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Abstract 

Biological diversity metrics have evolved from simple species counts to measures that incorporate 

increasingly complex functional information. A critical aspect is that different families of diversity 

indices are grounded in distinct mathematical models for representing uncertainty, including classical 

set theory, probability theory, and fuzzy set theory, which shape what these measures can reveal about 

community structure. In this paper, we propose a unified theoretical framework that links commonly 

used diversity indices to their underlying models of uncertainty, thereby clarifying the ecological and 

mathematical meaning of the information they summarize. As one of our main results, we show that 

Rao’s quadratic diversity, one of the best known indices of functional diversity, can be interpreted as 

a measure of strife or discord for a set of functionally overlapping species. We further demonstrate 

that Rao’s diversity can be expressed as the mathematical expectation of the fuzzy specificity (or 

functional distinctiveness) of the individual species in the community, thereby revealing a closer 

ecological and statistical connection between these two forms of uncertainty than previously 

recognized. Overall, our approach provides an integrated perspective on the relationship between 

uncertainty theory and biodiversity measurement, offering new insights for understanding ecological 

processes and for developing more coherent and informative biodiversity indices. 

 

Keywords: Functional distinctiveness; Fuzzy sets; Information theory; Rao quadratic diversity; 

Shannon entropy; Simpson diversity; Species richness; Specificity; Uncertainty  

 

 
Introduction 

In community ecology, diversity measures are fundamental tools for understanding the mechanisms 

shaping community structure and composition over varying spatial scales. Fisher et al. (1943) were 

the first to use the term ‘index of diversity’ to refer to the shape parameter of a log-series distribution  

describing how individuals are distributed among species within a community (what is now known 

as Fisher’s alpha). A few years later, Simpson (1949) proposed replacing diversity indices based on 

characteristic parameters of species-abundance distributions with the type of diversity indices we use 

today, namely ‘general parameters’ in the sense of Good (1953) that measure the heterogeneity of a 

species assemblage independently of any specific form of abundance distribution. For roughly the 

next fifty years, these distribution-free diversity measures were calculated exclusively from species 

relative abundances without considering other attributes of community structure, such as functional 

differences between species. 

In the specific case of the Simpson index, given a community C composed of N species, let 
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 ( 1, 2,..., )iK i N=  be the number of individuals belonging to species i such that 
1

N

ii
K K

=
= , and let 

i ip K K=  denote the relative abundance of i. The Simpson index of diversity is then defined as the 

probability that two individuals randomly selected from C do not belong to the same species: 

 

2

1

1
N

i

i

S p
=

= −                            (1) 

 

Traditional diversity measures, like the Simpson index, typically summarize community diversity 

based solely on species commonness and rarity, implicitly assuming that all species are equally and 

maximally distinct from each other (Mouchet et al. 2010; Ricotta et al. 2023). However, in a more 

contemporary view of community ecology, it is widely accepted that the species ecological strategies 

are linked to their functional traits. Therefore, from a functional perspective, the species may overlap 

to varying degrees, depending on differences in their functional traits. This led Díaz and Cabido 

(2001) to state that “functional diversity, or the value and range of species traits, rather than species 

numbers per se, strongly determines ecosystem functioning.” 

A few years earlier, in an equally important but much less celebrated paper, Izsák and Papp (1995) 

were the first to propose measuring functional diversity using an index now generally known as Rao’s 

(1982) quadratic diversity. While the conventional abundance-based diversity measures commonly 

used at that time ignored functional or other ecologically relevant differences among species, Rao 

(1982) was among the first to introduce a diversity index that explicitly incorporates such differences 

(see also Hendrickson and Ehrlich 1971). By integrating species abundances with their functional 

traits, Rao’s quadratic diversity offers a more comprehensive understanding of the relationships 

between plant diversity and ecosystem processes (Pavoine 2012; Ricotta et al. 2021). 

This fundamental shift in perspective has led to the development of numerous functional diversity 

indices that integrate in different ways species abundance with their functional traits (Walker et al. 

1999; Villéger et al. 2008; Schmera et al. 2009; Laliberté and Legendre 2010; Chao et al. 2014; 

Ricotta et al. 2016). As a result, there are now literally thousands of studies linking functional 

diversity to various dimensions of community functioning. 

A critical aspect is that different families of diversity indices, from simple species counts to more 

recent measures of functional diversity, are grounded in distinct mathematical frameworks for 

representing the uncertainty associated with specific aspects of community structure, including 

classical set theory, probability theory, and fuzzy set theory (Ricotta and Pavoine 2025). These models 

implicitly shape how species and communities are represented. Consequently, the choice of a 

particular model ultimately constrains what diversity indices can or cannot reveal about community 

structure. 

The aim of this paper is thus to relate the diversity indices commonly used in community ecology to 

their underlying mathematical models of uncertainty. The main goal is to provide a comprehensive 

theoretical framework that explains what each measure captures and how they interrelate, thereby 

ensuring that they really measure what we want to measure (Sherwin et al. 2006). 

 
Methods 
Diversity and uncertainty 

Biological communities are highly complex multi-dimensional systems. Therefore, their 

investigation requires multivariate methods of exploratory data analysis. The primary purpose of 

these analyses is to describe biological patterns and their interrelationships, whereas estimation and 

statistical inference generally assume a secondary role (Podani 2000). From the standpoint of a 

community ecologist, diversity measures may be thus conceived as a class of multivariate summary 

statistics designed to capture distinct dimensions of compositional uncertainty, including species 

richness, abundance distributions, and functional traits (Solow and Polasky 1994; Ricotta 2005; 

Ricotta and Feoli 2024). In this view, although many of the most widely used diversity measures 
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originated in very different contexts and were developed for distinct purposes, they have all been used 

to summarize the uncertainty associated with various facets of community structure, without any 

inferential power or direct mechanistic or biological meaning: high diversity simply implies high 

unpredictability, and vice versa. 

Therefore, contrary to those who argue that diversity as an ecological concept is fundamentally 

distinct from diversity as a statistical index (see Ricotta 2005), we concur with Molinari (1989) that: 

“Diversity as an unequivocal and inherent property of a biological system does not exist. Instead, as 

it is the case with any other statistic, diversity values are merely numbers and their relevance to 

ecological problems must be judged [a posteriori] on the basis of observed correlations with other 

environmental variables.” Clearly, the nature of diversity depends on the mathematical framework 

within which the index is formalized. Each formalization relies on a model designed to capture the 

uncertainty associated with specific aspects of community structure. Consequently, adopting a 

specific mathematical model necessarily constrains the analysis to the assumptions and limitations 

inherent in that model (Klir and Wierman 1999). 

The following sections review the principal uncertainty-based diversity indices commonly used in 

ecological studies, focusing on their underlying mathematical models arranged in order of increasing 

complexity. 

 
Species richness 

Species richness is the most fundamental and commonly used measure of biological diversity. It refers 

to the number of distinct species present in a community (or assemblage, collection, etc.), regardless 

of their abundance. In terms of uncertainty formalizations, species richness refers to classical set 

theory, which is probably the simplest way to express uncertainty. In its most basic representation, a 

classical, or crisp set C (i.e., the community) is a finite collection of N discrete elements (species). 

