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In this article, we present the case for Generalized Linear Latent Variable Models11

(GLLVMs) as a go-to choice of statistical method for any community ecologist12

wanting to tackle a range of present-day ecological research questions. GLLVMs13

bring tools and capabilities from classic (mixed-effects) regression models to mul-14

tivariate community analysis, providing a number of novel ways to tailor models15

specifically to one’s study questions and data properties not available when using16

non-model-based multivariate methods. In order to facilitate further adoption17

of these methods by community ecologists, we provide 1) a practitioner-focused18

and practical overview of the advantages the GLLVM framework brings to the19

table when addressing different core ecological questions, 2) a number of concrete20

suggestions for how GLLVMs best can be incorporated into the analytical workflow21

of community ecologists, and 3) two illustrative worked examples of this workflow22

in action on real-world data.23
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Using different types of data is becoming increasingly important to improve our understanding of27

the nature and dynamics of ecological communities in a range of real-world scenarios. Examples28
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include assessing restoration success (Ribeiro et al., 2023), the impacts of invasive species29

(Souza-Alonso et al., 2022; Herrmann et al., 2022), and the modelling of community responses30

to climate change (Sahade et al., 2015). In all of these cases, how well one’s ecological research31

questions can be addressed depends not only on data, but also on the selection of appropriate32

tools and methods for analysis. And while the statistical toolbox available to ecologists today33

is large, it is also fragmented, which can make it difficult to chose a set of methods to address34

the relevant research questions in a study in a way that is both coherent, streamlined and35

reproducible.36

One important example of this is the fact that community ecologists today often find them-37

selves juggling two quite different methodological ”schools” when addressing different kinds of38

ecological questions. On the one hand, questions about univariate data, such as predation rates,39

breeding success, or the abundance of individual species in different habitats, are typically40

tackled in a model-based framework, using ”standard”, statistically well-established regres-41

sion models within the overarching framework of Generalized Linear Mixed Models (GLMM)42

(Bolker et al., 2009; Zuur et al., 2009). However, the same type of model-based framework43

has historically not been available to study differences in patterns of species composition and44

structure within or between communities. In these cases, where the data are multivariate, i.e.45

each sample is the abundance of several different species, and where the patterns of correlation46

between species or sites is the focus, researchers have typically used different forms of ordination47

to analyse the data. That is, distance-based or algorithmic methods such as Non-Metric48

Multidimensional Scaling (NMDS), Principal Component Analysis (PCA) or Correspondence49

Analysis (CA) (ter Braak and Prentice, 2004).50

Due to their ability to effectively condense and visualize patterns in multivariate species data,51

traditional ordination methods have historically been very important for studying ecological52

communities (ter Braak and Šmilauer, 2015). However, the fact that they do not in and of53

themselves allow for true statistical inference have also led many to argue that their use for54

answering ecological questions outside of data exploration and hypothesizing is limited (Warton55

et al., 2012, 2015; Jupke and Schäfer, 2020). Unlike regression models for univariate data, these56

methods do not, for instance, include estimates of uncertainty, incorporate random effects,57

or provide reliable tools for checking whether key properties of ecological data, such as the58

mean-variance relationship, are accounted for (Warton and Hui, 2017). On a more conceptual59

level, because distance-based and algorithmic methods rely on extensive transformation and60

”collapsing” of data prior to the analysis, the link between the actual data and the results is61

more obscure than with model-based methods. Overall, this makes ecological inferences from62

these methods harder to assess.63

The last decade has, however, seen a number of new model-based methods being developed to64

analyse multivariate community data in a more statistically informative manner (Hui et al.,65

2015; Niku et al., 2019; Ovaskainen et al., 2017). Most of these fall under the umbrella of the66

Generalized Linear Latent Variable Modeling (GLLVM) framework. In essence, GLLVMs allow67

for model-based counterparts to traditional ordination methods, based on Generalized Linear68

Mixed Models. They allow users to fit models that explain patterns of species co-occurrence69
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Figure 1: Graphical overview of the model structure of Generalized Linear Latent Variable
models (GLLVMs), as implemented in the gllvm R package. Model components are
named according to the model formulations by Niku et al. (2021) and van der Veen
et al. (2023). The figure is inspired by Figure 4 from Ovaskainen et al. (2017).

by assuming that they are the result of a few underlying latent, or unobserved, explanatory70

variables (i.e., ordination axes in the classical terminology). These latent variables can be71

inferred from both the species composition data itself (Hui et al., 2015), as well as environmental72

variables (van der Veen et al., 2023).73

The fact that GLLVMs are an extension of the Generalized Linear Mixed Modeling (GLMM)74

framework to multivariate data means that model-based ordination is situated in the more75

familiar context of other regression models designed to predict species occurrence and/or76

abundances. As Figure 1 shows, this also makes it possible to combine model-based ordinations77

directly with other models – such as multivariate (i.e. ”stacked”) GLMs or environment-trait78

interaction (”fourth corner”) models (Niku et al., 2021), opening up several new avenues of79

statistical analysis.80
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GLLVMs are currently implemented in several software packages. The gllvm R package (Niku81

et al., 2025) is aimed at community ecologists, and currently contains by far the richest toolbox82

for this purpose. The other main feature-rich R package is hmsc (Tikhonov et al., 2025), which83

is focused on GLLVMs for Joint Species Distribution Models, and thus has a similarly full84

toolbox geared at understanding how the environment affects the distributions of individual85

species. Other noteable software implementations include ecoCopula (Popovic et al., 2019),86

boral (Hui, 2025), VGAM (Yee, 2025), and glmmTMB (McGillycuddy et al., 2025).87

Despite the availability of user-friendly software, as well as several examples of GLLVMs being88

used successfully in the ecological literature (see e.g. Lam-Gordillo et al., 2025; Daudt et al.,89

2025; Wong et al., 2026), the uptake of these methods in areas of community ecology where90

ordination has typically been common has so far been slow: at least going by the ratio of91

downloads of the classical vegan R-package to more packages that implement model-based92

ordination (see Appendix S1). In our opinion, two potential barriers for improved uptake93

seem especially important. The first is a lack of accessible arguments and evidence for why94

GLLVMs make it possible to obtain better and more reliable ecological inference from one’s95

data as compared to traditional, non-model based methods. The second is a lack of instructive96

real-world examples that show the full capability of the framework in action on real ecological97

data.98

This article sets out to help remove these two barriers by providing a focused and practically99

oriented guide to the tools and capabilities of the GLLVM framework, aimed at the types of100

ecological questions that may be especially relevant to current users of traditional ordination101

methods. The text is divided into four parts: 1) An overview of what we consider to be the102

most important fundamental advantages of using GLLVMs in community ecology, 2) how the103

methods can be used more concretely to address different types of ecological questions; both104

with and without observed environmental covariates, 3) a suggestion for a general modelling105

workflow when using GLLVMs to address these questions, and 4) a demonstration on this106

workflow on two relevant, real-world data sets.107

1 Fundamental advantages of the GLLVM framework108

The fact that GLLVMs are an extension of the Generalized Linear Mixed-effects Modelling109

