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In this article, we present the case for Generalized Linear Latent Variable Models
(GLLVMs) as a go-to choice of statistical method for any community ecologist
wanting to tackle a range of present-day ecological research questions. GLLVMs
bring tools and capabilities from classic (mixed-effects) regression models to mul-
tivariate community analysis, providing a number of novel ways to tailor models
specifically to one’s study questions and data properties not available when using
non-model-based multivariate methods. In order to facilitate further adoption
of these methods by community ecologists, we provide 1) a practitioner-focused
and practical overview of the advantages the GLLVM framework brings to the
table when addressing different core ecological questions, 2) a number of concrete
suggestions for how GLLVMs best can be incorporated into the analytical workflow
of community ecologists, and 3) two illustrative worked examples of this workflow
in action on real-world data.
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Using different types of data is becoming increasingly important to improve our understanding of
the nature and dynamics of ecological communities in a range of real-world scenarios. Examples
include assessing restoration success (Ribeiro et al., 2023), the impacts of invasive species
(Souza-Alonso et al., 2022; Herrmann et al., 2022), and the modelling of community responses
to climate change (Sahade et al., 2015). In all of these cases, how well one’s ecological research
questions can be addressed depends not only on data, but also on the selection of appropriate
tools and methods for analysis. And while the statistical toolbox available to ecologists today
is large, it is also fragmented, which can make it difficult to chose a set of methods to address
the relevant research questions in a study in a way that is both coherent, streamlined and
reproducible.

One important example of this is the fact that community ecologists today often find them-
selves juggling two quite different methodological ”schools” when addressing different kinds of
ecological questions. On the one hand, questions about univariate data, such as predation rates,
breeding success, or the abundance of individual species in different habitats, are typically
tackled in a model-based framework, using ”standard”, statistically well-established regres-
sion models within the overarching framework of Generalized Linear Mixed Models (GLMM)
(Bolker et al., 2009; Zuur et al., 2009). However, the same type of model-based framework
has historically not been available to study differences in patterns of species composition and
structure within or between communities. In these cases, where the data are multivariate, i.e.
each sample is the abundance of several different species, and where the patterns of correlation
between species or sites is the focus, researchers have typically used different forms of ordination
to analyse the data. That is, distance-based or algorithmic methods such as Non-Metric
Multidimensional Scaling (NMDS), Principal Component Analysis (PCA) or Correspondence
Analysis (CA) (ter Braak and Prentice, 2004).

Due to their ability to effectively condense and visualize patterns in multivariate species data,
traditional ordination methods have historically been very important for studying ecological
communities (ter Braak and Smilauer, 2015). However, the fact that they do not in and of
themselves allow for true statistical inference have also led many to argue that their use for
answering ecological questions outside of data exploration and hypothesizing is limited (Warton
et al., 2012, 2015; Jupke and Schéfer, 2020). Unlike regression models for univariate data, these
methods do not, for instance, include estimates of uncertainty, incorporate random effects,
or provide reliable tools for checking whether key properties of ecological data, such as the
mean-variance relationship, are accounted for (Warton and Hui, 2017). On a more conceptual
level, because distance-based and algorithmic methods rely on extensive transformation and
”collapsing” of data prior to the analysis, the link between the actual data and the results is
more obscure than with model-based methods. Overall, this makes ecological inferences from
these methods harder to assess.

The last decade has, however, seen a number of new model-based methods being developed to
analyse multivariate community data in a more statistically informative manner (Hui et al.,
2015; Niku et al., 2019; Ovaskainen et al., 2017). Most of these fall under the umbrella of the
Generalized Linear Latent Variable Modeling (GLLVM) framework. In essence, GLLVMs allow
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for model-based counterparts to traditional ordination methods, based on Generalized Linear
Mixed Models. They allow users to fit models that explain patterns of species co-occurrence
by assuming that they are the result of a few underlying latent, or unobserved, explanatory
variables (i.e., ordination axes in the classical terminology). These latent variables can be
inferred from both the species composition data itself (Hui et al., 2015), as well as environmental
variables (van der Veen et al., 2023).

The fact that GLLVMs are an extension of the Generalized Linear Mixed Modeling (GLMM)
framework to multivariate data means that model-based ordination is situated in the more
familiar context of other regression models designed to predict species occurrence and/or
abundances. As Figure 1 shows, this also makes it possible to combine model-based ordinations
directly with other models — such as multivariate (i.e. ”stacked”) GLMs or environment-trait
interaction (”fourth corner”) models (Niku et al., 2021), opening up several new avenues of
statistical analysis.

GLLVMs are currently implemented in several software packages. The gllvm R package (Niku
et al., 2025) is aimed at community ecologists, and currently contains by far the richest toolbox
for this purpose. The other main feature-rich R package is hmsc (Tikhonov et al., 2025), which
is focused on GLLVMs for Joint Species Distribution Models, and thus has a similarly full
toolbox geared at understanding how the environment affects the distributions of individual
species. Other noteable software implementations include ecoCopula (Popovic et al., 2019),
boral (Hui, 2025), VGAM (Yee, 2025), and glmmTMB (McGillycuddy et al., 2025).

Despite the availability of user-friendly software, as well as several examples of GLLVMs being
used successfully in the ecological literature (see e.g. Lam-Gordillo et al., 2025; Daudt et al.,
2025; Wong et al., 2026), the uptake of these methods in areas of community ecology where
ordination has typically been common has so far been slow: at least going by the ratio of
downloads of the classical vegan R-package to more packages that implement model-based
ordination (see Appendix S1). In our opinion, two potential barriers for improved uptake
seem especially important. The first is a lack of accessible arguments and evidence for why
GLLVMs make it possible to obtain better and more reliable ecological inference from one’s
data as compared to traditional, non-model based methods. The second is a lack of instructive
real-world examples that show the full capability of the framework in action on real ecological
data.

This article sets out to help remove these two barriers by providing a focused and practically
oriented guide to the tools and capabilities of the GLLVM framework, aimed at the types of
ecological questions that may be especially relevant to current users of traditional ordination
methods. The text is divided into four parts: 1) An overview of what we consider to be the
most important fundamental advantages of using GLLVMs in community ecology, 2) how the
methods can be used more concretely to address different types of ecological questions; both
with and without observed environmental covariates, 3) a suggestion for a general modelling
workflow when using GLLVMs to address these questions, and 4) a demonstration on this
workflow on two relevant, real-world data sets.
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Figure 1: Graphical overview of the model structure of Generalized Linear Latent Variable
models (GLLVMs), as implemented in the gllvm R package. Model components are
named according to the model formulations by Niku et al. (2021) and van der Veen
et al. (2023). The figure is inspired by Figure 4 from Ovaskainen et al. (2017).
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1 Fundamental advantages of the GLLVM framework

The fact that GLLVMs are an extension of the Generalized Linear Mixed-effects Modelling
Framework means that they offer the same options for specifying, fitting, interpreting and
comparing models as classic GL(M)Ms. Here, we highlight six of the most substantial advantages
that this brings to the analysis of multi-species community data. These advantages should be
applicable regardless of the specific ecological questions asked.

