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Abstract 
Tarsiers are small, haplorrhine primates that occur in Southeast Asia. Tarsiers on the island of 
Sulawesi range from Vulnerable to Critically Endangered, and many are data deficient, which 
means there is a great need for improved monitoring approaches. Sulawesi tarsiers are pair-
living, territorial, and engage in duets within human hearing range, which makes them ideal 
candidates for passive acoustic monitoring (PAM), an approach that relies on autonomous 
acoustic recording units. Here, we provide a proof-of-concept workflow that combines PAM, 
automated detection, and a simple occupancy modeling example to monitor Gursky's spectral 
tarsier (Tarsius spectrumgurskyae) in Tangkoko National Park, North Sulawesi, Indonesia. We 
used a custom trained BirdNET model deployed over ~520 hours of PAM data and manually 
verified all detections. Similar to previous work, we found that the majority of tarsier duet 
vocalizations occurred around sunrise, with a few vocalizations emitted in a non-duet context 
other times during the night. Using the true positive detections, we were able to create a 
detection history for occupancy modeling. Our simple occupancy modeling yielded occupancy 
and detection estimates consistent with expectations for the well-studied population at this 
site. We advocate that future work includes occupancy modeling across land use gradients, 
different forest types, and under different management regimes, to improve tarsier 
conservation efforts across Sulawesi. We provide the labeled training data and the trained 
model to facilitate future work. 
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Introduction 
Passive acoustic monitoring (PAM) is an approach that relies on autonomous acoustic 

recording units (ARUs). PAM can provide data on vocal animals across larger spatial and 
temporal scales (e.g. ecologically relevant scales) than relying on human observers alone. PAM 
can be used for many conservation-relevant applications, including monitoring of spatial and 
temporal distribution of animals (e.g. forest elephants, Loxodonta cyclotis, (Wrege et al., 2017)) 
and human activities (Katsis et al., 2022), multi-species occupancy modeling across entire 
biomes (Brunk et al., 2025), and understanding ecological impacts of restoration activities on 
biodiversity (Ramesh et al., 2023). The use of PAM in terrestrial, tropical environments has seen 
an increase in use in recent years (Sugai et al., 2019), due to the combined factors of reduced 
costs of the ARUs, improved battery life, and increased data storage capabilities. ARUs can be 
deployed to record continuously for long time periods, which leads to the accumulation of large 
amounts of acoustic data that are time- and cost-prohibitive to analyze manually.  

Like other fields, the deep learning revolution has led to improved efficiency of 
automated detection and classification of acoustic signals from large acoustic datasets (Stowell, 
2022). Many of the early advances focused on birds, for example BirdNET was initially trained 
on 984 North American and European bird species, but has since been extended to over 6000 
species globally (Kahl et al., 2021). Perch 2.0 was trained on over 14,500 different avian, 
mammalian, insect, and amphibian species (van Merriënboer et al., 2025). Embeddings, or 
learned feature representations, from these models can be used as a feature extractor for 
signals not in the original training data, and these embeddings can be used to train a new 
classifier; this is an approach called transfer learning (Pan and Yang, 2009). BirdNET transfer 
learning was shown to be highly effective for training new classifiers for marine mammals, 
anurans, and bats (Ghani et al., 2023). BirdNET transfer learning has also been used successfully 
in two species of gibbons, the northern grey gibbon (Hylobates funereus) (Clink et al. 2025) and 
the southern yellow-cheeked crested gibbon (Nomascus gabriellae) (Clink et al. 2024, 2025). 

Applications of PAM for studying sound-producing primates has seen increased interest 
in recent years. One of the foundational applications of PAM and automated detection in 
primates was used to model occupancy of diana monkeys (Cercopithecus diana), king colobus 
monkeys (Colobus polykomos), and chimpanzees (Pan troglodytes) (Kalan et al., 2015) in Taï 
National Park, Côte d’Ivoire. Since, PAM has been used to investigate ranging behavior (Kalan et 
al., 2016) of chimpanzees, vocal behavior of black and gold howler monkeys (Alouatta caraya) 
(Pérez-Granados and Schuchmann, 2021), northern grey gibbons (Hylobates funereus) (Clink et 
al. 2020), and black-and-white ruffed lemurs (Varecia variegata) (Batist et al., 2024). PAM has 
also been used for occupancy modeling in northern buffed-cheeked gibbons (Nomascus 
annamensis) (Vu et al., 2023) and Yucatán black howler monkeys (Alouatta pigra) (Wood et al., 
2023). 

