira et al., 2016) and ultimately influence food webs (Seifert et al., 2014). For example,
88 omnivorous amphibian larvae increase their consumption of plant material relative to animal
89 food at higher temperatures, improving growth and performance (Carreira et al., 2016). In
90 crayfish, increased temperatures reduce protein absorption but increase soluble carbohydrate
91 absorption (Croll and Watts, 2004), helping explain reduced consumption of animal-based

92 foods at high temperatures. Thus, diet preferences respond to temperature (Behrens and
93 Lafferty, 2007; Devries and Appel, 2014; Carreira et al., 2016), while the microbiome
94 responds to diet (Tuddernham and Sears, 2015) and can itself influence food intake and
95 behavior (Miri et al., 2023). Food quality and availability, as well as the abundance of key
96 microbial groups, are influenced by the same environmental stressors that affect host survival
97 and recruitment, making these interactions important determinants of species success or
98 failure (e.g., Manning and Sullivan, 2021; Yan et al., 2024; Videvall et al., 2023). Yet, the
99 combined effects of diet and temperature on the microbiome remain poorly understood
100 (Hardison and Eliason, 2024).

101 Behavioral changes influenced by the microbiome extend beyond shifts in foraging
102 behavior (Wong et al., 2015; Miri et al., 2023). Gut microbes produce and regulate numerous
103 neuroactive substances - hormones, neuropeptides, neurotransmitters, and many metabolites
104 that affect host metabolic pathways (Lynch & Hsiao, 2019). These microbial compounds
105 influence neuronal signaling and neural development (Bercik et al., 2012) and include
106 enzymes that synthesize key neuroactive molecules involved in behavioral regulation (Dinan
107 et al., 2015; Chen et al., 2013). This modulation is coordinated through the gut-brain axis - a
108 bidirectional network operating through neural (especially via the vagus nerve), endocrine,
109 and immune pathways (Miri et al., 2023; Silva et al., 2020). Short-chain fatty acids (SCFAs)
110 exemplify influential microbial metabolites that maintain gut integrity, modulate immune and
111 endocrine function, and cross the blood-brain barrier to affect neurotransmission,
112 neurotrophic factors, and microglial activity (Silva et al., 2020).

113 Much research on microbiome-driven behavior has focused on humans or mice as model
114 organisms (Sampson and Mazmanian, 2015), yet understanding the microbiome's role in
115 wildlife evolution and survival is urgently needed (Hird, 2017). In house sparrows,
116 microbiome diversity correlates with exploratory behavior, which in turn promotes greater
117 microbiome diversity (Florkowski and Yorzinski, 2023). The microbiome also influences
118 mate choice and social behavior, with implications for individual fitness and evolutionary
119 success (Sharon et al., 2010; Archie and Theis, 2011). Studies on microbiome-ectotherm
120 interactions are especially important given the sensitivity of ectotherms to climate change and
121 the potential role of their microbiome in mitigating associated stressors (Fontaine and Kohl,
122 2023).

123 Among ectotherms, amphibians are particularly vulnerable to climate change and other
124 stressors (Collins and Storfer, 2003; Hayes et al., 2010; Luedtke et al., 2023), making them
125 the most threatened vertebrate group globally (Wake & Vredenburg, 2008; Borzée et al.,
126 2025). They are therefore valuable model organisms for studying interactions among climate
127 change, diet, microbiome, and behavior. Amphibian diet shapes larval growth and
128 development (Kupferberg, 1997; Carreira et al., 2016; Ruthsatz et al., 2019), while the
129 microbiome affects larval thermal stress tolerance (Fontaine and Kohl, 2023). Altered
130 foraging behavior may reduce thermal stress impacts (Carreira et al., 2016), yet amphibian
131 larvae often exhibit lower thermal tolerance than their predators, potentially increasing their
132 vulnerability to predation (Bastiani, 2023). For instance, larvae of the treefrog *Pithecopus*
133 *rusticus* showed reduced thermal acclimation capacity and thermal tolerance compared to a
134 co-occurring dragonfly predator, losing locomotor capacity at temperatures at which predators

135 remained active (Bastiani, 2023). Because predation is a major source of mortality during
136 larval development (McDiarmid and Altig, 1999; Wells, 2019), the ability to avoid predators
137 is essential for survival. Predator avoidance behavior depends on both immobility in response
138 to predator cues (Relyea, 2001; Preston and Forstner, 2015; Eterovick et al., 2020) and rapid
139 escape responses once detected (Hébert et al., 2019). Diet can influence this behavior:
140 nutrient-rich diets enhance growth and escape performance (Kloh et al., 2024), whereas
141 ingestion of toxic cyanobacteria impairs locomotor performance (Moura et al., 2023). Low-
142 quality diets may therefore compromise escape responses, increasing predation risk.

143 Here, we investigated the interconnected and potentially synergistic effects of diet,
144 temperature, and the microbiome on the health and behavior of larvae of the European
145 Common Frog (*Rana temporaria*), an ectothermic model organism. Using a multifactorial
146 experimental design, we tested whether three diets differing in amounts of protein, fat, and
147 animal-derived components (low-, intermediate-, and high-quality), two rearing temperatures
148 (18 °C and 24.5 °C), and exposure to a heat wave (28 °C for 48 h) shaped the gut bacterial
149 communities of *R. temporaria* larvae. We then linked these experimental conditions - and the
150 resulting bacterial communities - to food assimilation (isotopic signatures), health biomarkers
151 (body condition and developmental rate), and behavior, focusing on escape responses to an
152 aversive stimulus as a proxy for predator avoidance.

153 We tested three hypotheses: (1) diet quality, sustained elevated rearing temperature,
154 and/or transient heat waves affect gut bacterial diversity and composition, even when
155 accounting for clutch effects (host genetic background); (2) diet, temperature treatments,
156 and/or altered gut bacterial communities influence larvae's carbon and nitrogen isotopic
157 signatures and affect health biomarkers; and (3) diet, temperature treatments, and/or altered
158 gut bacterial communities lead to differences in behavioral responses to a simulated predator
159 attack. Finally, we predicted metabolic pathways enriched in bacteria that increased in
160 abundance under each treatment to identify potential links between microbial activity and
161 amphibian larval performance.

162

163 Materials and methods

164

165 *Experimental design*

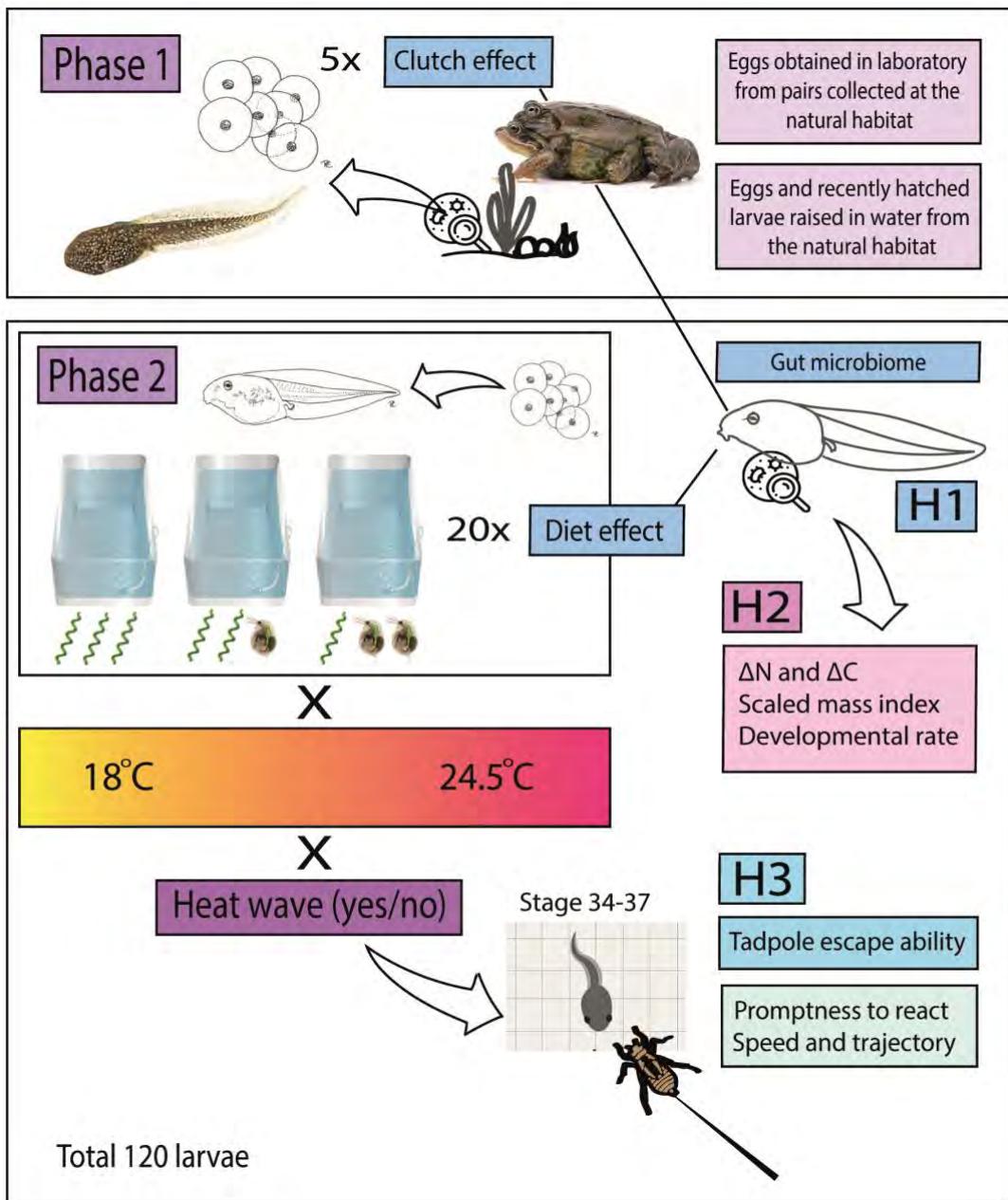
166

167 Five egg clutches of the European Common Frog (*Rana temporaria*) were collected on
168 25 March 2023 in the Kleiwiesen (52.328°N, 10.582°E; Braunschweig, Lower Saxony,
169 Germany) and transported to the Zoological Institute of the Technische Universität
170 Braunschweig. When hatched larvae reached developmental stage 25 (*sensu* Gosner, 1960)
171 they were distributed among three food treatments and two controlled-temperature rearing
172 environments (4 larvae per clutch × 5 clutches × 3 food treatments × 2 rearing temperatures =
173 120 larvae; Fig. 1).

174 The food treatments were prepared using soluble powdered foods that differed in protein
175 and fat content, as well as in the diversity of nutrient sources. The diet with the lowest protein
176 and fat levels and the lowest diversity of components (hereafter "low-quality") consisted of an

177 organic grass powder (NaturaleBio®; *Hordeum vulgare*) containing 3% lipid, 11%
178 carbohydrate, and 32% protein. The diet with the highest protein and fat content and the
179 greatest diversity of components (hereafter “high-quality”) was Sera Micron Nature® fish
180 food, which contains 7.2% lipid, 10.3% carbohydrate, and 56.6% protein. The intermediate
181 diet (“intermediate-quality”) was a thoroughly blended 1:1 mixture of the powders used for
182 the low- and high-quality diets.

183 The energy content of each diet was determined by bomb calorimetry (6200 Isoperobol
184 Calorimeter, Parr Instruments, Moline, Illinois) at the laboratory for chemical analyses at the
185 University of Hamburg. Mean (\pm SD) caloric values were 17.13 ± 0.04 kJ/g (n = 3) for the
186 low-quality diet, 18.72 ± 0.03 kJ/g (n = 3) for the intermediate-quality diet, and 20.35 ± 0.06
187 kJ/g (n = 4) for the high-quality diet.


188 The lower temperature (18 °C) represented typical ambient conditions during *R.*
189 *temporaria* larval development. The higher temperature (24.5 °C) was chosen to fall within
190 the range of 22-26 °C, in which *R. temporaria* larvae exhibit elevated stress levels but can still
191 maintain body condition, likely supported by adjustments in their gut bacterial communities
192 (Eterovick et al., 2024).

193 When larvae reached developmental stages 34–37 (pro-metamorphic stages; digit
194 development in the hind limbs; *sensu* Gosner 1960), approximately half of the surviving
195 individuals from each treatment were exposed to a heat-wave protocol to test the effects of
196 temperature extremes on escape behavior, as well as potential interactions with diet quality
197 and rearing temperature (Fig. 1). Larvae were kept at 28 °C for 48 h, after which temperature
198 was decreased at the same rate back to the original rearing temperature. Larvae remained in
199 their individual buckets throughout the procedure. Additional details on animal husbandry and
200 experimental setup are available in the supplementary material.

201

202

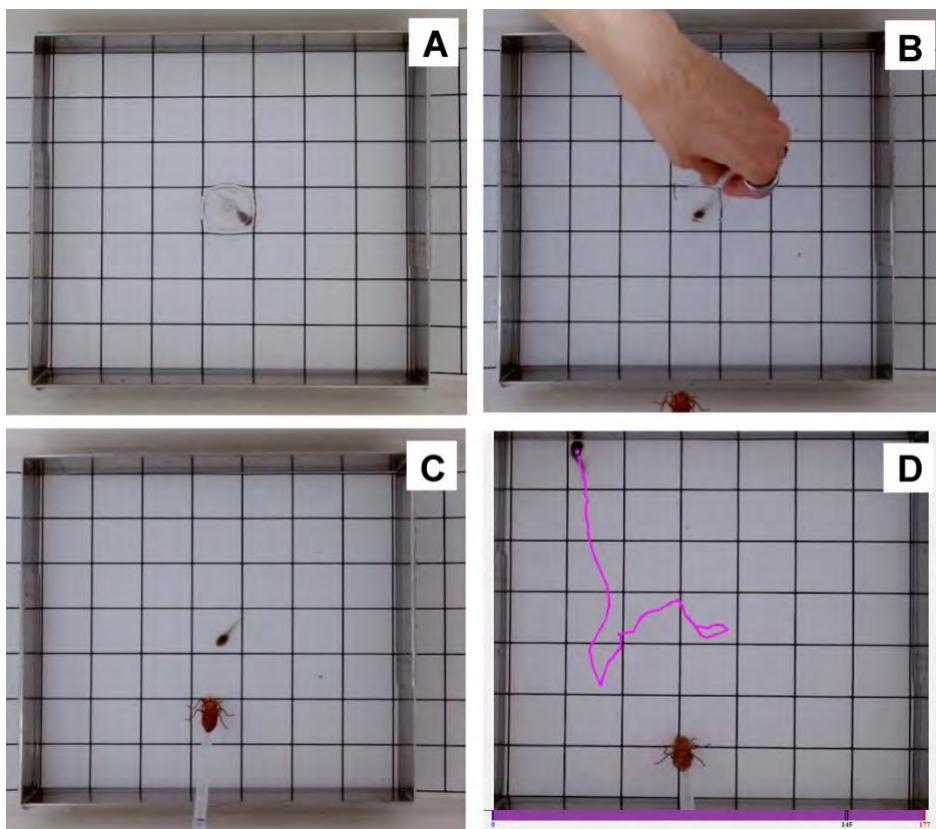
203

204
205 Fig. 1. Graphical summary of the experimental design representing acquisition of offspring (larvae)
206 from five different egg clutches from *Rana temporaria* and the experiment itself. The experiment
207 structure is shown based on three main hypotheses to be tested: whether diet and temperatures
208 experienced during development affect assemblage of gut bacteria (H1), nutrient assimilation and
209 biomarkers (body condition and developmental rate; H2), as well as escape ability of *R. temporaria*
210 larvae (H3).

211

212

213 *Behavioral trials*


214

215 One day after larvae exposed to the heat wave had returned to their original rearing
216 temperature, behavioral trials were conducted with both heat-wave and control (non-exposed)
217 larvae. A white plastic tray (35 × 35 cm) was filled with 1.3 L of rested tap water at the
218 rearing temperature of the tested larva (18 °C or 24.5 °C), reaching a water depth of 1 cm. A

219 laminated paper marked with 5×5 cm squares was placed at the bottom, and an adjustable
220 metal frame delineated the arena (Fig. 2). The tray was surrounded by white cardboard to
221 shield larvae from the experimenter, and a high-definition webcam (Logitech C920s HD Pro,
222 Logitech, Lausanne, Switzerland) was mounted on a tripod directly above the arena.

223 Each larva was gently captured from its bucket using a spoon, placed in the central square
224 of the arena, and covered with a glass funnel (Fig. 2A). Handling was minimized and
225 conducted as gently as possible. After a three-minute acclimation period (following Eterovick
226 et al., 2018), the funnel was removed, and a dragonfly naiad (*Libellula*, Libellulidae,
227 Anisoptera) model was presented as a potentially aversive stimulus. The stimulus consisted of
228 a transparent plastic pipette containing 4 mL of water assumed to hold chemical predator
229 cues. This water was obtained from a 500 mL container where ten dragonfly naiads (*Libellula*
230 *depressa*; returned to their habitat after use) from the same frog habitat had been held for 4 h.
231 Each stock of water was used for two hours after removal of the naiads, with water
232 temperatures matched to the larva's rearing temperature. A life-size predator model, made
233 from non-toxic modeling clay and ink, was attached to the pipette tip.

234

235
236

237 Fig. 2. Experimental setup for behavioral tests. Plastic trays filled up to 1 cm with rested tap water at
238 larvae rearing temperature were lined with a grid of 5×5 cm squares. A space of 35×35 cm was
239 delimited with a metal frame and the larva to be tested was placed at the central square, where it was
240 retained for 3 minutes under a glass funnel (A). After careful removal of the funnel without disturbing
241 the larva (B), a predator model was approached (C) and the reaction of the larva was filmed to
242 evaluate the escape response (see text for details). Fleeing trajectories of the larva were tracked with
243 the software AnimalTA (Chiara and Kim, 2023; D).

244

245 Immediately after funnel removal, the pipette was inserted at ~45° relative to the larva's
246 frontal direction, touching the water two grid squares (10 cm) away. Water containing
247 predator cues was slowly released, and the predator model was gradually moved toward the
248 larva until it elicited an escape response or gently touched it. Because amphibian larvae
249 perceive varied cues from predators (Melo et al., 2021), this combined stimulus was designed
250 to engage visual (model), mechanical (approach and water flow), and chemical (predator
251 exposed water) cues, as the most relevant cue for *R. temporaria* larvae is unknown. Trials
252 ended once the larva attempted to flee or if the model touched the larva without eliciting any
253 escape movement. Video recordings were captured using OBS Studio (Open Broadcaster
254 Software, Version 29.1; <https://obsproject.com/>). Larvae were tested in random order, blind to
255 their heat-wave exposure and rearing conditions.

256 Videos were analyzed in random order and without treatment information using
257 AnimalTA software (Chiara and Kim, 2023). Occasionally, larvae moved during funnel
258 removal and had to be repositioned in the arena's center. We recorded the "number of
259 attempts" (times a larva was repositioned) as an additional variable, reflecting early
260 movements that could contribute to energy expenditure and stress. To ensure uniformity, we
261 quantified the elapsed time between funnel removal and the trial start (when the predator
262 model contacted the water) and found it to be strongly correlated with the number of
263 repositioning attempts (Spearman's $Rs = 0.9$, $p < 0.001$; Fig. S1), indicating no significant
264 variation in attempt durations.

265 Escape behavior was quantified using the following variables: (1) whether the larva
266 reacted (fleeing) or not, with no reaction defined as remaining stationary even when touched
267 by the model; (2) reaction time, measured from the moment the predator model touched the
268 water until the larva's flee response; (3) whether the larva reacted before or after contact with
269 the predator model; (4) average speed; and (5) trajectory linearity ("meander" function,
270 Chiara and Kim, 2023) during fleeing. Variables 2–5 were analyzed only for larvae exhibiting
271 escape responses. Speed and trajectory linearity were measured until the larva stopped or
272 touched a wall, as such a barrier would otherwise bias the metrics.

273 This behavioral test protocol was used to examine the effects of diet, rearing temperature,
274 and heat-wave exposure on larval kinematics. We expected larvae fed higher-quality diets,
275 reared at 18 °C, and not exposed to the heat wave to be more alert and reactive, fleeing earlier
276 and at higher speed. Escape trajectories were expected to be more curved, reflecting the
277 typical anti-predator strategy of anuran larvae, which rely on rapid turns with small radii
278 rather than straight-line swimming (Wassersug, 1989). Simply stated, tadpoles typically
279 escape from predatory attacks by turning away from the approaching predator rather than
280 trying to outrun it (Wassersug, 1989).

281
282 *Sample collection*
283

284 Within 12 hours after the behavioral trials, each tadpole was euthanized using 2 g × L⁻¹
285 tricaine methanesulfonate (MS-222; Ethyl 3-aminobenzoate methanesulfonate; Sigma-
286 Aldrich). The developmental stage of each larva was confirmed under a stereomicroscope
287 according to Gosner (1960). Snout-vent length (SVL) was measured to the nearest 0.5 mm

288 using a digital caliper. Larvae were then gently dry-blotted and weighed to the nearest 0.001 g
289 using an electronic balance (Sartorius A200 S, Germany).

290 A sterile scalpel was used to excise the tail for subsequent isotopic analysis. Using a
291 sterile scalpel and tweezers, the ventral skin was cut to remove the entire gut for bacterial
292 DNA extraction. The tail, gut, and remaining body were placed in three separate tubes, all
293 stored at -80 °C until further analysis.

294

295 *Isotope analyses*

296

297 Stable isotope analyses were conducted to assess differences in absorption and
298 incorporation of food components by larvae subjected to different diets, based on isotopic
299 signatures. Analyses were performed at the Biozentrum Klein Flottbek, University of
300 Hamburg, Germany, following the methods of Glos et al. (2020), as detailed in the
301 supplementary material.

302

303 *Body condition and developmental rate assessment*

304

305 Body condition was estimated using the scaled mass index (SMI), calculated from the
306 slope of the regression of log-transformed snout-vent length (SVL) and log-transformed body
307 mass (standardized major axis, SMA) as: $SMI = [individual\ Mass \times (mean\ SVL\ of\ population/individual\ SVL)^{SMA}]$ (Peig and Green, 2009; 2010).

309 This index has been previously applied to *R. temporaria* larvae (Dittrich et al., 2018;
310 Ruthsatz et al., 2020; Eterovick et al., 2024). In the present study, SMA was 2.742.

311 Developmental rate was calculated as the number of Gosner (1960) stages advanced by
312 each larva divided by the number of days from hatching to the end of the experiment.

313

314 *Bacterial 16S rRNA gene library preparation*

315

316 DNA was extracted using the QIAamp Fast DNA Stool Mini Kit (QIAGEN) following
317 the manufacturer's instructions. Extractions were performed over five days, with one negative
318 control included per day to monitor for contamination. A ZymoBIOMICS™ microbial
319 community standard (Zymo Research Europe GmbH) was used as a positive extraction
320 control on the first and last days of the extraction process.

321 The V4 region of the 16S rRNA gene was amplified using the forward primer 515F (5'-
322 GTGCCAGCMGCCGCGGTAA-3') and reverse primer 806R (5'-
323 GGACTACHVGGGTWTCTAAT-3'; Caporaso et al., 2011). Each sample was tagged with a
324 unique combination of forward and reverse primers from a stock of 24 forward and 24 reverse
325 primer tags. Two PCR plates were prepared, each including one negative control. A positive
326 control consisting of ZymoBIOMICS™ microbial community DNA standard was also
327 included. The Zymo microbial community and DNA standards, which contain known species

328 compositions and abundances, were used to verify the precision of extraction and PCR
329 protocols, respectively.

330 PCR products were pooled and purified. Aliquots were electrophoresed on a 2% agarose
331 gel, and the desired 251 bp fragment was extracted using the Monarch DNA Gel Extraction
332 Kit (New England BioLabs, GmbH, Germany) following the manufacturer's protocol.
333 Purified DNA was quantified with a Qubit™ fluorometer (Invitrogen) and sequenced using
334 the MiSeq500 Illumina platform (paired-end 2 × 250 bp, v2 chemistry) at the Leibniz-Institut
335 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH.

336
337 *Bioinformatic analyses*
338

339 Sequence denoising, filtering, and alpha and beta diversity analyses were performed in
340 QIIME2 (Bolyen et al., 2019). Details on sequence quality filtering, sample depth and
341 taxonomic assignment are provided as supplementary material.

342 Beta diversity was assessed using unweighted UniFrac distances and compared among
343 treatments using PERMANOVA with pairwise post hoc tests. Metagenomic functional
344 predictions of the gut microbiota were generated using PICRUSt2 (Douglas et al., 2020).

345
346 *Statistical analyses*
347

348 Isotopic signatures were compared among diet treatments and between rearing
349 temperatures using the R package nicheROVER (Swanson et al., 2015; R Core Team, 2024).
350 This approach estimates the probability that the isotopic niches of individuals from one group
351 overlap with those of another, based on quantitative variables such as $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$. We ran
352 1,000 simulations to calculate niche breadth and overlap. Isotopic signatures of the three diets
353 were based on six replicate samples per food type.

354 The effects of food treatment, rearing temperature, and heat-wave exposure - including
355 all two- and three-way interactions - on larval body condition and developmental rate were
356 analyzed with GLMMs in the afex package (Singmann et al., 2024), with clutch identity
357 included as a random factor.

358 Before analyzing behavioral traits, we screened for outliers in the time elapsed between
359 the moment the predator model touched the water and when it touched the larva (where
360 applicable). Two outliers with unusually long times (Fig. S2) were removed. For the
361 remaining data, this interval averaged 7.44 ± 1.78 s. Mixed models were then built to test the
362 influence of food treatment, rearing temperature, and heat-wave exposure (fixed variables),
363 including their interactions, on: (1) whether the larva reacted (binary), (2) reaction time, (3)
364 whether the reaction occurred before or after being touched (binary), (4) average speed, and
365 (5) trajectory linearity (see "Behavioral trials"). Trial day and clutch identity were included as
366 random effects nested within food treatment. When full models failed to converge due to
367 model complexity, we simplified random-effect structures or analyzed likely interactions
368 separately (Singmann et al., 2024). For binary outcomes, singular-fit warnings were expected,
369 but results were considered robust when outcomes were consistent across full and simplified

370 models (Singmann & Kellen, 2019; Singmann et al., 2024). Post hoc tests were performed
371 with emmeans (Lenth, 2017).

372 For each behavioral variable, we first tested whether larval mass, body condition, or
373 number of positioning attempts influenced results (Pearson or Spearman correlations for
374 quantitative variables; Wilcoxon tests for binary outcomes). When relevant, these variables
375 were incorporated into the models (e.g., number of attempts as a random factor). We expected
376 larvae in better condition to respond more rapidly and before being touched, and to escape
377 with higher speed and less linear trajectories. Positioning attempts were considered
378 problematic if they were associated with reduced responsiveness, delayed reactions, increased
379 likelihood of being touched, slower speeds, or more linear escapes.

