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Abstract 11 

EBective biodiversity monitoring is fundamental for evaluating conservation status and 12 

detecting population declines, yet traditional observer-based monitoring (OBM) is often 13 

constrained by high costs and logistical challenges resulting in limited spatial and 14 

temporal coverage. Passive acoustic monitoring (PAM) oBers a scalable alternative, but 15 

its eBicacy for frog biodiversity assessments remains largely unexplored. In this study, 16 

we compared the eBectiveness of PAM (combined with BirdNET embeddings) to OBM 17 

for assessing frog biodiversity across six open eucalypt woodland sites in eastern 18 

Australia. Using embeddings from the BirdNET deep-learning model, we eBiciently 19 

analysed over 300,000 hours of continuous audio data, detecting 34 frog species. While 20 

OBM proved more eBective over short-term (28-day) periods due to visual detections, 21 

long-term PAM significantly outperformed OBM in total species richness, detecting 48% 22 

more species overall. We found that frog activity was highly seasonal, with species 23 

accumulating fastest during spring and summer. Financially, PAM was far more cost-24 

eBective for long-term monitoring, costing approximately 5 times less than OBM by the 25 

end of the study. However, we found that monitoring methods were complementary 26 

rather than interchangeable. Consequently, we propose a hybrid monitoring design with 27 

short-term targeted OBM surveys to capture the species and individuals that are 28 

diBicult to detect acoustically, and long-term PAM deployment to capture the full 29 

breadth of acoustic diversity. This integrated approach maximises the strength of both 30 

monitoring methods, ensuring comprehensive and cost-eBective frog biodiversity 31 

assessments. 32 
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Introduction 36 

Effective biodiversity monitoring is fundamental for evaluating the conservation status 37 

of species, assessing the success of management action, and detecting potential 38 

future population and species declines (Scheele et al., 2019; Schmeller et al., 2015). 39 

Traditionally, biodiversity is surveyed using a variety of field-based methods (e.g., Eyre 40 

et al., 2018; Heyer et al., 1994; Lindenmayer et al., 2014; Magurran & McGill, 2010; 41 

Thompson et al., 1998) which have inherent limitations. Observer-based monitoring 42 

(OBM) requires substantial financial, time, and labour investments, and can be 43 

ineffective for rare or cryptic species (Gibb et al., 2018). As a result, OBM is often 44 

limited in its spatial and temporal coverage, potentially leaving critical gaps in our 45 

understanding of ecosystem health.  46 

 47 

Remote sensing has been used across various groups of terrestrial vertebrates to 48 

overcome some of these limitations (e.g, Pimm et al., 2015). Among these, passive 49 

acoustic monitoring (PAM) has proven particularly effective for surveying vocalising 50 

species (Hoefer et al., 2023; Sugai et al., 2019). By deploying autonomous recording 51 

units (ARUs), data can be collected continuously over long durations and broad spatial 52 

scales, substantially reducing time investment, especially for long-term monitoring 53 

(Hoefer et al., 2023, 2025; Sugai et al., 2019). Despite its advantages, the application of 54 

PAM has historically been hindered by the difficulty of processing vast volumes of audio 55 

data, and long-term continuous PAM data is lacking and available from only a few large-56 

scale sensor networks (Cretois et al., 2026; Darras et al., 2024; Roe et al., 2021; Ross et 57 

al., 2018). Most acoustic monitoring studies have relied on manual analysis, restricting 58 



 
 

recording schedules to short snapshots of expected activity (Hoefer et al., 2023), which 59 

risks missing species that vocalise at unexpected times or seasons (Callaghan & 60 

Rowley, 2020; Taylor et al., 2017), or with delayed responses following environmental 61 

triggers (Brodie et al., 2021). Many species could be declining so rapidly that they may 62 

disappear completely before such declines are detected (Skerratt et al., 2007), 63 

emphasising the urgent need for the continuous, long-term monitoring. Recent 64 

advances in automated acoustic analysis, specifically deep learning models and 65 

Convolutional Neural Networks (CNNs), now enable the efficient processing of long-66 

term continuous datasets (Ghani et al., 2023; Kahl et al., 2021; Priyadarshani et al., 67 

2018). BirdNET is a deep learning model that has shown promise in detecting various 68 

species (Bota et al., 2023; Doohan et al., 2026; Sethi et al., 2024; Sossover et al., 2023; 69 