Tarsiers are small haplorrhine primates that are found in Southeast Asia, specifically in 
the Philippines, and the islands of Borneo and Sulawesi. Out of the 14 recognized tarsier 
species, 12 of the species are found on Sulawesi and surrounding islands (Syahrullah et al., 
2023). Tarsiers on Sulawesi are unique, as they engage in coordinated duets or choruses that 
are audible to the human ear. The most well-studied tarsier, Gursky's spectral tarsiers (Tarsius 
spectrumgurskyae) (Gursky, 2003, 2000a, 1998; MacKinnon and MacKinnon, 1980), is currently 
classified as Vulnerable by the International Union for Conservation of Nature (UCN), whereas 
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other species are considered Critically Endangered (e.g. Siau island tarsier; T. tumpara) 
Endangered (e.g. Sangihe tarsier, T. sangirensis) or Data Deficient (Lariang tarsier; T. lariang) 
(IUCN, 2025). PAM-based studies of tarsiers on Sulawesi have been limited and have generally 
focused on using PAM to study behavioral ecology. For example, PAM was used to investigate 
ultrasonic vocalizations in Gursky's spectral tarsiers (Gursky, 2015) and montane pygmy tarsiers 
(T. pumilus) (Grow, 2019). Two other studies used PAM to investigate vocal coordination (Clink 
et al. 2020) and acoustic tradeoffs (Comella et al., 2022) in Gursky's spectral tarsier duets.  

In general, there have been a limited number of population surveys of mammals in 
central Indonesia, and a paucity of long-term population studies across the country 
(Ardiantiono et al., 2024). Importantly, there is a lack of clear understanding how land use 
change impacts tarsiers, and more data are needed to effectively assess the impact of human 
activities (Supriatna, 2022). Despite the potential of PAM to improve monitoring efforts and 
conservation interventions of tarsiers, to our knowledge there have been very few 
conservation-focused PAM studies of tarsiers on Sulawesi. 

Our goal is to provide a case study from Tangkoko National Park to show how PAM 
combined with automated detection can be used to monitor tarsiers on Sulawesi. We had three 
main goals: 1) evaluate the performance of BirdNET transfer learning for automated detection 
and classification of duets from longer PAM recordings; 2) use manually verified true positive 
detections to explore the temporal patterns of tarsier vocal behavior; and 3) provide a simple 
example to demonstrate how PAM data can be used for occupancy modeling of tarsiers. Due to 
the considerable conservation concern for many species of tarsier, and current lack of data 
across Sulawesi, we propose that PAM combined with automated detection can be an effective 
way to fill these data gaps. 
 
Methods  
Acoustic data collection 

All data collection occurred in August 2018 in Tangkoko National Park, North Sulawesi, 
Indonesia and focused on Gursky's spectral tarsier (hereafter tarsier). This area has marked 
seasonality, with distinct wet and dry seasons (Gursky, 2000b), and many different forest types, 
including lowland forests, submontane forests, and mossy cloud forests (MacKinnon and 
MacKinnon, 1980). We used two different ARUs to collect acoustic data. For the training data, 
we used four SwiftOne units (Koch et al., 2016) that recorded at 48 kHz and 16 bits, and were 
placed next to known sleep trees of tarsiers, spaced between 100 m- 250 m apart. The 
evaluation dataset came from a three-unit ARBIMON array (Aide et al., 2013) deployed in a 
triangular configuration with ~50 m spacing between August 20-28, 2018, with the closest ARU 
to the training dataset being ~ 300 m. The rolling 3-ARU array was intentionally deployed with 
~50 m spacing to increase the probability of detecting tarsier duets on multiple ARUs.  The 
array was moved to a new location at least 100-m from the initial location each day over nine 
consecutive days (see Figure 1), with all units recording at 44.1 kHz and 16-bit resolution. We 
decided on the evaluation dataset array design based on an older estimate of ~1 ha home range 
size for these tarsier (MacKinnon and MacKinnon, 1980). A circular 1-ha home range would 
correspond to a radius of ~56 m, suggesting that 50-m spacing would sample within a single 
group’s territory, and 100-m spacing would sample in neighboring tarsier territories. However, 
later work using radio telemetry showed that tarsier home ranges are substantially larger (1.6 – 
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4.1 ha) (Gursky, 1998), meaning our within-array spacing was too small to be considered 
independent sites. We therefore used only a subset of widely separated ARU locations (>150–
200 m apart; shown in blue in Figure 1) for occupancy modeling (see below). 