The boundaries of a crisp set are sharply defined: an element either fully belongs to the set, or it does 

not (Figure 1). Intuitively, this binary membership means that the uncertainty associated with the set 

depends only on the number of its elements. Therefore, a community with a greater number of species 

is considered more diverse (i.e., more unpredictable) than one with fewer species. 

The measurement of uncertainty in finite crisp sets was first introduced by Hartley in (1928). This 

type of uncertainty arises when we know that a certain alternative of interest belongs to a particular 

set of alternatives, but we do not know which one it is. To identify the specific alternative, information 

is required to eliminate this uncertainty. Therefore, the amount of uncertainty associated with a set of 

alternatives can be measured by the amount of information needed to remove it. More generally, the 

rationale underlying the relationship between uncertainty and information is that the amount of 

information gained from observing the outcome of an experiment depending on chance can be 

regarded as equivalent to the amount of uncertainty associated with this outcome before the 

experiment was carried out (Rényi 1970). 

According to Hartley (1928), let us consider a finite set containing N elements. Sequences can be 

formed from the N elements by successive selections. If s selections are performed, then 
sN different 

sequences can potentially be obtained. Assuming that the amount of information ( )sI N  required to 

remove the uncertainty associated with the s selections is proportional to s, we obtain: 

 

( ) ( )sI N N s=                            (2) 

 

where ( )N  is a constant that depends on N. 

Given two sets with N and M elements, respectively, if we perform s1 selections from the first set and 

s2 selections from the second set, and the number of resultant sequences is the same in both cases, 

then the amount of information should also be the same. Formally, if 

 
1 2s sN M=  
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then 

 

1 2( ) ( )N s M s  =                          (3) 

 

from which 

 

( ) ( )

log logb b

N M

N M

 
=                           (4) 

 

This equation can only be satisfied if 

 

( ) logbN c N =  

 

where b and c are positive constants ( 1b  , 0c  ) that determine the unit in which uncertainty is 

measured. For 2b =  and 1c = , which is the standard choice in information theory, uncertainty is 

measured in bits. 

Substituting the value of   in Eq. (2), we obtain: 

 

2 2( ) log logs sI N s N N= =                       (5) 

 

That is, for a finite crisp set, the information associated with s sequences of its N elements is equal to 

the logarithm of the number of possible sequences. Therefore, setting 1s = , the information 

associated with a single selection of equally likely outcomes is the logarithm of the number of 

available elements N: 

 

2( ) logI N N=                           (6) 

 

Eq. (6) is commonly referred to as Hartley’s formula. Note that, aside from information theory, where 

information content is typically expressed in bits, ecological applications generally use the natural 

logarithm or the base-10 logarithm. 

According to Klir and Wierman (1999), uncertainty expressed in terms of sets of alternatives arises 

from the nonspecificity present in each set. The larger the set, the less specific the resulting prediction, 

and full specificity is achieved when only one alternative is possible. Therefore, the uncertainty 

conveyed by sets of possible alternatives is well described by the term nonspecificity. 

Rényi (1970) showed that Hartley’s formula satisfies a set of properties, the most important of which 

is additivity, thereby justifying its interpretation as a measure of information associated with selecting 

one element at random from a set of N equally probable choices (for details, see Rényi 1970). By 

relaxing the requirement of additivity, a condition that has been invoked only rarely in community 

ecology (e.g., Juhász-Nagy and Podani 1983; Juhász-Nagy 1993), when information about the 

number of individuals per species is unavailable, or when species abundances are deliberately 

ignored, it becomes natural to measure the diversity of a biological community simply using its 

number of species N. 

 
Abundance-based diversity: The Shannon and the Simpson formula 

Apart from the Simpson diversity, the other fundamental measure of diversity that is based on species 

abundances is the Shannon entropy (H), which was first introduced in an ecological context by Good 

(1953) to summarize the diversity “of a population of animals of various species” and later 

popularized in numerous studies, particularly by MacArthur (1955, 1961) and Margalef (1958). 
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Let C be a universal set (a sample space, or, in ecological terms, a community) containing K elements 

(individuals) belonging to N crisp subsets (the species). Each individual either fully belongs to a given 

species, or it does not (Figure 1). Therefore, the species are considered mutually exclusive (one 

individual cannot simultaneously belong to two or more species) and exhaustive (all individuals 

belong to one of the N species in C), i.e., they form a partition. 

According to Rényi (1970), the necessary amount of information required to fully characterize a 

single individual in C is 2log K  (i.e., Hartley’s formula applied to the K individuals in C). However, 

if we already know that an individual in C belongs to species i, we still need 2log iK  units of 

information to fully characterize it, where iK  is the number of individuals of species i. 

Therefore, on average, the information required to characterize an individual in C, once its species is 

already known, is: 

 

2 2

1 1

log log
N N

i
i i i

i i

K
K p Kp

K= =

=                       (7) 

 

where i ip K K=  is the probability of randomly drawing an element of species i from the set C, with 

1
1

N

ii
p

=
= . 

It follows that the total information required to characterize one individual in C consists of two parts: 

the first part, H, determines the species to which the individual belongs, and the second part, 

21
log

N

i ii
p Np

= , characterizes the individual among those belonging to that species: 

 

2 2

1

log log
N

i i

i

K H p Kp
=

= +                       (8) 

 

which leads to Shannon’s (1948) formula: 

 

2

1

1
log

N

i

i i

H p
p=

=                          (9) 

 

Eq. 9 is commonly referred to as Shannon’s entropy and expresses the probabilistic uncertainty in 

assigning a randomly selected individual to one of the N species in C, assuming that the species are 

exhaustive and mutually exclusive. 

As with Simpson’s index, the value of the Shannon entropy increases with the number of species in 

C and with the evenness of their relative abundances. In both cases, for a non-empty community, 

diversity is zero if the community contains only one species and progressively increases with 

increasing species richness and evenness. For a community composed of N species, diversity reaches 

its maximum when all species are equally abundant. (i.e., if 1ip N= for all 1,2,...,i N= ). 

Specifically, for an equiprobable distribution of species abundances, the Shannon index reduces to 

the Hartley formula 2logH N= , whereas the Simpson index simplifies to 1 1S N= −  (i.e., an 

increasing function of species richness). This is intuitively reasonable: in a probabilistic framework, 

uncertainty is maximal when all events have the same probability (i.e., when the probability of 

drawing an individual of a given species is the same for all species). Therefore, contrary to those who 

consider evenness a problematic component of diversity theory (see e.g., Alroy 2025), the increase 

of diversity with increasing evenness is a mathematical necessity (sensu Hurlbert 1971), arising from 

the relationship between diversity and probabilistic uncertainty. Given their probabilistic nature, both 

indices can serve as community-level indicators of probabilistic uncertainty (also referred to as strife 
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or discord), reflecting the disagreement in selecting among several mutually exclusive alternatives 

(Klir and Wierman 1999). High values of Shannon entropy or Simpson diversity indicate a high level 

of uncertainty regarding the specific identity of a randomly sampled individual. 

