

1 **Oxygen limitation is not a major physiological mechanism restricting early life**
2 **development in zebrafish**

6 Lorena Silva-Garay^{1,*}, Moa Metz¹, Henning H. Kristiansen¹, Leon Pfeufer², Emily R.
7 Lechner², Rasmus Ern¹, Anna H. Andreassen^{1,3}, Fredrik Jutfelt^{1,2}

11 ¹Department of Biology, Norwegian University of Science and Technology, Trondheim,
12 Norway.

13 ²Department of Biological and Environmental Sciences, Faculty of Science, University of
14 Gothenburg, Gothenburg, 413 90, Sweden.

15 ³DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kgs.
16 Lyngby, Denmark

19 *Corresponding author. Email: lorena.silvagaray@gmail.com (LSG)

23 **Keywords:** hypoxia, hyperoxia, embryonic development, oxygen limitation, developmental
24 plasticity.

28 **Abstract**

30 Early life stages are considered particularly vulnerable to warming because tissue oxygen
31 supply is thought to become limiting, given their underdeveloped gill function and reliance
32 on passive oxygen diffusion. Here, we tested whether oxygen availability constrains early
33 development under warming in zebrafish (*Danio rerio*). We exposed embryos and early-stage
34 larvae to a high-resolution factorial design spanning 50 combinations of temperature and
35 oxygen levels, and quantified multiple developmental and physiological responses (including
36 growth- and survival-related performance) as well as carry-over effects on juvenile warming
37 tolerance. Across traits, embryonic and larval performance was less restricted by oxygen
38 availability than expected. Moderate hypoxia did not impair performance across a wide
39 thermal range, while hyperoxia did not rescue performance under warming, indicating that
40 thermal failure was not alleviated by additional oxygen. Developmental failure occurred
41 primarily under the combined effects of severe hypoxia and extreme warming. Severe
42 hypoxia also induced developmental slowing and premature hatching, especially near thermal
43 extremes. Juvenile warming tolerance was reduced by severe hypoxia and extreme
44 developmental temperatures, but the small effect sizes indicate limited carryover effects of
45 developmental plasticity. Together, these findings do not support oxygen limitation as a
46 primary mechanism limiting early-life performance under warming, refining mechanistic
47 expectations of how warming constrains fish performance.

48 **Introduction**

49

50 Climate change and eutrophication can alter aquatic environments in many ways, including
51 increasing water temperatures and reducing water oxygen levels. These changes can pose
52 strong physiological challenges for aquatic ectotherms, such as fish, whose thermal tolerance
53 windows and geographic distribution are strongly influenced by water temperature and
54 oxygen availability (Sunday et al., 2012; Comte and Olden, 2017). Ectothermic organisms
55 experience temperature-dependent increases in metabolic rate during warming, which elevate
56 their oxygen demand (Fry and Hart, 1948). The oxygen- and capacity-limited thermal
57 tolerance (OCLTT) hypothesis proposes that aerobic performance is constrained at high
58 temperatures when oxygen transport can no longer meet the rising metabolic demand for
59 standard metabolism (Pörtner, 2010; Pörtner et al., 2017). Evidence for a link between
60 thermal performance and oxygen limitation, however, varies among species and life stages
61 (Ern et al., 2016, 2017; Silva-Garay et al., 2025; Andreassen et al., 2022; McArley et al.,
62 2022; Raby et al., 2025), with most research focusing on juvenile and adult stages. A recent
63 meta-analysis suggested that due to oxygen limitation, fish embryos have narrower thermal
64 windows than larvae and adults (Dahlke et al., 2020), creating a developmental bottleneck
65 under climate change. However, this analysis relies partly on imputed thermal tolerance data
66 due to gaps in the available literature and is influenced by methodological differences among
67 studies (Pottier et al., 2022; Cowan et al., 2023). As a result, further research is needed to
68 clarify the role of oxygen availability during warming in early life stages (Du and Shine ,
69 2022; Pottier et al., 2022; Cowan et al., 2024).

70

71 Fish embryos face respiratory constraints distinct from those of juveniles and adults. Elevated
72 temperatures accelerate metabolism, increasing oxygen demand and developmental rates,
73 which can compromise the completion of essential developmental milestones (Kamler, 1994;
74 Barrionuevo and Burggren, 1999). These vulnerabilities may be amplified by underdeveloped
75 respiratory and circulatory systems, and by limited or absent behavioral capacity to escape
76 environmental extremes (Warkentin, 2007). Unlike later life stages that rely on active
77 ventilation, embryos obtain oxygen primarily through passive diffusion across the chorion,
78 perivitelline fluid, and embryonic tissues including the yolk sac membrane, which can act as
79 additional diffusion barriers (Hayes et al., 1951; Rombough, 1989; Warkentin, 2007). After
80 hatching, larvae still rely largely on cutaneous diffusion, as their gills and circulatory systems
81 develop (De Silva, 1974; Wells and Pinder, 1996; Rombough, 1999). Although embryos can
82 initially tolerate low water oxygen levels well, their oxygen requirements generally increase
83 throughout development. It has been suggested that oxygen requirements peak close to
84 hatching when the surrounding egg envelope may become a critical barrier to oxygen
85 diffusion (Rombough, 1989; Czernies et al., 2001). This diffusion-dependent oxygen uptake
86 could thus create a physiological bottleneck that limits the embryos' ability to meet rising
87 metabolic demands under warming or hypoxic conditions (Hassell et al., 2008). As a result,
88 embryonic development may become oxygen-limited, with severity and duration varying
89 among species and environmental conditions.

90

91 Embryos can hatch prematurely in response to external stressors, such as warming and
92 hypoxia, a strategy that can come at the cost of underdeveloped physiological and behavioral
93 functions (Alderdice et al., 1958; Keckeis et al., 1996; Wood et al., 2019). Premature
94 hatching may optimize fitness by balancing the trade-offs of remaining within the protective
95 chorion and emerging as a free-swimming larva, but can also be a maladaptive consequence
96 of a stressor (Cowan et al., 2024; Warkentin, 2011). Despite this flexibility, environmental
97 stressors can still impose substantial developmental constraints (Cowan et al., 2024). Both

98 elevated temperatures and low water oxygen levels impair yolk conversion efficiency,
99 reducing the energy available for growth and organogenesis (Kamler, 1994; Kamiński et al.,
100 2006). Prolonged or severe hypoxia during embryogenesis can lower metabolic rates, delay
101 organ development, and reduce growth, often resulting in reduced hatching success and the
102 emergence of smaller or malformed larvae (Miller et al., 2008; Garside, 1966, Czernies et al.,
103 2001). While high temperatures and aquatic hypoxia can restrict development by reducing
104 oxygen supply relative to demand, the effects of hyperoxia are still poorly understood.
105 Because hyperoxia can increase tissue oxygen supply capacity in fish (Skeels et al., 2022)
106 and may enhance oxygen diffusion across the embryonic and larval respiratory surfaces, it
107 has the potential to alleviate oxygen-limitation at high temperatures, when metabolic demand
108 is greatest.

109 Many studies have explored the effects of water temperature or oxygen on fish early
110 development in isolation (Kamiński et al., 2006; Hassell et al., 2008; Schnur et al., 2014;
111 Negrete et al., 2024), yet few have examined their interactive impacts, despite the fact that
112 these environmental stressors often co-occur in nature. This study investigates whether and
113 how combinations of temperature and oxygen availability during embryonic development
114 influence developmental performance in wild-caught zebrafish (*Danio rerio*). Zebrafish
115 inhabit subtropical freshwater habitats in South Asia, where diel oxygen fluctuations and
116 episodic heatwaves are common. Although their embryonic development under normoxic,
117 optimal conditions (~28.5 °C) is well characterized (Kimmel et al., 1995), environmental
118 stressors can have major physiological impacts. Previous work has shown that adult zebrafish
119 upper thermal tolerance limits are unaffected by water oxygen across moderate hypoxia to
120 hyperoxia, regardless of acclimation history (Silva-Garay et al., 2025). However, zebrafish
121 larvae thermal tolerance can be constrained by oxygen availability, due to oxygen-limited
122 brain function (Andreassen et al., 2022), suggesting heightened oxygen sensitivity early in
123 development.

124 To test whether early fish development is constrained by oxygen availability under warming,
125 we exposed zebrafish embryos to a matrix of 50 temperature-oxygen combinations and
126 quantified developmental rate, heart rate, yolk sac depletion, hatching success, larval growth,
127 and survival to first feeding. We also measured juvenile critical thermal maximum (CT_{max}) in
128 fish reared from these embryos to assess developmental carryover effects. Under an oxygen-
129 limitation framework, hypoxia was expected to exacerbate and hyperoxia to alleviate
130 temperature effects if development is oxygen limited. Understanding how oxygen availability
131 constrains early development under warming is essential for improving predictions of fish
132 vulnerability to climate change.

133

134

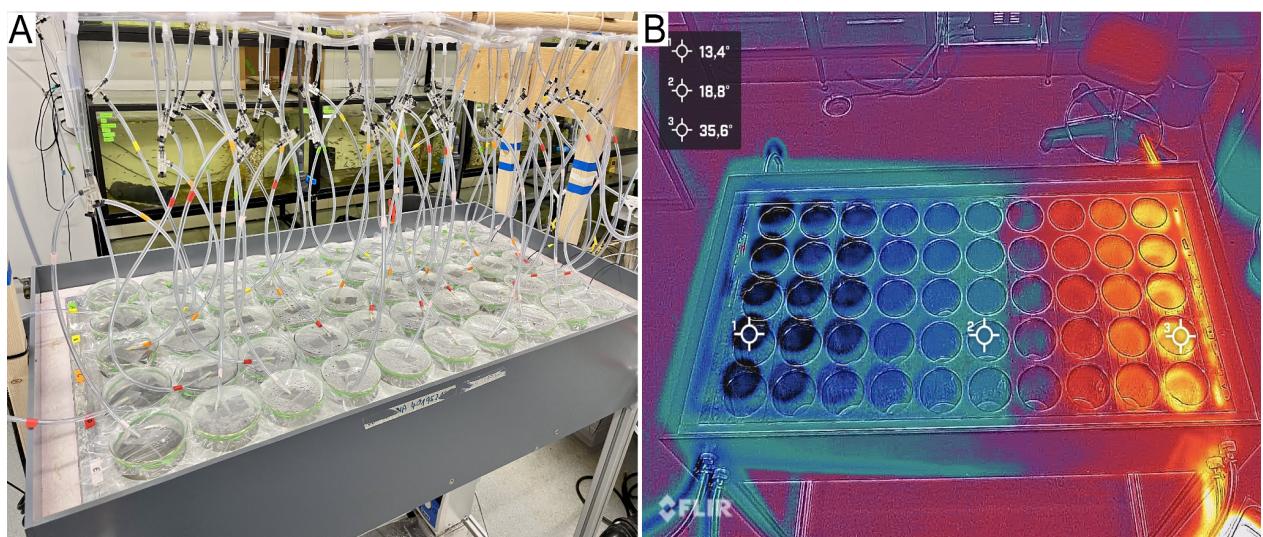
135 **Materials and methods**

136

137 **Study Species and Embryo Collection**

138 The zebrafish (*Danio rerio*) used in this study originated from a wild population collected in
139 2016 in West Bengal, India (Morgan et al., 2019; Sundin et al., 2019), kept in freshwater
140 aquaria at the Animal Facility of the Norwegian University of Science and Technology
141 (NTNU), Trondheim, Norway. Two independent breeding groups were used to produce
142 embryos for two separate experiments conducted in April (*Experiment 1*) and September
143 (*Experiment 2*), 2024. Parental fish were kept in well-aerated freshwater at 28 °C under a

144 14:10 h light:dark cycle and fed dry flakes (TetraPro, Tetra Sales, USA) three times daily
145 prior to breeding. In Experiment 1, 42 adults were used for breeding, while 110 were used in
146 Experiment 2. Embryos were collected soon after fertilization, photographed, and identified
147 between the one-cell (0 hours post-fertilization, hpf) and the cleavage stage (~ $\frac{3}{4}$ to $2\frac{1}{4}$ hpf)
148 following Kimmel et al. (1995).


149 From each breeding group, a randomly mixed subset of embryos was used for the
150 experiment. In *Experiment 1*, 750 embryos were distributed across 50 beakers (15 embryos
151 per beaker), and in *Experiment 2*, 1250 embryos were distributed in the same number of
152 beakers (25 embryos per beaker). Each beaker was covered with a plastic lid, secured with a
153 rubberband, and fitted with a small puncture allowing an air tube (PE200; 1.4 mm ID) to
154 supply continuous aeration and mixing. Embryos were kept under the same 14:10 h light:dark
155 photoperiod as the parental fish, and no food was provided during embryonic development or
156 early hatching. All procedures were approved by the Norwegian Food Safety Authority
157 (permit number 8578).

158 **Experimental Setup**

159 *Thermal Gradient Table*

160 An aluminum thermal gradient table was used to expose zebrafish embryos to 50
161 simultaneous unique combinations of temperature and oxygen during their embryonic
162 development and early larval stages. The thermal gradient table was customized after the
163 general design by Thomas et al. (1963) and consisted of a thick aluminium slab with 50
164 wells, and the dimensions were 122.2 x 53.8 x 17 cm (Thomas et al., 1963; Myrvold , 2020;
165 Haugen , 2022). The table accommodated 50 glass beakers (800 mL) in tightly fitting wells.
166 The layout was a 10 x 5 grid, with each of the 10 rows corresponding to a distinct
167 temperature treatment (Fig. 1A, Fig. S15-S18). A stable linear thermal gradient was
168 generated by heating and cooling opposite ends of the solid aluminum table. The system
169 consisted of a cooler (Titan 200, Aqua Medic, Germany) and a heater circulator (Grant
170 Instruments, GD100), each with a built-in thermostats that maintain their respective water
171 baths at a set temperature. Water from each bath was pumped to the respective edges of the
172 table using an Eheim Universal 1000 pump (Germany), generating a consistent thermal
173 gradient, from cold to warm, across the aluminium slab of the table (Fig. 1B).
174

175
176

177

178 **Fig. 1: The aluminum thermal gradient table with 50 different treatment combinations.**

179 (A) Aluminum gradient table providing 10 temperature treatments and gas mixing lines
180 delivering five oxygen treatments (12.5, 25, 50, 100, and 200% air saturation). (B) Thermal
181 image of the gradient surface captured with a FLIR One Pro (Teledyne FLIR LLC).

182 *Oxygen Treatments*

185 Five water oxygen levels (12.5, 25, 50, 100, and 200% air saturation) were maintained by
186 supplying each column of the thermal gradient table with a distinct gas mixture via five
187 independent air lines. Oxygen concentrations were regulated using manual gas flow
188 controllers (RS Pro, 500 ml/min) that mixed air with either nitrogen (50 L, 99.6% N₂) to
189 achieve hypoxia or oxygen (50 L, 99.5% O₂, Linde Co.) to create hyperoxia (Fig. S17).
190 Normoxia was achieved using ambient air. For each oxygen treatment, two flow controllers
191 were used: one for air and one for either nitrogen or oxygen, allowing precise calibration of
192 the gas mixture. The mixed gas was delivered to the respective column of 10 beakers via a
193 10 mm diameter outflow tube. Each beaker was aerated through an individual air tube tightly
194 inserted through the lid and fitted with an air valve, providing gentle bubbling. This setup
195 ensured homogenous oxygen distribution, minimized gas loss, and maintained consistent
196 aeration and mixing. The order of the oxygen treatments was randomly assigned across the
197 five columns of the gradient table (i.e., *Experiment 1*: 100, 12.5, 25, 200, and 50 % air sat.;
198 *Experiment 2*: 25, 200, 12.5, 50, and 100 % air sat.) Throughout the experimental period,
199 dissolved oxygen (DO₂) concentrations were continuously monitored in each oxygen
200 treatment at the warmest end of the gradient table using fiber-optic oxygen sensor probes
201 (Fig. S2). Additionally, DO₂ and temperature were manually measured in all beakers twice
202 daily between sampling events using optode sensors and a temperature probe (FireStingO₂,
203 PyroScience GmbH).

204
205 **Experimental Protocol**

206 *Experiment 1 - Wide thermal range*

207
208 *Experiment 1 (April 2024)* examined embryo development and hatching success across a
209 wide thermal gradient (15.7-39.3 °C: 15.7, 18.1, 20.3, 22.5, 25.2, 27.3, 29.4, 32.0, 35.6, and
210 39.3 °C) at five oxygen conditions (12.5, 25, 50, 100, and 200% air saturation). Using a
211 plastic pipette, embryos (15-16 per beaker) were gently transferred into sealed glass beakers
212 (800 mL) containing 300 mL of water at 28 °C under normoxic conditions (control). High-
213 resolution images were taken to document the initial developmental stage. Immediately
214 afterwards, the beakers were placed on the gradient table, where temperature and oxygen
215 treatments were applied. Dissolved oxygen levels in the 300 mL water reached target values
216 within ~20 minutes, while target temperatures stabilized within 1-2 hours (with extreme ends
217 of the gradient table requiring the longest to equilibrate). Embryos were photographed
218 approximately every 8 hours (see below for imaging methods). Upon the onset of hatching, a
219 30-second video of the hatched larvae was recorded. During each sampling event (2-3 min
220 per beaker), lids were removed only briefly (~30 seconds), minimizing disruption to
221 environmental conditions. It was confirmed that temperature and oxygen treatments were
222 only marginally and briefly disturbed by the handling procedure. This experiment continued
223 for 15 days, ending when all surviving embryos had hatched.

224
225 *Experiment 2 - Upper thermal range*

228

229 *Experiment 2 (September 2024)* examined embryo responses to the upper thermal range,
230 using a narrower and warmer gradient (27.8-37.1 °C: 27.8, 28.4, 29.5, 30.4, 31.4, 32.4, 33.3,
231 34.5, 35.8, and 37.1 °C). Embryos (24-26 per beaker) were processed following the same
232 procedures as in *Experiment 1*. In this experiment, target temperatures were reached within
233 ~1 hour (Fig. S1) and target DO₂ levels after 20 min upon beakers were placed on the
234 gradient table. The embryonic period was documented with video recordings taken every 12
235 hours (see below for imaging methods). Once hatching began, additional photographs were
236 collected to document the larvae in the beakers. The experiment lasted seven days,
237 concluding when all surviving embryos had hatched.

238

239 Dead embryos and larvae were identified based on color changes (e.g., white, cloudy, or
240 opaque appearance) and lack of response to gentle water flow applied via pipette and were
241 removed during observations. Following hatching, larvae remained in their original beakers
242 until just before the transition to exogenous feeding, approximately 2-3 days post-hatching
243 depending on treatment. At that point, a subset of larvae from five temperature treatments
244 across all oxygen levels were transferred to control tanks (28 °C, 100% air saturation) for
245 later assessment of critical thermal maximum (CT_{max}) during the juvenile stage.

246

247 **Data Collection**

248 *Imaging Setup*

249 Two imaging stations were used to capture high-resolution images of embryos and larvae.

250 *Embryo Imaging*

251 Embryos were imaged using a custom-built glass platform with a camera (Sony Alpha 7C,
252 Sony Corp.) and macro lens (Sony FE 2.8/50 Macro, Sony Corp.) mounted below the
253 platform, pointing up. This configuration enabled close-up imaging of embryos resting on the
254 bottom of the beakers, covering an objective area of 40 mm in diameter. A side-mounted
255 LED flood light (133×173×59 mm, 30W, 2400 lumens) positioned 12-15 cm from the focal
256 point enhanced image contrast. In *Experiment 1*, high-resolution photographs (6000×4000
257 pixels) of embryos were taken (Fig. 2A). In *Experiment 2*, 30-second videos (3840×2160
258 pixels) were recorded using the same setup (Fig. 2B).

259 *Larval Imaging*

260 Larvae were imaged using a larger LED light platform (470×280×9 mm, Lightcraft Ultraslim
261 A4 Lightbox) placed beneath the beaker for even illumination. A second camera (Sony Alpha
262 7C) equipped with a macro lens (Sony FE 2.8/90 Macro G OSS) was positioned above the
263 platform pointing downwards, capturing larvae swimming in the water column. Beaker lids
264 were briefly removed (~0.5-1 min) during sampling to prevent changes in air composition. In
265 *Experiment 1*, 30-second videos (1280×720 pixels) of larvae were collected, while in
266 *Experiment 2*, photographs (6000×4000 pixels) were captured.

267 *Data Analysis*

268

269 Embryo and larval performance were assessed based on a set of fitness-related traits: embryo
270 survival, yolk sac area, and heart rate through the embryonic period, hatching success, larval
271 length at hatch, and survival to the first feeding stage. These metrics were extracted from
272 time-series photo and video analyses.

273

274 *Yolk Sac Area*

275

276 Yolk sac surface area (YSA, mm²) was quantified at three developmental time points starting
277 at 24 hpf, using *ImageJ* software (Abràmoff et al., 2004). For each treatment, five embryos
278 were selected, and two perpendicular yolk sac diameters (length (*l*) and height (*h*) in mm)
279 were measured. YSA was estimated using the formula for the area of an ellipse:

280

$$281 \text{YSA} = \frac{\pi \cdot l \cdot h}{4}$$

282

283 Images were calibrated based on the experimental setup: *Experiment 1*: 390 pixels ≈ 1 mm,
284 *Experiment 2*: 325 pixels ≈ 1 mm.

285

286 Thermal performance curves were generated using embryonic yolk consumption, quantified
287 as the percentage reduction in yolk area relative to the average yolk area at 0 hpf for each
288 experiment. Yolk area was subsequently measured at 24, 48, and 72 hpf in *Experiment 1*, and
289 at 24, 36, and 48 hpf in *Experiment 2*. Yolk consumption at each time point was calculated as
290 the proportional decrease in yolk area relative to the initial yolk area using the following
291 formula:

292

$$293 \% \text{ yolk consumed} = \frac{(\text{initial yolk area} - \text{yolk area at time } t)}{\text{initial yolk area}} \times 100$$

294

295

296 *Embryo Heart Rate Measurement*

297

298 Embryo heart rate was quantified by amplifying subtle pixel-level motion associated with
299 cardiac contractions using Eulerian video magnification (EVM; Lauridsen et al., 2019). This
300 approach enhances small, periodic intensity changes in a video, such as those caused by
301 heartbeats. Videos (1280x720 pixel resolution) were first stabilized in *iMovie* to reduce
302 camera shake by aligning successive frames. Stabilized videos were then processed in Python
303 using the Laplacian pyramid-based motion magnification approach (Burt and Adelson, 1983).
304 This approach enhances very small movements in the video by analyzing the image at
305 multiple spatial scales and gently amplifying motion while reducing noise, making subtle
306 body movements easier to detect. We used a configuration with eight pyramid levels, an
307 amplification strength of 100. Motion signals with spatial wavelengths above 100 pixels were
308 attenuated, and a mild post-filtering step (attenuation factor 0.4 applied to both the I and Q
309 motion channels) was used to reduce noise while preserving biologically relevant
310 movements. The temporary frequency band was restricted to 1.5-3.5 Hz.

311

312 To reduce background noise, videos were temporarily cropped around the embryo's heart,
313 typically to a 10x10 pixel region (Fig. S3A). From this region, a vertical scan line (fixed x-
314 coordinate) positioned over the clearest cardiac signal was used to extract a space-time image
315 representing heartbeat dynamics (Fig. S3B). Heart rate was typically extracted from 5-30 s of
316 recording, limited to periods of high image stability with minimal embryo movement. We
317 then applied Fast Fourier Transform with SciPy 1.15.2 to this space-time image to obtain the

frequency spectrum. The dominant peak amplitude within the filtered frequency was considered as the heart rate (Hz) for the analyzed period (Fig. S3C). Frequency values were converted to beats per minute by multiplying by 60. This procedure was applied to up to six embryos per treatment across multiple developmental time points (24-144 hpf) in *Experiment 2*. When background noise prevented reliable frequency detections for six embryos, we analyzed as many individuals as possible.

325 *Survival and Hatching*

327 The number of surviving embryos was determined via visual inspection of embryo color and
328 appearance during samplings and from image recordings throughout the development period.
329 Hatching success ratio was calculated as the proportion of hatched embryos to the total
330 number of fertilized embryos per beaker. Fertilization status was assessed by observing early
331 cleavage stages, such as blastula or blastocyst formation, which became visible at ~24 hours
332 post-fertilization (hpf) in *Experiment 1* and ~12 hpf in *Experiment 2*, depending on
333 temperature and oxygen conditions. In addition, survival to the first feeding stage was
334 defined as the proportion of fertilized embryos per beaker that survived through hatching and
335 reached the exogenous feeding stage, relative to the total number of fertilized embryos.
336 Reaching the first feeding stage was assessed when larvae no longer exhibited a distended
337 yolk sac, indicating near-complete yolk sac absorption, at which point larvae were removed
338 and the treatment was terminated. Larvae displaying severe stress responses, including erratic
339 spiral swimming, tissue swelling, or pronounced spinal deformities, were excluded from
340 survival-to-first-feeding estimates. Exclusions were applied only in cases of clear
341 pathological stress and not to larvae exhibiting delayed but otherwise viable development.

343 Cumulative larval hatching and embryo survival to first feeding were visualized across
344 temperature and oxygen treatments using 2D plots and 3D surface plots. For the latter,
345 cumulative survival ratios were calculated per treatment and smoothed using a kernel-based
346 normalization (function *image.smooth*, *Fields* package, R Core Team, 2024). This method
347 applies local averaging to the observed data to estimate a continuous surface.

349 *Larval Length at Hatch*

351 Larval total length (TL; measured from head to caudal fin tip in mm) was quantified from all
352 post-hatch images and videos using ImageJ. Image scales were as follows: *Experiment 1*: 7.4
353 pixels ≈ 1 mm, *Experiment 2*: 35.2 pixels ≈ 1 mm.

355 *CT_{max} Testing*

357 To assess whether developmental plasticity influences heat tolerance later in life, we re-
358 acclimated zebrafish larvae from five developmental temperatures and all oxygen treatments
359 in both experiments to control conditions (28.0 ± 0.5 °C in fish from *Experiment 1* and $27.0 \pm$
360 0.5 °C in fish from *Experiment 2*). Surviving larvae were held under control conditions for
361 four weeks (*Experiment 1*: 20.3, 25.2, 29.4, 32.0, 35.6 °C) and six weeks (*Experiment 2*:
362 27.8, 29.5, 31.4, 33.3, 35.8 °C) prior to critical thermal maximum (CT_{max}) testing. During this
363 reacclimation period, larvae were fed a diet of live artemia and commercial larvae feed
364 (Zebrafeed, Sparos I&D, <100 to 600 µm) three times daily. Upon reaching the juvenile stage
365 (~2-3 weeks post fertilization), fish were transitioned to dry flake diet (TetraPro, Tetra Sales,
366 USA).