1. Accounting for different types of data The GLLVM framework lets community ecologists
analyse data as is, without data transformation or manipulation. As with GLMs, this
done by specifying a suitable response distribution for the data, and by specifying the
model’s structure to match the study system or experimental design at hand. Most
GLLVM software includes a variety of different response distributions, making it possible
to model data recorded as presence-absence, counts, percentage cover, cover classes,
biomass, and more (see e.g. Korhonen et al., 2025). Traditional multivariate methods
(e.g. NMDS) offer ways to account for non-normality e.g. through the use of distance
metrics, but these make the link to the ecological processes more opaque, confound results
(Warton and Hui, 2017), and make assessment of fit to the data harder; whereas GLLVMs
can use established tools for diagnostics (see point 1).

2. Assessing model fit to the data Sound ecological inference requires one’s modelling as-
sumptions to be met. To ensure this, the fit of any GLLVM can be assessed using
diagnostic plots and metrics familiar from the GLMM framework, such as residual versus
fitted plots or Q-Q plots. Specifically, the metrics used are randomized quantile residuals,
similar to the DHARMa package (Hartig, 2024). As with classic GLMs, this is particularly
relevant for assessing whether one’s selected response distribution fits the data being
analysed, e.g. if there are non-linear structures or overdispersion in the data that are
not accounted for by the model. For example, when the observed data type are counts,
residual or QQ-plots will indicate if a Poisson distribution is applicable. If the model
predicts too few zeros relative to the data, it might be more reasonable to switch to
a zero-inflated Poisson distribution or a negative-binomial distribution. As there is no
clear way of evaluating whether the model assumptions are met simply by looking at
the resulting ordination, this is not generally recommended as a way of assessing the
fit. This is not to say that model misspecification cannot have a profound impact on
the ordination, which it certainly can (see Warton and Hui, 2017, for the case of the
mean-variance relationship and NMDS/DCA)

3. Accounting for different study designs In general, GLLVMs offer the same tools as
GLMMs to account for properties of the sampling and study design, such as block- and
hierarchical sampling designs, or differences in the read depth of samples in the case of
DNA meta-barcoding data, which are not available for traditional multivariate methods.
This can be done through fixed and random effects, nesting of effects, offsets or other
changes to the model’s structure. For example, blocks in a randomized block design can
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be included as a random effect outside of a model-based ordination, to separate its effects
from patterns of interest in the ordination (see the model formulation in Figure 1).

4. Model comparison The model-based nature of GLLVMs also allows for the use of a range
of different goodness-of-fit statistics to compare the relative fit and predictive power of
different models for species composition. For ecologists, Information Criteria like AIC
and BIC, or area under the curve (AUC), will perhaps be the most familiar of these.
Depending on the goal of the analysis, AIC or BIC can be used to determine the ideal set
of observed predictor variables, or to determine the number of unobserved latent variables
that best represent the data. Traditional counterparts to this are e.g. the use of stress to
determine the number of dimensions in an NMDS ordination, or the use of pseudo-AIC in
methods such as Canonical Correspondence Analysis (CCA) and Redundancy Analysis
(RDA); see e.g. Dexter et al. (2018).

5. Estimation and visualisation of uncertainty Because GLLVMs are fitted using either
(marginal) Maximum Likelihood estimation or with Bayesian methods, all parameters
and fitted values estimated by the model have an associated measure of uncertainty.
These uncertainties can be used to make statements about statistical significance, or
alternatively, the “strength of evidence”, of different model components (Muff et al.,
2022). These uncertainties can then be visualized, e.g. by plotting confidence or
prediction regions in an ordination diagram or intervals in a coefficient plot. In this
regard, the uncertainties can serve the same purpose as multivariate permutation tests
like PERMANOVA (Anderson, 2001), but are more versatile and interpretable, in the
same way that confidence and prediction intervals in conventional statistical models are.

6. Prediction As statistical models, GLLVMs can also be used to predict or forecast, with
associated uncertainty. This opens up many new possibilities for community ecologists,
not available when applying traditional ordination methods. For example, one can
predict how community composition is expected to change under different climate change
scenarios (keeping all other predictors constant), or to validate how well the predicted
species community of a given habitat type fits with newly collected data (see also Worked
Example 2).

2 Using the framework to answer ecological questions

The main strength of the GLLVM framework for ecologists lies in its capability to provide
in-depth answers to questions about the composition and structure of ecological communities.
This includes questions about which species co-occur and which factors (habitat types, climatic
variables, time etc.) best explain observed patterns of composition or co-occurrence. Among
the most important tools to help researchers address these questions are the many options to
effectively visualize model outputs that the GLLVM framework provides. Depending on the
model and the goals of analysis, these can combine information from environmental-, species-
and sample- specific parameters related to the latent variables. Figure 2 provides a general
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overview of the most relevant types of visualisations of the different model parameters shown
in Figure 1.

This section is grouped into two parts: The first part focuses on questions that can be
addressed by models only considering species observations, the second section focuses on
questions involving measured environmental variables and ecological communities. However,
it is important to bear in mind that contemporary community ecology studies often address
multiple ecological questions simultaneously, sometimes by including both analyses on species
composition alone and species composition in combination with environmental predictors. As
such, the methods in the literature examples given between Section 2.1 and Section 2.2 will
sometimes overlap.

2.1 Species composition data

When information on the environment is absent, GLLVMs can be a powerful tool for exploring
basic patterns in a multispecies dataset. As with traditional methods, an unconstrained model-
based ordination can be fitted to the species data alone, and patterns can be inferred from
visualisation of the results. This basic GLLVM will return scores for each sample (traditionally
called site scores) and species (similarly called loadings). These can then be used to make
inferences about site conditions, transitions between community types, and which species
associations drive these patterns. Conceptually, if we view the latent variable(s) as estimates
of unobserved environmental gradients, the species loadings represent the slopes, or the species
response, of each species to the gradient(s), similar to their response to predictor variables in
a standard regression. The site scores then represent the specific values of these unobserved
predictor variables, calculated for each sample. As such, the latent variables are similar to
observed measures of the environment, e.g. pH or soil moisture; the difference being that they
are estimated from the data rather than being measured in the field (Niku et al., 2019).

Visual inspection of GLLVM scores and loadings can be done the same way as with the results
produced by other unconstrained ordination methods, such as NMDS or CA. Compared to
traditional methods, GLLVMs have been shown to better capture both dataset properties and
underlying ecological gradients in community data (Warton and Hui, 2017; Jupke and Schéfer,
2020; van der Veen et al., 2023). In addition, GLLVMs have two other important tools for
visual inference which traditional ordination methods lack.

The first tool is a correlogram, or correlation plot. The sums of the square of the species
loadings in a GLLVM are statistical estimates of the overall correlation between pairs of species
in the data, which can be visualized in a correlogram (see Figure2). Together with ordination
plots, correlograms can be effective tools to construct an overview of species co-occurrence
patterns in one’s data (Ovaskainen et al., 2017), although ordination plots makes it possible to
also visualize the relationship between species scores and the samples or sites.

The second tool is uncertainty estimates — i.e. prediction and confidence intervals — for
both the site scores and species loadings. These allow researchers to meaningfully evaluate
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Figure 2: Overview of the different visualisations available for a GLLVM with latent variables.

