
Page 1 of 22 

 

Policy-Driven Forest Recovery in a Crisis-Affected Landscape: A Remote Sensing Study in 

the Rohingya Refugee Region of Bangladesh 

 

Md Shahinur Rahman1,2*, Md Jamius Shams Sowrov3,4, Md. Ariful Islam3,5, Tamjidul Ridwan2, 

Md Rafikul Islam3, Tanmoy Das Utsha2 

 

1Coastal Sciences Division, School of Ocean Science and Engineering, The University of 

Southern Mississippi, Ocean Springs 39564, USA 

2Environmental Science Discipline, Life Science School, Khulna University, Khulna 9208, 

Bangladesh 

3Forestry and Wood Technology Discipline, Life Science School, Khulna University, Khulna 

9208, Bangladesh 

4Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland 

5Department of Forestry and Environmental Science, Rangamati Science & Technology 

University, Rangamati 4500, Bangladesh 

 

 

 

 

 

 

 

*Corresponding author:  

Md. Shahinur Rahman 

Coastal Sciences Division, School of Ocean Science and Engineering, The University of 

Southern Mississippi, Ocean Springs 39564, USA 

Email : Shahinur.usm@gmail.com  

 

 

 

 

mailto:Shahinur.usm@gmail.com


Page 2 of 22 

 

Abstract 

Human displacement crises often place sudden pressure on forested environments where shelter 

materials and cooking fuel are sourced directly from nearby natural resources. Since 2017, the 

Rohingya refugee influx into Ukhiya and Teknaf sub-districts (Cox’s Bazar, Bangladesh) has 

exerted intense pressure on surrounding forests through rapid settlement expansion and fuelwood 

extraction. In response, coordinated recovery initiatives, including reforestation and Liquefied 

Petroleum Gas (LPG) distribution, were introduced in later years. This study examines vegetation 

change and the effects of reforestation and LPG-distribution programs in vegetation recovery from 

2016 to 2024 using multi-temporal Landsat 8 surface reflectance imagery processed in Google 

Earth Engine. Annual median composites were used to calculate the Normalized Difference 

Vegetation Index (NDVI) and classify land cover into dense vegetation (NDVI > 0.50), light 

vegetation (0.20–0.50), and non-vegetated areas (≤ 0.20). Vegetation change was assessed using 

area estimation and spatial change detection, while temporal trends were analyzed using the 

Mann–Kendall test and Sen’s slope nonparametric trend estimator. 

Results reveal a clear shift in vegetation dynamics. Between 2016 and 2018, dense vegetation 

declined sharply, while light vegetation and non-vegetated areas expanded, indicating widespread 

canopy disturbance linked to settlement growth and fuelwood use. Spatial analysis identified 

Kutupalong–Balukhali (Ukhiya) and Jadipara (Teknaf) as major degradation hotspots. Following 

policy interventions introduced in 2019, particularly large-scale LPG distribution and 

collaborative reforestation, vegetation trends reversed. Recovery was strongest in areas that had 

experienced the most severe degradation, although localized pressure persisted in parts of 

Unchiprang and Whykong of Ukhiya. Overall, the findings provide clear evidence that targeted 

policies, especially LPG distribution and coordinated reforestation, played a critical role in 

reversing crisis-driven forest loss and supporting landscape recovery. 

Keywords: Vegetation Change, Policy-driven Recovery, Remote Sensing, Rohingya Refugee, 

Landsat-8 

Highlights 

• Quantified vegetation changes in Ukhiya-Teknaf using Landsat-8 NDVI for 2016-2024 

• Observed sharp influx-period degradation (2016-2018): dense vegetation declined while 

light and non-vegetated classes expanded 

• Post-2019 period showed strong recovery: dense vegetation increased, and light vegetation 

decreased markedly by 2024 

• Hotspot mapping identified severe pre-policy degradation in Kutupalong-Balukhali and 

Jadipara, with widespread recovery by 2024 

• Vegetation recovery after 2019 coincided with large-scale LPG distribution and 

reforestation programs, suggesting a strong policy influence on post-crisis forest 

regeneration 
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1. Introduction 

Human displacement crises often precipitate significant environmental changes, especially in 

ecologically sensitive regions with forested landscapes (Sánchez-Cuervo & Aide, 2013). A prime 

example of this phenomenon is the influx of Rohingya refugees into the southeastern region of 