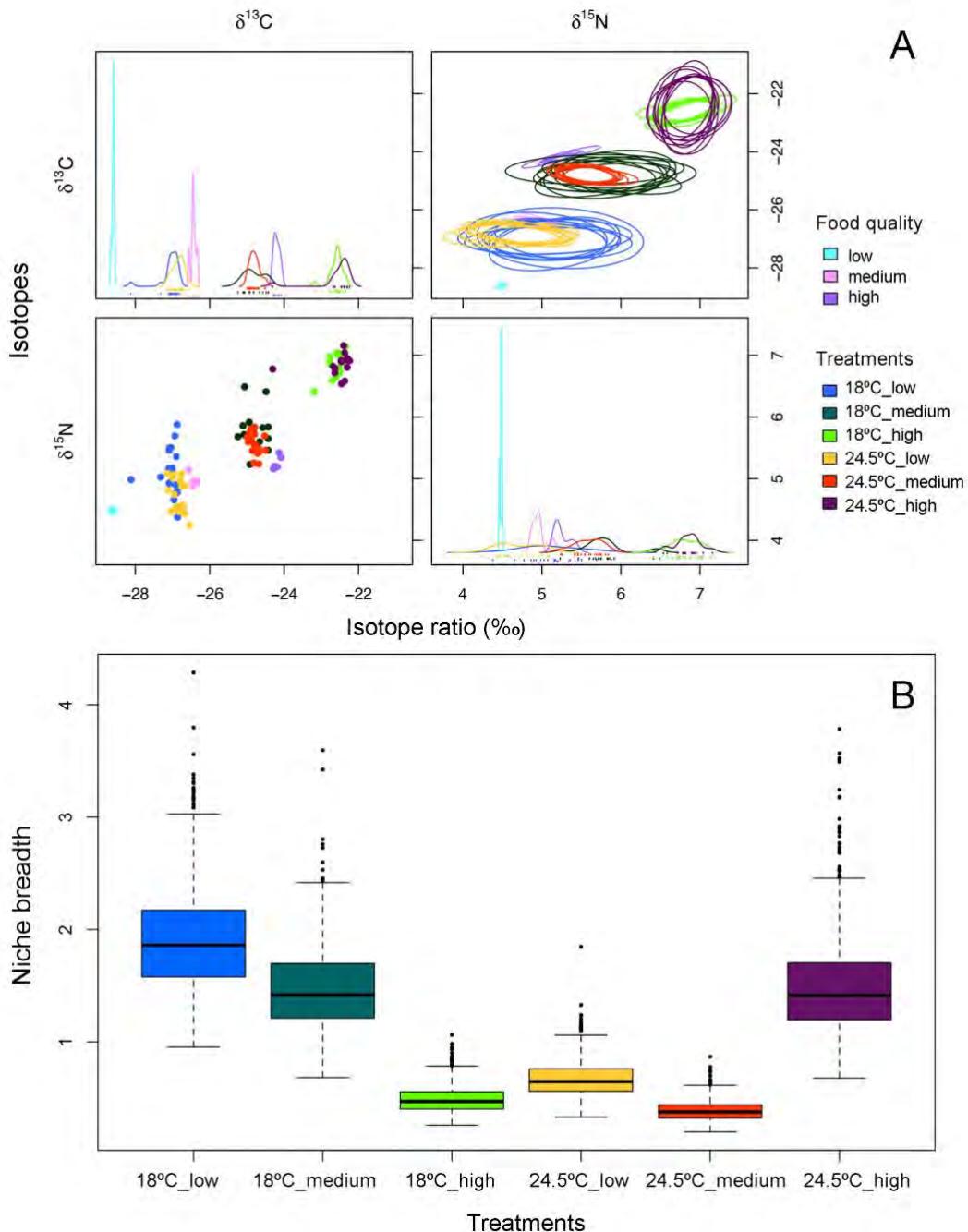
380 Microbiome α -diversity (Shannon entropy) was analyzed with GLMMs in afex, using
381 food treatment, rearing temperature, and heat-wave exposure (and all interactions) as fixed
382 effects and clutch identity as a random effect.

383 To assess microbiome composition, we constructed a phyloseq object (McMurdie &
384 Holmes, 2013) normalized via Total Sum Scaling (TSS) and tested for differential microbial
385 markers across the 12 treatment combinations (3 diets \times 2 rearing temperatures \times heat-wave
386 vs. no heat-wave). Variance homogeneity among groups was evaluated with betadisper
387 (vegan; Oksanen et al., 2013), and ASV abundances were ordinated using PCoA. Microbiome
388 biomarkers were identified through LEfSe (Segata et al., 2011) using the R package
389 microbiomeMarker (Cao et al., 2022), with an LDA score threshold of 4. LEfSe identifies
390 taxa most likely to explain group-level differences while accounting for statistical
391 significance.

392 Predicted microbial metabolic pathways were compared among all 12 treatment
393 combinations using ggpicrust2 (Yang et al., 2023), applying the ALDEx2 method for multi-
394 group comparisons.

395

396 **Results**


397

398 *Isotope analyses*

399

400 The three diets produced markedly different isotopic signatures in *Rana temporaria*
401 larvae, whereas isotopic niches of the two temperature treatments largely overlapped within
402 each diet (Figs. 3, S3). For the low- and intermediate-quality diets, higher temperature
403 reduced isotopic niche breadth. In contrast, for the high-quality diet, niche breadth was
404 narrower at 18 °C and increased at 24.5 °C (Fig. 3).

405

406
 407 Fig. 3. Isotopic signatures (A) and niche breadth (B) of *Rana temporaria* larvae reared with three food
 408 treatments and two temperatures in a crossed experimental design. Food treatments correspond to diets
 409 with increasing levels of protein, fat, and components of animal origin (their isotopic signatures are
 410 also included in A). Rearing temperatures were 18°C and 24.5°C . The isotopic signatures are
 411 represented as lines in one-dimensional density plots (top left and bottom right graphs, A), two-
 412 dimensional scatterplots (bottom left graph; A) and ten random elliptical simulated projections of
 413 trophic niches corresponding to each diet and each treatment (top right graph; A).

414
 415 *Survivorship, development, and body condition*

416
 417 Of the 120 larvae used in the experiment, 12 died: six in the 18°C treatment (five with
 418 intermediate- and one with high-quality food) and six in the 24.5°C treatment (five with high-
 419 and one with intermediate-quality food). Five of these deaths occurred during or after the

420 heat-wave phase (three heat-wave larvae and two controls). One larva developed hydrops and
421 was excluded.

422 Larval body condition (SMI) did not differ among food treatments, rearing
423 temperatures, or heat-wave exposure; the same was true for body mass alone (Table 1, Figs.
424 S4, S5). In contrast, developmental rate was higher at 24.5 °C than at 18 °C (Table 1). At 24.5
425 °C, developmental rate also increased with intermediate-quality food (Kenward–Roger post-
426 hoc: estimate = -0.029, SE = 0.010, df = 91.5, t = -2.874, p = 0.025) and with high-quality
427 food (estimate = -0.054, SE = 0.011, df = 92.0, t = -4.804, p < 0.001) compared with low-
428 quality food. These effects were absent at 18 °C (Table 1; Figs. 4A, S6).

429
430 *Behavioral trials*
431

432 Escape-behavior trials were conducted with 102 *R. temporaria* larvae. Of the 108
433 surviving larvae, one showed hydrops and four displayed abnormal behavior (lethargy or
434 irregular swimming) and were therefore excluded. In addition, one video file was accidentally
435 lost. Of the 102 larvae tested, 81 responded to the aversive stimulus (61 before being touched
436 by the predator model and 20 upon contact), whereas 21 did not react even when gently
437 touched.

438
439 *Larvae likeliness to react*
440

441 Larval response (reacted vs. did not react) was unrelated to mass (W = 711.5, p = 0.252;
442 Fig. S7) or body condition (W = 936, p = 0.482; Fig. S8). The number of attempts needed to
443 position a larva before the trial differed between responders and non-responders (W = 601, p
444 = 0.022; Fig. S9); however, larvae requiring more positioning attempts were also more likely
445 to react, indicating that repositioning did not impair their ability to respond (Fig. S9). For this
446 reason, number of attempts was included as an additional random effect in the models
447 assessing reaction likelihood.

448 Reaction likelihood was not explained by any fixed factor alone but by interactions
449 among them (Table 2). The full mixed-effects model with random structure did not converge,
450 so we ran a model without random effect structure using the *lmer* function (Table 2). Simpler
451 models including only individual predictors and single interactions yielded consistent results
452 using the mixed function.

453 Larvae reared on high-quality food were more likely to react than those fed
454 intermediate-quality food at 24.5 °C (free-method post-hoc: estimate = -0.379, SE = 0.124, df
455 = 86.8, t = -3.059, p = 0.013) and not exposed to the heat wave (estimate = -0.379, SE =
456 0.126, df = 80.9, t = -3.011, p = 0.015; Fig. 4B). Heat-wave exposure increased reaction
457 likelihood only at 24.5 °C, whereas at 18 °C it reduced the likelihood of reacting (Fig. 4B,
458 Table 2; see Fig. S10 for residual diagnostics).

459

460 Table 1. Models built to explain variability in body condition (SMI), mass, developmental rate (dev_rate) and gut bacteria diversity of *Rana*
 461 *temporaria* larvae reared at two temperatures (either 18 °C or 24.5 °C) and receiving one of three food treatments considered as of low-, medium-,
 462 and high-quality (based on increasing content of protein, fat, and animal components) in a crossed experimental design. Developmental rate was
 463 calculated as the number of Gosner's (1960) developmental stages advanced during the experiment divided by the number of days from hatching to
 464 the end of the experiment. Significant effects are boldfaced and marked with an *. *mixed* refer to function employed to run the models.

Dependent variable / GLMM model	Fixed effects	df	F	p	n
Body condition (SMI)					
<i>mixed</i> (SMI ~ diet*temperature*HW + (1 Clutch))	diet	2; 91.72	2.196	0.117	107
	temperature	1; 91.66	0.067	0.797	
	HW	1; 94.99	0.236	0.628	
	diet:temperature	2; 93.03	1.001	0.372	
	diet:HW	2; 93.99	0.594	0.554	
	temperature:HW	1; 94.31	1.551	0.216	
	diet:temperature:HW	2; 90.66	0.190	0.827	
Mass (mg)					
<i>mixed</i> (mass ~ diet*temperature*HW + (1 Clutch))	diet	2; 91.72	2.291	0.107	107
	temperature	1; 91.66	0.124	0.725	
	HW	1; 94.99	0.106	0.745	
	diet:temperature	2; 93.03	0.322	0.272	
	diet:HW	2; 93.99	0.947	0.057	
	temperature:HW	1; 94.31	0.124	0.725	
	diet:temperature:HW	2; 90.66	1.705	0.188	
Developmental rate (dev_rate)					
<i>mixed</i> (dev_rate ~ diet*temperature*HW + (1 Clutch))	diet	2; 91.72	8.428	<0.001*	107
	temperature	1; 91.65	412.706	<0.001*	
	HW	1; 94.99	0.865	0.354	
	diet:temperature	2; 93.03	4.404	0.015*	

	diet:HW	2; 93.99	0.281	0.756
	temperature:HW	1; 94.31	3.364	0.070
	diet:temperature:HW	2; 90.66	0.036	0.965
Gut bacteria diversity (Shannon entropy)				
	<i>mixed</i> (diversity ~ diet*temperature*HW + (1 Clutch))			
	diet	2; 77.10	3.297	0.042*
	temperature	1; 78.21	8.716	0.004*
	HW	1; 79.97	0.034	0.854
	diet:temperature	2; 78.08	4.763	0.011*
	diet:HW	2; 79.08	1.647	0.199
	temperature:HW	1; 77.66	0.161	0.689
	diet:temperature:HW	2; 73.15	3.677	0.030*

465

466

467

468

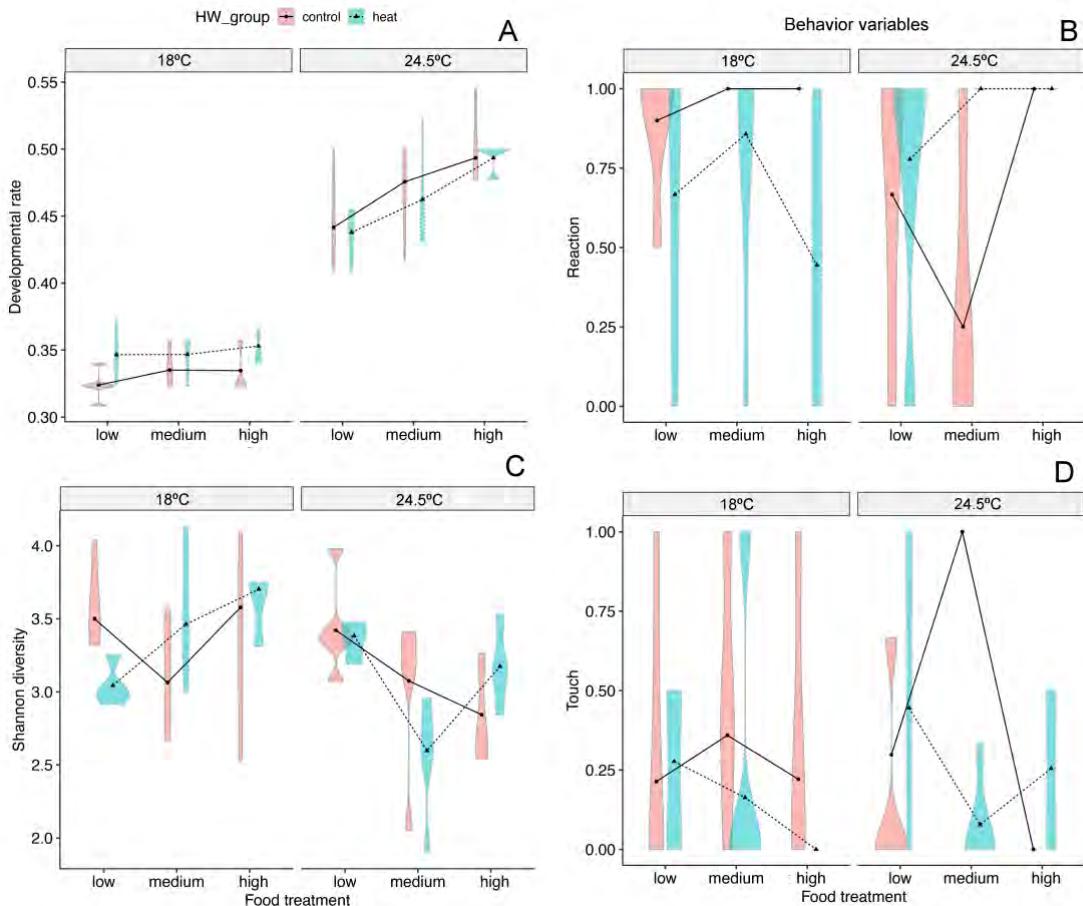
469

470

471

472

473


474

475

476 Table 2. Models built to explain variability in five dependent variables describing *Rana temporaria* larvae escaping behavior when exposed to an
 477 aversive stimulus consisting of an approaching transparent plastic pipette with a predator model glued to the top releasing 4 ml of water previously
 478 exposed to predators. Analyzed escape responses were: (1) whether the larva reacted or not (no reaction meant not moving even when touched by
 479 the model), (2) larvae reaction time (time elapsed from the moment the predator model touched the water to the fleeing response of the larva), (3)
 480 whether the larva reacted before or after being touched by the predator model, (4) average speed and (5) trajectory linearity while fleeing. *Rana*
 481 larvae were reared at two temperatures (either 18 °C or 24.5 °C) and received one of three food treatments considered as of low,
 482 medium, and high quality (based on increasing levels of protein, fat, and components of animal origin) in a crossed experimental design. Significant
 483 effects are boldfaced and marked with an *. *mixed* and *lmer* refer to functions employed to run the models.

Dependent variable / GLMM model	Fixed effects	df	F	p	n
Reaction to the aversive stimulus (binary)					
<i>lmer</i> (reaction ~ diet*temperature*HW + (1 day_filmed) + (1 Clutch) + (1 attempts))	diet	2; 87.05	0.889	0.419	102
	temperature	1; 86.93	0.186	0.667	
	HW	1; 89.42	0.035	0.851	
	diet:temperature	2; 88.09	5.627	0.005*	
	diet:HW	2; 89.44	5.748	0.004*	
	temperature:HW	1; 89.06	18.327	<0.001*	
	diet:temperature:HW	2; 83.36	1.346	0.266	
Reaction time					
<i>mixed</i> (reaction_time ~ diet*temperature*HW + (diet day_filmed+clutch))	diet	2; 0.45	0.015	0.985	81
	temperature	1; 1.17	0.307	0.667	
	HW	1; 53.64	1.014	0.319	
	diet:temperature	2; 1.07	0.081	0.927	
	diet:HW	2; 42.53	1.503	0.234	
	temperature:HW	1; 61.17	0.789	0.378	
	diet:temperature:HW	2; 60.96	1.166	0.319	

Touch by the predator model before reaction (binary)					
<i>mixed</i> (touch ~ diet*temperature*HW + (1 day_filmed) + (1 Clutch))	diet	2; 12	6.897	0.032*	81
	temperature	1; 13	0.000	1.000	
	HW	1; 13	0.000	1.000	
	diet:temperature	2; 12	0.598	0.741	
	diet:HW	2; 12	6.701	0.035*	
	temperature:HW	1; 13	0.000	1.000	
	diet:temperature:HW	2; 12	7.838	0.020*	
Speed while fleeing (log)					
<i>mixed</i> (logspeed ~ diet*temperature*HW + (diet day_filmed+clutch))	diet	2; 67.19	1.084	0.344	81
	temperature	1; 0.94	0.037	0.881	
	HW	1; 66.91	0.018	0.892	
	diet:temperature	2; 67.02	1.097	0.340	
	diet:HW	2; 65.12	1.624	0.205	
	temperature:HW	1; 66.08	0.001	0.976	
	diet:temperature:HW	2; 66.71	1.481	0.235	
Trajectory non-linearity while fleeing or “meander” (log)					
<i>mixed</i> (logmeander ~ diet*temperature*HW + (diet day_filmed+clutch))	diet	2; 1.06	0.212	0.836	81
	temperature	1; 0.89	1.288	0.478	
	HW	1; 58.33	0.420	0.520	
	diet:temperature	2; 1.29	0.037	0.965	
	diet:HW	2; 51.95	0.661	0.520	
	temperature:HW	1; 61.90	1.561	0.216	
	diet:temperature:HW	2; 62.24	1.391	0.256	

486
487
488
489
490
491
492
493
494
495

Fig. 4. Interactive effects among food quality, rearing temperature, and exposure to a heat wave in *Rana temporaria* larvae developmental rate (A), variables describing behavior (B, D) and gut bacteria diversity (C). Food quality refers to increasing levels of protein, fat, and components of animal origin. Rearing temperatures were 18 °C and 24.5 °C. The heat wave corresponded to increasing temperature at a ramping rate of 0.5 °C per hour until 28 °C, maintenance at 28 °C for 48 h and subsequent temperature decrease of 0.5 °C per hour until original rearing temperature. Variables describing behavior are larvae likeliness to react (fleeing) to an aversive stimulus (B) and to be touched by an approaching predator model before reacting (D). Graphs correspond to violin plots of estimated marginal means from the corresponding model (see Table 1).

496

497 *Larvae reaction time*

498 Reaction time, measured for the 81 larvae that responded to the stimulus, was not
499 influenced by mass (Adjusted $R^2 = 0.030$, $F_{79} = 3.487$, $p = 0.066$; Fig. S11), body condition
500 (Adjusted $R^2 = -0.013$, $F_{79} = 0.005$, $p = 0.946$; Fig. S12), or the number of positioning
501 attempts before the trial ($p = -0.125$, $p = 0.263$; Fig. S13). Reaction time was also unaffected
502 by any experimental factor - food treatment, rearing temperature, heat-wave exposure - or by
503 their interactions (Table 2).

504

505 *Larvae likeliness of being touched*

506 Whether larvae reacted before or after being touched by the predator model was
507 unrelated to mass ($W = 577$, $p = 0.722$; Fig. S14), SMI ($W = 697$, $p = 0.343$; Fig. S15), or the
508 number of attempts needed to position them ($W = 533$, $p = 0.366$; Fig. S16). In contrast,

509 reaction depended on food treatment, its interaction with heat-wave exposure, and the three-
510 way interaction among food treatment, rearing temperature, and heat-wave exposure (Table 1;
511 Fig. S17). At 24.5 °C, larvae fed intermediate-quality food were more likely to be touched
512 before fleeing than those fed high-quality food (free method post-hoc: estimate = 1.021, SE =
513 0.334, $z = 3.059$, $p = 0.025$; Fig. 4D), although this pattern did not occur in larvae exposed to
514 the heat wave.

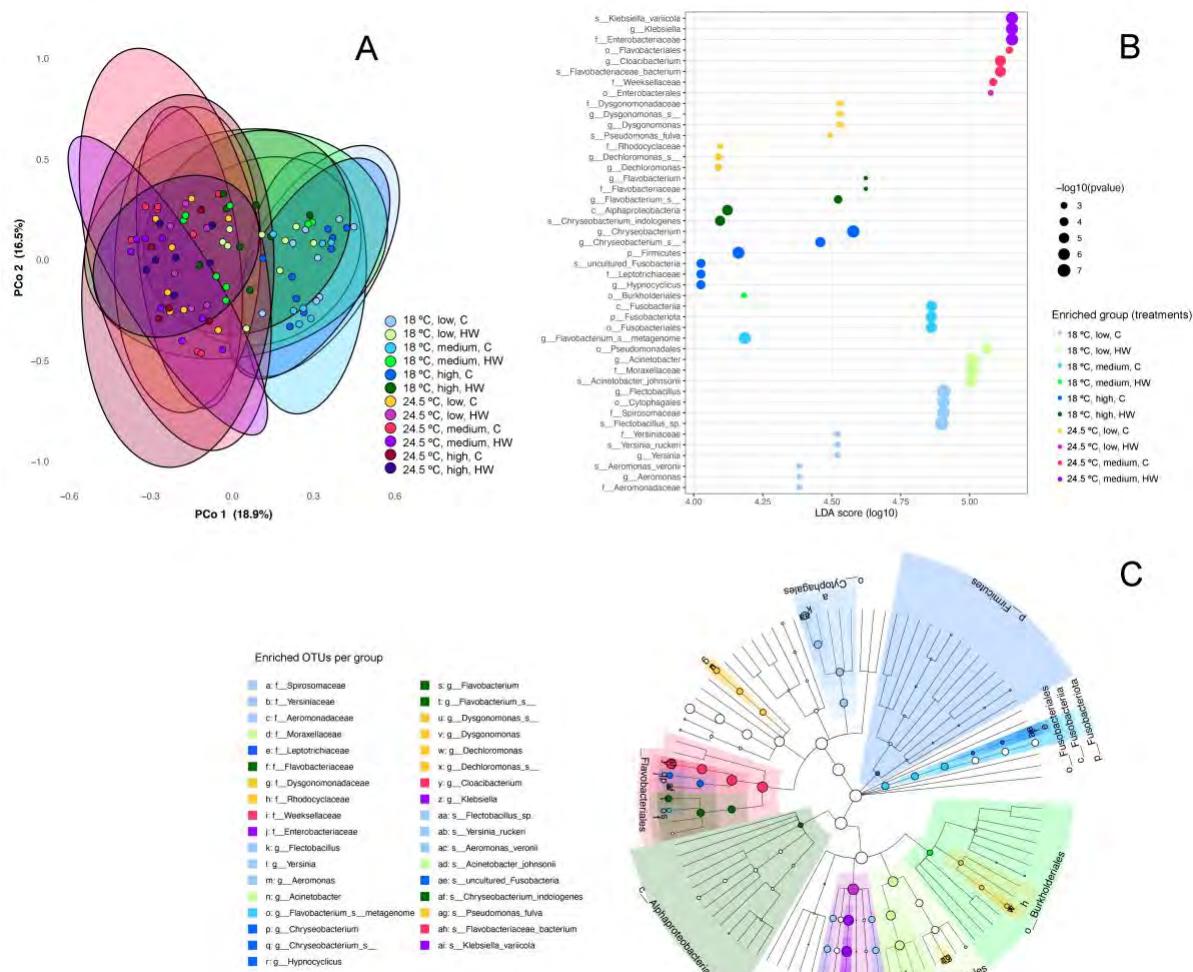
515

516 *Larvae escape speed and trajectory*

517 Escape speed and movement non-linearity (“meander”; Chiara & Kim, 2023) were
518 quantified for the 81 larvae that fled, with both variables log-transformed to meet normality
519 assumptions. Neither metric was affected by mass, body condition, or the number of
520 positioning attempts (speed: Adjusted $R^2 = -0.013$, $F_{79} = 0.004$, $p = 0.949$; Fig. S18; Adjusted
521 $R^2 = -0.013$, $F_{79} = 0.009$, $p = 0.923$; Fig. S19; $\rho = -0.104$, $p = 0.354$; Fig. S20; meander:
522 Adjusted $R^2 = 0.003$, $F_{79} = 1.271$, $p = 0.263$; Fig. S21; Adjusted $R^2 = -0.009$, $F_{79} = 0.247$, $p =$
523 0.620; Fig. S22; $\rho = 0.050$, $p = 0.657$; Fig. S23). Food treatment, rearing temperature, heat-
524 wave exposure, and their interactions likewise had no effect on larval escape speed or
525 trajectory (Table 2).

526

527 *Gut bacteria diversity and composition*


528

529 Gut bacterial diversity was influenced by food treatment, rearing temperature, their
530 interaction, and the three-way interaction with heat-wave exposure (Table 1). Larvae fed
531 medium-quality food exhibited reduced gut bacterial diversity compared to larvae fed low-
532 quality food, but only when reared at 24.5 °C and exposed to a heat wave (Fig. 4C).

533 The two positive extraction controls (ZymoBIOMICSTM microbial community standard)
534 and the positive PCR control (ZymoBIOMICSTM microbial community DNA standard)
535 displayed identical species compositions but differed in the relative abundances of taxa
536 compared with the manufacturer’s expected profile (Fig. S24). The two extraction controls
537 yielded consistent results (Fig. S24), indicating that any deviations in relative abundances
538 were systematic rather than random.

539 In total, 207 Operational Taxonomic Units (OTUs) were recovered from the gut
540 microbiomes of 92 *R. temporaria* larvae. The dominant phyla across treatments were
541 *Pseudomonadota* and *Bacteroidota* (Fig. S25). Most treatment pairs differed significantly in
542 gut bacterial community composition, with a few exceptions. No differences were detected
543 between medium-quality food with heat-wave exposure and high-quality food without
544 exposure at 18 °C. At 24.5 °C, larvae fed low-quality food with heat-wave exposure did not
545 differ from those fed medium-quality food (with or without heat-wave exposure) or high-
546 quality food (with or without heat-wave exposure) (Fig. 5A; Table S1).