367

368 CT_{max} is defined as the temperature ($^{\circ}C$) at which fish lose equilibrium (LOE) and cannot
369 remain upright for 3 seconds (Morgan et al., 2018). At the point of LOE, fish were
370 immediately removed from the testing arena, and both temperature and time were recorded.
371 The testing protocol followed Morgan et al. (2018). Trials were conducted under control
372 conditions ($28^{\circ}C$ and normoxia, 100% air saturation). Groups of 7-9 fish from each rearing
373 condition were transferred from their respective holding tanks to a CT_{max} testing arena (9
374 liters: $25 \times 22 \times 18$ cm). Fish were allowed a 15-minute to condition to the CT_{max} arena before
375 the temperature ramping began. Starting at $28^{\circ}C$, water temperature was increased at a rate
376 of $0.34 \pm 0.02^{\circ}C \cdot min^{-1}$. Fish were fasted for 16-20 hours before testing. Water in the CT_{max}
377 box was replaced between trials to maintain water quality. To minimize time-of-day and
378 order effects, treatment testing sequences were randomized. CT_{max} trials were conducted
379 within a three-day period for *Experiment 1* and 2. Following LOE, fish were transferred into
380 an individual recovery tank with water maintained at $28^{\circ}C$. All individuals recovered
381 equilibrium within 2 min. After a 30-minute recovery period, fish were euthanized via ice
382 immersion, and fish body mass (± 0.01 g), and total length ($TL \pm 0.1$ mm) were recorded.
383

384 *Fulton's Condition Factor*

385
386 Using body mass (W) and total length (L) of the fish tested for CT_{max} , we quantified the
387 Fulton Condition Factor (K) as follows:
388

$$389 K = \frac{W}{L^3}$$

390 391 **Statistical Analysis**

392 *Physiological Parameters Analysis*

393
394 We analyzed yolk consumption, heart rate, larval length, CT_{max} and Fulton's condition factor
395 using linear models (LMs) using the *car* package implemented in R (version 4.4.1; R Core
396 Team, 2024). For each response variable, models included oxygen treatment, temperature,
397 and their interaction as fixed effects, together with developmental time (hpf) when
398 appropriate. Temperature was centered to the coldest treatment ($Temp_1$) within each
399 experiment to facilitate interpretation of model coefficients and interaction terms. To capture
400 the non-linearity with respect to temperature of the parameters measured, temperature was
401 added as quadratic ($Temp_2 = Temp_1^2$). Models were constructed as: *Response variable* ~
402 *Oxygen* + $Temp_1$ + $Temp_2$ + *Oxygen** $Temp_1$ + *Oxygen** $Temp_2$ + *hpf*. For balanced factorial
403 designs, we assessed the significance of predictors using Type II ANOVA, whereas Type III
404 ANOVA was applied when sample sizes were unbalanced or when interaction terms were
405 included. Alternative models were built, removing the quadratic term of temperature, when
406 oxygen or temperature had a linear relationship with the response variable. Models were
407 contrasted using Akaike Information Criterion (AIC) to identify the most parsimonious
408 model structure that best fit the data (*MuMIn* package). We considered a difference of ΔAIC
409 > 2 as evidence of substantial improvement in model fit (Burnham and Anderson, 2004).
410 Estimates, standard errors, and p-values (with significance $p < 0.05$) reported in the Results
411 section derive from these fitted linear models. Model assumptions were evaluated via
412 inspection of residual distributions and homoscedasticity.
413

414
415
416

417 *Hatching Success Analysis*

418

419 Hatching probability and larval survival were analyzed using binomial generalized linear
420 models (GLMs, *glm* package; Brooks et al., 2017) with a logit link, fitted using bias-reducing
421 adjusted score estimation (*brglmFit*) to mitigate small-sample and separation issues. Oxygen
422 treatment, temperature, their interaction, and developmental time (log-transformed hours
423 post-fertilization, hpf) were included as fixed effects, with the number of fertilized embryos
424 specified as the binomial denominator. The model was specified as: (*Larval hatched, Initial*
425 *embryos - Larval hatched*) \sim *Oxygen * Temperature + log(hpf)*. From these models, we
426 estimated the time to 50% hatching (ET₅₀) for each temperature–oxygen combination in both
427 experimental runs by interpolating predicted hatching probabilities from the fitted curves
428 using the functions *predict* and *approx*. Treatment effects were assessed by contrasting model
429 predictions against control conditions (normoxia at 27.3 °C in *Experiment 1* and 27.8 °C in
430 *Experiment 2*).

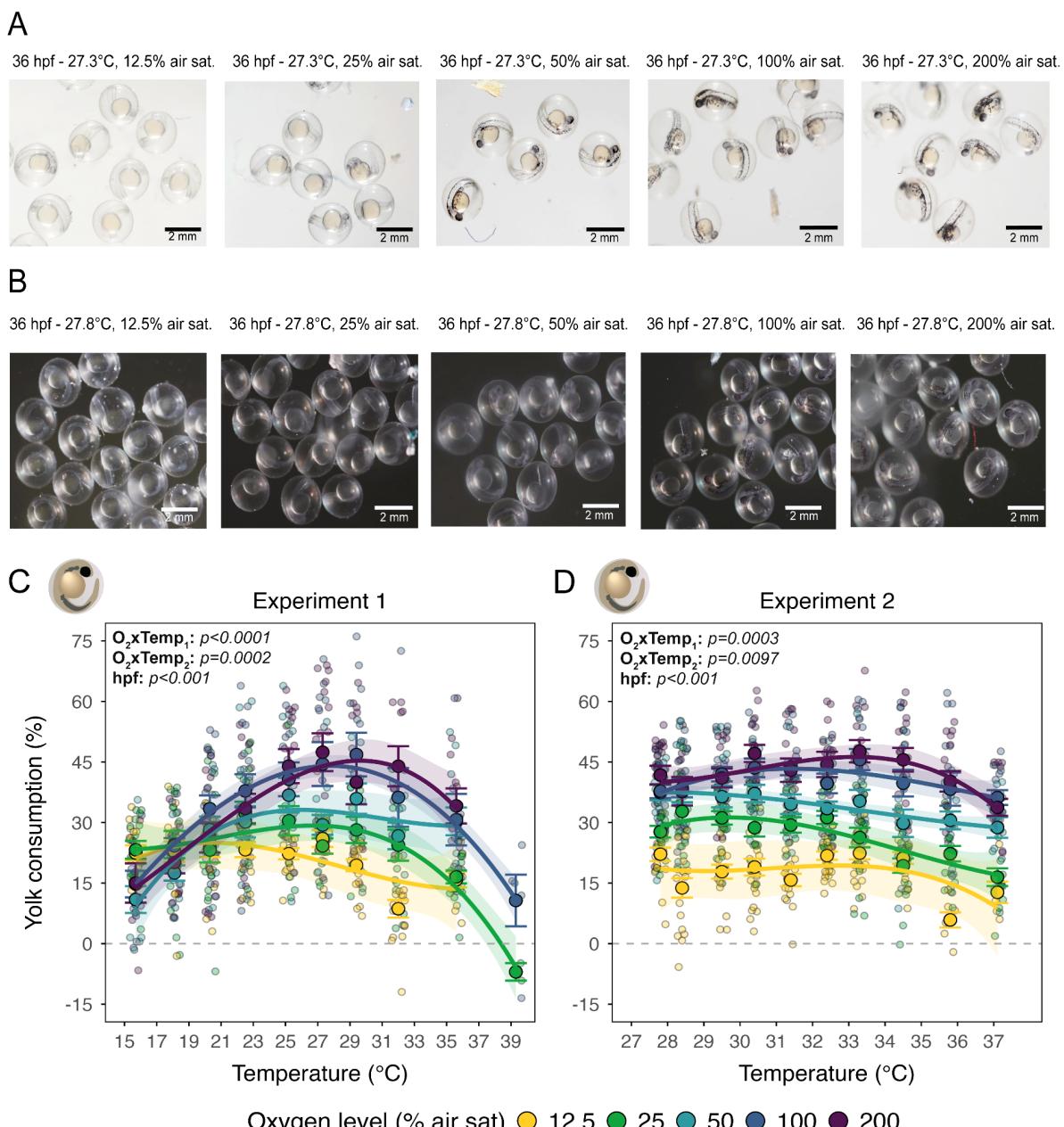
431

432 Because hatching responses exhibited a nonlinear relationship with temperature, an
433 alternative model incorporating a quadratic temperature term was also evaluated, consistent
434 with the modelling approach used for other traits: (*Larval hatched, Initial embryos - Larval*
435 *hatched*) \sim *Oxygen + Temp₁ + Temp₂ + Oxygen*Temp₁ + Oxygen*Temp₂ + log(hpf)*; where
436 Temp₁ and Temp₂ represent linear and quadratic temperature terms, respectively. This model
437 was used to assess the effect of oxygen on thermal performance of both hatching success and
438 survival to first feeding across temperatures. Model goodness-of-fit was evaluated using
439 residual deviance (residual deviance/degrees of freedom \approx 1), inspection of diagnostic plots,
440 and examination of predicted probability curves. Statistical significance was assessed at $\alpha =$
441 0.05. Parameter estimates reported in the Supplementary Materials correspond to log-odds
442 coefficients, along with their standard errors, z-values, and associated p-values derived from
443 the fitted GLMs.

444

445

446 **Results**


447

448

449 ***Yolk Sac Area***

450 In *Experiment 1* (15.7 to 39.3 °C), yolk consumption was affected by temperature, oxygen
451 availability, their interaction, and developmental time ($p < 0.001$ all; Fig. 2A-C; Fig. S4A-
452 S5A; Table S1). Under normoxia, yolk utilization increased steeply with warming from the
453 coldest treatment (Temp₁: $\beta = 5.01 \pm 0.45$, $p < 0.001$) and declined above 32 °C (Temp₂: $\beta =$
454 -0.195 ± 0.020 , $p < 0.001$) forming a thermal performance curve in which embryos at 22.5 -
455 32 °C consumed yolk fastest. Oxygen availability strongly altered this temperature
456 dependence. At the lowest temperatures, severe hypoxia increased yolk consumption ($\beta =$
457 7.66 ± 2.88 , $p = 0.008$; $\beta = 6.14 \pm 2.85$, $p = 0.032$), coinciding with delayed early
458 development and developmental arrest at 15.7 °C. Above 20.3 °C, however, hypoxia
459 consistently reduced yolk consumption ($\beta = -10.19 \pm 1.52$, $p < 0.001$ at 12.5%; $\beta = -5.03 \pm$
460 1.51, $p = 0.001$ at 25%; $\beta = -7.15 \pm 1.54$, $p < 0.001$ at 50%). Severe hypoxia (12.5% and 25%
461 air saturation) markedly reduced the increase in yolk use with warming, flattening and
462 narrowing the thermal performance curve ($O_2 \times Temp_1$: $\beta = -4.39 \pm 0.65$, $t = -6.78$, $p < 0.001$
463 for 12.5%; $\beta = -2.68 \pm 0.63$, $p < 0.001$ for 25%). Moderate hypoxia also slowed yolk use at
464 warm temperatures ($\beta = -1.34 \pm 0.67$, $p = 0.048$), whereas hyperoxia had no detectable effect
465 relative to normoxia ($\beta = -1.16 \pm 3.29$, $p = 0.47$).

466 In *Experiment 2* (27.8 - 37.1 °C), yolk sac dynamics mirrored those observed in *Experiment 1*
 467 ($p < 0.001$ all; Fig. 2B-D; Fig. S4B-S5B; Table S2). Yolk consumption increased from 27.8
 468 °C (Temp₁: $\beta = 2.74 \pm 0.74$, $p < 0.001$) and declined at the highest temperatures (Temp₂: $\beta =$
 469 -0.325 ± 0.078 , $p < 0.001$). Severe hypoxia (12.5 and 25% air saturation) resulted in reduced
 470 yolk consumption across temperatures ($\beta = -21.62 \pm 1.91$, $p < 0.001$ at 12.5%; $\beta = -8.60 \pm$
 471 1.91, $p < 0.001$ at 25%), whereas moderate hypoxia and hyperoxia did not differ from
 472 normoxia (Table S2, Fig. 3B). Unlike *Experiment 1*, oxygen and temperature interactions
 473 were weak in this warmer range. Hypoxia consistently reduced yolk consumption, only
 474 moderate hypoxia showed a detectable change in the temperature effect at high temperatures
 475 ($O_2 \times Temp_2$: $\beta = 0.296 \pm 0.110$, $p = 0.007$).

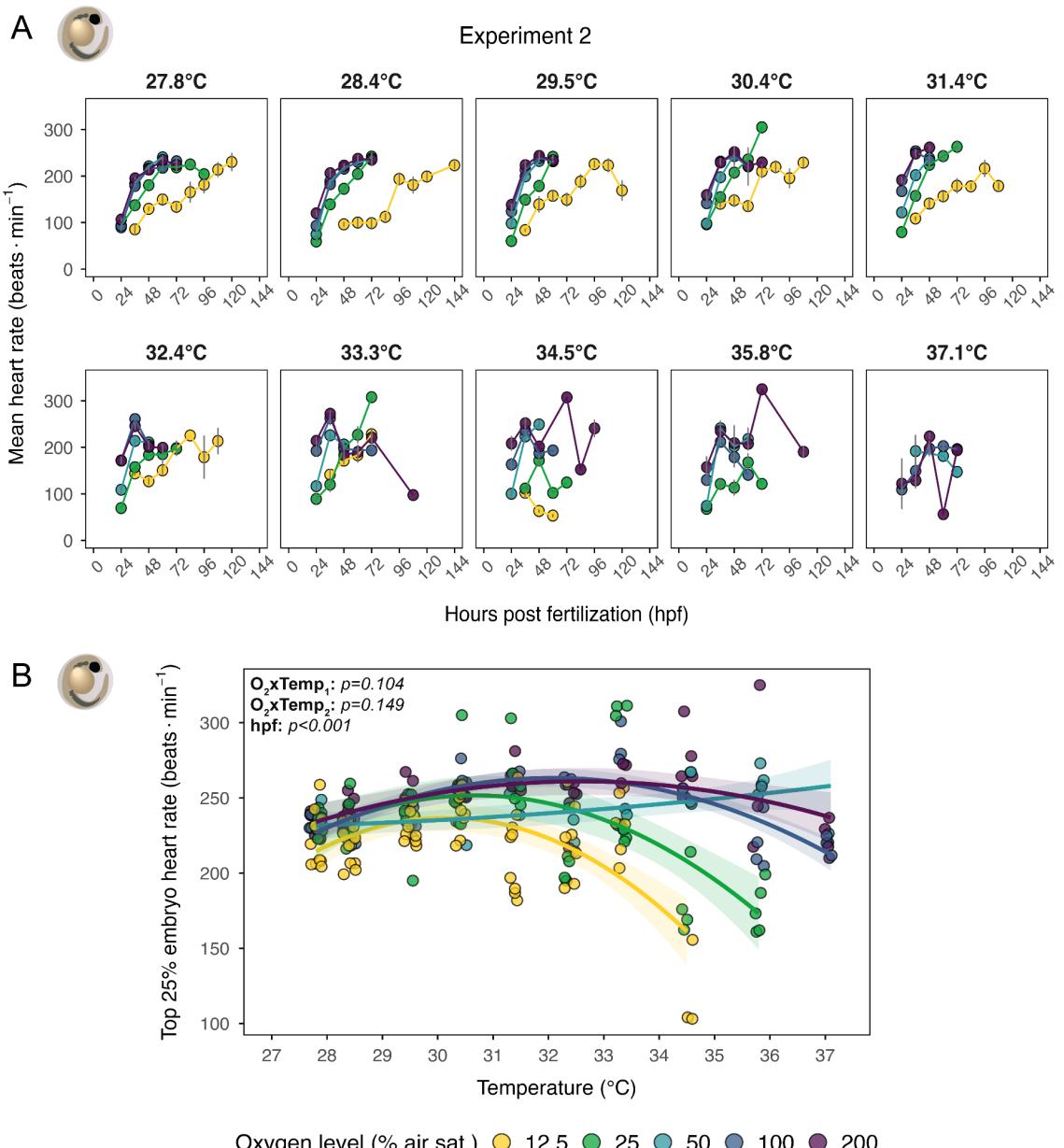
476
 477 **Fig. 2: Yolk consumption (%) of embryos across temperature and oxygen treatments.**
 478 **(A)** Zebrafish embryonic developmental progress at 36 hpf across oxygen levels at 27.3 °C in
 479 *Experiment 1*. **(B)** Equivalent data at 27.8 °C in *Experiment 2*. **(C-D)** Yolk consumption (%
 480 of initial yolk area, mm²) across temperatures (x-axis) and oxygen treatments (colors) in

481 *Experiment 1 (C; n = 2–9) and Experiment 2 (D; n = 2–11).* Points show individual embryos;
482 circles indicate means \pm s.e, lines represent second-degree polynomial fits by oxygen level.
483 P-values are based on Anova (type III; Table S1-S2).

484

485

486 **Heart Rate**


487

488 *Experiment 2*

489

490 Embryonic heart rate exhibited nonlinear temporal dynamics, and was strongly influenced by
491 oxygen availability, temperature, but not their interaction (Fig. 3A-B; Table S3). Centered at
492 27.8 °C under normoxia, heart rate increased with warming from the coldest treatment
493 (Temp₁: $\beta = 19.60 \pm 3.72, p < 0.001$) and declined at the warmest temperatures ($\sim > 33.3$ °C;
494 Temp₂: $\beta = -2.19 \pm 0.41, p < 0.001$), showing a unimodal thermal response. Heart rate
495 increased steadily over developmental time ($\beta = 1.63 \pm 0.08, p < 0.001$) from its onset at ~ 24
496 hpf and approaching a plateau prior to hatching. Severe hypoxia (12.5% air saturation)
497 delayed the onset of heart activity and markedly reduced heart rate across temperatures ($\beta = -$
498 $96.20 \pm 8.72, p < 0.001$), while 25% air saturation also lowered heart rates, with stronger
499 effects at warmer temperatures ($\beta = -19.15 \pm 8.91, p = 0.032$). Heart rates under 50% and
500 200% air saturation did not differ from normoxia. Oxygen-temperature interactions were
501 generally weak, indicating that oxygen mainly shifted overall heart rate rather than altering its
502 temperature dependence; only 50% air saturation showed detectable interaction effects
503 (Temp₁: $\beta = -12.96 \pm 5.84, p = 0.027$; Temp₂: $\beta = 1.44 \pm 0.67, p = 0.032$). The higher
504 variability in heart rate above 33.3 °C likely reflects measurements from embryos that failed
505 to hatch on time (~ 48 hpf) and exhibited delayed or abnormal development.

506

507

508

Fig. 3: Embryonic heart rate across temperature and oxygen treatments.

509

510

511

512

513

514

515

516

517

518

519

Hatching Success

520

521

522

523

Experiment 1

524 Across the wide thermal range tested (15.7-39.3 °C), hatching rate was influenced by
525 temperature, oxygen level, their interaction, and developmental time (GLM, all $p < 0.0001$;
526 Fig. 4A; Table S4). Under normoxia, embryos showed a clear thermal window for successful
527 development: hatching was delayed and reduced at 18.1 °C, and increased sharply from 20.3
528 to 35.6 °C (with >75% hatching across this range), and was fastest near 27.3-32 °C. No
529 hatching occurred at the extreme temperatures, 15.7 °C and 39.3 °C. Oxygen availability
530 strongly modified this thermal response (Fig. 4C; see Fig. S6A-S7A-S8). At 18.1 °C,
531 hatching was delayed and reduced across all oxygen treatments, and especially under hypoxia
532 ($\leq 50\%$ air saturation; $p < 0.001$) and hyperoxia (200% air saturation; $p < 0.001$). Severe
533 hypoxia (12.5% air saturation) showed hatching rates comparable to normoxia (~80-100%)
534 between 20.3 and 27.3 °C but rate declined at 29.4 °C (~75%) and ceased at 32.0 °C.
535 Hypoxia (25% air saturation) similarly showed hatching rates comparable to normoxia at
536 cooler temperatures, but lowered hatching to ~75% at 32.0 °C ($p = 0.001$), and suppressed
537 hatching at higher temperatures. Both moderate hypoxia (50%) and hyperoxia (200%)
538 reduced hatching at the warmest temperature (35.6 °C) only, where hatching declined to
539 ~50% (both $p < 0.001$; Table S5).

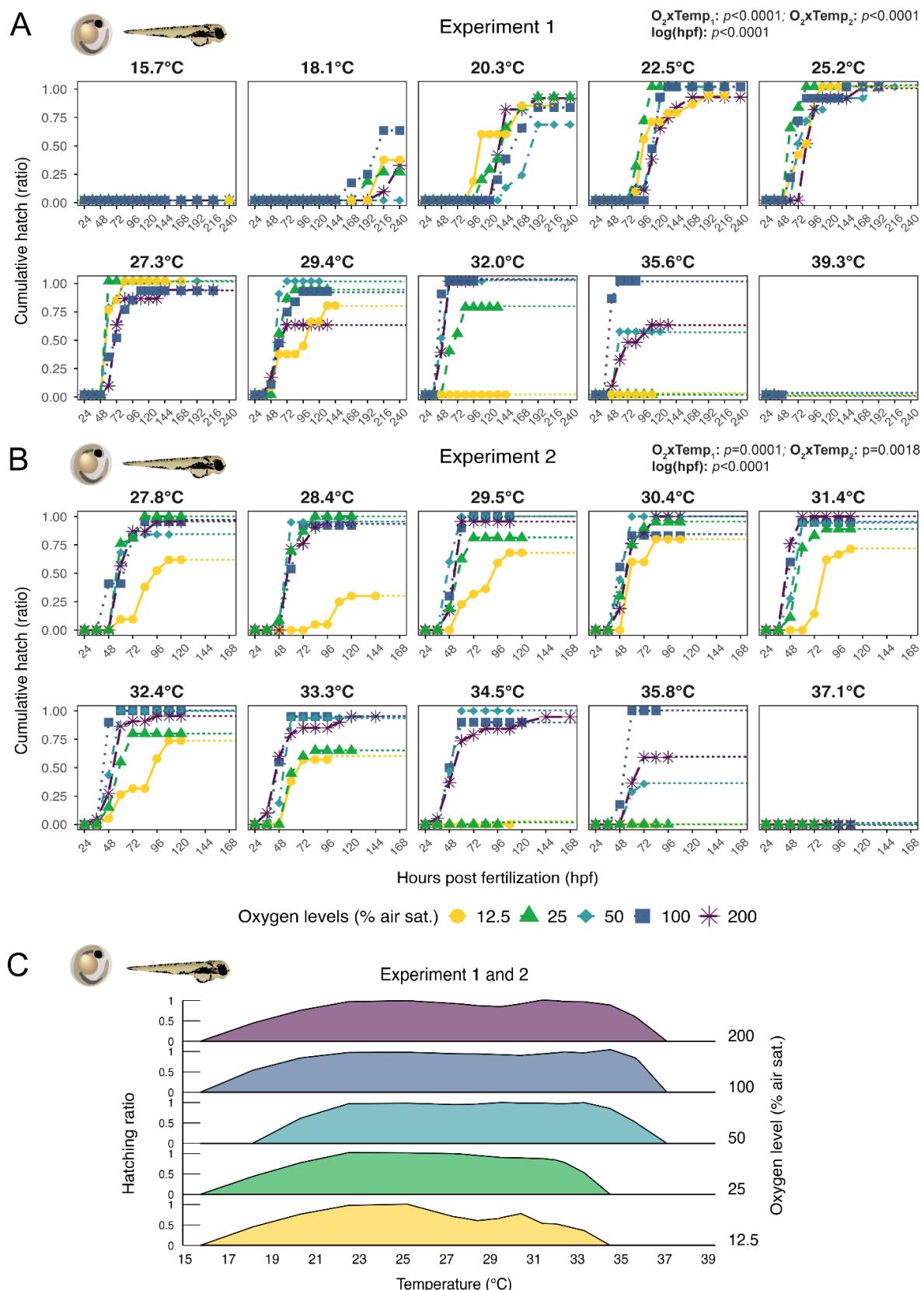
540 A GLM including the temperature–oxygen interaction provided the best fit for estimating
541 time to 50% hatch (ET_{50} ; Table S5; Fig. S9A). Hatching time decreased steeply with
542 warming, from: ~224-279 hpf at 18.1 °C and 126-200 hpf at 20.3 °C, to 51-79 hpf at 27.3 °C
543 and 41-78 hpf at 32 °C (Table S6). Oxygen availability further modified this temperature
544 dependence. At cooler temperatures (≤ 27.3 °C), severe hypoxia (12.5-25% air saturation)
545 accelerated hatching by ~20-70 h relative to normoxia. In contrast, at warmer temperatures
546 hypoxia progressively delayed hatching by ~25-50 hours, indicating a temperature-dependent
547 shift in the effect of oxygen on developmental timing. Hyperoxia delayed hatching time only
548 at the warmest temperature (35.6 °C).

549

550

551 *Experiment 2*

552


553 Within the warmer developmental range (27.8-37.1 °C), hatching success was again
554 influenced by temperature, oxygen level, their interaction, and developmental time (GLM, all
555 $p < 0.001$; Fig. 4B; Table S6). Under normoxia, hatching remained high (90-100%) from 27.8
556 to 35.8 °C, and failed entirely at 37.1 °C. Oxygen acted as a major modifier of this thermal
557 window (Fig. 4C; see Fig. S6B-S7B-S8). Severe hypoxia (12.5% air saturation) consistently
558 reduced and delayed hatching across most temperatures ($p < 0.001$), with complete hatching
559 failure at 34.5 °C ($p = 0.0002$; Table S7). Hypoxia (25%) produced hatching rates
560 comparable to normoxia at 27.8-28.4 °C, but reduced hatching at 32.4 and 33.3 °C (both $p <$
561 0.001) and suppressed hatching at 34.5 °C, consistent with findings from *Experiment 1*.
562 Moderate hypoxia (50%) produced hatching comparable to normoxia, but strongly reduced
563 and delayed hatching at 35.8 °C ($p = 0.001$). Hyperoxia (200%) did not improve hatching
564 success relative to normoxia across this temperature range (27.8-35.8 °C); yet, it reduced the
565 hatching success to a ~50% at 35.8 °C ($p < 0.001$), mirroring the pattern observed in
566 *Experiment 1*.