Bangladesh, specifically in the Ukhiya and Teknaf sub-districts of Cox’s Bazar district. This crisis 

has led to both the rapid degradation of the forest and the subsequent efforts to recover it (Hasan 

et al., 2020; Mukul et al., 2019; Hassan et al., 2018). However, studies reveal that since 2017, the 

expansion of refugee settlements has accelerated deforestation and forest fragmentation, reducing 

core forest areas while creating more edge and patch habitat. (Hassan et al., 2023; Hassan et al., 

2018). The Rohingya refugee influx into Bangladesh represents one of the largest and most 

protracted humanitarian crises of the 21st century (Chowdhury et al., 2022; Faye, 2021; Taufiq, 

2021). Since August 2017, over 1.3 million (Uddin, 2020; Khan, 2024) Rohingya refugees have 

sought shelter and as of 2024 they live in 34 congested camps (Islam & Siddika, 2021; Kudrat-E-

Khuda, 2020) across the Ukhiya and Teknaf sub-districts (Hassan et al., 2018). This mass 

displacement has generated immense environmental challenges (Hossain, 2022; Ahmed et al., 

2021). Forests were cleared to accommodate camps, and fuelwood demand accelerated 

deforestation, leading to the loss of biodiversity and a change in the ecological landscape (Hasan 

et al., 2021; Rahman et al., 2019; Hassan et al., 2018). Studies have documented rapid forest 

decline during the initial crisis period (2016-2018), with thousands of hectares of tree cover lost 

to settlement expansion and resource extraction (Braun et al., 2019; Hassan et al., 2018). For 

example, Hassan et al. (2018) reported that between 2016 and 2017, forest cover surrounding the 

three major camps, particularly Kutupalong and Balukhali, Unchiprang and Nayapara–Leda, 

reduced by approximately 2,283 hectares, coinciding with a camp expansion of approximately 

1,219 hectares. Similarly, Hossain and Moniruzzaman (2021) documented a 17% decline in 

vegetation cover between 2010 and 2020, with a 582% increase in refugee camp areas. Mitra et al. 

(2025) also found persistent forest degradation from 2016 to 2024, correlating with the expansion 

of settlement areas. Mishu et al. (2023) highlighted that shelter construction materials and dense 

packing increase fire risks, further threatening forested areas. Additionally, a study by Karmakar 

et al. (2025) shows that the rapid expansion of refugee settlements has led to increased land surface 

temperatures, exacerbating local climate conditions and impacting forest ecosystems.  

Addressing the underlying drivers of deforestation, such as camp expansion and heavy reliance on 

firewood, has been central to environmental recovery (Ahmed & Sabastini, 2024; Parveen, 2024; 

Sajib et al., 2022). Though the mass expansion of settlements like 2017 slowed down (Hassan et 

al., 2018), the growing populations continue to drive up fuelwood demand (Islam et al., 2022; Rafa 

et al., 2021). The growing number of refugees has led to an escalation in fuelwood consumption, 

as they need around 750,000 kg of fuelwood for cooking and heating every day.  (Rafa et al., 2021; 

Hassan et al., 2018). This increased fuelwood consumption places immense pressure on the 

surrounding forests, substantially contributing to the depletion of vegetation in the region of 

Ukhiya and Teknaf sub-districts of Cox’s Bazar (Rahman & Mitani, 2025; Parveen, 2024). In 
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response, several environmental initiatives were launched to address both the immediate needs of 

the refugee population and the long-term sustainability of the local ecosystem (Bashar & Bernell, 

2025; Ali & Shahreen, 2024). Food and Agriculture Organization (FAO), the International 

Organization for Migration (IOM), and the World Food Programme (WFP) collaboratively 

launched the Safe Access to Fuel and Energy (SAFE plus) initiative to promote sustainable energy 

sources and resilient livelihoods (Reliefweb, 2020). One key component of the initiative was the 

distribution of Liquefied Petroleum Gas (LPG), a cleaner and more efficient fuel alternative to 

firewood, significantly reducing the pressure on forests while improving the energy access for 

households within the refugee camps (Rafa et al., 2024; Chowdhury et al., 2022). In addition to 

the collaboration with the Forest Department, the FAO established a plantation program to restore 

vegetation cover by planting various fast-growing native species within and around refugee camps 

(Rahman & Mitani, 2025; Jalal et al., 2023). This fast-growing native species stabilized soil, 

reduced landslide risk, and improved the microclimatic conditions of the camps with increased 

vegetation cover (Mahmood et al., 2021). FAO, along with the Forest Department, has restored 

approximately 258 hectares of land within the camps and an additional 2,000 hectares of adjacent 

camp area (FAO, 2020).  