547

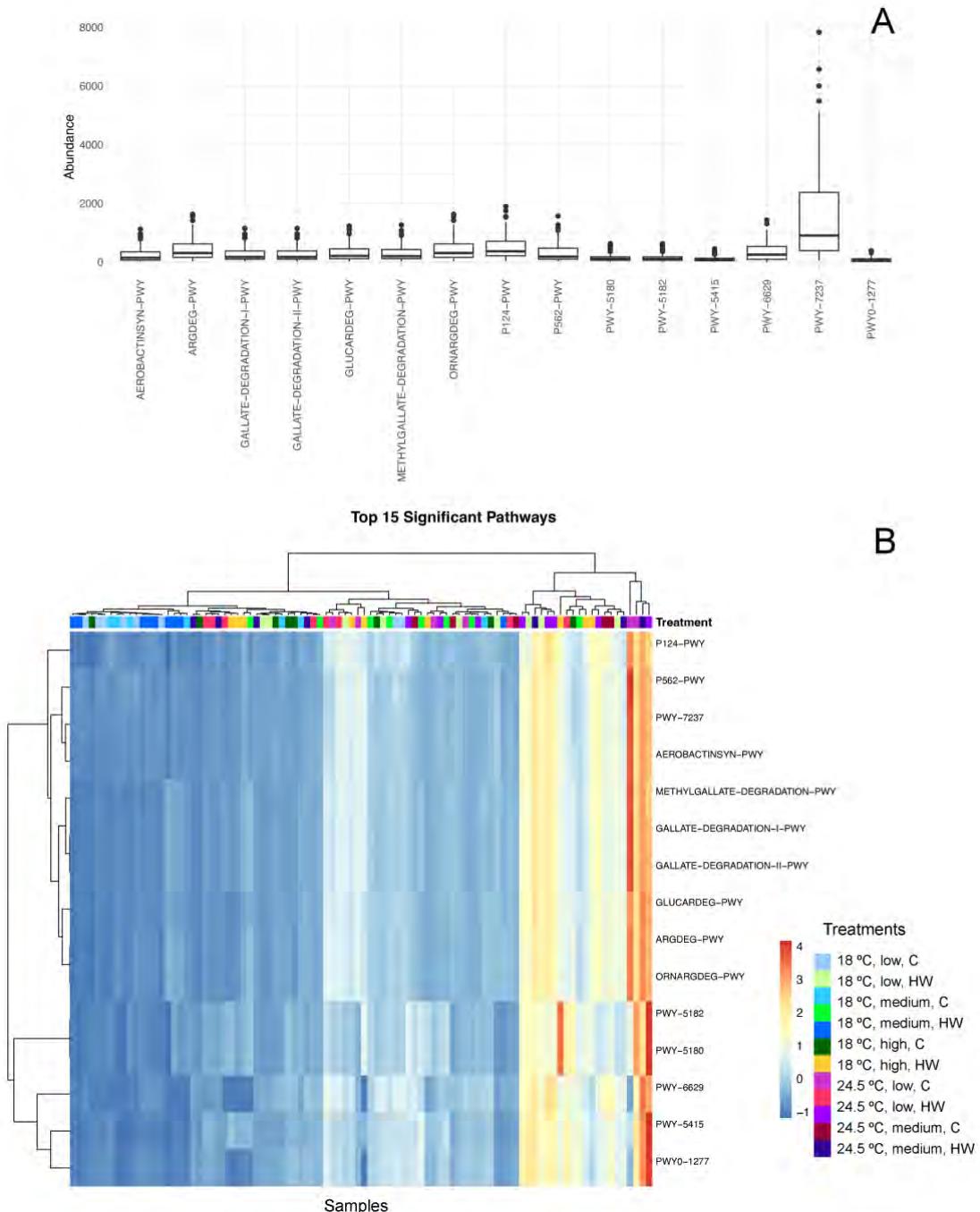
548

549 Fig. 5. Gut bacteria community composition (A) and enriched Operational Taxonomic Units (OTUs; 550 B) according to treatments imposed to larvae of *Rana temporaria*, corresponding to three diets with 551 increasing levels of protein, fat, and components of animal origin (low-, medium-, and high-quality), 552 two rearing temperatures (18 °C and 24.5 °C) and exposure or not to a heat wave (HW vs. C = 553 control). Clustering of taxa with differences in abundance among treatments is also shown (C). Colors 554 of OTUs correspond to colors of treatments in which they were the most abundant, cold colors (blue- 555 green) correspond to 18 °C and warm colors (yellow-purple) to 24.5 °C rearing temperatures. Color 556 intensity increases with food quality.

557

558

559 All treatment combinations except those involving high-quality food at 24.5 °C 560 (regardless of heat-wave exposure) had OTUs identified as biomarkers, totaling 45 OTUs 561 (Fig. 5). At low food quality, the main biomarkers at 18 °C without heat-wave exposure were 562 *Flectobacillus* (*Spirosomaceae*, *Cytophagales*), *Yersinia ruckeri* (*Yersinaceae*), and 563 *Aeromonas veronii* (*Aeromonadaceae*). When exposed to a heat wave, *Acinetobacter* 564 *johsonii* (*Moraxellaceae*) was predominant. At 24.5 °C, *Dysgonomonas* 565 (*Dysgonomonadaceae*), *Pseudomonas fulva*, and *Dechloromonas* (*Rhodocyclaceae*) 566 dominated without heat-wave exposure, whereas *Enterobacteriales* predominated under heat- 567 wave exposure.


568 At intermediate food quality, *Fusobacteriales* (*Fusobacteriia*, *Fusobacteriota*) and
569 *Flavobacterium* were characteristic at 18 °C without heat-wave exposure, while
570 *Burkholderiales* dominated with heat-wave exposure. At 24.5 °C, *Cloacibacterium*
571 (*Weeksellaceae*, *Flavobacteriales*) predominated without heat-wave exposure, whereas
572 *Klebsiella variicola* (*Enterobacteriaceae*) was selected as a biomarker under heat-wave
573 exposure.

574 At high food quality and 18 °C, *Chryseobacterium*, *Bacillota*, and *Hypnocyclus*
575 (*Leptotrichiaceae*) were biomarkers without heat-wave exposure, and *Cryseobacterium*
576 *indologenes*, *Flavobacterium* (*Flavobacteriaceae*), and *Alphaproteobacteria* predominated
577 under heat-wave exposure (Fig. 5).

578 In total, 357 unique metabolic pathways were predicted, of which 289 differed
579 significantly among experimental treatments. The most significantly affected pathways
580 included degradation of myo-inositol, D-glucarate, fructose, and various aromatic compounds
581 (catechol, gallate, toluene, 3-phenylpropanoate, and 3-(3-hydroxyphenyl)propanoate), as well
582 as synthesis of L-tryptophan and aerobactin, and conversion of amino acids into putrescine
583 (Fig. 6A).

584 Larvae clustered into four major groups based on the top 15 significantly differing
585 pathways (Fig. 6B). One group showed under-expression across all pathways and consisted
586 mostly of larvae reared at 18 °C without heat-wave exposure, although individuals from other
587 treatment categories were also included. A second group showed intermediate expression and
588 was highly heterogeneous across food treatments, temperatures, and heat-wave exposure. The
589 two groups with the highest predicted pathway expression were composed predominantly of
590 larvae reared at 24.5 °C, exposed to a heat wave, or both (Fig. 6B).

591
592

593
594
595
596
597
598

Fig. 6. The predicted 15 most significant pathways (A) influenced by gut bacteria from larvae of *Rana temporaria* and their expression among treatments (B) corresponding to a multifactorial experimental design of three diets with increasing levels of protein, fat, and components of animal origin (low-, medium-, and high-quality), two rearing temperatures (18 °C and 24.5 °C) and exposure or not to a heat wave (HW vs. C = control). Treatment colors are as in Fig. 5.

599
600

Discussion

601
602
603
604
605

The gut microbiome plays key roles in many aspects of animal biology, from nutrient assimilation to immune defense and ultimately behavior (McFall-Ngai et al., 2013; Tuddenham and Sears, 2015). Animals respond to environmental conditions and their gut microorganisms are also expected to respond, potentially in ways that are adaptive and

606 enhance the animals' ability to cope with both natural environmental fluctuations (Park and
607 Do, 2024) and human-driven environmental challenges (Lynch and Hsiao, 2019; Fontaine and
608 Kohl, 2023). Under changing conditions, microbial taxa favored by the new environment may
609 increase in abundance and help maintain host metabolic functions, provided that the microbial
610 community has sufficient functional redundancy (Louca et al., 2018).

611 In our study, larvae of *R. temporaria* exposed to different temperatures and diets
612 exhibited shifts in gut bacterial diversity and composition, likely enabling them to maintain
613 body condition and still develop faster under higher temperatures. At elevated temperatures,
614 diet quality became a decisive factor for larval development and escape performance.
615 Moreover, both long-term warming and short heat waves appeared to induce changes in the
616 microbiome that, in turn, influenced the larvae's ability to react.

617

618 *Larvae nutrient assimilation, growth, and development*

619 Larvae of *Rana temporaria* exhibited clearly distinguishable stable isotope signatures
620 depending on food treatment, reflecting expected differences in nutrient acquisition from the
621 diets provided. However, body condition did not differ among food treatments, regardless of
622 rearing temperature. Development, on the other hand, was faster at 24.5 °C, and at this
623 temperature, higher food quality further increased developmental rate. Because temperature
624 determines the metabolic rate of ectotherms (Álvarez and Nicieza, 2002) and higher
625 metabolism requires more energy (Arendt, 1997), the improved food quality likely enabled *R.*
626 *temporaria* larvae to grow faster while maintaining good body condition.

627 The “macronutrient ratio hypothesis” predicts that ectotherms prefer increased
628 carbohydrate/protein ratios at higher temperatures to meet the energetic demands of elevated
629 metabolism, because excreting nitrogen from protein catabolism incurs a cost (Hardison and
630 Eliason, 2024). Similarly, the “temperature metabolic stoichiometry hypothesis” proposes that
631 ectotherms prefer diets with a higher carbon-to-nitrogen ratio under elevated temperatures
632 (Hardison and Eliason, 2024). Nitrogen excretion rates, however, usually increase with
633 temperature, reducing the cost of protein-rich diets (Hardison and Eliason, 2024). This
634 increase in nitrogen excretion may have allowed *R. temporaria* larvae to maintain body
635 condition and develop faster at higher temperatures when fed high-protein diets with
636 relatively constant carbohydrate content. A proportional increase in protein consumption at
637 higher temperatures has been observed in arthropods (Devries and Appel, 2014; Schmitz et
638 al., 2016), and invertebrates can maintain stable carbon-to-nitrogen ratios if food intake
639 increases with temperature (Anderson et al., 2017). In our study, this was likely the case
640 because larvae were fed *ad libitum*.

641 Niche breadth, based on stable isotope analyses, was higher at 18 °C with low to
642 intermediate food quality and at 24.5 °C with high food quality. Because food within
643 treatments was uniform, niche breadth reflects individual variability in the assimilation of
644 food components, which may indicate microbiome-mediated modulation (discussed below).
645 Niche breadth was markedly lower at 18 °C with high food quality and at 24.5 °C with
646 intermediate food quality. Low-quality food resulted in intermediate niche breadths at 24.5 °C.
647 The microbiome is modulated by diet and host genetics and, in turn, can influence nutrient

648 absorption and host metabolism (Huda et al., 2022; Corbin et al., 2023). Thus, broader niches
649 within treatments may reflect greater plasticity of the holobiont (i.e., microbiome–host
650 association) in adjusting nutrient absorption at the individual level.

651 More diverse microbial communities are likely to possess higher functional redundancy,
652 allowing metabolic functions to be maintained despite changes in the abundance of specific
653 taxa (Louca et al., 2018). In humans, distinct well-balanced host–microbial symbiotic states
654 have been identified, and these states respond differently to diet (Arumugam et al., 2011).
655 Such plasticity may allow the holobiont to meet the nutritional demands of the host,
656 depending on the interaction between the microbiome and host genetic background. In our
657 study, host genetic variability was unlikely to differ among treatments, which contained equal
658 numbers of larvae from five clutches. Therefore, the larger niche breadths observed in some
659 treatments may indicate a higher adaptive capacity of the microbiome to interact with host
660 genetics and enhance host performance, which could be beneficial.

661 If this hypothesis holds, higher efficiency in individual food assimilation could be
662 achieved at 24.5 °C when larvae consume high-quality food, as suggested by the observed
663 faster development without detriment to body condition or escape performance (discussed
664 below). However, in natural habitats, *ad libitum* access to the highest-quality food at elevated
665 temperatures may not be realistic. In such circumstances, herbivorous diets - which resulted in
666 broader niches than diets with intermediate animal components in our experiment - may
667 represent the best available solution. Therefore, dietary preferences toward herbivory under
668 heat stress could be subject to selection. In the wild, plant material has been associated with
669 higher nutritional value for fish at warmer temperatures and is thought to influence latitudinal
670 diversity gradients in herbivorous versus carnivorous fishes, with consumption of plant-based
671 food increasing with temperature (Behrens and Lafferty, 2007; González-Bergonzoni et al.,
672 2012). Choice experiments with ectotherms have similarly shown selection for more
673 herbivorous diets at higher temperatures (Vejříková et al., 2016; Zhang et al., 2020). Yet, in
674 some cases, herbivorous fish abundance did not increase with temperature in the southern
675 hemisphere (Trip et al., 2014), and grasshoppers increased preference for protein under higher
676 temperatures (Schmitz et al., 2016), indicating that increased plant consumption is not the
677 only strategy for coping with heat. The availability of suitable microorganisms to aid
678 digestion and assimilation of different nutrients, along with their own response to
679 temperature, is therefore critical for host success at varying temperatures and food qualities
680 (Vejříková et al., 2016).

681 Increasing temperatures can alter the diets of ectothermic animals by affecting both food
682 availability and quality or by triggering dietary shifts (Hardison and Eliason, 2024). For
683 instance, lipid content of algae decreases at higher temperatures (20–28 °C vs. 12 °C), which
684 also reduces the growth of *Daphnia* fed on them (Tseng et al., 2021). Altered temperatures
685 impose different nutrient demands, and species may adjust foraging behavior accordingly.
686 Thus, understanding the nutrients ectotherms can actually access in natural habitats is crucial
687 for interpreting laboratory results; otherwise, we risk overestimating their capacity to improve
688 performance based on animals kept in unrealistic conditions (Hardison and Eliason, 2024).

689
690 *Larvae escape behavior*

Larval ability to react - evaluated as both the likelihood to react and whether the reaction occurred before or after being touched - was influenced by experimental conditions, whereas reaction time, speed, and meander were not. At the higher rearing temperature (24.5 °C), not all diets were sufficient to maintain an effective escape response in *R. temporaria* larvae. Diets with high protein content and greater representation of animal-derived components, as well as an herbivorous diet, resulted in efficient escape performance. Interestingly, the diet assumed to be of lowest quality produced intermediate results in terms of larval reactivity, whereas larvae receiving intermediate-quality food at 24.5 °C and not exposed to a heat wave exhibited the poorest performance. These results align with observed patterns in larvae niche breadth, suggesting a relationship between nutrient assimilation plasticity (i.e., broader isotopic niches) and escape ability. However, exposure to a heat wave improved the reactivity of larvae reared at 24.5 °C with intermediate-quality food, potentially due to shifts in gut bacterial abundance and activation of metabolic pathways that enhance performance (discussed below).

The use of a complex stimulus combining visual, tactile, and chemical cues may have masked differences in reaction time, as perception and response can vary depending on the cue (Melo et al., 2021). Although testing each cue separately would be informative, we combined them to increase the likelihood that all larvae would perceive and respond to the aversive stimulus. Non-reacting larvae were interpreted as less able to respond to threats, and larvae that waited until being touched were considered less responsive, as contact with a predator in nature would likely result in capture.

Rana temporaria larvae develop in small ponds in the Kleiwiesen, where they are exposed to dragonfly naiads but not predatory fish. Higher escape speed is adaptive for larvae facing active predators like fish but not for ambush predators such as Odonata, as phenotypes associated with increased speed are induced by co-occurrence with the former but not the latter (Teplitsky et al., 2005). In this context, the ability to flee promptly upon perceiving a threat likely has a greater impact on survival than escape speed or trajectory in Kleiwiesen larvae (Staudinger et al., 2011).

Gut bacteria, predicted metabolic pathways, and their potential influence on larvae performance

Variations in gut bacterial abundance and predicted metabolic pathways may have contributed to differences in *R. temporaria* larvae performance under the experimental conditions. Escape responses were markedly reduced in larvae reared at 24.5 °C with an intermediate-quality diet and not exposed to a heat wave. In these larvae, *Cloacibacterium* showed increased abundance. Interestingly, *Cloacibacterium* was also abundant in the control group compared to elevated temperatures in rainbow trout (Zhou et al., 2022), although it remains unclear whether this taxon contributed directly to the reduced reactivity in larvae.

In contrast, larvae exposed to a heat wave under the same dietary and rearing temperature conditions showed improved escape performance and a higher abundance of *Klebsiella* (*Enterobacteriaceae*, *Enterobacterales*). This suggests that the heat wave may have

734 triggered proliferation of *Klebsiella*, which in turn could have contributed to enhanced
735 performance. However, this shift in microbial composition came with a reduction in gut
736 microbiome diversity, which may reduce host capacity to cope with additional stressors
737 (Henry et al., 2021).

738 *Klebsiella* may influence host performance through multiple metabolic pathways.
739 Pathways such as P562-PWY and PWY-7237, involved in myo-inositol and related inositol
740 derivatives degradation (Berman and Magasanik, 1966a, 1966b; Anderson and Magasanik,
741 1971; Karp et al., 2019), were relatively increased in treatments with higher temperatures.
742 Myo-inositol is essential in eukaryotes for membrane phospholipids and cell signaling, and its
743 metabolism may help maintain membrane fluidity and protein activity - which are influenced
744 by temperature (Hazel, 1995) - under thermal stress. Additionally, *Klebsiella* may influence
745 behavior through neuromodulatory signals, as related species (*K. pneumoniae*) affect food
746 intake and attention in humans via serotonin and dopamine signaling (Miri et al., 2023). Other
747 upregulated pathways recorded for *Klebsiella*, such as GLUCARDEG-PWY (D-glucarate
748 degradation) and AEROBACTINSYN-PWY (aerobactin biosynthesis; Karp et al., 2019),
749 support bacterial growth by enabling carbon use and iron acquisition, which may indirectly
750 benefit host performance.

751 Other taxa also contributed to larvae performance under specific conditions. *Yersinia*
752 (*Yersiniaceae, Enterobacteriales*) increased in abundance in larvae reared at low-quality food
753 and 18 °C under heat wave exposure, although performance did not differ from controls.
754 *Chryseobacterium*, associated with lipid absorption (Semova et al., 2012), predominated in
755 larvae fed high-quality food at 18 °C. In larvae fed high-quality food at 24.5 °C, no dominant
756 biomarkers were detected, yet these individuals developed fastest and exhibited effective
757 escape responses, likely due to functional redundancy in a diverse microbial community.

758 Predicted metabolic pathways suggest that microbial plasticity may provide alternative
759 solutions for nutrient acquisition under different temperatures. For example, in larvae reared
760 at 24.5 °C with low-quality (herbivorous) diets, *Pseudomonas* and *Dysgonomonas* were
761 abundant in non-heat wave conditions, supporting aerobic aromatic catabolism pathways
762 (GALLATE-DEGRADATION-I-PWY, GALLATE-DEGRADATION-II-PWY,
763 METYLGALLATE-DEGRADATION) that enable degradation of plant lignin and tannins
764 (Karp et al., 2019). At the same time, increased abundance of *Enterobacteriales* under heat
765 wave exposure likely allowed efficient carbon utilization and maintenance of membrane
766 function, supporting effective escape responses despite low-quality diets. In the fish
767 *Plectropomus leopardus* dominant gut bacterial taxa were shown to change within 12 h and
768 maintain estimated microbial functional capacity constant under different environmental
769 conditions (Mekuchi et al., 2018).

770 Protein absorption efficiency may decline with increasing temperature in ectotherms
771 (Croll and Watts, 2004). In fish, low-protein diets lead to gut microbiomes with altered
772 composition and reduced diversity, which are less efficient at absorbing protein—likely due to
773 the influence of specific bacterial strains on enterocyte protein uptake (Childers et al., 2025).
774 For instance, strains of *Acinetobacter*, *Aeromonas*, and *Pseudomonas* can reduce protein
775 absorption in the fish gut (Childers et al., 2025; Ye et al., 2019). Besides *Pseudomonas*,
776 *Dysgonomonas* may also be disadvantageous to the host at elevated temperatures. Members

777 of *Bacteroidales* (the order that includes *Dysgonomonas*) use putrescine to produce GABA
778 (gamma-aminobutyric acid), a molecule that modulates stress responsiveness in humans (Miri
779 et al., 2023). Thus, increased putrescine degradation may impair stress responses. In our
780 study, the superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation
781 (ARGDEG-PWY) was upregulated in larvae reared at 24.5 °C on low-quality food and
782 exposed to a heat wave. However, these larvae also showed increased abundances of
783 *Enterobacteriales* (the order that includes *Klebsiella*), which may have facilitated the
784 degradation of diverse carbon sources from the herbivorous diet and regulated membrane
785 functions (as discussed above), ultimately allowing larvae to maintain an effective escape
786 response.

787 Some pathways also suggest potential benefits for coping with environmental
788 pollutants. PWY-5180 and PWY-5182, corresponding to toluene degradation, were associated
789 with *Pseudomonas* (Fishman et al., 2004; Karp et al., 2019) and may help larvae survive in
790 polluted habitats. Additionally, PWY-6629, the L-tryptophan biosynthesis pathway, increased
791 under higher temperatures. In other ectotherms, dietary L-tryptophan improves growth and
792 thermic stress resistance (Akthar et al., 2013), suggesting possible similar benefits mediated
793 by the microbiome, although this pathway has only been documented for *E. coli* due to
794 limited ectotherm microbiome studies (Legrand et al., 2020; Eterovick et al., 2024).

795 Overall, exposure to elevated temperatures - either long-term or as short-term heat
796 waves - was associated with increases in the most significant metabolic pathways, though not
797 uniformly across treatments. This variability aligns with individual differences in
798 microbiome-host interactions and may underlie observed variation in larvae performance
799 under different environmental conditions.

800
801 *Concluding remarks*
802

803 At a temperature equivalent to that naturally experienced by *R. temporaria* (18 °C), food
804 quality - defined by high protein, fat, and animal component content - did not appear to be a
805 decisive factor for larval performance, including developmental rate and the ability to detect
806 and escape from threats. Under these conditions, the gut bacterial community may have
807 adjusted to variations in food quality and exposure to short-term heat stress, contributing to
808 the maintenance of host metabolic functions.

809 However, at elevated rearing temperatures, food quality became a key determinant of
810 developmental rate and interacted with additional temperature fluctuations, such as heat
811 waves, shaping both the microbiome and behavioral outcomes. Larvae fed the diet richest in
812 protein, fat, and animal components developed the fastest and were among the most likely to
813 respond early to threats. Such traits would increase survival likelihood, allowing these larvae
814 to leave warming and potentially drying habitats quickly and to escape predators efficiently.
815 Interestingly, larvae fed a herbivorous diet - low in protein, fat, and component diversity - also
816 exhibited effective escape responses. These comparable outcomes suggest that alternative
817 bacterial communities, triggered by environmental conditions, may provide functional
818 redundancy, supporting host performance despite differences in diet.

819 Larvae receiving intermediate-quality diets, with moderate inclusion of animal
820 components, showed variable outcomes depending on heat wave exposure. This variability
821 indicates that a more herbivorous diet may represent a safer strategy in unpredictable
822 environments where high-quality animal food may not be consistently available. Temperature-
823 modulated microbial growth may further favor the consumption of specific food types, as
824 microbes play a key role in nutrient assimilation (Newsome et al., 2011; Vejříková et al.,
825 2016). Supporting this, studies across diverse ectotherms - from insects to vertebrates - have
826 often documented increased herbivory under elevated temperatures (Behrens and Lafferty,
827 2007; Carreira et al., 2016; Brankatschk et al., 2018; Zhang et al., 2020), although exceptions
828 exist (Trip et al., 2014; Schmitz et al., 2016). To better understand these patterns, future
829 research should investigate wild ectotherms' microbiomes, isotopic signatures, and health
830 biomarkers, linking diet composition, microbiome-mediated nutrient assimilation, and host
831 condition in natural habitats.

832 As human activities increase the intensity and frequency of environmental changes,
833 accelerating species extinction rates (IPCC, 2023), understanding the role of the microbiome
834 in animal resilience becomes increasingly important. Microbiomes are dynamic communities
835 (Louca et al., 2018) that respond to environmental fluctuations (Mekuchi et al., 2018).
836 Therefore, studies integrating multifactorial interactions among host, microbiome, and
837 environment, and collecting data from animals under natural conditions, are essential to
838 accurately interpret laboratory findings and predict ecological outcomes.

839
840

841 **Acknowledgements**

842

843 We are thankful to Miguel Vences, Sven Gippner, and Janina Rudolph for field
844 assistance, Maileen Weidner, Maline Türk, Fabian Bartels, and Ben Oetken for help with
845 animal husbandry, and Christoph Reisdorff for support in the isotope analyses conducted in
846 his laboratory. We also thank Frank Suhling for identification of the dragonfly naiads, Selma
847 Vieira and Johannes Sikorski for helpful advice during bioinformatic analyses, and Robin
848 Schmidt for providing the picture of the mating pair of *Rana temporaria* used in Fig. 1. We
849 especially thank Richard Wassersug for enlightening conversations about amphibian larvae
850 behavior and its analysis. We acknowledge financial support from the Open Access
851 Publication Fund of the Leibniz Institute DSMZ - German Collection of Microorganisms and
852 Cell Cultures GmbH.

853

854 **Funding**

855

856 DNA analyses were supported by the Deutsche Forschungsgemeinschaft (DFG; GZ: CA
857 3427/2-1, project number: 546565602 granted to PCE). Experimental work at the Technical
858 University of Braunschweig was funded by the DFG (Project number: 459850971; granted to
859 KR). KR was supported by Marie-Curie Actions (Grant Number: 101151070-
860 AMPHISTRESS).

861

862 **Ethics approval**

863
864 Permits for the experiments were obtained from the Niedersächsisches Landesamt für
865 Verbraucherschutz und Lebensmittelsicherheit, Germany (Gz. 33.19-42502-04-20/3590 and
866 33.19-42502-04-22-00274). Fieldwork was carried out with permits from the Stadt
867 Braunschweig (Stadt Braunschweig - Fachbereich Umwelt und Naturschutz, Willy-Brandt-
868 Platz 13, 38102 Braunschweig; Gz. 68.11-11.8-3.3).

869
870 **Consent for publication**
871 Not applicable.

872
873 **Data availability**
874

875 Raw data are deposited in FigShare (<https://doi.org/10.6084/m9.figshare.29447390>). Raw
876 sequences are deposited in the NCBI (BioProject PRJNA1304763).