Wood et al., 2022, 2023). Despite being trained primarily for birds, the use of BirdNET 70 

embeddings allows for the detection of species from a single example call, offering 71 

potential for broader biodiversity assessments (Allen-Ankins et al., 2025; Ghani et al., 72 

2023; Hoefer et al., 2025). 73 

 74 

Frogs represent an ideal model system to evaluate PAM as an effective long-term 75 

monitoring method. They are among the most threatened groups of terrestrial 76 

vertebrates and have experienced rapid declines globally (Cox et al., 2022; Luedtke et 77 

al., 2023), driven by habitat loss, climate change, and disease (Alford & Richards, 1999; 78 

Collins, 2010; Sodhi et al., 2008). Because nearly all frogs produce species-specific 79 

vocalisations for reproduction, they are well suited for acoustic surveys. While PAM has 80 

proven effective for detecting various frog species in previous studies (Acevedo & 81 

Villanueva-Rivera, 2006; Barnes & Quinn, 2023; Gunzburger, 2007; Madalozzo et al., 82 



 
 

2017; Melo et al., 2021), the potential of leveraging advanced deep learning tools like 83 

BirdNET for frog biodiversity assessments remains largely unexplored.  84 

 85 

In this study, we compared the performance of PAM combined with automated 86 

detection using BirdNET embeddings to in-field observer-based monitoring efforts for 87 

assessing frog biodiversity. We compared the performance between the methods for: a) 88 

species richness, b) community composition, and c) survey effort and d) cost. 89 

Additionally, we investigated a seasonal sampling bias for PAM. 90 

Material And Methods 91 

Study Sites 92 

This study was conducted at six sites within open eucalypt woodlands in eastern 93 

Australia (Fig. 1A), situated within national parks (Rinyirru, Undara, Duval) or on private 94 

properties with no public access (Wambiana, Mourachan, Tarcutta). These are the 95 

same sites and survey plots described in Hoefer et al. (2025). At each site, we 96 

established four 1-ha survey plots, each associated with an acoustic recording unit 97 

(ARU; Fig. 1B). Observer-based monitoring (OBM) and passive acoustic monitoring 98 

(PAM) were conducted simultaneously within each plot for seven days per survey trip. 99 

ARUs recorded audio continuously during and between survey trips. 100 

 101 

Observer-based Monitoring (OBM) 102 

We conducted observer-based surveys to detect frogs as part of the overall observer-103 

based monitoring efforts to detect all terrestrial vertebrates (mammals: Hoefer et al., 104 

2025, reptiles: Hoefer et al., 2024, birds: Doohan et al., 2026), therefore, survey periods 105 



 
 

were identical. Briefly, each site was surveyed for seven-day periods up to two times a 106 

year, for two years. Some sites were intermittently inaccessible, so the exact survey 107 

effort per site varied (Table 1). To sample the frog community, we employed five OBM 108 

methods within each plot (Fig. 1C): i) pitfall traps, ii) funnel traps, iii) arboreal cover 109 

boards, iv) nocturnal active area searches (spotlighting), and v) incidental encounters 110 

(detections of animals while not actively searching or checking traps). Protocols for 111 

trapping and active searches followed those described in Hoefer et al. (2024, 2025). 112 

Frog detections recorded in this study represent observations rather than individual 113 

counts, as individuals were not permanently marked, thus we were unable to 114 

distinguish between different individuals across multiple encounters. 115 

 116 

Passive Acoustic Monitoring (PAM) 117 

We conducted passive acoustic monitoring following the protocol described in Hoefer 118 

et al. (2025). We used Frontier Labs Solar BARs equipped with external omnidirectional 119 

microphones (Primo EM172), recording continuously in mono at 16-bit and a 22.05 kHz 120 

sampling rate. 121 

 122 

Acoustic Analysis 123 

To detect frog vocalisations, we generated feature embeddings for the target species 124 

and all available audio data using the BirdNET-Analyzer (Kahl et al., 2021). We selected 125 

115 example calls representing 50 Australian frog species with predicted ranges 126 

overlapping the study sites (Cutajar et al., 2022; Table S1). We compared OBM results 127 

against two acoustic datasets, audio data collected during only during the 7-day survey 128 



