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Climate change is reshaping the geographic distributions of insect pests,
with major consequences for agriculture, forestry, and ecosystem stabil-
ity. Species distribution models (SDMs) are widely used to project these
changes, yet most rely primarily on climatic predictors and implicitly as-
sume a degree of generality in species responses that may not hold across
diverse taxa. Here, we evaluate how 62 globally important insect pest
species respond to climate change and to non-climatic predictor vari-
ables, asking whether their responses exhibit global generality, idiosyn-
crasy, or intermediate forms of contingent generality. We constructed
correlative SDMs using multiple algorithms and predictor sets (climate
only; climate + land use; climate + soil; climate + land + soil) and projected
distributions under two emissions scenarios (SSP1-2.6 and SSP5-8.5)
and two future time horizons (2020s and 2080s). Climate change pro-
duced strong aggregate trends, including poleward shifts and declining
similarity between future and historical distributions, but species-level
responses were highly heterogeneous in both magnitude and direction.
Trait-based analyses revealed patterns of contingent generality structured
by taxonomic order, feeding guild, and habitat association. Adding land-
use variables consistently improved model performance more than adding
soil variables, while combining both predictors was typically subadditive.
Further analyses showed that land-use effects reorganize climate-response
predictions for specific subsets of species, whereas soil effects were weaker
and more context-dependent. Together, these results demonstrate that
insect pest responses to climate change and model complexity are nei-
ther uniform nor random, but structured by ecologically meaningful con-
tingencies. Recognizing and explicitly incorporating contingent general-
ity can improve the interpretation, performance, and policy relevance of

Abbreviations: SDM, Species Distribution Model; SSP, shared socioeconomic pathways; TSS, True Skill Statistic; AUC, Area Under the Curve; OR5,
5% omission rate; EPPO, European and Mediterranean Plant Protection Organization; GBIF, Global Biodiversity Information Facility; LUH2, Land-Use
Harmonization v2.
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SDMs under global change.
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1 | INTRODUCTION

Climate change is reshaping species distributions worldwide, altering community composition, ecosystem function,
and the risks posed by economically and ecologically important taxa [see e.g., 1]. Insects—particularly insect pests—have
become a focal group in this research because their distributions respond rapidly to environmental change and because
their impacts on agriculture and forestry can scale nonlinearly with range expansion and redistribution. Anticipating
these shifts remains a central objective of global change ecology and applied biogeography [2].

Species distribution models (SDMs) are the primary tool for projecting these responses. By relating species oc-
currences to environmental predictors, most often climatic variables, SDMs generate spatially explicit forecasts of
potential distributions under future scenarios. Across taxa and regions, such models frequently reveal directional
patterns, including poleward and upslope shifts, high-latitude expansions, and declining overlap between future and
historical ranges. These patterns are commonly summarized using mean effect sizes or ensemble averages, which play

a central role in synthesis, meta-analysis, and policy-relevant interpretation.

Yet an exclusive focus on mean directional change obscures a defining feature of SDM outputs: responses are
often highly heterogeneous across species. Species exposed to similar climatic forcing can differ markedly in both the
magnitude and direction of projected change. Although this heterogeneity is well documented, it is typically treated
as residual variation around a central tendency rather than as a primary target of inference.

1.1 | From mean responses to structured heterogeneity

The key inferential question is therefore not whether species respond identically to climate change—few researchers
expect that—but whether heterogeneity itself is structured in biologically meaningful ways. Mean responses sum-
marize one dimension of change, but they do not indicate whether deviations from the mean are random, weakly

constrained, or systematically associated with species traits, ecological roles, or modelling context.

This distinction is critical. If heterogeneity is largely unstructured, mean responses provide an adequate basis for
inference and decision-making. If heterogeneity is patterned—such that species sharing particular traits respond more
similarly to one another than to other species—then mean-based summaries risk conflating qualitatively different
ecological trajectories. This situation is analogous to interpreting a main effect in the presence of strong interactions:
the mean effect remains well defined, but it no longer represents a single underlying process and may obscure the
conditional structure that governs individual responses.

The concept of contingent generality provides a framework for resolving this tension. Under this view, generality
is neither sought at the level of all species nor rejected in favour of pure idiosyncrasy. Instead, regularities emerge
conditionally, holding for subsets of species defined by shared traits, taxonomic relationships, or ecological contexts.
Contingent generality thus reframes heterogeneity from a nuisance to be averaged away into a source of explanatory

structure.
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1.2 | Climate change, model complexity, and sources of contingency

Most large-scale SDM studies emphasize climate as the primary driver of species distributions, reflecting its domi-
nant influence on insect physiology, development, and survival. Climate-only models often produce clear directional
signals, but of course, climatic suitability alone does not guarantee ecological suitability. Pest distributions are also
constrained by host availability, habitat structure, and local environmental conditions, which are shaped by land use
and soil properties.

Accordingly, land-use and soil predictors are increasingly incorporated into SDMs to improve performance and
ecological realism [e.g., 3, 4, 5]. However, adding predictors does more than refine predictions. It can reorganize
inferred species-environment relationships, alter the relative importance of climatic variables, and affect species dif-
ferently depending on their ecological characteristics. These effects are unlikely to be uniform, suggesting that model
complexity itself may generate contingent patterns of response.

Despite this, evaluations of added predictors typically focus on average improvements in performance metrics,
again emphasizing mean effects while downplaying heterogeneity across species [e.g., 6, 7, 8]. Whether such im-
provements are driven by particular ecological dimensions, specific taxa, or systematic reorganization of predictor
importance remains poorly resolved.

1.3 | Insect pests

Insect pests are among the most significant biotic threats to primary production systems worldwide. The Food and
Agriculture Organization estimates that pests and diseases reduce global crop yields by up to 40% annually, resulting
in more than $220 billion in direct economic losses (FAO, 2019). Forestry systems face comparable risks, as climate-
driven outbreaks of bark beetles (Scolytinae) and invasive species such as the emerald ash borer (Agrilus planipennis)
are projected to reduce timberland values by tens of billions of dollars across North America [10, 11].

Beyond these direct costs, pest outbreaks can alter nutrient cycling, hydrology, and habitat structure, undermining
the long-term resilience of agricultural and forested landscapes. Anticipating where and when pest pressures will
intensify is therefore essential for safeguarding food and fibre supplies and for guiding adaptive management under

rapid environmental change.

1.4 | Climate as a primary driver of insect pest dynamics

Climate exerts a dominant influence on insect pests by shaping the thermal and moisture regimes governing develop-
ment [e.g., 12], voltinism [e.g., 13], overwintering survival [e.g., 14], and dispersal [e.g., 15]. Because many pest species
operate within relatively narrow thermal performance windows, even modest warming can accelerate development,
increase generational turnover, extend growing seasons, and relax cold-temperature constraints on geographic ranges
[e.g., 16].

Precipitation regimes also indirectly influence pest dynamics by affecting host plants. Changes in soil moisture
and rainfall timing affect leaf flush, sap flow, and canopy humidity, thereby modifying plant nutritional quality and
microclimatic conditions that facilitate pest feeding and pathogen transmission. Extreme events such as droughts and
heatwaves can amplify these effects by synchronizing dispersal or increasing host susceptibility through physiological
stress.

Anthropogenic climate change intensifies these processes through sustained warming, altered precipitation pat-

terns, and increased climatic variability. These pressures drive poleward and upslope range expansions, facilitate
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biological invasions, and, in some cases, cause range contractions when thermal or moisture limits are exceeded.

The work of projecting pest distributions under future climates depends heavily on correlative SDMs, which es-
timate species’ realized niches by statistically linking occurrence data to spatially explicit environmental predictors.
Their widespread use reflects pragmatic advantages—modest data requirements, scalability, and transferability across
regions and scenarios—especially relative to mechanistic models that require detailed physiological or demographic
data not readily available for most species [17, 18, 16, 19]. As a result, correlative SDMs have become the de facto stan-
dard for large-scale projections, despite relying on the assumption that inferred species-environment relationships

remain valid under novel conditions.

1.5 | Land use and soil roles in pest species distributions

Although climate constrains the physiological limits of herbivorous insects, their distributions are often more proxi-
mally shaped by host-plant availability [20], which in turn depends on land use and soil conditions. These dependen-
cies can be incorporated into SDMs either explicitly, by modelling host and pest distributions jointly [e.g., 21, 22], or
implicitly, by including land-use and soil variables as predictors [e.g., 23, 24].