Framework means that they offer the same options for specifying, fitting, interpreting and110

comparing models as classic GL(M)Ms. Here, we highlight six of the most substantial advantages111

that this brings to the analysis of multi-species community data. These advantages should be112

applicable regardless of the specific ecological questions asked.113

1. Accounting for different types of data The GLLVM framework lets community ecologists114

analyse data as is, without data transformation or manipulation. As with GLMs, this115

done by specifying a suitable response distribution for the data, and by specifying the116

model’s structure to match the study system or experimental design at hand. Most117
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GLLVM software includes a variety of different response distributions, making it possible118

to model data recorded as presence-absence, counts, percentage cover, cover classes,119

biomass, and more (see e.g. Korhonen et al., 2025). Traditional multivariate methods120

(e.g. NMDS) offer ways to account for non-normality e.g. through the use of distance121

metrics, but these make the link to the ecological processes more opaque, confound results122

(Warton and Hui, 2017), and make assessment of fit to the data harder; whereas GLLVMs123

can use established tools for diagnostics (see point 1).124

2. Assessing model fit to the data Sound ecological inference requires one’s modelling as-125

sumptions to be met. To ensure this, the fit of any GLLVM can be assessed using126

diagnostic plots and metrics familiar from the GLMM framework, such as residual versus127

fitted plots or Q-Q plots. Specifically, the metrics used are randomized quantile residuals,128

similar to the DHARMa package (Hartig, 2024). As with classic GLMs, this is particularly129

relevant for assessing whether one’s selected response distribution fits the data being130

analysed, e.g. if there are non-linear structures or overdispersion in the data that are131

not accounted for by the model. For example, when the observed data type are counts,132

residual or QQ-plots will indicate if a Poisson distribution is applicable. If the model133

predicts too few zeros relative to the data, it might be more reasonable to switch to134

a zero-inflated Poisson distribution or a negative-binomial distribution. As there is no135

clear way of evaluating whether the model assumptions are met simply by looking at136

the resulting ordination, this is not generally recommended as a way of assessing the137

fit. This is not to say that model misspecification cannot have a profound impact on138

the ordination, which it certainly can (see Warton and Hui, 2017, for the case of the139

mean-variance relationship and NMDS/DCA)140

3. Accounting for different study designs In general, GLLVMs offer the same tools as141

GLMMs to account for properties of the sampling and study design, such as block- and142

hierarchical sampling designs, or differences in the read depth of samples in the case of143

DNA meta-barcoding data, which are not available for traditional multivariate methods.144

This can be done through fixed and random effects, nesting of effects, offsets or other145

changes to the model’s structure. For example, blocks in a randomized block design can146

be included as a random effect outside of a model-based ordination, to separate its effects147

from patterns of interest in the ordination (see the model formulation in Figure 1).148

4. Model comparison The model-based nature of GLLVMs also allows for the use of a range149

of different goodness-of-fit statistics to compare the relative fit and predictive power of150

different models for species composition. For ecologists, Information Criteria like AIC151

and BIC, or area under the curve (AUC), will perhaps be the most familiar of these.152

Depending on the goal of the analysis, AIC or BIC can be used to determine the ideal set153

of observed predictor variables, or to determine the number of unobserved latent variables154

that best represent the data. Traditional counterparts to this are e.g. the use of stress to155

determine the number of dimensions in an NMDS ordination, or the use of pseudo-AIC in156

methods such as Canonical Correspondence Analysis (CCA) and Redundancy Analysis157

(RDA); see e.g. Dexter et al. (2018).158
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5. Estimation and visualisation of uncertainty Because GLLVMs are fitted using either159

(marginal) Maximum Likelihood estimation or with Bayesian methods, all parameters160

and fitted values estimated by the model have an associated measure of uncertainty.161

These uncertainties can be used to make statements about statistical significance, or162

alternatively, the “strength of evidence”, of different model components (Muff et al.,163

2022). These uncertainties can then be visualized, e.g. by plotting confidence or164

prediction regions in an ordination diagram or intervals in a coefficient plot. In this165

regard, the uncertainties can serve the same purpose as multivariate permutation tests166

like PERMANOVA (Anderson, 2001), but are more versatile and interpretable, in the167

same way that confidence and prediction intervals in conventional statistical models are.168

6. Prediction As statistical models, GLLVMs can also be used to predict or forecast, with169

associated uncertainty. This opens up many new possibilities for community ecologists,170

not available when applying traditional ordination methods. For example, one can171

predict how community composition is expected to change under different climate change172

scenarios (keeping all other predictors constant), or to validate how well the predicted173

species community of a given habitat type fits with newly collected data (see also Worked174

Example 2).175

2 Using the framework to answer ecological questions176

The main strength of the GLLVM framework for ecologists lies in its capability to provide177

in-depth answers to questions about the composition and structure of ecological communities.178

This includes questions about which species co-occur and which factors (habitat types, climatic179

variables, time etc.) best explain observed patterns of composition or co-occurrence. Among180

the most important tools to help researchers address these questions are the many options to181

effectively visualize model outputs that the GLLVM framework provides. Depending on the182

model and the goals of analysis, these can combine information from environmental-, species-183

and sample- specific parameters related to the latent variables. Figure 2 provides a general184

overview of the most relevant types of visualisations of the different model parameters shown185

in Figure 1.186

This section is grouped into two parts: The first part focuses on questions that can be187

addressed by models only considering species observations, the second section focuses on188

questions involving measured environmental variables and ecological communities. However,189

it is important to bear in mind that contemporary community ecology studies often address190

multiple ecological questions simultaneously, sometimes by including both analyses on species191

composition alone and species composition in combination with environmental predictors. As192

such, the methods in the literature examples given between Section 2.1 and Section 2.2 will193

sometimes overlap.194
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2.1 Species composition data195

When information on the environment is absent, GLLVMs can be a powerful tool for exploring196

basic patterns in a multispecies dataset. As with traditional methods, an unconstrained model-197

based ordination can be fitted to the species data alone, and patterns can be inferred from198

visualisation of the results. This basic GLLVM will return scores for each sample (traditionally199

called site scores) and species (similarly called loadings). These can then be used to make200

inferences about site conditions, transitions between community types, and which species201

associations drive these patterns. Conceptually, if we view the latent variable(s) as estimates202

of unobserved environmental gradients, the species loadings represent the slopes, or the species203

response, of each species to the gradient(s), similar to their response to predictor variables in204

a standard regression. The site scores then represent the specific values of these unobserved205

predictor variables, calculated for each sample. As such, the latent variables are similar to206

observed measures of the environment, e.g. pH or soil moisture; the difference being that they207

are estimated from the data rather than being measured in the field (Niku et al., 2019).208

Visual inspection of GLLVM scores and loadings can be done the same way as with the results209

produced by other unconstrained ordination methods, such as NMDS or CA. Compared to210

traditional methods, GLLVMs have been shown to better capture both dataset properties and211

underlying ecological gradients in community data (Warton and Hui, 2017; Jupke and Schäfer,212

2020; van der Veen et al., 2023). In addition, GLLVMs have two other important tools for213

visual inference which traditional ordination methods lack.214

The first tool is a correlogram, or correlation plot. The sums of the square of the species215

loadings in a GLLVM are statistical estimates of the overall correlation between pairs of species216

in the data, which can be visualized in a correlogram (see Figure2). Together with ordination217

plots, correlograms can be effective tools to construct an overview of species co-occurrence218

patterns in one’s data (Ovaskainen et al., 2017), although ordination plots makes it possible to219

also visualize the relationship between species scores and the samples or sites.220

The second tool is uncertainty estimates — i.e. prediction and confidence intervals — for221

both the site scores and species loadings. These allow researchers to meaningfully evaluate222

the statistical strength of evidence for the patterns observed in the data. For instance, if223

the prediction intervals of two site scores are clearly separated, it can be interpreted as the224

model being confident that the species compositions at these two sites are in fact different, and225

are expected to remain so if both sites were to be re-surveyed. The same logic holds for the226

species loadings, where uncertainties can be used to determine if two species are expected to227

co-occur.228

These two tools, together with options for combining unconstrained ordinations with other229

forms of regression, allow a number of exploratory community ecology questions to be addressed230

in a single model-based framework. A selection of examples are presented in Table 1, although231

some may be considered exploratory before they are tackled by using information about the232

environment directly in the model. This will be discussed further in section 2.2.233
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Table 1: Examples of ecological questions that can be investigated in an exploratory manner
using unconstrained ordination. The questions are broadly divided into fundamental
(F) and applied (A) questions. Recent examples refer to studies in which these
questions have recently been addressed using traditional methods for unconstrained
ordination.