Note that, since the Simpson index and the Shannon entropy are both expressed in terms of species 

relative abundances ip , their application is not restricted to discrete counts of individuals. They can 

also be extended to continuous measures of quantity, such as species cover or biomass, which are 

equally important ecological variables, particularly in vegetation science where counts of individuals 

are often meaningless or impossible, as in the case of clonal plants (Hill 1973). 

In terms of diversity formalization, both measures fall within the definition proposed by Patil and 

Taillie (1982), who defined diversity as the expected (i.e., average) rarity of the relative abundances 

of the species in C: 

 

1

( )
N

i i

i

D p p
=

=                           (10) 

 

In their formulation, Patil and Taillie (1982) expressed the rarity ( )ip  of species i as a non-negative, 

monotonically decreasing function that depends solely on its relative abundance ip . The function is 

defined over the interval ( 0,1 , such that when 1ip = , ( ) 0ip = , implying that a community 

consisting of a single species has zero diversity, whereas for 0ip = , the function is undefined, 

implying that species not present in the community do not contribute to its diversity. Consequently, 

the resulting measure of diversity is determined by the specific form of the rarity function. 

In terms of average rarity, the Simpson index can be expressed as: 

 

1

(1 )
N

i i

i

S p p
=

= −                          (11) 

 

where the rarity function ( ) (1 )S i ip p = −  decreases linearly with species abundance. Similarly, the 

rarity function underlying Shannon entropy can be expressed as: ( )2 2( ) log 1 logH i i ip p p = = − . 

Hence, both indices can be placed under the same formal umbrella. The primary difference lies in 

their sensitivity to species abundances: Shannon entropy is more responsive to changes in the 

abundance of rare species, whereas the Simpson index is more sensitive to variations in the abundance 

of common species and is largely unaffected by changes in the abundance of rare ones (Hill 1973; 

Peet 1974). 

In the context of strife or discord, recall that when species are considered maximally distinct, ip  

denotes the probability that an individual randomly drawn from C belongs to species i. Consequently, 

due to its linearity, Simpson’s rarity function (1 )
N

i jj i
p p


− =  summarizes the probability that an 

individual randomly selected from C does not belong to species i. That is, the complement of ip . 

Therefore, in terms of species abundances, S  can be also interpreted as the total abundance of all 

species that conflict with species i. Likewise, the rarity function associated with the Shannon entropy 

( )log 1
N

jj i
p


− −  summarizes the conflict of all species that differ from i in the range  0, . 

Accordingly, conventional abundance-based diversity measures such as Shannon and Simpson 

diversity can both be viewed as measures of expected conflict among distinct species within a 

community (Klir and Wierman 1999; Ricotta and Szeidl 2006). 
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Trait-based diversity: Rao’s quadratic diversity 

Whereas traditional diversity metrics primarily account for species richness and abundance, it is 

broadly acknowledged that a deeper understanding of ecosystem functioning arises from examining 

the range and distribution of the species’ functional traits. Typically, the data used to describe the 

functional structure of a community include a set of functional traits associated with each species. 

Since many diversity indices depend on measures of functional dissimilarity, these traits are 

commonly transformed into a square matrix representing multivariate functional dissimilarities 

between all pairs of species (Villéger et al. 2008). 

Using data on species abundances and their functional dissimilarities, several studies have 

demonstrated that Rao’s (1982) quadratic diversity provides an effective way to quantify the 

functional diversity of a community. Quadratic diversity represents the expected functional 

dissimilarity between two individuals randomly selected (with replacement) from the community: 

 

,

N

i j ij

i j

Q p p d=                           (12) 

 

where 
ijd  denotes the symmetric dissimilarity between species i and j with 

ij jid d=  and 0iid = . 

Although the use of functional diversity indices largely depends on current research trends and the 

specific questions being addressed, among the various existing measures of functional diversity, 

Rao’s quadratic diversity remains by far the index with the most robust and well-studied theoretical 

foundation (see e.g., Shimatani 2001; Champely and Chessel 2002; Rao 2010; Pavoine 2012; Ricotta 

et al. 2016, 2022). According to Eq. (12), the value of Q increases with increasing functional 

dissimilarity among species. Therefore, Ricotta et al. (2021) proposed this index as an indicator of 

community-level functional uniqueness, reflecting the extent to which individuals of a given species 

exhibit distinctive functional traits not shared with other species in the community. Note that, as with 

conventional abundance-based measures, the calculation of Rao’s Q is not limited to discrete counts 

of individuals but can also be applied to continuous ecological variables. 

For the purposes of this study, we assume that the pairwise dissimilarities between species 
ijd  are 

bounded within the range  0,1 . Consequently, their complement 1ij ijs d= −  can be considered a 

measure of functional similarity between species i and j. 

In set-theoretical terms, the idea that species are not maximally dissimilar but share a certain degree 

of overlap determined by their functional traits conforms to the assumptions of fuzzy set theory. 

Unlike a crisp set, in which an element either fully belongs to the set or does not, the elements of a 

fuzzy set have a continuum of membership grades ranging between zero and one (Zadeh, 1965). 

Let C be a crisp universal set composed of K elements, and A a fuzzy subset of C. The value ( )kA   

represents the membership degree of element  ( 1,2,..., )k k K= in A such that 0 ( ) 1kA   and 

1
0 ( )

K

kk
A K

=
  . In other words, ( )kA  represents the degree of compatibility of the k-th 

element with the fuzzy set A (Klir and Wierman 1999). For further details on fuzzy set theory, see for 

example Dubois and Prade (1980), or Klir and Yuan (1995). 

In community ecology, several authors have noted that functional resemblance among species can be 

framed within the context of fuzzy set theory. Specifically, the similarity between two species, i and 

j, represents the degree of membership (or functional compatibility) of individuals of one species to 

the set defined by the functional traits of the other species (Roberts 1986; Feoli and Zuccarello 1986; 

Feoli and Orlóci 2011; Ricotta and Pavoine 2025). Thus, by relaxing the mutually exclusive nature 

of distinct species, a higher similarity between species i and j implies a greater functional overlap 

between these two species (Figure 1). Note that, since by definition 1iis = , we assume that the 

membership degree of all individuals of species i to the fuzzy set defined by the functional traits of 
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species i itself is always equal to one (Ricotta and Pavoine, 2025). Note also that a fuzzy set A for 

which there exists an element k such that max ( ) 1kA =  is said to be normal. That is, a normal fuzzy 

set has at least one element with membership degree equal to one. 

Unlike the interpretation of a species as a crisp set (in which an individual either fully belongs to the 

species or does not), a ‘fuzzy species’ represents a special case of a fuzzy set, which is defined by a 

core of characteristic or ‘archetypal’ elements (the individuals belonging to the focal species) together 

with several groups of ‘satellite’ individuals from different species that belong only partially to the 

set depending on their degree of functional similarity to the species under consideration. 