 
 

periods (12,303 hours) and all available audio data (317,410 hours). Hereafter, we will 129 

use the term “short-term PAM” to refer to PAM using audio data matching only the 130 

survey period, and “long-term PAM” for PAM using all available audio data. We 131 

calculated Euclidean distances between the feature embeddings of the example calls 132 

and the unknown audio dataset and extracted the top detections (lowest Euclidean 133 

distances) for each example call per day at each survey site. These potential detections 134 

(251,315 total) were aurally and visually verified to species level. Consistent with 135 

Hoefer et al. (2025) in mammals, lower Euclidean distances were highly predictive of 136 

true positives in the target frog example calls (Fig. S1), justifying the use of the lowest 137 

daily distance to confirm species presence.  138 

 139 

Statistical Analysis 140 

All statistical analyses were conducted in the R statistical environment (R Core Team, 141 

2023; v.4.5). Our reproducible code and the data for our analyses can be accessed 142 

here: https://doi.org/10.5281/zenodo.18490757. We excluded data from survey plots 143 

where acoustic recorders collected less than 70% of the total possible amount of audio 144 

data, due to battery or SD card malfunctioning (Table S2). For species richness, we 145 

explored the relationship between the total number of species per survey plot for each 146 

assessment method using hierarchical Bayesian models with a Poisson distribution 147 

and weakly informative priors in the brms package (Bürkner, 2017). We compared 148 

several candidate models and selected the final model based on LOO information 149 

criterion values (Vehtari et al., 2017) and validated the best model via DHARMa 150 

residuals (Hartig, 2022). Finally, we used post-hoc pairwise comparisons to make 151 

specific inferences on the value of the different assessment methods for detecting high 152 

https://doi.org/10.5281/zenodo.18490757


 
 

frog species richness. To gain information on the similarity of the frog community 153 

sampled by each assessment method, we performed nonmetric multidimensional 154 

scaling (nMDS) based on Jaccard (presence-absence) dissimilarities and conducted 155 

pairwise permutational analysis of variance using the packages vegan (Oksanen et al., 156 

2022) and pairwiseAdonis (Martinez Arbizu, 2020). Each unique combination of site and 157 

plot was treated as a separate data point in the analysis, with assessment method as 158 

the main factor of interest. To evaluate the sampling effort necessary at each site, we 159 

constructed species accumulation curves for the 28-day survey period and all available 160 

audio recording days, using the iNEXT package (Hsieh et al., 2016). Additionally, we 161 

investigated a seasonal sampling bias in species accumulation by splitting the audio 162 

data and species detections into four seasons: Summer (Dec-Mar), Autumn (Mar-Jun), 163 

Winter (Jun-Sep), and Spring (Sep-Dec). 164 

 165 

Cost Analysis 166 

To evaluate the financial efficiency of each method, we calculated the cumulative costs 167 

(AUD) associated with OBM and PAM over the duration of the study. Costs included the 168 

purchase cost of all necessary equipment (e.g., ARUs, SD cards, drift fences, traps) and 169 

operational costs (accommodation, transportation, food, observer salaries during 170 

deployment, active surveys, and data processing and analysis). We tracked these costs 171 

across the four survey periods to quantify how financial investment for each method 172 

accumulated over time. 173 



 
 

Results 174 

Over the course of this study, we detected and identified 35 species of Australian frogs 175 

across eight genera and four families (Table S3). Passive acoustic monitoring using all 176 

available audio data (long-term PAM) detected the highest number of species across all 177 

study sites, (34 detected out of 50 potential species based on predicted ranges from 178 

the Australian Frog Atlas; Cutajar et al. 2022) and recorded 13,577 observations. In 179 

comparison, OBM detected 23 species (2,834 observations), while PAM using audio 180 

recordings matching only the survey period (short-term PAM) detected 21 species (540 181 

observations). Within OBM methods, spotlighting recorded the highest numbers of 182 

species (19) and observations (2155), followed by pitfall traps (18 species, 419 183 

observations), incidental encounters (17 species, 263 observations), and funnel traps 184 

(16 species, 210 observations). Arboreal cover boards were the least effective, 185 

detecting only two species, Litoria rubella (two observations), and Platyplectrum 186 

ornatum (one observation; Table S3; Fig. S2) 187 

 188 

Species richness 189 

The maximum total species richness varied among sites but followed a latitudinal trend 190 

with an increase in the number of detected frog species from South to North (Table S4). 191 