Question Recent examples

F1: Does species composition change along
one or more biotic or abiotic gradients
(e.g. elevation, forest age, water salinity)

Handegard et al. (2024); Maunsell et al. (2013);
Mulders et al. (2022)

F2: Are there seasonal patterns in
community composition within a habitat?

Li et al. (2022); Naz et al. (2024)

F3: Are there characteristic clusters of
species that tend to occur together in
different sites, that can be interpreted as
distinct communities?

Shembo et al. (2024); Lourenço et al. (2024)

F4: Are there associations between species
in the community that are independent of
associations accounted for by environmental
predictors, which can be interpreted as
biotic interactions?

Suárez-Tangil and Rodŕıguez (2023); Wang
et al. (2025)

A1: How does the species composition of
communities differ between different
habitats or land management practices?

Larson et al. (2024); Fanfarillo et al. (2022);
Graser et al. (2025); Pedley et al. (2023); Hu
et al. (2024)

A2: Is there a difference between species
composition of sites undergoing different
ecological restoration treatments, and
between those sites and undisturbed
reference vegetation?

Brasil Neto et al. (2025); Helbing et al. (2023);
Reis et al. (2022); see also worked example 2

A3: How do alien species occur together
with native species in an invaded
community?

Hejda et al. (2023); Lanta et al. (2022); Reeve
et al. (2022); see also worked example 1

2.2 Explaining species composition data using environmental predictors234

When environmental predictors are available, the GLLVM framework offers even more tools235

to make inference about species-environment relationships. One approach is to use the236

environmental predictors to explain the distribution of each species individually, with the latent237

variables modelling any residual co-variation between the species (Ovaskainen et al., 2017).238

However, with large numbers of species, especially species that occur infrequently, this approach239

will quickly involve too many parameters to accurately estimate. A more parsimonious approach240
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in line with ecological theory (ter Braak and Prentice, 1988; Legendre and Legendre, 2012), is241

to assume that species’ distributions are explained by a few underlying latent variables that242

are, in turn, explained by environmental predictors.243

The core model in this case is the concurrent ordination, where the latent variables depend244

on both environmental predictors and additional variation outside of the predictors (van der245

Veen et al., 2023). Concurrent ordination works by estimating latent variable coefficients (also246

called canonical coefficients; Blv in Figure 1 and 2), that explain how a change in the latent247

variable (and thus the species composition) is associated with a change in each environmental248

variable (specifically, how much a latent variable changes following a one-unit change in a given249

environmental variable, all other variables being equal). In addition to the latent variable250

coefficients, the latent variables estimated by the models can also have a residual, or unexplained,251

component (for more detail see van der Veen et al., 2023). This means that the model can252

provide estimates not only of the degree to which the main patterns of species composition253

are explained by the environmental factors, but also to what degree there are additional254

unobserved factors driving species composition. The relative importance of the environmental255

and unobserved factors can then be disentangled by variance partitioning. In this regard,256

concurrent ordination addresses a longstanding problem with the use of unconstrained and257

constrained ordination (Økland, 1996; ter Braak and Šmilauer, 2015), as it simultaneously258

facilitates exploring species co-occurrence patterns and species-environment relationships.259

Specifying the concurrent ordination to have no residual variation, i.e. assuming that the260

latent variables are completely explained by the environmental predictors, corresponds to261

what is traditionally called constrained or direct ordination, for which popular traditional262

methods include Canonical Correspondence Analysis (ter Braak, 1986) and Redundancy analysis263

(Legendre and Legendre, 2012). However, both of the aforementioned methods make strong264

assumptions about the distribution of the data, whereas GLLVMs are flexible enough to265

accommodate any data type found in community ecology (see Section 1).266

Modeling communities with constrained or concurrent GLLVMs presents a number of additional267

features and tools for statistical inference over traditional methods: (1) As in the unconstrained268

case, the latent variable coefficients will have an uncertainty, and thus a confidence interval,269

associated with them. These confidence intervals can be used to make inference about the270

strength of evidence for the effect different environmental predictors, site scores and species271

loadings in the model. (2) Although the predictors affect the latent variables, they can be272

easily translated to predictor effects for individual species, making it straightforward to connect273

movement along environmental gradients to changes in individual species’ abundances. As274

shown in Figure 2, the individual species effects, extracted from the model, are typically plotted275

using a caterpillar plot, while the latent variable coefficients are typically represented in an276

ordination biplot or triplot. (3) Predictor effects for the latent variables can be specified as277

either fixed or random effects (inside or outside the ordination), allowing for greater flexibility278

in the types of models that can be fitted. Non-linear effects such as splines can also be included279

in the model. (4) The relative importance of the different model components in explaining the280

responses of the different species can be assessed through variance partitioning. This includes281
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assessing the importance of residual variation of the unexplained part of the latent variable(s) in282

a concurrent ordination, the effects of predictor variables both within and outside ordinations,283

and other model components, such as site intercepts, traits etc. (see Figure 1) in explaining284

the linear predictor for each species. Proportions of variance can be calculated to estimate the285

relative contributions of each model component in explaining each species’ response.286

Table 2 outlines some examples of ecological questions where models with concurrent or287

constrained latent variables would be relevant to answer ecological questions, as well as288

examples from the recent literature where they have been approached using mostly traditional289

methods.290

Table 2: Examples of ecological questions that can be investigated using latent variable models
with predictors, divided into fundamental (F) and applied (A) questions.

Question Recent examples

F1: How do different environmental gradients
(e.g. elevation, climate, water depth) explain
differences in the community composition
between sites?

Cheng et al. (2023); Young et al. (2022);
Askeyev et al. (2023); Matavelli et al. (2022)

F2: Are specific species in a community
indicators of changing environmental
conditions?

Andrew-Priestley et al. (2022); Korolyuk et al.
(2024)

A1: What is the effect of antropogenic
vs. non-antropogenic factors in terms of
explaining community composition?

Christman et al. (2022), Sanchez et al. (2023)

A2: Do certain environmental factors explain
the prevalence of alien species in an
ecosystem?

Kalusová et al. (2019), see also worked
example 1

A3: How does a community respond to
different restoration treatments?

Crouch et al. (2022), see also worked example
2

A4: How will the composition of a community
shift in response to changing climate?