Land-use patterns and soil properties jointly structure the ecological contexts in which pests establish and per-
sist [25, 26]. Homogeneous cropland landscapes dominated by monocultures provide stable and predictable host
resources that favour specialist pests, whereas heterogeneous landscapes can suppress or facilitate pests depending
on feeding breadth and mobility [e.g., 27, 28, 29]. Soil characteristics further influence pest distributions by affect-
ing host performance and belowground life stages, including oviposition, larval development, and overwintering [e.g.,
30, 31, 21].

Together, land-use and soil conditions govern the spatial coincidence of hosts and suitable microhabitats. Adding
these predictors to climate-based SDMs may therefore increase both predictive power and biological realism, distin-
guishing physiologically suitable areas from those that are ecologically viable.

1.6 | Research questions and approach

Here, we use a diverse assemblage of globally important insect pests to move beyond mean-centric summaries and
ask whether heterogeneity in SDM projections is structured in ways that support contingent generality. Specifically,

we ask:

1. How will suitable areas for these species shift under climate change? Here, we ask whether projected pest
distributions change under future climate scenarios when summarized by common distributional metrics.

2. Is there generality in insect pest responses to climate change? Here, we ask to what extent species deviate from
these mean directional trends, and whether those deviations are structured by ecological traits.

3. Does adding land-use and/or soil variables improve SDM performance? Here, we ask whether adding land-use
and soil predictors improves SDM performance uniformly, contingently, or idiosyncratically.

4. Isthere generality in species responses to the addition of land and soil variables? Here, we ask whether responses
to increased model complexity reveal recurring, trait-structured patterns of explanatory importance.

By combining multi-algorithm SDMs with trait-based analyses and detailed assessments of predictor importance
and robustness, we treat heterogeneity not as noise around an average response but as the central phenomenon to

be explained. In doing so, we argue that contingent generality provides a more informative basis for synthesis and
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prediction than either mean directional change or species-specific idiosyncrasy alone.

2 | METHODS

2.1 | Pestsand Species Occurrence Data

The primary source for the catalogue of quarantine pest species is the European and Mediterranean Plant Protection
Organization (EPPO) A1/A2 List of Pests Recommended for Regulation, including 133 species in the A1 list and 75
species in the A2 list [32, 33]. Based on the species names in the catalogue, we obtained the distribution information
for each species and its synonyms, as provided in EPPO, using the R package rgbif [34]. The R package provides
access to species distribution data to the Global Biodiversity Information Facility (GBIF, https://www.gbif.org/).
We excluded duplicates, incorrect records, and those species with fewer than 30 occurrence records. This left us with

62 species across five orders, each with between 30 and 1393 occurrence records (see Table 1 and Table S1).

TABLE 1 Status and traits for insect pest species considered in this study.

Species Order Family Feeding guild Host specificity Primary Invasive
habitat
1. Acleris variana Lepidoptera Tortricidae Foliar feeder Oligophagous Forest No
2. Agrilus anxius Coleoptera Buprestidae Wood/stem borer Oligophagous Forest No
3. Agrilus bilineatus Coleoptera Buprestidae Wood/stem borer Oligophagous Forest No
4. Anastrepha obliqua Diptera Tephritidae Fruit/flower feeder Polyphagous Agricultural Yes
5. Anoplophora chinensis Coleoptera Cerambycidae Wood/stem borer Polyphagous Both Yes
6. Anthonomus bisignifer Coleoptera Curculionidae Fruit/flower feeder Oligophagous Agricultural No
7. Bactericera cockerelli Hemiptera Triozidae Sap feeder Oligophagous Agricultural Yes
8. Bactrocera dorsalis Diptera Tephritidae Fruit/flower feeder Polyphagous Agricultural Yes
9. Bactrocera tryoni Diptera Tephritidae Fruit/flower feeder Polyphagous Agricultural Yes
10. Bactrocera zonata Diptera Tephritidae Fruit/flower feeder Polyphagous Agricultural Yes
11. Bemisia tabaci Hemiptera Aleyrodidae Sap feeder Polyphagous Agricultural Yes
12. Cacoecimorpha pronubana Lepidoptera Tortricidae Foliar feeder Polyphagous Agricultural Yes
13. Cacyreus marshalli Lepidoptera Lycaenidae Wood/stem borer Oligophagous Agricultural Yes
14. Ceratitis capitata Diptera Tephritidae Fruit/flower feeder Polyphagous Agricultural Yes
15. Ceratitis rosa Diptera Tephritidae Fruit/flower feeder Polyphagous Agricultural Yes
16. Chionaspis pinifoliae Hemiptera Diaspididae Sap feeder Oligophagous Forest Yes
17. Chloridea virescens Lepidoptera Noctuidae Fruit/flower feeder Polyphagous Agricultural No
18. Choristoneura conflictana Lepidoptera Tortricidae Foliar feeder Oligophagous Forest No
19. Choristoneura fumiferana Lepidoptera Tortricidae Foliar feeder Oligophagous Forest No
20. Choristoneura rosaceana Lepidoptera Tortricidae Fruit/flower feeder Polyphagous Both No
21. Chrysobothris femorata Coleoptera Buprestidae Wood/stem borer Polyphagous Both No
22. Dacus ciliatus Diptera Tephritidae Fruit/flower feeder Oligophagous Agricultural Yes
23. Dendroctonus ponderosae Coleoptera Curculionidae Wood/stem borer Oligophagous Forest No
24. Dendroctonus rufipennis Coleoptera Curculionidae Wood/stem borer Oligophagous Forest No
25. Dendroctonus valens Coleoptera Curculionidae Wood/stem borer Oligophagous Forest Yes
26. Dendrolimus superans Lepidoptera Lasiocampidae Foliar feeder Oligophagous Forest No
27. Diabrotica undecimpunctata Coleoptera Chrysomelidae Root feeder Polyphagous Agricultural No
28. Diabrotica virgifera zeae Coleoptera Chrysomelidae Root feeder Polyphagous Agricultural No
29. Exomala orientalis Coleoptera Scarabaeidae Root feeder Polyphagous Agricultural Yes
30. Frankliniella occidentalis Thysanoptera Thripidae Sap feeder Polyphagous Agricultural Yes
31. Grapholita packardi Lepidoptera Tortricidae Fruit/flower feeder Polyphagous Agricultural No
32. Helicoverpa armigera Lepidoptera Noctuidae Fruit/flower feeder Polyphagous Agricultural Yes
33. Helicoverpa zea Lepidoptera Noctuidae Fruit/flower feeder Polyphagous Agricultural No
34. Heteronychus arator Coleoptera Scarabaeidae Root feeder Polyphagous Agricultural Yes
35. Ips pini Coleoptera Curculionidae Wood/stem borer Oligophagous Forest No

Continued on next page
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Species Order Family Feeding guild Host specificity Primary Invasive
habitat
36. Leptinotarsa decemlineata Coleoptera Chrysomelidae Foliar feeder Oligophagous Agricultural Yes
37. Liriomyza trifolii Diptera Agromyzidae Foliar feeder Polyphagous Agricultural Yes
38. Lycorma delicatula Hemiptera Fulgoridae Sap feeder Polyphagous Both Yes
39. Lymantria mathura aurora Lepidoptera Erebidae Foliar feeder Polyphagous Forest No
40. Malacosoma disstria Lepidoptera Lasiocampidae Foliar feeder Polyphagous Forest No
41. Metamasius hemipterus Coleoptera Curculionidae Wood/stem borer Polyphagous Agricultural Yes
42. Monochamus alternatus Coleoptera Cerambycidae Wood/stem borer Oligophagous Forest No
43. Monochamus carolinensis Coleoptera Cerambycidae Wood/stem borer Oligophagous Forest No
44. Monochamus notatus Coleoptera Cerambycidae Wood/stem borer Oligophagous Forest No
45. Monochamus scutellatus Coleoptera Cerambycidae Wood/stem borer Oligophagous Forest No
46. Naupactus leucoloma Coleoptera Curculionidae Root feeder Polyphagous Agricultural Yes
47. Neocerambyx raddei Coleoptera Cerambycidae Wood/stem borer Oligophagous Forest No
48. Orgyia leucostigma Lepidoptera Erebidae Foliar feeder Polyphagous Both No
49. Orgyia pseudotsugata Lepidoptera Erebidae Foliar feeder Oligophagous Forest No
50. Popillia japonica Coleoptera Scarabaeidae Root feeder Polyphagous Both Yes
51. Rhynchophorus ferrugineus Coleoptera Curculionidae Wood/stem borer Oligophagous Agricultural Yes
52. Rhynchophorus palmarum Coleoptera Curculionidae Wood/stem borer Oligophagous Agricultural Yes
53. Saperda candida Coleoptera Cerambycidae Wood/stem borer Oligophagous Both Yes
54. Spodoptera eridania Lepidoptera Noctuidae Foliar feeder Polyphagous Agricultural Yes
55. Spodoptera frugiperda Lepidoptera Noctuidae Foliar feeder Polyphagous Agricultural Yes
56. Spodoptera littoralis Lepidoptera Noctuidae Foliar feeder Polyphagous Agricultural Yes
57. Spodoptera litura Lepidoptera Noctuidae Foliar feeder Polyphagous Agricultural Yes
58. Spodoptera ornithogalli Lepidoptera Noctuidae Foliar feeder Polyphagous Agricultural No
59. Spodoptera praefica Lepidoptera Noctuidae Foliar feeder Polyphagous Agricultural Yes
60. Thrips palmi Thysanoptera Thripidae Sap feeder Polyphagous Agricultural Yes
61. Zeugodacus cucumis Diptera Tephritidae Fruit/flower feeder Polyphagous Agricultural No
62. Zeugodacus cucurbitae Diptera Tephritidae Fruit/flower feeder Polyphagous Agricultural Yes
2.2 | Environmental data