The colored areas represent the different model parameters introduced in Figure 1.
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the statistical strength of evidence for the patterns observed in the data. For instance, if
the prediction intervals of two site scores are clearly separated, it can be interpreted as the
model being confident that the species compositions at these two sites are in fact different, and
are expected to remain so if both sites were to be re-surveyed. The same logic holds for the
species loadings, where uncertainties can be used to determine if two species are expected to
co-occur.

These two tools, together with options for combining unconstrained ordinations with other
forms of regression, allow a number of exploratory community ecology questions to be addressed
in a single model-based framework. A selection of examples are presented in Table 1, although
some may be considered exploratory before they are tackled by using information about the
environment directly in the model. This will be discussed further in section 2.2.

Table 1: Examples of ecological questions that can be investigated in an exploratory manner
using unconstrained ordination. The questions are broadly divided into fundamental
(F) and applied (A) questions. Recent examples refer to studies in which these
questions have recently been addressed using traditional methods for unconstrained
ordination.

Question Recent examples

F1: Does species composition change along  Handegard et al. (2024); Maunsell et al. (2013);

one or more biotic or abiotic gradients Mulders et al. (2022)

(e.g. elevation, forest age, water salinity)

F2: Are there seasonal patterns in Li et al. (2022); Naz et al. (2024)
community composition within a habitat?

F3: Are there characteristic clusters of Shembo et al. (2024); Lourenco et al. (2024)

species that tend to occur together in

different sites, that can be interpreted as

distinct communities?

F4: Are there associations between species  Sudrez-Tangil and Rodriguez (2023); Wang
in the community that are independent of et al. (2025)

associations accounted for by environmental

predictors, which can be interpreted as

biotic interactions?

A1: How does the species composition of Larson et al. (2024); Fanfarillo et al. (2022);

communities differ between different Graser et al. (2025); Pedley et al. (2023); Hu
habitats or land management practices? et al. (2024)

A2: TIs there a difference between species Brasil Neto et al. (2025); Helbing et al. (2023);
composition of sites undergoing different Reis et al. (2022); see also worked example 2

ecological restoration treatments, and
between those sites and undisturbed
reference vegetation?
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Question Recent examples

A3: How do alien species occur together Hejda et al. (2023); Lanta et al. (2022); Reeve
with native species in an invaded et al. (2022); see also worked example 1
community?

2.2 Explaining species composition data using environmental predictors

When environmental predictors are available, the GLLVM framework offers even more tools
to make inference about species-environment relationships. One approach is to use the
environmental predictors to explain the distribution of each species individually, with the latent
variables modelling any residual co-variation between the species (Ovaskainen et al., 2017).
However, with large numbers of species, especially species that occur infrequently, this approach
will quickly involve too many parameters to accurately estimate. A more parsimonious approach
in line with ecological theory (ter Braak and Prentice, 1988; Legendre and Legendre, 2012), is
to assume that species’ distributions are explained by a few underlying latent variables that
are, in turn, explained by environmental predictors.

The core model in this case is the concurrent ordination, where the latent variables depend
on both environmental predictors and additional variation outside of the predictors (van der
Veen et al., 2023). Concurrent ordination works by estimating latent variable coefficients (also
called canonical coefficients; By, in Figure 1 and 2), that explain how a change in the latent
variable (and thus the species composition) is associated with a change in each environmental
variable (specifically, how much a latent variable changes following a one-unit change in a given
environmental variable, all other variables being equal). In addition to the latent variable
coefficients, the latent variables estimated by the models can also have a residual, or unexplained,
component (for more detail see van der Veen et al., 2023). This means that the model can
provide estimates not only of the degree to which the main patterns of species composition
are explained by the environmental factors, but also to what degree there are additional
unobserved factors driving species composition. The relative importance of the environmental
and unobserved factors can then be disentangled by variance partitioning. In this regard,
concurrent ordination addresses a longstanding problem with the use of unconstrained and
constrained ordination (@kland, 1996; ter Braak and Smilauer, 2015), as it simultaneously
facilitates exploring species co-occurrence patterns and species-environment relationships.

Specifying the concurrent ordination to have no residual variation, i.e. assuming that the
latent variables are completely explained by the environmental predictors, corresponds to
what is traditionally called constrained or direct ordination, for which popular traditional
methods include Canonical Correspondence Analysis (ter Braak, 1986) and Redundancy analysis
(Legendre and Legendre, 2012). However, both of the aforementioned methods make strong
assumptions about the distribution of the data, whereas GLLVMs are flexible enough to
accommodate any data type found in community ecology (see Section 1).
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Modeling communities with constrained or concurrent GLLVMs presents a number of additional
features and tools for statistical inference over traditional methods: (1) As in the unconstrained
case, the latent variable coefficients will have an uncertainty, and thus a confidence interval,
associated with them. These confidence intervals can be used to make inference about the
strength of evidence for the effect different environmental predictors, site scores and species
loadings in the model. (2) Although the predictors affect the latent variables, they can be
easily translated to predictor effects for individual species, making it straightforward to connect
movement along environmental gradients to changes in individual species’ abundances. As
shown in Figure 2, the individual species effects, extracted from the model, are typically plotted
using a caterpillar plot, while the latent variable coefficients are typically represented in an
ordination biplot or triplot. (3) Predictor effects for the latent variables can be specified as
either fixed or random effects (inside or outside the ordination), allowing for greater flexibility
in the types of models that can be fitted. Non-linear effects such as splines can also be included
in the model. (4) The relative importance of the different model components in explaining the
responses of the different species can be assessed through variance partitioning. This includes
assessing the importance of residual variation of the unexplained part of the latent variable(s) in
a concurrent ordination, the effects of predictor variables both within and outside ordinations,
and other model components, such as site intercepts, traits etc. (see Figure 1) in explaining
the linear predictor for each species. Proportions of variance can be calculated to estimate the
relative contributions of each model component in explaining each species’ response.

Table 2 outlines some examples of ecological questions where models with concurrent or
constrained latent variables would be relevant to answer ecological questions, as well as
examples from the recent literature where they have been approached using mostly traditional
methods.

Table 2: Examples of ecological questions that can be investigated using latent variable models
with predictors, divided into fundamental (F) and applied (A) questions.

Question Recent examples

F1: How do different environmental gradients Cheng et al. (2023); Young et al. (2022);
(e.g. elevation, climate, water depth) explain  Askeyev et al. (2023); Matavelli et al. (2022)
differences in the community composition

between sites?

F2: Are specific species in a community Andrew-Priestley et al. (2022); Korolyuk et al.
indicators of changing environmental (2024)

conditions?

A1l: What is the effect of antropogenic Christman et al. (2022), Sanchez et al. (2023)

vs. non-antropogenic factors in terms of

explaining community composition?

A2: Do certain environmental factors explain  Kalusova et al. (2019), see also worked
the prevalence of alien species in an example 1

ecosystem?

11
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Question Recent examples

A3: How does a community respond to Crouch et al. (2022), see also worked example
different restoration treatments? 2

A4: How will the composition of a community Forte et al. (2024)

shift in response to changing climate?