Forte et al. (2024)

3 Guidelines for a GLLVM modeling workflow291

Guidelines for other model-based analyses have been outlined by Warton et al. (2015), Zuur292

et al. (2010) and Zuur and Ieno (2016), among others, and the same recommendations generally293

hold for GLLVMs. Based on these, we present a five-step workflow, specifically geared toward294

the effective and sound application of GLLVMs in community ecology. The workflow outline295

is primarily adapted from Warton et al. (2015), and is summarized in Figure 3. Section 4296

demonstrates the workflow on two relevant real-world data sets.297
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2.   Exploratory data analysis (EDA)

1. Formulate the ecological question 
statistically

3.   Model setup and 
fitting

4a.   Model checking

• Identify common and rare species in the 
data

• “Sanity check” for model output
• Check for colinearity of predictors
• Center and scale predictors

• What is the goal of the study? (exploration, 
prediction, testing)

• What statistical relationships need to be included 
in the model?

• What types of data/study design are needed and 
relevant?

5.   Analysis and inference

• Do residual diagnostic plots indicate model fit 
to the data?

• Are there issues in model convergence? (E.g. 
“blown up” parameter estimates/uncertainties)

• Comparison with candidate models (e.g. 
through AIC or goodness-of -fit), if relevant

• Model summaries
• Ordination diagram of species-, site- and 

environmental scores
• Looking at uncertainty estimates
• Coefficients of species-specific predictors
• Variation partitioning
• Model predictions

4b.   Model re-fitting

• Use a different response distribution
• Include different latent variables 

and/or predictors (In line with the goal 
of the analysis)

• Specify predictors differently (e.g. as 
random effects)

• Other technical “tricks”; i.e.  more 
starting iterations, fixing disperstion 
parameters etc.

Figure 3: Visual representation of the analytic workflow suggested for modeling ecological
communities with latent variables with GLLVMs. Adapted from Figure 1 in Warton
et al. (2015).
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1. Formulate the biological question as a statistical question After the biological and eco-298

logical questions of the study are clarified, the first step in any model-based workflow299

should be to formulate them as concretely as possible in statistical terms. This means300

clarifying why a GLLVM is the right tool for the problem, and how exactly the model301

will be used to answer the ecological questions (e.g. which parameters should be included302

in the model).303

Ideally this first step should be undertaken before collecting data, in order to make sure304

that the study design and sampling strategies are geared towards getting the data needed305

to answer the ecological questions of interest (for a further discussion of this, see Warton306

et al., 2015).307

For example, if the main interest of a study is in making inference about how a species308

community changes along a temperature gradient, care should be taken to sample the309

environmental variables along that gradient so that they capture enough variation in the310

environment to meaningfully answer that question. Similarly, if the goal is to investigate311

the response of one or more specific focal species within the community to environmental312

and biotic changes, one should make sure to collect data on a wide enough range of313

conditions where they might be expected to occur and not occur (i.e., their niches should314

be well-sampled), in order to actually obtain enough data to make meaningful statistical315

inferences about their relationship to the environment and/or other species (see also316

worked example 1, as well as the Section 5). These considerations might occasionally also317

need to be balanced with strategies for ensuring sample representativeness, for example318

by deploying sampling methods that have some way of quantifying detectability (see e.g.319

Jeliazkov et al., 2022), as long as it is is consistent with the broader objectives of the320

study.321

This step also includes considering which type of model is best suited to answer one’s322

research questions and represent the ecological relationships of interest. For example, if323

gathering data on environmental or habitat-type variables is part of the study, representing324

these in a concurrent ordination will often be a natural choice.325

Clarifying whether the objective of one’s study is primarily exploratory, confirmatory or326

predictive is arguably another important part of this step (Shmueli, 2010), particularly327

for guiding choices around the inclusion of predictor variables and model selection. If the328

goal is prediction, i.e. to find the GLLVM with the combination of predictor variables that329

most accurately predicts either community composition or the occurrence of specific focal330

species, optimizing one’s model for this purpose through model selection, using e.g. AIC331

or similar tools, can be a meaningful strategy. However, if the goal of the analysis is rather332

to explore or make inference about the species community or communities in the data, as333

in the example above, variable selection for prediction could lead to biased inference and334

should in general be avoided (Sainani, 2014). Instead, all variables that are of interest335

should be included in the model (as the best statistical representation of the ecosystem),336

and the results of the fitted model should be explored as is. AIC or BIC might still337

be useful for determining the number of latent variables that best fit the data. Model338
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selection of predictor variables based on optimizing for prediction should however be339

avoided, especially if the aim of the study is confirmatory, i.e. testing specific hypotheses340

about ecological relationships rather than exploring them more generally. Although in341

general, confirmatory analyses might be less common for the types of community ecology342

questions considered here.343

In general, our modeling philosophy is the same as that of Ovaskainen et al. (2017):344

whenever possible, the aim should be to fit a single comprehensive model which can be345

used to address all relevant research questions, rather than analysing different models in346

parallel. This helps to streamline and making the analysis more reproducible, as well as347

preventing data dredging and ensuring that uncertainties are handled correctly.348

2. Exploratory data analysis (EDA) After collecting data, and before fitting a GLLVM, ex-349

ploratory inspection and visualisation of the raw data should always be done in order350

to get a better understanding of the dataset and to act as a sanity check on the model351

output. Relevant dataset properties to consider for GLLVMs are largely the same as352

for other models in the GLM family, and we generally recommend the same strategies353

proposed by Zuur et al. (2010).354

When dealing specifically with the types of multivariate species data considered here, we355

will also recommend a few additional exploratory strategies as good practice. The first is356

to simply get a broad-scale overview of the data by creating a table or histogram of how357

many samples (rows) each species (column) is observed in, as well as the inverse (how358

many different species are observed in each sample). This makes it possible to get a sense359

of how the data is spread over the samples, which e.g. can be seen in context with the360

sampling design, or to identify potentially data-deficient species (see discussion in Section361

5). When species data are quantitative (i.e. not simply presence/absence), visualizing362

the relationship between species’ prevalence in the data and their average abundance363

in each site with an Abundance-Occupancy (AO) plot can also be a helpful tool in this364

regard, making it possible to see whether the data follows the classic positive relationship365

commonly found in ecological data sets or not (Gaston et al., 2000), and whether some366

species deviates notably from others in terms of their AO-relationship – either due367

to factors do to the sampling design or the ecological dynamics of the system, which368

sometimes can be challenging to untangle (Russell et al., 2005; Gaston and Blackburn,369

2003), but which in any case may provide important context for interpreting the results370

of a model fit.371

Depending on the goals of the study, fitting a simple unconstrained ordination to the372

data – either through an unconstrained GLLVM or a classical method like PCA – could373

also be a part of this exploratory phase, to be used as a simple summary of the main374

species co-occurrence patterns in the data, before a model specifically geared towards375

one’s research objectives is specified in step 3.376

As for the EDA of predictor variables, visualizing their pairwise co-linearity using a377

correlation plot or similar is a good general-purpose tool for informing decisions about378
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predictor inclusion in the model. However, as predictor collinearity is typically associated379

either with properties of the study design or inherent properties of the study system (e.g.380

the relationship between temperature and altitude), the question of whether to include or381

discard predictors due to collinearity should be informed by the goals of the study, study382

design and one’s a priori knowledge of the study system, rather than numerical rules of383

thumb. Note also that while including highly co-linear predictors in a GLLVM might lead384

to increased uncertainty in the coefficient estimates and potentially convergence issues, it385

should not in principle lead to a change in which parameter estimates are favored by the386

model. Scaling and centering of the predictors is also recommended here as a standard387

procedure to improve coefficient estimation and convergence of the model before fitting.388