877
878

879 **References**

880

881 Akhtar, M. S., Pal, A. K., Sahu, N. P., Ciji, A., Meena, D. K., & Das, P. (2013). Physiological
882 responses of dietary tryptophan fed *Labeo rohita* to temperature and salinity stress.
883 *Journal of Animal Physiology and Animal Nutrition*, 97(6), 1075-1083. doi:
884 10.1111/jpn.12017

885 Alvarez, D., & Nicieza, A. G. (2002). Effects of induced variation in anuran larval
886 development on postmetamorphic energy reserves and locomotion. *Oecologia*, 131, 186-
887 195. doi: 10.1007/s00442-002-0876-x

888 Anderson, T. R., Hessen, D. O., Boersma, M., Urabe, J., & Mayor, D. J. (2017). Will
889 invertebrates require increasingly carbon-rich food in a warming world?. *The American
890 Naturalist*, 190(6), 725-742. doi: 10.1086/694122

891 Anderson, W. A., & Magasanik, B. (1971). The pathway of myo-inositol degradation in
892 *Aerobacter aerogenes*. Conversion of 2-deoxy-5-keto-D-gluconic acid to glycolytic
893 intermediates. *The Journal of Biological Chemistry*, 246(18), 5662–5675. doi:
894 10.1016/S0021-9258(18)61857-5

895 Archie, E. A., & Theis, K. R. (2011). Animal behaviour meets microbial ecology. *Animal
896 Behaviour*, 82(3), 425-436. doi: 10.1016/j.anbehav.2011.05.029

897 Arendt, J. D. (1997). Adaptive intrinsic growth rates: an integration across taxa. *The Quarterly
898 Review of Biology*, 72(2), 149-177. doi:10.1086/419764

899 Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., ... & Bork, P.
900 (2011). Enterotypes of the human gut microbiome. *Nature*, 473(7346), 174-180. doi:
901 10.1038/nature09944

902 Bastiani, V. I. M. (2023). Anuran amphibians in highland grasslands in southern Brazil:
903 Effects of habitat, degradation, sensitivity and thermal tolerance. PhD Dissertation,
904 Universidade Federal de Santa Maria, Brazil.

905 Behrens, M. D., & Lafferty, K. D. (2007). Temperature and diet effects on omnivorous fish
906 performance: implications for the latitudinal diversity gradient in herbivorous fishes.
907 *Canadian Journal of Fisheries and Aquatic Sciences*, 64(6), 867-873. doi: 10.1139/f07-
908 063

909 Bercik, P., Collins, S. M., & Verdu, E. F. (2012). Microbes and the gut-brain axis.
910 *Neurogastroenterology & Motility*, 24(5), 405-413. doi: 10.1111/j.1365-
911 2982.2012.01906.x

912 Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M. C. C., Charles, T., ... & Schloter,
913 M. (2020). Microbiome definition re-visited: old concepts and new challenges.
914 *Microbiome*, 8, 1-22. doi: 10.1186/s40168-020-00875-0

915 Berman, T., & Magasanik, B. (1966a). The pathway of myo-inositol degradation in
916 *Aerobacter aerogenes*. Dehydrogenation and dehydration. *The Journal of Biological
917 Chemistry*, 241(4), 800–806. doi: 10.1016/S0021-9258(18)96836-5

918 Berman, T., & Magasanik, B. (1966b). The pathway of myo-inositol degradation in
919 *Aerobacter aerogenes*. Ring scission. *The Journal of Biological Chemistry*, 241(4), 807–
920 813. doi: 10.1016/S0021-9258(18)96837-7

921 Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., ...
922 & Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome
923 data science using QIIME 2. *Nature Biotechnology*, 37(8), 852-857. doi: 10.1038/s41587-

924 019-0209-9

925 Borzée, A., Prasad, V. K., Neam, K., Tarrant, J., Kosch, T. A., Barata, I. M., ... & Wren, S.
926 (2025). Conservation priorities for global amphibian biodiversity. *Nature Reviews
927 Biodiversity*. doi: 10.1038/s44358-025-00101-5

928 Brankatschk, M., Gutmann, T., Knittelfelder, O., Palladini, A., Prince, E., Grzybek, M., ... &
929 Eaton, S. (2018). A temperature-dependent switch in feeding preference improves
930 *Drosophila* development and survival in the cold. *Developmental Cell*, 46(6), 781-793.
931 doi: 10.1016/j.devcel.2018.05.028

932 Cao, Y., Dong, Q., Wang, D., Zhang, P., Liu, Y., & Niu, C. (2022). microbiomeMarker: an
933 R/Bioconductor package for microbiome marker identification and visualization.
934 *Bioinformatics*, 38(16), 4027-4029. doi: 10.1093/bioinformatics/btac438

935 Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh,
936 P. J., ... & Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions
937 of sequences per sample. *Proceedings of the National Academy of Sciences*,
938 108(supplement_1), 4516-4522. doi: 10.1073/pnas.1000080107

939 Carreira, B. M., Segurado, P., Orizaola, G., Gonçalves, N., Pinto, V., Laurila, A., & Rebelo, R.
940 (2016). Warm vegetarians? Heat waves and diet shifts in tadpoles. *Ecology*, 97(11), 2964-
941 2974. doi: 10.1002/ecy.1541

942 Chen, X., D'Souza, R., & Hong, S. T. (2013). The role of gut microbiota in the gut-brain axis:
943 current challenges and perspectives. *Protein & Cell*, 4, 403-414. doi: 10.1007/s13238-
944 013-3017-x

945 Chiara, V., & Kim, S. Y. (2023). AnimalTA: A highly flexible and easy-to-use program for
946 tracking and analysing animal movement in different environments. *Methods in Ecology
947 and Evolution* 14: 1699–1707. doi: 10.1111/2041-210X.14115

948 Childers, L., Park, J., Wang, S., Liu, R., Barry, R., Watts, S. A., ... & Bagnat, M. (2025).
949 Protein absorption in the zebrafish gut is regulated by interactions between lysosome rich
950 enterocytes and the microbiome. *eLife* 13:RP100611. doi: 10.7554/eLife.100611

951 Collins, J. P., & Storfer, A. (2003). Global amphibian declines: sorting the hypotheses.
952 *Diversity and Distributions*, 9(2), 89-98. doi: 10.1046/j.1472-4642.2003.00012.x

953 Corbin, K. D., Carnero, E. A., Dirks, B., Igudesman, D., Yi, F., Marcus, A., ... & Smith, S. R.
954 (2023). Host-diet-gut microbiome interactions influence human energy balance: a
955 randomized clinical trial. *Nature Communications*, 14(1), 3161. doi: 10.1038/s41467-
956 023-38778-x

957 Croll, S. L., & Watts, S. A. (2004). The effect of temperature on feed consumption and
958 nutrient absorption in *Procambarus clarkii* and *Procambarus zonangulus*. *Journal of the
959 World Aquaculture Society*, 35(4), 478-488. doi: 10.1111/j.1749-7345.2004.tb00113.x

960 Devries, Z. C. & Appel, A. G. (2014). Effects of temperature on nutrient self-selection in the
961 silverfish *Lepisma saccharina*. *Physiological Entomology* 39, 217–221. doi:
962 10.1111/phen.12064

963 Dinan, T. G., Stilling, R. M., Stanton, C., & Cryan, J. F. (2015). Collective unconscious: how
964 gut microbes shape human behavior. *Journal of Psychiatric Research*, 63, 1-9. doi:
965 10.1016/j.jpsychires.2015.02.021

966 Dittrich, C., Rodríguez, A., Segev, O., Drakulić, S., Feldhaar, H., Vences, M., & Rödel, M. O.
967 (2018). Temporal migration patterns and mating tactics influence size-assortative mating
968 in *Rana temporaria*. *Behavioral Ecology*, 29(2), 418-428. doi:10.1093/beheco/arx188

969 Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M., ... &
970 Langille, M. G. (2020). PICRUSt2 for prediction of metagenome functions. *Nature Biotechnology*, 38(6), 685-688. doi: 10.1038/s41587-020-0548-6

971 Duarte, H., Tejedo, M., Katzenberger, M., Marangoni, F., Baldo, D., Beltrán, J. F., ... &
972 Gonzalez-Voyer, A. (2012). Can amphibians take the heat? Vulnerability to climate
973 warming in subtropical and temperate larval amphibian communities. *Global Change Biology*, 18(2), 412-421. doi: 10.1111/j.1365-2486.2011.02518.x

974 Eterovick, P. C., Mendes, I. S., Kloh, J. S., Pinheiro, L. T., Václav, A. B. H. P., Santos, T., &
975 Gontijo, A. S. B. (2018). Tadpoles respond to background colour under threat. *Scientific Reports*, 8(1), 4085. doi: 10.1038/s41598-018-22315-8

976 Eterovick, P. C., Kloh, J. S., Figueiredo, C. C., Viana, P. I. M., Goulart, M., Milan, D. T., ... &
977 Vences, M. (2020). Background choice and immobility as context dependent tadpole
978 responses to perceived predation risk. *Scientific Reports*, 10(1), 13577. doi:
982 10.1038/s41598-020-70274-w

983 Eterovick, P. C., Schmidt, R., Sabino-Pinto, J., Yang, C., Künzel, S., & Ruthsatz, K. (2024).
984 The microbiome at the interface between environmental stress and animal health: an
985 example from the most threatened vertebrate group. *Proceedings of the Royal Society B*,
986 291(2031), 20240917. doi:10.1038/s41598-018-22315-8

987 Fishman, A., Tao, Y., & Wood, T. K. (2004). Toluene 3-monooxygenase of *Ralstonia pickettii*
988 PKO1 is a para-hydroxylating enzyme. *Journal of Bacteriology*, 186(10), 3117-3123. doi:
989 10.1128/jb.186.10.3117-3123.2004

990 Florkowski, M. R., & Yorzinski, J. L. (2023). Gut microbiome diversity and composition is
991 associated with exploratory behavior in a wild-caught songbird. *Animal Microbiome*,
992 5(1), 8. doi: 10.1186/s42523-023-00227-x

993 Fontaine, S. S., & Kohl, K. D. (2023). The microbiome buffers tadpole hosts from heat stress:
994 a hologenomic approach to understand host–microbe interactions under warming. *Journal
995 of Experimental Biology*, 226(1), jeb245191. doi:10.1242/jeb.245191

996 Fontaine, S. S., Mineo, P. M., & Kohl, K. D. (2022). Experimental manipulation of microbiota
997 reduces host thermal tolerance and fitness under heat stress in a vertebrate ectotherm.
998 *Nature Ecology & Evolution*, 6(4), 405-417. doi: 10.1038/s41559-022-01686-2

999 Glos, J., Ruthsatz, K., Schröder, D., & Riemann, J. C. (2020). Food source determines stable
1000 isotope discrimination factors ΔN and ΔC in tadpoles. *Amphibia-Reptilia*, 41(4): 501-
1001 507. doi:10.1163/15685381-bja10020

1002 González-Bergonzoni, I., Meerhoff, M., Davidson, T. A., Teixeira-de Mello, F., Baattrup-
1003 Pedersen, A., & Jeppesen, E. (2012). Meta-analysis shows a consistent and strong
1004 latitudinal pattern in fish omnivory across ecosystems. *Ecosystems*, 15, 492-503. doi:
1005 10.1007/s10021-012-9524-4

1006 Gosner, K.L., 1960. A simplified table for staging anuran embryos and larvae with notes on
1007 identification. *Herpetologica* 16: 183–190.

1008 Hardison, E. A., & Eliason, E. J. (2024). Diet effects on ectotherm thermal performance.
1009 *Biological Reviews*, 99(4), 1537-1555. doi: 10.1111/brv.13081

1010 Hayes, T. B., Falso, P., Gallipeau, S., & Stice, M. (2010). The cause of global amphibian
1011 declines: a developmental endocrinologist's perspective. *Journal of Experimental
1012 Biology*, 213(6), 921-933. doi: 10.1242/jeb.040865

1013 Hazel, J. R. (1995). Thermal adaptation in biological membranes: is homeoviscous adaptation

1014 the explanation?. *Annual Review of Physiology*, 57(1), 19-42.

1015 Hébert, M., Versace, E., & Vallortigara, G. (2019). Inexperienced preys know when to flee or
1016 to freeze in front of a threat. *Proceedings of the National Academy of Sciences*, 116(46),
1017 22918-22920. doi: 10.1073/pnas.191550411

1018 Henry, L. P., Bruijning, M., Forsberg, S. K., & Ayroles, J. F. (2021). The microbiome extends
1019 host evolutionary potential. *Nature Communications*, 12(1), 5141. doi: 10.1038/s41467-
1020 021-25315-x

1021 Hird, S. M. (2017). Evolutionary biology needs wild microbiomes. *Front Microbiol* 8: 725.
1022 doi: 10.3389/fmicb.2017.00725

1023 Huda, M. N., Salvador, A. C., Barrington, W. T., Gacasan, C. A., D'Souza, E. M., Deus
1024 Ramirez, L., ... & Bennett, B. J. (2022). Gut microbiota and host genetics modulate the
1025 effect of diverse diet patterns on metabolic health. *Frontiers in Nutrition*, 9, 896348. doi:
1026 10.3389/fnut.2022.896348

1027 IPCC (2023). Summary for Policymakers. In: Climate Change 2023: Synthesis Report.
1028 Contribution of Working Groups I, II and III to the Sixth Assessment Report of the
1029 Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero
1030 (eds.)]. IPCC, Geneva, Switzerland, pp. 1-34. doi: 10.59327/IPCC/AR6-
1031 9789291691647.001

1032 Karp, P. D., Billington, R., Caspi, R., Fulcher, C. A., Latendresse, M., Kothari, A., Keseler, I.
1033 M., Krummenacker, M., Midford, P. E., Ong, Q., Ong, W. K., Paley, S. M., & Subhraveti,
1034 P. (2019). The BioCyc collection of microbial genomes and metabolic pathways.
1035 *Briefings in Bioinformatics*, 20(4), 1085–1093. doi: 10.1093/bib/bbx085

1036 Kloh, J. S., Figueiredo, C. C., Calaça, P., & Eterovick, P. C. (2024). Pollen as food: effects of
1037 consumption on tadpole growth, development, and mobility. *Hydrobiologia*, 851(8),
1038 2071-2080. doi: 10.1007/s10750-023-05439-5

1039 Kupferberg, S. J. (1997). The role of larval diet in anuran metamorphosis. *American Zoologist*
1040 37, 146–159.

1041 Legrand, T. P., Wynne, J. W., Weyrich, L. S., & Oxley, A. P. (2020). A microbial sea of
1042 possibilities: current knowledge and prospects for an improved understanding of the fish
1043 microbiome. *Reviews in Aquaculture*, 12(2), 1101-1134. doi: 10.1111/raq.12375

1044 Lenth, R. (2017). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package
1045 version 0.9.1. <https://CRAN.R-project.org/package=emmeans>

1046 Llobat, L., & Marín-García, P. J. (2022). Application of protein nutrition in natural ecosystem
1047 management for European rabbit (*Oryctolagus cuniculus*) conservation. *Biodiversity*
1048 and Conservation, 31(5), 1435-1444. doi: 10.1007/s10531-022-02426-5

1049 Louca, S., Polz, M. F., Mazel, F., Albright, M. B., Huber, J. A., O'Connor, M. I., ... & Parfrey,
1050 L. W. (2018). Function and functional redundancy in microbial systems. *Nature Ecology
& Evolution*, 2(6), 936-943. doi: 10.1038/s41559-018-0519-1

1052 Luedtke, J. A., Chanson, J., Neam, K., Hobin, L., Maciel, A. O., Catenazzi, A., ... & Stuart, S.
1053 N. (2023). Ongoing declines for the world's amphibians in the face of emerging threats.
1054 *Nature*, 622(7982), 308–314. <https://doi.org/10.1038/s41586-023-06578-4>

1055 Lynch, J. B., & Hsiao, E. Y. (2019). Microbiomes as sources of emergent host phenotypes.
1056 *Science*, 365(6460), 1405-1409. *Science* 365: 1405–1409. doi: 10.1126/science.aay0240

1057 Manning, D. W., & Sullivan, S. M. P. (2021). Conservation across aquatic-terrestrial
1058 boundaries: Linking continental-scale water quality to emergent aquatic insects and

1059 declining aerial insectivorous birds. *Frontiers in Ecology and Evolution*, 9, 633160. doi:
1060 10.3389/fevo.2021.633160

1061 McCallum, M. L. 2015. Vertebrate biodiversity losses point to a sixth mass extinction.
1062 *Biodiversity and Conservation* 24, 2497–2519. doi: 10.1007/s10531-015-0940-6

1063 McDiarmid, R. W., & Altig, R. (Eds.). (1999). *Tadpoles: the biology of anuran larvae*.
1064 University of Chicago Press.

1065 McFall-Ngai, M., Hadfield, M. G., Bosch, T. C., Carey, H. V., Domazet-Lošo, T., Douglas, A.
1066 E., ... & Wernegreen, J. J. (2013). Animals in a bacterial world, a new imperative for the
1067 life sciences. *Proceedings of the National Academy of Sciences*, 110(9), 3229-3236. doi:
1068 10.1073/pnas.1218525110

1069 McMurdie, P. J., & Holmes, S. (2013). phyloseq: an R package for reproducible interactive
1070 analysis and graphics of microbiome census data. *PloS one*, 8(4), e61217. doi:
1071 10.1371/journal.pone.0061217

1072 Mekuchi, M., Asakura, T., Sakata, K., Yamaguchi, T., Teruya, K., & Kikuchi, J. (2018).
1073 Intestinal microbiota composition is altered according to nutritional biorhythms in the
1074 leopard coral grouper (*Plectropomus leopardus*). *PloS one*, 13(6), e0197256. doi:
1075 10.1371/journal.pone.0197256

1076 Melo, G. R., Solé, M., & Eterovick, P. C. (2021). Invisible or fearless: tadpole response to
1077 predator cues depends on color. *Ethology Ecology & Evolution*, 33(2), 99-107. doi:
1078 10.1080/03949370.2020.1830859

1079 Miri, S., Yeo, J., Abubaker, S., & Hammami, R. (2023). Neuromicrobiology, an emerging
1080 neurometabolic facet of the gut microbiome?. *Frontiers in Microbiology*, 14, 1098412.
1081 doi: 10.3389/fmicb.2023.1098412

1082 Moura, S., Kloh, J. S., Figueiredo, C. C., & Eterovick, P. C. (2023). An empty stomach is not a
1083 good adviser: avoiding toxic Cyanobacteria can compromise tadpole antipredator
1084 defenses. *Amphibia-Reptilia*, 44(4), 457-465. doi: 10.1163/15685381-bja10153

1085 Newsome, S. D., Fogel, M. L., Kelly, L., & del Rio, C. M. (2011). Contributions of direct
1086 incorporation from diet and microbial amino acids to protein synthesis in Nile tilapia.
1087 *Functional Ecology*, 25(5), 1051-1062. doi: 10.1111/j.1365-2435.2011.01866.x

1088 Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'hara, R. B., ... &
1089 Wagner, H. (2013). Community ecology package. R package version, 2(0), 321-326.

1090 Park, J. K., & Do, Y. (2024). Combined effect of seasons and life history in an anuran
1091 strengthens the response and relationship between their physiology and gut microbiota.
1092 *Scientific Reports*, 14(1), 10137. doi: 10.1038/s41598-024-60105-7

1093 Peig, J., & Green, A. J. (2009). New perspectives for estimating body condition from
1094 mass/length data: the scaled mass index as an alternative method. *Oikos*, 118(12), 1883-
1095 1891. doi:10.1111/j.1600-0706.2009.17643.x

1096 Peig, J., & Green, A. J. (2010). The paradigm of body condition: a critical reappraisal of
1097 current methods based on mass and length. *Functional Ecology*, 24(6), 1323-1332.
1098 doi:10.1111/j.1365-2435.2010.01751.x

1099 Perry, W. B., Lindsay, E., Payne, C. J., Brodie, C., & Kazlauskaitė, R. (2020). The role of the
1100 gut microbiome in sustainable teleost aquaculture. *Proceedings of the Royal Society B*,
1101 287(1926), 20200184. doi: 10.1098/rspb.2020.0184

1102 Preston, D. B., & Forstner, M. R. (2015). Houston Toad (*Bufo (Anaxyrus) houstonensis*)
1103 tadpoles decrease their activity in response to chemical cues produced from the predation

1104 of conspecifics and congeneric (*Bufo (Incilius) nebulifer*) tadpoles. *Journal of*
1105 *Herpetology*, 49(2), 170-175. doi: 10.1670/13-059

1106 R Core Team. 2024. R: A language and Environment for Statistical Computing. R Foundation
1107 for Statistical Computing. Version 4.4.2, Vienna, Austria. <https://cran.r-project.org/>

1108 Relyea, R. A. (2001). Morphological and behavioral plasticity of larval anurans in response to
1109 different predators. *Ecology*, 82(2), 523-540. doi: 10.1890/0012-
1110 9658(2001)082[0523:MABPOL]2.0.CO;2

1111 Ruddiman, W. F. (2013). The anthropocene. *Annual Review of Earth and Planetary Sciences*,
1112 41(1), 45-68. doi: 10.1146/annurev-earth-050212-123944

1113 Ruthsatz, K., Dausmann, K. H., Paesler, K., Babos, P., Sabatino, N. M., Peck, M. A., & Glos,
1114 J. (2020). Shifts in sensitivity of amphibian metamorphosis to endocrine disruption: the
1115 common frog (*Rana temporaria*) as a case study. *Conservation Physiology*, 8(1),
1116 coaa100. doi:10.1093/conphys/coaa100

1117 Ruthsatz, K., Giertz, L. M., Schröder, D., & Glos, J. (2019). Chemical composition of food
1118 induces plasticity in digestive morphology in larvae of *Rana temporaria*. *Biology Open*,
1119 8(12), bio048041. doi: 10.1242/bio.048041

1120 Sampson, T. R., & Mazmanian, S. K. (2015). Control of brain development, function, and
1121 behavior by the microbiome. *Cell Host & Microbe*, 17(5), 565-576. doi:
1122 10.1016/j.chom.2015.04.011

1123 Schmitz, O. J., Rosenblatt, A. E. & Smylie, M. (2016). Temperature dependence of predation
1124 stress and the nutritional ecology of a generalist herbivore. *Ecology* 97, 3119–3130. doi:
1125 10.1002/ecy.1524

1126 Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower,
1127 C. (2011). Metagenomic biomarker discovery and explanation. *Genome Biology*, 12, 1-
1128 18. doi: 10.1186/gb-2011-12-6-r60

1129 Seifert, L. I., de Castro, F., Marquart, A., Gaedke, U., Weithoff, G., & Vos, M. (2014). Heated
1130 relations: temperature-mediated shifts in consumption across trophic levels. *PLoS One*,
1131 9(5), e95046. doi:10.1371/journal.pone.0095046

1132 Semova, I., Carten, J. D., Stombaugh, J., Mackey, L. C., Knight, R., Farber, S. A., & Rawls, J.
1133 F. (2012). Microbiota regulate intestinal absorption and metabolism of fatty acids in the
1134 zebrafish. *Cell Host & Microbe*, 12(3), 277-288. doi: 10.1016/j.chom.2012.08.003

1135 Sharon, G., Segal, D., Ringo, J. M., Hefetz, A., Zilber-Rosenberg, I., & Rosenberg, E. (2010).
1136 Commensal bacteria play a role in mating preference of *Drosophila melanogaster*.
1137 *Proceedings of the National Academy of Sciences*, 107(46), 20051-20056. doi:
1138 10.1073/pnas.1009906107

1139 Silva, Y. P., Bernardi, A., & Fronza, R. L. (2020). The role of short-chain fatty acids from gut
1140 microbiota in gut-brain communication. *Frontiers in Endocrinology*, 11, 508738. doi:
1141 10.3389/fendo.2020.00025

1142 Singmann H, Kellen D. (2019). An introduction to mixed models for experimental
1143 psychology. In *New methods in cognitive psychology* (eds DH Spieler, E Schumacher).
1144 Hove, UK: Psychology Press. doi:10.4324/9780429318405-2

1145 Singmann H, Bolker B, Westfall J, Aust F, Ben-Shachar M (2024). *_afex: Analysis of*
1146 *Factorial Experiments*. doi: 10.32614/CRAN.package.afex
1147 <<https://doi.org/10.32614/CRAN.package.afex>>, R package version 1.4-1,
1148 <https://CRAN.R-project.org/package=afex>

1149 Staudinger, M. D., Hanlon, R. T., & Juanes, F. (2011). Primary and secondary defences of
1150 squid to cruising and ambush fish predators: variable tactics and their survival value.
1151 *Animal Behaviour*, 81(3), 585-594. doi:10.1016/j.anbehav.2010.12.002

1152 Swanson, H. K., Lysy, M., Power, M., Stasko, A. D., Johnson, J. D., & Reist, J. D. (2015). A
1153 new probabilistic method for quantifying n-dimensional ecological niches and niche
1154 overlap. *Ecology*, 96(2), 318-324. doi: 10.1890/14-0235.1

1155 Teplitsky, C., Plénet, S., Léna, J. P., Mermet, N., Malet, E., & Joly, P. (2005). Escape
1156 behaviour and ultimate causes of specific induced defences in an anuran tadpole.
1157 *Journal of Evolutionary Biology*, 18(1), 180-190. doi: 10.1111/j.1420-
1158 9101.2004.00790.x

1159 Trip, E. D. L., Clements, K. D., Raubenheimer, D., & Choat, J. H. (2014). Temperature-
1160 related variation in growth rate, size, maturation and life span in a marine herbivorous
1161 fish over a latitudinal gradient. *Journal of Animal Ecology*, 83(4), 866-875. doi:
1162 10.1111/1365-2656.12183

1163 Tseng, M., Di Filippo, C. M., Fung, M., Kim, J. O., Forster, I. P., & Zhou, Y. (2021).
1164 Cascading effects of algal warming in a freshwater community. *Functional Ecology*,
1165 35(4), 920-929. doi: 10.1111/1365-2435.13752

1166 Tuddenham, S., & Sears, C. L. (2015). The intestinal microbiome and health. *Current Opinion*
1167 in *Infectious Diseases*, 28(5), 464-470. doi: 10.1097/QCO.0000000000000196

1168 Vejříková, I., Vejřík, L., Syväranta, J., Kiljunen, M., Čech, M., Blabolil, P., ... & Peterka, J.
1169 (2016). Distribution of herbivorous fish is frozen by low temperature. *Scientific*
1170 *Reports*, 6(1), 39600. doi: 10.1038/srep39600

1171 Videvall, E., Burraco, P., & Orizaola, G. (2023). Impact of ionizing radiation on the
1172 environmental microbiomes of Chernobyl wetlands. *Environmental Pollution*, 330,
1173 121774. doi: 10.1016/j.envpol.2023.121774

1174 Wake, D. B., & Vredenburg, V. T. (2008). Are we in the midst of the sixth mass extinction? A
1175 view from the world of amphibians. *Proceedings of the National Academy of Sciences*,
1176 105(supplement_1), 11466-11473. doi: 10.1073/pnas.0801921105

1177 Wang, W., Zhou, R., He, L., Liu, S., Zhou, J., Qi, L., ... & Hu, D. (2015). The progress in
1178 nutrition research of musk deer: Implication for conservation. *Applied Animal*
1179 *Behaviour Science*, 172, 1-8. doi: 10.1016/j.applanim.2015.09.006

1180 Wassersug, R. J. (1989). Locomotion in amphibian larvae (or "Why aren't tadpoles built like
1181 fishes?"). *American Zoologist*, 65-84.