567

568

569 Consistent with these patterns, the ET_{50} model (GLM; Table S7; Fig. S9B) revealed strong
570 oxygen effects across 27.8-37.1 °C, consistent with patterns observed in *Experiment 1*.
571 Severe hypoxia (12.5% air saturation) markedly delayed hatching through this thermal range,
572 with ET_{50} occurring ~68-136 hpf later than under normoxia (41-62 hpf; Table S6). Hypoxia

572 (25%) produced ET_{50} estimates comparable to normoxia at the cooler temperatures (~56 hpf
573 at 27.8-28.4 °C), but increasingly delayed hatching at warmer temperatures ($ET_{50} \approx 59$ -80
574 hpf), mirroring the temperature-dependent shift seen in *Experiment 1*. As in the first
575 experiment, severe hypoxia delayed hatching throughout the upper thermal range (≥ 27.8 °C)
576 relative to normoxia, contrasting with the earlier hatching observed at lower temperatures.
577 Hyperoxia also delayed the hatching time only at the warmest temperature (35.8 °C).
578

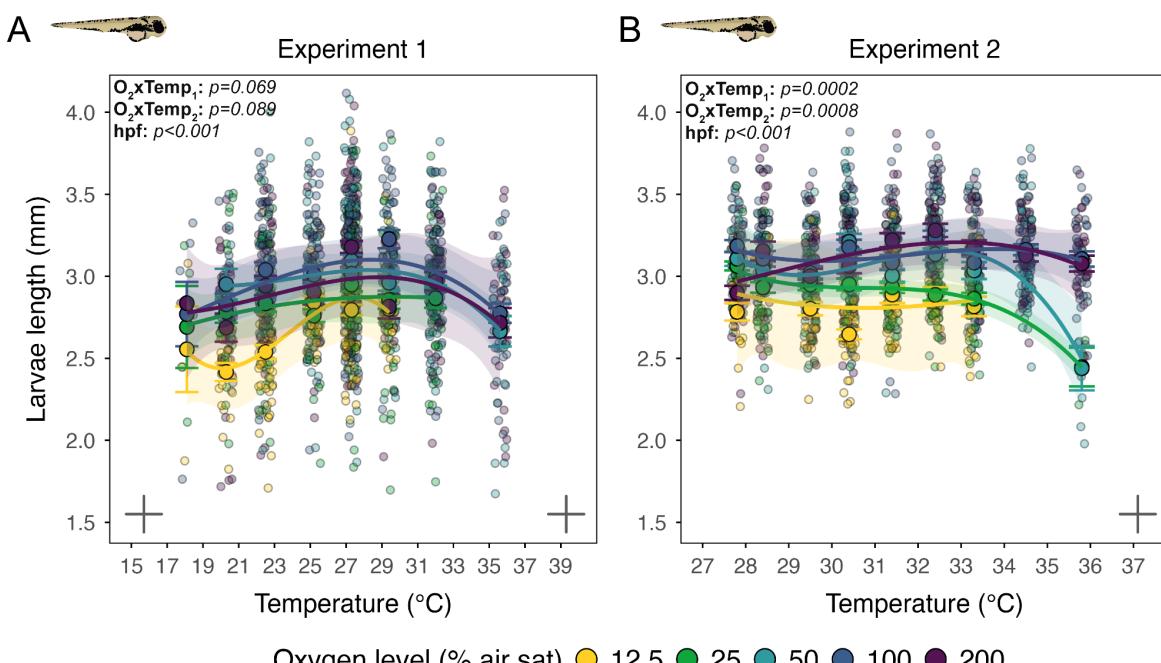
579
580
581
582
583

Fig. 4: Hatching dynamics across temperature and oxygen treatments. (A) Cumulative hatching ratio of *Danio rerio* embryos over time (hpf) across temperatures (panels) and oxygen levels (colors) in Experiment 1 (n = 8-15). (B) Equivalent data for Experiment 2 (n = 13-23). Symbols denote observed hatching ratios; dotted lines indicate periods when larvae

584 were removed following mortality or completion of hatching. P-values are based on binomial
 585 GLM (Table S4-S6). **(C)** Maximum hatching ratio across temperatures combining
 586 *Experiment 1* and *Experiment 2*. The ridgeline represents smoothed maxima using a *LOESS*
 587 function (span = 0.45).

588

589


590 *Larvae Length*

591

592 In *Experiment 1*, larval length varied with temperature, oxygen availability, and
 593 developmental time, but not with the interaction temperature-oxygen ($p < 0.001$; Fig. 5A;
 594 Table S9; Fig. S10A-S11). Under normoxia and centered at 18.1 °C, length increased with
 595 warming from the coldest treatment (Temp₁: $\beta = 0.085 \pm 0.017$, $p < 0.001$) and declined
 596 slightly at higher temperatures (Temp₂: $\beta = -0.0042 \pm 0.0009$, $p < 0.001$). Severe hypoxia
 597 (12.5% air saturation) produced the largest reduction in length across temperatures ($\beta = -$
 598 0.423 ± 0.139 , $p = 0.002$), while hyperoxia caused a moderate decrease ($\beta = -0.250 \pm 0.117$, p
 599 = 0.033). Hypoxia (25% air saturation) reduced length only at temperatures above 22.5 °C (β
 600 = -0.145 ± 0.042 , $p = 0.001$), whereas 50% air saturation did not differ from normoxia.
 601 Oxygen-temperature interactions were weak, suggesting that oxygen primarily shifted mean
 602 larval length without strongly altering its response to temperature. Length increased modestly
 603 with developmental time ($\beta = 0.00094 \pm 0.00025$, $p < 0.001$).

604

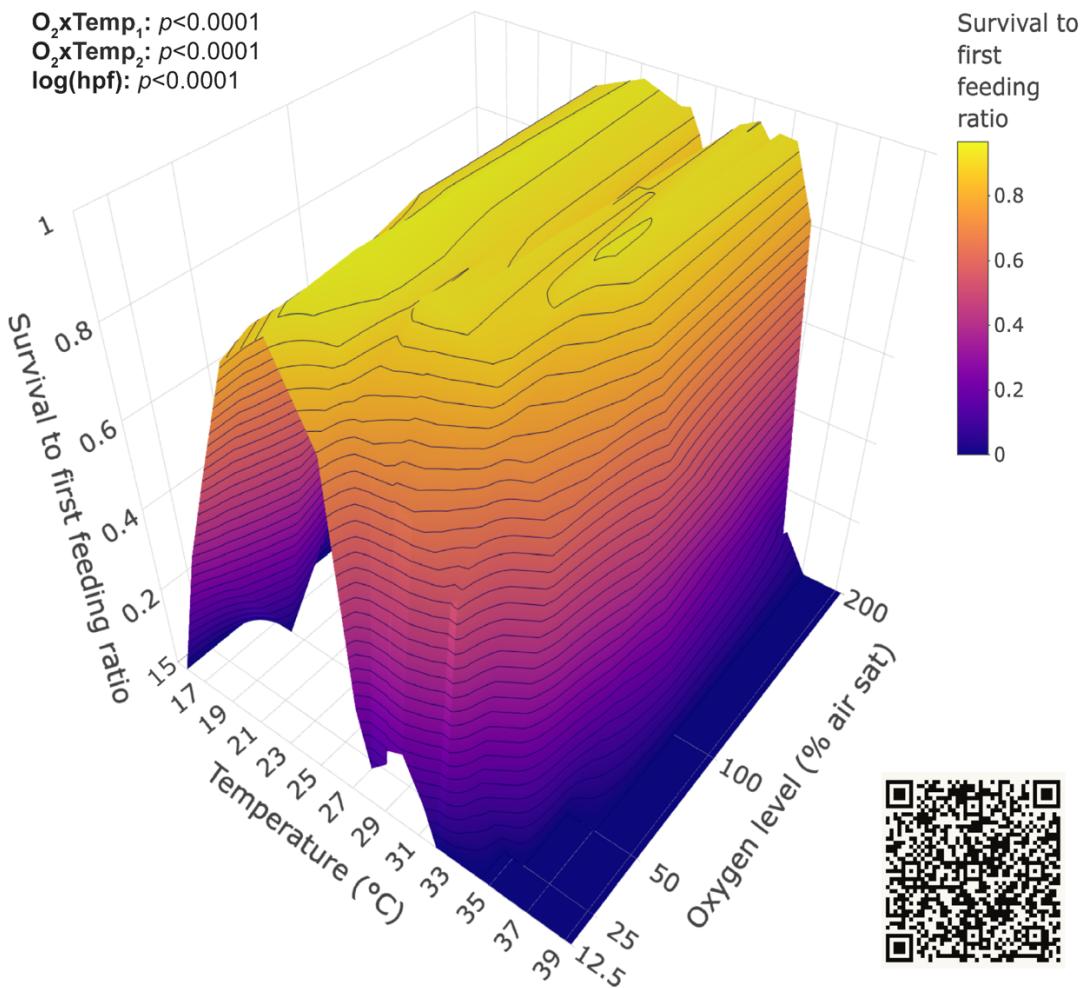
605 In *Experiment 2*, larval length also varied with oxygen availability and developmental time,
 606 but showed no temperature effects ($p < 0.001$; Fig. 5B; Table S10; Fig. S10B-S12). Length
 607 was no different across temperatures (Temp₁: $p = 0.44$; Temp₂: $p = 0.46$). Oxygen availability
 608 had a clearer influence: larvae reared in hypoxia were consistently smaller across
 609 temperatures, with the strongest reduction at 12.5% ($\beta = -0.410 \pm 0.062$, $p < 0.001$), followed
 610 by moderate reduction at 25%, 50%, and 200% air saturation (all $p \leq 0.02$). As in *Experiment*
 611 *1*, oxygen-temperature interactions were generally weak, and mostly driven by larval length
 612 at hyperoxia and 27.8 °C. Larval length also increased modestly with developmental time (β
 613 = 0.00445 ± 0.00042 , $p < 0.001$).

614

615 **Fig. 5: Larval length across temperature and oxygen treatments. (A)** Larval length (mm)
616 of *Danio rerio* across oxygen levels and temperatures in *Experiment 1* (n = 2-15). **(B)**
617 Equivalent data for *Experiment 2* (n = 2-24). Points represent individual larvae; colored
618 circles indicate means \pm s.e., lines show third-degree polynomial fits. P-values are based on
619 Anova (type III; Table S9-S10).

620

621

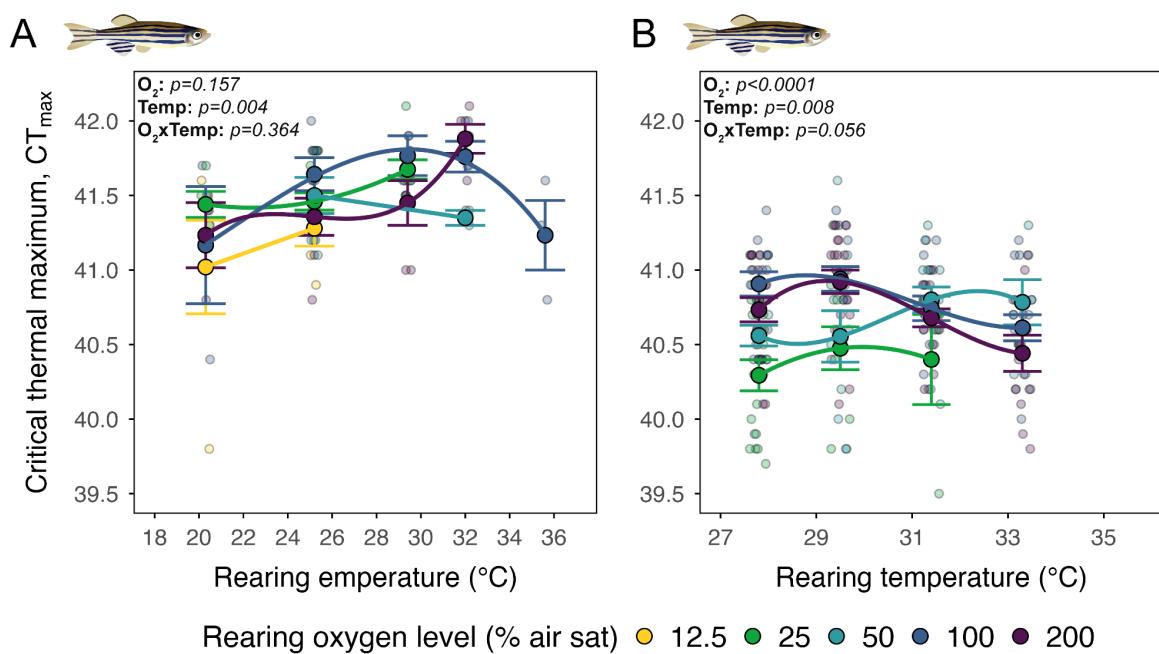

622 **Survival To First Feeding Stage**

623

624 Survival to the first feeding stage showed significant main and interactive effects of
625 temperature and oxygen availability when results from *Experiments 1* and *2* were combined
626 (Fig. 6; Table S11). At 18.1 °C, hatching was substantially delayed (~225-275 hpf), and
627 surviving larvae exhibited retarded development, retaining large yolk sacs for an additional
628 48-72 h after hatching. Because the experiment was terminated at this point, these individuals
629 were included in estimates of survival to first feeding despite incomplete yolk sac absorption,
630 as they reflected delayed development rather than mortality. In contrast, under extreme
631 warming (~35.6-35.8 °C) and hyperoxia, larvae had consumed the yolk sac but exhibited
632 severe deformities (e.g., spinal malformations or tissue swelling), hence were excluded from
633 survival-to-first-feeding estimates.

634

635 Normoxia supported high survival (>80%) across a broad thermal range (~20-35 °C), with
636 mortality increasing towards the warmer extreme (Fig. S8). At lower temperatures, larvae
637 successfully completed endogenous feeding, resulting in high survival to the first feeding
638 stage across all oxygen levels. In contrast, elevated temperatures induced substantial
639 mortality, which increased progressively with the severity of hypoxia (all p < 0.001; Table
640 S11). Survival declined below 50% at 34 °C under 50% air saturation, above 32 °C under
641 25%, and above 27 °C under 12.5%. Notably, extreme heat (~35°C) combined with
642 hyperoxia also markedly reduced survival to first feeding (p < 0.001), whereas under
643 normoxia survival closely matched hatching success. The slight valley at intermediate-high
644 temperatures and hyperoxia appears to be an artifact of combining the two experiments rather
645 than a biologically meaningful effect, as survival remained relatively high throughout that
646 range.


647
648 **Fig. 6: Three-dimensional surface plot of zebrafish larval survival across temperature**
649 **and oxygen treatments.** 3D surface plot showing the proportion of fertilized *Danio rerio*
650 embryos surviving to first feeding across temperature and oxygen treatments (combined data
651 from *Experiment 1* and *Experiment 2*; 15.7-39.3 °C). Survival ratios above 0.6 were
652 smoothed using a kernel-based normalization (*aRange, theta* = 0.9). P-values are based on a
653 binomial GLM-Tmb (Table S11). An interactive version of this figure is available at:
654 https://loresilvag.github.io/Interactive-3Dplot/3D_SurvivalToFirstFeeding_Plot.html

655
656 **Fulton's Condition Factor and CT_{max}**

658 In *Experiment 1*, larvae reared at five temperatures and oxygen levels were re-acclimated to
659 control conditions before CT_{max} testing (Table S12). Larvae hatched at 12.5% air saturation
660 in the warmer treatments died before transfer, and post-transfer mortality regardless of the
661 rearing oxygen level was high at the hottest temperatures, preventing full factorial testing
662 (Fig. S13A). Fulton's condition factor of juvenile fish did not differ across rearing
663 temperatures or oxygen levels ($p = 0.076$ and $p = 0.150$, respectively; Table S15, Fig. S14A).
664 CT_{max} varied significantly with rearing temperature (Anova type III: $p < 0.001$), but not with
665 oxygen or the oxygen-temperature interaction (Fig. 7A; Table S13). Post hoc comparisons
666 centered to normoxia and 20.3 °C showed that early exposure to severe hypoxia (12.5% air
667 saturation) reduced CT_{max} ($\beta = -0.304 \pm 0.138$, $p = 0.031$), while 25%, 50%, and 200% air
668 saturation did not differ from normoxia. CT_{max} was also lower in fish reared at 20.3 °C ($\beta = -$

669 $0.324 \pm 0.122, p = 0.010$), unchanged at 25.2 and 32 °C, and marginally reduced at 35.6 °C (β
 670 $= -0.436 \pm 0.222, p = 0.053$).

671 In *Experiment 2*, early mortality under severe hypoxia and warm temperatures similarly
 672 limited the number of treatment combinations available for testing. (Fig. S13B). Fulton's
 673 condition factor also did not vary across temperatures or oxygen levels ($p = 0.387$ and $p =$
 674 0.426, respectively; Table S15, Fig. S14B). CT_{max} varied with both oxygen availability and
 675 rearing temperature (Anova type II: both $p < 0.001$), with a border-line interaction ($p = 0.056$;
 676 Fig. 7B, Table S14). Developmental exposure to 25% air saturation reduced CT_{max} ($\beta = -$
 677 $0.483 \pm 0.09, p < 0.001$), same in the 50% air saturation fish ($\beta = -0.158 \pm 0.073, p = 0.032$),
 678 while hyperoxia (200%) did not differ from normoxia. Relative to 27.8 °C, CT_{max} was lower
 679 in fish reared at 33.3 °C ($\beta = -0.164 \pm 0.082, p = 0.04$), while intermediate temperatures
 680 produced no difference. Although overall interactions were weak, moderate hypoxia at higher
 681 temperatures produced small but detectable reductions in CT_{max} (e.g., at 31.4 °C and 33.3
 682 °C).

683
 684 **Fig. 7: Critical thermal maximum (CT_{max}) of juvenile zebrafish following early life**
 685 **exposure to temperature and oxygen treatments. (A)** CT_{max} of juveniles reared under five
 686 oxygen levels (colors) and temperature treatments (panels) in *Experiment 1*. **(B)** Equivalent
 687 CT_{max} data for *Experiment 2*. Points represent individual fish (jittered); circles show means \pm
 688 s.e., and lines depict polynomial fits. P-values are based on Anova (type III; Table S13-S14).

692 Discussion

693
 694 *Negligible effects of water oxygen availability on embryo development and hatching*

695 By leveraging the many treatment combinations of the thermal gradient table, we examined
 696 how the thermal-oxygen landscape influences zebrafish early development. Because embryos

699 and early larvae rely on passive diffusion of oxygen across the chorion and perivitelline fluid,
700 hyperoxia was hypothesized to buffer against oxygen limitation during thermal stress. We
701 therefore predicted that oxygen availability would play a dominant role in shaping thermal
702 performance, especially at supraoptimal temperatures. Contrary to these predictions, the role
703 of oxygen on developmental performance was relatively minor. Increasing oxygen
704 availability through hyperoxic water did not alleviate key symptoms of thermal stress. Even
705 at the highest temperatures, hyperoxic water did not improve yolk consumption, hatching, or
706 larval growth and survival. This lack of benefit from hyperoxia is consistent with
707 observations in rainbow trout (*Oncorhynchus mykiss*) embryos, where growth was similar
708 under hyperoxia and normoxia rearing (Ciuhandu et al., 2005), and in Atlantic salmon (*Salmo*
709 *salar*) where hyperoxic rearing (150% air saturation) through embryonic and alevin
710 development did not enhance growth or aerobic metabolism (Wood et al., 2019). Together,
711 these findings indicate that developmental constraints under warming are not readily
712 explained by OCLTT predictions (Dahlke et al., 2020).

713 Hyperoxia delayed hatching in zebrafish (by 26-50 h), but only at the highest temperatures.
714 Similar delays were reported in rainbow trout (*Oncorhynchus mykiss*) and Atlantic killifish
715 (*Fundulus heteroclitus*, Dimichele and Taylor, 1980; Latham and Just, 1989). As hatching
716 has been hypothesized to be triggered by hypoxia in the embryo (Czernies et al., 2001;
717 Teletchea and Pauly 2024), hyperoxic water that reduces diffusive constraints across the
718 chorion and perivitelline fluid would accordingly delay hatching, although empirical support
719 for this mechanism remains limited. We only found delayed hatching from hyperoxia at the
720 very highest temperatures, meaning it does not appear to delay hatching in general. The
721 hypothesis is also not supported by our moderate hypoxia groups, where earlier hatching
722 would have been predicted. As this was not found, and because hyperoxia did not delay
723 hatching at most temperatures, we don't see evidence for embryonic oxygen limitation as a
724 universal trigger for hatching.

725 Similar to the relatively minor effects of hyperoxia, mild hypoxia (50% air saturation) did not
726 dramatically exacerbate the thermal performance of embryos and larvae in most of our
727 measurements. There appeared to be a slight slowing of yolk consumption at higher
728 temperatures, but heart rate, hatching success, and larvae length were mostly unaffected until
729 the very highest temperatures. Taken together, the limited effects of hyperoxia and mild
730 hypoxia suggest that tissue oxygen availability is not a major physiological mechanism
731 restricting development in zebrafish.

732

733 *Severe hypoxia allows early development but imposes physiological costs*

734

735 Remarkably, embryos reared under severe hypoxia (12.5 and 25% air saturation) showed
736 high hatching success (60-100%) across a broad thermal range (~20-33 °C), indicating
737 substantial tolerance to low oxygen levels. Yet, severe hypoxia produced clear signs of
738 developmental disturbance, including reduced heart rates, slowed yolk consumption, reduced
739 body length, and delayed and underdeveloped hatching, particularly near thermal limits.
740 These patterns are consistent with hypoxia-induced metabolic depression, a response
741 observed in many teleosts embryos (Shumway et al., 1964; Hassell et al., 2008; Mueller et
742 al., 2011; Marks et al., 2012). Edema and diminished skin pigmentation were also observed
743 in the severe hypoxia-exposed embryos but were not quantified. Notably, embryos exposed to

744 severe hypoxia exhibited lower heart rates than those reared at higher oxygen levels from the
745 onset of cardiac activity (~24 hpf). Although they eventually reached peak heart rates
746 comparable to those observed in normoxic embryos, this occurred several days later under
747 severe hypoxia. Because this pattern is consistent with observed trajectories of cardiac
748 development in zebrafish (Gierten et al., 2020), it likely reflects delayed or slowed cardiac
749 development rather than persistent bradycardia. While heart rate itself is unlikely to directly
750 constrain aerobic metabolism at this stage due to reliance on diffusive oxygen uptake,
751 delayed cardiac and organ development can nonetheless impair overall performance.
752 Hatching under severe hypoxia is a common and well-documented response in fish embryos
753 exposed to suboptimal environmental conditions, including hypoxia and elevated
754 temperatures (Czernies et al., 2001; Cowan et al., 2024). Mechanistically, sustained hypoxia
755 during late embryogenesis can trigger the release of chorionase from hatching gland cells,
756 softening the chorion and facilitating earlier escape (Czernies et al., 2001, 2002). However, if
757 embryos are weakened or hatching glands remain immature, hatching may fail (Czernies et
758 al., 2001; Mueller et al., 2011). Thus, while stress-induced hatching may enable embryos to
759 exit unfavorable environments, it can occur before completion of key developmental
760 milestones required for post-hatching function.

761 Despite the developmental stress observed before hatching, survival to the first feeding
762 remained high under severe hypoxia at cooler temperatures (18-27 °C), but declined sharply
763 when hypoxia was combined with supraoptimal temperatures. Similar to embryos, early
764 larvae oxygen transport relies mostly on cutaneous uptake because the gills are not yet
765 functional (De Silva, 1974; Wells and Pinder, 1996). In zebrafish, the neuroepithelial cells
766 that facilitate oxygen uptake begin to develop in the gill filaments at around five days post-
767 fertilization at 28 °C (Jonz and Nurse, 2005). Metabolic demands can rise during this period
768 and cutaneous respiration can thus become insufficient. This may explain why larvae exposed
769 to severe hypoxia and warming showed time-limited survival, and experienced the highest
770 mortality after transfer to normoxia for CT_{max} testing (Fig. S13). By contrast, larvae reared
771 under severe hypoxia and cooler temperatures that were transferred to normoxia for later
772 CT_{max} testing showed high survival rates and reached body sizes comparable with normoxia
773 reared larvae. Together, these results suggest that the early post-hatching transition represents
774 a critical window during which increasing metabolic demands can outpace diffusive oxygen
775 uptake, leaving larvae particularly vulnerable when hypoxia and warming occur
776 simultaneously.

777 Temperature is a key regulator of fish embryonic development, influencing both yolk
778 utilization and larval growth efficiency (Kamler, 1994; Kamiński et al., 2006). In our study,
779 warmer temperatures predictably accelerated yolk consumption, development and hatching.
780 Furthermore, severe hypoxia had a temperature-dependent and non-linear effect on hatching
781 time. When compared to normoxia, the hatching under severe hypoxia occurred sooner under
782 cooler temperatures (20-50 hours earlier) and was delayed under warming (30-50 hours later;
783 Fig. 4, Fig. S9). This suggests that at warm temperatures and hypoxia, oxygen can become
784 limiting to metabolic processes, leading to slowed development and delayed hatching. At low
785 temperatures, however, where metabolic demands are reduced, the low oxygen saturation in
786 hypoxia may be sufficient to sustain development, but can still induce premature hatching.
787 Together, these results demonstrate a complex interaction between temperature and oxygen
788 availability, whereby severe hypoxia accelerates hatching under cooler temperatures but
789 delays hatching under warming.

790

791 *Thermal performance curves reveal a broad thermal window for embryonic development*

792

793 The thermal window for successful zebrafish embryonic development and hatching (>80%
794 success) ranged from 20 to 36 °C under normoxia. This is a broader thermal window than
795 what has previously been reported for zebrafish (~22-34 °C) (Schirone and Gross, 1968;
796 Schnurr et al., 2014; Urushibata et al., 2021). A possible explanation for this discrepancy is
797 that the current experiment used the JU strain of wild-caught zebrafish that have previously
798 been found to be more plastic than the domesticated AB strain (Morgan et al., 2022; Sundin
799 et al., 2019). The thermal range is also narrower, especially on the cold side, than the
800 established thermal window found for juveniles and adults under chronic conditions (Åsheim
801 et al., 2020; Morgan et al., 2019, 2022). A sharp decline in hatching success and complete
802 failure below 18 °C and above 36 °C under all water oxygen levels marks clear thermal limits
803 for the zebrafish embryogenesis. Thermal performance curves further revealed that
804 intermediate temperatures (25-34 °C) maximized yolk sac consumption and larval size,
805 suggesting that this range may support the most efficient energy allocation to growth. Taken
806 together, the embryonic development of zebrafish has a broad thermal window and is
807 surprisingly robust to thermal challenges.

808

809 *Developmental heat and severe hypoxia marginally shape juvenile thermal limits*

810

811

812 Developmental plasticity, whereby early life conditions confer lasting effects across
813 subsequent life stages, has been suggested to be an important mechanism shaping ectotherm
814 thermal tolerance (Scott and Johnston, 2012; Noble et al., 2018). Acute thermal tolerance
815 tests of juveniles showed that early-life exposure to severe hypoxia and non-optimal
816 temperatures can have lasting, albeit modest, effects. Fish reared under severe hypoxia
817 exhibited slightly lower CT_{max} than those reared under normoxia (0.3-0.4 °C average
818 difference; Fig. 7). Similarly, fish reared at colder or warmer temperature extremes showed
819 reduced thermal tolerance relative to those reared near the thermal optimum (0.3 and 0.4 °C
820 average difference, respectively). These effects should be interpreted cautiously, as severe
821 hypoxia and warming caused substantial mortality during early development, such that CT_{max}
822 estimates reflect only individuals that survived to the juvenile stage and do not capture
823 responses across the full range of developmental conditions. Notably, higher developmental
824 temperatures did not enhance juvenile heat tolerance, indicating limited capacity for
825 beneficial developmental plasticity under warming. Overall, the effect sizes associated with
826 developmental plasticity were small, consistent with meta-analyses showing that ectotherm
827 thermal tolerance is only weakly influenced by developmental temperature (Pottier et al.,
828 2022). Together, these results suggest that while early-life oxygen and thermal stress can
829 influence later thermal limits, their effects are modest and do not confer increased tolerance
830 to acute warming.

831

832

833

834 **Conclusion**

835

836 Early life stages have been viewed as a thermal bottleneck in the fish life cycle, with
837 warming expected to constrain performance through oxygen limitation. Our results challenge
838 the view that oxygen limitation sets the upper thermal boundary for early fish development.
839 Hyperoxia failed to improve early-life performance at high temperatures, and at the upper
840 thermal extremes even reduced hatching success, suggesting potential physiological costs of
841 elevated oxygen under heat stress. Although such costs (e.g. ROS production or oxygen
842 toxicity; Birnie-Gauvin et al., 2016; Tunç et al., 2025) were not directly assessed, the reduced
843 performance under combined warming and hyperoxia could be indicative of such effects.
844 Overall, responses to hyperoxia appear species- and context-dependent.

