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Abstract

Effective biodiversity monitoring is fundamental for evaluating conservation status and
detecting population declines, yet traditional observer-based monitoring (OBM) is often
constrained by high costs and logistical challenges resulting in limited spatial and
temporal coverage. Passive acoustic monitoring (PAM) offers a scalable alternative, but
its efficacy for frog biodiversity assessments remains largely unexplored. In this study,
we compared the effectiveness of PAM (combined with BirdNET embeddings) to OBM
for assessing frog biodiversity across six open eucalypt woodland sites in eastern
Australia. Using embeddings from the BirdNET deep-learning model, we efficiently
analysed over 300,000 hours of continuous audio data, detecting 34 frog species. While
OBM proved more effective over short-term (28-day) periods due to visual detections,
long-term PAM significantly outperformed OBM in total species richness, detecting 48%
more species overall. We found that frog activity was highly seasonal, with species
accumulating fastest during spring and summer. Financially, PAM was far more cost-
effective for long-term monitoring, costing approximately 5 times less than OBM by the
end of the study. However, we found that monitoring methods were complementary
rather than interchangeable. Consequently, we propose a hybrid monitoring design with
short-term targeted OBM surveys to capture the species and individuals that are
difficult to detect acoustically, and long-term PAM deployment to capture the full
breadth of acoustic diversity. This integrated approach maximises the strength of both
monitoring methods, ensuring comprehensive and cost-effective frog biodiversity

assessments.
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Introduction

Effective biodiversity monitoring is fundamental for evaluating the conservation status
of species, assessing the success of management action, and detecting potential
future population and species declines (Scheele et al., 2019; Schmeller et al., 2015).
Traditionally, biodiversity is surveyed using a variety of field-based methods (e.g., Eyre
et al., 2018; Heyer et al., 1994; Lindenmayer et al., 2014; Magurran & McGill, 2010;
Thompson et al., 1998) which have inherent limitations. Observer-based monitoring
(OBM) requires substantial financial, time, and labour investments, and can be
ineffective for rare or cryptic species (Gibb et al., 2018). As a result, OBM is often
limited in its spatial and temporal coverage, potentially leaving critical gaps in our

understanding of ecosystem health.

Remote sensing has been used across various groups of terrestrial vertebrates to
overcome some of these limitations (e.g, Pimm et al., 2015). Among these, passive
acoustic monitoring (PAM) has proven particularly effective for surveying vocalising
species (Hoefer et al., 2023; Sugai et al., 2019). By deploying autonomous recording
units (ARUs), data can be collected continuously over long durations and broad spatial
scales, substantially reducing time investment, especially for long-term monitoring
(Hoefer et al., 2023, 2025; Sugai et al., 2019). Despite its advantages, the application of
PAM has historically been hindered by the difficulty of processing vast volumes of audio
data, and long-term continuous PAM data is lacking and available from only a few large-
scale sensor networks (Cretois et al., 2026; Darras et al., 2024; Roe et al., 2021; Ross et

al., 2018). Most acoustic monitoring studies have relied on manual analysis, restricting
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recording schedules to short snapshots of expected activity (Hoefer et al., 2023), which
risks missing species that vocalise at unexpected times or seasons (Callaghan &
Rowley, 2020; Taylor et al., 2017), or with delayed responses following environmental
triggers (Brodie et al., 2021). Many species could be declining so rapidly that they may
disappear completely before such declines are detected (Skerratt et al., 2007),
emphasising the urgent need for the continuous, long-term monitoring. Recent
advances in automated acoustic analysis, specifically deep learning models and
Convolutional Neural Networks (CNNs), now enable the efficient processing of long-
term continuous datasets (Ghani et al., 2023; Kahl et al., 2021; Priyadarshani et al.,
2018). BirdNET is a deep learning model that has shown promise in detecting various
species (Bota et al., 2023; Doohan et al., 2026; Sethi et al., 2024; Sossover et al., 2023;
Wood et al., 2022, 2023). Despite being trained primarily for birds, the use of BirdNET
embeddings allows for the detection of species from a single example call, offering
potential for broader biodiversity assessments (Allen-Ankins et al., 2025; Ghani et al.,

2023; Hoefer et al., 2025).