1182 Wells, K. D. (2019). *The ecology and behavior of amphibians*. University of Chicago press.

1183 Wong, A. C. N., Holmes, A., Ponton, F., Lihoreau, M., Wilson, K., Raubenheimer, D., &
1184 Simpson, S. J. (2015). Behavioral microbiomics: a multi-dimensional approach to
1185 microbial influence on behavior. *Frontiers in Microbiology*, 6, 1359. doi:
1186 10.3389/fmicb.2015.01359

1187 Yan, K., Guo, F., Kainz, M. J., Li, F., Gao, W., Bunn, S. E., & Zhang, Y. (2024). The
1188 importance of omega-3 polyunsaturated fatty acids as high-quality food in freshwater
1189 ecosystems with implications of global change. *Biological Reviews*, 99(1), 200-218.
1190 doi: 10.1111/brv.13017

1191 Yang, C., Mai, J., Cao, X., Burberry, A., Cominelli, F., & Zhang, L. (2023). *ggpicrust2*: an R
1192 package for PICRUSt2 predicted functional profile analysis and visualization.
1193 *Bioinformatics*, 39(8), btad470. doi:10.1093/bioinformatics/btad470

1194 Ye, L., Mueller, O., Bagwell, J., Bagnat, M., Liddle, R. A., & Rawls, J. F. (2019). High fat diet
1195 induces microbiota-dependent silencing of enteroendocrine cells. *Elife*, 8, e48479. doi:
1196 10.7554/eLife.48479.

1197 Zhang, P., van Leeuwen, C. H. A., Bogers, D., Poelma, M., Xu, J. & Bakker, E. S. (2020).
1198 Ectothermic omnivores increase herbivory in response to rising temperature. *Oikos* 129,
1199 1–12. doi: 10.1111/oik.07082

1200 Zhou, C., Yang, S., Ka, W., Gao, P., Li, Y., Long, R., & Wang, J. (2022). Association of gut
1201 microbiota with metabolism in rainbow trout under acute heat stress. *Frontiers in*
1202 *Microbiology*, 13, 846336. doi: 10.3389/fmicb.2022.846336

1203

1204

1205

1206 **Supplementary material**

1207

1208 **Animal husbandry and experimental setup**

1209 The transport of egg clutches took approximately 30 minutes. Upon arrival, clutches were
1210 carefully transferred to separate trays containing about 10 L of water from the original habitat
1211 and equipped with aerators. Larvae hatched on 2 April 2023. Both clutches and newly hatched
1212 larvae were maintained in a large room with windows along two walls, which were kept open
1213 to expose the animals as closely as possible to natural light and temperature conditions.

1214 Approximately one third of the water was replaced every two days with fresh water from the
1215 original habitat. This replacement water was collected every three days and stored at 4 °C in
1216 buckets. Before use, buckets were placed in the same room as the animals until the water
1217 reached the same temperature as that in the rearing containers (14 ± 0.2 °C).

1218 Nine days after hatching, larvae reached developmental stage 25 (*sensu* Gosner, 1960),
1219 the point at which they deplete yolk reserves and begin feeding independently. At this stage,
1220 120 larvae were placed individually into 1.2-L buckets containing 1 L of filtered, rested tap
1221 water and kept under a 14:10 h light:dark cycle. Larvae were randomly assigned to three food
1222 treatments (Fig. 1). Buckets for the 18 °C treatment were placed in a climate chamber (Kälte-
1223 Klimatechnik-Frauenstein GmbH, Germany). For the 24.5 °C treatment, buckets were placed
1224 inside a water bath housed within large plastic boxes (Surplus Systems Eurobox, 60 × 40 × 22
1225 cm) in a different room, with temperature regulated by two adjustable heating elements (JBL
1226 PROTEMP S 25, 25 W, JBL GmbH & Co. KG, Germany). Water temperature in the buckets
1227 was gradually increased at a rate of 0.5 °C per hour until the target temperature was reached.

1228 Diet quality was classified based on component diversity, protein and fat levels, and
1229 caloric content. The organic grass powder contains only one plant species and has lower
1230 caloric, protein, and fat content, whereas the fish food contains a wide range of ingredients
1231 (algae, zooplankton, plant and animal products) and is higher in calories, protein, and fat.

1232 The powders used in all three diets have similar texture and solubility. They remain
1233 suspended in water for a short time before settling, ensuring that the feeding mechanisms of
1234 frog larvae - filtering and scraping surfaces - provide equal access to both powders when
1235 mixed at a 50:50 ratio. All diets were provided *ad libitum*. Buckets were cleaned at least every
1236 three days by completely replacing the water with rested tap water at the same temperature,
1237 during which each larva was briefly (<1 min) transferred to a sieve placed in a separate bucket
1238 of clean water.

1239 Buckets assigned to the heat-wave treatment were placed in a water bath inside plastic
1240 boxes (60 × 40 × 22 cm) containing two adjustable heating elements. The setup was housed in
1241 a warmer room (29 °C air temperature). Prior to the experiment, the heating system was
1242 calibrated to ensure accurate temperature ramping, and water temperatures were monitored
1243 hourly. Water temperature in the buckets was increased at a rate of 0.5 °C per hour until
1244 reaching 28 °C. Because ramping protocols were identical and final temperatures (i.e.,
1245 original rearing temperatures) differed, larvae reared at 18 °C required more time to reach 28
1246 °C and return (20 h total) than larvae reared at 24.5 °C (7 h total). Buckets assigned to the

1247 control treatment (no heat wave) were also moved and returned to their original positions
1248 during treatment allocation so that handling was standardized across experimental groups.

1249

1250 **Methods for isotope analyses**

1251 Larval tails were dried in an oven at 60 °C for at least 24 hours. Subsequently, tail muscle
1252 tissue samples weighing 0.38-0.93 mg (mean = 0.76 mg) were taken in duplicate for each
1253 larva and placed in 4 × 6 mm tin cups (HEKAttech, Germany). The powdered foods
1254 corresponding to the three dietary treatments (NaturaleBio® grass powder, Sera Micron
1255 Nature® fish food, and a 50:50 mixture of both) were also analyzed, with six replicates per
1256 diet.

1257 Samples were combusted in a mass spectrometer (EURO-EA 3000, Euro Vector, Italy)
1258 using BBOT (2,5-Bis-(5-tert-butyl-2-benzoxazolyl)-thiophen; 6.51% N; 72.52% C;
1259 HEKAttech, Germany), KNO₃, and caffeine as standards. Isotope ratios are reported in δ
1260 notation (‰) relative to atmospheric nitrogen (AIR) for $\delta^{15}\text{N}$ and Pee Dee Belemnite (PDB)
1261 for $\delta^{13}\text{C}$, following international reference standards (Fry, 2006).

1262

1263 **Sequence quality filtering, sample depth, and taxonomic assignment**

1264 Paired-end demultiplexed FASTQ files were imported into QIIME2 and denoised using
1265 the q2-deblur algorithm, which applies quality filtering based on Bokulich et al. (2013),
1266 associates erroneous sequences with their true biological sequences, and removes chimeras.
1267 Forward and reverse reads were paired, quality filtered, and trimmed to a high-quality length
1268 (median Illumina Q30), resulting in 250 bp sequences. Of the initial 2,737,481 reads, 148,401
1269 remained after filtering, with sequencing depths between 207 and 5,451 reads per sample. All
1270 negative controls (five extraction and two PCR controls) yielded zero reads after filtering.

1271 A phylogenetic tree was constructed using the Greengenes 16S rRNA backbone tree
1272 (version gg-13-8; McDonald et al., 2012). Taxonomic classification was performed using a
1273 custom-trained classifier built with reference sequences, taxonomy, and animal proximal gut-
1274 specific sequence weights (SILVA release 138.1, 515F/806R) from Kaehler et al. (2019;
1275 <https://github.com/BenKaehler/readytowear>). Positive controls were evaluated separately via
1276 BLAST (NCBI; Sayers et al., 2025) because they do not represent animal gut samples.

1277 Amplicon Sequence Variants (ASVs) represented by fewer than eight reads (~0.005% of
1278 total remaining sequences) were removed to minimize artifacts from amplification errors
1279 (Bokulich et al., 2013). The remaining reads were used to calculate Shannon entropy, which
1280 reached saturation at 556 reads. Samples with fewer than 556 reads (15 samples, one to three
1281 per treatment) were excluded from further analyses.

1282

1283 **References**

1284 Bokulich, N. A., Subramanian, S., Faith, J. J., Gevers, D., Gordon, J. I., Knight, R., ...
1285 Caporaso, J. G. (2013). Quality-filtering vastly improves diversity estimates from

1286 Illumina amplicon sequencing. *Nature Methods*, 10(1), 57-59. doi: 10.1038/nmeth.2276

1287 Fry, B.G. (2006): *Stable Isotope Ecology*. Springer, New York.

1288 Gosner, K.L., 1960. A simplified table for staging anuran embryos and larvae with notes on

1289 identification. *Herpetologica* 16: 183–190.

1290 Kaehler, B. D., Bokulich, N. A., McDonald, D., Knight, R., Caporaso, J. G., & Huttley, G. A.

1291 (2019). Species-level microbial sequence classification is improved by source-

1292 environment information. *Nature Communications* 10: 4643. doi: 10.1038/s41467-019-

1293 12669-6

1294 McDonald, D., Price, M. N., Goodrich, J., Nawrocki, E. P., DeSantis, T. Z., Probst, A., ... &

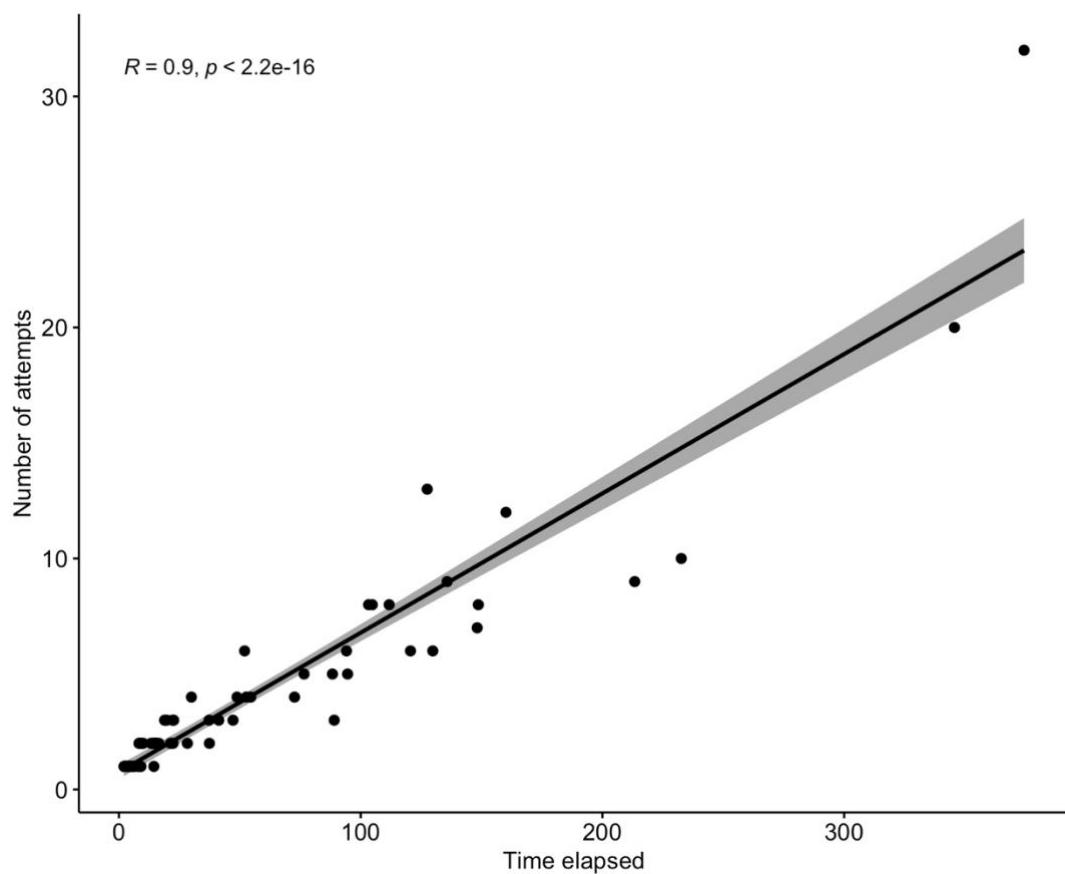
1295 Hugenholtz, P. (2012). An improved Greengenes taxonomy with explicit ranks for

1296 ecological and evolutionary analyses of bacteria and archaea. *The ISME Journal*, 6(3),

1297 610-618. *ISME J.* 6, 610–618. doi: 10.1038/ismej.2011.139

1298 Sayers, E. W., Beck, J., Bolton, E. E., Brister, J. R., Chan, J., Connor, R., ... & Pruitt, K. D.

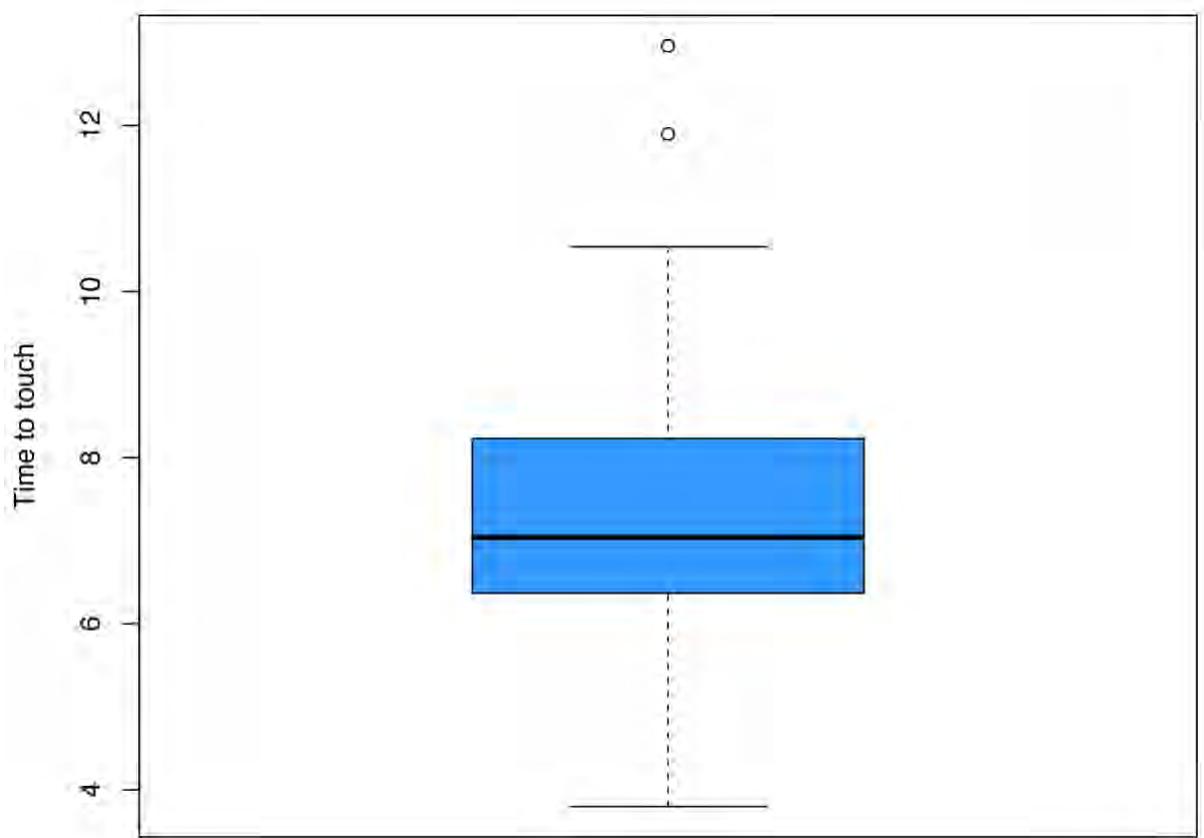
1299 (2025). Database resources of the National Center for Biotechnology Information in


1300 2025. *Nucleic Acids Research*, 53(D1), D20-D29. doi: 10.1093/nar/gkae979

1301

1302

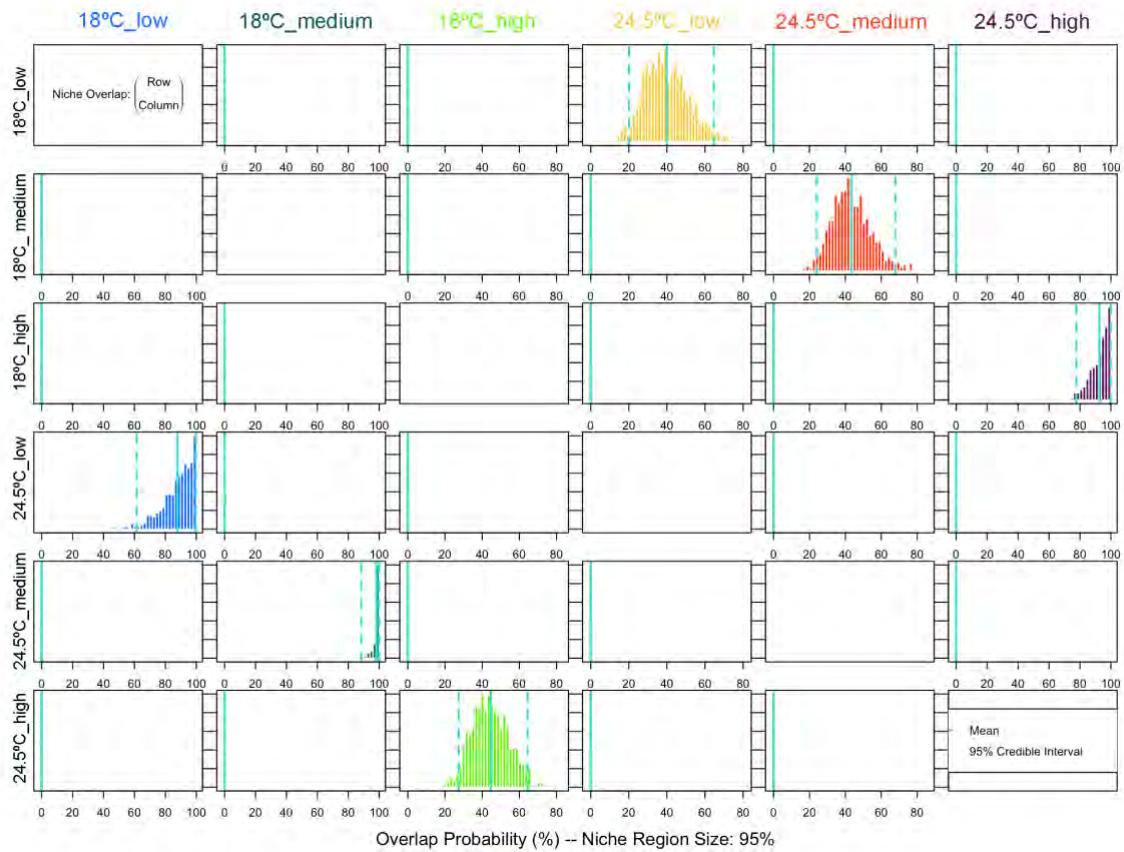
1303 **Supplementary figures**

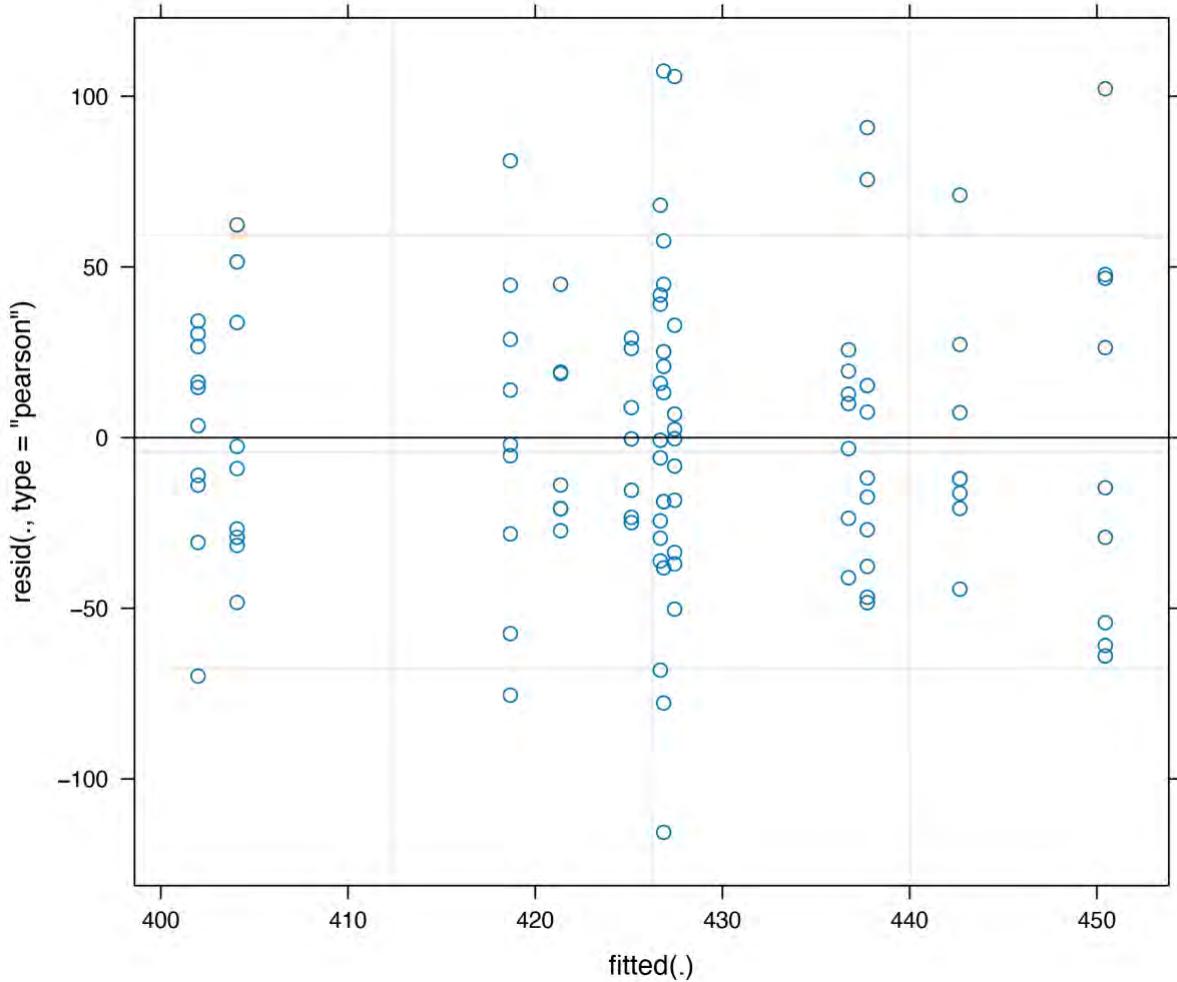

1304

1305

1306 Fig. S1. Correlation between time elapsed from the end of the 3 minutes larvae remained
1307 under the funnel and the actual start of the behavioral trial (when the dragonfly naiad model
1308 touched the water) and number of attempts (number of times the larva had to be repositioned
1309 on the center of the tray). Refer to the section “Behavioral trials” for a detailed description of
1310 escape behavior trials of *Rana temporaria* larvae.