 
 
 
Figure 1. A map of the rolling ARU locations used for evaluation dataset and occupancy 
modeling. Three ARUs were deployed each day in a triangular shaped array, with 
approximately 50-m distance in between each unit, and units were moved each day from 
August 20-28, 2018. The points indicated in blue were included in the occupancy modeling. The 
inset shows the location of Tangkoko National Park in North Sulawesi, Indonesia. The map was 
made using QGIS v 3.34.1-Prizren (QGIS Geographic Information System. Open Source 
Geospatial Foundation Project. http://qgis.org). 
 
 
Model training 

To create a training dataset, we used a band-limited energy detector implemented in 
the ‘gibbonR’ package v1.0.1 (Clink and Klinck 2019). We extracted sound events between 5 
and 15 kHz from the training data ARU recordings; see Figure 2 for representative 
spectrograms. We set the noise quantile threshold to 0.75 and limited signal durations to 
between 6-s to 24-s. This function exports sound events to waveform audio files (.wav). We 
used the review tab in the BirdNET GUI v2.4.0 to manually assign sound events to one of two 
classes: ‘tarsier’ or ‘noise’. This resulted in 30 tarsier clips and 217 noise clips for training. We 
then used the command line interface (CLI) to train a custom classifier using BirdNET v2.4, 
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setting fmin = 5000 Hz, fmax = 15000 Hz, and crop_mode = 'segments', which divides longer 
clips into 3-s clips for training (Kahl et al., 2021). All other settings were default.  
 

 
 
Figure 2. Long-term spectral average (LTSA) of 24-hrs of recording indicating the presence of a 
tarsier duet (top) and a representative spectrogram of a tarsier duet (bottom). Both made using 
Raven Expedition v1.2 (K. Lisa Yang Center for Conservation Bioacoustics, 2025). 
 
To evaluate the performance of BirdNET and determine the optimal confidence threshold, we 
deployed the model over the full evaluation dataset (~ 523 hours of data) and used the 
‘segments’ function in BirdNET to export 100 segments randomly selected over a range of 
confidence scores (0.1 – 1.0). We then used the review tab in the BirdNET GUI to manually 
assign detections into two categories: true or false positive. The review tab also calculates a 
logistic regression, with the outcome variable being whether the detection was a true or false 
positive, and the predictor variable being BirdNET confidence score. Confidence scores that are 
output by models such as BirdNET are not probabilities, however the use of a logistic regression 
can convert the scores to probability that the detection is a true positive (Wood and Kahl, 
2024). This approach can provide insight into the precision of the model and also help decide 
on an optimal confidence score to use. Based on the results of this analysis, we found that 
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precision at higher confidence scores was very high, we used a confidence score of 0.65 which 
translates to ~ 95% probability that the detection is a true positive (Figure 3).  
 To further estimate performance of the automated detection system, we manually 
annotated six hours of recordings taken between 05:00-06:00 WITA from six different ARU 
locations using RavenPro v1.6 (K. Lisa Yang Center for Conservation Bioacoustics at the Cornell 
Lab of Ornithology, 2023). We annotated every instance of a tarsier duet bout. We then used 
the ‘review’ tab in the BirdNET GUI to calculate area under the receiver operating characteristic 
curve (AUC-ROC; which summarizes the tradeoff between true positive and false positive rates 
across all confidence thresholds), precision (proportion of detected clips that were true 
positives), recall (proportion of true positive clips detected), and F1 score (harmonic mean of 
precision and recall). Precision, recall and F1 score all depend on a confidence score, so we used 
0.65. These metrics were calculated at the 3-s clip level, as this version of BirdNET makes 
predictions on 3-s clips. 