Frogs represent an ideal model system to evaluate PAM as an effective long-term
monitoring method. They are among the most threatened groups of terrestrial
vertebrates and have experienced rapid declines globally (Cox et al., 2022; Luedtke et
al., 2023), driven by habitat loss, climate change, and disease (Alford & Richards, 1999;
Collins, 2010; Sodhi et al., 2008). Because nearly all frogs produce species-specific
vocalisations for reproduction, they are well suited for acoustic surveys. While PAM has
proven effective for detecting various frog species in previous studies (Acevedo &

Villanueva-Rivera, 2006; Barnes & Quinn, 2023; Gunzburger, 2007; Madalozzo et al.,
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2017; Melo et al., 2021), the potential of leveraging advanced deep learning tools like

BirdNET for frog biodiversity assessments remains largely unexplored.

In this study, we compared the performance of PAM combined with automated
detection using BirdNET embeddings to in-field observer-based monitoring efforts for
assessing frog biodiversity. We compared the performance between the methods for: a)
species richness, b) community composition, and c) survey effort and d) cost.

Additionally, we investigated a seasonal sampling bias for PAM.

Material And Methods

Study Sites

This study was conducted at six sites within open eucalypt woodlands in eastern
Australia (Fig. 1A), situated within national parks (Rinyirru, Undara, Duval) or on private
properties with no public access (Wambiana, Mourachan, Tarcutta). These are the
same sites and survey plots described in Hoefer et al. (2025). At each site, we
established four 1-ha survey plots, each associated with an acoustic recording unit
(ARU; Fig. 1B). Observer-based monitoring (OBM) and passive acoustic monitoring
(PAM) were conducted simultaneously within each plot for seven days per survey trip.

ARUs recorded audio continuously during and between survey trips.

Observer-based Monitoring (OBM)

We conducted observer-based surveys to detect frogs as part of the overall observer-
based monitoring efforts to detect all terrestrial vertebrates (mammals: Hoefer et al.,

2025, reptiles: Hoefer et al., 2024, birds: Doohan et al., 2026), therefore, survey periods
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were identical. Briefly, each site was surveyed for seven-day periods up to two times a
year, for two years. Some sites were intermittently inaccessible, so the exact survey
effort per site varied (Table 1). To sample the frog community, we employed five OBM
methods within each plot (Fig. 1C): i) pitfall traps, ii) funnel traps, iii) arboreal cover
boards, iv) nocturnal active area searches (spotlighting), and v) incidental encounters
(detections of animals while not actively searching or checking traps). Protocols for
trapping and active searches followed those described in Hoefer et al. (2024, 2025).
Frog detections recorded in this study represent observations rather than individual
counts, as individuals were not permanently marked, thus we were unable to

distinguish between different individuals across multiple encounters.

Passive Acoustic Monitoring (PAM)

We conducted passive acoustic monitoring following the protocol described in Hoefer
et al. (2025). We used Frontier Labs Solar BARs equipped with external omnidirectional
microphones (Primo EM172), recording continuously in mono at 16-bit and a 22.05 kHz

sampling rate.

Acoustic Analysis

To detect frog vocalisations, we generated feature embeddings for the target species
and all available audio data using the BirdNET-Analyzer (Kahl et al., 2021). We selected
115 example calls representing 50 Australian frog species with predicted ranges
overlapping the study sites (Cutajar et al., 2022; Table S1). We compared OBM results

against two acoustic datasets, audio data collected during only during the 7-day survey
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periods (12,303 hours) and all available audio data (317,410 hours). Hereafter, we will
use the term “short-term PAM” to refer to PAM using audio data matching only the
survey period, and “long-term PAM” for PAM using all available audio data. We
calculated Euclidean distances between the feature embeddings of the example calls
and the unknown audio dataset and extracted the top detections (lowest Euclidean
distances) for each example call per day at each survey site. These potential detections
(251,315 total) were aurally and visually verified to species level. Consistent with
Hoefer et al. (2025) in mammals, lower Euclidean distances were highly predictive of
true positives in the target frog example calls (Fig. S1), justifying the use of the lowest

daily distance to confirm species presence.