Since 2018, this multi-sectoral response, including government and humanitarian interventions, 

has gradually reversed environmental degradation (Rahman & Mitani, 2025; Kumar, 2022). Key 

initiatives such as tree planting campaigns and clean energy adoption (including distribution of 

LPG to reduce reliance on fuelwood) have sparked a notable rebound in vegetation (Bashar & 

Bernell, 2025). By 2019, the trajectory began to shift from degradation to recovery. Reforestation 

campaigns, legislative measures, and widespread LPG distribution encouraged the gradual 

regrowth of vegetation (Bashar & Bernell, 2025; Rahman & Mitani, 2025). The reforestation 

campaigns involved not only planting trees but also choosing site-specific species and care & 

maintenance of planted trees for ecosystem sustainability, ensuring long-term resilience of restored 

vegetation (Mahmood et al., 2021). Additionally, the adoption of clean and renewable energy 

sources reduced pressure on forests by cutting fuelwood demand, contributing to soil conservation 

and improved vegetation cover (Rahman & Mitani, 2025; Parveen, 2024). By 2024, the region’s 

vegetative cover had not only recovered to pre-crisis levels but had in many areas flourished 

beyond them (Mitra et al., 2025). 

Despite these positive trends, most studies have focused narrowly on documenting forest loss and 

land degradation, while insufficiently addressing the efficacy of recovery initiatives. In particular, 

the policies that promoted the use of LPG over fuelwood for cooking and the reforestation 

activities, including their care and maintenance. To bridge this gap, the present study examines 

vegetation recovery in Ukhiya and Teknaf from 2016 to 2024 using multi-temporal remote sensing 

data and how the policy implementation helped improve the restoration of the degraded vegetation 

cover in the Rohingya refugee camps. 
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2. Methods 

2.1 Study area 

The research area encompasses the Ukhiya and Teknaf upazilas within the Cox’s Bazar district, 

located in the Chittagong division of Bangladesh (Figure 1). Ukhiya and Teknaf upazilas were 

covered with tropical evergreen and various other vegetation types, with the Teknaf Wildlife 

Sanctuary serves as a vital forest area in Cox’s Bazar (Rashid, 2013). At present, approximately 

33 Rohingya refugee camps have emerged, comprising 26 camps in Ukhiya Upazila and 7 camps 

in Teknaf Upazila, collectively hosting 1,168,398 refugees across 243,497 households, with a 

demographic composition of 51.5% females and 48.5% males (UNHCR, 2025; Rahman & Mitani, 

2025; Mowla, 2021; Uddin, 2020). While the Rohingya camps are primarily located in the 

PalongKhali union of Ukhiya and the Whykong, Nhila, and Baharchhara unions of Teknaf upazila 

(Rahman, 2017), this study encompasses the other unions within these two upazilas, excluding 

Saint Martin Island, to examine the overall changes in vegetation cover from 2016 to 2024. 

 

Figure 1: Study area map encompassing the Ukhiya and Teknaf Upazilas of Cox’s Bazar, 

excluding Saint Martin Island under the Teknaf Upazila 
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2.2 Data 

This study utilized multispectral remote sensing data acquired from the Landsat-8 Operational 

Land Imager (OLI) Collection 2, Level-2 surface reflectance products, which provide a spatial 

resolution of 30 m. Satellite imagery from five reference years (2016, 2018, 2020, 2022, and 2024) 

was used to evaluate temporal fluctuations in vegetation cover within the Ukhiya and Teknaf 

upazilas. For all study years, Landsat-8 OLI Band 4 (red) and Band 5 (near-infrared) were 

employed to characterize vegetation conditions. 

All imagery was obtained from the U.S. Geological Survey (USGS) EarthExplorer archive and 

processed using the Google Earth Engine (GEE) cloud-computing platform. Full-year (January–

December) image collections were used to reduce seasonal bias in vegetation phenology, and 

annual median composites were generated for each study year. 

2.3 Image Processing 

Image processing and analysis were conducted utilizing Google Earth Engine (GEE). The Landsat 

8 image collection was clipped to the specified shapefile of the study area and filtered according 

to date. To remove cloud and atmospheric distortions, the Quality Assurance pixel band was 

utilized to mask pixels impacted by clouds (bit 3), cloud shadows (bit 4), snow (bit 5), and cirrus 

(bit 6). Following the masking process, median composites were created for each year to produce 

a strong representation of annual vegetation conditions. 

2.4 NDVI Calculation 

The Normalized Difference Vegetation Index (NDVI) was calculated to quantify vegetation 

conditions using the red and near-infrared spectral bands derived from Landsat-8 OLI imagery. 