845
846 In contrast, zebrafish embryos tolerated moderate hypoxia remarkably well, and only severe
847 hypoxia combined with warming impaired development and reduced larval survival. While
848 signs of oxygen limitation emerged under these extreme conditions, developmental failure at
849 high temperatures was not alleviated by additional oxygen. This indicates that mechanisms
850 other than oxygen supply, likely involving cellular and molecular limits, constrain the upper
851 thermal tolerance in early life. The broad temperature range supporting successful hatching
852 further highlights the plasticity of embryonic development in zebrafish. Our study also
853 indicates only limited carry over effects of early developmental conditions on later thermal
854 tolerance. Together, these findings underscore the need to understand how multiple
855 interacting stressors affect early developmental stages to more accurately predict species
856 resilience and vulnerability in a warming world.

857 858 859 Acknowledgements

860
861 We thank Eline Østduun for their help with fish husbandry and Claudia Hernández Camacho
862 for her assistance during the data collection for the first experiment. Thanks to Nicole Aberle-
863 Malzahn for designing and the NTNU workshop with Øystein Gjervan Hagemo and Robert
864 Karlsen for constructing the thermal gradient table.

865 866 867 868 Funding sources

869
870 This work was supported by the Research Council of Norway (funding scheme for
871 independent projects [FRIPRO] grant FJ: 262942), European Research Council [ERC]
872 (consolidator grant FJ: CLIMEVOLVE), Marie Skłodowska-Curie Actions Grant (grant RE:
873 893895), and NTNU PhD grant (grant LSG: 976000112).

874 875 876 877 CRediT authorship contribution statement

878
879 **Lorena Silva-Garay:** Conceptualization, Methodology, Investigation, Data collection,
880 Writing – original draft, Data curation, Visualization, Formal analysis, Project administration.
881 **Moa Metz:** Conceptualization, Methodology, Data collection, Review & Editing. **Henning**
882 **H. Kristiansen:** Methodology, Data collection, Data curation, Visualization, Review &
883 Editing. **Leon Pfeufer:** Methodology, Data collection, Review & Editing. **Emily Lechner:**
884 Methodology, Data collection, Review & Editing. **Rasmus Ern:** Conceptualization,
885 Methodology, Review & Editing. **Anna H. Andreassen:** Conceptualization, Methodology,

886 Review & Editing. **Fredrik Jutfelt**: Conceptualization, Methodology, Investigation, Writing
887 – Review & Editing, Validation, Supervision, Resources, Funding acquisition.

892 References

893

894

895 Abràmoff, M. D., Magalhães, P. J., & Ram, S. J. (2004). Image processing with ImageJ.
896 *Biophotonics international*, 11(7), 36-42.

897 Alderdice, D. F., Wickett, W. P., & Brett, J. R. (1958). Some effects of temporary exposure
898 to low dissolved oxygen levels on pacific salmon eggs. *Journal of the Fisheries
899 Research Board of Canada*, 15(2), 229-250. <https://doi.org/10.1139/f58-013>

900 Andreassen, A. H., Hall, P., Khatibzadeh, P., Jutfelt, F., & Kermen, F. (2022). Brain
901 dysfunction during warming is linked to oxygen limitation in larval zebrafish.
902 *Proceedings of the National Academy of Sciences*, 119(39), e2207052119.
903 <https://doi.org/doi:10.1073/pnas.2207052119>

904 Åsheim, E. R., Andreassen, A. H., Morgan, R., & Jutfelt, F. (2020). Rapid-warming tolerance
905 correlates with tolerance to slow warming but not growth at non-optimal temperatures
906 in zebrafish. *Journal of Experimental Biology*, 223(23).
907 <https://doi.org/10.1242/jeb.229195>

908 Barrionuevo, W. R., & Burggren, W. W. (1999). O₂ consumption and heart rate in developing
909 zebrafish (*Danio rerio*): influence of temperature and ambient O₂. *American Journal
910 of Physiology-Regulatory, Integrative and Comparative Physiology*, 276(2), R505-
911 R513. <https://doi.org/10.1152/ajpregu.1999.276.2.R505>

912 Birnie-Gauvin, K., Costantini, D., Cooke, S. J., & Willmore, W. G. (2017). A comparative
913 and evolutionary approach to oxidative stress in fish: A review. *Fish and Fisheries*,
914 18(5), 928-942. <https://doi.org/https://doi.org/10.1111/faf.12215>

915 Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: understanding AIC and
916 BIC in model selection. *Sociological Methods & Research*, 33(2), 261-304.
917 <https://doi.org/10.1177/0049124104268644>

918 Burt, P., & Adelson, E. (1983). The Laplacian Pyramid as a compact image code. *IEEE
919 Transactions on Communications*, 31(4), 532-540.
920 <https://doi.org/10.1109/TCOM.1983.1095851>

921 Ciuhandu, C. S., Stevens, E. D., & Wright, P. A. (2005). The effect of oxygen on the growth
922 of *Oncorhynchus mykiss* embryos with and without a chorion. *Journal of Fish
923 Biology*, 67(6), 1544-1551. [https://doi.org/https://doi.org/10.1111/j.1095-8649.2005.00856.x](https://doi.org/https://doi.org/10.1111/j.1095-
924 8649.2005.00856.x)

925 Comte, L., & Olden, J. D. (2017). Climatic vulnerability of the world's freshwater and
926 marine fishes. *Nature Climate Change*, 7(10), 718-722.
927 <https://doi.org/10.1038/nclimate3382>

928 Cowan, Z.-L., Andreassen, A. H., De Bonville, J., Green, L., Binning, S. A., Silva-Garay, L.,
929 Jutfelt, F., & Sundin, J. (2023). A novel method for measuring acute thermal tolerance
930 in fish embryos. *Conservation Physiology*, 11(1).
931 <https://doi.org/10.1093/conphys/coad061>

932 Cowan, Z.-L., Green, L., Clark, T. D., Blewett, T. A., De Bonville, J., Gagnon, T., Hoots, E.,
933 Kuchenmüller, L., Leeuwis, R. H. J., Navajas Acedo, J., Rowsey, L. E., Scheuffele,
934 H., Skeeles, M. R., Silva-Garay, L., Jutfelt, F., & Binning, S. A. (2024). Global

935 change and premature hatching of aquatic embryos. *Global Change Biology*, 30(9),
936 e17488. <https://doi.org/https://doi.org/10.1111/gcb.17488>

937 Czerkies, P., Brzuzan, P., Kordalski, K., & Luczynski, M. (2001). Critical partial pressures of
938 oxygen causing precocious hatching in *Coregonus lavaretus* and *C. albula* embryos.
939 *Aquaculture*, 196(1), 151-158. [https://doi.org/https://doi.org/10.1016/S0044-8486\(00\)00545-7](https://doi.org/https://doi.org/10.1016/S0044-8486(00)00545-7)

940 Czerkies, P., Kordalski, K., Golas, T., Krysinski, D., & Luczynski, M. (2002). Oxygen
941 requirements of whitefish and vendace (Coregoninae) embryos at final stages of their
942 development. *Aquaculture*, 211(1), 375-385.
943 [https://doi.org/https://doi.org/10.1016/S0044-8486\(02\)00049-2](https://doi.org/https://doi.org/10.1016/S0044-8486(02)00049-2)

944 Dahlke, F. T., Wohlrab, S., Butzin, M., & Pörtner, H.-O. (2020). Thermal bottlenecks in the
945 life cycle define climate vulnerability of fish. *Science*, 369(6499), 65-70.
946 <https://doi.org/doi:10.1126/science.aaz3658>

947 De Silva, C. (1974). Development of the respiratory system in herring and plaice larvae. In J.
948 H. S. Blaxter, *The Early Life History of Fish* Berlin, Heidelberg.

949 Dimichele, L., & Taylor, M. H. (1980). The environmental control of hatching in *Fundulus*
950 *heteroclitus*. *Journal of Experimental Zoology*, 214(2), 181-187.
951 <https://doi.org/https://doi.org/10.1002/jez.1402140209>

952 Du, W.-G., & Shine, R. (2022). The behavioural and physiological ecology of embryos:
953 responding to the challenges of life inside an egg. *Biological Reviews*, 97(4), 1272-
954 1286. <https://doi.org/https://doi.org/10.1111/brv.12841>

955 Ern, R., Johansen, J. L., Rummel, J. L., & Esbbaugh, A. J. (2017). Effects of hypoxia and
956 ocean acidification on the upper thermal niche boundaries of coral reef fishes. *Biology
957 Letters*, 13(7), 20170135. <https://doi.org/doi:10.1098/rsbl.2017.0135>

958 Ern, R., Norin, T., Gamperl, A. K., & Esbbaugh, A. J. (2016). Oxygen dependence of upper
959 thermal limits in fishes. *Journal of Experimental Biology*, 219(21), 3376-3383.
960 <https://doi.org/10.1242/jeb.143495>

961 Fry, F. E. J., & Hart, J. S. (1948). The relation of temperature to oxygen consumption in the
962 goldfish. *The Biological Bulletin*, 94(1), 66-77. <https://doi.org/10.2307/1538211>

963 Garside, E. T. (1966). Effects of oxygen in relation to temperature on the development of
964 embryos of Brook trout and Rainbow trout. *Journal of the Fisheries Research Board
965 of Canada*, 23(8), 1121-1134. <https://doi.org/10.1139/f66-105>

966 Giertzen, J., Pylatiuk, C., Hammouda, O. T., Schock, C., Stegmaier, J., Wittbrodt, J., Gehrig,
967 J., & Loosli, F. (2020). Automated high-throughput heartbeat quantification in
968 medaka and zebrafish embryos under physiological conditions. *Scientific Reports*,
969 10(1), 2046. <https://doi.org/10.1038/s41598-020-58563-w>

970 Hassell, K. L., Coutin, P. C., & Nugegoda, D. (2008). Hypoxia impairs embryo development
971 and survival in black bream (*Acanthopagrus butcheri*). *Marine Pollution Bulletin*,
972 57(6), 302-306. <https://doi.org/https://doi.org/10.1016/j.marpolbul.2008.02.045>

973 Haugen, L. A. S. (2022). *Feeding ecology and behavior of nudibranchs from the sublittoral
974 zones of Trondheimsfjorden and interactions with fouling communities* [Master's
975 thesis Norwegian University of Science and Technology].

976 Hayes, F. R., Wilmot, I. B., & Livingstone, D. A. (1951). The oxygen consumption of the
977 salmon egg in relation to development and activity. *Journal of Experimental Zoology*,
978 116(3), 377-395. <https://doi.org/https://doi.org/10.1002/jez.1401160302>

979 Jonz, M. G., & Nurse, C. A. (2005). Development of oxygen sensing in the gills of zebrafish.
980 *Journal of Experimental Biology*, 208(8), 1537-1549.
981 <https://doi.org/10.1242/jeb.01564>

982 Kamiński, R., Kamler, E., Korwin-Kossakowski, M., Myszkowski, L., & Wolnicki, J. (2006).
983 Effects of different incubation temperatures on the yolk-feeding stage of *Eupallasella*

984

985 *percnurus* (Pallas). *Journal of Fish Biology*, 68(4), 1077-1090.
986 <https://doi.org/https://doi.org/10.1111/j.0022-1112.2006.01008.x>

987 Kamler, E., Szlamińska, M., Kuczyński, M., Hamáčková, J., Kouřil, J., & Dabrowski, R.
988 (1994). Temperature-induced changes of early development and yolk utilization in the
989 African catfish *Clarias gariepinus*. *Journal of Fish Biology*, 44(2), 311-326.
990 <https://doi.org/https://doi.org/10.1111/j.1095-8649.1994.tb01208.x>

991 Keckeis, H., Bauer-Nemeschkal, E., & Kamler, E. (1996). Effects of reduced oxygen level on
992 the mortality and hatching rate of *Chondrostoma nasus* embryos. *Journal of Fish
993 Biology*, 49(3), 430-440. <https://doi.org/https://doi.org/10.1111/j.1095-8649.1996.tb00039.x>

995 Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995).
996 Stages of embryonic development of the zebrafish. *Developmental Dynamics*, 203(3),
997 253-310. <https://doi.org/https://doi.org/10.1002/aja.1002030302>

998 Latham, K. E., & Just, J. J. (1989). Oxygen availability provides a signal for hatching in the
999 rainbow trout (*Salmo gairdneri*) embryo. *Canadian Journal of Fisheries and Aquatic
1000 Sciences*, 46(1), 55-58. <https://doi.org/10.1139/f89-008>

1001 Lauridsen, H., Gonzales, S., Hedwig, D., Perrin, K. L., Williams, C. J. A., Wrege, P. H.,
1002 Bertelsen, M. F., Pedersen, M., & Butcher, J. T. (2019). Extracting physiological
1003 information in experimental biology via Eulerian video magnification. *BMC Biology*,
1004 17(1), 103. <https://doi.org/10.1186/s12915-019-0716-7>

1005 Marks, C., Kaut, K. P., Moore, F. B.-G., & Bagatto, B. (2012). Ontogenetic oxygen changes
1006 alter zebra fish size, behavior, and blood glucose. *Physiological and Biochemical
1007 Zoology*, 85(6), 635-644. <https://doi.org/10.1086/666508>

1008 McArley, T. J., Morgenroth, D., Zena, L. A., Ekström, A. T., & Sandblom, E. (2022).
1009 Prevalence and mechanisms of environmental hyperoxia-induced thermal tolerance in
1010 fishes. *Proceedings of the Royal Society B: Biological Sciences*, 289(1981),
1011 20220840. <https://doi.org/doi:10.1098/rspb.2022.0840>

1012 Miller, S. C., Reeb, S. E., Wright, P. A., & Gillis, T. E. (2008). Oxygen concentration in the
1013 water boundary layer next to rainbow trout (*Oncorhynchus mykiss*) embryos is
1014 influenced by hypoxia exposure time, metabolic rate, and water flow. *Canadian
1015 Journal of Fisheries and Aquatic Sciences*, 65(10), 2170-2177.
1016 <https://doi.org/10.1139/f08-123>

1017 Morgan, R., Andreassen, A. H., Åsheim, E. R., Finnøen, M. H., Dresler, G., Brembu, T., Loh,
1018 A., Miest, J. J., & Jutfelt, F. (2022). Reduced physiological plasticity in a fish adapted
1019 to stable temperatures. *Proceedings of the National Academy of Sciences*, 119(22),
1020 e2201919119. <https://doi.org/doi:10.1073/pnas.2201919119>

1021 Morgan, R., Finnøen, M. H., & Jutfelt, F. (2018). CTmax is repeatable and doesn't reduce
1022 growth in zebrafish. *Scientific Reports*, 8(1), 7099. <https://doi.org/10.1038/s41598-018-25593-4>

1023 Morgan, R., Sundin, J., Finnøen, M. H., Dresler, G., Vendrell, M. M., Dey, A., Sarkar, K., &
1024 Jutfelt, F. (2019). Are model organisms representative for climate change research?
1025 Testing thermal tolerance in wild and laboratory zebrafish populations. *Conservation
1026 Physiology*, 7(1). <https://doi.org/10.1093/conphys/coz036>

1027 Mueller, C. A., Joss, J. M. P., & Seymour, R. S. (2011). Effects of environmental oxygen on
1028 development and respiration of Australian lungfish (*Neoceratodus forsteri*) embryos.
1029 *Journal of Comparative Physiology B*, 181(7), 941-952.
1030 <https://doi.org/10.1007/s00360-011-0573-3>

1031 Myrvold, S. L. (2020). *Effect of temperature on the settling rate, survival, ingestion rate and
1032 biochemical composition of the polyp stages of A. aurita* [Master's thesis, Norwegian
1033 University of Science and Technology].

1034

1035 Negrete, B., Jr, Ackerly, K. L., & Esbaugh, A. J. (2024). Implications of chronic hypoxia
1036 during development in red drum. *Journal of Experimental Biology*, 227(16).
1037 <https://doi.org/10.1242/jeb.247618>

1038 Noble, D. W. A., Stenhouse, V., & Schwanz, L. E. (2018). Developmental temperatures and
1039 phenotypic plasticity in reptiles: a systematic review and meta-analysis. *Biological
1040 Reviews*, 93(1), 72-97. <https://doi.org/https://doi.org/10.1111/brv.12333>

1041 Pörtner, H.-O. (2010). Oxygen- and capacity-limitation of thermal tolerance: a matrix for
1042 integrating climate-related stressor effects in marine ecosystems. *Journal of
1043 Experimental Biology*, 213(6), 881-893. <https://doi.org/10.1242/jeb.037523>

1044 Pörtner, H.-O., Bock, C., & Mark, F. C. (2017). Oxygen- and capacity-limited thermal
1045 tolerance: bridging ecology and physiology. *Journal of Experimental Biology*,
1046 220(15), 2685-2696. <https://doi.org/10.1242/jeb.134585>

1047 Pottier, P., Burke, S., Drobniak, S. M., & Nakagawa, S. (2022). Methodological
1048 inconsistencies define thermal bottlenecks in fish life cycle: a comment on Dahlke et
1049 al. 2020. *Evolutionary Ecology*, 36(2), 287-292. [https://doi.org/10.1007/s10682-022-10157-w](https://doi.org/10.1007/s10682-022-
1050 10157-w)

1051 Raby, G. D., De Bonville, J., Reynolds, L., Storm, Z., Cowan, Z.-L., Metz, M., Andreassen,
1052 A. H., Pfeufer, L., Lechner, E. R., Stewart, E. M. C., Leeuwis, R. H. J., Ern, R., Silva-
1053 Garay, L., Skeeles, M. R., Roche, D. G., Morgan, R., Green, L., Speers-Roesch, B.,
1054 Mills, S. C., . . . Jutfelt, F. (2025). Oxygen supersaturation has negligible effects on
1055 warming tolerance across diverse aquatic ectotherms. *PLOS Biology*, 23(11),
1056 e3003413. <https://doi.org/10.1371/journal.pbio.3003413>

1057 Rombough, P. J. (1989). Oxygen conductance values and structural characteristics of the egg
1058 capsules of pacific salmonids. *Comparative Biochemistry and Physiology Part A:
1059 Physiology*, 92(3), 279-283. [https://doi.org/https://doi.org/10.1016/0300-9629\(89\)90564-1](https://doi.org/https://doi.org/10.1016/0300-
1060 9629(89)90564-1)

1061 Rombough, P. J. (1999). The gill of fish larvae. Is it primarily a respiratory or an
1062 ionoregulatory structure? *Journal of Fish Biology*, 55(sA), 186-204.
1063 <https://doi.org/https://doi.org/10.1111/j.1095-8649.1999.tb01055.x>

1064 Schirone, R. C., & Gross, L. (1968). Effect of temperature on early embryological
1065 development of the zebra fish, *Brachydanio rerio*. *Journal of Experimental Zoology*,
1066 169(1), 43-52. <https://doi.org/https://doi.org/10.1002/jez.1401690106>

1067 Schnurr, M. E., Yin, Y., & Scott, G. R. (2014). Temperature during embryonic development
1068 has persistent effects on metabolic enzymes in the muscle of zebrafish. *Journal of
1069 Experimental Biology*, 217(8), 1370-1380. <https://doi.org/10.1242/jeb.094037>

1070 Scott, G. R., & Johnston, I. A. (2012). Temperature during embryonic development has
1071 persistent effects on thermal acclimation capacity in zebrafish. *Proceedings of the
1072 National Academy of Sciences*, 109(35), 14247-14252.
1073 <https://doi.org/10.1073/pnas.1205012109>

1074 Shumway, D. L., Warren, C. E., & Doudoroff, P. (1964). Influence of oxygen concentration
1075 and water movement on the growth of steelhead trout and coho salmon embryos.
1076 *Transactions of the American Fisheries Society*, 93(4), 342-356.
1077 [https://doi.org/10.1577/1548-8659\(1964\)93\[342:Ioocaw\]2.0.Co;2](https://doi.org/10.1577/1548-8659(1964)93[342:Ioocaw]2.0.Co;2)

1078 Silva-Garay, L., Ern, R., Andreassen, A. H., Reiersen, M., & Jutfelt, F. (2025). No oxygen
1079 limitation of upper thermal tolerance in zebrafish regardless of acclimation
1080 temperature. *Journal of Thermal Biology*, 131, 104157.
1081 <https://doi.org/https://doi.org/10.1016/j.jtherbio.2025.104157>

1082 Skeeles, M. R., Scheuffele, H., & Clark, T. D. (2022). Chronic experimental hyperoxia
1083 elevates aerobic scope: a valid method to test for physiological oxygen limitations in

1084 fish. *Journal of Fish Biology*, 101(6), 1595-1600.
1085 <https://doi.org/https://doi.org/10.1111/jfb.15213>

1086 Sunday, J. M., Bates, A. E., & Dulvy, N. K. (2012). Thermal tolerance and the global
1087 redistribution of animals. *Nature Climate Change*, 2(9), 686-690.
1088 <https://doi.org/10.1038/nclimate1539>

1089 Sundin, J., Morgan, R., Finnøen, M. H., Dey, A., Sarkar, K., & Jutfelt, F. (2019). On the
1090 observation of wild zebrafish (*Danio rerio*) in India. *Zebrafish*, 16(6), 546-553.
1091 <https://doi.org/10.1089/zeb.2019.1778>

1092 Teletchea, F., & Pauly, D. (2024). Why do fish larvae hatch when they do? *Environmental*
1093 *Biology of Fishes*, 107(5), 583-591. <https://doi.org/10.1007/s10641-024-01553-y>

1094 Thomas, W. H., Scotten, H. L., & Bradshaw, J. S. (1963). Thermal gradient incubators for
1095 small aquatic organisms *Limnology and Oceanography*, 8(3), 357-360.
1096 <https://doi.org/https://doi.org/10.4319/lo.1963.8.3.0357>

1097 Tunç, A., Erdoğan, O., Vural, O., & Aksakal, E. (2025). Impact of acute and long-term
1098 hypoxia and hyperoxia on antioxidant metabolism and gene expression in juvenile
1099 rainbow trout (*Oncorhynchus mykiss*). *Aquaculture Research*, 2025(1), 6628284.
1100 <https://doi.org/https://doi.org/10.1155/are/6628284>

1101 Urushibata, H., Sasaki, K., Takahashi, E., Hanada, T., Fujimoto, T., Arai, K., & Yamaha, E.
1102 (2021). Control of developmental speed in zebrafish embryos using different
1103 incubation temperatures. *Zebrafish*, 18(5), 316-325.
1104 <https://doi.org/10.1089/zeb.2021.0022>

1105 Warkentin, K. M. (2007). Oxygen, gills, and embryo behavior: mechanisms of adaptive
1106 plasticity in hatching. *Comparative Biochemistry and Physiology Part A: Molecular*
1107 *& Integrative Physiology*, 148(4), 720-731.
1108 <https://doi.org/https://doi.org/10.1016/j.cbpa.2007.02.009>

1109 Warkentin, K. M. (2011). Environmentally cued hatching across taxa: embryos respond to
1110 risk and opportunity. *Integrative and Comparative Biology*, 51(1), 14-25.
1111 <https://doi.org/10.1093/icb/icr017>

1112 Wells, P. R., & Pinder, A. W. (1996). The respiratory development of atlantic salmon: I.
1113 morphometry of gills, yolk sac and body surface. *Journal of Experimental Biology*,
1114 199(12), 2725-2736. <https://doi.org/10.1242/jeb.199.12.2725>

1115 Wood, A. T., Clark, T. D., Elliott, N. G., Frappell, P. B., & Andrewartha, S. J. (2019).
1116 Physiological effects of dissolved oxygen are stage-specific in incubating Atlantic
1117 salmon (*Salmo salar*). *Journal of Comparative Physiology B*, 189(1), 109-120.
1118 <https://doi.org/10.1007/s00360-018-1199-5>

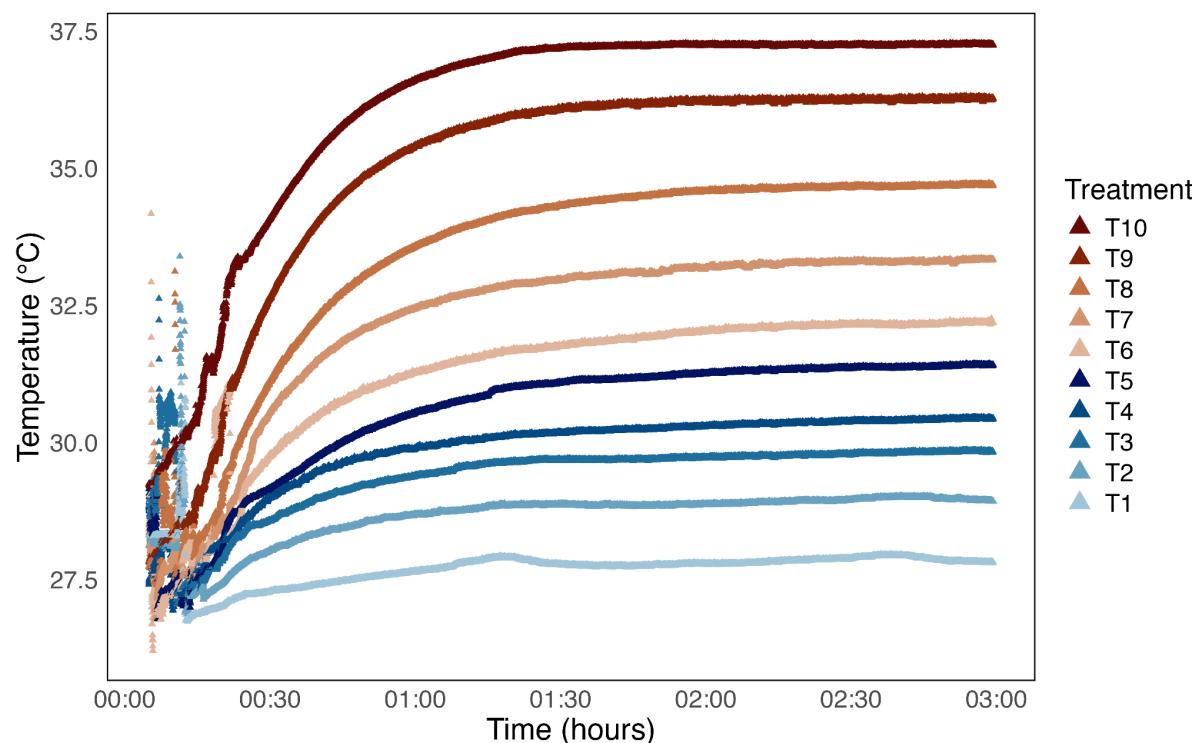
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134 **Supplementary Information for**