Statistical Analysis

All statistical analyses were conducted in the R statistical environment (R Core Team,
2023; v.4.5). Our reproducible code and the data for our analyses can be accessed

here: https://doi.org/10.5281/zenodo.18490757. We excluded data from survey plots

where acoustic recorders collected less than 70% of the total possible amount of audio
data, due to battery or SD card malfunctioning (Table S2). For species richness, we
explored the relationship between the total number of species per survey plot for each
assessment method using hierarchical Bayesian models with a Poisson distribution
and weakly informative priors in the brms package (Burkner, 2017). We compared
several candidate models and selected the final model based on LOO information
criterion values (Vehtari et al., 2017) and validated the best model via DHARMa
residuals (Hartig, 2022). Finally, we used post-hoc pairwise comparisons to make

specific inferences on the value of the different assessment methods for detecting high
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frog species richness. To gain information on the similarity of the frog community
sampled by each assessment method, we performed nonmetric multidimensional
scaling (nMDS) based on Jaccard (presence-absence) dissimilarities and conducted
pairwise permutational analysis of variance using the packages vegan (Oksanen et al.,
2022) and pairwiseAdonis (Martinez Arbizu, 2020). Each unique combination of site and
plot was treated as a separate data point in the analysis, with assessment method as
the main factor of interest. To evaluate the sampling effort necessary at each site, we
constructed species accumulation curves for the 28-day survey period and all available
audio recording days, using the iINEXT package (Hsieh et al., 2016). Additionally, we
investigated a seasonal sampling bias in species accumulation by splitting the audio
data and species detections into four seasons: Summer (Dec-Mar), Autumn (Mar-Jun),

Winter (Jun-Sep), and Spring (Sep-Dec).

Cost Analysis

To evaluate the financial efficiency of each method, we calculated the cumulative costs
(AUD) associated with OBM and PAM over the duration of the study. Costs included the
purchase cost of all necessary equipment (e.g., ARUs, SD cards, drift fences, traps) and
operational costs (accommodation, transportation, food, observer salaries during
deployment, active surveys, and data processing and analysis). We tracked these costs
across the four survey periods to quantify how financial investment for each method

accumulated over time.
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Results

Over the course of this study, we detected and identified 35 species of Australian frogs
across eight genera and four families (Table S3). Passive acoustic monitoring using all
available audio data (long-term PAM) detected the highest number of species across all
study sites, (34 detected out of 50 potential species based on predicted ranges from
the Australian Frog Atlas; Cutajar et al. 2022) and recorded 13,577 observations. In
comparison, OBM detected 23 species (2,834 observations), while PAM using audio
recordings matching only the survey period (short-term PAM) detected 21 species (540
observations). Within OBM methods, spotlighting recorded the highest numbers of
species (19) and observations (2155), followed by pitfall traps (18 species, 419
observations), incidental encounters (17 species, 263 observations), and funnel traps
(16 species, 210 observations). Arboreal cover boards were the least effective,
detecting only two species, Litoria rubella (two observations), and Platyplectrum

ornatum (one observation; Table S3; Fig. S2)

Speciesrichness

The maximum total species richness varied among sites but followed a latitudinal trend
with anincrease in the number of detected frog species from South to North (Table S4).
For the matching survey period (28 days), OBM detected significantly more species on
average than PAM (1.7x more species, 95% highest density interval [HDI]: 1.26-2.20; Fig.
2). OBM also recorded higher total numbers of frog species compared to short-term
PAM at four sites (Tarcutta, Mourachan, Wambiana, Rinyirru), whereas short-term PAM

detected more species than OBM at two sites (Duval, Undara; Table S4). When all
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available audio data was considered, PAM detected significantly more species on
average than OBM (1.65x more species, 95% HDI: 1.33-2.05) and short-term PAM (2.8x
more species, 95% HDI: 2.12-3.58). Long-term PAM recorded the highest species
richness at all six survey sites, which was also the highest total species richness (i.e.,
total richness of all methods combined) at five sites, and only at Rinyirru OBM detected
three species not found via PAM (Limnodynastes terraereginae: five observations,
Litoria inermis: one observation, and Platyplectrum ornatum: 116 observations; Table
S4). Across all sites, long-term PAM detected 12 unique frog species not detected by
OBM, three of which were also detected in short-term PAM, while OBM detected one
species (Limnodynastes terraereginae) not recorded by PAM at any site (Table S3). This
species was exclusively detected in pitfall traps (two observations) and funnel traps

(three observations) at Rinyirru.