Supposing that functionally similar species perform similar ecological roles, Leinster and Cobbold 

(2012) defined the ordinariness of species i as the commonness of all individuals in C that are 

functionally similar to i (including the individuals of species i itself): 

 

1

N

i j ij

j

p s
=

=                            (13) 

 

i  thus represents the abundance of all community individuals that support the functions associated 

with species i. If 
ijs  is bounded within the unit interval, we have 1i ip   . i ip =  if all species 

j i  are maximally dissimilar from i, while 1i =  if all species are functionally identical to i (i.e., if 

1ijs =  for all j i ). 

By combining Eq. 12 and 13, it can be readily shown that, when intraspecific trait variability is 

neglected, quadratic diversity can be expressed as the expected functional rarity of species 

ordinariness i  (Ricotta and Szeidl 2006): 

 

1

(1 )
N

i i

i

Q p 
=

= −                           (14) 

 

Therefore, Rao’s Q can be regarded as a measure of conflict among functionally overlapping species. 

Since i ip  , it follows that the value of Rao’s index is always lower than the Simpson index: S Q  

where equality holds for a ‘Boolean’ community in which all species are considered maximally 

distinct from each other (i.e. with 1ijd =  for all j i , and 0iid = ). 

At least for ultrametric distances, Pavoine and Bonsall (2009) and Pavoine (2026) further showed 

that, for a fixed number of species and given pairwise distances, quadratic entropy is maximized when 

all species have equal functional rarity 1 i− , mirroring the link between diversity and evenness 

proper to conventional abundance-based measures. 

In terms of uncertainty, we recall that the term 
1

N

i j ijj
p s

=
=  represents the average degree of 

compatibility of the individuals in C with the functional characters of species i. Accordingly, the term 

1 1
1 (1 )

N N

i j ij j ijj j
p d p s

= =
− = = −   (i.e., the mean fuzzy complement of ijs  sensu Klir and Wierman 

1999) expresses the average degree of incompatibility of the individuals in C with the functional 

characters of species i. At the same time, 1 i−  can also be viewed as the abundance of all community 

individuals that conflict with the ecological functions performed by species i. Thus, in analogy with 

the interpretation of Simpson’s index in a probabilistic context, Rao’s quadratic diversity can be 

considered a measure of strife or discord for a set of fuzzy sets, such as that illustrated in Figure 1. 

That is, as a measure of uncertainty or disagreement in selecting among several partially overlapping 

alternatives. 
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Species-level functional distinctiveness and specificity 

Functional distinctiveness or originality is a fundamental concept in ecology, describing the degree 

to which a species exhibits distinct functional traits compared to the other species within a community 

(Grenié et al. 2017; Violle et al. 2017). Although they may not be the most abundant species, those 

occupying extreme positions in trait space can make disproportionately large contributions to 

ecosystem processes. Such species often possess specialized traits that enable them to perform critical 

ecological roles, such as maintaining ecosystem functioning and stability (Delalandre et al. 2022; 

Munoz et al. 2023). Consequently, the loss of functionally unique species can trigger cascading 

effects, ultimately reducing ecosystem efficiency (Cadotte et al. 2011). 

Unlike all community-level measures of diversity discussed so far, functional distinctiveness is 

therefore a species-level concept that measures the eccentric position of a species in trait space, with 

functionally distinct species being those located farther apart from other species (Violle et al. 2017; 

Mahaut et al. 2023). In terms of uncertainty, functional distinctiveness is grounded in the work of 

Yager (1982, 1992), who extended the notion of (non)specificity from crisp to fuzzy sets to summarize 

the extent to which a fuzzy set (a species) contains only a limited number of elements (individuals). 

According to Yager (1982), for a normal fuzzy set A containing K discrete elements with varying 

membership degrees, a measure of specificity Sp  in the range [0,1]  satisfies the following 

requirements: (1) Sp  is maximum if there exists one and only one element k  with ( ) 1kA =  and 

( ) 0hA =  for all other elements h ( )h k ; (2) Sp  is minimum when ( ) 1kA =  for all k K ; (3) 

For a normal fuzzy set with at least one element with ( ) 1kA = , any increase in the membership 

degree of the h-th element ( )h k  reduces (or at least does not increase) the specificity of the fuzzy 

set. 

In this framework, since species ordinariness 
1

N

i j ijj
p s

=
=  summarizes the abundance of all 

community individuals that support the functions associated with species i (including the individuals 

of species i itself), its complement 1 i− , can be intuitively regarded as an appropriate index of fuzzy 

specificity for continuous abundance measures: 

 

1
1

N

i i j ijj
Sp p d

=
= − =                        (15) 

 

Pavoine and Ricotta (2021) referred to this index as the ‘effective originality’ of species i. In Appendix 

1, we show that this index can be directly derived from the work of Yager (1992). It follows that, if 

we consider 1 i−  as a measure of fuzzy specificity, Rao’s quadratic diversity can be regarded as the 

average specificity of all species within the community (see Eq. 14). This perspective highlights the 

relationship between strife and mean functional specificity within a fuzzy representation of 

community structure. 

This ‘absolute’ measure of specificity 1 i−  accounts for all individuals in C in determining the 

specificity of a focal species i. However, whereas in its classical definition, specificity quantifies the 

degree to which a fuzzy set contains only a single element (Klir and Wierman, 1999), the particular 

data structure of a fuzzy species leads us to interpret the specificity of species i as the degree to which 

the set contains only one type of elements. In this sense, the specificity of species i can also be 

regarded as the ‘relative’ contribution of individuals from other species in supporting the ecological 

role of species i. 

When dealing with continuous abundance values, a common way to compute the (relative) 

distinctiveness of a focal species i is to compute the mean functional dissimilarity of i from all other 

species in the community (Ricotta et al. 2016; Violle et al. 2017): 
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*

1, 1

N
j

i ij

j j i i

p
Sp d

p= 

=
−

                          (16) 

 

where ( )1j ip p−  denotes the abundance of species j excluding the focal species i ( )j i  such that 

( )
1,

1 1
N

j ij j i
p p

= 
− = . In Appendix 1, we show how this index of specificity can also be derived 

from the work of Yager (1992). 

Pavoine and Ricotta (2021) first noted that Eq. 16 can be expressed in terms of functional rarity as: 

 

* 1

1

i
i

i

Sp
p

−
=

−
                           (17) 

 

Therefore, relative functional distinctiveness *

iSp  can be regarded as a scaled version of functional 

rarity, normalized by its local maximum 1 ip− . That is, by the maximum value that 1 i−  can attain 

when the relative abundance of the focal species equals ip . In essence, relative functional 

distinctiveness quantifies the extent to which the functional rarity of species i decreases when moving 

from a crisp model of mutually exclusive species to a fuzzy model of partially overlapping species in 

which each individual may simultaneously belong to several species to varying degrees. 