For the matching survey period (28 days), OBM detected significantly more species on 192 

average than PAM (1.7x more species, 95% highest density interval [HDI]: 1.26-2.20; Fig. 193 

2). OBM also recorded higher total numbers of frog species compared to short-term 194 

PAM at four sites (Tarcutta, Mourachan, Wambiana, Rinyirru), whereas short-term PAM 195 

detected more species than OBM at two sites (Duval, Undara; Table S4). When all 196 



 
 

available audio data was considered, PAM detected significantly more species on 197 

average than OBM (1.65x more species, 95% HDI: 1.33-2.05) and short-term PAM (2.8x 198 

more species, 95% HDI: 2.12-3.58). Long-term PAM recorded the highest species 199 

richness at all six survey sites, which was also the highest total species richness (i.e., 200 

total richness of all methods combined) at five sites, and only at Rinyirru OBM detected 201 

three species not found via PAM (Limnodynastes terraereginae: five observations, 202 

Litoria inermis: one observation, and Platyplectrum ornatum: 116 observations; Table 203 

S4). Across all sites, long-term PAM detected 12 unique frog species not detected by 204 

OBM, three of which were also detected in short-term PAM, while OBM detected one 205 

species (Limnodynastes terraereginae) not recorded by PAM at any site (Table S3). This 206 

species was exclusively detected in pitfall traps (two observations) and funnel traps 207 

(three observations) at Rinyirru. 208 

 209 

Community composition 210 

Non-metric multidimensional scaling (NMDS) at the plot level indicated broad overlap 211 

in the species assemblages detected by all methods (Fig. 3A). A global PERMANOVA 212 

stratified by site indicated a significant effect of assessment method on community 213 

composition (Jaccard, R2 = 0.06, P < 0.001). Pairwise comparisons with Holm’s 214 

correction yielded significant differences between OBM and short-term PAM (R2 = 215 

0.035, Padj = 0.003), OBM and long-term PAM (R2 = 0.056, Padj = 0.003), and short-term 216 

PAM and long-term PAM (R2 = 0.056, Padj = 0.003). 217 

 218 

Pairwise Jaccard dissimilarity analysis showed an average dissimilarity of 0.55 between 219 

OBM and short-term PAM at the plot level (Fig. 3B), which was higher than the average 220 



 
 

spatial turnover between plots within a site (0.45). Methodological dissimilarity varied 221 

by site, ranging from an average of 0.30 at Tarcutta to > 0.65 at Undara and Rinyirru (Fig. 222 

3C; Fig. S3). 223 

 224 

Survey effort 225 

Over our 28-day survey period, species accumulation curves for the total number of 226 

species reached an asymptote at only two sites (PAM at Tarcutta after 11 days and OBM 227 

at Duval after 13 days; Fig. 4). For this short-term period, OBM accumulated species 228 

more rapidly than PAM at all sites.  Neither OBM nor PAM alone detected all species 229 

present at four of the sites within 28 days. Only at the two southernmost sites did a 230 

single method detect all species: PAM at Duval and OBM at Tarcutta. 231 

 232 

Using all available audio data, PAM reached a maximum frog species richness at an 233 

average of 12 species across all sites, ranging from six at Tarcutta to 16 at Rinyirru 234 

(Table 2). To reach this maximum richness required on average 447 days of PAM, 235 

ranging from 386 days at Undara to 528 days at Duval. Short-term PAM (28 days), 236 

captured only 66% of the maximum total species richness on average, with a variability 237 

of 25% across sites. Extending sampling to 90 days increased the average proportion of 238 

the species detected to 84%, reducing variability to 12% across sites. After 180 days, 239 

the average proportion reached 93% (maximum variability = 8%), and following a full 240 

year (365 days) of recording, PAM detected 98% of the maximum total species richness 241 

with 4% variability between sites. 242 

 243 



 
 

Species accumulation curves of long-term PAM did not approach an asymptote at any 244 

site (Fig. 5). The number of days needed for PAM to match the frog species richness 245 

obtained by OBM varied at each site but took, on average, 93 days (Tarcutta: 387 days; 246 