3. Model setup and fitting Following from steps 1 and 2, the relevant model(s) should have389

been identified, and can now be fitted to the data. Important parts of the model to specify390

are (a) the response distribution for the species abundances/occurrences, (b) row (i.e.391

site) effects to explain the total abundance of individuals in the samples (i.e. predictors392

that effect the abundance of all species equally), (c) the number of latent variables (of393

different types) fitted to the data, and (d) model formulae for latent variables and species394

effects. It is important to note here that transforming, scaling or otherwise changing the395

species response variables in order to give more desirable statistical properties is, again,396

not in line with the GLLVM modeling philosophy. The focus should be on specifying an397

appropriate statistical response distribution that describes the data that was actually398

collected.399

4. Model checking and re-fitting After a GLLVM model has been fitted to the data, it should400

be evaluated thoroughly. If there are issues with the model fit, these should be addressed401

and the model re-fit, as illustrated in the flowchart in Figure 3. As with classic GLMMs,402

it is important to check that the data meet the model assumptions, by visualizing the403

residuals in diagnostic plots, as discussed in Section 1.404

It can sometimes be difficult to get good convergence and numerical stability when fitting405

GLLVMs. Inspecting the gradient vector of the likelihood function to see if it is close406

to zero, or checking for artefacts such as negative estimates for the standard error of407

parameter estimators, can be useful tools to get an indication of this. visualisation of408

model estimates and uncertainties can also be helpful, e.g. if some species have ”exploding”409

species loading estimates or uncertainties. This typically happens when some species occur410

very infrequently in the dataset or are only associated with a subset of predictors (e.g. a411

species only occurs in one habitat, and habitat is included as a categorical predictor).412

While the easiest solution from a model stability perspective in this case is to filter out413

the ”problem species” from the data, this needs to be considered carefully in the context414

of the study. See 5 for a further discussion on this.415

Another route to improvement is changing the model, perhaps by using a different416

response distribution (e.g. a zero-inflated Poisson distribution rather than a standard417

Poisson distribution, see 1.1), or specifying predictor effects as random rather than fixed.418

Excluding or including predictors (including more or fewer latent variables) can also help,419
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if it does not clash with the aim of the study. A number of more technical tricks can also420

help, such as increasing the number of starting iterations, fixing dispersion parameters421

for the response distribution, or reordering the species in the response data. It might422

also be helpful to consult other articles discussing how to deal with model convergence in423

mixed models, e.g. Bolker et al. (2009).424

After assessing the validity of the model, assessing the quality of the model with respect425

to prediction or selection, depending on the goal of the study, can be done in a number426

of ways. Information criteria like AIC or BIC are perhaps the most well-known. As these427

two criteria have slightly different interpretations (Aho et al., 2014), which criterion to428

use will depend on the objective of the study. Other measures of model predictive quality429

can also be assessed, e.g. root-mean square error of the prediction, or cross-validation.430

5. Visualisation and inference After step 4 is completed, the model can finally be explored431

to make inferences about the relevant ecological questions of the study. We refer here432

primarily to Section 2 for a discussion of the different tools that can be used to make433

inferences from GLLVM models in terms of different ecological questions, as well as the434

worked examples.435

4 Worked examples436

In this section, we demonstrate how the GLLVM framework can be applied in real-world settings,437

using two relevant case studies from the recent ecological literature. The case studies are438

selected in order to showcase the tools and questions discussed in Section 2.1 and Section 2.2.439

In order to demonstrate different paths to visualizing the output of GLLVM models, visualisa-440

tions in Example 1 (Figure 4) are produced primarily using the native plotting functionality441

from the gllvm package, using the base R plotting interface, while visualisations in Example442

2 (Figure 5 are constructed using the ggplot2 package with extracted model components.443

Walk-throughs of the complete data analyses and visualisations, including figures for model444

diagnostics, are available in Appendix S2.445

4.1 Example 1: Invasive trees in Argentina446

In the first case study, we reanalyse data from Fernandez et al. (2021). Here, the researchers were447

interested in how the presence and abundance of an invasive tree species, the broad-leaf privet448

(Ligustrum lucidum), impacts the native tree community in an Argentinian second-growth449

subtropical forest.450

Data on the tree community was recorded by measuring the basal area of 20 common species451

(including L. lucidum) in 164 forest monitoring plots. In a subset of 44 of these plots, samples of452

four physical-chemical characteristics of the soil: soil carbon content, nitrogen content, carbon453

to nitrogen ratio, and soil humidity, were collected as well.454
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For the purposes of this article, and in order to best help us showcase the GLLVM framework,455

we have condensed the ecological questions from Fernandez et al. (2021) into the following456

two research questions: 1) How is the abundance of L. lucidum in an area associated with the457

composition of other (native) tree species, and 2) Are some soil properties associated with458

increased abundance of L. lucidum specifically, compared to the native species?459

4.1.1 Formulating the statistical question460

In this case, the aim of the analysis is clearly exploratory, rather than confirmatory or predictive.461

No specific hypotheses about species-species or species-environment relationships are tested,462

and the goal is not to find a model that best predicts abundances of L. lucidum in the ecosystem.463

This suggests we should aim to model the data in a way that includes all relevant predictors464

of interest, and that extensive model selection beyond finding the optimal number of latent465

variables is not relevant.466

However, the fact that environmental predictors (i.e. soil properties) are only available for a467

small subset of the vegetation plots, does present a challenge. In order to make the most of the468

data, we therefore veer slightly from our ideal workflow, and fit two different GLLVMs to the469

data: (1) A model with only unconstrained (i.e. not predictor informed) latent variables fitted470

to the full dataset; this will be used to make inferences about the patterns of co-occurrence471

between L. lucidum and the other species, and (2) a model with predictor informed latent472

variables (i.e., a concurrent ordination), fitted to the subset of plots with environmental variables473

recorded, using all 4 recorded soil properties as predictors. This second model will be used474

primarily to answer research question 2, make inferences about potential relationships between475

soil conditions and the co-occurrence of L. lucidum with native species. If predictor variables476

had been available for all plots, we could most likely have addressed all of these questions with477

a single concurrent ordination.478

As the original study does not contain or consider explicit information about the study design,479

we will treat each sample (i.e. site) as independent. We do this by adding random intercepts for480

each row in the response data (see paragraph four in Section 1) to ensure the latent variables481

only account for composition rather than total abundance at each site.482

4.1.2 Exploratory data analysis483

Aggregating and visualizing the number of occurrences of all species in the full dataset (see484

Appendix S2, Section 3.2.1.), we see that every species appears in more than three plots. Of485

the 164 plots, only five contain just a single species, and the vast majority contains three or486

more species. Based on this, we assume that we have enough information in our data to avoid487

removing samples or species.488

When selecting only the subset of the plots where soil variables were measured, however, two489

species were absent from all of these plots, and one species only occurred once. We thus490
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excluded these three species from model 2, as they don’t hold information, and keeping them491

will likely hurt model convergence.492

Other than filtering the data, and centering and scaling all predictor variables to mean zero493

and unit variance, as discussed in Section 3, no further pre-processing was done for the data.494