To characterize climatic conditions, we obtained 19 bioclimatic variables (bio1-bio19) from CHELSA v2.1 for the 1970-2000
period to represent baseline historical climate [35]. For future projections, we considered two contrasting shared socioeconomic
pathways (SSPs): SSP1-2.6 (sustainability-focused) and SSP5-8.5 (fossil fuel-intensive), for mid-century (2011-2040, aka the
“2020s") and late-century (2071-2100, aka the “2080s”") periods. To reduce model-specific uncertainty, we averaged projec-
tions from five general circulation models: GFDL-ESM4 [36], IPSL-CM6A-LR [37], MPI-ESM1-2-HR [38], MRI-ESM2-0 [39], and
UKESM1-0-LL [40].

Land-use data were derived from the Land-Use Harmonization v2 (LUH2) dataset (http://luh.umd.edu) at 0.25° resolu-
tion [41]. For historical conditions, we used LUH2 v2h (850-2015) and averaged 1981-2010 values to align with the histori-
cal climate baseline. For future scenarios, we used LUH2 v2f (2015-2100) under SSP1-2.6 and SSP5-8.5, averaging data for
2011-2040 and 2071-2100. From the 14 available land-use variables, we selected 12 and aggregated several to obtain seven
land-cover classes: forests, non-forests, C3 crops, C4 crops, C3 nitrogen-fixing crops, pastrrange, and secondary mean

biomass density.

Soil data were obtained from the SoilGrids database (https://www.soilgrids.org ; https://www.isric.org/explore/
soilgrids), which provides global soil attributes at 250 m resolution [42]. We extracted 11 variables (at 5-15 cm depth) for
use in both historical and future predictions, reflecting the core environmental conditions of the soil, particularly for taxa in our
study who have life stages in the soil [43, 44].

Because these environmental datasets differ in native spatial resolution, we resampled all layers to 10 x 10 km using bilinear
interpolation implemented in the terra package in R [45]. To minimize multicollinearity among predictors, we applied a variance
inflation factor (VIF) analysis [46] across 62 species and five predictor sets. All retained variables had VIF values < 5, indicating
acceptable levels of collinearity [46] (See Table S2, S3 for the environmental variables used for each species).


http://luh.umd.edu
https://www.soilgrids.org
https://www.isric.org/explore/soilgrids
https://www.isric.org/explore/soilgrids
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2.3 | Species Distribution Modelling

We used the R package biomod2 [47] to model potential species distributions under historical and future climates. Within biomod?2,
we selected six algorithms commonly used in species distribution models: generalized linear models (GLM), gradient boosting
machines (GBM; boosted trees), multivariate adaptive regression splines (MARS), classification tree analysis (CTA), random forests
(RF), and flexible discriminant analysis [FDA, 6]. We generated pseudo-absences using multiple strategies and partitioned occur-
rences (presences and pseudo-absences) into training and testing sets using checkerboard, spatial, and environmental blocking.
Model replication and validation followed Zou et al. (2024).

We evaluated performance across six model sets: climate, land, soil, climate+land, climate+soil,and climate+land+soil,
using the true skill statistic [TSS; 48],the area under the receiver operating characteristic (ROC) curve (AUC) [AUC; 49], and the
5% omission rate [OR5; 50]. These metrics capture complementary aspects of model performance. Threshold-dependent accu-
racy, measured by the TSS, evaluates predictive performance after a continuous suitability surface has been converted into binary
presence-absence predictions, combining sensitivity and specificity in a way that is sensitive to the chosen threshold. Discrimi-
nation capacity, expressed as the AUC, reflects the ability of the model to distinguish between sites where the species is present
versus absent, independent of any threshold. Finally, the false-negative error, quantified by the OR5, indicates the proportion of
observed presences that the model fails to predict, thereby highlighting instances where suitable habitat is incorrectly classified
as unsuitable [51].

To enhance projection reliability, ensembles were constructed from base models satisfying the OR5 criterion (OR5 < 0.05)
and averaged their predictions to historical and future distributions. The continuous suitability was then dichotomized (aka
threshholded) to maximize the TSS [52].

24 | Analyses
24.1 | Model Comparison

We compared four predictor sets per species: climate, climate+land, climate+soil, and climate+land+soil. For each species-
set combination, we computed TSS, AUC, and OR5. Where multiple algorithms or resampling replicates were available, replicate-
level metrics were averaged to a single per-species estimate.

For the TSS evaluation, we used the same hold-out partitions as for model fitting; the classification threshold was chosen
on the training fold (TSS-maximizing) and applied to the corresponding test fold. AUC was computed on held-out data without
a threshold. For OR5, we used the 5% training omission threshold to score omission on the test fold.

For each of the 62 species, we calculated differences from the climate-only baseline:

ATSS = Tsstarget - Tssclimatev
AAUC = AUCtarget - AUCclimate’

AORS5 = OR5.1;5ate — ORStarget, (s0 that improvement is positive). (1)

We summarized the proportion of species with A > 0 and with gains exceeding a priori thresholds (+0.05 for TSS, +0.02 for AUC,
0.05 for OR5), reporting Wilson 95% confidence intervals [53]. To compare variable additions, we ran paired Wilcoxon signed-
rank tests for soil vs 1and and land+soil vs the per-specigreater importance, implying that the model relies more strongly on

that predictor in its predictionss with 95% Cls, p-values, and effect sizes 6 = Z/V/N (sign following the median difference).

2.4.2 | Variable importance

For each species s and predictor combination

c € {climate, climate+land, climate+soil, climate+land+soil}, (2)
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we computed total variable importance I, from biomod2. In biomod2, variable importance is estimated using a permutation
procedure: the values of a given predictor are randomly permuted while keeping all other predictors unchanged, and the resulting
decrease in model predictive performance is quantified (as defined by the biomod2 implementation). Larger decreases indicate
higher importance, implying that the model relies more strongly on that predictor for prediction. Because this importance metric
is relative and model-specific, it can be affected by correlations among predictors.

We used the climate-only model (¢ = climate) as the baseline and summarized the relative change (in %) in total variable

importance as

Isc — Isciim
As,c(%) = 100 x s,c s,cl ate. (3)

s,climate

This yielded three contrasts against the climate baseline:

Atang = As climater1and
Asoir = A climatersoil

Aland+soil = As,climate+land+soi1-

243 | Changeinarea

To identify distribution range changes in the future compared with historical, we compare current and future (2030s and 2050s)
potential distribution area under two climate scenarios (SSP1-2.6 and SSP5-8.5) for each species as follows:

Future — Historical

Area Change = Historical

2.4.4 | Change in distribution latitude and longitude

To detect future direction change patterns in the potential distribution area, we employed centroid-tracking analysis to quantify
the spatio-temporal dynamics of each species’ distribution. Using the R package rgeos [54], we derived the geometric centroid for
the suitable areas. This process was applied iteratively across each species in different time periods and climate change scenarios.
The resulting longitudinal and latitudinal coordinates were used to calculate the magnitude and direction of potential shifts in

the distribution area over time.