Duval: 10 days; Mourachan: 40 days; Wambiana: 19 days; Undara: 35 days; Rinyirru: 68 247 

days; Table S5). When splitting the audio data and species detections into four 248 

seasons, summer and spring sampling were the most effective (Fig. 5). Across all sites, 249 

summer sampling accumulated species the quickest and detected the most species 250 

(33), followed by spring (29), autumn (26) and winter (21). However, some species were 251 

only detected in one season at some sites. Six species were detected only during 252 

summer (Mourachan: Cyclorana verrucosa; Undara: Cyclorana brevipes, 253 

Limnodynastes grayi; Rinyirru: Cyclorana brevipes, Litoria latopalmata, Litoria pallida), 254 

and two species only in spring (Duval: Limnodynastes dumerilii dumerilii; Mourachan: 255 

Limnodynastes grayi), but no species was exclusively detected during winter or autumn 256 

sampling.  257 

 258 

Financial cost 259 

The cumulative financial investment differed substantially between OBM and PAM over 260 

the duration of the study (Fig. 6). PAM required an initial investment of approximately 261 

AUD 35,000, nearly three times that of OBM (~AUD 12,000), due to the purchase of 262 

autonomous recording units, batteries, SD cards, and deployment costs. However, 263 

operational costs for OBM increased rapidly during each survey period due to fieldwork 264 

expenses (e.g., accommodation, travel, field gear, and staff salary), surpassing the total 265 

cost of PAM during the first survey trip in May 2021. In contrast, PAM costs increased 266 

only 1.5-fold over the course of this study, to cover ongoing maintenance, data 267 



 
 

processing, storage, and analysis. By the end of the study in December 2022, the total 268 

investment for OBM reached approximately AUD 250,000 (a 21-fold increase), roughly 269 

five times the final cost of PAM (~AUD 50,000). 270 

Discussion 271 

We compared the performance of passive acoustic monitoring (PAM) to observer-272 

based monitoring (OBM) for frog biodiversity assessments across a range of open 273 

eucalypt woodlands in Eastern Australia. Using feature embeddings from the BirdNET 274 

deep-learning model, we analysed over 300,000 hours of continuous audio recordings 275 

from six sites and detected 34 species of frogs. This method required only a single 276 

example call per species, without the need to build individual recognisers which 277 

demand a high time investment and in-depth knowledge (Priyadarshani et al., 2018). 278 

Across all sites, we detected the most frog species (34) using long-term PAM (i.e., PAM 279 

using all available audio data) which was 48% higher than using OBM (23 species) and 280 

62% higher than via short-term PAM (i.e., PAM using the audio time period matching the 281 

survey period only: 21 species). 282 

 283 

Short-term vs long-term detection dynamics 284 

During the 28-day survey period, OBM proved more effective than PAM by accumulating 285 

species more quickly and recording the highest richness at most sites. The ability of 286 

OBM to detect species both visually and aurally, as opposed to aural detection only via 287 

PAM, lead to generally higher species richness observed with OBM in the short-term. 288 

Visual detections have been noted as a significant factor in the superior performance of 289 

OBM for detecting some species of birds (Alquezar & Machado, 2015; Haselmayer & 290 



 
 

Quinn, 2000; Hutto & Stutzman, 2009; Vold et al., 2017). However, OBM alone did not 291 

detect all species present, suggesting that a combination of OBM and PAM may be the 292 

most comprehensive strategy for short-term monitoring of frogs. However, when 293 

extending the recording period to include all available audio data, PAM significantly 294 

outperformed OBM and short-term PAM in terms of species richness. Similar findings 295 

have been reported in studies on birds, where long-term PAM was more effective than 296 

short-term monitoring (Klingbeil & Willig, 2015; Kułaga & Budka, 2019).  297 

 298 

Technological feasibility and sampling completeness 299 

Utilising PAM for extended monitoring periods resulted in the highest species richness 300 

at all sites, indicating that this is the most effective approach for quantifying overall frog 301 

biodiversity. In the short-term (28 days), PAM detected only 66% of the total possible 302 

frog species richness, whereas after 365 days, this increased to 98%, demonstrating 303 

the substantial benefits of long-term PAM. Reaching maximum species richness 304 

required substantial sampling effort (average 447 days), highlighting that short-term 305 

surveys likely underestimate biodiversity. With recent technological advancements, it is 306 

feasible to collect and store long-term continuous audio data (Aide et al., 2013; 307 