 
Figure 3. Logistic regression with true or false positive as the outcome, and confidence score 
as the predictor. The colored vertical lines indicate the confidence score (or threshold) 
associated with 0.85 (blue), 0.90 (purple), 0.95 (yellow), and 0.99 (green) probability that the 
detection is a true positive.  Figure was created in the BirdNET GUI v2.4.0. 
 
Occupancy modeling 

Rolling 3-ARU arrays frequently detected the same events (see results below), 
confirming that ARUs in the triangular array were not independent sampling locations. 
However, each 3-ARU array was moved to a new location each day, and no two 3-ARU array 
recorded simultaneously. To obtain spatially independent sites for occupancy modeling, we 
selected one ARU from each of the nine daily 3-ARU array deployments, ensuring that units 
were >150 m apart. This follows recent guidance on occupancy study design from camera traps, 
where simulation studies suggest that distance between detectors should be at least 0.67 times 
the diameter of the largest reported home ranges (Fuller et al., 2022).  
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For tarsiers, the largest reported home range is 4.1 ha (Gursky, 1998), which 
corresponds to a circular home-range radius of approximately 114 m (r = √𝐴/𝜋 = 
%41,000	𝑚²/𝜋	 = 114.2 m) and a diameter of ~228 m; therefore, 0.67 × diameter ≈ 152 m, 
supporting our use of ≥150–200 m spacing to approximate spatial independence. We 
acknowledge that our study design is not optimal for occupancy modeling due to the limited 
spatial and temporal coverage but provide this as a proof of concept to show how PAM 
combined with automated detection can be used for occupancy modeling of tarsiers in the 
future. 

We considered between 05:00 - 06:00 WITA as our survey period. To create multiple 
survey occasions required by occupancy models, we divided the 1-hr period into shorter time 
intervals. Tarsier duet bouts tend to be relatively long with durations ranging from 60-s to 251-s 
(median 99-s; n=13; this study), so to avoid the potential for consecutive windows containing 
the same tarsier duet, we compared survey periods of 10, 15, and 20 minutes. We created 
detection histories based on the manually verified true positive tarsier detections for each of 
the three different survey period lengths (see example in Table 1).  
 
Table 1. Example detection history for each 20-min survey period and ARU location. Detection 
history was created using the manually verified true positive tarsier detections.   

Survey 1 Survey 2 Survey 3 
TPAM1 1 1 0 
TPAM4 0 1 0 
TPAM7 0 0 0 
TPAM11 1 1 1 
TPAM14 1 1 0 
TPAM17 0 0 0 
TPAM21 0 1 0 
TPAM24 1 1 0 
TPAM27 1 1 0 

   
We used the ‘unmarked’ R package (Fiske and Chandler, 2011; Kellner et al., 2023) to 

create three single-season occupancy models with the ‘occu’ function using detection histories 
created using survey periods of 10, 15, and 20 minutes. Occupancy (ψ) is defined as the 
probability that a site is occupied, and detection probability (p) is the probability of detecting 
the species if it is present (MacKenzie et al., 2002). We specified intercept-only models for both 
occupancy (ψ) and detection probability (p) components, which treats detection probability 
and occupancy as constants across sites and surveys. We did not include environmental 
covariates as there was minimal variation across the ~ 122,500 m² (12.25 ha) study area. We 
could not use the ‘fitList’ function from the ‘unmarked’ R package for model selection, as this 
requires each model to have the same underlying data structure, and this was not the case 
since we used varying survey period lengths for each of our models. However, we were able to 
extract each Akaike Information Criterion (AIC) values manually and calculated the delta AIC by 
subtracting all AIC values by the minimum AIC value. We used the ‘plogis’ function in base R to 
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convert the logit-scale values for occupancy (ψ) and detection (p) components into a 
probability between 0 and 1. All occupancy modeling analyses were done using R version 4.4.0 
(R Core Team, 2024). 
 
Data and code availability 
All scripts needed to recreate the analyses are openly available on GitHub 
(https://github.com/DenaJGibbon/tarsier-automated-detection). Training data, manually 
verified true and false positive tarsier detections, and the trained BirdNET model are available 
on Zenodo (https://doi.org/10.5281/zenodo.18483496).  
 