1135

1136

1137 Oxygen limitation is not a major physiological mechanism restricting early life development
1138 in zebrafish


1139

1140

1141

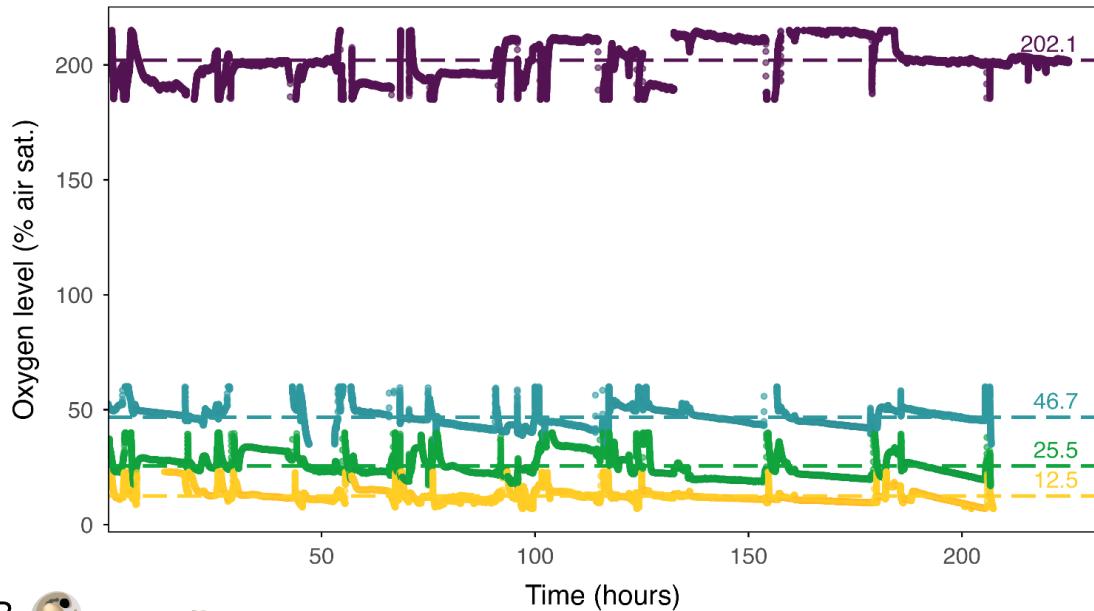
1142

1143

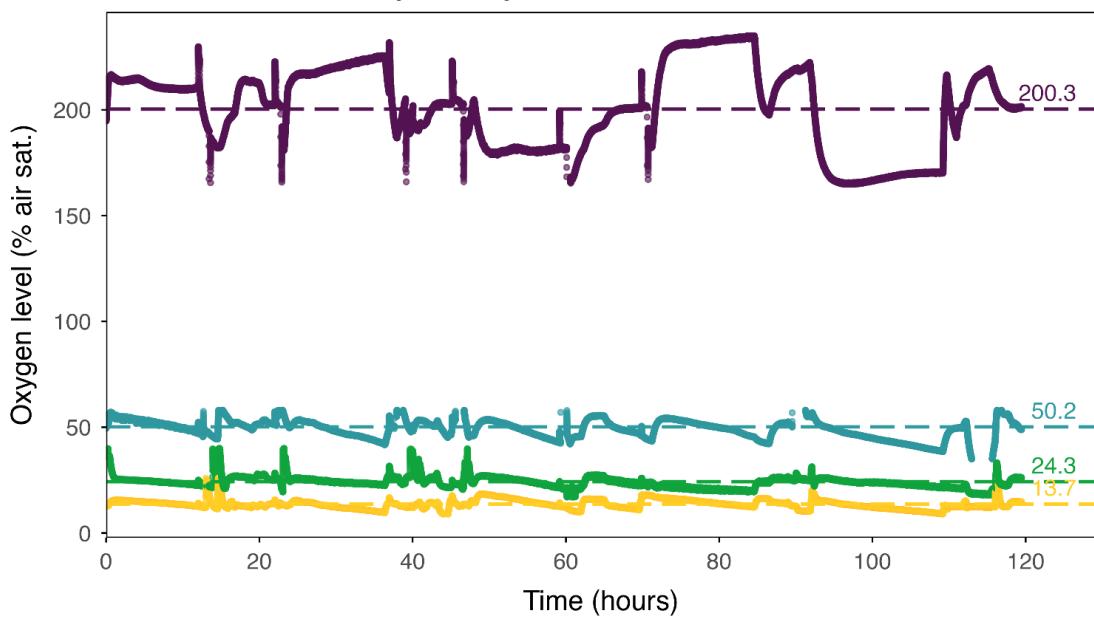
1144

1145 **Fig. S1: Heating rate across treatments in the thermal gradient table.**

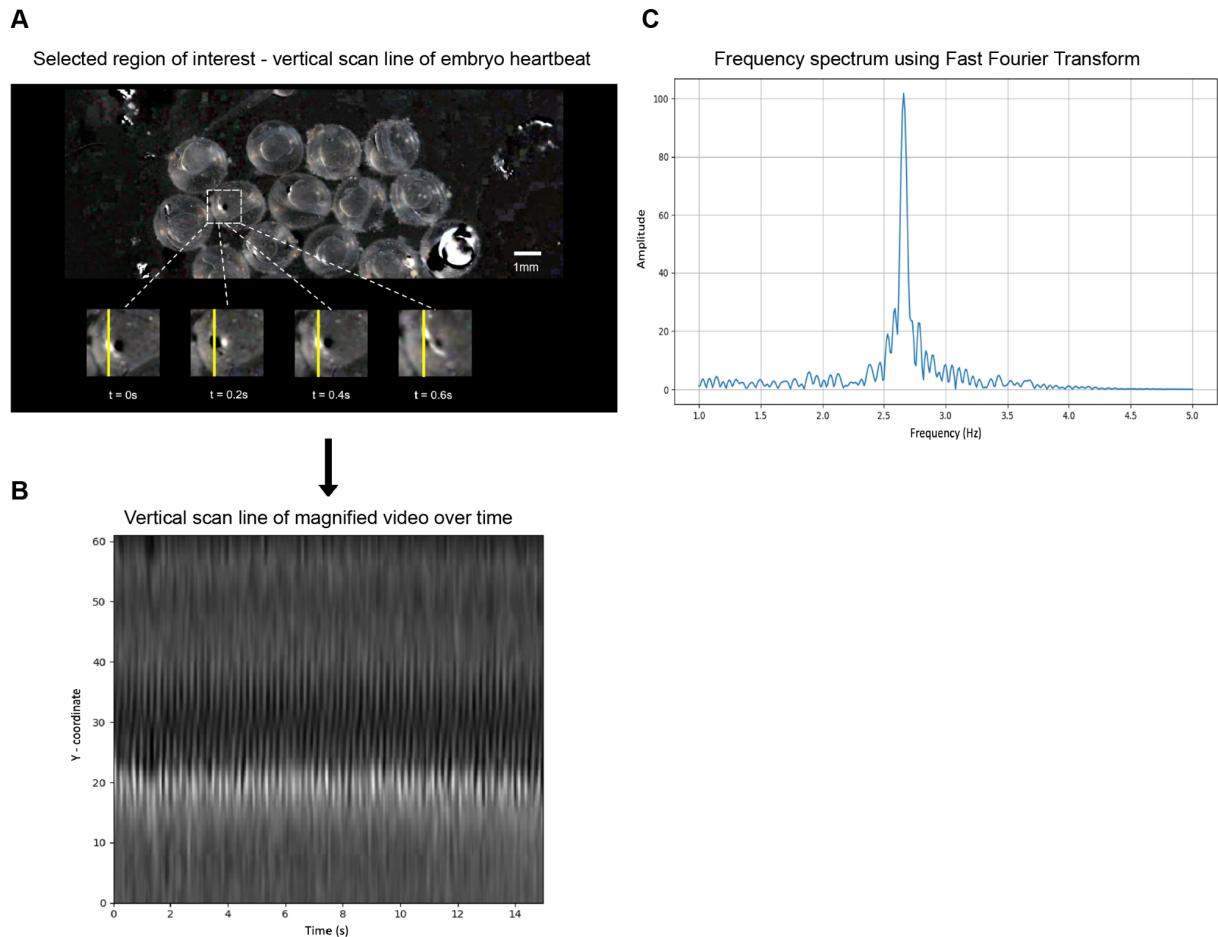
1146 Heating rate ($^{\circ}\text{C h}^{-1}$) over time in beakers used in *Experiment 2*. Treatments differ by color
1147 and correspond to distinct temperature change profiles established in the thermal gradient
1148 table.


1149

1150

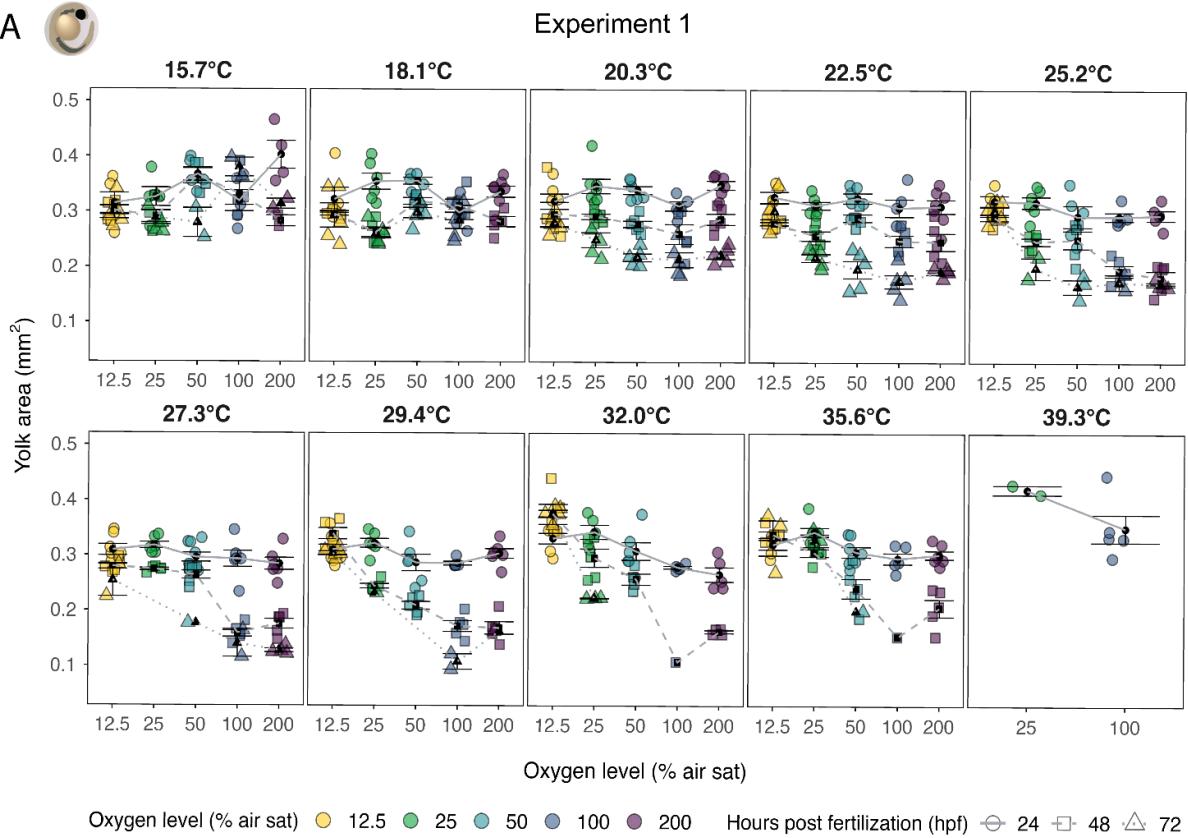

1151

Experiment 1: Recording Of Oxygen Level Over Time


Experiment 2: Recording Of Oxygen Level Over Time

Oxygen level (% air sat.) — 12.5 — 25 — 50 — 200

1152
1153
1154
1155


Fig. S2: Oxygen records over the total experimental time (in hours) of Experiment 1 and Experiment 2. Raw data and means of the target oxygen treatments during experiments are depicted in colors. Experiment 1 lasted ~ 10 days and Experiment 2 lasted ~ 6 days.

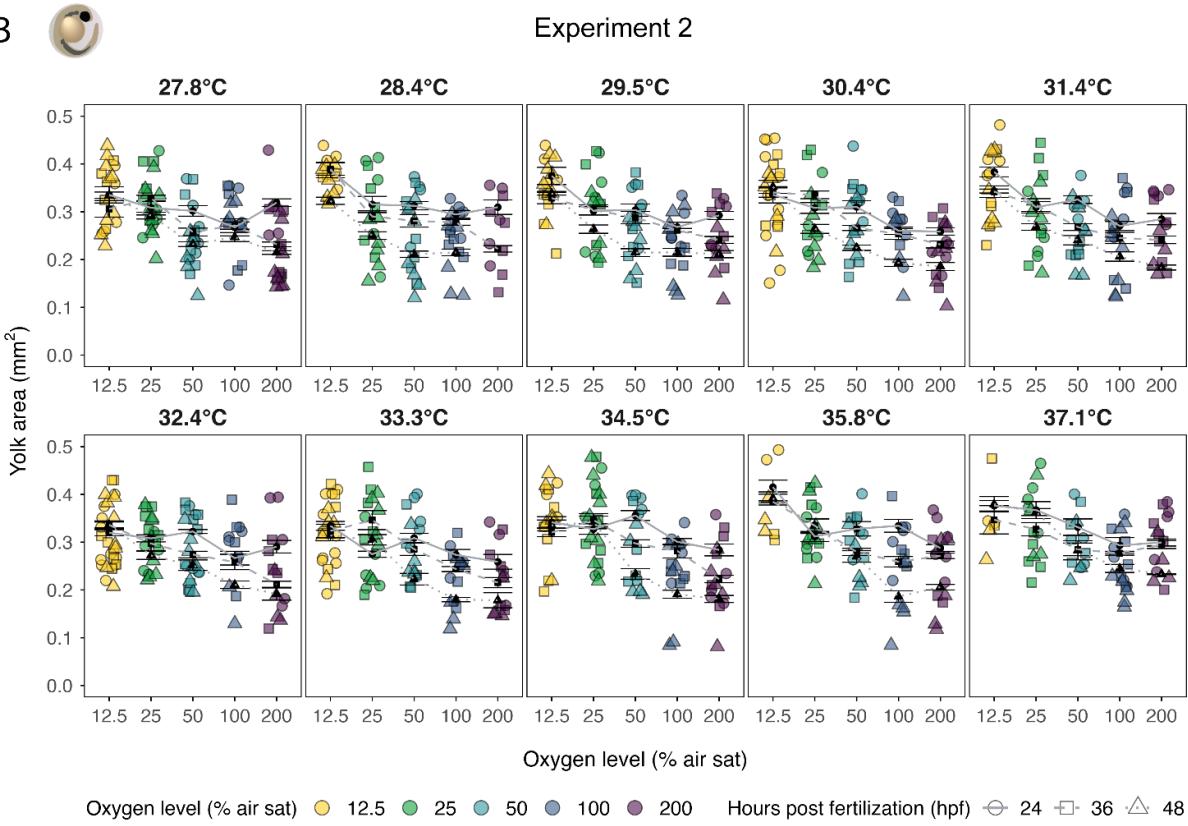
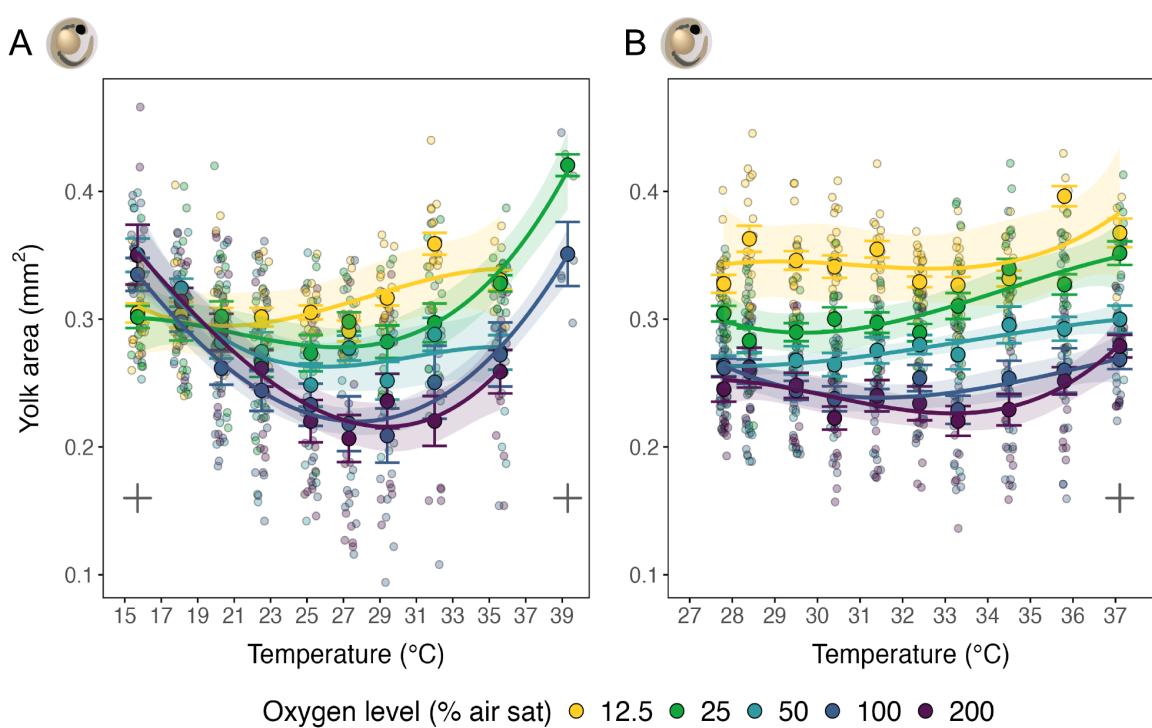

1156
1157
1158
1159
1160
1161
1162
1163
1164

Fig. S3: Measurement of heart rate in zebrafish embryos using Eulerian video magnification. (A) Cropped video frame showing the embryonic heart of *Danio rerio*. The yellow vertical line marks the region where the heartbeat is most visible across the recording, with periodic pixel contrast shifts (white to black) reflecting heartbeat frequency. (B) Time-series plot of pixel contrast variation along the yellow line over a 15 s recording, capturing rhythmic heartbeat oscillations. (C) Frequency spectrum derived from the same region using a Fast Fourier Transform, showing the dominant heartbeat frequency (Hz). A sharp amplitude peak indicates a strong signal with low noise and a stable heart rate.


A

B

1165
11661167 **Fig. S4: Yolk sac area of zebrafish embryos across temperature, oxygen, and**
1168 **developmental time.** Yolk sac area (mm^2) of *Danio rerio* embryos across oxygen levels
1169 (colors) and temperatures (vertical panels) over time post-fertilization. Measurements were

1170 taken at 24, 48, and 72 hpf in *Experiment 1*, and at 24, 36, and 48 hpf in *Experiment 2*. Data
 1171 points represent individual embryos; black triangles indicate group means \pm s.e., and grey
 1172 dashed lines connect mean values across sampling times.
 1173

1174
 1175 **Fig. S5: Yolk sac area (mm²) of zebrafish embryos across temperatures (x-axis) and**
 1176 **oxygen levels (colors) in *Experiment 1* (A; n = 2–9) and *Experiment 2* (B; n = 2–11).** Points
 1177 show individual embryos; colored circles indicate means \pm s.e., and colored lines indicating
 1178 second-degree polynomial fits.

1181 **Table S1: Yolk sac consumption (%) of zebrafish embryos across temperature, oxygen,**
 1182 **and developmental time in *Experiment 1*.** Anova (type III) and linear model (LM) includes
 1183 oxygen level, temperature centered to 15.7 °C (Temp₁), and its quadratic term (Temp₂), their
 1184 interaction, and developmental time (hpf): Yolk consumption \sim O₂ + Temp₁ + Temp₂ +
 1185 O₂ × Temp₁ + O₂ × Temp₂ + hpf. Significance was assessed relative to 15.7 °C and 100% air
 1186 saturation. Estimates (β), standard errors (SE), t-values, and p-values are shown for each
 1187 predictor.
 1188

Parameters (Anova, type III)	Sum Squares	Df	F-value	P-value
(Intercept)	581	1	6.4054	0.0116*
O ₂	1688	4	4.6523	0.0011**
Temp ₁	11172	1	123.1568	< 0.0001 ***
Temp ₂	8455	1	93.2098	< 0.0001 ***
O ₂ :Temp ₁	5232	4	14.4203	< 0.0001 ***
O ₂ :Temp ₂	2006	4	5.5294	0.0002***

hpf	37213	1	410.2245	< 0.0001 ***
Residuals	53975	595		
Parameters (LM)				
	Estimate (B)	Std. Error	t-value	P-value
(Intercept)	-5.860	2.315	-2.531	0.012 *
O ₂ (12.5%)	7.661	2.879	2.661	0.008 **
O ₂ (25%)	6.136	2.853	2.151	0.032 *
O ₂ (50%)	-2.182	3.021	-0.722	0.470
O ₂ (200%)	-1.163	3.292	-0.353	0.724
Temp ₁	5.014	0.452	11.098	< 0.0001 ***
Temp ₂	-0.195	0.020	-9.655	< 0.0001 ***
hpf	0.429	0.021	20.254	< 0.0001 ***
O ₂ (12.5%):Temp ₁	-4.391	0.648	-6.779	< 0.0001 ***
O ₂ (25%):Temp ₁	-2.675	0.635	-4.215	< 0.0001 ***
O ₂ (50%):Temp ₁	-1.341	0.678	-1.978	0.048 *
O ₂ (200%):Temp ₁	-0.410	0.720	-0.568	0.570
O ₂ (12.5%):Temp ₂	0.140	0.031	4.571	< 0.0001 ***
O ₂ (25%):Temp ₂	0.073	0.029	2.502	0.013 *
O ₂ (50%):Temp ₂	0.064	0.032	2.011	0.045 *
O ₂ (200%):Temp ₂	0.035	0.033	1.051	0.294

Residual standard error: 9.524 on 595 degrees of freedom

Multiple R-squared: 0.6189

F-statistic: 64.41 on 15 and 595 DF, p-value: < 0.001 ***

1189
1190
1191
1192
1193
1194
1195
1196
1197

Table S2: Yolk sac consumption (%) of zebrafish embryos across temperature, oxygen, and developmental time in *Experiment 2*. Anova (type III) and linear model (LM) includes oxygen level, temperature centered to 27.8 °C (Temp₁), and its quadratic term (Temp₂), their interaction, and developmental time (hpf): Yolk consumption ~ O₂ + Temp₁ + Temp₂ + O₂×Temp₁ + O₂×Temp₂ + hpf. Significance was assessed relative to 27.8 °C and 100% air saturation. Estimates (β), standard errors (SE), t-values, and p-values are shown for each predictor.

Parameters (Anova, type III)	Sum Squares	Df	F-value	P-value
(Intercept)	7128	1	118.067	< 0.0001 ***

O ₂	13295	4	55.053	< 0.0001 ***
Temp ₁	828	1	13.718	0.0002***
Temp ₂	1046	1	17.325	0.00003***
O ₂ :Temp ₁	1288	4	5.334	0.0003***
O ₂ :Temp ₂	811	4	3.359	0.0097**
hpf	21395	1	354.368	< 0.0001 ***
Residuals	48482	803		

Parameters (LM)	Estimate (B)	Std. Error	t value	P-value
(Intercept)	18.766	1.727	10.866	< 0.0001 ***
O ₂ (12.5%)	-21.622	1.907	-11.336	< 0.0001 ***
O ₂ (25%)	-8.598	1.910	-4.503	< 0.0001 ***
O ₂ (50%)	0.032	1.918	0.016	0.987
O ₂ (200%)	1.702	1.955	0.871	0.384
Temp ₁	2.745	0.741	3.704	0.0002 ***
Temp ₂	-0.325	0.078	-4.162	< 0.0001 ***
hpf	0.520	0.028	18.825	< 0.0001 ***
O ₂ (12.5%):Temp ₁	-0.245	1.031	-0.238	0.812
O ₂ (25%):Temp ₁	-1.975	1.012	-1.952	0.051
O ₂ (50%):Temp ₁	-3.399	1.024	-3.320	0.001 **
O ₂ (200%):Temp ₁	0.625	1.042	0.600	0.549
O ₂ (12.5%):Temp ₂	0.008	0.116	0.073	0.942
O ₂ (25%):Temp ₂	0.087	0.109	0.798	0.425
O ₂ (50%):Temp ₂	0.296	0.110	2.687	0.007 **
O ₂ (200%):Temp ₂	-0.079	0.111	-0.716	0.474

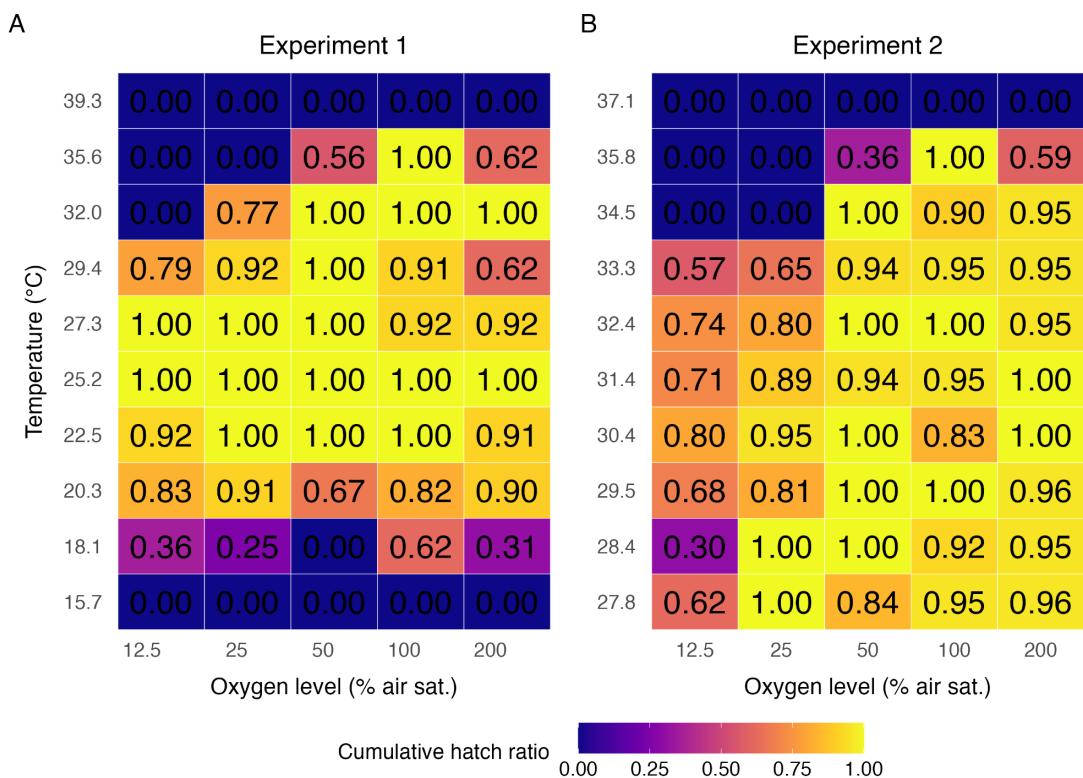
Residual standard error: 7.77 on 803 degrees of freedom