Rhinehart et al., 2020), and using deep-learning models like BirdNET allows for efficient 308 

analysis of these extensive acoustic datasets, further enhancing the practicality and 309 

effectiveness of long-term PAM. 310 

 311 

Cost-efficiency and scalability 312 



 
 

Beyond its ecological effectiveness, PAM demonstrated a clear advantage in temporal 313 

scalability and cost-efficiency. While OBM benefited from lower initial startup costs, 314 

the cumulative expense of personnel and travel resulted in a significantly higher 315 

financial investment over time. By the end of the study, the total cost of OBM was 316 

approximately five times greater than that of PAM, reflecting a 21-fold cost increase for 317 

OBM compared to only a 1.5-fold increase for PAM. This aligns with findings from 318 

monitoring of cryptic birds (Williams et al., 2018), which similarly demonstrated that 319 

extending PAM duration does not proportionally increase costs relative to site visits. 320 

While total costs will vary depending on specific project requirements such as site 321 

accessibility, maintenance schedules, and personnel renumeration, PAM represents 322 

the most financially viable strategy for the continuous monitoring required to detect 323 

rare, cryptic, or weather-dependent species. 324 

 325 

Seasonality and sampling effort 326 

Frogs primarily vocalise for reproductive purposes (Duellman & Trueb, 1994; Gerhardt, 327 

1994) and since breeding is closely associated with rainfall, increased precipitation 328 

typically triggers heightened calling activity (Brodie et al., 2025; Hauselberger & Alford, 329 

2005; Xie et al., 2017). Thus, restricting monitoring to short periods of time may 330 

increase the risk of missing rainfall events that trigger breeding calls. In our study, 331 

restricting the acoustic monitoring period for PAM to only 28 days resulted in missing 13 332 

species of frogs that we were detected in long-term PAM. Similarly, recording 333 

schedules that capture only parts of the day or night may fail to detect unexpected 334 

calling activity from some species or individuals (Callaghan & Rowley, 2020).  335 

 336 



 
 

We found that species detection was most rapid and species richness highest during 337 

spring and summer, which aligns with periods of more frequent and intense rainfall. 338 

Notably, six species were only detected in summer and two only in spring, while no 339 

species were unique to autumn or winter. However, as opportunistic calling can occur 340 

during sporadic rainfall in cooler months, we recommend continuous 365-day sampling 341 

to capture those stochastic events. Where year-round monitoring is constrained, 342 

deploying PAM in early spring offers the best compromise to capture the rapid 343 

accumulation of species associated with increasing seasonal rainfall. 344 

 345 

Community composition and method complementarity 346 

While global analysis indicated a broad overlap in species assemblages, fine-scale 347 

analysis revealed that PAM and OBM function as complementary rather than 348 

interchangeable methods. We found a significant dissimilarity between methods 349 

employed at the same location, which was driven by systematic detection biases 350 

inherent to each survey approach. Previous studies have shown that OBM and PAM can 351 

detect different species, and, in particular, visual detections represent an advantage of 352 

OBM (Darras et al., 2019). However, since vocalisation is essential for successful 353 

reproduction in most frog species, frogs should eventually vocalise, providing the 354 

opportunity for detection via PAM. In some cases, frogs with short or quiet calls may 355 

remain undetected because their calls could be masked by other species, or 356 

environmental noises such as rain, wind, or even anthropogenic sounds (Luther & 357 

Gentry, 2013; Pijanowski et al., 2011). In fact, OBM proved essential for detecting three 358 

species (Limnodynastes terraereginae, Litoria inermis, Platyplectrum ornatum) at 359 

Rinyirru that were physically present and were observed in traps and visually during 360 



 
 

active searches but remained acoustically unavailable. Possibly, the noisy, insect-361 

dominated soundscape at this site reduced the probability of acoustically detecting 362 

these species, highlighting the challenge of PAM transferability across different 363 

habitats, as some environments may pose greater difficulties for species detection (Hill 364 

et al., 2013; Kułaga & Budka, 2019). 365 

 366 

However, acoustic masking is not the only potential cause for these detection failures. 367 

Unlike mobile observers who can actively search diverse microhabitats, ARUs are 368 

stationary and limited by their detection radius (Darras et al., 2016; Yip et al., 2017). 369 