NDVI was computed using the standard formulation, NDVI = (NIR − Red) / (NIR + Red), where 

NIR represents the near-infrared reflectance from Band 5, and Red corresponds to the red 

reflectance from Band 4. The resulting NDVI values range from −1.0 to +1.0, with higher values 

indicating denser and healthier vegetation cover, while lower or negative values represent sparse 

vegetation or non-vegetated surfaces. NDVI maps were generated for each study year to assess the 

spatial and temporal variability of vegetation cover across the study area. 

2.5 NDVI-based Classification 

NDVI values were categorized into three groups to assess the vegetation cover: Dense vegetation: 

NDVI > 0.50, Light Vegetation: > 0.20 to ≤ 0.50, and No Vegetation:  ≤ 0.20 (U.S. Geological 

Survey, n.d., Bora et al., 2025; El-Shirbeny et al., 2022; Hashim et al., 2019; Khalil et al., 2024; 

Thokchom, 2008; Era & Ferdous, 2022). A land cover map was generated for each target year by 

reclassifying each NDVI map according to these thresholds. NDVI values typically range from -1 

to 1, with negative values up to 0.2 indicating non-vegetative surfaces such as water, rocks, or bare 

soil. Values between 0.2 and 0.5 represent areas with sparse or light vegetation, often including 

grasslands, shrubs, or young plants. Values above 0.5 reflect dense, healthy vegetation, typically 
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forests or well-established vegetative areas (USGS, 2018; Qui et al., 2018; Zaitunah and Sahara, 

2021; Tucker, 1979). 

2.6 Area Estimation 

The extent of each vegetation type was ascertained by calculating the total area occupied by pixels 

and classified as dense vegetation, light vegetation, or non-vegetation. Each pixel, with a spatial 

resolution of 30 × 30 meters (900 square meters), was converted into an area expressed in hectares 

(ha). The total area for each class (dense, light, and no vegetation) was determined by aggregating 

the corresponding pixels over the study area.  

2.7 Trend Analysis and Visualization 

The estimated area of each vegetation class was compared across the designated years (2016, 2018, 

2020, 2022, 2024) to analyze temporal trends in vegetation change. A time-series visualization 

was developed to demonstrate the interannual fluctuations in dense vegetation, light vegetation, 

and no vegetation. Distinct color schemes were applied to each image in ArcGIS Pro 3.5 to 

improve interpretability.  Moreover, the total areas of vegetation for each year were calculated and 

tabulated, and the yearly changes were evaluated. To assess the monotonic trend of vegetation 

from 2016 to 2024, a non-parametric Mann-Kendall test was performed, and the statistical 

significance was evaluated using a 95% confidence interval (α = 0.05). For each vegetation class, 

the τ statistic, associated p-value, and Sen’s slope estimate were derived. 

3. Results 

3.1 Changes in vegetation and the estimates from 2016 to 2024 

Dense vegetation cover in 2016 was 44272 hectares (ha), and it declined by 13% in 2018 due to 

the Rohingya influx in 2017, and the vegetation cover was reached at 38476 ha (Table 1). After 

this massive destruction, by 2020, dense vegetation experienced a partial recovery (+8% relative 

to 2018), covering 41673 ha, which remained relatively stable, 40742 ha in 2022, though slight 

damage was noticed (-2% relative to 2020). By 2024, dense vegetation covered 45906 ha, showing 

a 13% increase compared to 2022, which mostly covered the degraded areas since 2017, and 

signifies the effort of vegetation recovery.  

In 2016, light vegetation covered 10830 ha and exhibited a substantial increase of 49% by 2018. 

This suggests that dense vegetation has been transformed into light vegetation in certain regions, 

primarily because of deforestation and extensive harm to forested areas caused by the influx of 

Rohingya refugees. The peak light vegetation cover decreased by 16% in 2020, amounting to 

13546 ha of vegetation cover, which also indicated an increase in dense vegetation resulting from 

reforestation efforts. A moderate increase of 5.5% was observed in 2022, covering an area of 14290 

ha, likely attributable to plantation initiatives undertaken by various agencies in the Ukhiya and 

Teknaf regions. In 2024, light vegetation experienced a significant decline of 34%, encompassing 
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an area of 9,426.3 ha. This indicates that the light vegetation was transformed into dense 

vegetation, reflecting the effectiveness of the recovery efforts.  