Multiple R-squared: 0.659

F-statistic: 103.2 on 15 and 803 DF, p-value: < 0.001 ***

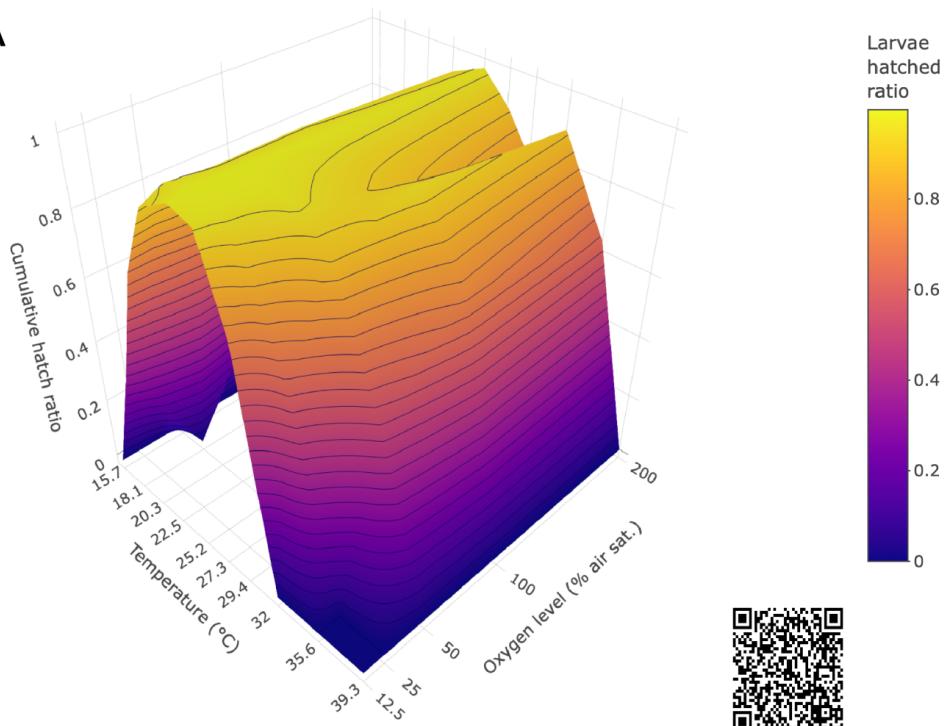
Adjusted R-squared: 0.652

1200 **Table S3: Heart rate of zebrafish embryos across temperature, oxygen, and**
 1201 **developmental time in Experiment 2.** Anova (type III) and linear model (LM) includes
 1202 oxygen level, temperature centered to 27.8 °C (Temp₁), and its quadratic term (Temp₂), their
 1203 interaction, and developmental time (hpf): Heart rate ~ O₂ + Temp₁ + Temp₂ + O₂×Temp₁ +
 1204 O₂×Temp₂ + hpf. Significance was assessed relative to 27.8 °C and 100% air saturation.
 1205 Estimates (β), standard errors (SE), t-values, and p-values are shown for each predictor.
 1206

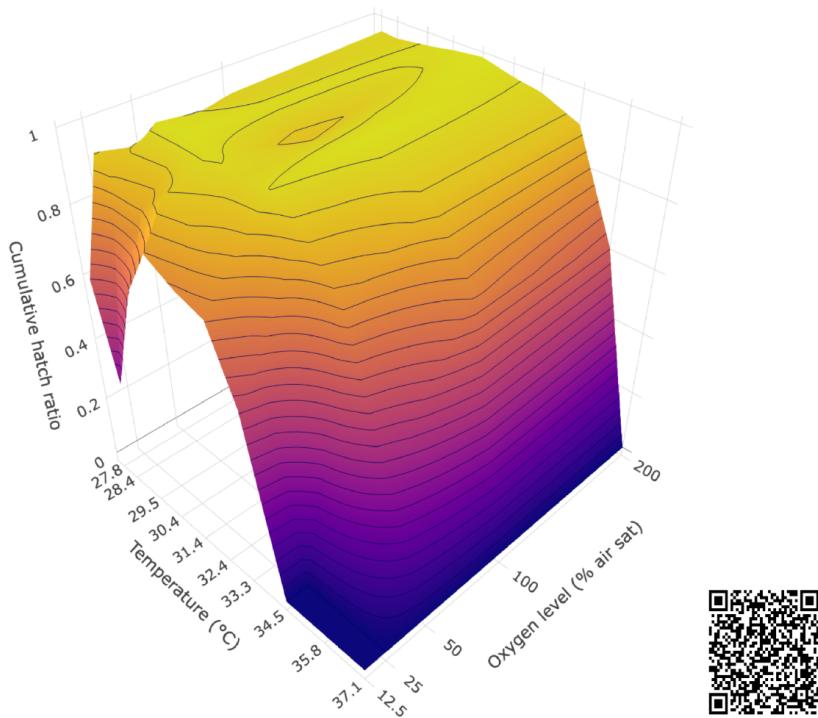

Parameters (Anova, type III)	Sum Squares	Df	F-value	p-value
(Intercept)	379095	1	219.751	< 0.0001 ***
O ₂	338503	4	49.055	< 0.0001 ***
Temp ₁	47756	1	27.683	< 0.0001 ***
Temp ₂	48746	1	28.256	< 0.0001 ***
O ₂ :Temp ₁	13286	4	1.925	0.1042
O ₂ :Temp ₂	11686	4	1.693	0.1494
hpf	748588	1	433.935	< 0.0001 ***
Residuals	1511201	876		
Parameters (LM)	Estimate (B)	Std. Error	t-value	p-value
(Intercept)	109.803	7.407	14.824	< 0.0001 ***
O ₂ (12.5%)	-96.197	8.723	-11.028	< 0.0001 ***
O ₂ (25%)	-19.152	8.914	-2.149	0.0319*
O ₂ (50%)	2.098	9.916	0.212	0.8325
O ₂ (200%)	11.082	9.209	1.203	0.2291
Temp ₁	19.596	3.724	5.261	< 0.0001 ***
Temp ₂	-2.193	0.413	-5.316	< 0.0001 ***
hpf	1.628	0.078	20.831	< 0.0001 ***
O ₂ (12.5%):Temp ₁	2.775	5.770	0.481	0.6307
O ₂ (25%):Temp ₁	-5.969	5.448	-1.096	0.2736
O ₂ (50%):Temp ₁	-12.959	5.837	-2.220	0.0267*
O ₂ (200%):Temp ₁	-4.209	5.202	-0.809	0.4187
O ₂ (12.5%):Temp ₂	-0.301	0.842	-0.357	0.7208
O ₂ (25%):Temp ₂	-0.211	0.658	-0.321	0.7481
O ₂ (50%):Temp ₂	1.435	0.669	2.144	0.0323*
O ₂ (200%):Temp ₂	0.182	0.573	0.318	0.7504

Residual standard error:	41.53 on 876 degrees of freedom
Multiple R-squared:	0.4287
F-statistic:	43.82 on 15 and 876 DF, p-value: < 0.0001 ***
Adjusted R-squared:	0.587

1207

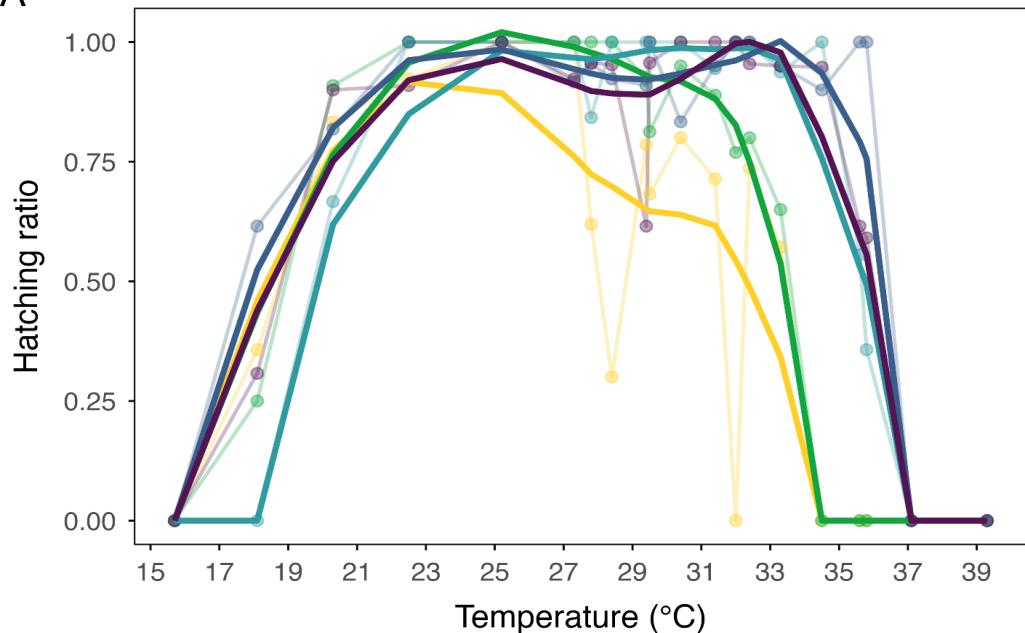


1208


Fig. S6: Heat map of maximum hatching number across temperature and oxygen treatments. Heat map showing the accumulated maximum number of hatched *Danio rerio* embryos per temperature and oxygen treatment in (A) *Experiment 1* and (B) *Experiment 2*. Lighter colors (yellow) indicate higher hatching rates.

1213

A


B

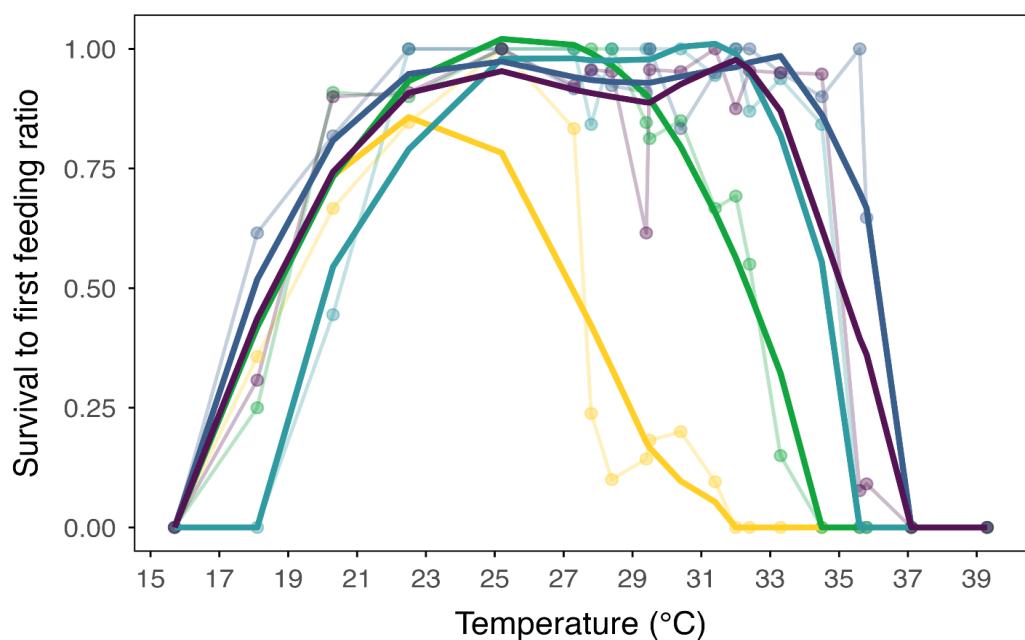

1214
1215
1216
1217
1218
1219
1220
1221
1222

Fig. S7: Three-dimensional surface plot of cumulative hatching across temperature and oxygen treatments. 3D surface plots showing cumulative hatching of *Danio rerio* larvae across temperature and oxygen levels in (A) *Experiment 1* and (B) *Experiment 2*. Cumulative hatching values are based on observed data. Survival ratios above 0.6 were smoothed using a kernel-based normalization. (function image.smooth, aRange = 0.75, theta = 0.75, fields package, R), preventing overfitting when hatching nears zero at the extreme temperatures.

A

B

Oxygen level (% air saturation) — 12.5 — 25 — 50 — 100 — 200

1223

1224

Fig. S8: Thermal performance curve (TPC) of hatching success (A) and survival to first feeding (B) across temperature and oxygen levels. Points depict maximum hatching ratio per temperature, and TPC lines were fitted using a smoothed maxima LOESS function (span = 0.6).

1228

1229

1230

1231

1232

1233

1234

Table S4: Effect of oxygen, temperature, and developmental time on hatching success in Experiment 1. GLM includes oxygen level, temperature centered to 18.1 °C (Temp_1 , lowest temperature at which hatching occurred), and its quadratic term (Temp_2), their interaction, and log-transformed developmental time (hpf): Hatching success $\sim O_2 + \text{Temp}_1 + \text{Temp}_2 + O_2 \times \text{Temp}_1 + O_2 \times \text{Temp}_2 + \log(\text{hpf}) + (1 | \text{Experiment})$. Significance is shown first with

1235 oxygen as numeric relative to 18.1 °C and subsequently relative to 100% air saturation.
 1236 Estimates (β), standard errors (SE), z-values, and p-values are shown for each predictor.
 1237

Parameters (GLM)	Estimate (B)	Std. Error	z-value	p-value
(Intercept)	-24.4100	0.6950	-35.128	< 0.0001 ***
O ₂	-0.0004	0.0015	-0.288	0.773
Temp ₁	1.3150	0.0484	27.195	< 0.0001 ***
Temp ₂	-0.0665	0.0027	-24.564	< 0.0001 ***
O ₂ :Temp ₁	-0.0017	0.0004	-4.380	0.00001
O ₂ :Temp ₂	0.0002	0.0000	7.263	< 0.0001 ***
log(hpf)	4.3400	0.1289	33.654	< 0.0001 ***
Null deviance:	6068.2 on 563 degrees of freedom			
Residual deviance:	1498.8 on 557 degrees of freedom			
AIC:	1959			
Num.Fisher Scoring iterations:	3			
Parameters (GLM)	Estimate (B)	Std. Error	z-value	p-value
(Intercept)	-30.6686	0.9320	-32.905	< 0.0001 ***
O ₂ (12.5%)	-1.1127	0.3523	-3.159	0.0016 **
O ₂ (25%)	-1.0823	0.3568	-3.033	0.0024 **
O ₂ (50%)	-3.1413	0.4516	-6.956	< 0.0001 ***
O ₂ (200%)	-0.6648	0.3208	-2.072	0.0382 *
Temp ₁	1.0536	0.0597	17.661	< 0.0001 ***
Temp ₂	-0.0306	0.0030	-10.160	< 0.0001 ***
O ₂ (12.5%):Temp ₁	1.0454	0.1155	9.048	< 0.0001 ***
O ₂ (25%):Temp ₁	0.9531	0.1106	8.615	< 0.0001 ***
O ₂ (50%):Temp ₁	0.9264	0.1129	8.206	< 0.0001 ***
O ₂ (200%):Temp ₁	0.1588	0.0833	1.907	0.0565 ·
O ₂ (12.5%):Temp ₂	-0.1072	0.0081	-13.310	< 0.0001 ***
O ₂ (25%):Temp ₂	-0.0774	0.0069	-11.194	< 0.0001 ***
O ₂ (50%):Temp ₂	-0.0527	0.0059	-9.004	< 0.0001 ***
O ₂ (200%):Temp ₂	-0.0187	0.0045	-4.159	0.00003 ***
log(hpf)	5.6246	0.1727	32.560	< 0.0001 ***

Null deviance:	6102.34 on 563 degrees of freedom
Residual deviance:	734.34 on 548 degrees of freedom
AIC:	1212.6
Num.Fisher Scoring iterations:	4

1238
1239
1240
1241
1242
1243
1244
1245
1246

Table S5: Effect of oxygen, temperature, and developmental time on hatching success in Experiment 1. Effect of oxygen level, temperature, and time post-fertilization (hpf) on hatching success of *Danio rerio* embryos, derived from GLM: Hatching success $\sim O_2 \times \text{Temp} + \log(\text{hpf})$. Post hoc comparisons were conducted relative to the control treatment (27.3 °C, normoxia). This model was used to predict time to 50% hatching (ET₅₀). Coefficients, standard errors; and p-values are shown for each predictor.

Parameters (GLM)	Coefficients	Std. Error	z-value	p-value
(Intercept)	-25.7312	0.8701	-29.5740	< 0.0001 ***
O ₂ (12.5%)	1.8225	0.4239	4.2990	0.00002 ***
O ₂ (25%)	2.3436	0.4959	4.7260	< 0.0001 ***
O ₂ (50%)	1.8628	0.4155	4.4840	0.00001 ***
O ₂ (200%)	-0.1948	0.3792	-0.5140	0.60748
Temp(15.7°C)	-10.1363	1.4748	-6.8730	< 0.0001 ***
Temp(18.1°C)	-6.3693	0.4250	-14.9880	< 0.0001 ***
Temp(20.3°C)	-4.6328	0.4008	-11.5590	< 0.0001 ***
Temp(22.5°C)	-1.9670	0.3799	-5.1780	< 0.0001 ***
Temp(25.2°C)	0.5331	0.4179	1.2760	0.20201
Temp(29.4°C)	0.8488	0.4150	2.0450	0.04083 *
Temp(32°C)	3.6409	0.5222	6.9720	< 0.0001 ***
Temp(35.6°C)	3.5634	0.4647	7.6690	< 0.0001 ***
Temp(39.3°C)	0.2245	1.5849	0.1420	0.88736
O ₂ (12.5%):Temp(15.7°C)	-2.5674	2.0789	-1.2350	0.21685
O ₂ (25%):Temp(15.7°C)	-2.8680	2.0989	-1.3660	0.17181
O ₂ (50%):Temp(15.7°C)	-2.3014	2.0830	-1.1050	0.26922
O ₂ (200%):Temp(15.7°C)	0.0693	2.0836	0.0330	0.97346
O ₂ (12.5%):Temp(18.1°C)	-2.9697	0.6200	-4.7900	< 0.0001 ***
O ₂ (25%):Temp(18.1°C)	-3.5675	0.6918	-5.1570	< 0.0001 ***

O ₂ (50%):Temp(18.1°C)	-6.1542	1.5286	-4.0260	0.00006 ***
O ₂ (200%):Temp(18.1°C)	-1.6456	0.6608	-2.4900	0.01276 *
O ₂ (12.5%):Temp(20.3°C)	-0.1308	0.5530	-0.2360	0.81305
O ₂ (25%):Temp(20.3°C)	-1.3390	0.6145	-2.1790	0.02933 *
O ₂ (50%):Temp(20.3°C)	-2.9215	0.5863	-4.9830	< 0.0001 ***
O ₂ (200%):Temp(20.3°C)	0.9848	0.5353	1.8400	0.06582
O ₂ (12.5%):Temp(22.5°C)	-1.9238	0.5487	-3.5060	0.00045 ***
O ₂ (25%):Temp(22.5°C)	-1.0966	0.6247	-1.7550	0.07917 *
O ₂ (50%):Temp(22.5°C)	-1.7295	0.5650	-3.0610	0.0022 **
O ₂ (200%):Temp(22.5°C)	-0.5116	0.5226	-0.9790	0.32755
O ₂ (12.5%):Temp(25.2°C)	-2.2347	0.6123	-3.6500	0.00026 ***
O ₂ (25%):Temp(25.2°C)	-1.2161	0.6700	-1.8150	0.0695 ·
O ₂ (50%):Temp(25.2°C)	-2.7798	0.6009	-4.6260	< 0.0001 ***
O ₂ (200%):Temp(25.2°C)	-1.1439	0.5702	-2.0060	0.04485 *
O ₂ (12.5%):Temp(29.4°C)	-3.8866	0.5854	-6.6400	< 0.0001 ***
O ₂ (25%):Temp(29.4°C)	-2.0495	0.6520	-3.1430	0.00167 **
O ₂ (50%):Temp(29.4°C)	-0.5201	0.6403	-0.8120	0.41659
O ₂ (200%):Temp(29.4°C)	-1.1690	0.5560	-2.1030	0.03549 *
O ₂ (12.5%):Temp(32°C)	-13.1201	1.5821	-8.2930	< 0.0001 ***
O ₂ (25%):Temp(32°C)	-6.0797	0.7280	-8.3510	< 0.0001 ***
O ₂ (50%):Temp(32°C)	-2.4667	0.7134	-3.4580	0.00055 ***
O ₂ (200%):Temp(32°C)	-0.6064	0.7152	-0.8480	0.39656
O ₂ (12.5%):Temp(35.6°C)	-11.1369	1.5641	-7.1200	< 0.0001 ***
O ₂ (25%):Temp(35.6°C)	-11.7437	1.5839	-7.4140	< 0.0001 ***
O ₂ (50%):Temp(35.6°C)	-5.9753	0.6571	-9.0940	< 0.0001 ***
O ₂ (200%):Temp(35.6°C)	-4.4209	0.5949	-7.4310	< 0.0001 ***
O ₂ (12.5%):Temp(39.3°C)	0.4634	2.2625	0.2050	0.83770
O ₂ (25%):Temp(39.3°C)	-0.8111	2.2380	-0.3620	0.71705
O ₂ (50%):Temp(39.3°C)	-0.2005	2.2286	-0.0900	0.92833
O ₂ (200%):Temp(39.3°C)	2.0225	2.2341	0.9050	0.36531
log(hpf)	5.9284	0.1870	31.7010	< 0.0001 ***

Null deviance:	6068.18 on 563 degrees of freedom
Residual deviance:	530.22 on 513 degrees of freedom
AIC:	1078.4
Number of Fisher Scoring iterations:	10

1247
1248
1249
1250
1251
1252
1253
1254
1255
1256

Table S6: Effect of oxygen, temperature, and developmental time on hatching success in Experiment 2. GLM includes oxygen level, temperature centered to 27.8 °C (Temp₁, lowest temperature at which hatching occurred), and its quadratic term (Temp₂), their interaction, and log-transformed developmental time (hpf): Hatching success ~ O₂ + Temp₁ + Temp₂ + O₂×Temp₁ + O₂×Temp₂ + log(hpf) + (1 | Experiment). Significance is shown first with oxygen as numeric relative to 27.8 °C and subsequently relative to 100% air saturation. Estimates (β), standard errors, z-values, and p-values are shown for each predictor.

Parameters (GLM)	Estimate (B)	Std. Error	z-value	p-value
(Intercept)	-20.6800	0.4985	-41.4870	< 0.0001 ***
O ₂	0.0062	0.0010	6.1460	< 0.0001 ***
Temp ₁	0.6726	0.0675	9.9660	< 0.0001 ***
Temp ₂	-0.1184	0.0088	-13.4460	< 0.0001 ***
O ₂ :Temp ₁	0.0024	0.0006	4.0030	0.0001 ***
O ₂ :Temp ₂	-0.0002	0.0001	-3.1210	0.0018 **
log(hpf)	4.7390	0.1118	42.3990	< 0.0001 ***

Null deviance:	7709.4 on 399 degrees of freedom
Residual deviance:	2362.9 on 393 degrees of freedom
AIC:	2885.1

Num.Fisher Scoring iterations: 3

Parameters (GLM)	Estimate (B)	Std. Error	z-value	p-value
(Intercept)	-24.5700	0.6418	-38.278	< 0.0001 ***
O ₂ (12.5%)	-3.5550	0.2641	-13.462	< 0.0001 ***
O ₂ (25%)	0.4599	0.2571	1.789	0.0737 ·
O ₂ (50%)	0.3232	0.2562	1.262	0.2071
O ₂ (200%)	-0.0464	0.2430	-0.191	0.8486
Temp ₁	1.2810	0.1000	12.819	< 0.0001 ***
Temp ₂	-0.1703	0.0110	-15.494	< 0.0001 ***

O ₂ (12.5%):Temp ₁	0.1941	0.1728	1.123	0.2615
O ₂ (25%):Temp ₁	-0.5149	0.1744	-2.953	0.0032 **
O ₂ (50%):Temp ₁	-0.1122	0.1434	-0.783	0.4338
O ₂ (200%):Temp ₁	-0.1242	0.1340	-0.927	0.3541
O ₂ (12.5%):Temp ₂	-0.0623	0.0247	-2.517	0.0118 *
O ₂ (25%):Temp ₂	-0.0389	0.0251	-1.552	0.1208
O ₂ (50%):Temp ₂	0.0016	0.0163	0.100	0.9201
O ₂ (200%):Temp ₂	0.0003	0.0148	0.021	0.9836
log(hpf)	5.8840	0.1459	40.318	< 0.0001 ***
Null deviance:		7709.4	on 399	degrees of freedom
Residual deviance:		1179.7	on 384	degrees of freedom
AIC:		1720		
Num.Fisher Scoring iterations:		3		

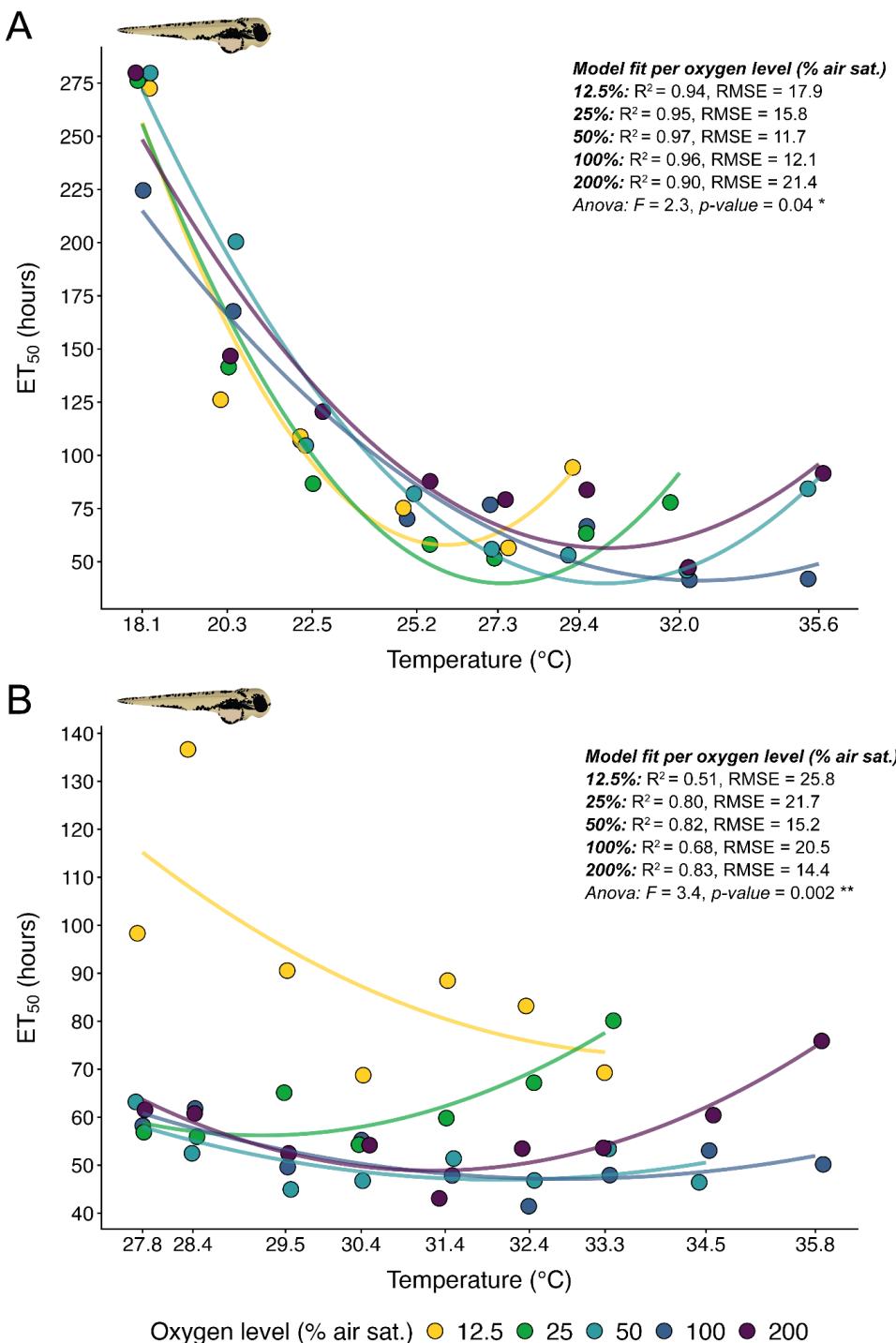

1257
1258
1259
1260
1261
1262
1263
1264
1265
1266

Table S7: Effect of oxygen, temperature, and developmental time on hatching success in Experiment 2. Effect of oxygen level, temperature, and time post-fertilization (hpf) on hatching success of *Danio rerio* embryos, derived from a GLM: Hatching success ~ O₂ × Temp + log(hpf). Post hoc comparisons were conducted relative to the control treatment (27.8 °C, normoxia). This model was used to predict time to 50% hatching (ET₅₀). Coefficients, standard errors; and p-values are shown for each predictor.