If the functional dissimilarity 
ijd  between the focal species i and all other species j equals one, the 

fuzzy species will contain only one type of element (the individuals of species i itself), and its 

specificity will be maximal ( * 1iSp = ). Conversely, if all species in C are functionally identical to 

species i, the fuzzy species will include all individuals in C with a membership degree equal to one. 

In this case, we obtain * 0iSp = . 

Ricotta and Pavoine (2025) observed that this way of looking at functional distinctiveness allows us 

to extend Eq. 16 to a general class of specificity measures expressed as the ratio between a species’ 

functional rarity and its corresponding abundance rarity: 

 

* ( )

( )

i
i

i

Sp
p

 


=                            (18) 

 

Since 1i ip   , we have ( ) ( ) 0i ip    , and therefore 
*0 1iSp  . 

As discussed by Ricotta and Pavoine (2025), absolute and relative specificity differ primarily in the 

perspective they represent. Absolute specificity iSp  adopts the viewpoint of an external observer 

looking at all individuals in the community that can perform the functions attributed to a given 

species. In this sense, absolute specificity reflects the rarity of the species’ functional characters, such 

as the state of a specific trait (Kondratyeva et al. 2019). In contrast, relative specificity *

iSp  reflects 

the extent to which a species is functionally distinct from the other species in the community. 

Accordingly, when assessing relative specificity, the abundance of the focal species is not considered. 

Therefore, to convert relative specificity into its absolute counterpart, the relative measure needs to 

be multiplied by the corresponding abundance rarity: * ( )i i iSp Sp p=  . 

From this perspective, it is also possible to define a general class of measures of fuzzy discord by 

generalizing Rao’s formula as: 

 

1

( )
N

i i

i

D p Sp p
=

=                           (19) 



11 
 

 

This general formulation allows rare and abundant species to be weighted differently depending on 

the selected specificity index (Ricotta and Szeidl, 2006). In this way, for practical purposes, one is 

free to apply the type of rarity measure most appropriate for addressing the specific problem under 

consideration. 

 
Discussion 

By linking the most relevant diversity indices to their mathematical models of uncertainty, we aimed 

to provide a comprehensive theoretical framework that moves from a ‘simplex’ to a more ‘complex’ 

representation of diversity (in the sense of Juhász-Nagy 1993). In doing so, we hope to contribute to 

answering Juhász-Nagy’s fundamental question: Do we know what we are talking about when we 

talk about diversity? 

Historically, due to the lack of a clear biological meaning, traditional diversity indices received strong 

criticism from Hurlbert (1971), who regarded the Shannon index as a ‘non-concept’: “Although these 

information theoretic indices have been examined and applied to ecological problems by many 

ecologists, no one has yet specified exactly what [biological] significance the ‘number of bits per 

individual’ has to the individuals and populations in a community”. 

Hurlbert instead suggested adopting diversity measures based on species accumulation curves and 

rarefaction methods, which provide a more direct biological interpretation of ecosystem functioning. 

According to Hurlbert, this is because rarefaction methods are directly linked to intra- and 

interspecific encounters, which are in turn associated with several ecological interactions such as 

competition or predation. Interestingly, a few years later, Patil and Taillie (1982) used encounter 

theory as a general mathematical foundation to derive those diversity indices that Hurlbert intended 

to discard. Likewise, from the work of Chao and Jost (2012, Eq. 2 and 3) it is evident that the Simpson 

diversity is directly related to the slope of species accumulation curves, thereby challenging the 

presumed advantage of rarefaction methods as diversity measures. 

In this context, while early debates on diversity were marked by an intense dualism between diversity 

as a biological property and diversity as a statistical index (discussed in Ricotta 2005), in this paper 

we adopt the view that diversity measures represent a class of multivariate summary statistics that 

condense various aspects of community structure into single scalars in a similar manner as similarity 

measures are used to quantify how closely two objects resemble each other (Ricotta 2005). Although 

similarity measures are not generally attributed intrinsic biological meaning, standard multivariate 

methods based on resemblance, such as ordination or clustering, have been of considerable 

importance for advancing our ecological understanding. Likewise, diversity measures have proven to 

be powerful tools for elucidating a wide range of ecological processes, including species co-

occurrence and community assembly. 

From a statistical viewpoint, the mathematical relationships among the different models of 

uncertainty explored in this work allowed us to define a new class of measures of strife or discord for 

a set of fuzzy sets, and to express these measures in terms of expected specificity. Although the 

concept of specificity was introduced in fuzzy set theory by Yager as early as 1982, in ecology the 

relationship between specificity and functional originality has been highlighted only recently by 

Ricotta and Pavoine (2025). In this work, we have addressed several open issues left by Ricotta and 

Pavoine (2025), thus providing a comprehensive theoretical framework that allows us to express a 

standard measure of functional diversity, such as Rao’s Q, in terms of the mean functional 

distinctiveness of all species in the community. This has been made possible by defining a general 

class of specificity measures directly derived from Yager’s (1992) work, which can also be extended 

to continuous measures of quantity. Indeed, the observation that the calculation of a diversity index 

cannot be restricted to discrete counts of individuals dates back to early work on biodiversity (Hill 

1973; Tóthmérész 1995). For instance, Hill (1973) notes that in vegetation science counts of 

individual plants are usually impossible. Therefore, we need to relax the strict individual-based 

interpretation of diversity measures and compute community diversity in terms of continuous values 
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of species abundance. 

We also introduced a distinction between absolute and relative indices of functional specificity, which 

is not present in the classical literature on fuzzy specificity (e.g., Yager 1982, 1992; Klir and Wierman 

1999; Marín et al. 2020). Absolute indices refer to the abundance of all community individuals that 

support the functions associated with a focal species. Therefore, the mean value of these indices, 

computed across all species in the assemblage represents a measure of functional diversity suitable 

for describing community functioning (see Eq. 19). On the other hand, relative specificity reflects the 

degree of functional differentiation of a focal species from the other community species, without 

taking its own abundance into account (Scheiner 2019). As such, relative specificity provides an 

appropriate species-level indicator of functional originality to be used, for example, in conservation 

actions aimed at identifying functionally unique species that play irreplaceable roles in ecosystem 

functioning (Griffith et al. 2021; Ricotta et al. 2025). 

With regard to the measurement of strife, to the best of our knowledge this is the first time that a 

measure of strife has been proposed for a set of fuzzy sets and that such a measure is expressed in 

terms of expected specificity. This makes the two types of uncertainty far more closely interconnected 

than is generally assumed. Indeed, the common view is that measures of strife, such as the Shannon 

entropy, are typically associated with a probabilistic model of uncertainty, whereas specificity 

measures, such as Hartley’s formula, summarize uncertainty in classical set theory, of which fuzzy 

set theory is a generalization. According to Klir and Wierman (1999): “We recognize now that the 

Hartley function and the Shannon entropy measure distinct types of uncertainty, nonspecificity and 

strife, respectively”. The view that the Hartley function is a special case of the Shannon entropy which 

stems from the observation that the value of the Shannon entropy for a uniform probability 

distribution equals the value of the Hartley function was, in their words, “ill-conceived”. 