Community composition

Non-metric multidimensional scaling (NMDS) at the plot level indicated broad overlap
in the species assemblages detected by all methods (Fig. 3A). A global PERMANOVA
stratified by site indicated a significant effect of assessment method on community
composition (Jaccard, R?=0.06, P < 0.001). Pairwise comparisons with Holm’s
correction yielded significant differences between OBM and short-term PAM (R? =
0.035, P,4 = 0.003), OBM and long-term PAM (R? = 0.056, P, = 0.003), and short-term

PAM and long-term PAM (R? = 0.056, P.q = 0.003).

Pairwise Jaccard dissimilarity analysis showed an average dissimilarity of 0.55 between

OBM and short-term PAM at the plot level (Fig. 3B), which was higher than the average
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spatial turnover between plots within a site (0.45). Methodological dissimilarity varied
by site, ranging from an average of 0.30 at Tarcutta to > 0.65 at Undara and Rinyirru (Fig.

3C; Fig. S3).

Survey effort

Over our 28-day survey period, species accumulation curves for the total number of
species reached an asymptote at only two sites (PAM at Tarcutta after 11 days and OBM
at Duval after 13 days; Fig. 4). For this short-term period, OBM accumulated species
more rapidly than PAM at all sites. Neither OBM nor PAM alone detected all species
present at four of the sites within 28 days. Only at the two southernmost sites did a

single method detect all species: PAM at Duval and OBM at Tarcutta.

Using all available audio data, PAM reached a maximum frog species richness at an
average of 12 species across all sites, ranging from six at Tarcutta to 16 at Rinyirru
(Table 2). To reach this maximum richness required on average 447 days of PAM,
ranging from 386 days at Undara to 528 days at Duval. Short-term PAM (28 days),
captured only 66% of the maximum total species richness on average, with a variability
of 25% across sites. Extending sampling to 90 days increased the average proportion of
the species detected to 84%, reducing variability to 12% across sites. After 180 days,
the average proportion reached 93% (maximum variability = 8%), and following a full
year (365 days) of recording, PAM detected 98% of the maximum total species richness

with 4% variability between sites.
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Species accumulation curves of long-term PAM did not approach an asymptote at any
site (Fig. 5). The number of days needed for PAM to match the frog species richness
obtained by OBM varied at each site but took, on average, 93 days (Tarcutta: 387 days;
Duval: 10 days; Mourachan: 40 days; Wambiana: 19 days; Undara: 35 days; Rinyirru: 68
days; Table S5). When splitting the audio data and species detections into four
seasons, summer and spring sampling were the most effective (Fig. 5). Across all sites,
summer sampling accumulated species the quickest and detected the most species
(33), followed by spring (29), autumn (26) and winter (21). However, some species were
only detected in one season at some sites. Six species were detected only during
summer (Mourachan: Cyclorana verrucosa; Undara: Cyclorana brevipes,
Limnodynastes grayi; Rinyirru: Cyclorana brevipes, Litoria latopalmata, Litoria pallida),
and two species only in spring (Duval: Limnodynastes dumerilii dumerilii; Mourachan:
Limnodynastes grayi), but no species was exclusively detected during winter or autumn

sampling.

Financial cost

The cumulative financial investment differed substantially between OBM and PAM over
the duration of the study (Fig. 6). PAM required an initial investment of approximately
AUD 35,000, nearly three times that of OBM (~AUD 12,000), due to the purchase of
autonomous recording units, batteries, SD cards, and deployment costs. However,
operational costs for OBM increased rapidly during each survey period due to fieldwork
expenses (e.g., accommodation, travel, field gear, and staff salary), surpassing the total
cost of PAM during the first survey trip in May 2021. In contrast, PAM costs increased

only 1.5-fold over the course of this study, to cover ongoing maintenance, data



268  processing, storage, and analysis. By the end of the study in December 2022, the total
269 investment for OBM reached approximately AUD 250,000 (a 21-fold increase), roughly

270  five times the final cost of PAM (~AUD 50,000).

271 Discussion

272  We compared the performance of passive acoustic monitoring (PAM) to observer-

273  based monitoring (OBM) for frog biodiversity assessments across a range of open

274  eucalypt woodlands in Eastern Australia. Using feature embeddings from the BirdNET
275  deep-learning model, we analysed over 300,000 hours of continuous audio recordings
276  from six sites and detected 34 species of frogs. This method required only a single

277  example call per species, without the need to build individual recognisers which

278 demand a high time investment and in-depth knowledge (Priyadarshani et al., 2018).
279  Across all sites, we detected the most frog species (34) using long-term PAM (i.e., PAM
280  using all available audio data) which was 48% higher than using OBM (23 species) and
281  62% higher than via short-term PAM (i.e., PAM using the audio time period matching the
282  survey period only: 21 species).