3 Guidelines for a GLLVM modeling workflow

Guidelines for other model-based analyses have been outlined by Warton et al. (2015), Zuur
et al. (2010) and Zuur and Ieno (2016), among others, and the same recommendations generally
hold for GLLVMSs. Based on these, we present a five-step workflow, specifically geared toward
the effective and sound application of GLLVMs in community ecology. The workflow outline
is primarily adapted from Warton et al. (2015), and is summarized in Figure 3. Section 4
demonstrates the workflow on two relevant real-world data sets.

1. Formulate the biological question as a statistical question After the biological and eco-
logical questions of the study are clarified, the first step in any model-based workflow
should be to formulate them as concretely as possible in statistical terms. This means
clarifying why a GLLVM is the right tool for the problem, and how exactly the model
will be used to answer the ecological questions (e.g. which parameters should be included
in the model).

Ideally this first step should be undertaken before collecting data, in order to make sure
that the study design and sampling strategies are geared towards getting the data needed
to answer the ecological questions of interest (for a further discussion of this, see Warton
et al., 2015).

For example, if the main interest of a study is in making inference about how a species
community changes along a temperature gradient, care should be taken to sample the
environmental variables along that gradient so that they capture enough variation in the
environment to meaningfully answer that question. Similarly, if the goal is to investigate
the response of one or more specific focal species within the community to environmental
and biotic changes, one should make sure to collect data on a wide enough range of
conditions where they might be expected to occur and not occur (i.e., their niches should
be well-sampled), in order to actually obtain enough data to make meaningful statistical
inferences about their relationship to the environment and/or other species (see also
worked example 1, as well as the Section 5). These considerations might occasionally also
need to be balanced with strategies for ensuring sample representativeness, for example
by deploying sampling methods that have some way of quantifying detectability (see e.g.
Jeliazkov et al., 2022), as long as it is is consistent with the broader objectives of the
study.
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1. Formulate the ecological question
statistically

* What is the goal of the study? (exploration,
prediction, testing)

* What statistical relationships need to be included
in the model?

* What types of data/study design are needed and
relevant?

2. Exploratory data analysis (EDA)

Identify common and rare species in the
data

“Sanity check” for model output

Check for colinearity of predictors

Center and scale predictors

Y

3. Model setup and
fitting

/‘/ ™

4b. Model re-fitting

4a. Model checking
* Use a different response distribution

» Do residual diagnostic plots indicate model fit « Include different latent variables

to the data? and/or predictors (In line with the goal
* Are there issues in model convergence? (E.g. of the analysis)

“blown up” parameter estimates/uncertainties) « Specify predictors differently (e.g. as
* Comparison with candidate models (e.g. random effects)

through AIC or goodness-of -fit), if relevant « Other technical “tricks”; i.e. more

starting iterations, fixing disperstion
parameters etc.

AR Y,

5. Analysis and inference

Model summaries

Ordination diagram of species-, site- and
environmental scores

Looking at uncertainty estimates
Coefficients of species-specific predictors
Variation partitioning

Model predictions

Figure 3: Visual representation of the analytic workflow suggested for modeling ecological
communities with latent variables with GLLVMs. Adapted from Figure 1 in Warton
et al. (2015).
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This step also includes considering which type of model is best suited to answer one’s
research questions and represent the ecological relationships of interest. For example, if
gathering data on environmental or habitat-type variables is part of the study, representing
these in a concurrent ordination will often be a natural choice.

Clarifying whether the objective of one’s study is primarily exploratory, confirmatory or
predictive is arguably another important part of this step (Shmueli, 2010), particularly
for guiding choices around the inclusion of predictor variables and model selection. If the
goal is prediction, i.e. to find the GLLVM with the combination of predictor variables that
most accurately predicts either community composition or the occurrence of specific focal
species, optimizing one’s model for this purpose through model selection, using e.g. AIC
or similar tools, can be a meaningful strategy. However, if the goal of the analysis is rather
to explore or make inference about the species community or communities in the data, as
in the example above, variable selection for prediction could lead to biased inference and
should in general be avoided (Sainani, 2014). Instead, all variables that are of interest
should be included in the model (as the best statistical representation of the ecosystem),
and the results of the fitted model should be explored as is. AIC or BIC might still
be useful for determining the number of latent variables that best fit the data. Model
selection of predictor variables based on optimizing for prediction should however be
avoided, especially if the aim of the study is confirmatory, i.e. testing specific hypotheses
about ecological relationships rather than exploring them more generally. Although in
general, confirmatory analyses might be less common for the types of community ecology
questions considered here.

In general, our modeling philosophy is the same as that of Ovaskainen et al. (2017):
whenever possible, the aim should be to fit a single comprehensive model which can be
used to address all relevant research questions, rather than analysing different models in
parallel. This helps to streamline and making the analysis more reproducible, as well as
preventing data dredging and ensuring that uncertainties are handled correctly.

2. Exploratory data analysis (EDA) After collecting data, and before fitting a GLLVM, ex-

ploratory inspection and visualisation of the raw data should always be done in order
to get a better understanding of the dataset and to act as a sanity check on the model
output. Relevant dataset properties to consider for GLLVMs are largely the same as
for other models in the GLM family, and we generally recommend the same strategies
proposed by Zuur et al. (2010).

When dealing specifically with the types of multivariate species data considered here, we
will also recommend a few additional exploratory strategies as good practice. The first is
to simply get a broad-scale overview of the data by creating a table or histogram of how
many samples (rows) each species (column) is observed in, as well as the inverse (how
many different species are observed in each sample). This makes it possible to get a sense
of how the data is spread over the samples, which e.g. can be seen in context with the
sampling design, or to identify potentially data-deficient species (see discussion in Section
5). When species data are quantitative (i.e. not simply presence/absence), visualizing
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the relationship between species’ prevalence in the data and their average abundance
in each site with an Abundance-Occupancy (AO) plot can also be a helpful tool in this
regard, making it possible to see whether the data follows the classic positive relationship
commonly found in ecological data sets or not (Gaston et al., 2000), and whether some
species deviates notably from others in terms of their AO-relationship — either due
to factors do to the sampling design or the ecological dynamics of the system, which
sometimes can be challenging to untangle (Russell et al., 2005; Gaston and Blackburn,
2003), but which in any case may provide important context for interpreting the results
of a model fit.

Depending on the goals of the study, fitting a simple unconstrained ordination to the
data — either through an unconstrained GLLVM or a classical method like PCA — could
also be a part of this exploratory phase, to be used as a simple summary of the main
species co-occurrence patterns in the data, before a model specifically geared towards
one’s research objectives is specified in step 3.

As for the EDA of predictor variables, visualizing their pairwise co-linearity using a
correlation plot or similar is a good general-purpose tool for informing decisions about
predictor inclusion in the model. However, as predictor collinearity is typically associated
either with properties of the study design or inherent properties of the study system (e.g.
the relationship between temperature and altitude), the question of whether to include or
discard predictors due to collinearity should be informed by the goals of the study, study
design and one’s a priori knowledge of the study system, rather than numerical rules of
thumb. Note also that while including highly co-linear predictors in a GLLVM might lead
to increased uncertainty in the coefficient estimates and potentially convergence issues, it
should not in principle lead to a change in which parameter estimates are favored by the
model. Scaling and centering of the predictors is also recommended here as a standard
procedure to improve coefficient estimation and convergence of the model before fitting.