Table 1: Vegetation area (ha) and annual change (%) by vegetation type in the Ukhiya and Teknaf 

sub-districts (2016–2024) 

Year 

Dense 

Vegetation 

(ha) 

Dense 

Change 

(%) 

Light 

Vegetation 

(ha) 

Light 

Change 

(%) 

Non- 

Vegetation 

(ha) 

Non- 

Vegetation 

Change (%) 

2016 44272 N/A 10830 N/A 6644 N/A 

2018 38476 −13 16136 +49 6862 +3 

2020 41673 +8 13546 −16 6383 −7 

2022 40742 −2 14290 +5.5 6283 −1.6 

2024 45906 +13 9426 −34 6256 −0.4 

 

The coverage of non-vegetated areas in 2016 was 6644 hectares, which rose by approximately 3% 

to 6862 hectares in 2018. This signifies the expansion of settlement zones in the Ukhiya and Teknaf 

regions that were cleared to establish essential infrastructure for the Rohingya refugees. After 

2018, the non-vegetated areas shrank by 7%, 1.6%, and 0.4% in 2020, 2022, and 2024, 

respectively. In 2020, the non-vegetated areas comprised 6383 hectares, decreasing to 6256 

hectares by 2024. The findings demonstrate the conversion of non-vegetated areas into vegetated 

areas as dense vegetation became more prevalent in 2024.  

3.2 Pre-policy decline of the forest resources (Pre and post influx 2017) 

Spatial comparison of vegetation maps for 2016 and 2018 reveals extensive degradation across the 

Ukhiya and Teknaf sub-districts following the 2017 influx (Figure 2). Dense vegetation was 

extensively transformed into light vegetation, with localized transitions to non-vegetated surfaces. 

This pattern reflects widespread canopy disturbance rather than uniform forest clearing. The 3% 

increase in non-vegetated areas observed in 2018 further corroborates the degradation of vegetated 

surfaces and their partial conversion to non-vegetated land. 

The most severe vegetation degradation was concentrated in Ukhiya sub-district, particularly 

within the Kutupalong and Balukhali areas, where large, contiguous zones of dense vegetation loss 

were observed. This pronounced degradation corresponds spatially with the concentration of 26 

Rohingya refugee camps established within Ukhiya, indicating intense localized pressure on 

surrounding forest resources. These findings are consistent with those of Hassan et al. (2018), who 

reported that settlement area in the Kutupalong–Balukhali complex expanded from approximately 

146 ha in December 2016 to 1365 ha in December 2017, while forest cover within a 10-km buffer 

declined from approximately 11800 ha to 9740 ha, representing a net forest loss of ~2060 ha 
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(~18%) over the same period. Together, these results reflect the rapid conversion of forested land 

to settlements and associated disturbed surfaces following the influx. 

 

Figure 2: Pre-policy vegetation cover in the Ukhiya and Teknaf sub-districts of Cox’s Bazar 

Additional degradation occurred in Haldia Palong, Court Bazar, Morichya, and Rumkhapalong, 

indicating broader but less intense canopy disturbance beyond the main settlement corridor. 

Though there were no Rohingya camps, the vegetation loss happened due to the demand for 

fuelwood and the management of it from the surrounding areas. In the Teknaf sub-district, 

degradation was more spatially fragmented but pronounced in Jadipara, with additional impacts in 

Nhila and Rangikhali unions. 

3.3 Post policy improvement/recovery of the forest resources (2019-2024) 

Vegetation maps for 2020, 2022, and 2024 indicate a clear improvement in vegetation conditions 

following the implementation of policy interventions in 2019 (Figure 3). Before these 

interventions, forest degradation had reached a critical level, with Hasan et al. (2021) projecting 

losses of 1506 ha of shrubland and 1,264 ha of mixed forest by 2023 under a continuation of pre-



Page 10 of 22 

 

policy trends. In contrast, the post-policy period is characterized by an expansion of dense 

vegetation, a contraction of light vegetation, and a gradual reduction of non-vegetated areas. This 

shift coincides with the implementation of two major policy measures, including Liquefied 

Petroleum Gas (LPG) distribution to reduce fuelwood dependence and collaborative reforestation 

initiatives supported by community-based care and maintenance, which together contributed to 

sustained vegetation recovery over time. 

Figure 3: Post-policy vegetation cover in the Ukhiya and Teknaf sub-districts of Cox’s Bazar 

Across the post-policy period, vegetation dynamics show progressive strengthening of canopy 

structure rather than short-term regrowth. Dense vegetation expanded steadily through 2024, while 

light vegetation declined sharply by the end of the study period, indicating transitions from 

degraded or intermediate vegetation states toward more structurally intact forest cover. 

Concurrently, non-vegetated areas exhibited a gradual contraction, suggesting limited new land 

clearing after 2019. Together, these temporal patterns demonstrate that the post-policy phase was 

dominated by recovery-oriented vegetation change, especially in the degradation hotspots of 

Ukhiya and Teknaf sub-districts. 