283
284  Short-term vs long-term detection dynamics

285  During the 28-day survey period, OBM proved more effective than PAM by accumulating
286  species more quickly and recording the highest richness at most sites. The ability of
287 OBM to detect species both visually and aurally, as opposed to aural detection only via
288  PAM, lead to generally higher species richness observed with OBM in the short-term.
289  Visual detections have been noted as a significant factor in the superior performance of

290 OBM for detecting some species of birds (Alquezar & Machado, 2015; Haselmayer &
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Quinn, 2000; Hutto & Stutzman, 2009; Vold et al., 2017). However, OBM alone did not
detect all species present, suggesting that a combination of OBM and PAM may be the
most comprehensive strategy for short-term monitoring of frogs. However, when
extending the recording period to include all available audio data, PAM significantly
outperformed OBM and short-term PAM in terms of species richness. Similar findings
have been reported in studies on birds, where long-term PAM was more effective than

short-term monitoring (Klingbeil & Willig, 2015; Kutaga & Budka, 2019).

Technological feasibility and sampling completeness

Utilising PAM for extended monitoring periods resulted in the highest species richness
at all sites, indicating that this is the most effective approach for quantifying overall frog
biodiversity. In the short-term (28 days), PAM detected only 66% of the total possible
frog species richness, whereas after 365 days, this increased to 98%, demonstrating
the substantial benefits of long-term PAM. Reaching maximum species richness
required substantial sampling effort (average 447 days), highlighting that short-term
surveys likely underestimate biodiversity. With recent technological advancements, it is
feasible to collect and store long-term continuous audio data (Aide et al., 2013;
Rhinehart et al., 2020), and using deep-learning models like BirdNET allows for efficient
analysis of these extensive acoustic datasets, further enhancing the practicality and

effectiveness of long-term PAM.

Cost-efficiency and scalability
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Beyond its ecological effectiveness, PAM demonstrated a clear advantage in temporal
scalability and cost-efficiency. While OBM benefited from lower initial startup costs,
the cumulative expense of personnel and travel resulted in a significantly higher
financial investment over time. By the end of the study, the total cost of OBM was
approximately five times greater than that of PAM, reflecting a 21-fold cost increase for
OBM compared to only a 1.5-fold increase for PAM. This aligns with findings from
monitoring of cryptic birds (Williams et al., 2018), which similarly demonstrated that
extending PAM duration does not proportionally increase costs relative to site visits.
While total costs will vary depending on specific project requirements such as site
accessibility, maintenance schedules, and personnel renumeration, PAM represents
the most financially viable strategy for the continuous monitoring required to detect

rare, cryptic, or weather-dependent species.

Seasonality and sampling effort

Frogs primarily vocalise for reproductive purposes (Duellman & Trueb, 1994; Gerhardt,
1994) and since breeding is closely associated with rainfall, increased precipitation
typically triggers heightened calling activity (Brodie et al., 2025; Hauselberger & Alford,
2005; Xie et al., 2017). Thus, restricting monitoring to short periods of time may
increase the risk of missing rainfall events that trigger breeding calls. In our study,
restricting the acoustic monitoring period for PAM to only 28 days resulted in missing 13
species of frogs that we were detected in long-term PAM. Similarly, recording
schedules that capture only parts of the day or night may fail to detect unexpected

calling activity from some species or individuals (Callaghan & Rowley, 2020).
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We found that species detection was most rapid and species richness highest during
spring and summer, which aligns with periods of more frequent and intense rainfall.
Notably, six species were only detected in summer and two only in spring, while no
species were unique to autumn or winter. However, as opportunistic calling can occur
during sporadic rainfall in cooler months, we recommend continuous 365-day sampling
to capture those stochastic events. Where year-round monitoring is constrained,
deploying PAM in early spring offers the best compromise to capture the rapid

accumulation of species associated with increasing seasonal rainfall.