Results  
 

Across the full evaluation dataset, we had 1825 tarsier detections that were above a 
confidence score of 0.65, of which 1809 were true positive and 16 were false positive, resulting 
in a precision of ~0.99. Based on six hours of manually annotated recordings, model 
performance at the 3-s clip level was satisfactory, with an AUC-ROC of 0.86, high precision 
(0.96), moderate recall (0.74), and a balanced F1 score of 0.81.  
 

The majority of tarsier vocalizations occurred between 05:00-06:00 (Waktu Indonesia 
Tengah, WITA) time. Sunrise occurred at approximately 05:37 WITA during our study period. 
We also found some tarsier detections around 03:00 WITA and after sunset which occurred 
around 17:46 WITA (Figure 4). Visual inspection of spectrograms of these events that occurred 
outside of sunrise show that they were tarsier vocalizations but did not follow the typical duet 
structure.  

 
Figure 4. Density of manually verified true positive tarsier detections in Tangkoko National Park 
as a function of time of day (Waktu Indonesia Tengah, WITA). 
 

We also found that it was highly variable whether tarsiers were detected at the same 
date and time across the rolling 3-ARU arrays or not. In some cases, all three ARUs had tarsier 
detections at the same time, however in some cases only one ARU had detections. We found 
that at least one ARU had tarsier detections each day of deployment (see Figure 5).   

https://github.com/DenaJGibbon/tarsier-automated-detection
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Figure 5. Density plots showing tarsier detections by date and time for each 3-unit rolling 
deployment array. The dashed gold line indicates approximates sunrise time and the dashed 
blue line indicates approximate sunset time for each survey day. 
 

For occupancy modeling, we found that the model with the longest survey period (20-
min) had the lowest AIC, indicating it was the best supported model (Table 2). We found that, 
based on the top supported model, occupancy (ψ)was 0.85 (95% CI: 0.32–0.98) and detection 
probability (p) was 0.57 (95% CI: 0.32–0.79). Note that the estimates are similar across all 
survey duration periods, with very wide confidence intervals. 
 
Table 2. Estimated occupancy (ψ), detection probability (p), AIC, and ΔAIC for three survey 
durations. Values in parentheses are 95% confidence intervals. 
 

Survey duration Occupancy (ψ) Detection (p) AIC ΔAIC 
10-min 0.84 (0.34–0.98) 0.35 (0.21–0.53) 68.4 27.9 
15-min 0.94 (0.01–1.00) 0.35 (0.17–0.59) 49.8 9.3 
20-min 0.85 (0.32–0.98) 0.57 (0.32–0.79) 40.5 0 

 
 
Discussion 

Here, we illustrate how PAM can be combined with automated detection to provide 
insights into temporal and spatial patterns of calling in tarsiers and generate detection histories 
that can be used for occupancy modeling. Similar to previous work (MacKinnon and 
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MacKinnon, 1980), we found that the majority of tarsier vocalizations occurred around sunrise, 
however there were a few that occurred around 03:00 and 18:00 WITA. Our rolling 3-ARU 
arrays frequently detected the same tarsier vocalization events, with differences across 
detections and ARUs presumably due to tarsier calling location within the 3-ARU array. Our 
simple example of occupancy indicated relatively high occupancy (~0.85) and moderate 
detection probability (~0.57), however these results should be interpreted with caution due to 
the small number of ARU locations used for this analysis. Given the data deficient status of 
many tarsier species across Sulawesi, and the effectiveness of this PAM and automated 
detection workflow, we advocate for an island-wide acoustic census of tarsiers on Sulawesi. 
Importantly, incorporating studies across habitat- and land use-types will provide insights into 
how human activities impact tarsier populations (Supriatna, 2022). 

The performance of automated detectors depends on many different aspects including 
the amount of background noise, presence of other signals that are similar to the target signal, 
stereotypy of the target signal, quality and diversity of training data, and parameters of the 
underlying model (Kershenbaum et al., 2025). Performance also depends heavily on the 
evaluation or test dataset (Clink et al. 2024). Previous work in southern yellow-cheeked crested 
gibbons found that BirdNET performance stabilized when the number of positive training 
samples was > 25 (Clink et al. 2024). Here, we found that the BirdNET model trained on 30 high 
signal-to-noise ratio positive samples obtained using a band-limited energy detector led to 
satisfactory performance, with very high precision over the evaluation dataset (~0.99). We also 
found that at the 3-s clip level recall was satisfactory, however for occupancy modeling, 
detection histories are often created at the survey level, which means that only a single 
detected clip would be necessary to verify presence within the survey window. 