3.4 Spatial distribution of vegetation loss (2016 and 2018) and recovery (2018 and 2024) hotspots 

Change-detection analysis provides a spatially explicit synthesis of vegetation dynamics by 

classifying transitions into High degradation, Low degradation, No change, Low recovery, and 
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High recovery categories (Figure 4). Unlike the class-based maps in Sections 3.2 and 3.3, this 

analysis isolates where vegetation loss and recovery were concentrated, allowing direct 

identification of degradation and recovery hotspots. 

  

Figure 4: Spatial distribution of vegetation loss and recovery in the Rohingya refugee region, 

comparing post-crisis (2018) and recovery (2024) periods 

The vegetation change map from 2016 to 2018 shows that vegetation loss was highly clustered in 

discrete locations, while recovery signals were minimal. High degradation was confined primarily 

to Kutupalong and Balukhali in Ukhiya sub-district and Jadipara in Teknaf, indicating zones of 

intense and localized disturbance. Surrounding these hotspots, Low degradation formed a broader 

belt of partial canopy disturbance across Haldia Palong, Court Bazar, Morichya, and 

Rumkhapalong in Ukhiya, and Nhila and Rangikhali in Teknaf. The near absence of High recovery 

and the limited extent of Low recovery during this period confirm that vegetation change between 

2016 and 2018 was overwhelmingly degradational. 
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In contrast, the vegetation change map from 2018 to 2024 reveals a marked spatial reorganization 

toward recovery. Large portions of Ukhiya and Teknaf transitioned into Low recovery and 

localized High recovery classes, indicating widespread improvement in vegetation condition. 

Importantly, the earlier degradation epicenter in the Kutupalong–Balukhali corridor shifted 

prominently into recovery classes, demonstrating that areas most severely affected during the 

influx experienced the strongest recovery. Residual degradation was spatially restricted and largely 

confined to Unchiprang and Whykong in Teknaf, where Low degradation persisted. These patterns 

indicate that recovery was spatially heterogeneous, with earlier disturbance hotspots responding 

more strongly than areas subject to continued or emerging pressure. 

3.5 Vegetation trajectory and trend characteristics following policy intervention 

Vegetation cover dynamics across Ukhiya and Teknaf exhibit a distinct two-phase trajectory, 

characterized by a rapid decline following the 2017 Rohingya refugee influx and a subsequent 

recovery phase beginning after policy intervention in 2019 (Table 1; Figure 5). Before 

intervention, the total vegetated area declined sharply between 2016 and 2018, reflecting 

widespread forest degradation during the influx period. Following the implementation of policy 

measures in 2019, this declining trajectory reversed, with vegetation cover showing consistent 

gains through 2020, 2022, and 2024. By the end of the study period, total vegetation area had 

recovered to levels comparable to the pre-influx baseline, indicating substantial restoration of 

degraded landscapes (Table 1, Figure 5).  

 

Figure 5: Policy implication effects on dense and light vegetation, showing the pre- and post-

policy changes  
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This trajectory reflects a marked shift in vegetation dynamics rather than a gradual fluctuation. 

The post-policy period is characterized by successive increases in vegetated areas relative to the 

minimum of 2018, representing a sustained recovery trend over multiple observation intervals 

(Table 1). The trajectory analysis, therefore, indicates a policy-associated inflection point in 

vegetation dynamics, separating a degradation-dominated phase from a recovery-oriented phase. 

To assess whether these observed changes constitute statistically significant monotonic trends over 

the full study period, a Mann–Kendall (MK) trend test was applied to even-year observations from 

2016 to 2024 (Figure 6). The MK results indicate no statistically significant monotonic trend for 

dense vegetation (τ = 0.20, p = 0.806) or light vegetation (τ = -0.20, p = 0.806). Although Sen’s 

slope estimates suggest a modest positive tendency for dense vegetation (+771 ha yr⁻¹) and a 

negative tendency for light vegetation (-637 ha yr⁻¹), the associated p-values indicate that these 

tendencies are not distinguishable from interannual variability.  

  
Figure 6: Mann-Kendall test of dense and light vegetation showing the trend of vegetation 

changes over the years 

In contrast, non-vegetated land exhibited a stronger negative monotonic association with time (τ 

= -0.80, p = 0.086), accompanied by a Sen’s slope of -110 ha yr⁻¹. While this trend did not reach 

the conventional 0.05 significance threshold, the magnitude and direction of τ suggest a consistent 

decline in non-vegetated surfaces over the study period (Figure 6). 