4.1.3 Model setup495

Because our observed response variables are recorded as the area of each species in a plot,496

we decide to fit both models using a Tweedie distribution (Jørgensen, 1987). The Tweedie497

distribution arises as a Poisson sum of Gamma random variables. In other words, we assume498

that the number of observed individuals follows a Poisson distribution, and the area of each499

individual follows a Gamma distribution. As well as having an intuitive derivation, the500

distribution can accommodate species with zero area (unlike, for example, gamma and log501

normal distributions), and is also appropriate for data that follow Taylor’s law (Kendal, 2004).502

For both of the proposed models (the unconstrained and the concurrent), we intend to find503

the optimal number of latent variables which best fit the data. As discussed in Section 3, we504

decide to do this by finding the number of latent variables with the lowest information criterion505

that also fitted the data. In this case we will use AIC, as it is primarily recommended for506

exploratory analyses (Aho et al., 2014). It is also important to stress that in this case we only507

selected for the number of latent variables, not the predictors, due to the exploratory nature of508

the study.509

We fit the models using the gllvm() function, with the syntax shown below, commented for510

clarity. We initially fit the models with one latent variable each, and proceed to add latent511

variables to find the AIC minimum, checking the diagnostics of each new model as we go. See512

Appendix S2, Section 3.3. for the full model fitting code, with explanatory comments.513

4.1.4 Model checking and refitting514

The diagnostic plots for both the unconstrained and constrained models did not indicate any515

violations of the model assumptions, and the addition of more latent variables to each model516

did not change this (see Sup. Figures 2.3, 2,4 and 2.6). The only caveat to this is that there517

seemed to be a slight structure in the residuals-versus-fitted plots — where the most prevalent518

species had slightly more negative residual than would be expected.519

In the case of the unconstrained model, there was an AIC minimum for a model with five520

latent variables (see Sup. Table 2.1.). However, this was not as well converged as the model521

with three latent variables. Because of this, and partially in order to make the analysis as522

parsimonious as possible, we decided to continue with the model with three latent variables for523

the analysis (see Appendix S2, Section 3.4.1.). For the concurrent model, there was a clear524

18



AIC optimum at the model with two latent variables, and as such, we decided to continue with525

this model for visualisation and inference for the second part of the example.526

4.1.5 visualisation and inference527

Looking at the visualized species loadings of the unconstrained ordination (model 1) in Figure 4a,528

we see that L. lucidum is a clear outlier among all the other species. The predicted abundance529

of L. lucidum is primarily summarised by the first latent variable after rotating in the direction530

of maximum variance, as the position along the second latent variable (the vertical axis) is close531

to zero. As such, we might inspect the other species’ responses to the first latent variable (the532

horizontal axis), for indications of their co-occurrence with the invasive species. The fact that533

only three other species have a positive loading along the first latent variable, and most other534

species are associated with the other end of the diagram, clearly indicates that an increased535

presence and biomass of L. lucidum is associated with fewer occurrences and lower biomass536

of most other tree species. This is also supported by the confidence intervals of the species537

loadings, in which the C.I. of L. lucidum overlaps with almost no other species.538

These co-occurrence patterns are also clearly supported by Figure 4b, albeit more nuanced,539

as the correlation plot uses information from all three latent variables. The correlation of L.540

lucidum with the other species resulting from the species scores are all estimated to be negative,541

except in three cases. The ecological interpretation of this first model, then, is that L. lucidum542

seems to either displace most native species where it occurs, or that its environmental tolerance543

or preference is different from most other species in our data, thus thriving in conditions544

that are not favorable to other species. It could also be a combination of both scenarios, as545

Fernandez et al. (2021) hypothesize, in which L. lucidum alters the soil chemical properties546

where it establishes itself, making it more favorable for itself and less for the native species.547

The concurrent ordination that includes environmental predictors (model 2), suggests that548

the observed environmental variables explain a significant portion of the community structure.549

As Figure 4c shows, the species scores of L. lucidum are separated from the others along550

the horizontal axis, as in the first model. Additionally, we see that it is clearly negatively551

associated with increasing soil moisture content, and positively associated with a larger soil552

carbon-to-nitrogen ratio. This is made even more clear when looking at the species-specific553

predictor effects in Figure 4d. L. lucidum is the only species which is estimated to decrease554

its abundance with higher soil moisture, while all other species respond either neutrally or555

positively to moisture. An inverse association seems to exist for the C:N ratio, although less556

pronounced, being shared by a few other species, as well as associated with higher uncertainties557

for all species (Sup. Figure 2.10). Variation partitioning also revealed soil moisture to be558

the variable explaining the highest mean proportion of variance for the species in the second559

model (Sup. Figure 2.11). However, the variance partitioning, as well as the model summary560

(Appendix S2, Section 3.5.2), also indicates that about 30% of the variation in the species561

composition was not explained by the environmental covariates , and is therefore an indication562
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Figure 4: Selected visualisations of the estimates from the unconstrained (a,b) and concurrent
(b,c) latent variable models. L.luc = Ligustrum lucidum, is indicated in red text in
all figures. A: Site scores (black) and species scores (blue, red) for the unconstrained
model with three latent variables (model 1) Ellipses represent prediction intervals
for species scores. Species and site score and uncertainty ellipses of the three latent
variables are all rotated in the directions of maximum variance to produce latent
variable 1 and 2 using singular value decomposition, similar to a PCA rotation of an
NMDS ordination. B) Correlation plot of the between-species correlations estimated
from the species scores of the unconstrained model. C) Ordination diagram of site
scores (black points), species scores (blue, red text) and environmental coefficients
(red arrows) of the concurrent (predictor-informed) latent variable model using a
subset of 40 points. Light red indicates that the 95% confidence interval of the latent
variable predictor includes 0 for one or more of the latent variables, while the converse
is true for the dark red arrows. D: Species specific coefficients (slopes) for the effect
of soil moisture content on the abundance on the different species in the model (on
the link scale), ordered from lowest to highest. Cross = coefficient estimate, line =
95% confidence intervals. Confidence intervals that cross 0 are indicated in grey.
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that there might be other important environmental predictors – or other dynamics in the563

community – that influence the species composition and which were not included in the model.564

In summary, the ecological conclusion to draw from these two models seems relatively clear:565

The models provide a strong indication that in the ecosystem where it appears as an invasive566

species, L. lucidum is associated with a lower diversity and species abundance of most other567

native, common tree species. Secondly, this effect can largely be explained by L. lucidum either568

preferring, better tolerating or even facilitating drier, more nutrient-poor soils, supporting the569

initial hypothesis from Fernandez et al. (2021).570

4.2 Example 2: Roadside Restoration in Norway571

The second case study is based on data and ecological questions from Mehlhoop et al. (2022).572

Their aim was to assess the impact of different restoration efforts on roadside vegetation, in573

order to mitigate the effects of road construction. The dataset consists of the percentage cover574

of 164 different vascular plant species at 282 roadside plots across 3 regions in southern Norway.575

At each site, plots were subject to one of three restoration treatments: Re-seeding using576

commercial seed mixes, planting with native vegetation, or natural, i.e. unassisted re-vegetation.577

In addition, plots in intact reference vegetation were also sampled. Other variables, including578

the time since restoration (for the non-reference plots), as well as biological and environmental579

variables like soil organic matter content, canopy cover and grain size, were recorded at each580

plot to account for potential environmental factors that may influence species composition not581

directly related to restoration.582

The primary research question of Mehlhoop et al. (2022) was how effective the three different583

restoration treatments were in bringing the vegetation of the impacted sites closer to the584

assumed natural vegetation in the reference sites. Ideally, this knowledge can then be used to585

inform future restoration efforts in similar nature types. As a secondary goal, chosen specifically586

to further showcase the capabilities of the GLLVM framework, we also ask how the vegetation587

in the restored sites is expected to change over the next 20 years.588

4.2.1 Formulating the statistical question589

The main goal of the analysis is to understand the relationship between a set of predictor590

variables (restoration method and time) and species occurrences in the data, and not to test591

any specific hypothesis. However, in contrast to the first example, the samples themselves592