3. Model setup and fitting Following from steps 1 and 2, the relevant model(s) should have

been identified, and can now be fitted to the data. Important parts of the model to specify
are (a) the response distribution for the species abundances/occurrences, (b) row (i.e.
site) effects to explain the total abundance of individuals in the samples (i.e. predictors
that effect the abundance of all species equally), (c¢) the number of latent variables (of
different types) fitted to the data, and (d) model formulae for latent variables and species
effects. It is important to note here that transforming, scaling or otherwise changing the
species response variables in order to give more desirable statistical properties is, again,
not in line with the GLLVM modeling philosophy. The focus should be on specifying an
appropriate statistical response distribution that describes the data that was actually
collected.

4. Model checking and re-fitting After a GLLVM model has been fitted to the data, it should

be evaluated thoroughly. If there are issues with the model fit, these should be addressed
and the model re-fit, as illustrated in the flowchart in Figure 3. As with classic GLMMs,
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403 it is important to check that the data meet the model assumptions, by visualizing the

404 residuals in diagnostic plots, as discussed in Section 1.

405 It can sometimes be difficult to get good convergence and numerical stability when fitting
406 GLLVMSs. Inspecting the gradient vector of the likelihood function to see if it is close
407 to zero, or checking for artefacts such as negative estimates for the standard error of
408 parameter estimators, can be useful tools to get an indication of this. visualisation of
409 model estimates and uncertainties can also be helpful, e.g. if some species have ”exploding”
410 species loading estimates or uncertainties. This typically happens when some species occur
a11 very infrequently in the dataset or are only associated with a subset of predictors (e.g. a
a12 species only occurs in one habitat, and habitat is included as a categorical predictor).
413 While the easiest solution from a model stability perspective in this case is to filter out
414 the ”problem species” from the data, this needs to be considered carefully in the context
415 of the study. See 5 for a further discussion on this.

416 Another route to improvement is changing the model, perhaps by using a different
a7 response distribution (e.g. a zero-inflated Poisson distribution rather than a standard
418 Poisson distribution, see 1.1), or specifying predictor effects as random rather than fixed.
419 Excluding or including predictors (including more or fewer latent variables) can also help,
420 if it does not clash with the aim of the study. A number of more technical tricks can also
421 help, such as increasing the number of starting iterations, fixing dispersion parameters
a2 for the response distribution, or reordering the species in the response data. It might
423 also be helpful to consult other articles discussing how to deal with model convergence in
424 mixed models, e.g. Bolker et al. (2009).

425 After assessing the validity of the model, assessing the quality of the model with respect
426 to prediction or selection, depending on the goal of the study, can be done in a number
a7 of ways. Information criteria like AIC or BIC are perhaps the most well-known. As these
28 two criteria have slightly different interpretations (Aho et al., 2014), which criterion to
429 use will depend on the objective of the study. Other measures of model predictive quality
430 can also be assessed, e.g. root-mean square error of the prediction, or cross-validation.

431 5. Visualisation and inference After step 4 is completed, the model can finally be explored

432 to make inferences about the relevant ecological questions of the study. We refer here
433 primarily to Section 2 for a discussion of the different tools that can be used to make
434 inferences from GLLVM models in terms of different ecological questions, as well as the
435 worked examples.

= 4 Worked examples

437 In this section, we demonstrate how the GLLVM framework can be applied in real-world settings,
438 using two relevant case studies from the recent ecological literature. The case studies are
439 selected in order to showcase the tools and questions discussed in Section 2.1 and Section 2.2.
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In order to demonstrate different paths to visualizing the output of GLLVM models, visualisa-
tions in Example 1 (Figure 4) are produced primarily using the native plotting functionality
from the gllvm package, using the base R plotting interface, while visualisations in Example
2 (Figure 5 are constructed using the ggplot2 package with extracted model components.
Walk-throughs of the complete data analyses and visualisations, including figures for model
diagnostics, are available in Appendix S2.

4.1 Example 1: Invasive trees in Argentina

In the first case study, we reanalyse data from Fernandez et al. (2021). Here, the researchers were
interested in how the presence and abundance of an invasive tree species, the broad-leaf privet
(Ligustrum lucidum), impacts the native tree community in an Argentinian second-growth
subtropical forest.

Data on the tree community was recorded by measuring the basal area of 20 common species
(including L. lucidum) in 164 forest monitoring plots. In a subset of 44 of these plots, samples of
four physical-chemical characteristics of the soil: soil carbon content, nitrogen content, carbon
to nitrogen ratio, and soil humidity, were collected as well.

For the purposes of this article, and in order to best help us showcase the GLLVM framework,
we have condensed the ecological questions from Fernandez et al. (2021) into the following
two research questions: 1) How is the abundance of L. lucidum in an area associated with the
composition of other (native) tree species, and 2) Are some soil properties associated with
increased abundance of L. lucidum specifically, compared to the native species?

4.1.1 Formulating the statistical question

In this case, the aim of the analysis is clearly exploratory, rather than confirmatory or predictive.
No specific hypotheses about species-species or species-environment relationships are tested,
and the goal is not to find a model that best predicts abundances of L. lucidum in the ecosystem.
This suggests we should aim to model the data in a way that includes all relevant predictors
of interest, and that extensive model selection beyond finding the optimal number of latent
variables is not relevant.

However, the fact that environmental predictors (i.e. soil properties) are only available for a
small subset of the vegetation plots, does present a challenge. In order to make the most of the
data, we therefore veer slightly from our ideal workflow, and fit two different GLLVMSs to the
data: (1) A model with only unconstrained (i.e. not predictor informed) latent variables fitted
to the full dataset; this will be used to make inferences about the patterns of co-occurrence
between L. lucidum and the other species, and (2) a model with predictor informed latent
variables (i.e., a concurrent ordination), fitted to the subset of plots with environmental variables
recorded, using all 4 recorded soil properties as predictors. This second model will be used
primarily to answer research question 2, make inferences about potential relationships between
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soil conditions and the co-occurrence of L. lucidum with native species. If predictor variables
had been available for all plots, we could most likely have addressed all of these questions with
a single concurrent ordination.

As the original study does not contain or consider explicit information about the study design,
we will treat each sample (i.e. site) as independent. We do this by adding random intercepts for
each row in the response data (see paragraph four in Section 1) to ensure the latent variables
only account for composition rather than total abundance at each site.

4.1.2 Exploratory data analysis

Aggregating and visualizing the number of occurrences of all species in the full dataset (see
Appendix S2, Section 3.2.1.), we see that every species appears in more than three plots. Of
the 164 plots, only five contain just a single species, and the vast majority contains three or
more species. Based on this, we assume that we have enough information in our data to avoid
removing samples or species.

When selecting only the subset of the plots where soil variables were measured, however, two
species were absent from all of these plots, and one species only occurred once. We thus
excluded these three species from model 2, as they don’t hold information, and keeping them
will likely hurt model convergence.

Other than filtering the data, and centering and scaling all predictor variables to mean zero
and unit variance, as discussed in Section 3, no further pre-processing was done for the data.