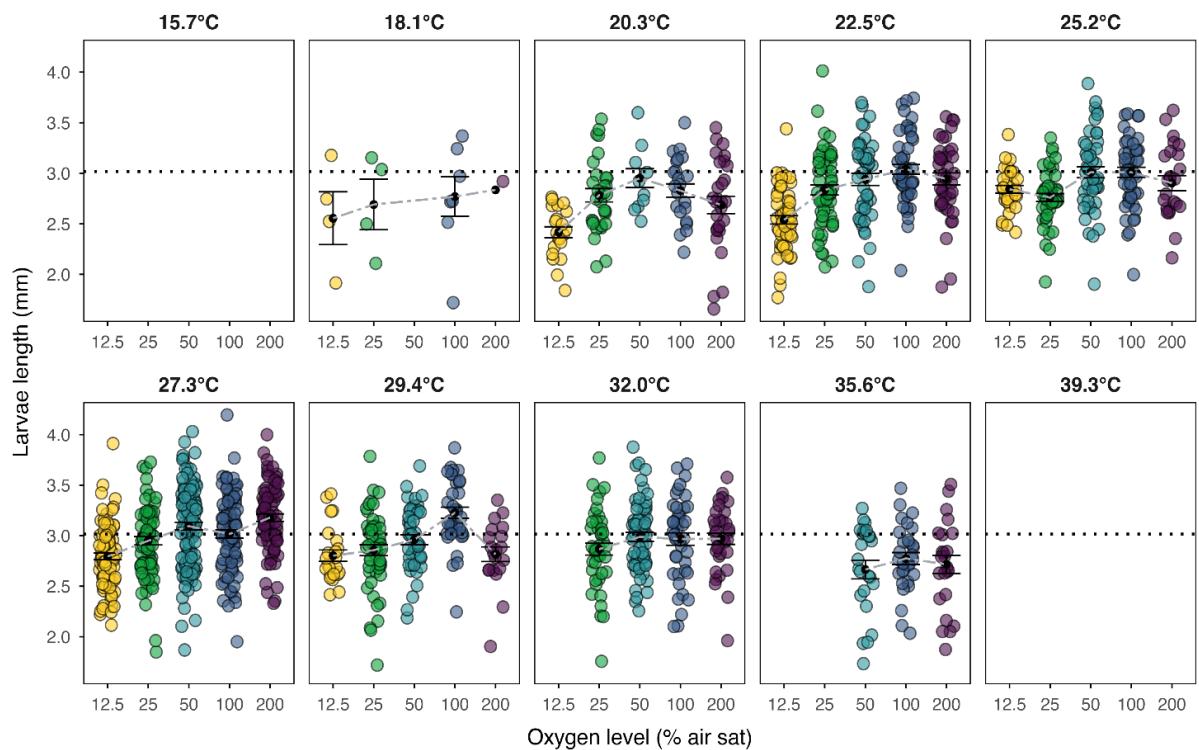
Parameters (GLM)	Coefficients	Std. Error	z-value	p-value
(Intercept)	-25.4008	0.6992	-36.3270	< 0.0001 ***
O ₂ (12.5%)	-3.2721	0.3293	-9.9370	< 0.0001 ***
O ₂ (25%)	0.1484	0.3442	0.4310	0.66629
O ₂ (50%)	-0.5093	0.3468	-1.4680	0.14201
O ₂ (200%)	-0.3443	0.3308	-1.0410	0.29791
Temp(28.4°C)	-0.3710	0.3862	-0.9610	0.33670
Temp(29.5°C)	1.0031	0.3624	2.7680	0.00564 **
Temp(30.4°C)	0.3344	0.3626	0.9220	0.35641
Temp(31.4°C)	1.2272	0.3662	3.3510	0.00081 ***
Temp(32.4°C)	2.1239	0.3832	5.5420	< 0.0001 ***

Temp(33.3°C)	1.2181	0.3671	3.3180	0.00091
Temp(34.5°C)	0.5842	0.3549	1.6460	0.09977
Temp(35.8°C)	0.9323	0.3830	2.4340	0.01493 *
Temp(37.1°C)	-7.9833	1.4600	-5.4680	< 0.0001 ***
O ₂ (12.5%):Temp(28.4°C)	-1.6848	0.5401	-3.1190	0.00181 **
O ₂ (25%):Temp(28.4°C)	0.4760	0.5169	0.9210	0.35713
O ₂ (50%):Temp(28.4°C)	1.5334	0.5315	2.8850	0.00392 **
O ₂ (200%):Temp(28.4°C)	0.4480	0.5090	0.8800	0.37872
O ₂ (12.5%):Temp(29.5°C)	-0.4888	0.4711	-1.0380	0.29939
O ₂ (25%):Temp(29.5°C)	-1.8470	0.5152	-3.5850	0.00034 ***
O ₂ (50%):Temp(29.5°C)	1.1248	0.5244	2.1450	0.03197 *
O ₂ (200%):Temp(29.5°C)	-0.0036	0.4935	-0.0070	0.99413
O ₂ (12.5%):Temp(30.4°C)	1.9022	0.5050	3.7670	0.00017 ***
O ₂ (25%):Temp(30.4°C)	-0.0434	0.5102	-0.0850	0.93224
O ₂ (50%):Temp(30.4°C)	1.5466	0.5309	2.9130	0.00358 **
O ₂ (200%):Temp(30.4°C)	0.4625	0.4982	0.9280	0.35330
O ₂ (12.5%):Temp(31.4°C)	-0.5664	0.4818	-1.1760	0.23969
O ₂ (25%):Temp(31.4°C)	-1.5425	0.5149	-2.9960	0.00274 **
O ₂ (50%):Temp(31.4°C)	0.0625	0.5257	0.1190	0.90530
O ₂ (200%):Temp(31.4°C)	1.0027	0.5157	1.9440	0.05188 ·
O ₂ (12.5%):Temp(32.4°C)	-1.0782	0.5292	-2.0370	0.04161 *
O ₂ (25%):Temp(32.4°C)	-3.1643	0.5166	-6.1250	< 0.0001 ***
O ₂ (50%):Temp(32.4°C)	-0.2523	0.5239	-0.4820	0.63008
O ₂ (200%):Temp(32.4°C)	-1.2446	0.5091	-2.4450	0.01449 *
O ₂ (12.5%):Temp(33.3°C)	0.9698	0.5179	1.8730	0.0611 ·
O ₂ (25%):Temp(33.3°C)	-3.3581	0.5010	-6.7030	< 0.0001 ***
O ₂ (50%):Temp(33.3°C)	-0.1684	0.5317	-0.3170	0.75145
O ₂ (200%):Temp(33.3°C)	-0.3551	0.5038	-0.7050	0.48083
O ₂ (12.5%):Temp(34.5°C)	-5.4563	1.4939	-3.6520	0.00026 ***
O ₂ (25%):Temp(34.5°C)	-8.2046	1.4996	-5.4710	< 0.0001 ***
O ₂ (50%):Temp(34.5°C)	1.3427	0.5216	2.5740	0.01005 *

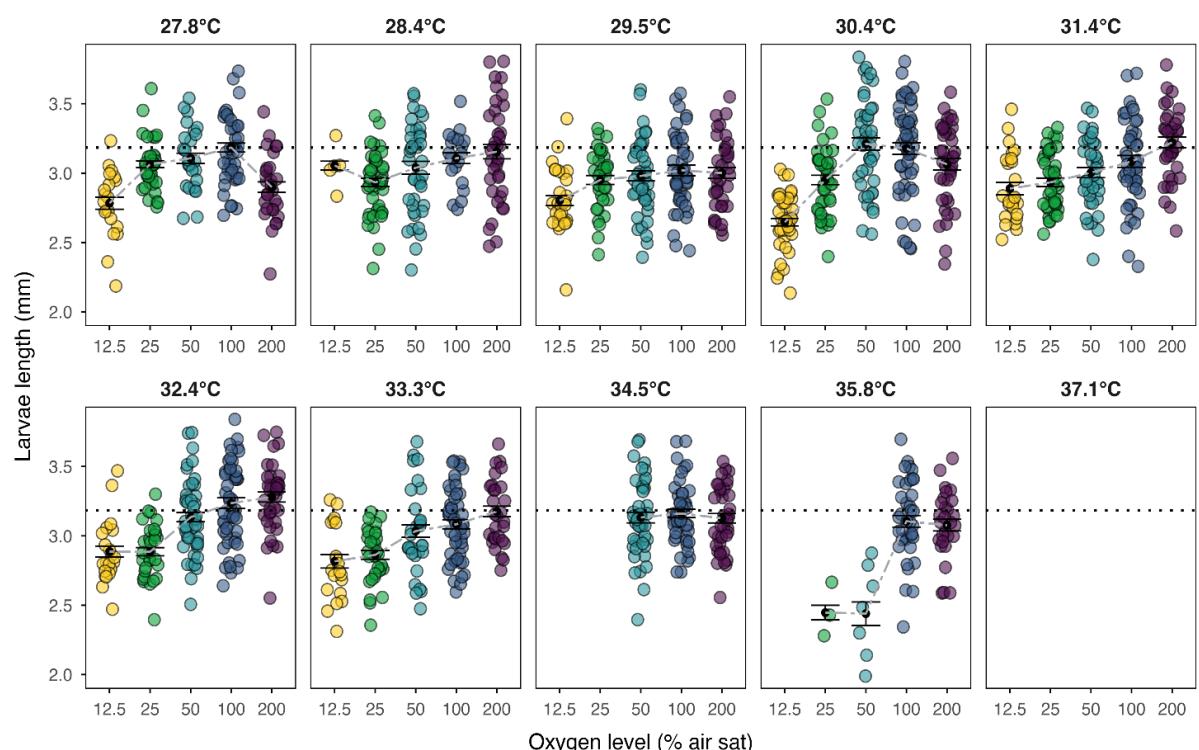
O ₂ (200%):Temp(34.5°C)	-0.4701	0.4916	-0.9560	0.33898
O ₂ (12.5%):Temp(35.8°C)	-3.9199	1.5096	-2.5970	0.00941 **
O ₂ (25%):Temp(35.8°C)	-8.5087	1.5078	-5.6430	< 0.0001 ***
O ₂ (50%):Temp(35.8°C)	-2.1024	0.6062	-3.4680	0.00052 ***
O ₂ (200%):Temp(35.8°C)	-2.2404	0.5046	-4.4400	< 0.0001 ***
O ₂ (12.5%):Temp(37.1°C)	5.3383	2.0750	2.5730	0.01009 *
O ₂ (25%):Temp(37.1°C)	1.5752	2.0675	0.7620	0.44611
O ₂ (50%):Temp(37.1°C)	1.8417	2.0785	0.8860	0.37559
O ₂ (200%):Temp(37.1°C)	0.0890	2.0571	0.0430	0.96548
log(hpf)	6.2491	0.1590	39.3090	< 0.0001 ***
Null deviance:		7620.39	on 399 degrees of freedom	
Residual deviance:		711.17	on 349 degrees of freedom	
AIC:		1321.4		
Num.Fisher Scoring iterations:		5		

1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278

Fig. S9: Model-predicted time to 50% hatching (ET₅₀) in zebrafish (*Danio rerio*).
 Predicted ET₅₀ (hours) for (A) *Experiment 1* and (B) *Experiment 2* based on GLM: Hatching success ~ Oxygen × Temperature + log(hpf) (Table S5-S7). Oxygen and temperature were included as factors, and hours post-fertilization (hpf) were log-transformed. The models achieved best-fit AIC values. Colored lines represent predicted 50% hatching times for each oxygen level fitted with a second-order polynomial regression (Predicted ET₅₀ ~ poly(Temperature, 2)). Coefficients of determination (R^2) and root-mean-square deviation (RMSE) indicate regression fit quality per oxygen level. P-values denote significant effects of oxygen treatment on the temperature–hatching time relationship.


1279 **Table S8: Predicted time to 50% hatching (ET₅₀ ; hours) for each combination of**
 1280 **oxygen level and temperature treatment in *Danio rerio* from Experiments 1 and 2.**
 1281 Predictions were derived from a GLM: Hatching success ~ Oxygen × Temperature + log(hpf)
 1282 (Table S5-S7), used to generate Fig. S8.
 1283

Experiment 1			Experiment 2		
Temperature (°C)	Oxygen (% air sat)	Predicted ET ₅₀	Temperature (°C)	Oxygen (% air sat)	Predicted ET ₅₀
15.7	12.5	–	27.8	12.5	98.33
18.1	12.5	272.66	28.4	12.5	136.65
20.3	12.5	126.03	29.5	12.5	90.54
22.5	12.5	108.76	30.4	12.5	68.75
25.2	12.5	75.18	31.4	12.5	88.47
27.3	12.5	56.43	32.4	12.5	83.17
29.4	12.5	94.18	33.3	12.5	69.27
32.0	12.5	–	34.5	12.5	–
35.6	12.5	–	35.8	12.5	–
39.3	12.5	–	37.1	12.5	–
15.7	25	–	27.8	25	56.88
18.1	25	276.24	28.4	25	55.93
20.3	25	141.51	29.5	25	65.10
22.5	25	86.63	30.4	25	54.29
25.2	25	57.99	31.4	25	59.82
27.3	25	51.67	32.4	25	67.18
29.4	25	63.28	33.3	25	80.11
32.0	25	77.97	34.5	25	–
35.6	25	–	35.8	25	–
39.3	25	–	37.1	25	–
15.7	50	–	27.8	50	63.19
18.1	50	279.83	28.4	50	52.48
20.3	50	200.39	29.5	50	44.95
22.5	50	104.56	30.4	50	46.76
25.2	50	81.87	31.4	50	51.40


27.3	50	56.04	32.4	50	46.83
29.4	50	53.02	33.3	50	53.41
32.0	50	45.98	34.5	50	46.43
35.6	50	84.18	35.8	50	—
39.3	50	—	37.1	50	—
15.7	100	—	27.8	100	58.26
18.1	100	224.71	28.4	100	61.82
20.3	100	167.61	29.5	100	49.61
22.5	100	106.94	30.4	100	55.21
25.2	100	70.12	31.4	100	47.86
27.3	100	76.72	32.4	100	41.46
29.4	100	66.49	33.3	100	47.93
32.0	100	41.52	34.5	100	53.05
35.6	100	42.07	35.8	100	50.17
39.3	100	—	37.1	100	—
15.7	200	—	27.8	200	61.55
18.1	200	279.83	28.4	200	60.80
20.3	200	146.73	29.5	200	52.45
22.5	200	120.45	30.4	200	54.19
25.2	200	87.88	31.4	200	43.08
27.3	200	79.30	32.4	200	53.46
29.4	200	83.68	33.3	200	53.61
32.0	200	47.52	34.5	200	60.43
35.6	200	91.64	35.8	200	75.88
39.3	200	—	37.1	200	—

A

Experiment 1

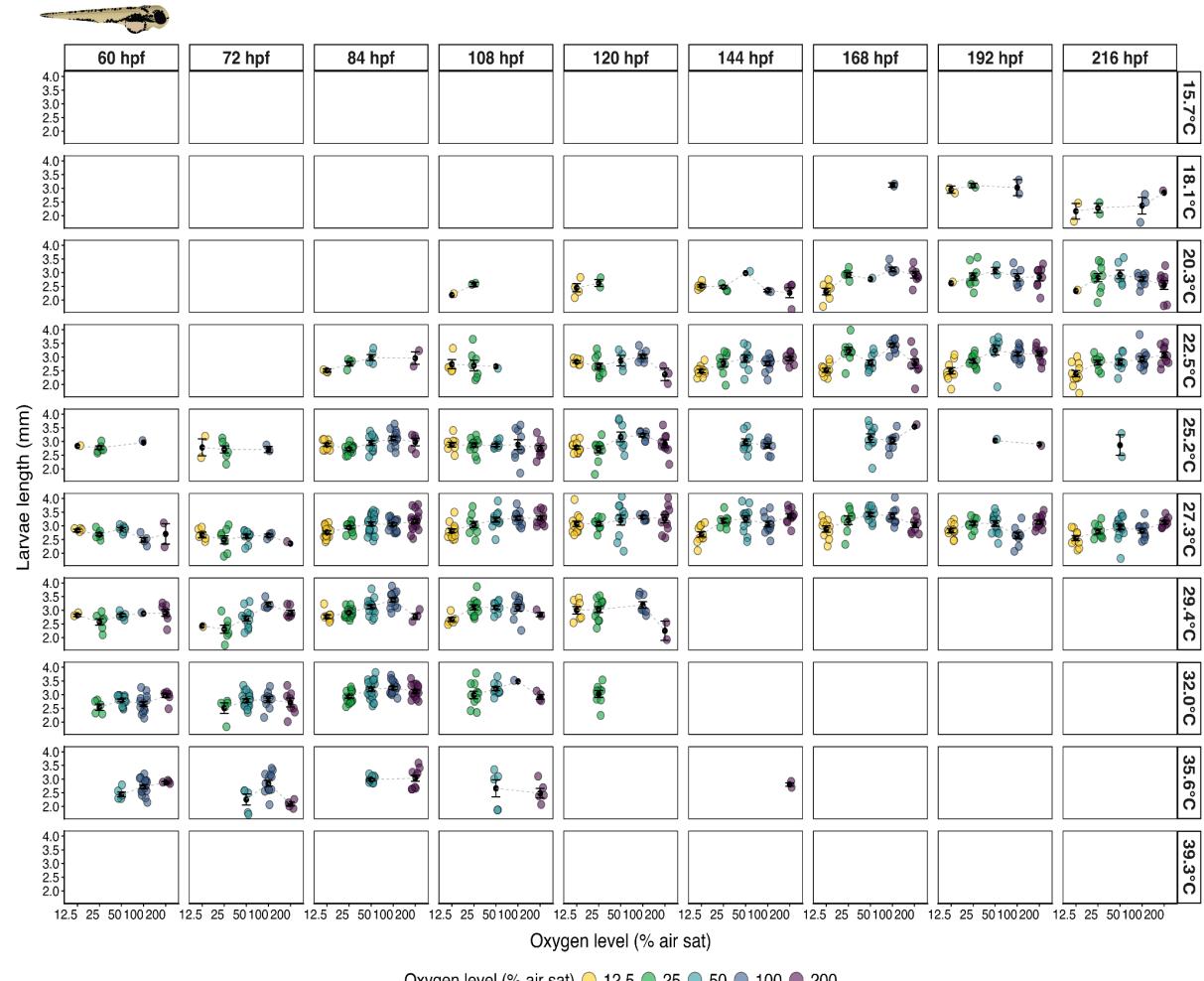
B

Experiment 2

Oxygen level (% air sat) 12.5 25 50 100 200

1286

1287


1288

1289

Fig. S10: Larval length (mm) of zebrafish (*Danio rerio*) across oxygen levels (colors) and temperatures (panel columns) in Experiment 1 ($n = 2-15$; A) and Experiment 2 ($n = 2-24$; B). Points show individual larvae (jittered); black circles and dashed lines indicate group

1290 means \pm S.E. Dotted lines mark control means (Exp 1: 27.3 °C, normoxia = 3.0 mm; Exp 2:
 1291 27.8 °C, normoxia = 3.2 mm).

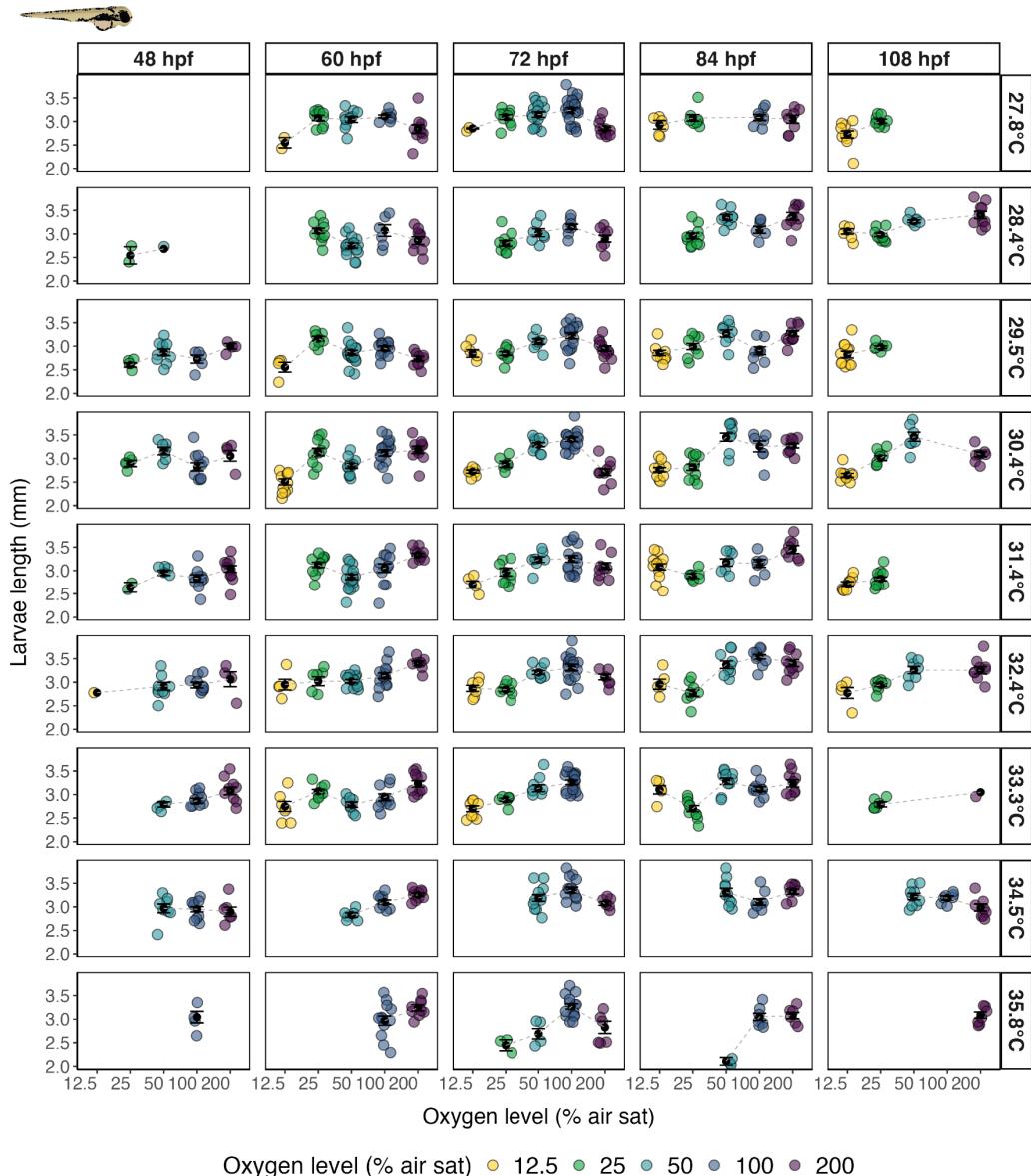
1292
 1293

1294
 1295 **Figure S11 | Larval length of zebrafish across temperature, oxygen, and developmental**
 1296 **time in Experiment 1.** Larval length (mm) of *Danio rerio* across oxygen levels (colors) and
 1297 temperatures (vertical panels) over time post-fertilization (60, 72, 84, 120, 144, 168, 192, and
 1298 216 hpf; horizontal panels). Points represent individual larvae; black circles indicate group
 1299 means \pm s.e., and grey dashed lines connect mean values across developmental time.

1300
 1301 **Table S9: Larval length of zebrafish across temperature, oxygen, and developmental**
 1302 **time in Experiment 1.** Anova (type III) and linear model (LM) includes oxygen level,
 1303 temperature centered to 15.7 °C (Temp₁), and its quadratic term (Temp₂), their interaction,
 1304 and developmental time (hpf): Length ~ O₂ + Temp₁ + Temp₂ + O₂ × Temp₁ + O₂ × Temp₂ +
 1305 hpf. Significance was assessed relative to 15.7 °C and 100% air saturation. Estimates (β),
 1306 standard errors (SE), t-values, and p-values are shown for each predictor.

Parameters (Anova, type III)	Sum Squares	Df	F-value	p-value
(Intercept)	96.714	1	747.933	< 0.0001 ***
O ₂	1.662	4	3.212	0.0123*

Temp ₁	3.114	1	24.081	< 0.0001 ***
Temp ₂	3.004	1	23.232	< 0.0001 ***
O ₂ :Temp ₁	1.129	4	2.183	0.0687
O ₂ :Temp ₂	1.047	4	2.025	0.0886
hpf	1.888	1	14.601	0.00014***
Residuals	185.041	1431		


Parameters (LM)	Estimate (B)	Std. Error	t-value	p-value
(Intercept)	2.533	0.093	27.348	< 0.0001 ***
O ₂ (12.5%)	-0.423	0.139	-3.042	0.0024**
O ₂ (25%)	-0.023	0.116	-0.203	0.8394
O ₂ (50%)	-0.074	0.135	-0.550	0.5822
O ₂ (200%)	-0.250	0.117	-2.140	0.0325*
Temp ₁	0.085	0.017	4.907	< 0.0001 ***
Temp ₂	-0.004	0.001	-4.820	< 0.0001 ***
hpf	0.001	0.000	3.821	0.0001***
O ₂ (12.5%):Temp ₁	0.007	0.043	0.161	0.8717
O ₂ (25%):Temp ₁	-0.037	0.029	-1.273	0.2032
O ₂ (50%):Temp ₁	0.017	0.028	0.605	0.5452
O ₂ (200%):Temp ₁	0.052	0.026	1.963	0.0498*
O ₂ (12.5%):Temp ₂	0.001	0.003	0.305	0.7603
O ₂ (25%):Temp ₂	0.002	0.002	1.273	0.2033
O ₂ (50%):Temp ₂	-0.001	0.001	-0.771	0.4406
O ₂ (200%):Temp ₂	-0.003	0.001	-1.889	0.0591

Residual standard error: 0.3596 on 1431 degrees of freedom

Multiple R-squared: 0.154

F-statistic: 17.37 on 15 and 1431 DF, p-value: < 0.0001 ***

Adjusted R-squared: 0.1452

1309
1310 **Fig. S12: Larval length of zebrafish across temperature, oxygen, and developmental**
1311 **time in Experiment 2.** Larval length (mm) of *Danio rerio* across oxygen levels (colors) and
1312 temperatures (vertical panels) over time post-fertilization (48, 60, 72, 84, and 108 hpf;
1313 horizontal panels). Points represent individual larvae; black circles indicate group means \pm
1314 s.e., and grey dashed lines connect mean values across developmental time.

1315
1316
1317 **Table S10: Larval length of zebrafish across temperature, oxygen, and developmental**
1318 **time in Experiment 2.** Anova (type III) and linear model (LM) includes oxygen level,
1319 temperature centered to 27.8 °C (Temp₁), and its quadratic term (Temp₂), their interaction,
1320 and developmental time (hpf): Length ~ O₂ + Temp₁ + Temp₂ + O₂×Temp₁ + O₂×Temp₂ +
1321 hpf. Significance was assessed relative to 27.8 °C and 100% air saturation. Estimates (β),
1322 standard errors (SE), t-values, and p-values are shown for each predictor.