Community composition and method complementarity

While global analysis indicated a broad overlap in species assemblages, fine-scale
analysis revealed that PAM and OBM function as complementary rather than
interchangeable methods. We found a significant dissimilarity between methods
employed at the same location, which was driven by systematic detection biases
inherent to each survey approach. Previous studies have shown that OBM and PAM can
detect different species, and, in particular, visual detections represent an advantage of
OBM (Darras et al., 2019). However, since vocalisation is essential for successful
reproduction in most frog species, frogs should eventually vocalise, providing the
opportunity for detection via PAM. In some cases, frogs with short or quiet calls may
remain undetected because their calls could be masked by other species, or
environmental noises such as rain, wind, or even anthropogenic sounds (Luther &
Gentry, 2013; Pijanowski et al., 2011). In fact, OBM proved essential for detecting three
species (Limnodynastes terraereginae, Litoria inermis, Platyplectrum ornatum) at

Rinyirru that were physically present and were observed in traps and visually during
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active searches but remained acoustically unavailable. Possibly, the noisy, insect-
dominated soundscape at this site reduced the probability of acoustically detecting
these species, highlighting the challenge of PAM transferability across different
habitats, as some environments may pose greater difficulties for species detection (Hill

et al., 2013; Kutaga & Budka, 2019).

However, acoustic masking is not the only potential cause for these detection failures.
Unlike mobile observers who can actively search diverse microhabitats, ARUs are
stationary and limited by their detection radius (Darras et al., 2016; Yip et al., 2017).
Consequently, species breeding in ephemeral pools or temporary water bodies just
outside the recorder’s range may be missed by PAM but be detected by observers
covering a broader area. This highlights that recorder placement and spatial sampling
design are critical considerations when designing acoustic monitoring programs

(Browning et al., 2017; Sugai et al., 2020).

Conversely, PAM was more effective for detecting cryptic species easily missed during
in-person surveys, or difficult to identify morphologically. PAM presented an advantage
over OBM for differentiating among species within the genera Crinia and Uperoleia,
which were often impossible to identify visually. Additionally, PAM provided valuable
information on seasonal activity in frogs, helping to identify optimal periods for effective
monitoring. While in-person survey efforts remain necessary for non-vocal species or
those vocalising outside recorder sampling rates (e.g., Hoefer et al., 2025), detection
rates for vocal species could be further improved by refining the embeddings search

strategy. Using a larger, more diverse set of example calls could better capture regional
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call variations, while verifying a greater number of high-scoring detections, rather than
just the single top hit, could increase the likelihood of detecting rare, quiet, or
acoustically masked species. Ultimately, the development of more robust deep-
learning recognisers, trained on diverse call examples from various geographic regions,
could significantly enhance the detection of difficult-to-detect species in complex

soundscapes.

Conclusion

This study demonstrated that passive acoustic monitoring (PAM) combined with
BirdNET feature embeddings was highly effective for assessing frog biodiversity in open
eucalypt woodlands across Eastern Australia. By analysing over 300,000 hours of
continuous audio recordings with minimal training data, we successfully detected 34
frog species. Our results highlight that neither PAM nor OBM is sufficient to detect every
species in isolation. While long-term PAM was superior for generating complete species
inventories and capturing opportunistic breeders during stochastic rainfall events, it is
limited to detecting vocalising males. OBM remains essential for capturing non-vocal
demographics (females and juveniles) and species masked by complex soundscapes.
While the most useful and effective OBM method will depend on the target region,
fauna, and budget, spotlighting emerged as the most efficient complement to PAM in
our study, offering a high number of detections for both arboreal and ground-dwelling
species at a fraction of the cost of trapping. Overall, integrating long-term PAM with
targeted OBM methods offers the most comprehensive approach to frog biodiversity
monitoring, enhancing our understanding of ecosystems and supporting effective

conservation practices.
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Tables

Table 1. A summary of survey durations across six study sites, including total number of days for field surveys (days x number of plots

per site), as well as the number of days of acoustic recordings during the survey period and for all available audio data. The total

number of days between sites differed due to inaccessibility because of weather and battery or SD card malfunctioning.