24.5 | Jaccard similarity index

The Jaccard similarity index is a commonly used measure of similarity between two sets, ranging from O (no overlap) to 1 (identical

sets). It is calculated as the size of the intersection divided by the size of the union of the two sets, that is, J = mg} [55]. In the
context of species distributions, the Jaccard index quantifies the degree of spatial overlap between a historical distribution and
a projected future distribution. A high Jaccard value indicates that most areas suitable historically are also suitable in the future,
implying relative stability in the species’ range, whereas a low value indicates the potential for substantial turnover, with losses
from historically occupied areas, gains in novel areas, or both. As such, the Jaccard index provides an intuitive summary of how

similar future species distributions are to their historical baselines in terms of shared geographic occupancy.

2.4.6 | Evidential strength and effect sizes

Throughout this paper, we use the Shannon Information Index [56], defined as:

S = —log, (p), )
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where p is the p-value associated with the test in question. We use this as a measure of evidential strength rather than effect size.
Interpreted literally, S quantifies the amount of information® gained against a null hypothesis, measured in bits: an S-value of 1
corresponds to the surprise associated with a single fair coin landing heads once, while S = 10 would produce the same amount
of surprise as a fair coin landing heads 10 times in a row. Larger values thus correspond to increasingly unlikely outcomes under
the null expectation. This framing provides an intuitive and scale-free way to assess how strongly the data support a given effect,
independent of its magnitude. Unlike conventional p-values, which are bounded between 0 and 1 and often difficult to compare
across analyses, the Shannon Information Index is unbounded above and additive,? making differences in evidential weight easier
to interpret.

In this study, we use S alongside the effect-size measure partial n? (denoted: qf,) to distinguish between patterns that are
biologically substantial and those that are merely statistically well supported.

SS,
flg - Sseffecte‘:fe;tserror ' (6)

High S-values indicate robust evidence that a trait or predictor contributes to structuring species responses, while r;f, indi-
cates how much variation that factor explains across species. Considering these two quantities jointly allows us to identify cases
of contingent generality that are both evidentially secure and ecologically meaningful, and to avoid conflating strong statistical
support with large explanatory power.

The Shannon Information Index used here serves a distinct purpose from information criteria such as AIC or BIC. While
information criteria compare competing models by balancing fit against complexity, the Shannon Information Index quantifies
evidence against a specific null hypothesis within a given framework. AIC and BIC address which model is preferable; S addresses
how surprising the observed association would be if no real effect were present. In this study, we use information criteria
implicitly through ensemble model construction, but rely on the Shannon Information Index to assess the evidential weight of
trait-response associations across species. This separation avoids conflating model selection with inference about generality.

3 | RESULTS

3.1 | How will the suitable areas for these species shift under climate change?

For the metrics described in Section 2.4, we subjected the results from all 62 species to an analysis of variance. Species were
treated as independent analytical units. Although phylogenetic relatedness can induce statistical non-independence, our aim
was not to infer evolutionary effects but to characterize cross-species patterns in projected responses. Similar responses among
closely related species, therefore, constitute a meaningful ecological signal rather than a violation of model assumptions.

Figure 1 summarizes how projected climate change alters the potential geographic distributions of the 62 insect pest species
under two future time horizons (2020s vs. 2080s) and two emissions scenarios (SSP1-2.6 and SSP5-8.5). Panels A-C show
cumulative distributions of species responses for changes in proportional suitable area, latitudinal shift, and longitudinal shift,
respectively, while Panel D shows changes in Jaccard similarity between future and historical distributions. In each panel, steeper
curves indicate that a larger fraction of species exhibit similar magnitudes of change, whereas horizontal separation among curves
reflects systematic differences among times or scenarios.

Across responses, time consistently emerges as a dominant driver. Proportional changes in suitable area (Panel A) show
modest but significant effects of both time and scenario, as well as their interaction, indicating that losses and gains in climatically
suitable area become more pronounced by the 2080s and diverge between low- and high-emissions pathways. Latitudinal shifts
(Panel B) exhibit very strong effects of time, scenario, and their interaction, with most species projected to shift poleward, and
substantially larger shifts under SSP5-8.5 by the late century. In contrast, longitudinal shifts (Panel C) show no consistent effects,
suggesting that east-west redistribution is comparatively weak and idiosyncratic across species.

1In information theory, “surprise” is defined as — log, (p) and measures how unlikely an observed event is under a specified expectation; rarer
events are more surprising because they eliminate a larger set of alternatives.
2Because 0 < p < 1, S € [0, ). Importantly, S is additive: for independent tests with p-values p; and p,, the combined evidential weight is

S = —logy(p1p2) = S1 + S2.
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E. Two-way repeated-measures ANOVAs
Response Effect df F p S partial n*
A. Proportional area Time 1,61 12.246 8.8 x10™ 10.15 0.167
A. Proportional area Scenario 1,61 7.747 7%x1073 7.13 0.113
A. Proportional area Time x Scenario 1,61 7.467 8§x1073 6.93 0.109
B. A latitude Time 1,61 87.046 2.4 %1072 41.94 0.588
B. A latitude Scenario 1,61 80.937 8.7x10"®  40.07 0.57
B. A latitude Time X Scenario 1,61 84.15 43 x10™1 41.07 0.58
C. A longitude Time 1,61 0.199 6.57 x 107 0.61 0.003
C. A longitude Scenario 1,61 1.156 2.87 x 107! 1.8 0.019
C. A longitude Time x Scenario 1,61 0.279 6.00 x 107! 0.74 0.005
D. Jaccard similarity Time 1,61  324.542 4.2 x10%* 8431 0.842
D. Jaccard similarity Scenario 1,61  337.279 1.5x10>  85.74 0.847
D. Jaccard similarity Time x Scenario 1,61  342.422 1x10% 86.31 0.849

FIGURE 1 The effects of climate change alone on the distributions of 62 insect pests. A. shows the

cumulative distribution of the changes in the suitable area. B. shows the changes in latitude. C. shows the changes

in longitude. D. shows the changes in Jaccard similarity. E. shows ANOVA tables for each panel. A rule of thumb is

that a qg > 0.14 is a “large effect” but because they are contingent on the model, they are not comparable between

models [57].
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Jaccard similarity (Panel D) highlights the cumulative effects of these changes for range turnover. Similarity between fu-
ture and present distributions declines strongly with time and differs markedly between scenarios, with the lowest similarities
projected for the 2080s under SSP5-8.5. The large S-values for time, scenario, and their interaction underscore that temporal
horizon and emissions pathway jointly structure how much future pest assemblages diverge from contemporary ones, whereas
longitudinal displacement contributes relatively little to this divergence.

3.2 | Isthere generality in the responses of insect pest distributions to climate change?

Perhaps the most important conclusion from Figure 1 emerges from simple inspection: despite clear differences in mean metric
values, species responses exhibit substantial heterogeneity across the 62 species, both in magnitude and in direction. For example,
in Panel A, between 58% and 68% of species are predicted to increase their proportion of suitable habitat, whereas 32% to 42%
are predicted to experience a decrease (see Table S4). And in Panel D, in the 2080s under SSP5-8.5 for example, the Jaccard
similarity ranges from a minimum of 0.11 (near complete dissimilarity: Monochamus notatus) to a maximum of 0.98 (near complete

similarity: Liriomyza trifolii) (see Table S5).

v 0.6F
E A.
5 04 1234 931
h
5 02 5.00
3 00t
S 06F
2 B.
o
0.4}
3 11.31
= ooa2f
5
S 00L
o 0.6
g C.
0.4f 13.13
e 15.43 12.54 11.90
& 02 471 484 883 oo 8.58 775
&
Q 1 1 1 1 1
Feeding Guild Habitat Host Specificity Invasive Status ~ Taxonomic Order
Traits

FIGURE 2 The effect sizes (r]f,) and associated S-values for those traits that seem to account for at least a
modest amount of the variation in the response variable (i.e, p < 0.05, S > 4.32). Changes in ares are not shown
because they did not seem to relate to any of the traits we considered. Blue bars denote the 2020s and yellow
bars the 2080s. A rule of thumb is that a qf, > 0.14 is a “large effect” but because they are contingent on the model,

they are not comparable between models [57].