Consequently, species breeding in ephemeral pools or temporary water bodies just 370 

outside the recorder’s range may be missed by PAM but be detected by observers 371 

covering a broader area. This highlights that recorder placement and spatial sampling 372 

design are critical considerations when designing acoustic monitoring programs 373 

(Browning et al., 2017; Sugai et al., 2020). 374 

 375 

Conversely, PAM was more effective for detecting cryptic species easily missed during 376 

in-person surveys, or difficult to identify morphologically. PAM presented an advantage 377 

over OBM for differentiating among species within the genera Crinia and Uperoleia, 378 

which were often impossible to identify visually. Additionally, PAM provided valuable 379 

information on seasonal activity in frogs, helping to identify optimal periods for effective 380 

monitoring. While in-person survey efforts remain necessary for non-vocal species or 381 

those vocalising outside recorder sampling rates (e.g., Hoefer et al., 2025), detection 382 

rates for vocal species could be further improved by refining the embeddings search 383 

strategy. Using a larger, more diverse set of example calls could better capture regional 384 



 
 

call variations, while verifying a greater number of high-scoring detections, rather than 385 

just the single top hit, could increase the likelihood of detecting rare, quiet, or 386 

acoustically masked species. Ultimately, the development of more robust deep-387 

learning recognisers, trained on diverse call examples from various geographic regions, 388 

could significantly enhance the detection of difficult-to-detect species in complex 389 

soundscapes. 390 

 391 

Conclusion 392 

This study demonstrated that passive acoustic monitoring (PAM) combined with 393 

BirdNET feature embeddings was highly effective for assessing frog biodiversity in open 394 

eucalypt woodlands across Eastern Australia. By analysing over 300,000 hours of 395 

continuous audio recordings with minimal training data, we successfully detected 34 396 

frog species. Our results highlight that neither PAM nor OBM is sufficient to detect every 397 

species in isolation. While long-term PAM was superior for generating complete species 398 

inventories and capturing opportunistic breeders during stochastic rainfall events, it is 399 

limited to detecting vocalising males. OBM remains essential for capturing non-vocal 400 

demographics (females and juveniles) and species masked by complex soundscapes. 401 

While the most useful and effective OBM method will depend on the target region, 402 

fauna, and budget, spotlighting emerged as the most efficient complement to PAM in 403 

our study, offering a high number of detections for both arboreal and ground-dwelling 404 

species at a fraction of the cost of trapping. Overall, integrating long-term PAM with 405 

targeted OBM methods offers the most comprehensive approach to frog biodiversity 406 

monitoring, enhancing our understanding of ecosystems and supporting effective 407 

conservation practices. 408 
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Tables 669 

Table 1. A summary of survey durations across six study sites, including total number of days for field surveys (days x number of plots 670 

per site), as well as the number of days of acoustic recordings during the survey period and for all available audio data. The total 671 

number of days between sites differed due to inaccessibility because of weather and battery or SD card malfunctioning. 672 

Site First survey 

(2021) 

Second survey 

(2021) 

Third survey 

(2022) 

Fourth survey 

(2022) 

Total number 

of survey days 

Total acoustic recordings 

(survey period) in days 

Total acoustic recordings 

(all audio) in days 

Rinyirru 14 – 21 Jun 8 – 15 Oct 7 – 14 Aug 23 – 30 Oct 112 98 1297 

Undara 3 – 10 Jun 28 Sep – 5 Oct 8 – 15 May 13 – 20 Oct 110 84 1660 

Wambiana 5 – 12 Jul 10 – 17 Nov 12 – 19 Jun 28 Sep – 5 Oct 112 97 3280 

Mourachan 9 – 16 May NA 19 – 26 Jun 2 – 9 Nov 84 60 1956 

Duval 18 – 25 Apr NA 28 Apr – 5 May 12 – 19 Nov 70 65 2122 

Tarcutta 29 Apr – 6 May 18 – 25 Oct 8 – 15 May 22 – 29 Nov 112 109 2910 

 673 



 
 

Table 2. Maximum total species richness, number of days to reach the maximum total 674 

species richness, the percentage of total richness achieved after 28 days, 90 days, 180 675 

days, and 365 days of passive acoustic monitoring (PAM) of frogs at each survey site, as 676 

well as the average value across all sites. 677 

Site PAM (maximum 

total richness) 