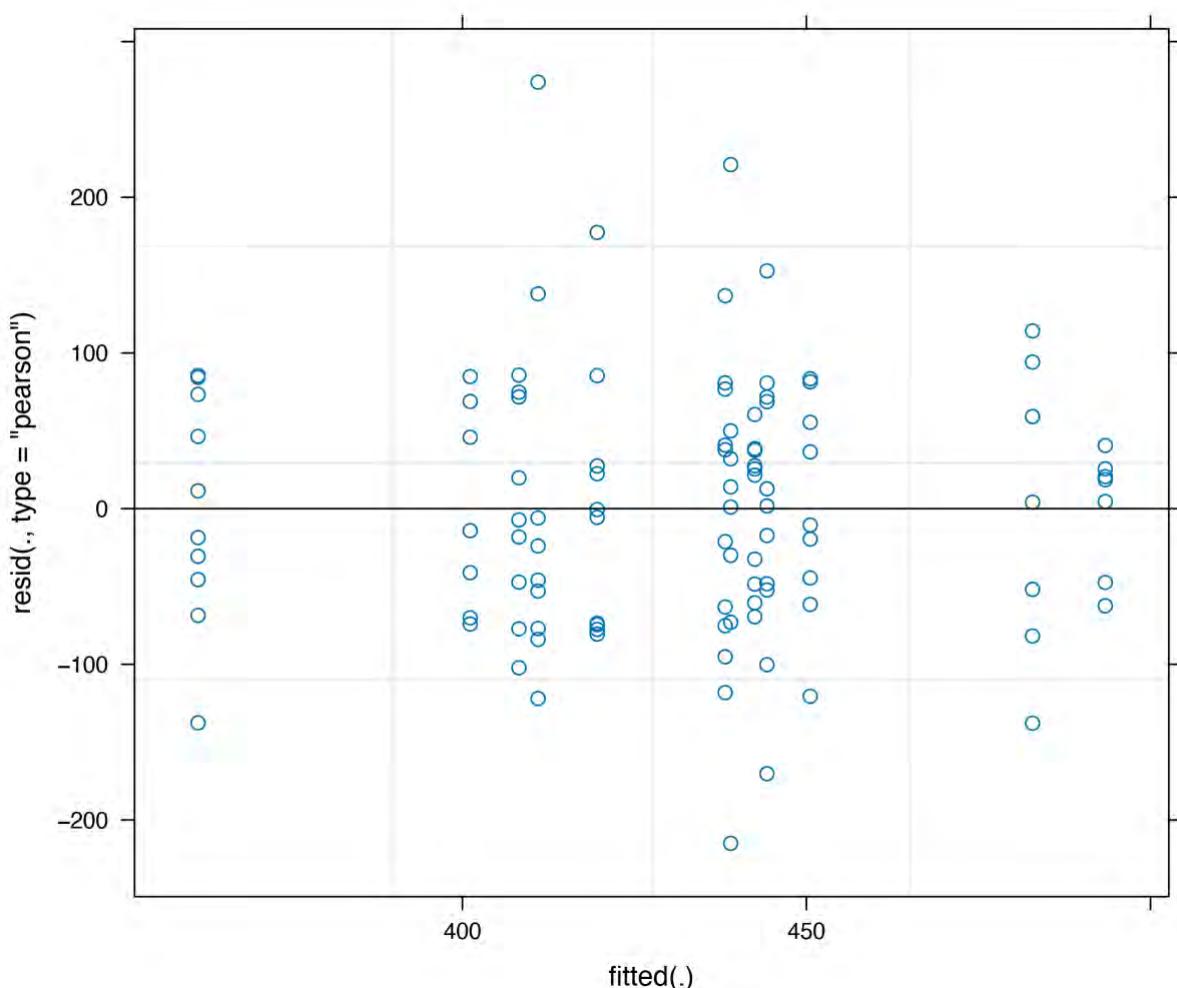
1311


1312

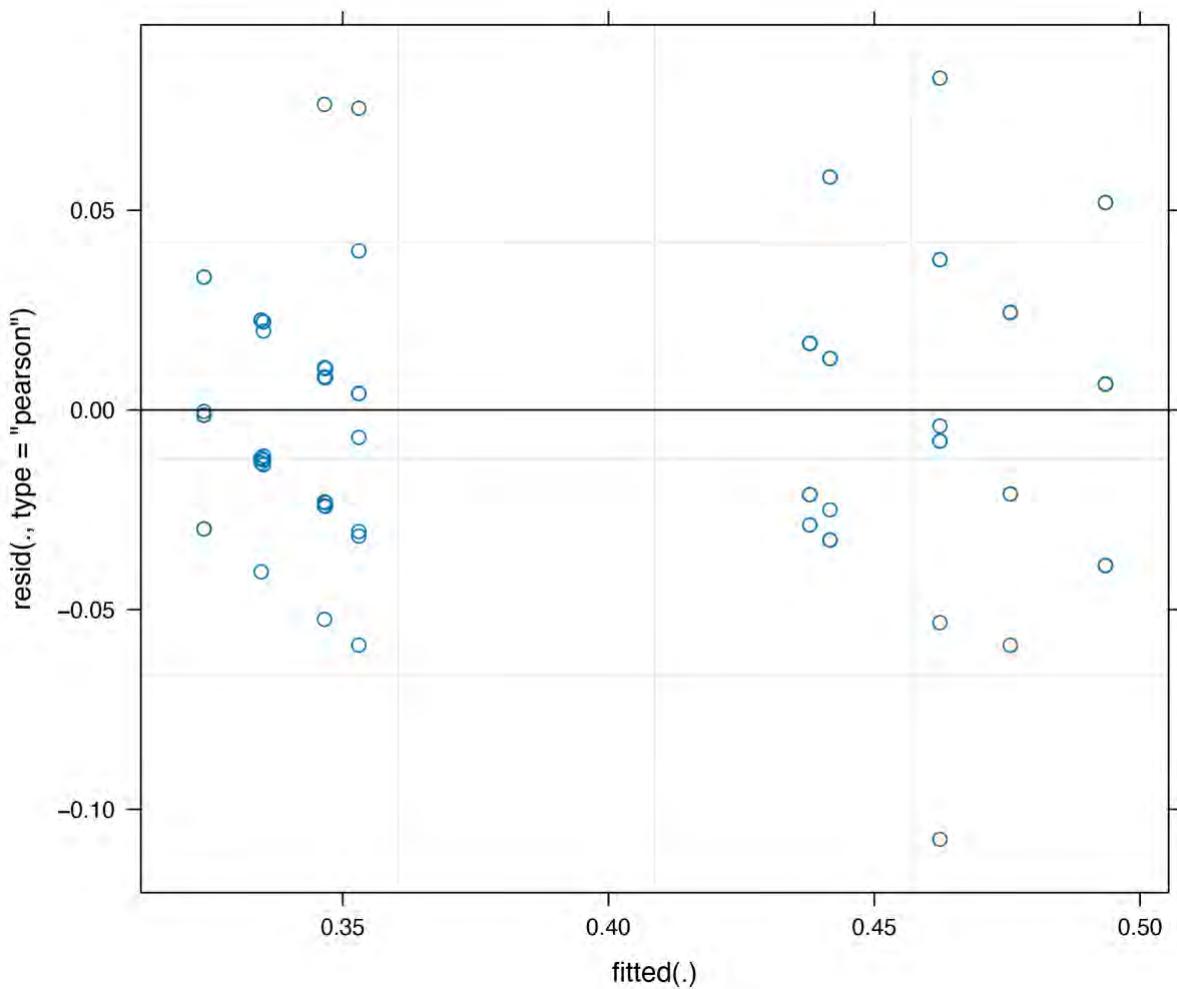

Larvae touched

1313 Fig. S2. *Rana temporaria* larvae were tested for escape behavior to an aversive stimulus
 1314 represented by an approaching transparent plastic pipette filled with 4 ml of water containing
 1315 chemical predator cues to be released and a predator model glued to the top of the pipette. The
 1316 graph shows the time elapsed from the moment the predator model touched the water to the
 1317 moment it touched the larvae (when it happened) in behavioral trials (n = 102 trials). The two
 1318 outliers above were excluded from posterior analyses.

1319

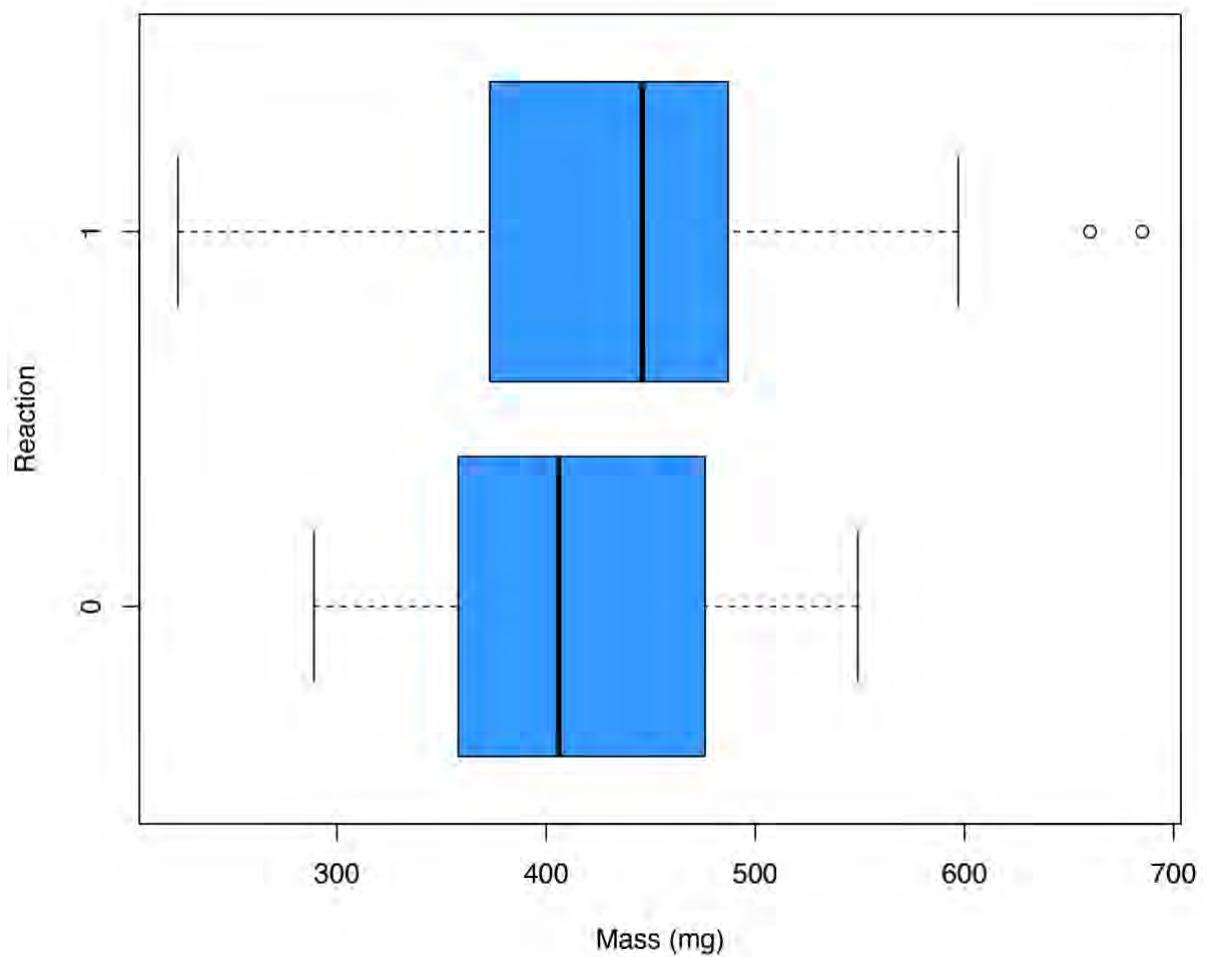

1320

1331
 1332 Fig. S4. Residual distribution of the model testing the effects of food treatment, rearing
 1333 temperature, and exposure or not to a heat wave on body condition (SMI) of *Rana temporaria*
 1334 larvae (see Table 1 for model description).


1335

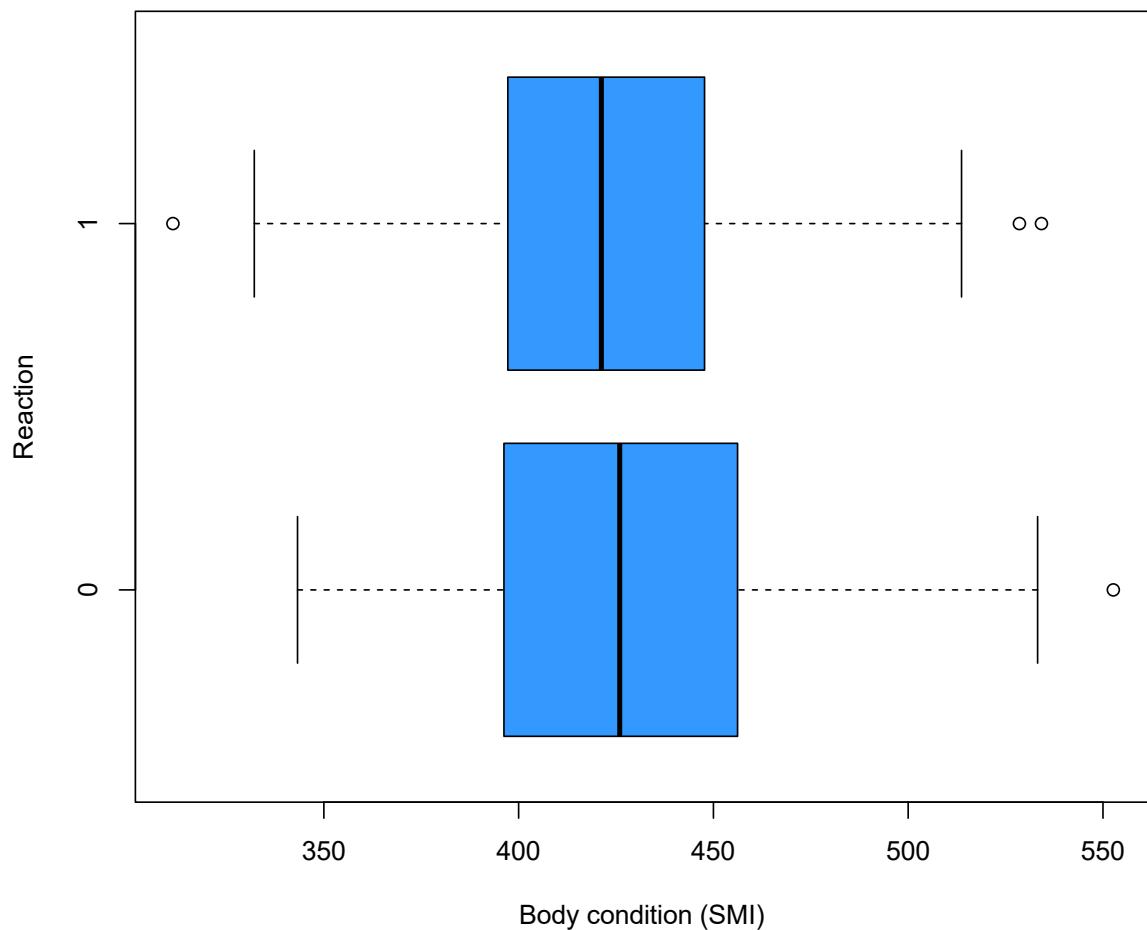
1336

1337 Fig. S5. Residual distribution of the model testing the effects of food treatment, rearing
 1338 temperature, and exposure or not to a heat wave on mass of *Rana temporaria* larvae (see
 1339 Table 1 for model description).


1340

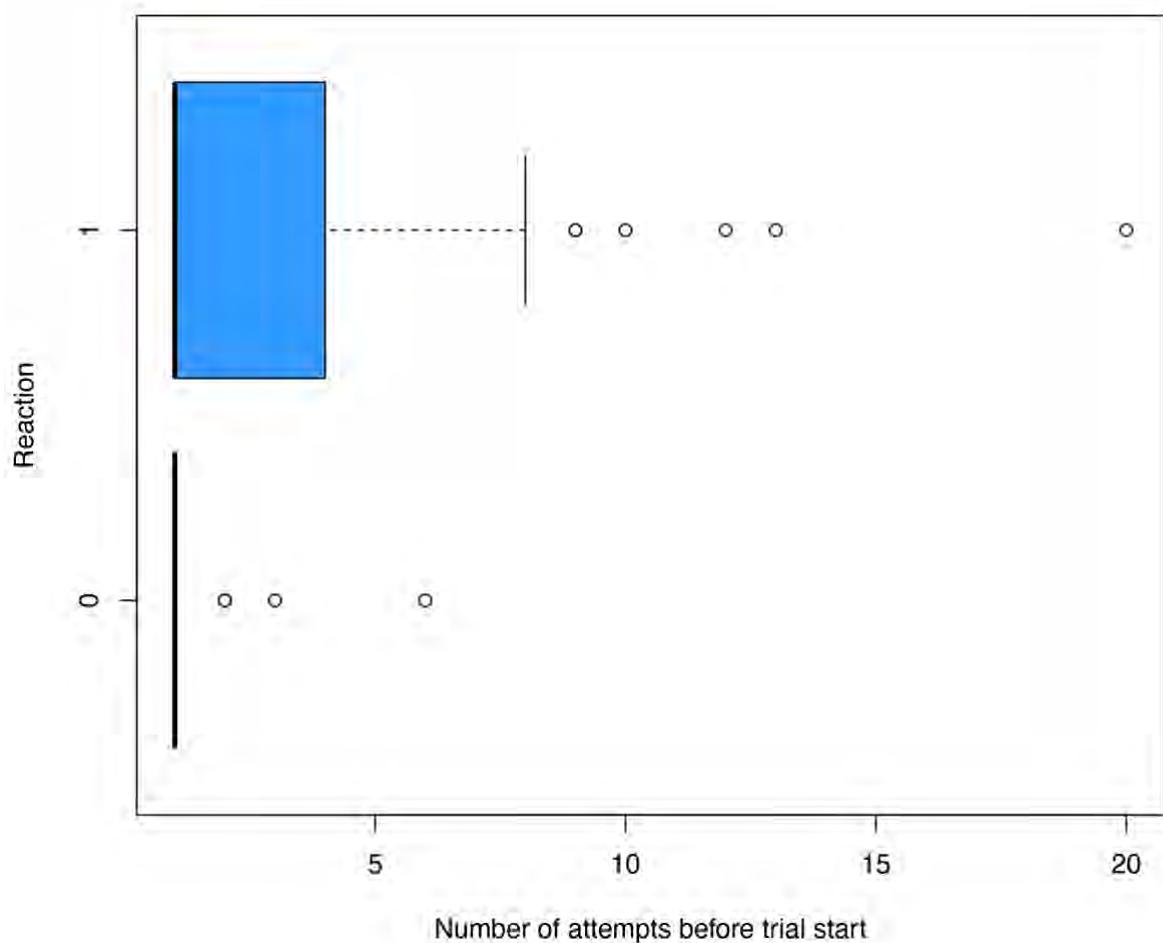
1341

1342 Fig. S6. Residual distribution of the model testing the effects of food treatment, rearing
1343 temperature, and exposure or not to a heat wave on developmental rate of *Rana temporaria*
1344 larvae (see Table 1 for model description).


1345

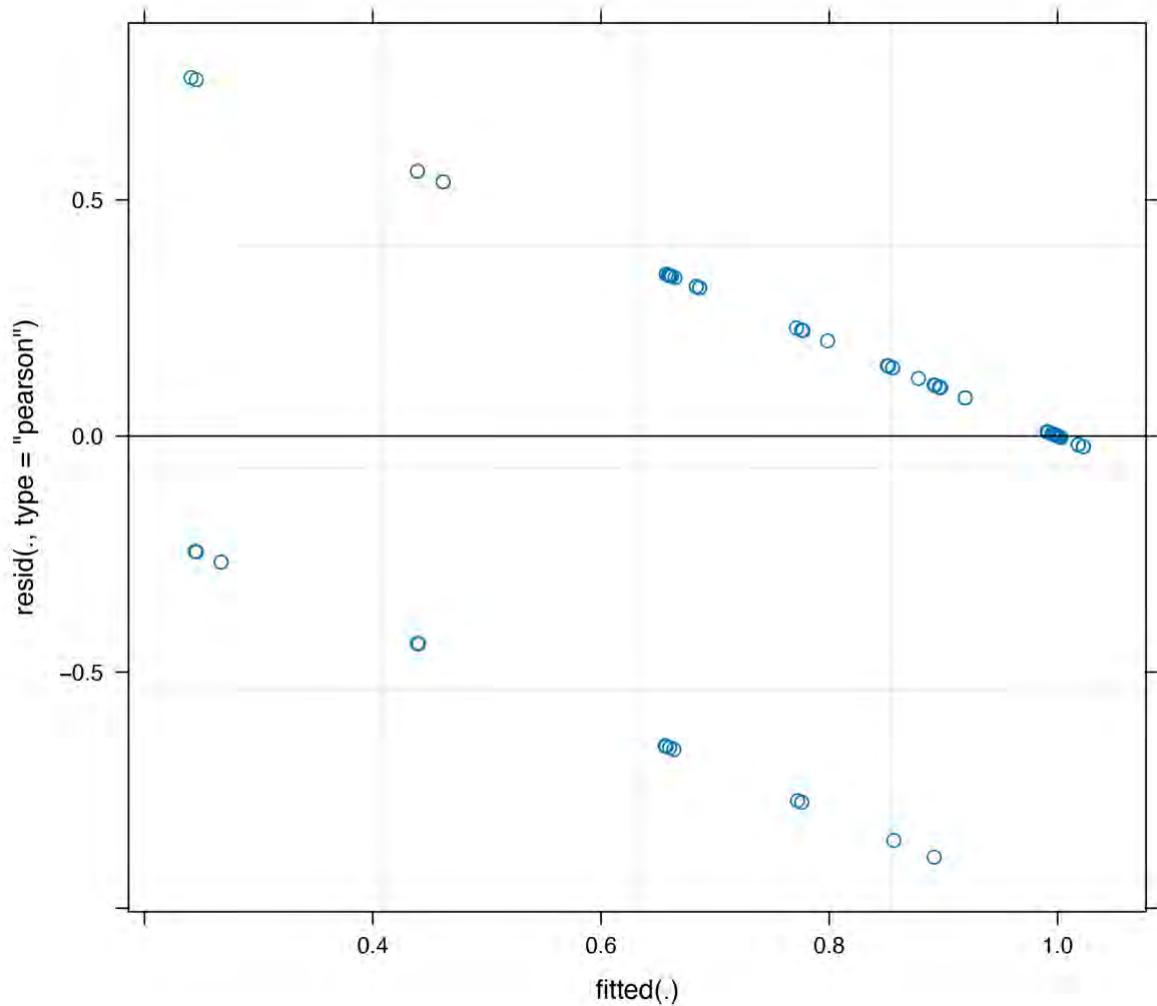
1346

1347 Fig. S7. Mass (mg) of *Rana temporaria* larvae that either reacted to the aversive stimulus
1348 presented in behavioral trials (1) or not (0). Wilcoxon-test: $W = 711.5$, $p = 0.252$.


1349

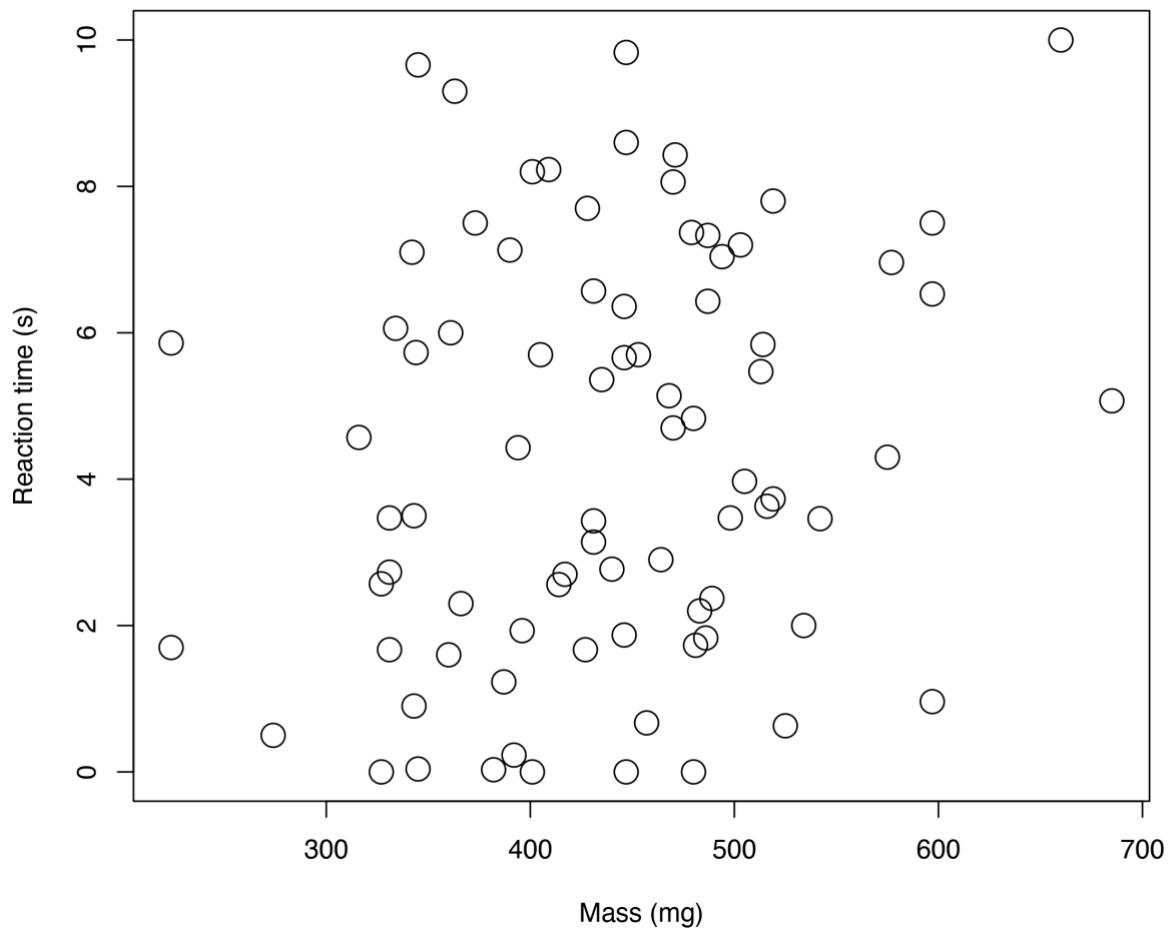
1350

1351 Fig. S8. Body condition (SMI) of *Rana temporaria* larvae that either reacted to the aversive
 1352 stimulus presented in behavioral trials (1) or not (0). Wilcoxon-test: $W = 936$, $p = 0.482$.

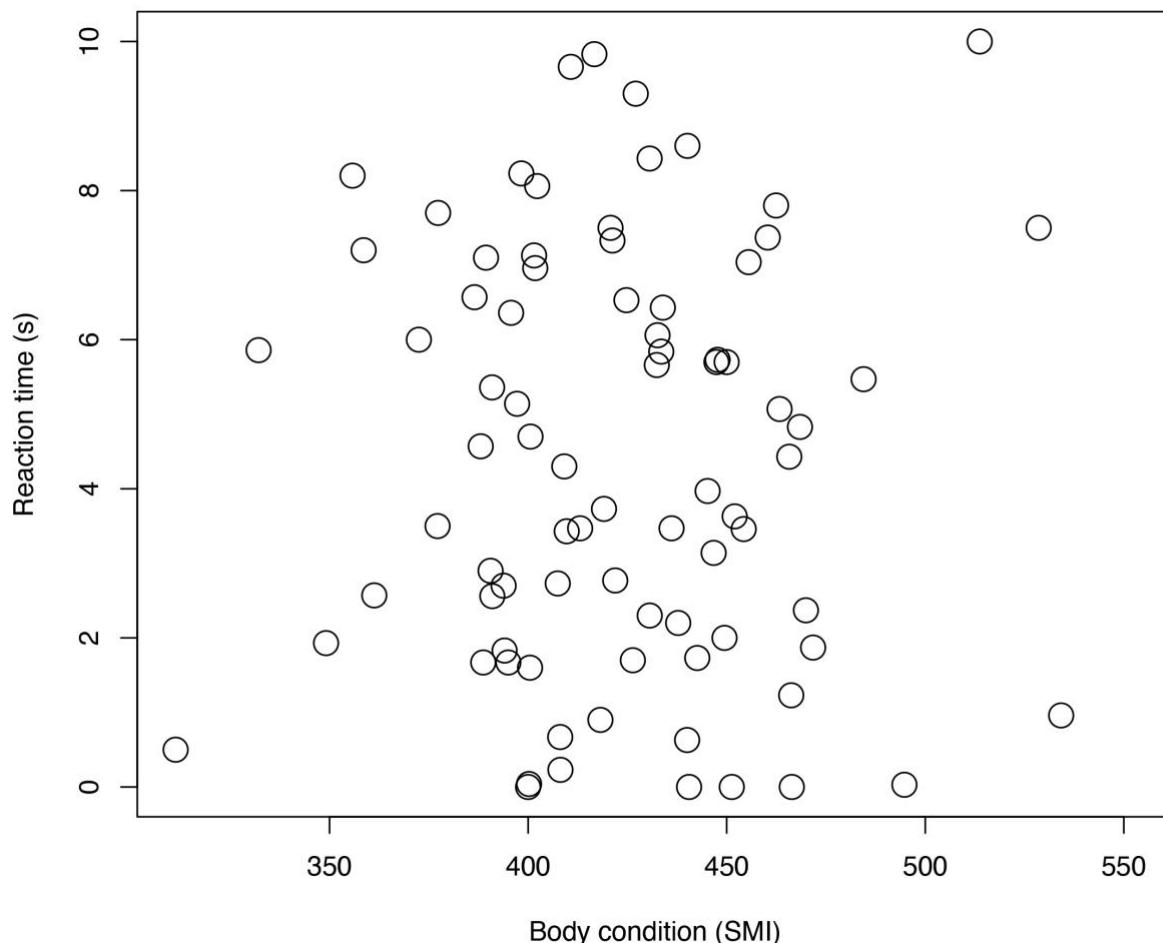

1353

1354

1355 Fig. S9. Number of attempts to position *Rana temporaria* larvae before the start of the
1356 behavioral trials compared between larvae that either reacted to the aversive stimulus
1357 presented in behavioral trials (1) or not (0). Wilcoxon-test: $W = 601$, $p = 0.022$.