Not surprisingly, these results indicate a clear absence of global generality: species do not respond to climate change to the
same degree, nor even in the same direction. To search for the presence of contingent generality, we compared species responses
to climate change while accounting for the traits listed in Table 1. Figure 2 summarizes this trait-based search for contingent
generality. Partial n? (Equation 6) quantifies explanatory strength, indicating the proportion of between-species variation associ-
ated with each trait, while the Shannon Information index (humbers above bars; Equation 5) quantifies the strength of statistical

evidence supporting each trait-response association. Larger S-values correspond to greater evidential support.

Interpreted jointly, these metrics distinguish qualitatively different forms of contingency. Traits exhibiting both high r]f, and
high S identify axes along which species responses are not only strongly structured but also robustly supported by these species’
responses, and therefore represent the clearest cases of contingent generality. Traits with high S but low qf, reflect statistically
well-supported yet biologically modest structuring, indicating consistent but minor differentiation among trait groups. Conversely,



12 Zou & Newman

SSP1-2.6 SSP5-8.5

1.0

0.8

0.6

$0202

o
)

Jaccard Similarity
—o
oo

o
e

$S0802

0.2

0.0

\e‘a . \e‘a . ,&e"a
eo® oW RN
CO\ Ve \§

(o el 5
SR S

co®

> (O
Qo0
we® \,69‘6 <

Taxonomic Order

FIGURE 3 Mean Jaccard similarity (+SEM) in projected species distributions summarized by insect order,
shown for two time horizons (2020s, 2080s) and two climate scenarios (SSP1-2.6 and SSP5-8.5). Higher values
indicate greater similarity between projected and baseline distributions, while lower values indicate greater
divergence. Short-term projections in the 2020s show consistently high similarity across orders and scenarios,
whereas 2080s projections reveal increasing divergence that is both scenario-dependent and taxonomically
structured. Differences among orders become most pronounced under the high-emissions SSP5-8.5 scenario,
illustrating contingent generality in climate responses: similarity is neither globally uniform nor idiosyncratic, but
instead depends jointly on taxonomic grouping, time horizon, and climate forcing.

traits with relatively large qf, but low S suggest potentially important sources of variation whose support is limited or unstable,
pointing to patterns that may be sensitive to sampling or model specification. Together, these contrasts show that contingent
generality in insect responses to climate change arises from a small number of trait dimensions whose explanatory power is both
biologically meaningful and evidentially secure, rather than from any universal or globally consistent response pattern.

Based on both qf, and S, the most prominent patterns are associated with taxonomic order, indicating that higher-level phy-
logenetic structure captures substantial and well-supported differences in how species respond to climate change. Feeding guild
shows similarly strong evidential support, especially for latitudinal shifts and changes in distributional similarity under SSP 5-8.5,
suggesting that trophic strategy constitutes a broadly applicable axis along which responses are organized. Habitat also meets this
joint criterion in Jaccard, though with greater variability across response metrics and scenarios, pointing to a form of contingent
generality that is explicitly context-dependent rather than universal. By contrast, host specificity and invasive status are generally
characterized by smaller effect sizes and weaker or less consistent evidential support, implying that these traits contribute to
climate responses in more conditional or idiosyncratic ways. Overall, these results indicate that contingent generality in insect
responses to climate change is concentrated along a limited number of trait dimensions—most notably higher-level taxonomy,
feeding strategy, and, to a lesser extent, habitat.

This interpretation isillustrated directly by Figure 3, which summarizes distributional similarity at the level of taxonomic order.
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Jaccard similarity varies substantially among orders, and these differences become more pronounced with stronger warming
and longer projections. In the 2020s, similarity remains relatively high across most orders under both scenarios, consistent
with broadly conserved distributions over short time scales. By the 2080s, however, this coherence erodes in a strongly order-
dependent manner under SSP5-8.5, with some orders (e.g., Diptera and Thysanoptera) retaining comparatively high similarity
while others (notably Coleoptera and Lepidoptera) exhibit marked divergence. The key result is therefore not that any order
responds uniformly across all conditions, but that taxonomic grouping provides partial and conditional predictive power: species
within the same order tend to respond more similarly to one another than to species in other orders, but most strongly at the
end of the century under the highest emissions. In this way, the figure exemplifies contingent generality, in which biologically
meaningful structure emerges at intermediate levels of organization without implying a universal or scenario-invariant response
to climate change.

3.3 | Does adding land-use and/or soil variables improve the models?
3.3.1 | Model evaluation

The Area Under the Curve (AUC) and the True Skill Statistic (TSS) are two widely used metrics for assessing the quality of species
distribution models. AUC measures a model’s ability to differentiate between presence and absence across all possible thresh-
olds, yielding a threshold-independent score that ranges from 0.5 (indicating random performance) to 1 (indicating perfect per-
formance). In contrast, the TSS is threshold-dependent: it combines sensitivity (true positive rate) and specificity (true negative
rate) into a single statistic that ranges from —1 (indicating perfect failure) to +1 (indicating perfect prediction).

While AUC is useful for evaluating overall discrimination and allows comparisons of models without threshold selection,
it can be sensitive to factors such as prevalence and spatial extent. On the other hand, TSS directly balances omission and
commission errors and is less biased by prevalence, but its value depends on the chosen threshold. Together, AUC and TSS offer

complementary insights into model performance.

TABLE 2 Changes in the goodness of fit metrics True Skill Statistic (TSS) and Area Under the Curve (AUC) that
result from adding predictive variables about land-use, soil, or both. The 95% confidence interval for each estimate,

calculated using the Wilson score interval [53], is shown in brackets as a range.

Variables ATSS AAUC

% Improvement % > 0.05 % Improvement % > 0.02

+land 58 [46,70]  45[33,57]  58[46,70] 47 [35,59]
+soil 31[21,43]  18[10,29] 26 [17,38]  18[10,29]
+land+soil  48[36,61]  35([2548]  47[3559]  39[28,51]

Adding environmental predictors generally improved model performance, but both the frequency and magnitude of gains de-
pended strongly on the type of variables included (Table 2). Models augmented with 1and predictors showed the most consistent
improvements, with more than half exceeding the improvement thresholds for both TSS and AUC. In contrast, soil predictors
produced smaller and less frequent gains, with only about 18-31% of models meeting the more stringent criteria for improvement.
Models including both predictor sets (+1and+soil) exhibited sub-additive improvement rates, as the gains in two performance
metrics were lower than those achieved by +1and, rather than being amplified.

These patterns are reinforced by the paired contrasts in Figure 4. Across all 62 species, adding 1and predictors consistently
outperforms adding soil predictors alone, with median differences in both ATSS and AAUC strongly favouring 1and and narrow
confidence intervals well below zero for the soil — 1and comparison. Moreover, when the combined model is compared to each
species’ best single-addition model, median differences remain negative, indicating that adding soil to land rarely enhances
performance and often slightly diminishes it. Together, the table and figure show that 1and variables constitute the most infor-
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FIGURE 4 Paired contrasts in species-level performance deltas relative to the climate baseline. Each panel
shows one metric: ATSS, AAUC, and AORS (defined as OR5¢jim — OR5target, SO improvement is positive). Rows
display two paired contrasts per species: soil— land and both— best single, where best single is the per-species
maximum of Ag.;1 and Aj..4. Points give Hodges-Lehmann (HL) median differences; horizontal bars denote 95%
confidence intervals; the dashed vertical line marks no difference (0). All estimates come from paired Wilcoxon
signed-rank tests across N = 62 species; labels report: S = —log,(p); 6 = Z/VN. Positive values favour the
left-hand (first) model in each contrast, negative values favour the right-hand (second) model. Negative estimates
for soil- land indicate that 1and generally yields larger gains than soil, and negative estimates for both— best
single indicate sub-additivity of the combined model relative to the best single addition. Abbreviations: TSS, True
Skill Statistic; AUC, Area Under the Curve; ORS5, omission rate at the 5% training-omission threshold; Cl,

confidence interval.

mative and reliable non-climatic predictors, that soil variables provide weaker and more context-dependent benefits, and that
combining the two tends to be sub-additive rather than synergistic—likely reflecting shared underlying structure, given that land

use is partly determined by soil properties.