Parameters (Anova, type III)	Sum Squares	Df	F-value	p-value
(Intercept)	262.798	1	3991.617	< 0.0001 ***

O ₂	3.127	4	11.874	< 0.0001 ***
Temp ₁	0.039	1	0.597	0.4398
Temp ₂	0.037	1	0.556	0.4560
O ₂ :Temp ₁	1.466	4	5.566	0.0002***
O ₂ :Temp ₂	1.258	4	4.776	0.0008***
hpf	7.414	1	112.605	< 0.0001 ***
Residuals	92.699	1408		
Parameters (LM)	Estimate (B)	Std. Error	t-value	p-value
(Intercept)	2.809	0.044	63.179	< 0.0001 ***
O ₂ (12.5%)	-0.410	0.062	-6.577	< 0.0001 ***
O ₂ (25%)	-0.166	0.046	-3.586	0.0003***
O ₂ (50%)	-0.112	0.048	-2.332	0.0198*
O ₂ (200%)	-0.193	0.047	-4.077	< 0.0001 ***
Temp ₁	0.014	0.019	0.773	0.4398
Temp ₂	-0.002	0.002	-0.746	0.4560
hpf	0.004	0.000	10.612	< 0.0001 ***
O ₂ (12.5%):Temp ₁	-0.051	0.044	-1.148	0.2512
O ₂ (25%):Temp ₁	-0.013	0.031	-0.429	0.6682
O ₂ (50%):Temp ₁	0.056	0.029	1.916	0.0555
O ₂ (200%):Temp ₁	0.099	0.028	3.579	0.0004***
O ₂ (12.5%):Temp ₂	0.013	0.007	1.835	0.0667
O ₂ (25%):Temp ₂	-0.004	0.005	-0.857	0.3917
O ₂ (50%):Temp ₂	-0.009	0.004	-2.460	0.0139*
O ₂ (200%):Temp ₂	-0.011	0.003	-3.154	0.0016**
Residual standard error:	0.2566	on 1408 degrees of freedom		
Multiple R-squared:	0.2336			
F-statistic:	28.61	on 15 and 1408 DF, p-value: < 0.0001 ***		
Adjusted R-squared:	0.2255			

1324
1325

1326 **Table S11: Survival to first feeding of zebrafish across temperature, oxygen, and**
1327 **developmental time in Experiment 1 and 2.** GLM-TMB includes oxygen level, temperature

1328 centered to 18.1 °C (Temp₁, lowest temperature at which hatching occurred), and its
 1329 quadratic term (Temp₂), their interaction, log-transformed developmental time (hpf), and
 1330 Experiment as random effect: Survival to First Feeding ~ O₂ + Temp₁ + Temp₂ + O₂×Temp₁
 1331 + O₂×Temp₂ + log(hpf) + (1 | Experiment). Significance is shown first with oxygen as
 1332 numeric relative to 18.1 °C and subsequently relative to 100% air saturation. Estimates (β),
 1333 standard errors (SE), z-values, and p-values are shown for each predictor.
 1334

Parameters (GLM-TMB)	Estimate (B)	Std. Error	z-value	p-value
(Intercept)	-26.1100	0.5732	-45.550	< 0.0001 ***
O ₂	-0.0114	0.0022	-5.180	< 0.0001 ***
Temp ₁	0.9085	0.0391	23.230	< 0.0001 ***
Temp ₂	-0.0433	0.0019	-22.370	< 0.0001 ***
O ₂ :Temp ₁	0.0028	0.0004	7.020	< 0.0001 ***
O ₂ :Temp ₂	-0.0001	0.0000	-5.500	< 0.0001 ***
log(hpf)	4.6060	0.0990	46.510	< 0.0001 ***

Experiment (Intercept): 0.0598 (Var.) 0.2446 (St. Dev.)

Number of obs: 973 groups: Experiment 1, 2

AIC: 6960.7 logLik: -3472.3

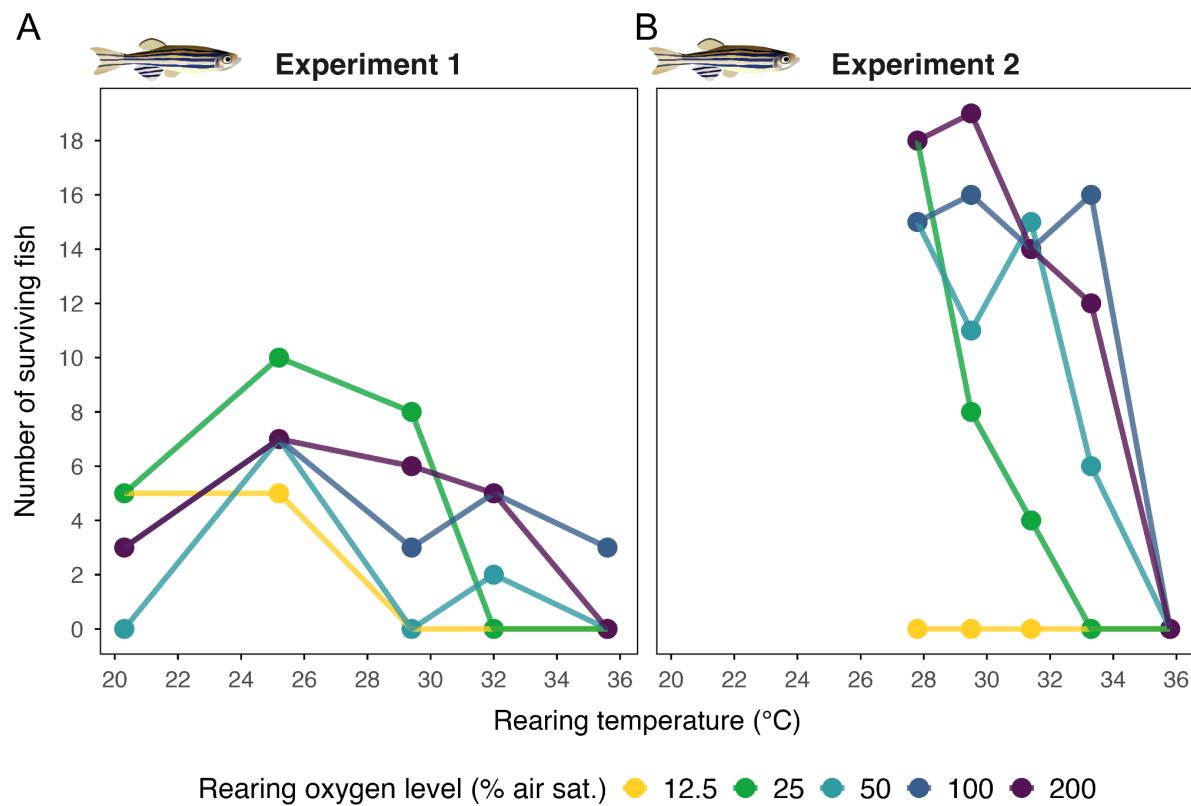
Parameters (GLM-TMB)	Estimate (B)	Std. Error	z-value	p-value
(Intercept)	-38.6488	0.8895	-43.450	< 0.0001 ***
O ₂ (12.5%)	-0.1135	0.4524	-0.250	0.8019
O ₂ (25%)	-1.8757	0.4954	-3.790	0.0001 ***
O ₂ (50%)	-4.9287	0.6807	-7.240	< 0.0001 ***
O ₂ (200%)	-2.4898	0.5497	-4.530	< 0.0001 ***
Temp ₁	1.2624	0.0596	21.170	< 0.0001 ***
Temp ₂	-0.0442	0.0026	-17.000	< 0.0001 ***
O ₂ (12.5%):Temp ₁	0.1149	0.1301	0.880	0.3775
O ₂ (25%):Temp ₁	1.1954	0.1088	10.980	< 0.0001 ***
O ₂ (50%):Temp ₁	1.1965	0.1247	9.590	< 0.0001 ***
O ₂ (200%):Temp ₁	0.6411	0.0995	6.440	< 0.0001 ***
O ₂ (12.5%):Temp ₂	-0.0483	0.0091	-5.290	< 0.0001 ***
O ₂ (25%):Temp ₂	-0.0919	0.0058	-15.870	< 0.0001 ***
O ₂ (50%):Temp ₂	-0.0608	0.0055	-10.990	< 0.0001 ***

O ₂ (200%):Temp ₂	-0.0394	0.0044	-9.000	< 0.0001 ***
log(hpf)	6.8743	0.1509	45.560	< 0.0001 ***
Experiment (Intercept):	0.08689 (Var.)	0.2948 (St. Dev.)		
Number of obs:	973	groups:	Experiment 1, 2	
AIC:	4348.5	logLik:	-2157.2	

1335

1336

1337 **Table S12: Larval count and survival of zebrafish transferred to control conditions.**1338 Number of larvae transferred to control conditions (28.0 \pm 0.5 °C, normoxia) from
1339 *Experiment 1* and (27.0 \pm 0.5 °C, normoxia) from *Experiment 2*. Hatched larvae that died
1340 during treatment exposure are indicated by †. Zero values denote treatments in which no
1341 hatching occurred.


1342

		Oxygen level (% air sat)					
		Temperature (°C)	12.5	25	50	100	200
Experiment 1	20.3	8	10	4	9	9	
	25.2	10	11	10	10	10	
	29.4	2	11	9	10	8	
	32	0	9	10	9	7	
	35.6	0	0	†	13	1	
Experiment 2	27.8	†	21	16	21	22	
	29.5	†	13	20	20	22	
	31.4	†	12	17	19	21	
	33.3	†	3	15	19	19	
	35.8	0	0	†	11	2	

1343

1344

1345

1346
1347 **Fig. S13: Survival number of zebrafish reared across temperature and oxygen**
1348 **treatments.** (A) Numbers represent individuals that survived to the juvenile stage after being
1349 transferred to control conditions from *Experiment 1* (normoxia; 28 °C) for CT_{max} testing
1350 during the juvenile stage. (B) equivalent data for *Experiment 2* (normoxia; 27 °C).

1351
1352
1353 **Table S13: Critical thermal maximum (CT_{max}) of zebrafish across rearing temperature**
1354 **and oxygen treatments in *Experiment 1*.** Anova (type III) and linear model (LM) includes
1355 oxygen level (O_2), temperature (Temp), and their interaction: $\text{CT}_{\text{max}} \sim \text{O}_2 \times \text{Temp}$.
1356 Significance was assessed relative to 20.3 °C and 100% air saturation. Estimates (β), standard
1357 errors (SE), t-values, and p-values are shown for each predictor.

Parameters (Anova, type III)	Sum Squares	Df	F-value	P-value
O_2	0.747	4	1.717	0.1566
Temp	1.863	4	4.283	0.0038**
O_2 :Temp	0.849	7	1.115	0.3644
Residuals	7.288	67		

Parameters (LM)	Estimate (B)	Std. Error	t value	P-value
(Intercept)	41.669	0.113	370.304	< 0.0001***
$\text{O}_2(12.5\%)$	-0.304	0.138	-2.197	0.0311*
$\text{O}_2(25\%)$	-0.022	0.109	-0.198	0.8439

O ₂ (50%)	-0.165	0.144	-1.147	0.2551
O ₂ (200%)	-0.134	0.107	-1.248	0.2160
Temp(20.5°C)	-0.324	0.122	-2.656	0.00967**
Temp(25.5°C)	-0.107	0.103	-1.042	0.3009
Temp(32°C)	0.156	0.133	1.170	0.2457
Temp(36°C)	-0.436	0.222	-1.962	0.05347·

Residual standard error: 0.3316 on 74 degrees of freedom

Multiple R-squared: 0.2794

F-statistic: 3.587 on 8 and 74 DF, p-value: 0.00144

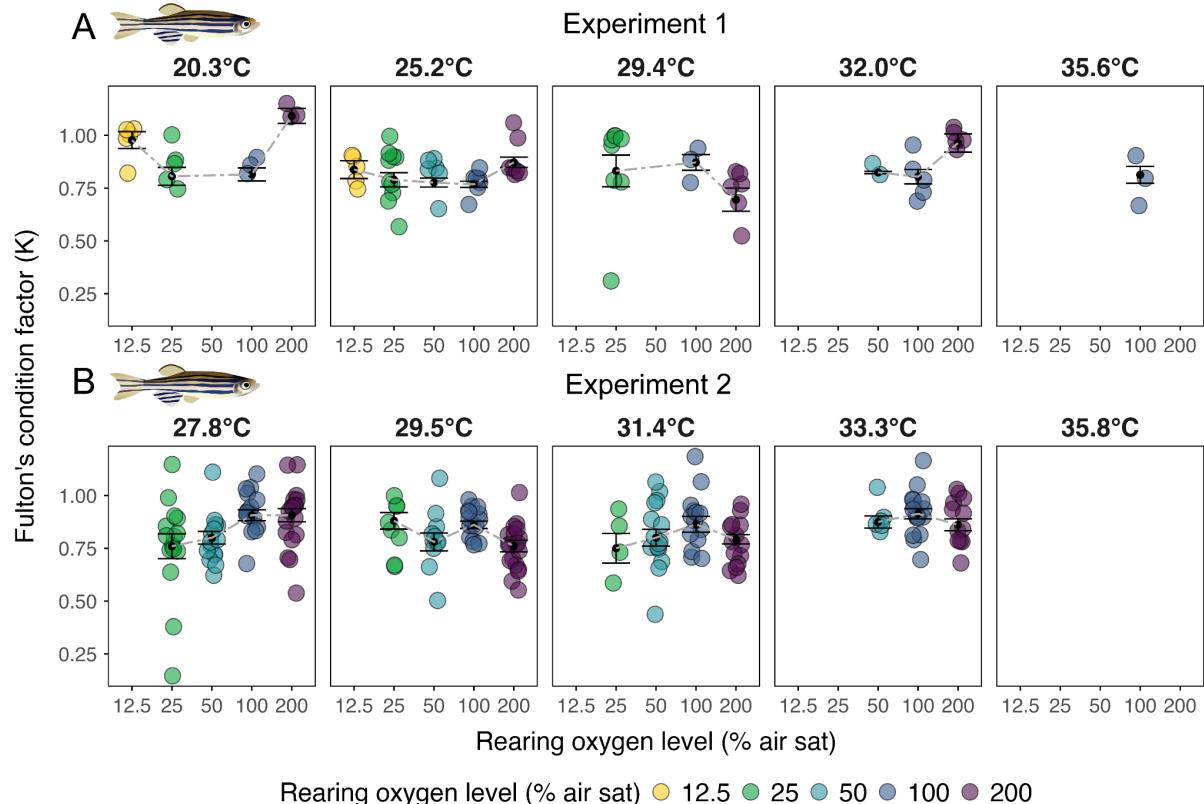
Adjusted R-squared: 0.2015

1359
1360
1361
1362
1363
1364
1365
1366

Table S14: Critical thermal maximum (CT_{max}) of zebrafish across rearing temperature and oxygen treatments in Experiment 2. Anova (type III) and linear model (LM) includes oxygen level (O₂), temperature (Temp), and their interaction: CT_{max} ~ O₂ × Temp. Significance was assessed relative to 27.8 °C and 100% air saturation. Estimates (β), standard errors (SE), t-values, and p-values are shown for each predictor.

Parameters (Anova, type III)	Sum Squares	Df	F-value	P-value
O ₂	4.265	3	10.797	< 0.0001***
Temp	1.588	3	4.020	0.0084**
O ₂ :Temp	2.049	8	1.945	0.0559·
Residuals	24.097	183		

Parameters (LM)	Estimate (B)	Std. Error	t value	P-value
(Intercept)	40.808	0.065	629.348	< 0.0001***
O ₂ (25%)	-0.483	0.088	-5.490	< 0.0001***
O ₂ (50%)	-0.158	0.073	-2.163	0.0318*
O ₂ (200%)	-0.094	0.067	-1.407	0.1611
Temp(29.5°C)	0.115	0.069	1.657	0.0991
Temp(31.4°C)	0.025	0.072	0.340	0.7344
Temp(33.3°C)	-0.164	0.082	-2.014	0.0455*


Residual standard error: 0.37 on 191 degrees of freedom

Multiple R-squared: 0.1714

F-statistic: 6.583 on 6 and 191 DF, p-value: < 0.0001***

Adjusted R-squared: 0.1453

1367
1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

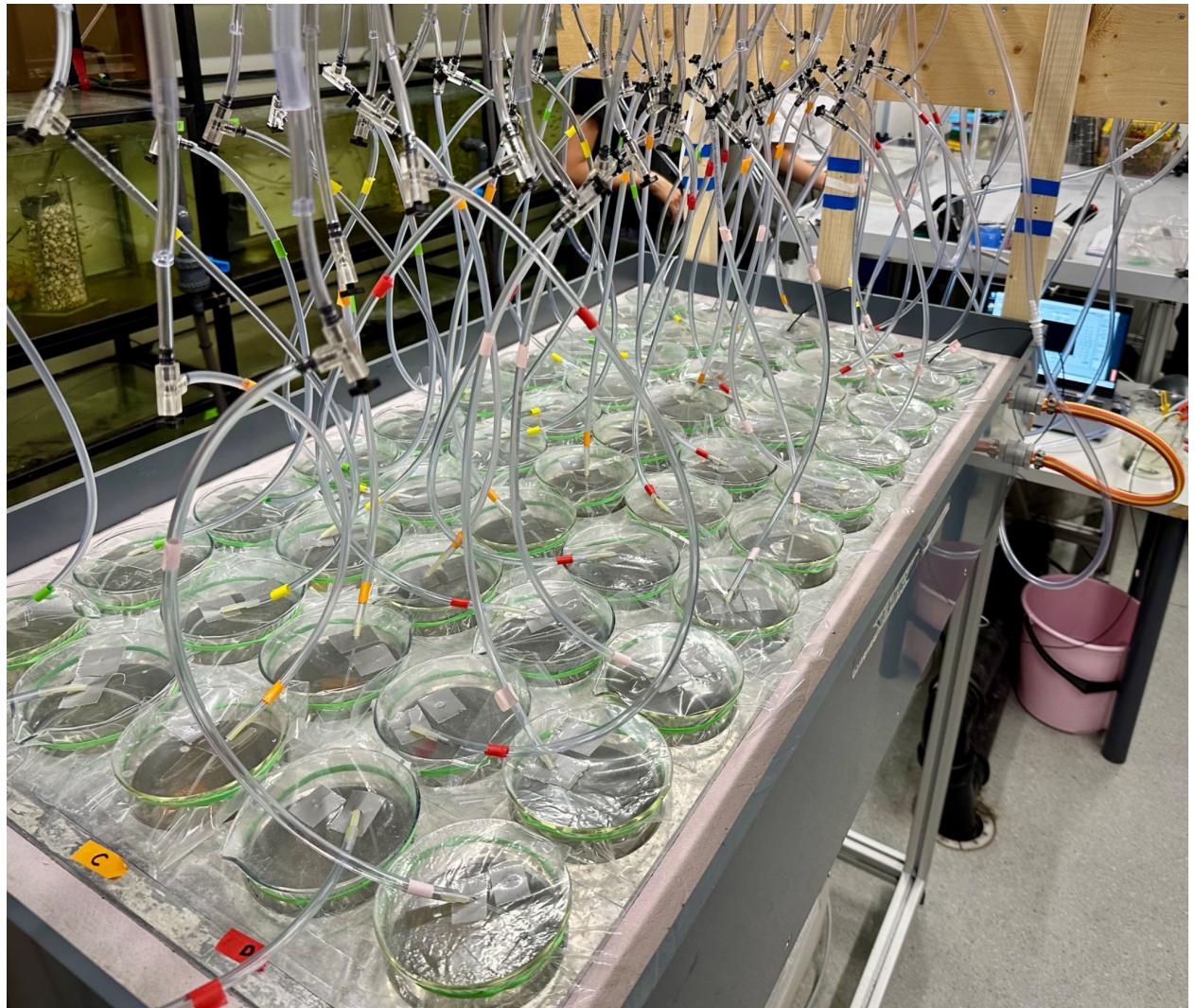
1378

1379

1380

Fig. S14: Fulton's condition factor (K) of juvenile zebrafish across rearing temperature and oxygen treatments. Fulton's condition factor (K) of juvenile *Danio rerio* reared during the embryonic stage under five oxygen levels (colors) and temperature treatments (horizontal panels) in (A) *Experiment 1* and (B) *Experiment 2*. Points represent individual fish (jittered), with color indicating oxygen treatment.

Table S15: Fulton's condition factor (K) of juvenile zebrafish across rearing temperature and oxygen treatments for *Experiment 1* and *2*. Anova (type III) includes oxygen level (O_2) and temperature (Temp): $K \sim O_2 + \text{Temp}$. P-values are shown for each predictor.

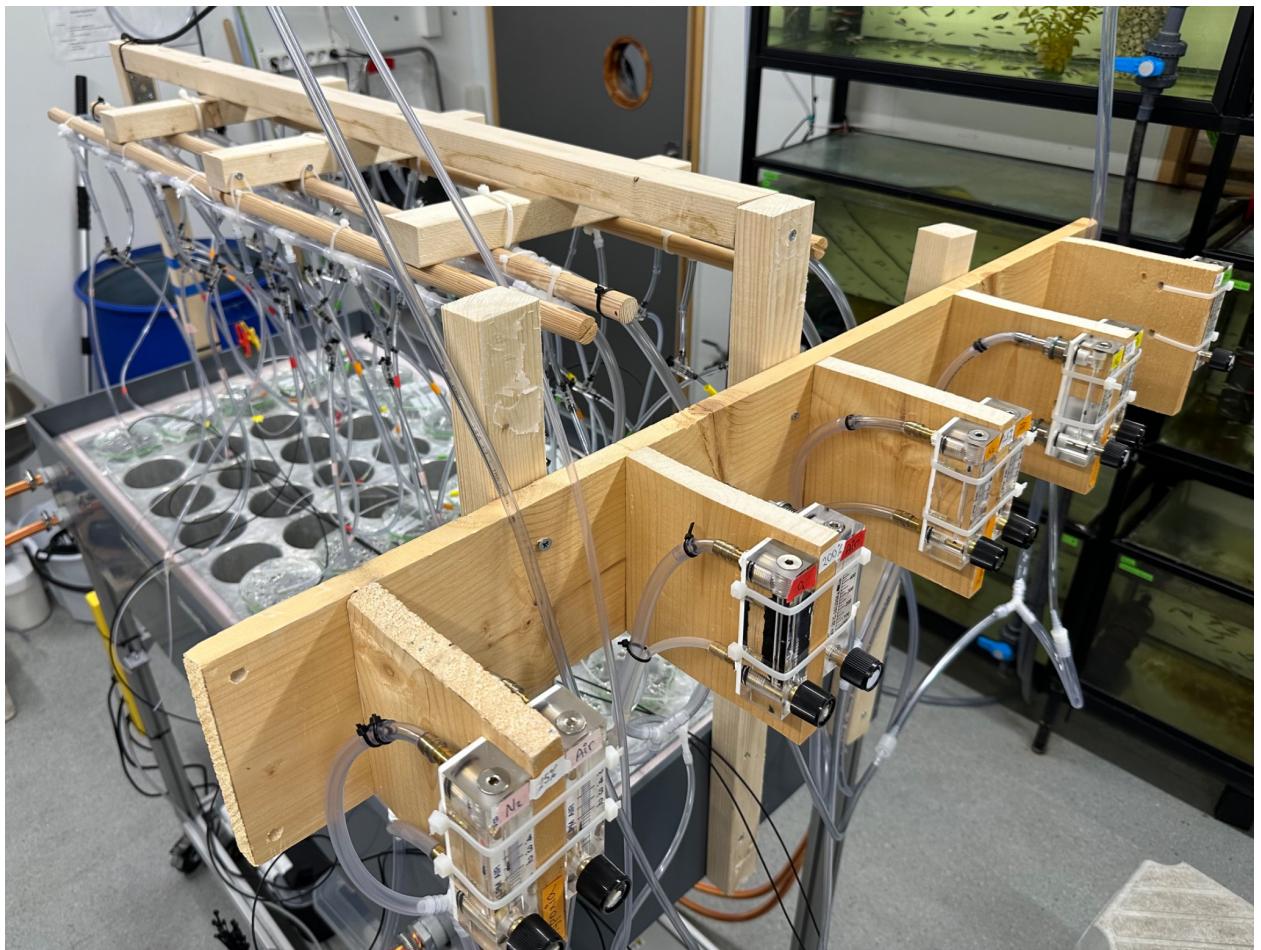

Experiment 1

Parameters (Anova, type III)	Sum Squares	Df	F-value	P-value
(Intercept)	1.818	1	113.872	< 0.0001***
O_2	0.034	1	2.111	0.1502
Temp	0.052	1	3.237	0.0758
Residuals	1.277	80		

Experiment 2

Parameters (Anova, type III)	Sum Squares	Df	F-value	P-value
(Intercept)	0.417	1	22.120	< 0.0001***
O ₂	0.012	1	0.635	0.4264
Temp	0.014	1	0.753	0.3868
Residuals	3.672	195		

1381


1382
1383

1384 **Fig. S15: Gradient table set up depicting a factorial design of 10 temperatures and 5**
 1385 **oxygen levels yielding 50 unique temperature-oxygen combinations.** Color coded tubes
 1386 supplied with air to each beaker, where different color lines represent an oxygen level.
 1387 Beakers were hermetically covered to keep a constant DO₂ concentration per treatment. The
 1388 mixed gas was delivered to the respective column of 10 beakers via a 10 mm diameter
 1389 outflow tube. Each beaker was aerated through an individual air tube tightly inserted through
 1390 the lid and fitted with an air valve, providing gentle bubbling.
 1391

1392
1393

1394 **Fig. S16: Beaker (800 mL) filled with 300 mL treated fresh water held the embryos and**
1395 **early larvae during the rearing period.** The aluminium wells holding a beaker had a 17 cm
1396 depth.

1397
1398

1399 **Fig. S17: Set up with five gas mixing stations per oxygen level (12.5, 25, 50, 100, and**
1400 **200% air saturation).** Oxygen concentrations were regulated using manual gas flow
1401 controllers (RS Pro, 500 ml/min) that mixed air with either nitrogen (50 L, 99.6% N₂) or
1402 oxygen (50 L, 99.5% O₂, Linde Co.) to create hypoxia or hyperoxia, respectively. Normoxia
1403 was achieved using ambient air. The two flow controllers supplied with the target oxygen
1404 concentration via a 10 mm diameter outflow tube to each column (10 beakers) of the thermal
1405 gradient table. Each beaker was aerated through an individual air tube tightly inserted through
1406 the lid and fitted with an air valve, providing gentle bubbling.

1407
1408

1409 **Fig. S18: Aluminium gradient table connected to a cool and warm temperature water**
1410 **bath at each extreme.** The system consisted of a cooler (Titan 200, Aqua Medic, Germany)
1411 and a heater circulator (Grant Instruments, GD100), each with a built-in thermostats that
1412 maintain their respective water baths at a set temperature. Water from each bath was pumped
1413 to the respective edges of the table using an Eheim Universal 1000 pump (Germany),
1414 generating a consistent thermal gradient, from cold to warm, across the aluminium slab of the
1415 table.

1416
1417
1418

1419
1420
1421
1422
1423
1424
1425
1426
1427
1428