However, although Klir and Wierman correctly argue that strife and specificity generally represent 

two distinct types of uncertainty, the Shannon index is nevertheless directly derived from Hartley’s 

formula (see above). Moreover, in the particular case of a perfectly even probability distribution, 

1 2 ... 1Np p p N= = = =  the two uncertainty models collapse into one another. This is because for an 

equiprobable distribution the individual probabilities, being all equal, essentially lose their 

informative role, such that no meaningful distinction remains between specificity and strife. In this 

case, since there is no substantial difference between the two types of uncertainty, the Shannon index 

reduces to Hartley’s formula. More generally, a relevant distinction between the two types of 

uncertainty is that Hartley’s formula quantifies the uncertainty associated with a single crisp set, 

whereas the Shannon index measures the uncertainty associated with a set of crisp (sub)sets of distinct 

events (see Figure 1). Accordingly, we can say that specificity and strife quantify uncertainty within 

and among sets (whether crisp or fuzzy), respectively. 

Another relevant aspect of the relationship between Rao’s quadratic diversity and strife is that, while 

the Rao index offers ample (and desirable) flexibility in the choice of the dissimilarity coefficient 

(Ricotta and Moretti 2011), if the functional dissimilarity between two species is computed from a 

single (univariate) trait τ using half the squared Euclidean distance ( )
2

1
2ij i jd  = − , quadratic 

diversity equals the variance of τ (Rao 2010; Pavoine 2012). Therefore, quadratic diversity is usually 

regarded as a multivariate analogue of variance. 

From an ecological viewpoint, since functional diversity is essentially related to trait variation or 

dispersion within communities (Gregorius and Kosman 2017), it is not surprising that Rao’s index 

can be effectively used for assessing functional diversity. What is more surprising, however, is that a 

measure of strife for a set of fuzzy sets can be expressed in terms of a multivariate analogue of 

variance, a standard tool of classical statistics. 

To conclude, relating the most commonly used diversity indices to their underlying models of 

uncertainty allowed us to examine both aspects from a non-standard perspective, leading to a 

productive cross-fertilization between the two research fields. From the standpoint of community 

ecology, it enabled us to express Rao’s functional diversity as the mean absolute originality of the 
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distinct species in a given assemblage; from the standpoint of fuzzy set theory it allowed us to define 

a new class of measures of strife and to make significant progress in the definition and understanding 

of specificity indices. Taken together, these results offer a more integrated perspective on the two 

approaches, which we hope will inspire further advances at the intersection of ecological diversity 

and uncertainty theory. 

 

 
References 

Alroy, J. (2025) Does evenness even exist? Ecology Letters 28: e70181. 

Cadotte, M.W., Carscadden, K., Mirotchnick, N. (2011) Beyond species: Functional diversity and the 

maintenance of ecological processes and services. Journal of Applied Ecology 48: 1079–1087. 

Champely, S., Chessel, D. (2002) Measuring biological diversity using Euclidean metrics. 

Environmental and Ecological Statistics 9: 167–177. 

Chao, A., Chiu, C.-H., Jost, L. (2014) Unifying species diversity, phylogenetic diversity, functional 

diversity, and related similarity and differentiation measures through Hill numbers. Annual Review 

of Ecology, Evolution and Systematics 45: 297–324. 

Chao, A., Jost, L. (2012) Coverage-based rarefaction and extrapolation: standardizing samples by 

completeness rather than size. Ecology 93: 2533–2547. 

Delalandre, L., Gaüzère, P., Thuiller, W., Cadotte, M., Mouquet, N., Mouillot, D., Munoz, F., Denelle, 

P., Loiseau, N., Morin, X., Violle, C. (2022) Functionally distinct tree species support long-term 

productivity in extreme environments. Proceedings of the Royal Society B-Biological Sciences: 

289: 20211694. 

Díaz, S., Cabido, M., 2001. Vive la difference: plant functional diversity matters to ecosystem 

processes. Trends in Ecology and Evolution 16: 646–655. 

Dubois, D., Prade, H. (1980) Fuzzy sets and systems - Theory and applications. Academic Press, New 

York. 

Feoli, E., Orlóci, L. (2011) Can similarity theory contribute to the development of a general theory of 

the plant community? Community Ecology 12: 135–141. 

Feoli, E., Zuccarello, V. (1986) Ordination based on classification: yet another solution?! Abstracta 

Botanica 10: 203–219. 

Fisher, R.A., Corbet, A.S., Williams, C.B. (1943) The relation between the number of species and the 

number of individuals in a random sample of an animal population. Journal of Animal Ecology 

12: 42–58. 

Good, I.J. (1953) The population frequencies of species and the estimation of population parameters. 

Biometrika 40: 237–264. 

Gregorius, H.R., Kosman, E. (2017) On the notion of dispersion: From dispersion to diversity. 

Methods in Ecology and Evolution 8: 278–287. 

Grenié, M., Denelle, P., Tucker, C.M., Munoz, F., Violle, C. (2017) funrar: an R package to 

characterize functional rarity. Diversity and Distributions 23: 1365–1371. 

Griffith, P., Lang, J.W., Turvey, S.T., Gumbs, R. (2021) Using functional traits to identify 

conservation priorities for the world’s crocodylians. Functional Ecology 37: 112–124. 

Hendrickson, J.A.J., Ehrlich, P.R. (1971) An expected concept of "species diversity". Notulae Naturae 

439: 1-6. 

Hill, M. (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–

432. 



14 
 

Hurlbert, S.H., (1971) The nonconcept of species diversity: a critique and alternative parameters. 

Ecology 52: 577–586. 

Izsák, J., Papp, L. (1995) Application of the quadratic entropy index for diversity studies on 

drosophilid species assemblages. Environmental and Ecological Statistics 2: 213-224. 

Juhász-Nagy, P. (1993) Notes on compositional diversity. Hydrobiologia 249: 173-182. 

Juhász-Nagy, P., Podani, J. (1983) Information theory methods for the study of spatial processes and 

succession. Vegetatio 51: 129-140. 

Klir, G.J., Wierman, M.J. (1998) Uncertainty-Based Information: Elements of Generalized 

Information Theory. Physica-Verlag, New York. 

Klir, G.J., Yuan, B. (1995) Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice-Hall, 

Upper Saddle River, NJ. 

Kondratyeva, A., Grandcolas, P., Pavoine, S. (2019) Reconciling the concepts and measures of 

diversity, rarity and originality in ecology and evolution. Biological Reviews 94: 1317–1337. 

Laliberté, E., Legendre, P. (2010) A distance-based framework for measuring functional diversity 

from multiple traits. Ecology 91: 299–305. 

Leinster, T., Cobbold, C.A. (2012) Measuring diversity: the importance of species similarity. Ecology 

93: 477–489. 

MacArthur, R.H. (1955) Fluctuation of animal populations and a measure of community stability. 

Ecology 36: 533–536. 

MacArthur, R., MacArthur, J.W. (1961) On Bird Species Diversity. Ecology 42: 594–598. 