Taken together, the trajectory and trend analyses indicate that vegetation change in the study area 

is best described as non-linear and phase-dependent, rather than as a single monotonic process. 

The sharp decline during the influx period, followed by post-policy recovery, produces an overall 

trajectory that masks monotonic significance when evaluated across the full 2016-2024 interval. 

These results highlight the importance of trajectory-based analysis for detecting policy-driven 

landscape responses in humanitarian crisis settings. 
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4. Discussion 

This study demonstrates that subsequent policy interventions have reshaped the trajectory of forest 

cover in Ukhiya and Teknaf following destruction during and immediately after the influx. Remote 

sensing analysis revealed two distinct phases: a period of severe vegetation loss between 2016 and 

2018, followed by substantial recovery from 2019 to 2024.  

4.1 Crisis-Driven Vegetation Collapse: Energy Crisis, Shelter Demand, and Ecological 

Thresholds 

The magnitude and rate (13% dense vegetation loss and 3% non-vegetated area increase) of 

deforestation after the 2017 Rohingya influx suggest that the forest loss in the Ukhiya-Teknaf area 

was driven by immediate structural pressures associated with humanitarian survival rather than 

gradual land-use changes. Two interconnected variables, the construction of emergency shelters 

and household energy scarcity, were responsible for most of the forest clearing during the initial 

crisis phase, with almost 60% of forest loss linked to the establishment of makeshift shelters and 

the collecting of fuelwood (Hasan et al., 2021; Brac, 2017). Energy demand assumed a notably 

pivotal role. With an average household size of approximately seven members, each refugee family 

necessitated around 151 kg of firewood per month, leading to an estimated extraction of 6800 tons 

of biomass from nearby forests within a short period (Mohiuddin and Molderez 2023; Barua, 

2018). This degree of extraction is considerably beyond the regenerative potential of local forest 

ecosystems, thereby converting adjacent forests into an open-access resource under crisis 

conditions. In this scenario, deforestation resulted not just from unregulated exploitation but also 

from an unavoidable consequence of energy instability coupled with institutional deficiencies 

throughout the emergency response phase. 

The recorded 13% reduction in dense vegetation cover from 2016 to 2018 signifies a threshold 

disruption rather than gradual degradation. Upon the simultaneous destruction of the canopy 

structure and undergrowth plants, the regulatory functions of the ecosystem swiftly declined. The 

associated 3% rise in non-vegetated areas in 2018 suggests that some previously vegetated land 

was transformed into settlements, infrastructure, and bare surfaces during the crisis, underscoring 

the impact of emergency land conversion on ecological instability. This elucidates why 

deforestation was accompanied by a series of subsequent environmental repercussions, including 

intensified soil erosion, habitat degradation, modified hydrological dynamics, and increased 

vulnerability to landslides (Ahmed et al., 2020; Kamal et al., 2022). The pre-policy phase 

underscores a crucial fact for crisis ecology that when humanitarian solutions inadequately meet 

energy and material requirements early on, forest ecosystems may cross ecological thresholds, 

rendering recovery progressively expensive and risky. 

4.2 Policy-Enabled Recovery: Coupling Reforestation with Fuelwood Pressure Reduction 
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The recovery trajectory in the Ukhiya–Teknaf region post-2019 suggests that forest regeneration 

in crisis-affected areas is facilitated by policies rather than occurring spontaneously. The 

simultaneous increase of dense vegetation and reduction of light and non-vegetated classes 

following policy implementation indicates that recovery comprised structural and functional 

enhancements rather than just short-term regrowth. 

Reforestation initiatives were central to initiating this transition by stabilizing degraded slopes, 

restoring canopy-forming species, and overcoming biophysical constraints that limited natural 

regeneration. In camp areas, reforestation activities such as site preparation, plantation 

management, and maintenance were carried out by the refugees, and host communities were 

involved in restoration outside the camps. The increasing dominance of dense vegetation over light 

vegetation implies successional advancement, consistent with restoration pathways observed in 

highly disturbed tropical systems where active intervention is required (Rahman & Mitani, 2025; 

Bashar & Bernell, 2025).  