4.1.3 Model setup

Because our observed response variables are recorded as the area of each species in a plot,
we decide to fit both models using a Tweedie distribution (Jgrgensen, 1987). The Tweedie
distribution arises as a Poisson sum of Gamma random variables. In other words, we assume
that the number of observed individuals follows a Poisson distribution, and the area of each
individual follows a Gamma distribution. As well as having an intuitive derivation, the
distribution can accommodate species with zero area (unlike, for example, gamma and log
normal distributions), and is also appropriate for data that follow Taylor’s law (Kendal, 2004).

For both of the proposed models (the unconstrained and the concurrent), we intend to find
the optimal number of latent variables which best fit the data. As discussed in Section 3, we
decide to do this by finding the number of latent variables with the lowest information criterion
that also fitted the data. In this case we will use AIC, as it is primarily recommended for
exploratory analyses (Aho et al., 2014). It is also important to stress that in this case we only
selected for the number of latent variables, not the predictors, due to the exploratory nature of
the study.
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We fit the models using the gllvm() function, with the syntax shown below, commented for
clarity. We initially fit the models with one latent variable each, and proceed to add latent
variables to find the AIC minimum, checking the diagnostics of each new model as we go. See
Appendix S2, Section 3.3. for the full model fitting code, with explanatory comments.

4.1.4 Model checking and refitting

The diagnostic plots for both the unconstrained and constrained models did not indicate any
violations of the model assumptions, and the addition of more latent variables to each model
did not change this (see Sup. Figures 2.3, 2,4 and 2.6). The only caveat to this is that there
seemed to be a slight structure in the residuals-versus-fitted plots — where the most prevalent
species had slightly more negative residual than would be expected.

In the case of the unconstrained model, there was an AIC minimum for a model with five
latent variables (see Sup. Table 2.1.). However, this was not as well converged as the model
with three latent variables. Because of this, and partially in order to make the analysis as
parsimonious as possible, we decided to continue with the model with three latent variables for
the analysis (see Appendix S2, Section 3.4.1.). For the concurrent model, there was a clear
AIC optimum at the model with two latent variables, and as such, we decided to continue with
this model for visualisation and inference for the second part of the example.

4.1.5 visualisation and inference

Looking at the visualized species loadings of the unconstrained ordination (model 1) in Figure 4a,
we see that L. lucidum is a clear outlier among all the other species. The predicted abundance
of L. lucidum is primarily summarised by the first latent variable after rotating in the direction
of maximum variance, as the position along the second latent variable (the vertical axis) is close
to zero. As such, we might inspect the other species’ responses to the first latent variable (the
horizontal axis), for indications of their co-occurrence with the invasive species. The fact that
only three other species have a positive loading along the first latent variable, and most other
species are associated with the other end of the diagram, clearly indicates that an increased
presence and biomass of L. lucidum is associated with fewer occurrences and lower biomass
of most other tree species. This is also supported by the confidence intervals of the species
loadings, in which the C.I. of L. lucidum overlaps with almost no other species.

These co-occurrence patterns are also clearly supported by Figure 4b, albeit more nuanced,
as the correlation plot uses information from all three latent variables. The correlation of L.
lucidum with the other species resulting from the species scores are all estimated to be negative,
except in three cases. The ecological interpretation of this first model, then, is that L. lucidum
seems to either displace most native species where it occurs, or that its environmental tolerance
or preference is different from most other species in our data, thus thriving in conditions
that are not favorable to other species. It could also be a combination of both scenarios, as
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Figure 4: Selected visualisations of the estimates from the unconstrained (a,b) and concurrent

(b,c) latent variable models. L.luc = Ligustrum lucidum, is indicated in red text in
all figures. A: Site scores (black) and species scores (blue, red) for the unconstrained
model with three latent variables (model 1) Ellipses represent prediction intervals
for species scores. Species and site score and uncertainty ellipses of the three latent
variables are all rotated in the directions of maximum variance to produce latent
variable 1 and 2 using singular value decomposition, similar to a PCA rotation of an
NMDS ordination. B) Correlation plot of the between-species correlations estimated
from the species scores of the unconstrained model. C) Ordination diagram of site
scores (black points), species scores (blue, red text) and environmental coefficients
(red arrows) of the concurrent (predictor-informed) latent variable model using a
subset of 40 points. Light red indicates that the 95% confidence interval of the latent
variable predictor includes 0 for one or more of the latent variables, while the converse
is true for the dark red arrows. D: Species specific coefficients (slopes) for the effect
of soil moisture content on the abundance on the different species in the model (on
the link scale), ordered from lowest to highest. Cross = coefficient estimate, line =
95% confidence intervals. Confidence intervals that cross 0 are indicated in grey.
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Fernandez et al. (2021) hypothesize, in which L. lucidum alters the soil chemical properties
where it establishes itself, making it more favorable for itself and less for the native species.

The concurrent ordination that includes environmental predictors (model 2), suggests that
the observed environmental variables explain a significant portion of the community structure.
As Figure 4c shows, the species scores of L. lucidum are separated from the others along
the horizontal axis, as in the first model. Additionally, we see that it is clearly negatively
associated with increasing soil moisture content, and positively associated with a larger soil
carbon-to-nitrogen ratio. This is made even more clear when looking at the species-specific
predictor effects in Figure 4d. L. lucidum is the only species which is estimated to decrease
its abundance with higher soil moisture, while all other species respond either neutrally or
positively to moisture. An inverse association seems to exist for the C:N ratio, although less
pronounced, being shared by a few other species, as well as associated with higher uncertainties
for all species (Sup. Figure 2.10). Variation partitioning also revealed soil moisture to be
the variable explaining the highest mean proportion of variance for the species in the second
model (Sup. Figure 2.11). However, the variance partitioning, as well as the model summary
(Appendix S2, Section 3.5.2), also indicates that about 30% of the variation in the species
composition was not explained by the environmental covariates , and is therefore an indication
that there might be other important environmental predictors — or other dynamics in the
community — that influence the species composition and which were not included in the model.

In summary, the ecological conclusion to draw from these two models seems relatively clear:
The models provide a strong indication that in the ecosystem where it appears as an invasive
species, L. lucidum is associated with a lower diversity and species abundance of most other
native, common tree species. Secondly, this effect can largely be explained by L. lucidum either
preferring, better tolerating or even facilitating drier, more nutrient-poor soils, supporting the
initial hypothesis from Fernandez et al. (2021).

4.2 Example 2: Roadside Restoration in Norway

The second case study is based on data and ecological questions from Mehlhoop et al. (2022).
Their aim was to assess the impact of different restoration efforts on roadside vegetation, in
order to mitigate the effects of road construction. The dataset consists of the percentage cover
of 164 different vascular plant species at 282 roadside plots across 3 regions in southern Norway.
At each site, plots were subject to one of three restoration treatments: Re-seeding using
commercial seed mixes, planting with native vegetation, or natural, i.e. unassisted re-vegetation.
In addition, plots in intact reference vegetation were also sampled. Other variables, including
the time since restoration (for the non-reference plots), as well as biological and environmental
variables like soil organic matter content, canopy cover and grain size, were recorded at each
plot to account for potential environmental factors that may influence species composition not
directly related to restoration.
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The primary research question of Mehlhoop et al. (2022) was how effective the three different
restoration treatments were in bringing the vegetation of the impacted sites closer to the
assumed natural vegetation in the reference sites. Ideally, this knowledge can then be used to
inform future restoration efforts in similar nature types. As a secondary goal, chosen specifically
to further showcase the capabilities of the GLLVM framework, we also ask how the vegetation
in the restored sites is expected to change over the next 20 years.