(i.e. the restoration sites), rather than the species, are the primary unit of interest. Although593

the secondary goal is prediction oriented, the primary goal is explanatory in nature. As such,594

we decide to base our prediction on whichever model serves the explanatory purpose of the595

study best, rather than the other way around, even if that model might not predict optimally.596

Consequently, fitting a concurrent ordination for the species composition including all potentially597

relevant predictors (treatment, time since restoration and the environmental variables) best598
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aligns with the goals of this study. As the effect of time on species composition might be599

different for different restoration treatments, and because this potential difference is central600

to the ecological question in this case, we decide to include an interaction effect between the601

restoration treatments and time since restoration.602

It is also necessary to think about how to account for the influence of our study design. In603

particular, there could be potential differences in the overall prevalences of species between the604

three different study regions that we want to separate out from the effect of restoration. To605

address this, we included region as a fixed row effect in the model, with additional random606

species-specific intercepts for each region. Within regions we might also want to account for607

differences in the sampling intensity between sites and plots. To do this, we add an additional608

random row effect for each site to account for potentially confounding differences in the total609

sample abundance between sites. In other words, we condition the ordination on the study610

design, and thus remove information about the effect of the regions and sites on the species611

community from the ordination.612

4.2.2 Exploratory data analysis613

Of the 164 species in the data, more than 50 only appear in a single plot and almost 40 appeared614

only two or three times. In order to reduce the chance that the final model is unduly influenced615

by data-deficient species, and because the focus of the study was the effect on restoration on the616

overall compositional differences between sites, rather than a focus on any particular species, we617

decided to exclude the species with three or fewer occurrences. Consequently we did not exclude618

any sites from our data. See Section 5 for a further discussion on the handling of data-deficient619

species in GLLVMs. We also scaled and centered all numeric predictor variables.620

4.2.3 Model setup621

Because our data is proportions with a large number of zeros, we used an ordered beta622

distribution as our response distribution (see Korhonen et al., 2024). We then set up the623

initial model following the structure outlined in the beginning of this section. To include the624

interaction effect between restoration treatment and time (and exclude a time interaction with625

the reference category), a custom model matrix was constructed where only interaction effects626

between the treatments and time were included (see Appendix S2, Section 4.2.).627

As in worked example 1, we decide to use information criteria to determine the optimal number628

of latent variables. Code for the model fitting, with comments, can be found in Appendix S2,629

Section 4.3.630
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4.2.4 Model checking and re-fitting631

Unlike in example 1, fitting the concurrent ordination specified above presented some numerical632

challenges, as models with both one, two, and three latent variables struggled to converge.633

We thus changed the fitting method to Extended variational approximation (Korhonen et al.,634

2023), and changed the ordering of the species in the input data, placing the most abundant635

species first. This helped to stabilise fitting of the models with one and two latent variables,636

however the model with three was still not able to converge. And while the diagnostic plots for637

both the one- and two latent variable models looked good, the model with two latent variables638

still showed some potential convergence issues. In particular, many of the variances of the639

parameter estimators calculated by the model were negative, which makes the model fit had to640

interpret.641

As the model summaries of both models also indicated that the residual variation in the642

latent variables (i.e. the unexplained part), was consistently negligible (variance <e-7), we thus643

tried instead to fit a simpler model with constrained (i.e. fully predictor determined) latent644

variables, to make both the fitting and the inference easier. Still, the same lack-of-convergence645

problems persisted for the constrained models with two and three latent variables, in addition646

many species loadings being severely ”blown up” and linearly correlated in the ordination647

loadings, making the interpretation of the results ecologically questionable. As such, we648

ultimately decided to move forward with the model with one constrained latent variable for our649

analysis, even though the AIC was lower for the two-variable model for both the concurrent650

and constrained models (see Sup. Table 2.1).651

4.2.5 Visualisation and inference652

Our one-dimensional constrained latent variable model indicates that the different restoration653

treatments are the most important factor separating the species composition of the different654

sites (Figure 5a), with the reference vegetation sites clustering on one end of the scale, the655

naturally re-vegetated sites in the middle, and the planted and seeded sites on the other656

side. This is supported by the species loadings of the model, showing that the species most657

associated with the sites in the reference vegetation (left part of axis 1) are the european658

blueberry (Vaccinium myrtillus), may lily (Maianthemum bifolium) and oak (Quercus robur),659

all species characteristic of Norwegian south boreal forests, in which the reference plots were660

placed. Other tree species such as Norway spruce (Picea abies) were also strongly associated661

with the left-hand side. On the other side of the restoration axis, the plots undergoing seeding662

and planting were mostly associated with grasses such as red fescue (Festuca rubra), timothy663

(Phleum pratense) and small-reed (Calamagrostis stricta), plants more typical of typical of664

roadside vegetation and early succession, as well as some commercial seed mixes (Mehlhoop665

et al., 2022).666

The estimated interaction between restoration treatment and time since restoration (i.e. how667

the effect of the restoration on species composition changes with time) is also different between668
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Figure 5: Visualisations of the estimates (a, b) and predictions (c,d) from the constrained latent
variable model of the roadside vegetation vegetation. (a) One-dimensional diagram
of the constrained latent variable. Sites are coloured by restoration treatment; red
arrows indicate the latent variable coefficients of the model (X denotes an interaction
effect). Dark red indicates that the 95% confidence interval of the predictor does not
cross 0. Blue arrows show the species scores of the five most positively and five most
negatively associated species with the latent variable. (b) Boxplot of the site-specific
and species-specific random effects of the sites and different study regions in Southern
Norway, respectively. For the species-region random effects, the combined effect
of the fixed-effect intercepts of region 2 and 3 and the random species effect are
shown (c) Predicted site scores for the latent variable with 20 years added to the
site coefficients. (d) Density plot of predicted change in cover in different treatment
groups for two potential indicator species, Festuca rubra and Picea abies.
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treatments (Figure 5a, see also model summary in Appendix S2, Section 4.5.). Natural sites669

had a moderate trend towards the reference sites, while the effect was much smaller for the670

planted sites and absent for the seeded sites. The other measured environmental variables671

mostly have weak associations with the latent variable, exception for soil organic matter, which672

has a moderate correlation with the species composition of the intact sites.673

The effect of the study design (Figure 5b) was also pronounced, explaining around 26% of the674

total variation in species responses according to variance partitioning (see Appendix S2, Section675

4.5.). Among other things, we see that Region 3 was in general more species-rich than the other676

regions. This indicates that not accounting for the study design might have led to a different677

inference about the effect of restoration, because the distribution of the treatment groups and678

time since restoration is not equally distributed among the study regions (Mehlhoop et al.,679