Mahaut, L., Violle, C., Shihan, A., Pélissier, R., Morel, J.-B., de Tombeur, F., Rahajaharilaza, K., 

Fabre, D., Luquet, D., Hartley, S., Thorne, S. J., Ballini, E., Fort, F. (2023) Beyond trait distances: 

Functional distinctiveness captures the outcome of plant competition. Functional Ecology 37: 

2399–2412. 

Margalef, D.R. (1958) Information theory in ecology. International Journal of General Systems 3: 

36–71. 

Marín, N., Rivas-Gervilla, G., Sánchez, D., Yager, R.R. (2020) Specificity measures based on fuzzy 

set similarity. Fuzzy Sets and Systems 401: 189–199. 

Molinari, J. (1989) A calibrated index for the measurement of evenness. Oikos 56: 319–326. 

Mouchet, M.A., Villéger, S., Mason, N.W.H., Mouillot, D. (2010) Functional diversity measures: an 

overview of their redundancy and their ability to discriminate community assembly rules. 

Functional Ecology 24: 867–876. 

Munoz, F., Klausmeier, C. A., Gaüzère, P., Kandlikar, G., Litchman, E., Mouquet, N., Ostling, A., 

Thuiller, W., Algar, A. C., Auber, A., Cadotte, M. W., Delalandre, L., Denelle, P., Enquist, B.J., 

Fortunel, C., Grenié, M., Loiseau, N., Mahaut, L., Maire, A., Mouillot, D., Pimiento, C., Violle, 

C., Kraft, N.J.B. (2023) The ecological causes of functional distinctiveness in communities. 

Ecology Letters 26: 1452–1465. 

Patil, G.P., Taillie, C. (1982) Diversity as a concept and its measurement. Journal of the American 

Statistical Association 77: 548–561. 

Pavoine, S. (2012) Clarifying and developing analyses of biodiversity: towards a generalisation of 

current approaches. Methods in Ecology and Evolution 3: 509–518. 

Pavoine, S. (2026) The Rich-Rao Quadratic Entropy. Ecological Indicators 182: 114512. 

Pavoine, S., Bonsall, M.B. (2009) Biological diversity: distinct distributions can lead to the 

maximization of Rao’s quadratic entropy. Theoretical Population Biology 75: 153–163. 



15 
 

Pavoine, S., Ricotta, C. (2021) On the relationships between rarity, uniqueness, distinctiveness, 

originality and functional/phylogenetic diversity. Biological Conservation 263: 109356. 

Peet, R.K. (1974) The measurement of species diversity. Annual Review of Ecology and Systematics 

5: 285–307. 

Podani, J. (2000) Introduction to the Exploration of Multivariate Biological Data. Backhuys, Leiden, 

NL. 

Rao, C.P. 1982. Diversity and similarity coefficients: a unified approach. Theoretical Population 

Biology 21: 24–43. 

Rao, C.R. (2010) Quadratic entropy and analysis of diversity. Sankhya 72: 70–80. 

Rényi, A. (1970) Probability theory. North-Holland Publishing, Amsterdam, NL. 

Ricotta, C. (2005) Through the jungle of biological diversity. Acta Biotheoretica 53: 29–38. 

Ricotta, C., Bacaro G., Maccherini S., Pavoine S. (2022) Functional imbalance not functional 

evenness is the third component of community structure. Ecological Indicators 140: 109035. 

Ricotta, C., Dalle Fratte, M., Cerabolini, B.E.L., Pavoine, S. (2025) Beyond mean trait distance: an 

integrated approach to functional distinctiveness. Ecological Indicators 181: 114477. 

Ricotta, C., de Bello, F., Moretti, M., Caccianiga, M., Cerabolini, B., Pavoine, S. (2016) Measuring 

the functional redundancy of biological communities: a quantitative guide, Methods in Ecology 

and Evolution 7: 1386-1395. 

Ricotta, C., Feoli, E. (2024) Hill numbers everywhere. Does it make ecological sense? Ecological 

Indicators 161: 111971. 

Ricotta, C., Kosman, E., Laroche, F., Pavoine, S. (2021) Beta redundancy for functional ecology. 

Methods in Ecology and Evolution 12: 1062–1069. 

Ricotta, C., Moretti, M. (2011) CWMand Rao’s quadratic diversity: a unified framework for 

functional ecology. Oecologia 167: 181–188. 

Ricotta, C., Pavoine, S. (2025) What do functional diversity, redundancy, rarity, and originality 

actually measure? A theoretical guide for ecologists and conservationists. Ecological Complexity 

61: 101116. 

Ricotta, C., Podani, J., Schmera, D., Bacaro, G., Maccherini, S., Pavoine, S. (2023). The ternary 

diagram of functional diversity. Methods in Ecology and Evolution 14: 1168–1174. 

Ricotta, C., Szeidl, L. (2006) Towards a unifying approach to diversity measures: Bridging the gap 

between the Shannon entropy and Rao’s quadratic index. Theoretical Population Biology 70: 237–

243. 

Roberts, D.W. (1986) Ordination on the basis of fuzzy set theory. Vegetatio 66: 123–143. 

Scheiner, S.M. (2019) A compilation of and typology for abundance-, phylogenetic- and functional-

based diversity metrics. bioRxiv. https: //doi.org/10.1101/530782. 

Schmera, D., Erös, T., Podani, J. (2009) A measure for assessing functional diversity in ecological 

communities. Aquatic Ecology 43: 157–167. 

Shannon, C. (1948) A mathematical theory of communication. Bell System Technical Journal 27: 

379–423. 

Sherwin, W.B., Jabot, F., Rush, R., Rossetto, M. (2006) Measurement of biological information with 

applications from genes to landscapes. Molecular Ecology 15: 2857– 2869. 

Shimatani, K. (2001) On the measurement of species diversity incorporating species differences. 

Oikos 93: 135–147. 

Simpson, E.H. (1949) Measurement of diversity. Nature 163: 688. 

https://doi.org/10.1101/530782


16 
 

Solow, A.R., Polasky, S. (1994) Measuring biological diversity. Environmental and Ecological 

Statistics 1: 95–103. 

Villéger, S., Mason, N.W.H., Mouillot, D. (2008) New multidimensional functional diversity indices 

for a multifaceted framework in functional ecology. Ecology 89: 2290–22301. 

Violle, C., Thuiller, W., Mouquet, N., Munoz, F., Kraft, N.J.B., Cadotte, M.W., Livingstone, S.W., 

Mouillot, D. (2017) Functional rarity: The ecology of outliers. Trends in Ecology and Evolution 

32: 356–367. 

Walker, B., Kinzig, A., Langridge, J. (1999) Plant attribute diversity, resilience, and ecosystem 

function: the nature and significance of dominant and minor species. Ecosystems 2: 95–113. 

Yager, R.R. (1982) Measuring tranquility and anxiety in decision making: An application of fuzzy 

sets. International Journal of General Systems 8: 139–146. 

Yager, R.R. (1992) Default knowledge and measures of specificity. Information Sciences 61: 1–44. 