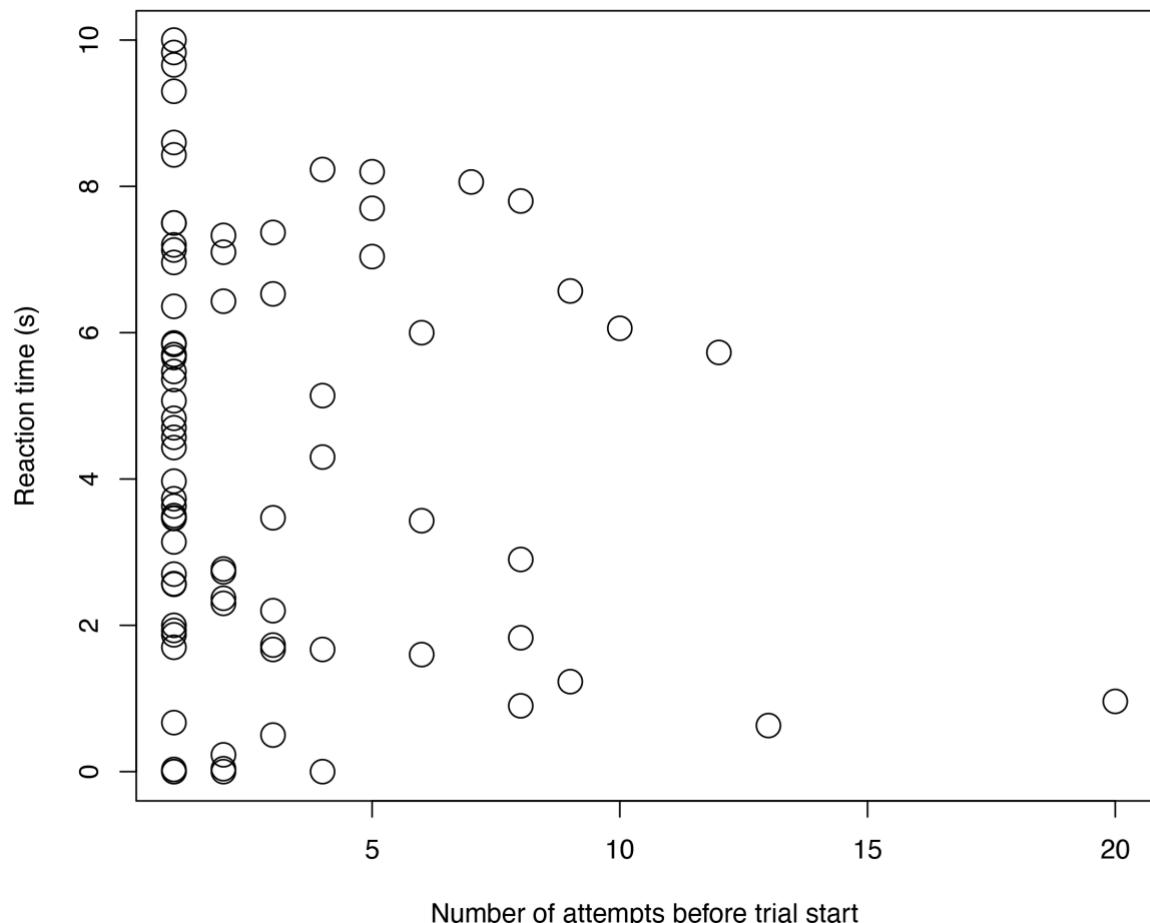

1358

1359


1360 Fig. S10. Residual distribution of the model testing the effects of food treatment, rearing
1361 temperature, and exposure or not to a heat wave on likeliness to escape from an aversive
1362 stimulus of *Rana temporaria* larvae (see Table 2 for model description).

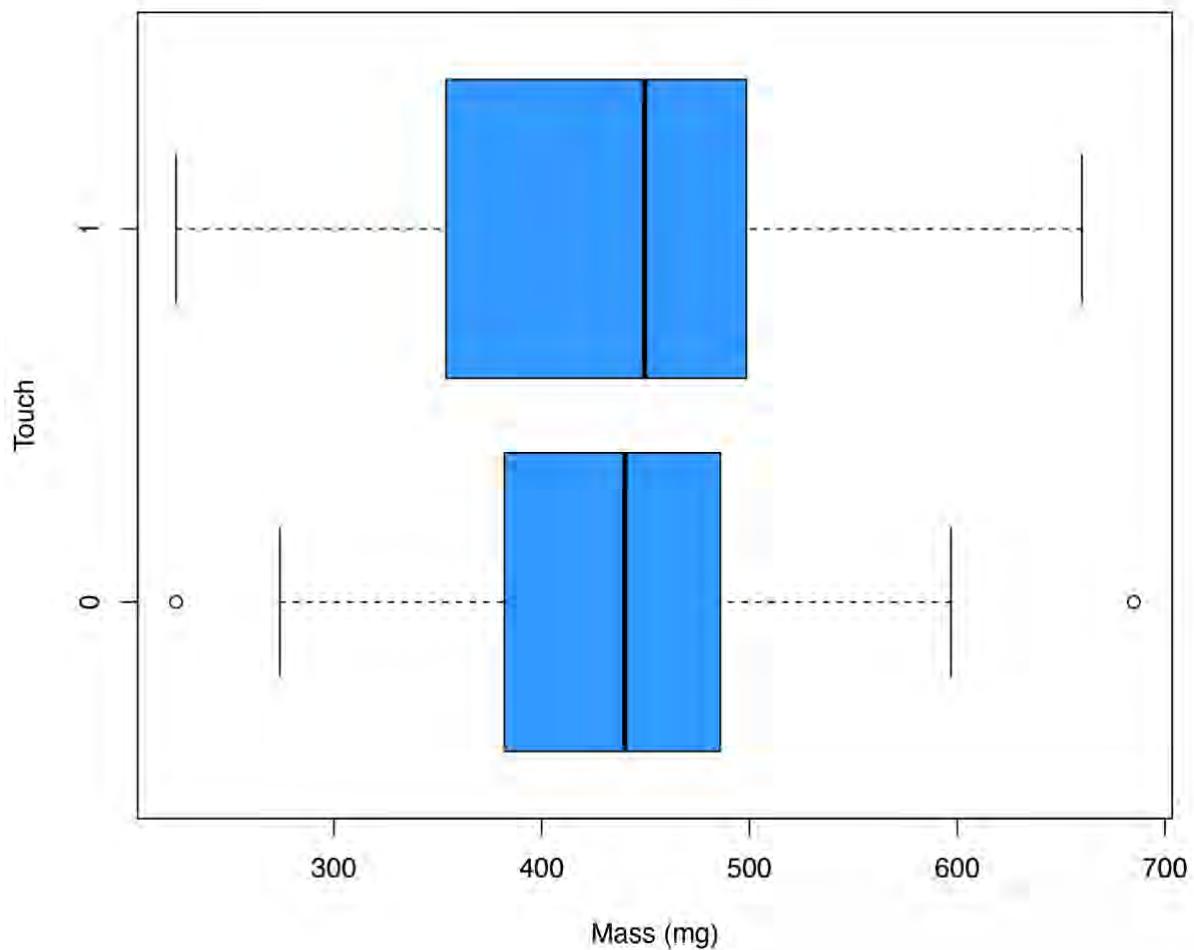
1363

1364


1365 Fig. S11. Relationship between mass (mg) of *Rana temporaria* larvae and time to react to the
1366 aversive stimulus presented in behavioral trials. Adjusted R-squared = 0.030, F = 3.487, df =
1367 79, p = 0.066.

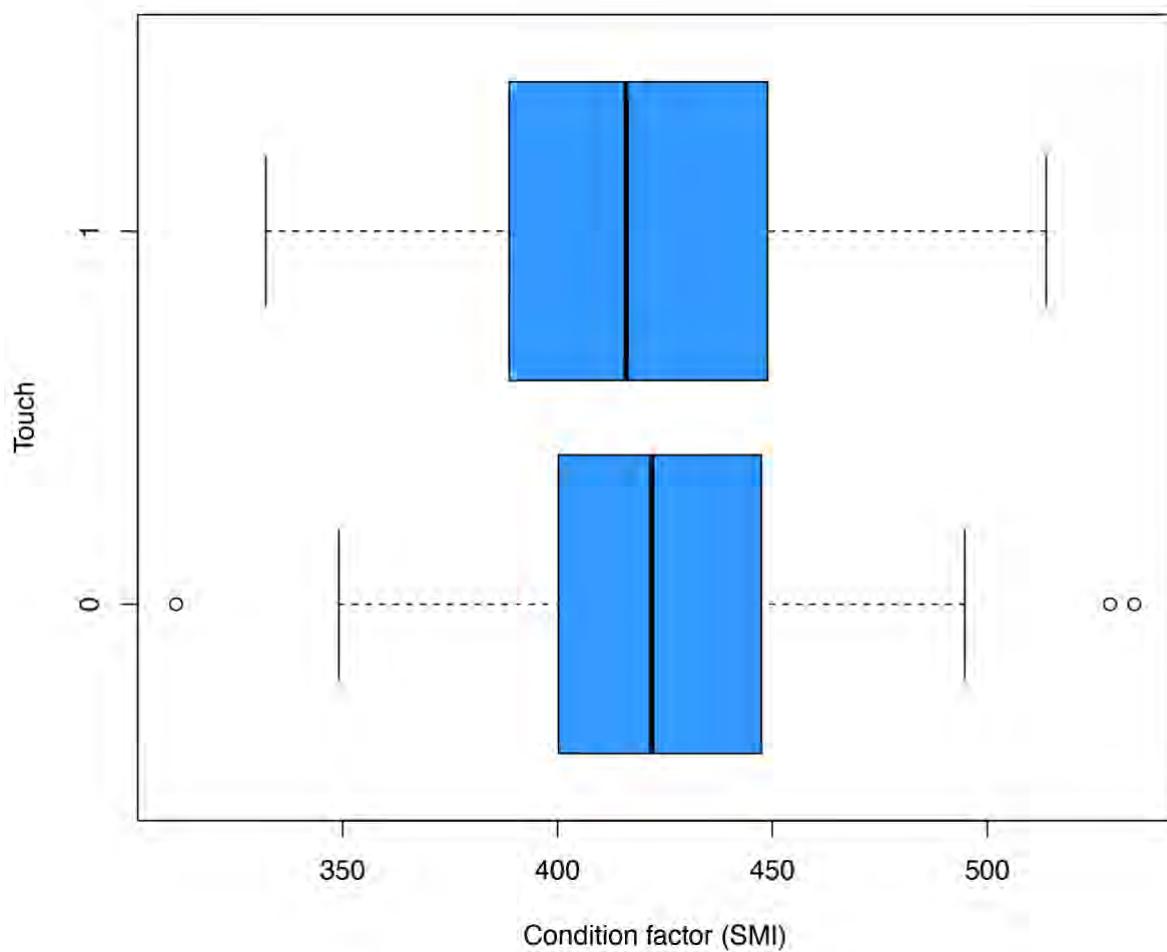
1368

1369 Fig. S12. Relationship between body condition (SMI) of *Rana temporaria* larvae and time to
1370 react to the aversive stimulus presented in behavioral trials. Adjusted R-squared = -0.013, F =
1371 0.005, df = 79, p = 0.946.


1372

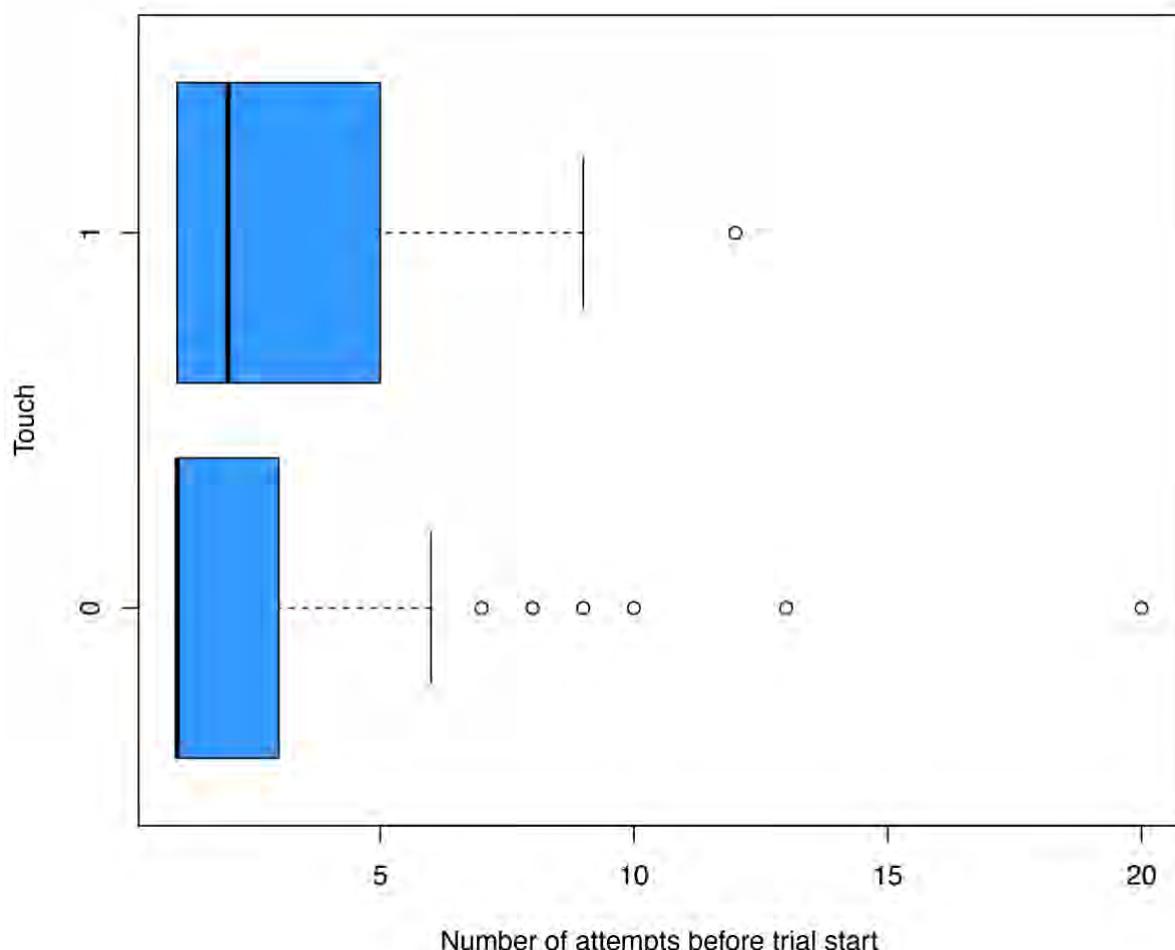
1373

1374 Fig. S13. Relationship between number of attempts to position *Rana temporaria* larvae before
1375 the start of the behavioral trials and time (s) the larvae took to react to the aversive stimulus
1376 presented. rho = -0.125, p = 0.263.


1377

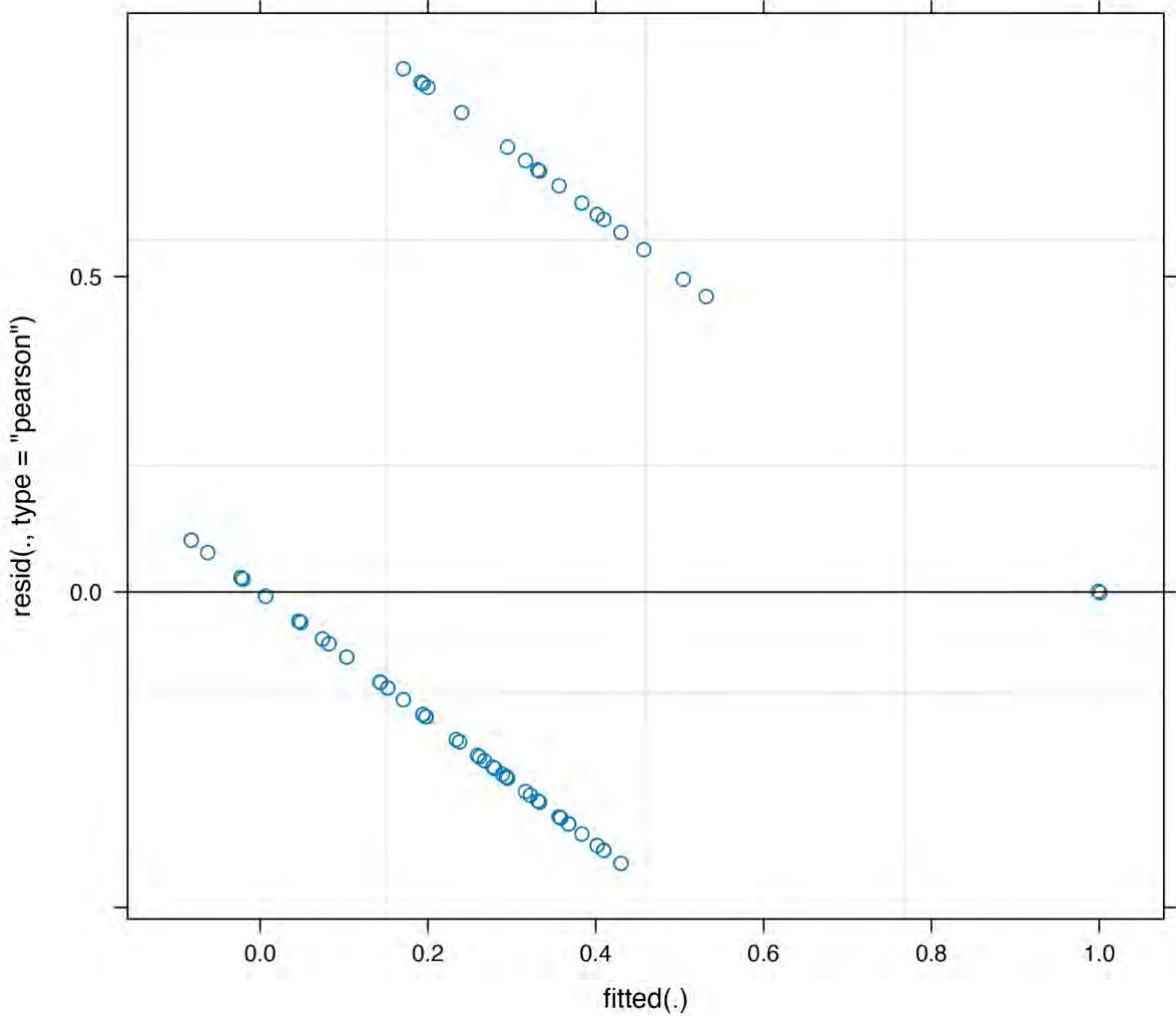
1378

1379 Fig. S14. Mass (mg) of reacting *Rana temporaria* larvae that either were touched by the
 1380 predator model approached to them in behavioral trials (1) or not (0) before fleeing.
 1381 Wilcoxon-test: $W = 577$, $p = 0.722$.


1382

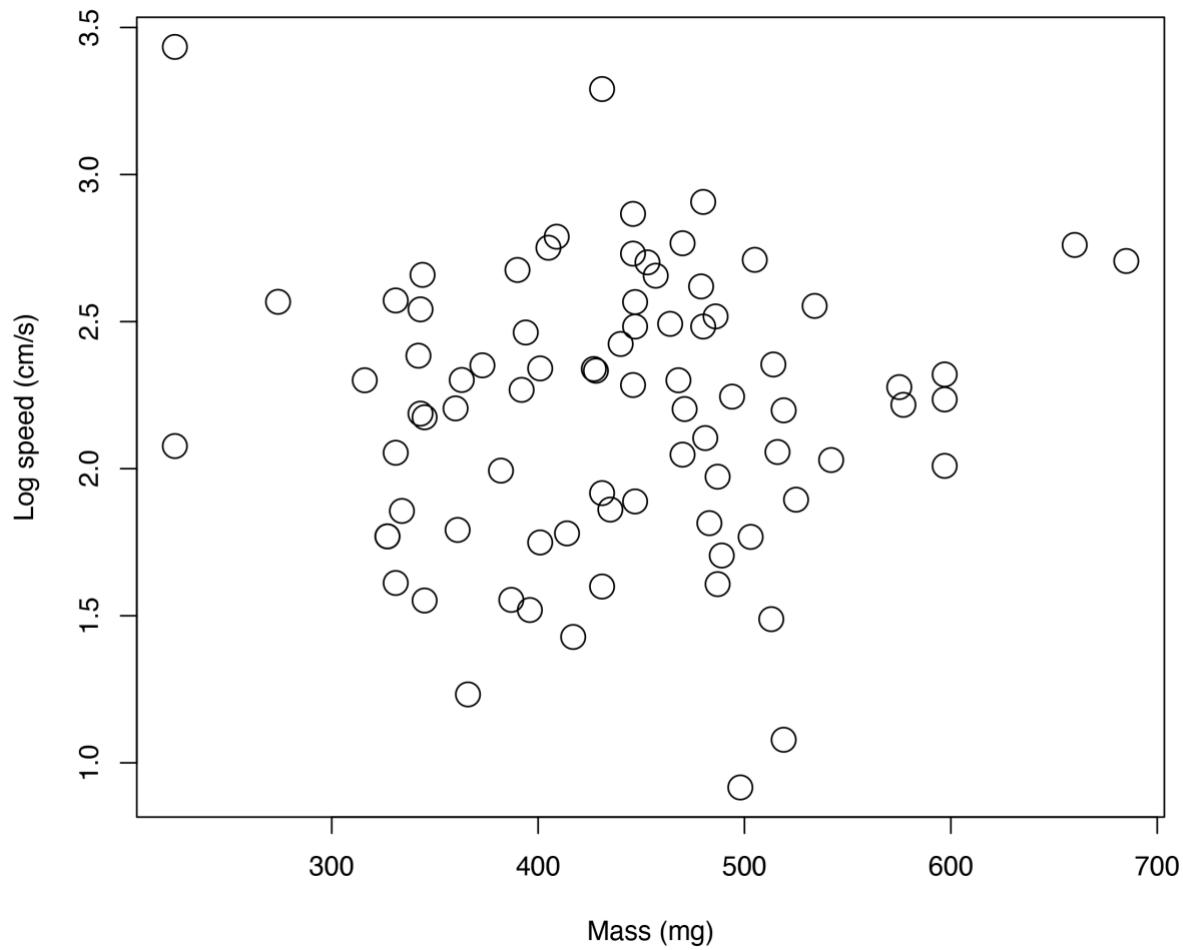
1383

1384 Fig. S15. Condition factor (SMI) of reacting *Rana temporaria* larvae that either were touched
 1385 by the predator model approached to them in behavioral trials (1) or not (0) before fleeing.
 1386 Wilcoxon-test: $W = 697$, $p = 0.343$.


1387

1388

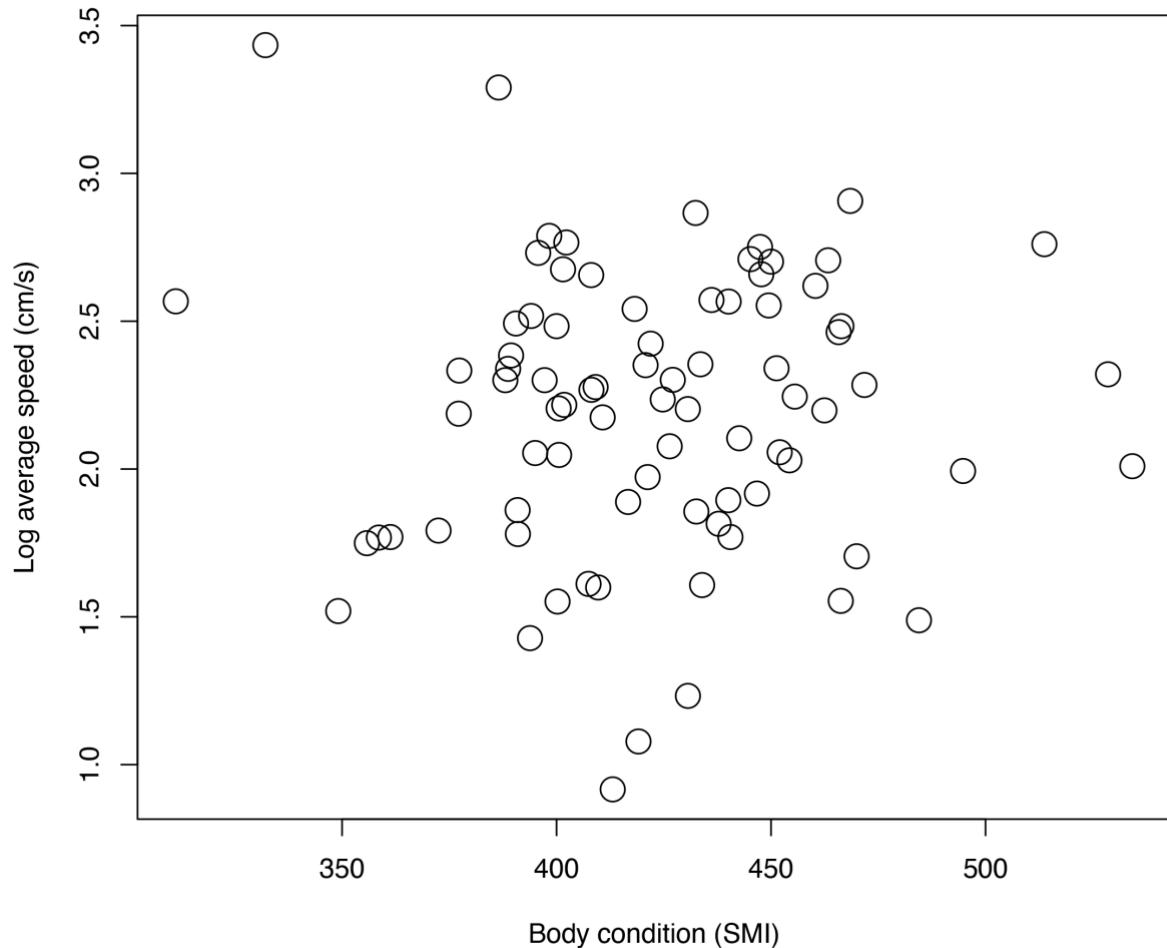
1389 Fig. S16. Number of attempts to position *Rana temporaria* larvae before the start of the
 1390 behavioral trials compared between larvae that either were touched by the predator model
 1391 approached to them in the behavioral trials (1) or not (0) before fleeing. Wilcoxon-test: $W =$
 1392 533, $p = 0.366$.


1393

1394

1395 Fig. S17. Residual distribution of the model testing the effects of food treatment, rearing
1396 temperature, and exposure or not to a heat wave on likeliness to be touched by a predator
1397 model during an aversive stimulus of *Rana temporaria* larvae (see Table 2 for model
1398 description).