2022), so the confounding could have lead to regional differences being modelled as treatment680

effects.681

Forecasting 20 years in the future, assuming that all other environmental variables in the sites682

remain the same, the model predicts that the composition of the natural re-vegetated sites will683

have caught up to the composition of the reference forest, while sites in the other restoration684

treatment groups will have changed little (Figure 5c). Forecasting for two species which685

could potentially be used as indicator species, based on their species loadings and pre-existing686

knowledge about their ecology, F. rubra and P. abies (Figure 5d), underpins this by showing a687

marked difference between the different restoration treatments.688

The main takeaway from this analysis is that the roadside vegetation sites that were left to689

naturally re-vegetate, were closer in terms of species composition to the forest reference than690

the sites that had been artificially seeded. This vegetation treatment also showed a stronger691

response to time, which can be interpreted as a faster succession than the other treatments.692

Because no other variables in the model explained differences in species composition to the693

same degree, potential confounding effects of the study design were accounted for. Finally,694

because we did not estimate residual variation, we can be confident in the conclusion that the695

natural re-vegetation was the most effective method of restoration for the roadside vegetation696

communities.697

5 Summary and discussion698

In this article, we have provided an overview of Generalized Latent Variable models and a699

practical introduction to a range of their uses in community ecology. We have shown that a fully700

model-based methodology and workflow can produce models of ecosystems and communities701

that are feature rich as well as more statistically and conceptually interpretable than traditional702

ordination methods, e.g. by enabling features like prediction and uncertainty quantification.703

We have made GLLVMs more tangible by demonstrating applications of the framework on704

two real world examples. In the first worked example, we showed how the impact of an705
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invasive species on a community could be described using both unconstrained and concurrent706

model-based ordination. In contrast to traditional ordination methods, we could look at species707

loadings with uncertainties, as well as their associated between-species correlation estimates to708

indicate how strongly these associations were supported by the data. This let us paint more709

a comprehensive picture of what the data say about the associations between the native and710

invasive species in the community. The same was true for the effect of the predictors describing711

species co-occurrence in the communities, where the GLLVM option of visualizing the effect712

of covariates on individual species was able to identify the predictor most associated with713

the negative association between L. lucidum and the native species. This species-centered714

way of using GLLVMs will be readily transferable to a number of other ecological questions,715

such as identifying indicator species related to specific environmental variables of habitats, or716

identifying distinct clusters of species associations in a community (see references in Tables 1717

and 2).718

In the second worked example, we demonstrated how a concurrent ordination could be used to719

estimate the effect of different ecological restoration treatments on community composition,720

while accounting for a spatially grouped study design. Within a single model we could include721

the effect of the different treatments with parameter uncertainty, accounting for the study722

design, and forecast how the communities will change in the future; examples of capabilities of723

the GLLVM framework offer that is not possible to do in a comprehensive way with traditional724

methods. The use of the methods demonstrated in the example can serve as a relevant template725

for other sample-focused research questions. For instance, assessing the effect of different726

management practices on community composition, or which level of a hierarchical habitat727

classification system that best explains variation in community structure (see again references728

in Tables 1 and 2).729

In both examples we explored the number of occurrences per species and site, which lead730

to removal of species in the second example. It is important to clarify that it is not strictly731

necessary to remove data deficient species prior to fitting a model-based ordination, but it can732

at times make the modelling process easier. Data deficiency can cause difficulties with model733

convergence, presenting results, or drawing inference. For example, species with only one or two734

occurrences on top of a mountain may exhibit extreme clustering in a (constrained) ordination735

diagram when the ordination axis represents elevation. Here, the model will interpret the data736

as the species not occurring at lower elevations at all, thus placing the species at the far end of737

the ordination axis. This is natural; the model has not seen any other information after all, but738

the results may not representative for the full niche of these species. Instead, it is an artefact739

of the sampling process. Still, at times a few extra species can add valuable information on the740

end points of an ecological gradient (i.e., serve to better inform the positions of site scores), so741

that removal is not always advisable. If all species on top of the mountain are data deficient,742

removing them will truncate the observed gradient, and impact the placement of all other743

sites and species in the data. Such data deficiency of species is often used as an argument for744

analysing the data in collapsed form, so that species identities are masked (as in e.g., NMDS),745

and the data are analysed on the basis of sites only. However, we argue that there is nothing746

inherently more complex to model-based ordination that makes it less suitable for the analysis747
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of data deficient or rare species. The important thing is rather to distinguish between species748

that have few occurrences in data because they have been insufficiently sampled, so that they749

cannot be correctly placed in the environment, versus species that are rare for other reasons.750

Ideally, the pool of species being studied is clearly defined prior to data collection, so that a751

survey can be expanded to ensure data sufficiency for all species when necessary.752

It is also important to stress that the GLLVM framework encompasses several avenues for753

modeling community data outside of the main use cases presented in this article. This includes754

the possibility of including more data types, such as species traits, in the models. Currently,755

traits can be incorporated into GLLVMs in two main ways: (1) using fourth-corner models,756

which estimate environment-trait interactions outside the ordination (Niku et al., 2021; Abrego757

et al., 2025), see also Figure 1), (2) reversing sites and species in a concurrent ordination,758

so that traits can be modelled on the latent variable(s) in the same way as environmental759

variables. This approach cannot include the environment as well. Alternatively, GLLVMs can760

been used to look at how traits covary between species, by letting species act in the place of a761

site, and traits as species. In other words, the GLLVM would be used to model a hypothetical762

lower-dimensional community trait space (Laughlin, 2014). Integrating functional traits and763

environmental predictors into the concurrent ordination framework, similar to approaches that764

have been developed for other ordination methods (ter Braak et al., 2018), is also currently an765

active area of development.766

Other extensions that are available are using species phylogeny to inform species responses767

to the environment (van der Veen and O’Hara, 2025), modelling communities in time rather768

than space (Ovaskainen et al., 2017), and incorporating spatial autocorrelation in the latent769

variables (Thorson et al., 2015; Ovaskainen et al., 2017).770

GLLVMs also open up a range of other avenues for modeling community ecology not possible771

with traditional (i.e. ordination) methods. This includes the possibility of using latent variables772

to model species niches (Ovaskainen et al., 2016) and niche overlap (van der Veen et al., 2024),773

including different niche sizes of species along latent variables (van der Veen et al., 2021),774

in order to model differences between generalists and specialists. Developing new types of775

model-based ecological indicators or classification schemes that may be useful in management776

settings, would be another interesting path to explore.777

There has also been work done to develop methods and protocols for using pilot studies to778

determining the sampling effort and amount of data required to confidently answer specific779

ecological questions using GLLVM-type models (Maslen et al., 2023), which could potentially780

have a profound impact on resource- and time management when planning community ecology781

research.782

In summary, applying GLLVMs in community ecology does not have to require a change in783

one’s research questions, theoretical frameworks or data. Rather, it is a broad and robust784

toolbox that gathers a wide range of methodological tools in community ecology under the785

same statistical roof. It can both help you ”do what you were already doing”, only in more786

powerful and informative ways, as well as address ecological questions in new ways. As we have787
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demonstrated, this makes the framework relevant for a number of research topics. Looking to788

the future, as GLLVMs become more widely adopted within community ecology, researchers789

will no doubt also discover new uses for the methods that their developers did not think of,790

which may again lead to further development of the framework. This underlines the importance791

of a constructive two-way collaboration between statistical developers and practitioners to792

address the pivotal ecological questions of the 21st century.793
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ter Braak, C.J.F. and P. Šmilauer. 2015. Topics in constrained and unconstrained ordination.1034

Plant Ecology 216 (5): 683–696. https://doi.org/10.1007/s11258-014-0356-5 .1035
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