3.3.2 | Variable importance

Table 3 shows that adding 1and and/or soil predictors produces heterogeneous but generally modest shifts in variable impor-
tance, with no universal improvement across all 62 species but clear patterns within specific ecological groups. Most species fall
into the “marginal positive” or “marginal negative” change categories regardless of whether 1and, soil, or both predictors are
added, demonstrating that non-climatic variables typically adjust—rather than transform—the relative weighting of predictors
in SDMs. A small number of species exhibit large (Exomala orientalis; Orgyia pseudotsugata; Agrilus anxius) or very large (Orgyia
pseudotsugata) positive effects, highlighting cases where 1and or soil information meaningfully enhances explanatory power.
Conversely, a minority of species, particularly certain soil-associated root feeders (e.g., Diabrotica undecimpunctata, Diabrotica
virgifera zeae; Naupactus leucoloma), show consistent negative effects when these predictors are added, indicating possible mis-
matches between soil layers or land-use categories and the ecological drivers of their distributions (Table S6). Taken together, the
table emphasizes that while most species experience only incremental changes, the direction and magnitude of those changes
often align with ecological traits—especially for wood-boring forest beetles, which tend to benefit, and for some belowground
herbivores, which do not (Table Sé).
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TABLE 3 Species counts by relative-change bins of variable importance and addition type. Relative change
denotes the impact of adding additional variables to the best model based on climate variables alone. For example,
20 species had a marginal improvement in model fit (“marginal positive change”) from adding land-use variables to
the model, while 28 species showed a marginal decrease in model fit from adding land-use variables (“marginal
negative change”). In general, we see no clear pattern across all species from including either land-use variables,
soil variables, or both. There are, however, some patterns in subgroups. For example, the xylophagous beetles
Agrilus anxius, Agrilus bilineatus, Anoplophora chinensis, Cacyreus marshalli, Dendroctonus ponderosae, Dendroctonus
rufipennis, Dendroctonus valens, Monochamus alternatus, Monochamus scutellatus, Neocerambyx raddei, Saperda
candida all show model improvement (“positive change”) when adding 1and and/or soil variables. On the other
hand, adding soil and 1and variables degrades the model fits (“negative effect”) for a group of soil-associated root
feeders: Diabrotica undecimpunctata, Diabrotica virgifera zeae, Naupactus leucoloma.

Relative change (%) +land +soil +land+soil
very large positive effect >100 - - 12
large positive effect (60,100] 2b 1€ 1d
positive effect (20,60] 68 of 88
marginal positive effect (0,20] 20 30 28
no effect - - -
marginal negative (-20,0] 28 17 18
negative (-60,-20] 6" 5 6

2 Orgyia pseudotsugata.

b Exomala orientalis; Orgyia pseudotsugata.

© Agrilus anxius.

d Exomala orientalis.

© Bactericera cockerelli; Ceratitis rosa; Dendroctonus rufipennis; Grapholita packardi; Ips pini;
Lycorma delicatula.

f Anthonomus bisignifer; Exomala orientalis; Ips pini; Leptinotarsa decemlineata; Orgyia pseu-
dotsugata; Rhynchophorus ferrugineus; Rhynchophorus palmarum; Saperda candida; Zeugoda-
cus cucurbitae.

& Agrilus anxius; Cacyreus marshalli; Ceratitis rosa; Ips pini; Lycorma delicatula; Saperda candida;
Spodoptera praefica; Zeugodacus cucurbitae.

h Anoplophora chinensis; Heteronychus arator; Metamasius hemipterus; Monochamus notatus;
Naupactus leucoloma; Popillia japonica.

i Heteronychus arator; Metamasius hemipterus; Monochamus notatus; Popillia japonica;
Spodoptera litura.

i Heteronychus arator; Lymantria mathura aurora; Metamasius hemipterus; Monochamus alter-

natus; Naupactus leucoloma; Popillia japonica.
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3.4 | Isthere generality in insect responses to the addition of land and soil variables?
3.4.1 | Dimension-level robustness of land-use and soil effects

To evaluate whether the influence of land and soil predictors exhibits contingent generality, we aggregated individual predic-
tors into ecologically interpretable dimensions and quantified, for each species and predictor set, the strongest robust signal
expressed along each dimension. This framing reflects the level at which our hypotheses are posed—whether land use or soil
—as conceptual dimensions rather than collections of individual, often highly correlated variables that contribute systematically
to species’ responses to climate change.

Specifically, for species /, predictor set g, and ecological dimension d, we defined the dimension-level robustness maximum:

Mig.q = max (hit proportion; , , ) , )

where hit proportion is the proportion of retained final models in which a predictor’s importance exceeded the threshold T = 0.20
(a hit if Var.imp > 7). This summary captures whether a given dimension contains at least one predictor that consistently exerts
a strong and defensible influence, rather than requiring explanatory strength to be evenly distributed across all constituent
variables. Averaging across predictors within a dimension would obscure such structure, particularly when variables serve as
partially redundant proxies for shared ecological processes, and would penalize dimensions represented by larger numbers of
correlated predictors. By contrast, the dimension-level maximum identifies the strongest recurring signal that survives repeated
model fitting and exceeds the importance threshold, providing a conservative and interpretable measure of dimension-level
explanatory potential aligned with our focus on contingent generality.

Land-use predictors were grouped into (i) agricultural intensity and cropping (C3, C4, N-fixing C3 crops), (i) grazing pres-
sure (pasture/rangeland), and (iii) vegetation structure and biomass (forest cover, non-forest natural cover, secondary
mean biomass). Soil predictors were grouped into (i) texture and physical structure (sand, silt, clay, bulk density, coarse
fragments), (i) chemical fertility (CEC, total N, pH), and (iii) carbon storage and pools (SOC, organic carbon density, organic
carbon stocks).

Rank-frequency curves of M, 4 reveal the form of contingent generality within each predictor set (Figure 5). Across di-
mensions, the distributions are characteristically right-skewed: many species exhibit near-zero robustness maxima for a given
dimension, while a smaller subset shows moderate to high values. This pattern indicates that 1and and soil predictors do not
exert uniform influence across the assemblage; instead, when a dimension matters, it does so robustly for a contingent subset

of species.

3.4.2 | Decomposing contingent generality with fingerprint contrasts

The preceding analyses treated predictor-set context as a contrast (e.g., climate+land versus climate+land+soil) and asked
whether species exhibit structured differences across trait dimensions. Here we extend that logic by constructing fingerprints
that separate (i) intrinsic structure within 1and and soil predictors, (ii) climate-conditioning of those structures, (iii) addition when
the complementary predictor class is added in the presence of climate, and (iv) reorganization of climate predictors themselves as
land and/or soil predictors are added. These fingerprints allow us to distinguish effects that are present even in the absence of
climate predictors from those that emerge only in particular predictor contexts.

Reliability-weighted importance score.

For each species /, predictor set g, and predictor variable v, the SDM summaries provide a hit proportion H;,, (fraction of
retained final models in which Var.imp > 7 with 7 = 0.20) and a retention count F; , (number of randomized fits in which the
variable was retained in the final model). We combined these into a reliability-weighted importance score

F/.. WV
Cigy = ( ’\Z )Hi,g,v, (8)

where N, is the number of randomized fits for predictor set g. High C; ., therefore requires both frequent retention and robust
importance conditional on retention.
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FIGURE 5 Rank-frequency curves for dimension-level robustness maxima (M; , 4) within each predictor set.
For each ecological dimension, species are ordered from highest to lowest M; , 4, where M; ;4 is the maximum hit
proportion among variables belonging to that dimension (hit if Var.imp > 7 = 0.20 with 7 = 0.20). Curves with
heavier upper tails indicate dimensions that yield robust predictor-importance signals for a larger contingent
subset of species, while near-zero plateaus indicate dimensions that rarely produce robust hits. Species listed in
each panel are in the top 10% M; . 4 for each trait group.
Four fingerprint types.
Using the C; ., matrices, we defined four types of fingerprints (Figure 6).
1. Intrinsic fingerprints describe the land-only and soil-only structures:
land
c,‘Em = {Ci.land,v}velanm (9)
il
C?OI = {Ci,soil,v}vesoil- (10)
2. Climate-conditioned fingerprints quantify how land and soil profiles change when climate predictors are introduced:
land|climat
/vavn lelinate _ Ci,climate+1and,v - Ci,land.Vs (11)
il|climat
Aizl crmate = Ci,cnmate+soi1,v - Ci,son.v- (12)
3. Addition fingerprints quantify how land (soil) profiles change when soil (land) predictors are added given climate:
il|+land
Aff;l and = Cf.climate+land+soil,v - Ci.climate+land,vv (13)
land|+soil
Ai,avn == C/'.climate+land+soil,v - C/.climate+soil,v~ (14)
4. Climate-variable reorganization fingerprints quantify how the climate predictor profile itself shifts as land-use and/or soil
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FIGURE 6 Fingerprints summarizing intrinsic and context-dependent structure in predictor importance

across species. Panels A-C show land-use fingerprints, D-F soil fingerprints, and G-I climate-variable fingerprints.