4.2.1 Formulating the statistical question

The main goal of the analysis is to understand the relationship between a set of predictor
variables (restoration method and time) and species occurrences in the data, and not to test
any specific hypothesis. However, in contrast to the first example, the samples themselves
(i.e. the restoration sites), rather than the species, are the primary unit of interest. Although
the secondary goal is prediction oriented, the primary goal is explanatory in nature. As such,
we decide to base our prediction on whichever model serves the explanatory purpose of the
study best, rather than the other way around, even if that model might not predict optimally.

Consequently, fitting a concurrent ordination for the species composition including all potentially
relevant predictors (treatment, time since restoration and the environmental variables) best
aligns with the goals of this study. As the effect of time on species composition might be
different for different restoration treatments, and because this potential difference is central
to the ecological question in this case, we decide to include an interaction effect between the
restoration treatments and time since restoration.

It is also necessary to think about how to account for the influence of our study design. In
particular, there could be potential differences in the overall prevalences of species between the
three different study regions that we want to separate out from the effect of restoration. To
address this, we included region as a fixed row effect in the model, with additional random
species-specific intercepts for each region. Within regions we might also want to account for
differences in the sampling intensity between sites and plots. To do this, we add an additional
random row effect for each site to account for potentially confounding differences in the total
sample abundance between sites. In other words, we condition the ordination on the study
design, and thus remove information about the effect of the regions and sites on the species
community from the ordination.

4.2.2 Exploratory data analysis

Of the 164 species in the data, more than 50 only appear in a single plot and almost 40 appeared
only two or three times. In order to reduce the chance that the final model is unduly influenced
by data-deficient species, and because the focus of the study was the effect on restoration on the
overall compositional differences between sites, rather than a focus on any particular species, we
decided to exclude the species with three or fewer occurrences. Consequently we did not exclude
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any sites from our data. See Section 5 for a further discussion on the handling of data-deficient
species in GLLVMs. We also scaled and centered all numeric predictor variables.

4.2.3 Model setup

Because our data is proportions with a large number of zeros, we used an ordered beta
distribution as our response distribution (see Korhonen et al., 2024). We then set up the
initial model following the structure outlined in the beginning of this section. To include the
interaction effect between restoration treatment and time (and exclude a time interaction with
the reference category), a custom model matrix was constructed where only interaction effects
between the treatments and time were included (see Appendix S2, Section 4.2.).

As in worked example 1, we decide to use information criteria to determine the optimal number
of latent variables. Code for the model fitting, with comments, can be found in Appendix S2,
Section 4.3.

4.2.4 Model checking and re-fitting

Unlike in example 1, fitting the concurrent ordination specified above presented some numerical
challenges, as models with both one, two, and three latent variables struggled to converge.
We thus changed the fitting method to Extended variational approximation (Korhonen et al.,
2023), and changed the ordering of the species in the input data, placing the most abundant
species first. This helped to stabilise fitting of the models with one and two latent variables,
however the model with three was still not able to converge. And while the diagnostic plots for
both the one- and two latent variable models looked good, the model with two latent variables
still showed some potential convergence issues. In particular, many of the variances of the
parameter estimators calculated by the model were negative, which makes the model fit had to
interpret.

As the model summaries of both models also indicated that the residual variation in the
latent variables (i.e. the unexplained part), was consistently negligible (variance <e-7), we thus
tried instead to fit a simpler model with constrained (i.e. fully predictor determined) latent
variables, to make both the fitting and the inference easier. Still, the same lack-of-convergence
problems persisted for the constrained models with two and three latent variables, in addition
many species loadings being severely ”blown up” and linearly correlated in the ordination
loadings, making the interpretation of the results ecologically questionable. As such, we
ultimately decided to move forward with the model with one constrained latent variable for our
analysis, even though the AIC was lower for the two-variable model for both the concurrent
and constrained models (see Sup. Table 2.1).
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4.2.5 Visualisation and inference

Our one-dimensional constrained latent variable model indicates that the different restoration
treatments are the most important factor separating the species composition of the different
sites (Figure 5a), with the reference vegetation sites clustering on one end of the scale, the
naturally re-vegetated sites in the middle, and the planted and seeded sites on the other
side. This is supported by the species loadings of the model, showing that the species most
associated with the sites in the reference vegetation (left part of axis 1) are the european
blueberry ( Vaccinium myrtillus), may lily (Maianthemum bifolium) and oak (Quercus robur),
all species characteristic of Norwegian south boreal forests, in which the reference plots were
placed. Other tree species such as Norway spruce (Picea abies) were also strongly associated
with the left-hand side. On the other side of the restoration axis, the plots undergoing seeding
and planting were mostly associated with grasses such as red fescue (Festuca rubra), timothy
(Phleum pratense) and small-reed (Calamagrostis stricta), plants more typical of typical of
roadside vegetation and early succession, as well as some commercial seed mixes (Mehlhoop
et al., 2022).

The estimated interaction between restoration treatment and time since restoration (i.e. how
the effect of the restoration on species composition changes with time) is also different between
treatments (Figure 5a, see also model summary in Appendix S2, Section 4.5.). Natural sites
had a moderate trend towards the reference sites, while the effect was much smaller for the
planted sites and absent for the seeded sites. The other measured environmental variables
mostly have weak associations with the latent variable, exception for soil organic matter, which
has a moderate correlation with the species composition of the intact sites.

The effect of the study design (Figure 5b) was also pronounced, explaining around 26% of the
total variation in species responses according to variance partitioning (see Appendix S2, Section
4.5.). Among other things, we see that Region 3 was in general more species-rich than the other
regions. This indicates that not accounting for the study design might have led to a different
inference about the effect of restoration, because the distribution of the treatment groups and
time since restoration is not equally distributed among the study regions (Mehlhoop et al.,
2022), so the confounding could have lead to regional differences being modelled as treatment
effects.

Forecasting 20 years in the future, assuming that all other environmental variables in the sites
remain the same, the model predicts that the composition of the natural re-vegetated sites will
have caught up to the composition of the reference forest, while sites in the other restoration
treatment groups will have changed little (Figure 5¢). Forecasting for two species which
could potentially be used as indicator species, based on their species loadings and pre-existing
knowledge about their ecology, F. rubra and P. abies (Figure 5d), underpins this by showing a
marked difference between the different restoration treatments.