However, the persistence recovery cannot be solely credited to reforestation efforts. The 

concurrent decrease in non-vegetated regions indicates a drop in new land clearing, underscoring 

the significance of alleviating fuelwood demand via clean energy alternatives. Before the 

implementation of policy measures, households' dependence on forest biomass led to a self-

sustaining cycle of degradation. The widespread adoption of Liquefied Petroleum Gas (LPG) 

interrupted this cycle by separating daily energy requirements from the use of forest resources. In 

this context, LPG distribution served as an indirect land-use policy tool rather than merely an 

energy intervention. The SAFE+2 programme, which provided nearly 1.2 million LPG cylinders 

to around 200,000 households, substantially reduced fuelwood extraction, allowing restored areas 

to endure instead of facing continuous degradation (Dampha et al., 2022). The decline in light 

vegetation observed after 2022 reinforces this interpretation, indicating a shift from degraded or 

early-regrowth states to denser, more stable canopy conditions. The patterns suggest that the 

alignment of policies in the energy and restoration sectors, rather than merely favorable climatic 

conditions, played a crucial role in the observed recovery. 

4.3 Collaborative and Community-Based Governance: Why Recovery Was Sustained but Remains 

Incomplete 

One of the key insights of the findings is that sustained recovery would not have been achieved 

through reforestation or LPG distribution alone, but rather through collaborative, multi-level 

governance and active community engagement. Environmental and energy interventions were 

integrated into coordinated institutional frameworks that included the Bangladesh Forest 

Department, humanitarian organizations, NGOs, and both refugee and host communities. 

Coordination platforms like the Environmental and Energy Technical Working Group (EETWG), 

Inter-Sector Coordination Group (ISCG), and Site Management and Site Development (SMSD) 

mechanisms have enabled alignment in areas such as forestry, energy provision, and settlement 
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management (Mahamud et al., 2022). This integration minimized institutional fragmentation and 

allowed for the incorporation of environmental objectives into standard humanitarian response 

planning. The involvement of the community greatly improved the execution process. Refugees 

and host communities played an integral part in managing nurseries, establishing plantations, and 

maintaining sites, which improved scalability and encouraged local stewardship. This type of 

engagement is broadly acknowledged as essential for lasting restoration in situations where 

enforcement-based methods are not feasible. Even with these advancements, the recovery is still 

incomplete. Although the rate of deforestation linked to fuelwood has decreased, reliance on 

bamboo and various construction materials continues, with around 99% of shelters needing 

bamboo, muli, and borak for building or maintenance (UNHCR, 2020; Dampha et al., 2022). The 

ongoing demand for materials clarifies why non-vegetated areas, despite their decline, have not 

been completely eradicated. 

 

Furthermore, the lack of statistically significant monotonic trends in the Mann–Kendall analysis 

needs to be understood within the context of the non-linear, policy-punctuated dynamics of 

landscape change in humanitarian contexts. A sudden disruption accompanied by focused 

intervention results in incremental changes instead of gradual trends, highlighting the importance 

of trajectory-based analysis when assessing policy effects through remote sensing. 

Limitations 

This study emphasizes vegetation recovery rather than explicit forest loss or gain, which may 

oversimplify complex landscape dynamics. Although NDVI effectively captures broad changes in 

vegetation greenness, it is subject to spectral saturation in dense forest canopies, reducing 

sensitivity to increases in biomass, canopy closure, and structural complexity beyond moderate 

vegetation densities. Consequently, NDVI-based classifications may underestimate changes 

within dense vegetation classes and cannot fully represent forest structural quality. Field-based 

validation was limited due to restricted access in parts of the refugee camps and surrounding 

forests, and the analysis did not assess species composition or forest age structure. Future studies 

integrating ground observations, higher-resolution imagery, or structural metrics (e.g., radar or 

LiDAR) would provide a more comprehensive assessment of ecological recovery and the long-

term impacts of reforestation and clean energy interventions. 

Conclusion 

This study provides evidence that forest degradation associated with humanitarian crises is not 

inherently irreversible. In Ukhiya and Teknaf, the 2017 Rohingya influx triggered rapid and 

spatially concentrated vegetation loss that exceeded the natural resilience of local forest systems. 

However, the observed post-2019 recovery demonstrates that policy alignment across energy 

provision, reforestation, and community engagement can fundamentally alter landscape 

trajectories. Importantly, recovery was strongest in areas that had previously experienced the most 

severe degradation, indicating that targeted interventions can overcome threshold-level 

disturbances. The absence of statistically significant monotonic trends highlights the limitation of 

linear trend metrics in crisis-affected landscapes and underscores the value of phase-dependent 

vegetation dynamics inferred from multi-temporal change analysis. While recovery remains 
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spatially uneven and vulnerable to continued settlement pressure, the Ukhiya–Teknaf case 

illustrates that environmental restoration can coexist with humanitarian response when ecological 

considerations are embedded within policy design. These findings can support policymakers in 

making more informed and effective decisions for managing natural resources in comparable 

crisis-affected forest landscapes. 
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