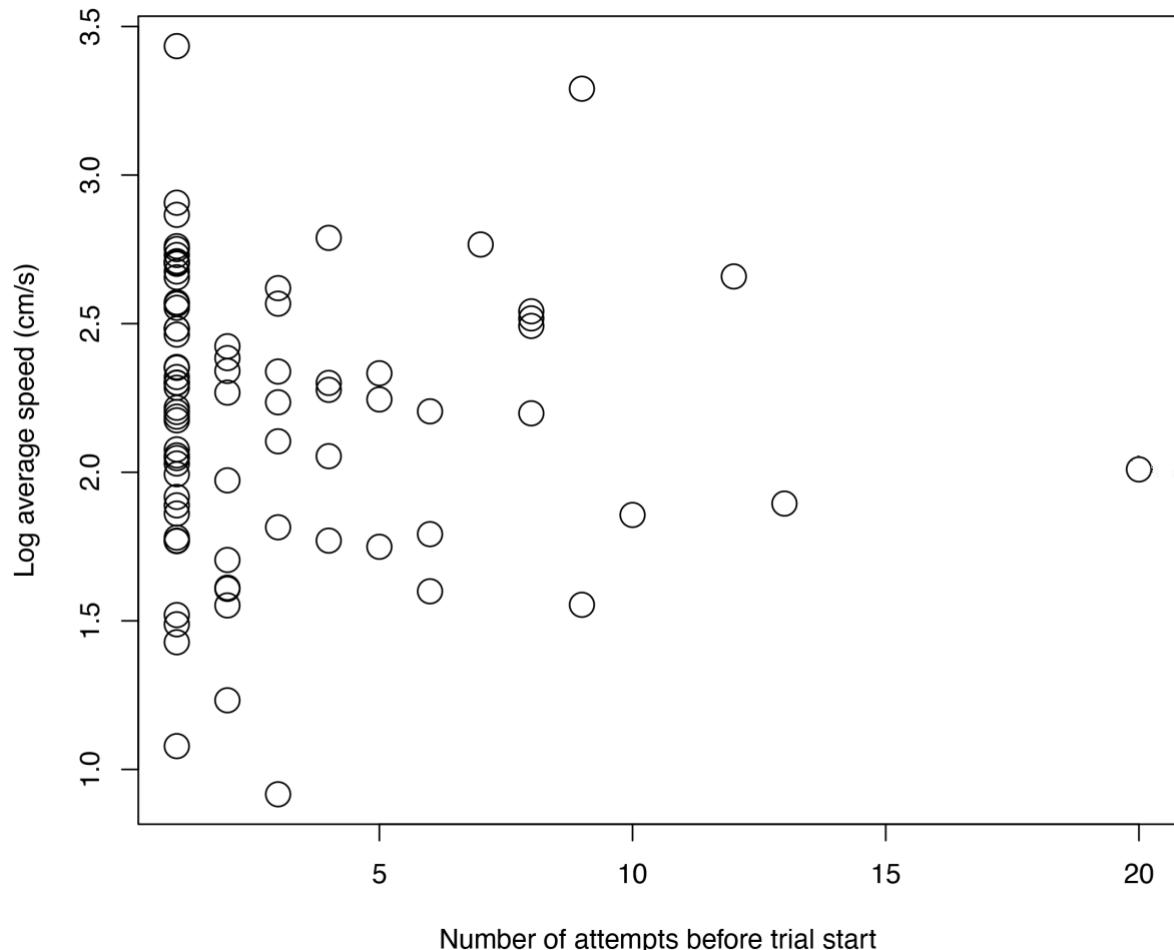
1399


1400

1401 Fig. S18. Relationship between mass (mg) of *Rana temporaria* larvae and average speed (in

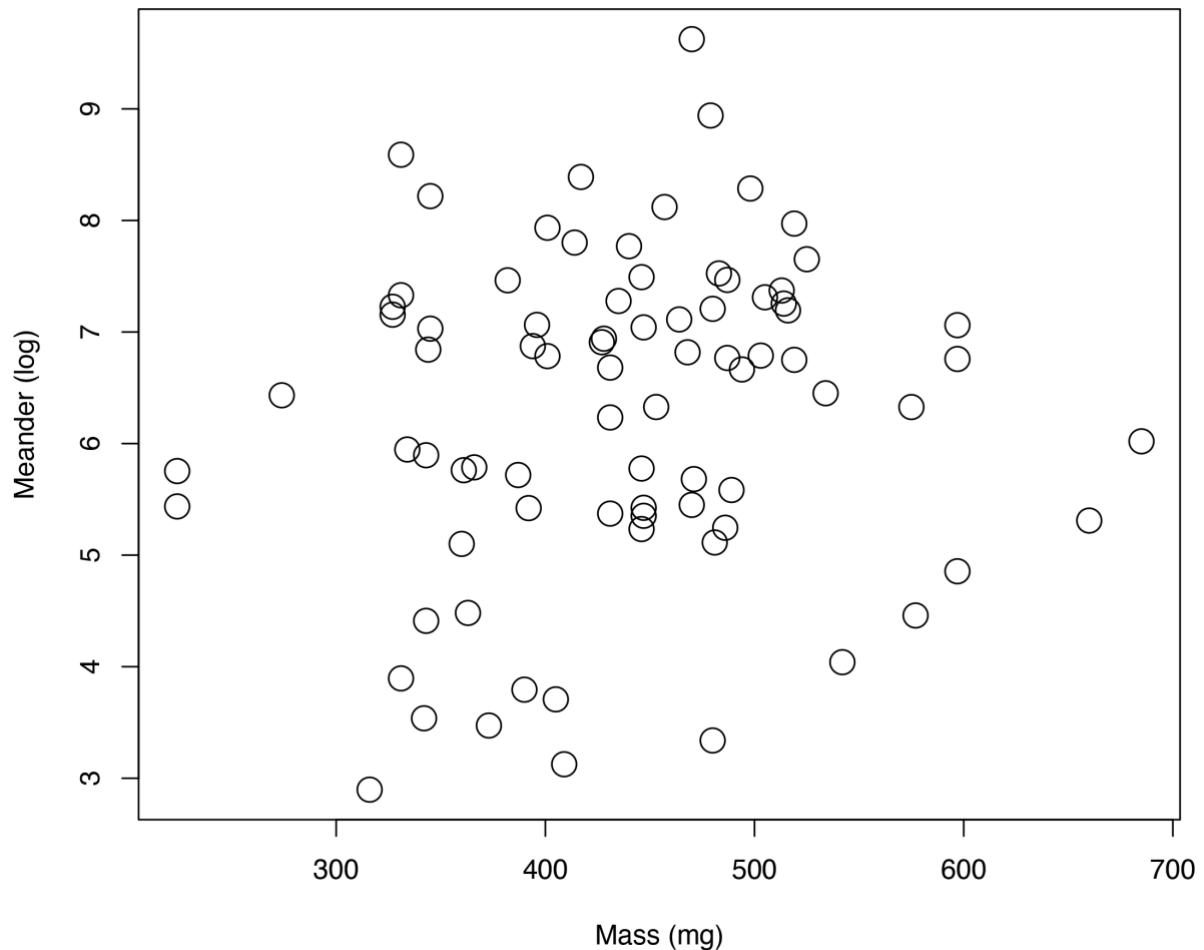
1402 cm/s, log transformed) while fleeing from the aversive stimulus presented in behavioral trials.

1403 Adjusted R-squared = -0.013, F = 0.004, df = 79, p = 0.949.


1404

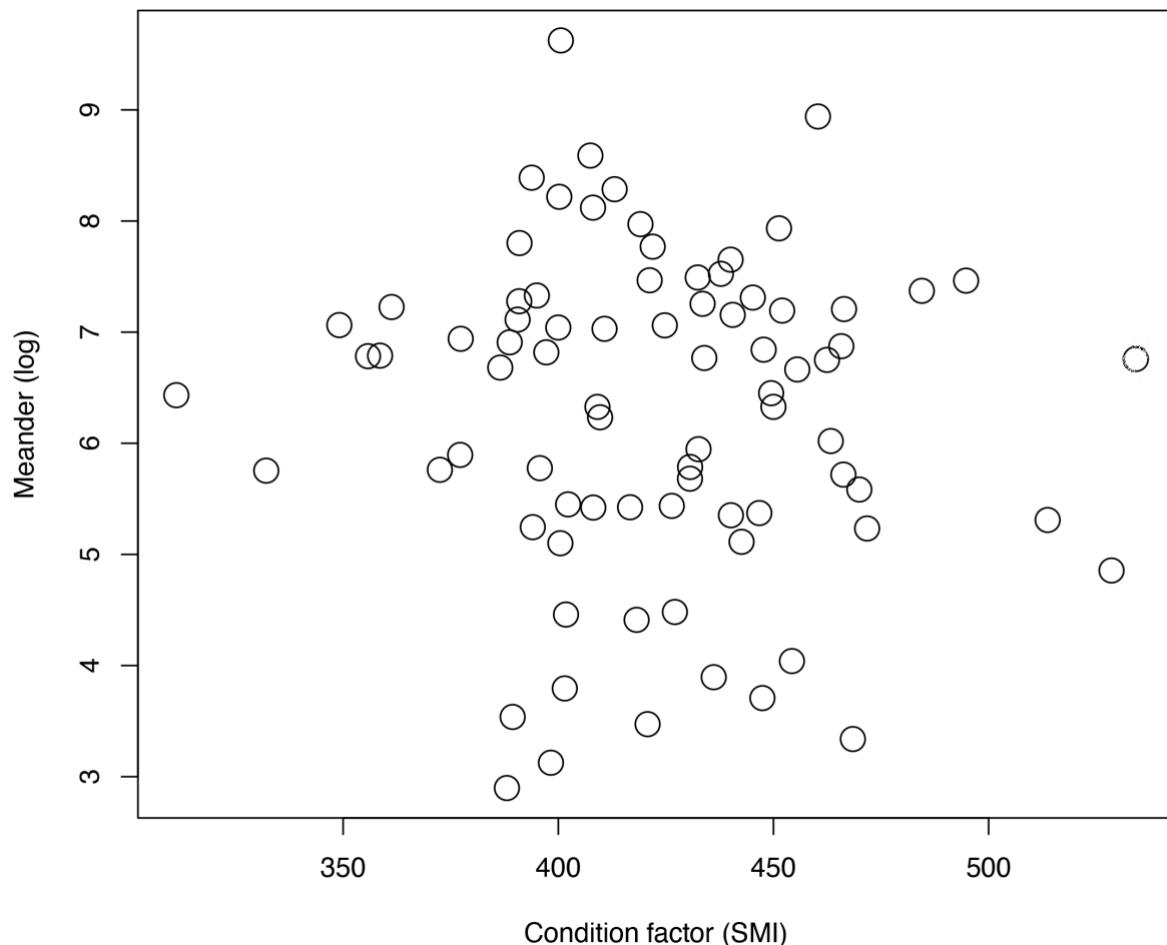
1405

1406 Fig. S19. Relationship between body condition (SMI) of *Rana temporaria* larvae and average
 1407 speed (in cm/s, log transformed) while fleeing from the aversive stimulus presented in
 1408 behavioral trials. Adjusted R-squared = -0.013, F = 0.009, df = 79, p = 0.923.

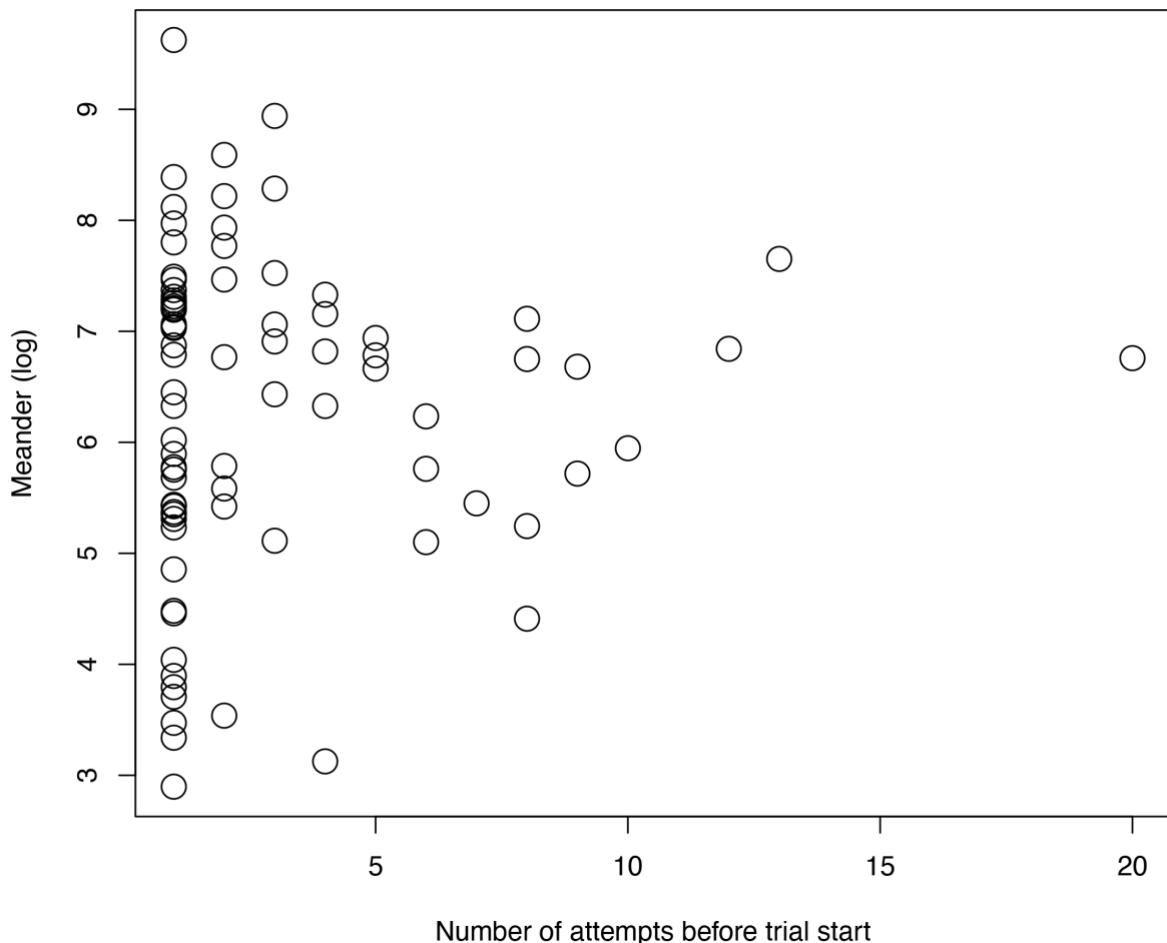

1409

1410

1411 Fig. S20. Relationship between number of attempts to position *Rana temporaria* larvae before
 1412 the start of the behavioral trials and average speed (in cm/s, log transformed) of the larvae
 1413 while fleeing from the aversive stimulus presented. $\rho = -0.104$, $p = 0.354$.


1414

1415


1416 Fig. S21. Relationship between mass (mg) of *Rana temporaria* larvae and trajectory non-
1417 linearity (“meander”, log transformed) while fleeing from the aversive stimulus presented in
1418 behavioral trials. Adjusted R-squared = 0.003, F = 1.271, df = 79, p = 0.263.

1419

1420

1421 Fig. S22. Relationship between body condition (SMI) of *Rana temporaria* larvae and
 1422 trajectory non-linearity (“meander”, log transformed) while fleeing from the aversive stimulus
 1423 presented in behavioral trials. Adjusted R-squared = -0.009, F = 0.247, df = 79, p = 0.620.

1424

1425 Fig. S23. Relationship between number of attempts to position *Rana temporaria* larvae before
 1426 the start of the behavioral trials and trajectory non-linearity (“meander”, log transformed) of
 1427 the larvae while fleeing from the aversive stimulus presented. $\rho = 0.050$, $p = 0.657$.

1428

1429

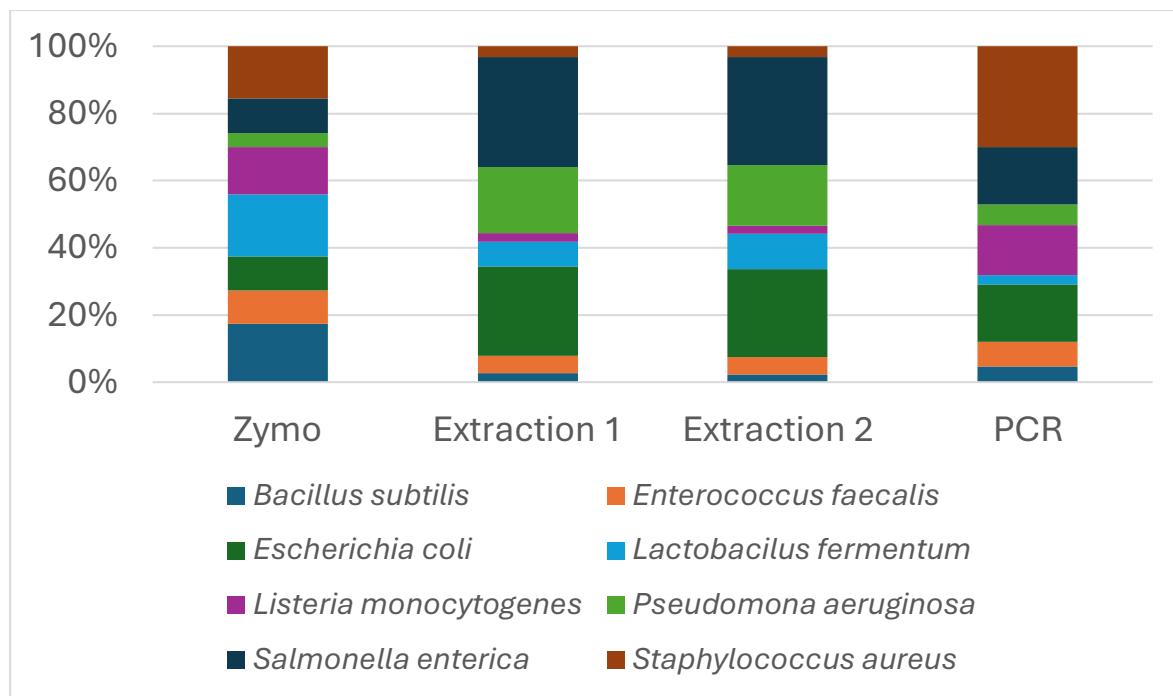
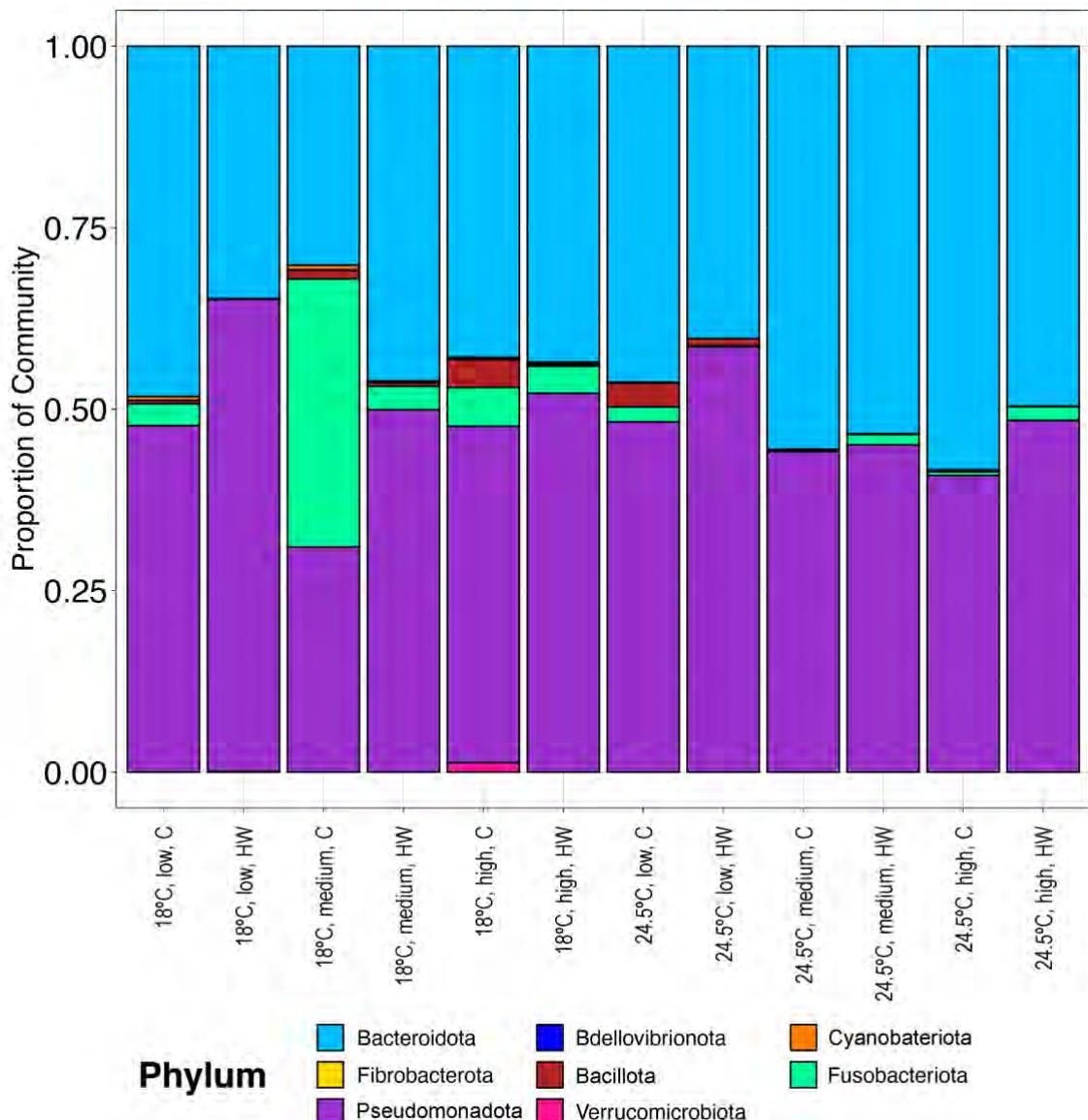



Fig. S24. Results of two positive controls for DNA extractions (ZymoBIOMICS™ microbial community standard, Zymo Research Europe GmbH) and one positive PCR control (ZymoBIOMICS™ microbial community DNA standard, Zymo Research Europe GmbH) in comparison with the expected community profile (Zymo), showing that taxonomic composition was precisely assessed, but not relative abundances. The similarity of the two extractions shows repeatability, meaning that bias in reflecting the real abundance of given taxa are consistent and, thus, comparable among samples.

1440

1441 Fig. S25. Community composition of gut bacteria based on phylum for *Rana temporaria*
 1442 larvae fed three diets with increasing levels of protein, fat, and animal components
 1443 (considered as low-, medium- and high-quality), reared at either 18 °C or 24.5 °C. and
 1444 exposed or not to a heat wave, in a crossed experimental design. The heat wave corresponded
 1445 to increasing temperature at a ramping rate of 0.5 °C per hour until 28 °C, maintenance at 28
 1446 °C for 48 h and subsequent temperature decrease of 0.5 °C per hour until original rearing
 1447 temperature.

1448

1449

1450

1451

1452

Table S1. Permanova pairwise comparisons among treatments applied to *Rana temporaria* larvae based on unweighted unifrac distances. Treatments corresponded to three diets with increasing levels of protein, fat, and animal components (considered as low-, medium- and high-quality), two rearing temperatures (18 °C or 24.5 °C), and exposed or not (C = control) to a heat wave (HW).

Group 1	Group 2	Sample size	Permutations	pseudo-F	p-value	q-value
18C_highC	18C_highHW	17	999	3.930	0.002	0.003
18C_lowC		17	999	2.343	0.023	0.026
18C_lowHW		18	999	7.540	0.001	0.002
18C_mediumC		16	999	1.173	0.278	0.286
18C_mediumHW		17	999	3.086	0.001	0.002
24.5C_highC		14	999	4.626	0.001	0.002
24.5C_highHW		16	999	4.023	0.001	0.002
24.5C_lowC		18	999	6.196	0.001	0.002
24.5C_lowHW		15	999	4.923	0.001	0.002
24.5C_mediumC		17	999	4.745	0.001	0.002
24.5C_mediumHW		17	999	5.242	0.001	0.002
18C_highHW	18C_lowC	16	999	4.995	0.002	0.003
18C_lowHW		17	999	4.244	0.001	0.002
18C_mediumC		15	999	5.374	0.001	0.002
18C_mediumHW		16	999	2.238	0.021	0.025
24.5C_highC		13	999	3.895	0.007	0.009
24.5C_highHW		15	999	2.699	0.012	0.015
24.5C_lowC		17	999	6.442	0.001	0.002
24.5C_lowHW		14	999	3.416	0.003	0.004
24.5C_mediumC		16	999	2.896	0.003	0.004
24.5C_mediumHW		16	999	4.640	0.002	0.003
18C_lowC	18C_lowHW	17	999	6.007	0.001	0.002
18C_mediumC		15	999	2.496	0.031	0.034
18C_mediumHW		16	999	2.567	0.010	0.013
24.5C_highC		13	999	6.103	0.001	0.002
24.5C_highHW		15	999	4.878	0.001	0.002
24.5C_lowC		17	999	6.651	0.001	0.002
24.5C_lowHW		14	999	4.584	0.003	0.004
24.5C_mediumC		16	999	5.013	0.001	0.002
24.5C_mediumHW		16	999	5.295	0.001	0.002
18C_lowHW	18C_mediumC	16	999	8.262	0.001	0.002
18C_mediumHW		17	999	3.289	0.002	0.003
24.5C_highC		14	999	5.691	0.002	0.003
24.5C_highHW		16	999	3.821	0.001	0.002
24.5C_lowC		18	999	8.517	0.001	0.002
24.5C_lowHW		15	999	2.451	0.027	0.030
24.5C_mediumC		17	999	3.688	0.002	0.003
24.5C_mediumHW		17	999	4.716	0.001	0.002

18C_mediumC	18C_mediumHW	15	999	3.181	0.002	0.003
24.5C_highC		12	999	6.624	0.002	0.003
24.5C_highHW		14	999	4.186	0.001	0.002
24.5C_lowC		16	999	8.238	0.001	0.002
24.5C_lowHW		13	999	5.406	0.001	0.002
24.5C_mediumC		15	999	4.792	0.002	0.003
24.5C_mediumHW		15	999	4.985	0.003	0.004
18C_mediumHW	24.5C_highC	13	999	3.343	0.001	0.002
24.5C_highHW		15	999	2.502	0.003	0.004
24.5C_lowC		17	999	3.319	0.004	0.005
24.5C_lowHW		14	999	1.998	0.022	0.025
24.5C_mediumC		16	999	2.708	0.002	0.003
24.5C_mediumHW		16	999	3.227	0.001	0.002
24.5C_highC	24.5C_highHW	12	999	0.817	0.644	0.644
24.5C_lowC		14	999	4.226	0.001	0.002
24.5C_lowHW		11	999	3.547	0.005	0.006
24.5C_mediumC		13	999	2.029	0.037	0.040
24.5C_mediumHW		13	999	2.342	0.017	0.021
24.5C_highHW	24.5C_lowC	16	999	5.245	0.002	0.003
24.5C_lowHW		13	999	2.052	0.015	0.019
24.5C_mediumC		15	999	1.557	0.121	0.128
24.5C_mediumHW		15	999	1.003	0.423	0.429
24.5C_lowC	24.5C_lowHW	15	999	4.575	0.001	0.002
24.5C_mediumC		17	999	4.276	0.001	0.002
24.5C_mediumHW		17	999	6.036	0.001	0.002
24.5C_lowHW	24.5C_mediumC	14	999	1.933	0.037	0.040
24.5C_mediumHW		14	999	2.296	0.022	0.025
24.5C_mediumC	24.5C_mediumHW	16	999	1.612	0.144	0.150

1453

1454