The main takeaway from this analysis is that the roadside vegetation sites that were left to
naturally re-vegetate, were closer in terms of species composition to the forest reference than
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Figure 5: Visualisations of the estimates (a, b) and predictions (c,d) from the constrained latent

variable model of the roadside vegetation vegetation. (a) One-dimensional diagram
of the constrained latent variable. Sites are coloured by restoration treatment; red
arrows indicate the latent variable coefficients of the model (X denotes an interaction
effect). Dark red indicates that the 95% confidence interval of the predictor does not
cross 0. Blue arrows show the species scores of the five most positively and five most
negatively associated species with the latent variable. (b) Boxplot of the site-specific
and species-specific random effects of the sites and different study regions in Southern
Norway, respectively. For the species-region random effects, the combined effect
of the fixed-effect intercepts of region 2 and 3 and the random species effect are
shown (c) Predicted site scores for the latent variable with 20 years added to the
site coefficients. (d) Density plot of predicted change in cover in different treatment
groups for two potential indicator species, Festuca rubra and Picea abies.
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the sites that had been artificially seeded. This vegetation treatment also showed a stronger
response to time, which can be interpreted as a faster succession than the other treatments.
Because no other variables in the model explained differences in species composition to the
same degree, potential confounding effects of the study design were accounted for. Finally,
because we did not estimate residual variation, we can be confident in the conclusion that the
natural re-vegetation was the most effective method of restoration for the roadside vegetation
communities.

5 Summary and discussion

In this article, we have provided an overview of Generalized Latent Variable models and a
practical introduction to a range of their uses in community ecology. We have shown that a fully
model-based methodology and workflow can produce models of ecosystems and communities
that are feature rich as well as more statistically and conceptually interpretable than traditional
ordination methods, e.g. by enabling features like prediction and uncertainty quantification.

We have made GLLVMs more tangible by demonstrating applications of the framework on
two real world examples. In the first worked example, we showed how the impact of an
invasive species on a community could be described using both unconstrained and concurrent
model-based ordination. In contrast to traditional ordination methods, we could look at species
loadings with uncertainties, as well as their associated between-species correlation estimates to
indicate how strongly these associations were supported by the data. This let us paint more
a comprehensive picture of what the data say about the associations between the native and
invasive species in the community. The same was true for the effect of the predictors describing
species co-occurrence in the communities, where the GLLVM option of visualizing the effect
of covariates on individual species was able to identify the predictor most associated with
the negative association between L. lucidum and the native species. This species-centered
way of using GLLVMs will be readily transferable to a number of other ecological questions,
such as identifying indicator species related to specific environmental variables of habitats, or
identifying distinct clusters of species associations in a community (see references in Tables 1
and 2).

In the second worked example, we demonstrated how a concurrent ordination could be used to
estimate the effect of different ecological restoration treatments on community composition,
while accounting for a spatially grouped study design. Within a single model we could include
the effect of the different treatments with parameter uncertainty, accounting for the study
design, and forecast how the communities will change in the future; examples of capabilities of
the GLLVM framework offer that is not possible to do in a comprehensive way with traditional
methods. The use of the methods demonstrated in the example can serve as a relevant template
for other sample-focused research questions. For instance, assessing the effect of different
management practices on community composition, or which level of a hierarchical habitat
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classification system that best explains variation in community structure (see again references
in Tables 1 and 2).

In both examples we explored the number of occurrences per species and site, which lead
to removal of species in the second example. It is important to clarify that it is not strictly
necessary to remove data deficient species prior to fitting a model-based ordination, but it can
at times make the modelling process easier. Data deficiency can cause difficulties with model
convergence, presenting results, or drawing inference. For example, species with only one or two
occurrences on top of a mountain may exhibit extreme clustering in a (constrained) ordination
diagram when the ordination axis represents elevation. Here, the model will interpret the data
as the species not occurring at lower elevations at all, thus placing the species at the far end of
the ordination axis. This is natural; the model has not seen any other information after all, but
the results may not representative for the full niche of these species. Instead, it is an artefact
of the sampling process. Still, at times a few extra species can add valuable information on the
end points of an ecological gradient (i.e., serve to better inform the positions of site scores), so
that removal is not always advisable. If all species on top of the mountain are data deficient,
removing them will truncate the observed gradient, and impact the placement of all other
sites and species in the data. Such data deficiency of species is often used as an argument for
analysing the data in collapsed form, so that species identities are masked (as in e.g., NMDS),
and the data are analysed on the basis of sites only. However, we argue that there is nothing
inherently more complex to model-based ordination that makes it less suitable for the analysis
of data deficient or rare species. The important thing is rather to distinguish between species
that have few occurrences in data because they have been insufficiently sampled, so that they
cannot be correctly placed in the environment, versus species that are rare for other reasons.
Ideally, the pool of species being studied is clearly defined prior to data collection, so that a
survey can be expanded to ensure data sufficiency for all species when necessary.

It is also important to stress that the GLLVM framework encompasses several avenues for
modeling community data outside of the main use cases presented in this article. This includes
the possibility of including more data types, such as species traits, in the models. Currently,
traits can be incorporated into GLLVMs in two main ways: (1) using fourth-corner models,
which estimate environment-trait interactions outside the ordination (Niku et al., 2021; Abrego
et al., 2025), see also Figure 1), (2) reversing sites and species in a concurrent ordination,
so that traits can be modelled on the latent variable(s) in the same way as environmental
variables. This approach cannot include the environment as well. Alternatively, GLLVMs can
been used to look at how traits covary between species, by letting species act in the place of a
site, and traits as species. In other words, the GLLVM would be used to model a hypothetical
lower-dimensional community trait space (Laughlin, 2014). Integrating functional traits and
environmental predictors into the concurrent ordination framework, similar to approaches that
have been developed for other ordination methods (ter Braak et al., 2018), is also currently an
active area of development.

Other extensions that are available are using species phylogeny to inform species responses
to the environment (van der Veen and O’Hara, 2025), modelling communities in time rather
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than space (Ovaskainen et al., 2017), and incorporating spatial autocorrelation in the latent
variables (Thorson et al., 2015; Ovaskainen et al., 2017).

GLLVMs also open up a range of other avenues for modeling community ecology not possible
with traditional (i.e. ordination) methods. This includes the possibility of using latent variables
to model species niches (Ovaskainen et al., 2016) and niche overlap (van der Veen et al., 2024),
including different niche sizes of species along latent variables (van der Veen et al., 2021),
in order to model differences between generalists and specialists. Developing new types of
model-based ecological indicators or classification schemes that may be useful in management
settings, would be another interesting path to explore.

There has also been work done to develop methods and protocols for using pilot studies to
determining the sampling effort and amount of data required to confidently answer specific
ecological questions using GLLVM-type models (Maslen et al., 2023), which could potentially
have a profound impact on resource- and time management when planning community ecology
research.

In summary, applying GLLVMs in community ecology does not have to require a change in
one’s research questions, theoretical frameworks or data. Rather, it is a broad and robust
toolbox that gathers a wide range of methodological tools in community ecology under the
same statistical roof. It can both help you ”"do what you were already doing”, only in more
powerful and informative ways, as well as address ecological questions in new ways. As we have
demonstrated, this makes the framework relevant for a number of research topics. Looking to
the future, as GLLVMs become more widely adopted within community ecology, researchers
will no doubt also discover new uses for the methods that their developers did not think of,
which may again lead to further development of the framework. This underlines the importance
of a constructive two-way collaboration between statistical developers and practitioners to
address the pivotal ecological questions of the 21st century.
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