Site First survey Second survey Third survey Fourth survey Totalnumber  Total acoustic recordings Total acoustic recordings
(2021) (2021) (2022) (2022) of survey days (survey period) in days (all audio) in days
Rinyirru 14-21Jun 8-150ct 7-14 Aug 23-300ct 112 98 1297
Undara 3-10Jun 28 Sep -5 Oct 8- 15 May 13-200ct 110 84 1660
Wambiana 5-12Jul 10-17 Nov 12-19Jun 28 Sep -5 Oct 112 97 3280
Mourachan 9-16 May NA 19-26Jun 2-9Nov 84 60 1956
Duval 18 -25Apr NA 28 Apr -5 May 12-19 Nov 70 65 2122
Tarcutta 29 Apr -6 May 18-250ct 8 -15 May 22 -29 Nov 112 109 2910




674

675

676

677

678

Table 2. Maximum total species richness, number of days to reach the maximum total
species richness, the percentage of total richness achieved after 28 days, 90 days, 180
days, and 365 days of passive acoustic monitoring (PAM) of frogs at each survey site, as

well as the average value across all sites.

Site PAM (maximum Days to max PAM proportion of max richness

total richness) totalrichness

28 days 90 days 180 days 365 days

Rinyirru 16 476 0.60 0.78 0.88 0.96
Undara 15 386 0.54 0.82 0.95 1

Wambiana 12 405 0.67 0.88 0.96 0.99
Mourachan 13 499 0.64 0.83 0.93 0.99
Duval 10 528 0.74 0.85 0.92 0.98
Tarcutta 6 387 0.79 0.90 0.95 0.99
Average (all sites) 12 447 0.66 0.84 0.93 0.98
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Figure 1. lllustration of (A) the six study sites throughout eastern Australia, (B) the

acoustic design layout for each site and, (C) a summary of the survey methods used at

each of the four survey plots (1 ha area each) per site to target frogs (adapted from

(Hoefer et al., 2024). At each site, four Autonomous Recording Units (ARUs) were

installed in similar habitat types, with two recorders placed within 50 m of a body of

water (ARU Wet - blue) and two recorders placed more than 500 m away from any water

source (ARU Dry — green). Abbreviations used: PT = Pitfall Trap, FT = Funnel Trap, ACB =

Arboreal Cover Board, ARU = Automated Recording Unit.
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Figure 2. Total species richness of frogs for each survey plot at each site detected by
each survey method: passive acoustic monitoring using all available audio data (green),
observer-based monitoring (orange), passive acoustic monitoring using only audio data
matching the survey period (blue). Points and error bars represent the mean £ 95%
confidence intervals. The average fractional difference and 95% Highest Density

Intervals (HDI) are shown above the points, indicating statistical significance.
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696

697  Figure 3. Community composition analysis comparing frog survey methods. (A) Non-
698  metric multidimensional scaling (NMDS) ordination of frog communities based on
699 Jaccard dissimilarity (presence-absence). Large points represent the centroids for each

700  method, shaded regions indicate 95% confidence ellipses, and small points represent
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individual survey plots. (B) Pairwise Jaccard dissimilarity values (1 = complete turnover,
0 =no turnover). Each point represents a single pairwise comparison: “Method Effect” =
different methods (OBM, short-term PAM, and long-term PAM) at the same plot; “Plot
Turnover” = different plots within the same site (using the same method); “Site
Turnover” = different sites (using the same method). (C) Site-specific breakdown of the
Jaccard dissimilarity between methods, showing the variation in method agreement
across the six study sites. Black points and error bars represent the mean £ 95%

confidence intervals.
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Figure 4. Species accumulation curves for frog communities at six survey sites for each
assessment method over up to 60 survey days (28 days of rarefaction [solid lines], 32
days of extrapolation [dotted lines]). The coloured lines represent the different
assessment methods: passive acoustic monitoring (blue), observer-based monitoring
(orange), and all methods combined (total richness [black]). Shaded areas around each
line corresponds to the 95% confidence intervals and dotted vertical lines mark the

cumulative effort after each survey.
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Figure 5. Species accumulation curves for frog communities at six survey sites for only
passive acoustic monitoring (PAM). The coloured lines represent different sampling
periods over the year: sampling only in spring (yellow), summer (red), autumn (purple),
winter (brown), and sampling all seasons (all available audio data [black]). Solid lines
represent rarefaction and dotted lines represent extrapolation. Shaded areas around

each line corresponds to the 95% confidence intervals.
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Figure 6. The rate of increase in total cost in Australian Dollar (AUD) for observer-based
monitoring (OBM - orange) and passive acoustic monitoring (PAM - green) over the
duration of this research. Costs included initial equipment purchases, deployment and
fieldwork expenses (accommodation, transportation, salary, food), and compensation
of staff for data analysis and validation. The grey bands represent the four survey

periods during this research.