For land and soil, panels show intrinsic structure (A, D), climate-conditioned changes when climate predictors are

added (B, E), and addition fingerprints when the complementary predictor class is added in the presence of climate

(C, F). Climate panels show reorganization of climate-predictor importance when land (G), soil (H), or both (I) are

added. Rows (species) are ordered alphabetically with the numbers corresponding to species names, see Table 1,

and columns are predictors; values indicate reliability-weighted changes (or baseline levels for intrinsic panels) in

predictor importance.
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predictors are added:

climate|+land

A,-_c = Ciclinater1and,c — Ciclinate,cs (15)
climate|+soil

A,-_C = Ciclinatersoil,c — Ciclimate,cs (16)
climate|+land+soil

A = Ci,cljmate+1and+soil,c - Ci,chmate,c- (17)

ic

In each case, the fingerprint is a multivariate vector for each species, summarizing either (i) the baseline structure of robust
explanatory recurrence (C) or (ii) a context-specific change in that structure (A).

Visualizing response types and testing trait-structured similarity.

For each fingerprint type, we visualized the species-by-variable matrices as clustered heatmaps (hierarchical clustering on finger-
prints; Figure 6). We also summarized multivariate similarity among species using PCoA, computed from Euclidean distances on
column-Z-scored fingerprints (Figure 7). To test whether fingerprints are structured by traits or taxonomy, we used one-factor
PERMANOVA on each fingerprint distance matrix, reporting evidential support as S-values (Table 4).

Across fingerprint types, trait-structured similarity was most evident for the intrinsic land-only fingerprints (strongest associa-
tion with host specificity, primary habitat, and invasive status) and for climate-conditioned land fingerprints (strongest association
with the same three variables), indicating that robust land-use structure is both present in the absence of climate predictors and
further reorganized when climate predictors enter the model. Addition fingerprints showed moderate structure (most clearly for
land-use fingerprints when soil predictors are added, aligned with primary habitat), consistent with the interpretation that adding
the complementary predictor class induces substantial reorganization for a subset of species rather than uniformly across the
assemblage. Climate-variable reorganization fingerprints showed weaker-to-moderate structuring, with the clearest evidence
emerging when land-use predictors are added to climate predictors (aligned with primary habitat), indicating that part of the
contingency induced by land-use predictors is expressed as a redistribution of robust explanatory recurrence among the climate
predictors themselves.

TABLE 4 PERMANOVA tests linking trait groupings to species similarity in fingerprint profiles. Distances are
Euclidean on column-Z-scored fingerprints. p-values were obtained by permutation (n = 1999 permutations) and

converted to S-values (S = - log, p).
Fingerprint Domain Grouping k pseudo-F P N R? Panel
Intrinsic Land-only Host specificity 2 6.730 0.001 10.966 0.101 A
Intrinsic Land-only Primary habitat 3 13.899 0.001 10966 0.320 A
Intrinsic Land-only Invasive status 2 6.031 0.001 10.966 0.091 A
Intrinsic Land-only Feeding guild 5 2.078 0.004 7.966 0.127 A
Intrinsic Land-only Taxonomic order 5 1918 0.027 5238 0.119 A
Climate-conditioned Land variables Host specificity 2 6.378 0.001 10.966 0.096 B
Climate-conditioned Land variables Primary habitat 3 11.564 0.001 10.966 0.282 B
Climate-conditioned Land variables Invasive status 2 5.849 0.001 10.966 0.089 B
Climate-conditioned Land variables Feeding guild 5 1.959 0.005 7.644 0.121 B
Climate-conditioned Land variables Taxonomic order 5 1.835 0.021 5608 0.114 B
Addition Land variables Host specificity 2 7.482 0.001 10.966 0.111 C
Addition Land variables Primary habitat 3 8.826 0.001 10.966 0.230 C
Addition Land variables Feeding guild 5 2.119 0.001 9.966 0.129 C
Addition Land variables Invasive status 2 4.368 0.001 10.966 0.068 C
Addition Land variables Taxonomic order 5 1.449 0.070 3.847 0.092 C
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Fingerprint Domain Grouping k pseudo-F P S R? Panel
Intrinsic Soil-only Invasive status 2 1.987 0.022 5.540 0.032 D
Intrinsic Soil-only Primary habitat 3 1.281 0.167 2.582 0.042 D
Intrinsic Soil-only Taxonomic order 5 1.111 0.279 1.844 0072 D
Intrinsic Soil-only Feeding guild 5 0.863 0.740 0.435 0.057 D
Intrinsic Soil-only Host specificity 2 0.742 0.723 0.469 0.012 D
Climate-conditioned  Soil variables Primary habitat 3 1703 0.013 6.322 0055 E
Climate-conditioned Soil variables Invasive status 2 1.909 0.021 5573 0.031 E
Climate-conditioned Soil variables Taxonomic order 5 1410 0.034 4.878 0.090 E
Climate-conditioned  Soil variables Feeding guild 5 1.046 0.388 1.366 0.068 E
Climate-conditioned Soil variables Host specificity 2 1.139 0.322 1.637 0.019 E
Addition Soil variables Primary habitat 3 2.005 0.004 7.966 0.064 F
Addition Soil variables Invasive status 2 1.824 0.022 5.506 0.030 F
Addition Soil variables Host specificity 2 1.831 0.026 5.265 0.030 F
Addition Soil variables Taxonomic order 5 1.319 0.086 3.548 0.085 F
Addition Soil variables Feeding guild 5 1.191 0.159 2.657 0.077 F
Climate reorganization Climate variables (+land) Primary habitat 3 2427 0.001 10.966 0076 G
Climate reorganization Climate variables (+land) Invasive status 2 3.110 0.001 10.966 0.049 G
Climate reorganization Climate variables (+land) Host specificity 2 2.205 0.003 8.381 0.035 G
Climate reorganization Climate variables (+land) Feeding guild 5 1.063 0.336 1.573 0.069 G
Climate reorganization Climate variables (+land) Taxonomic order 5 1.051 0375 1415 0069 G
Climate reorganization Climate variables (+soil) Invasive status 2 3.266 0.001 10.966 0.052 H
Climate reorganization Climate variables (+soil) Primary habitat 3 1.807 0.008 7.059 0.059 H
Climate reorganization Climate variables (+soil) Feeding guild 5 1.277 0.061 4.047 0084 H
Climate reorganization Climate variables (+soil) Taxonomic order 5 1.331 0.070 3.847 0.087 H
Climate reorganization Climate variables (+soil) Host specificity 2 1421 0.103 3.279 0.024 H
Climate reorganization Climate variables (+land+soil) Invasive status 2 2.799 0.001 10.966 0.045 |
Climate reorganization Climate variables (+land+soil) Host specificity 2 2.085 0.007 7.158 0.034 |
Climate reorganization Climate variables (+land+soil) Taxonomic order 5 1454 0.036 4.816 0.093 |
Climate reorganization Climate variables (+land+soil) Primary habitat 3 1.509 0.037 4.756 0.049 |
Climate reorganization Climate variables (+land+soil) Feeding guild 5 1.189 0.157 2.676 0.077 |

DISCUSSION

The central aim of this study was to evaluate whether insect pest responses to climate change and to increasing SDM complexity
exhibit global generality, idiosyncrasy, or intermediate forms of contingent generality. By combining multi-scenario climate pro-
jections with trait-based analyses and a detailed examination of how land-use and soil predictors alter model structure, we show
that none of these responses are uniform across species. Instead, consistent patterns emerge at intermediate levels of biological
organization and predictor structure. In this section, we synthesize these results, interpret their ecological and methodological
implications, and situate them within broader debates about SDM inference and prediction under global change.
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FIGURE 7 Principal coordinates analyses (PCoA) summarizing species-level fingerprint structures derived
from land-use, soil, and climate predictors, and their interactions. Panels A-C show land-use fingerprints: (A)

intrinsic land-use structure from land-only models, (B) land-use fingerprints conditioned on climate, and (C)

addition fingerprints capturing changes when soil predictors are added to climate + land models. Panels D-F show

the corresponding soil fingerprints: (D) intrinsic soil structure from soil-only models, (E) soil fingerprints

conditioned on climate, and (F) addition fingerprints capturing changes when land-use predictors are added to

climate + soil models. Panels G-I depict climate reorganization fingerprints, showing how the relative positions of

species in climate space shift when (G) land-use variables, (H) soil variables, or (l) both are added to climate-only

models. Points represent species and are coloured by dominant habitat association (agricultural, forest, or both).