Days to max 

total richness 

PAM proportion of max richness 

   28 days 90 days 180 days 365 days 

Rinyirru 16 476 0.60 0.78 0.88 0.96 

Undara 15 386 0.54 0.82 0.95 1 

Wambiana 12 405 0.67 0.88 0.96 0.99 

Mourachan 13 499 0.64 0.83 0.93 0.99 

Duval 10 528 0.74 0.85 0.92 0.98 

Tarcutta 6 387 0.79 0.90 0.95 0.99 

Average (all sites) 12 447 0.66 0.84 0.93 0.98 

 678 



 
 

Figures 679 

	680 

Figure 1. Illustration of (A) the six study sites throughout eastern Australia, (B) the 681 

acoustic design layout for each site and, (C) a summary of the survey methods used at 682 

each of the four survey plots (1 ha area each) per site to target frogs (adapted from 683 

(Hoefer et al., 2024). At each site, four Autonomous Recording Units (ARUs) were 684 

installed in similar habitat types, with two recorders placed within 50 m of a body of 685 

water (ARU Wet – blue) and two recorders placed more than 500 m away from any water 686 

source (ARU Dry – green). Abbreviations used: PT = Pitfall Trap, FT = Funnel Trap, ACB = 687 

Arboreal Cover Board, ARU = Automated Recording Unit.	688 



 
 

 689 

Figure 2. Total species richness of frogs for each survey plot at each site detected by 690 

each survey method: passive acoustic monitoring using all available audio data (green), 691 

observer-based monitoring (orange), passive acoustic monitoring using only audio data 692 

matching the survey period (blue). Points and error bars represent the mean ± 95% 693 

confidence intervals. The average fractional difference and 95% Highest Density 694 

Intervals (HDI) are shown above the points, indicating statistical significance. 695 



 
 

 696 

Figure 3. Community composition analysis comparing frog survey methods. (A) Non-697 

metric multidimensional scaling (NMDS) ordination of frog communities based on 698 

Jaccard dissimilarity (presence-absence). Large points represent the centroids for each 699 

method, shaded regions indicate 95% confidence ellipses, and small points represent 700 



 
 

individual survey plots. (B) Pairwise Jaccard dissimilarity values (1 = complete turnover, 701 

0 = no turnover). Each point represents a single pairwise comparison: “Method Effect” = 702 

different methods (OBM, short-term PAM, and long-term PAM) at the same plot; “Plot 703 

Turnover” = different plots within the same site (using the same method); “Site 704 

Turnover” = different sites (using the same method). (C) Site-specific breakdown of the 705 

Jaccard dissimilarity between methods, showing the variation in method agreement 706 

across the six study sites. Black points and error bars represent the mean ± 95% 707 

confidence intervals.708 



 
 

 709 

Figure 4. Species accumulation curves for frog communities at six survey sites for each 710 

assessment method over up to 60 survey days (28 days of rarefaction [solid lines], 32 711 

days of extrapolation [dotted lines]). The coloured lines represent the different 712 

assessment methods: passive acoustic monitoring (blue), observer-based monitoring 713 

(orange), and all methods combined (total richness [black]). Shaded areas around each 714 

line corresponds to the 95% confidence intervals and dotted vertical lines mark the 715 

cumulative effort after each survey. 716 



 
 

 717 

Figure 5. Species accumulation curves for frog communities at six survey sites for only 718 

passive acoustic monitoring (PAM). The coloured lines represent different sampling 719 

periods over the year: sampling only in spring (yellow), summer (red), autumn (purple), 720 

winter (brown), and sampling all seasons (all available audio data [black]). Solid lines 721 

represent rarefaction and dotted lines represent extrapolation. Shaded areas around 722 

each line corresponds to the 95% confidence intervals. 723 



 
 

 724 

Figure 6. The rate of increase in total cost in Australian Dollar (AUD) for observer-based 725 

monitoring (OBM – orange) and passive acoustic monitoring (PAM – green) over the 726 

duration of this research. Costs included initial equipment purchases, deployment and 727 

fieldwork expenses (accommodation, transportation, salary, food), and compensation 728 

of staff for data analysis and validation. The grey bands represent the four survey 729 

periods during this research. 730 
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