When deploying an automated detector there is an inherent tradeoff between precision 
and recall, that is often mediated by the choice of a confidence score. We used a logistic 
regression to determine the confidence score (0.65) that was associated with a 99% probability 
that the detection was a true positive (Wood and Kahl, 2024). In our case, the full evaluation 
data set consisted of approximately 520 hours, and we only had sixteen false positive 
detections. For larger deployments it is possible that a higher confidence score would be 
desirable if deploying over many hundreds or thousands of hours of recordings resulted in a 
very large number of false positives. Importantly, the ideal confidence score will vary for 
deployments at different sites, or using different recording units, which would require 
confidence score tuning similar to our approach. 
 Our preliminary analyses of occupancy and detection probability are consistent with the 
fact that tarsier populations are known to occur at high density in Tangkoko National Park 
(Gursky, 1998) and that they call consistently most mornings around sunrise (MacKinnon and 
MacKinnon, 1980). Even within Tangkoko National Park there are many different forest types 
(MacKinnon and MacKinnon, 1980); and it is unclear how tarsier populations vary across these 
forest types. Tangkoko National Park has been impacted heavily by selective logging and human 
encroachment on the borders, and is an active ecotourism site, with tarsiers in heavily touristed 
areas showing modified behaviors, including emitting more audible and ultrasonic alarm calls 
(Gursky, 2022). Therefore, future work comparing tarsier occupancy estimates in different 
landuse types, forest types, and gradients of ecotourism will be highly informative. 
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 Sulawesi tarsiers are ideal candidates for future PAM + occupancy studies for this 
approach as they are highly vocal and territorial, and we provide the following suggestions for 
future work.  To determine the optimal number of ARUs to answer the question of interest, e.g. 
how does occupancy vary across landuse types, or to detect a change in populations over time 
due to shifts in management practices, we suggest simulation-based studies to determine 
optimal number of ARUs (Fuller et al., 2022; Wood et al., 2019). Regarding duration or number 
of surveys, this has varied substantially across different PAM studies, for example  5- to 7- night 
deployments were used for owl species in the Sierra Nevada, California, USA (Wood et al., 
2019), whereas three consecutive mornings were used for occupancy of northern yellow-
cheeked crested gibbon (N. annamensis) using human observers (Vu et al., 2020) and ARUs (Vu 
and Tran, 2019). One of the benefits of using PAM over human observers is the ability to collect 
data more easily across larger spatial and temporal scales, so we advocate for longer surveys, if 
possible, and empirical tests on the impact of survey length on occupancy results. It is highly 
possible that detection probability will be lower during the rainy season, due to either 
behavioral modifications (Gursky, 2000b) and/or reduced performance of the automated 
detector under noisy conditions, so seasonal differences must be taken into account. It is also 
unclear if the diel patterns of vocalizations, with the majority occurring around sunrise, is 
generalizable across all species of Sulawesi tarsiers. Therefore, pilot studies investigating 
temporal patterns of vocal behavior will be needed for understudied species, but if 
vocalizations do occur mostly around sunrise, limiting acoustic data collection to a few hours 
around sunrise could help with data storage and processing limitations.  
  Given the data deficient status of many tarsier species on Sulawesi, a need for a better 
understanding of how human activity impacts tarsiers (Supriatna, 2022), and a general lack of 
long-term surveys across Indonesia (Ardiantiono et al., 2024), we propose that occupancy 
modeling using PAM and automated detection can be an effective way to fill some of these 
knowledge gaps. Advances in technology for automated detection of acoustic data, like BirdNET 
and the associated code-free GUI (Kahl et al., 2021), have made these approaches more 
accessible to conservation practitioners. Importantly, some barriers still remain to wide scale 
adoption of PAM in Sulawesi and beyond, including access to sufficient computing power to be 
able to process large amounts of acoustic data, and the need to build local capacity for using 
these tools (Speaker et al., 2022). We hope that our work inspires practitioners to work towards 
the conservation of Sulawesi’s tarsiers through coordinated, long-term, and locally led acoustic 
monitoring efforts. 
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