Axis labels report the percentage of variation explained by each PCoA axis. Arrows indicate predictor variables

significantly fitted to the ordination using permutation-based vector fitting (envfit; vegan package in R [58]; p <

0.05); only significant variables are shown.
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4.1 | How will the suitable areas for these species shift under climate change?

Across all four response metrics examined—proportional area change, latitudinal shift, longitudinal shift, and Jaccard similarity—
climate change produces strong aggregate trends but substantial interspecific heterogeneity (Section 3.1; Figure 1). The most
robust signal is the dominance of time horizon and emissions scenario, with later projections and higher forcing consistently
associated with larger range shifts and lower similarity to historical distributions. These results align with previous large-scale
SDM studies showing that the strength of the climatic change, and hence its effects, are strongly time- and scenario-dependent,
particularly for ectothermic organisms whose performance is tightly constrained by temperature.

At the same time, the results demonstrate that these aggregate trends conceal wide variation in both the direction and
magnitude of species-level responses. For example, although poleward shifts dominate on average (Figure 1B), individual species
exhibit minimal movement or even equatorial shifts, and changes in suitable area span strong expansions and contractions within
the same scenario and time horizon (Figure 1A). Correspondingly, Jaccard similarity declines sharply with time and emissions in-
tensity (Figure 1D), but values range from near-complete overlap to almost complete redistribution across species under identical
climatic conditions.

These patterns underscore an important limitation of interpreting climate-driven SDM outputs solely through mean re-
sponses or ensemble summaries. Climate change clearly restructures the potential distributions of insect pests at a global scale,
but it does so in ways that are not uniformly experienced across taxa. The ecological significance of these projections, therefore,
lies not in their central tendencies alone but in the structured heterogeneity they reveal.

4.2 | Isthere generality in the responses of insect pest distributions to climate change?

The results in Section 3.2 demonstrate that—not surprisingly—global generality is absent: species do not respond to climate
change in a consistent or directionally uniform way. However, this absence of universality does not imply that responses are
unstructured or purely idiosyncratic. Instead, trait-based analyses reveal multiple forms of contingent generality, where species
sharing particular characteristics respond more similarly to one another than to species lacking those traits.

This conclusion is most clearly supported by the joint interpretation of effect sizes (r]f,) and evidential strength (S-values) in
Figure 2. A small subset of traits—most notably taxonomic order and feeding guild—consistently exhibit both moderate-to-large
explanatory power and strong evidential support across several response variables. These traits, therefore, define axes along
which climate responses are repeatedly and robustly structured, even though no single trait explains a majority of the variation
across all metrics or scenarios.

Figure 3 illustrates this form of contingent generality concretely. At short time horizons (2020s), differences among orders
are muted, with high Jaccard similarity across scenarios. By the 2080s, and especially under SSP5-8.5, divergence among orders
becomes pronounced, indicating that taxonomic grouping gains predictive relevance as climatic forcing intensifies. Importantly,
this pattern is itself conditional: taxonomic order does not determine a fixed response, but rather modulates the rate and extent
of distributional reorganization under particular climatic contexts.

Traits such as habitat association also meet the joint criterion of evidential support and explanatory strength in some cases,
though less consistently than taxonomy or feeding guild. In contrast, host specificity and invasive status tend to exhibit weaker
and more context-dependent effects, suggesting that these traits influence climate responses in more conditional or indirect ways.
Together, these results support a view of climate responses that is neither universally general nor irreducibly species-specific, but
instead structured by a limited number of biologically meaningful traits whose influence depends on scenario and time horizon.

4.3 | Does adding land-use and/or soil variables improve the resulting models?

The results in Section 3.3 show that adding non-climatic predictors can improve SDM performance, but that these improvements
are neither uniform nor symmetric across predictor types. Land-use variables consistently yield larger and more frequent gains in
model performance than soil variables, as reflected in both threshold-dependent (TSS) and threshold-independent (AUC) metrics
(Table 2; Figure 4). More than half of the species show meaningful improvements when land predictors are added, whereas soil
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predictors produce smaller and less consistent gains.

Paired contrasts (Figure 4) make this asymmetry explicit. Across species, the median improvement from adding land exceeds
that from adding soil for all three evaluation metrics, with strong evidential support. Moreover, combining land and soil predictors
is typically subadditive: adding the complementary predictor class to the best single addition does not further improve perfor-
mance and often slightly reduces it. This result suggests redundancy or partial collinearity in the ecological information captured
by land-use and soil variables, which is not surprising, since land-use is, to some extent, determined by soil type.

These findings have direct methodological implications. Climate-only models systematically omit ecologically relevant land-
use structures, particularly vegetation and habitat configuration, and their performance can often be improved by incorporating
this information. However, indiscriminately adding predictor classes—especially those with diffuse or indirect links to species’
realized niches—does not guarantee further gains and may complicate interpretation without enhancing predictive accuracy.

4.4 | s there generality in insect responses to the addition of land and soil variables?

While land-use variables improve model performance on average, Section 3.4 demonstrates that responses to predictor addition
are themselves heterogeneous, and that this heterogeneity is structured rather than random. Dimension-level robustness analy-
ses (Figure 5) show that land-use and soil predictors rarely exert uniform influence across all species. Instead, robust effects are
concentrated in the upper tails of rank-frequency distributions, indicating that particular ecological dimensions matter strongly
for some species but not for most.

For land-use predictors, dimensions related to vegetation structure and biomass produce the most consistent and robust
signals, particularly when climate predictors are included. Repeated-measures ANOVAs reveal strong evidential support for
structured differences among land-use dimensions and for interactions between predictor-set context and dimension (Figure 5D).
Soil dimensions, by contrast, exhibit weaker and less consistent structure, reinforcing the conclusion that soil effects are more
diffuse and contingent.

Fingerprint analyses extend this interpretation by decomposing how predictor importance changes across modelling con-
texts (Section 3.4.2; Figure 6). Intrinsic land-use fingerprints already show clear structure in the absence of climate predictors, and
this structure is further reorganized when climate is introduced. Addition fingerprints indicate that adding soil to climate+land
models induces substantial reorganization for a subset of species, but not universally. Climate reorganization fingerprints (Fig-
ure 6G-I; Figure 7) show that part of the effect of adding land-use predictors is expressed as a redistribution of importance
among climate variables themselves.

Trait-based PERMANOVA tests (Table 4) reinforce these conclusions. Climate-conditioned land-use fingerprints show strong
and consistent structuring by primary habitat, host breadth, invasive status, taxonomic order and feeding guild, whereas soil-
related fingerprints show much weaker trait associations. Together, these results indicate that contingent generality in responses
to predictor addition is most evident for land-use effects, particularly when they interact with climate and species’ ecological

roles.

4.5 | Conclusions

Taken together, our results demonstrate that neither insect pest responses to climate change nor their responses to additional
predictor variables can be described as either globally general or purely idiosyncratic. Climate change produces strong, scenario-
and time-dependent aggregate trends, but these trends are expressed through highly heterogeneous species-level responses.
Similarly, adding land-use and soil predictors improves model performance on average, but the magnitude, direction, and explana-
tory structure of those improvements depend on species traits and ecological context.

The concept of contingent generality provides a unifying framework for interpreting these patterns. Generality emerges,
but only at intermediate levels of organization—such as taxonomic order, feeding guild, habitat association, and specific predictor
dimensions—and only under particular climatic and modelling contexts. Recognizing this contingency has practical implications for
pest risk assessment and ecological forecasting: SDMs are most informative when their assumptions about generality are made
explicit, their predictor sets are chosen with ecological intent rather than maximal inclusion, and their outputs are interpreted in
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terms of structured heterogeneity rather than average response alone.

Future work should build on this approach by integrating mechanistic information where available, refining trait classifica-
tions to capture functional rather than taxonomic similarity, and explicitly testing how management-relevant decisions depend on
the forms of contingent generality assumed. In the context of rapidly changing climates and expanding pest pressures, embracing
rather than obscuring contingency may be essential to producing robust, actionable ecological predictions.
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