Zadeh, L. (1965) Fuzzy sets. Information and Control 8: 338–353. 

 

 

 
Funding information 

CR was supported by a research grant from the University of Rome ‘La Sapienza’ 

(RM124190C044444C). 

 

 
CRediT authorship contribution statement 

CR: Conceptualization, Methodology, Formal analysis, Writing – original draft; AC: Methodology, 

Formal analysis, Writing – review & editing; SP: Methodology, Formal analysis, Writing – review & 

editing; DC: Methodology, Formal analysis, Writing – review & editing. 

 

 
Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships 

that could have appeared to influence the work reported in this paper. 

 



17 
 

 

 

 

 
 

 

 

Figure 1. Schematic representation of the different models of uncertainty-based diversity discussed in 

this paper. Left – Classical set theory: the community is represented as a crisp set containing a finite 

collection of distinct elements (species). Here, the emphasis is on the number of distinct species, 

regardless of their abundances. Center – Probabilistic uncertainty: the community is represented as a 

set of crisp subsets (species), each containing a certain number of individuals. Each individual cannot 

simultaneously belong to two or more species. Therefore, species are considered mutually exclusive. 

Right – Fuzzy uncertainty: the community is represented as a set of partially overlapping fuzzy subsets 

(species). Unlike the probabilistic case, individuals may simultaneously belong to several species to 

different degrees according to their functional (or taxonomic) similarity. 
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Appendix 1. Quantifying the specificity of fuzzy species 

 

Yager (1982) extended the concept of (non)specificity from crisp sets to fuzzy sets to quantify the 

degree to which a fuzzy set contains only one element (Klir and Wierman 1999). 

Let C be a crisp set composed of K elements, and let A be a fuzzy subset on C where the value ( )kA  

(hereafter denoted simply as k ) represents the membership degree of element  ( 1,2,..., )k k K=  in 

A with 0 1k  . That is to say, k  expresses the degree of compatibility of the k-th element with 

the concept represented by the fuzzy set A. For simplicity, we assume that the values of k  are ranked 

such that 1k k  + . 

According to Yager (1982), for a normal fuzzy set A containing K discrete elements, a measure of 

specificity Sp in the range [0,1]  should satisfy the following basic requirements (recall that a fuzzy 

set is said to be normal if it contains at least one element with a membership degree 1k = ): 

 

R1. 1ASp =  if there exists one and only one element k with membership degree 1k =  and 0h =  

for all other elements h ( )h k  

 

R2. ASp  is minimum if 1k =  for all k K  

 

R3. For a normal fuzzy set with at least one element 1k = , any increase in the membership degree 

of the h-th element ( )h k decreases (or at least does not increase) the specificity of A 

 

Based on requirements R1–R3, Yager (1992) introduced a family of so-called ‘linear’ specificity 

measures, expressed as: 

 

2

K

A k k h h

h

Sp w w 
=

=  −                          (1) 

 

where the weights w satisfy the following conditions (Yager 1992): 

 

C1. 1kw =  

 

C2. 0 1hw  , ( )h k  

 

C3. 
2

1
K

h

h

w
=

  

 

C4. 1h hw w +  for a ranked distribution 1h h  +  

 

According to Yager (1992), the idea behind condition C4 is that the weights are not associated with 

particular elements but rather with ordered positions. 

In the specific case of a biological community, let C be a crisp set (the community) composed of K 

individuals, and let iK  be the number of individuals belonging to species  ( 1,2,..., )i i N=  such that 

i ip K K=  denotes the relative abundance of the individuals of species i. As in the main text, we 
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assume that the membership degree of the individuals of species j to the normal fuzzy set defined by 

species i corresponds to the functional similarity between i and j. 

If the membership degrees to species i of the K individuals are ranked such that 1ik ih ihs s s +   with 

h k  and 1iks = , and the weights  ( 2,..., )hw h K=  are all equal to 1 ( 1)K − , according to Eq. 1, the 

specificity of the fuzzy species i can be expressed as: 

 

2 2

1
1

1

K K

i k ik h ih ih

h h

Sp w s w s s
K= =

=  −  = −
−

                   (2) 

 

which is simply the difference between the maximum membership degree to species i of the K 

individuals in C, and the mean of the membership values of the remaining 1K −  individuals. 

By grouping individuals by species, Eq. 2 can be rewritten as: 

 

2

1
1

1 1

N
ji

i ii ij

j

KK
Sp s s

K K=

 −
= −  +  

− − 
                    (3) 

 

If the abundances across species are held constant, for sufficiently large K we have 

( 1) ( 1)i iK K K K− −   and ( 1)j jK K K K−  , and hence: 

 

1 1

1 1 1
N N

j

i ij j ij

j j

K
Sp s p s

K


= =

 −  = −  = −                   (4) 

 

Thus recovering the formula of absolute specificity for continuous abundance values given in Eq. 15 

of the main text. 

According to this classical way of looking at specificity, the functional distinctiveness of focal species 

i increases both with decreasing abundance of the individuals of species i, and with increasing 

functional similarity between the focal species and the other species in the community. 

However, beyond this conventional definition of specificity, the data structure of a fuzzy species leads 

us to interpret the specificity of species i as the degree to which the species contains only one type of 

element. 

To satisfy this aspect of specificity, it is convenient to define the fuzzy set over the N species in the 

community rather than over the K individuals. In this case, Yager’s requirements R1–R3 for a normal 

fuzzy species with 1iis = become: 

 

R1' . For a community composed of N species, the specificity of focal species i is maximum 
*( 1)iSp =  if 0ijs =  for all species j ( )j i . 

 

R2' . 
*

iSp  is minimum if 1ijs =  for all species j ( )j i . 

 

R3' . Any increase in the membership degree of species j to the focal species i ( )j i  decreases (or 

at least does not increase) the specificity of i. 

 

By relaxing condition C4 and associating the weights w with the species in C rather than with ordered 

positions, the linear measure in Eq. 1 can be expressed over the N species as: 
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*

2 2 2

1
1 1

N N N
j j

i i ii j ij ij ij

j j ji i

p p
Sp w s w s s d

p p= = =

=  −  = −  = 
− −

               (5) 

 

where 1iw =  and (1 )j j iw p p= − . In this case, the weights 
jw  represent the scaled relative 

abundances of species j when the focal species i is not considered. 

It can be easily shown that Eq. 5 can be expressed in terms of functional rarity as (Pavoine and Ricotta 

2021; Ricotta and Pavoine 2025): 

 

* 1

1

i
i

i

Sp
p

−
=

−
                           (6) 

 

By relaxing condition C1, we can further generalize Eq. 6 to define a general class of relative 

specificity measures which recovers Eq. (18) of the main text: 

 

( )
( )

1* ( )

( )

N

j ijj i
i

i ii i

w s
Sp

w s p

  

 

=


= =



                     (7) 

 

with i iw p=  and j jw p= . 

Note that, although Eq. 5-7 do not comply with conditions C1 and C4, they still conform to the 

conditions R1' R3'−  required for relative measures of specificity. 
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