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Abstract

Global warming is increasingly exposing shallow coastal habitats to thermal extremes, with
important consequences for the fish species they support. Eelgrass (Zostera marina), the
most widespread seagrass in the Northern Hemisphere, provides nursery habitats and
foraging opportunities for a high diversity of temperate fishes. However, light limitation is
compressing eelgrass depth distribution to shallower waters, increasing exposure of these
habitats and their associated fish assemblages to thermal stress during intensifying marine
heatwaves. Persistence in warming eelgrass habitats may therefore depend on species-
specific differences in thermal tolerance and the capacity for rapid thermal acclimation
among fishes. However, interspecific variation in acclimation capacity within shared habitats
remains poorly understood. To address this gap, we experimentally exposed twelve wild-
caught eelgrass-associated fish species to ambient (19 °C) and heated (23 °C)
temperatures, representative of current summer conditions of the Swedish west coast
(Skagerrak, North Sea). We quantified critical thermal maxima (CTmax) as a proxy for upper
thermal tolerance and assessed species’ short-term acclimation capacity following five days

of exposure to a simulated marine heatwave in the laboratory. Most species increased
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CTnax, but both baseline thermal tolerance and acclimation capacity varied markedly among
taxa. Juvenile Atlantic cod, whiting and plaice showed the lowest thermal tolerance and
weakest acclimation responses, suggesting limited capacity to physiologically buffer acute
warming and a greater reliance on behavioural avoidance. In contrast, sedentary species
such as gobies and pipefishes exhibited high thermal tolerance with moderate plasticity,
while wrasses showed moderate tolerance but the strongest short-term acclimation capacity.
Temperature records from regional eelgrass meadows revealed summer conditions
approaching or exceeding the upper thermal limits of several species examined. Together,
these results demonstrate pronounced interspecific variation in thermal tolerance and
acclimation capacity among eelgrass-associated fishes. This indicates that ongoing warming
and marine heatwaves are likely to reshape eelgrass fish assemblages with implications for

coastal food-web structure and functioning.

Keywords
Global warming, marine heatwaves, critical thermal maximum, thermal acclimation, seagrass

ecosystems, thermal extremes

Introduction

Coastal vegetated habitats, such as seagrass meadows, rank among the most productive
ecosystems on Earth, providing essential nursery grounds, foraging habitats and refuge for
juvenile fishes while supporting global biodiversity (Beck et al., 2001; Heck Hay et al., 2003;
Lefcheck et al., 2019; McDevitt-Irwin et al., 2016; Orth et al., 2006). However, anthropogenic
climate change is increasingly exposing shallow coastal habitats to warming and extreme
thermal events that threaten ecological functions (Oliver et al., 2018; D. A. Smale et al.,
2019). Marine heatwaves are discrete periods (= 5 days) of anomalously high seawater
temperature relative to a local historical baseline (Hobday et al., 2016; Smith et al., 2023),

that have increased in frequency, intensity and duration over recent decades, posing a
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pervasive threat to marine biodiversity globally (Calvin et al., 2023; Cheng et al., 2025;
Wernberg et al., 2025).

The North Sea is among the fastest-warming regions worldwide, recently experiencing
record-breaking sea surface temperatures associated with the longest and most intense
heatwave reaching +4°C (Mohamed et al., 2025). Such events cause widespread impacts on
foundation species, including seagrasses, kelp and corals, as well as on fauna with strong
habitat specificity, including fish, crustaceans and birds (Brijs et al., 2025; Garrabou et al.,
2009; Olsen et al., 2022; Smith et al., 2024; Strydom et al., 2020). Marine heatwaves shape
population persistence of species occupying the warm edges of their thermal distributions
(Sunday et al., 2019). Understanding species’ capacity for physiological acclimation is
therefore essential for predicting vulnerability to marine heatwaves and anticipating potential
shifts in species distributions and community composition under ongoing climate change
(Gémez-Gras et al., 2025).

Fishes can buffer short-term warming through behavioural thermoregulation, such as
relocating to cooler waters, or via acclimation, a reversible form of phenotypic plasticity
within individuals that can partially offset thermal impacts on metabolism and performance
(Brett, 1952; Jr, 2009; Seebacher et al., 2015). Broadly, phenotypic plasticity is the capacity
of organisms to alter aspects of their phenotype in response to environmental variation
(Morash, 2024). However, when warming exceeds upper thermal limits and outpace their
acclimation capacity, individuals lose motor control and can no longer escape heat (Fry,
1947; Jutfelt et al., 2024; McKenzie et al., 2021). This threshold is commonly quantified as
the Critical Thermal maximum (CTmax), defined as the temperature-inducing loss of
equilibrium (Becker & Genoway, 1979). Despite limited mechanistic insights, CTmax remains
widely used to assess acute thermal tolerance and acclimation capacity across fishes under
climate change scenarios (De Bonville et al., 2025; Desforges et al., 2023; Lefevre et al.,
2021; Madeira et al., 2012; Messmer et al., 2017; Moyano et al., 2017; Raby et al., 2025;

Vinagre et al., 2016). Derived metrics such as acclimation response ratio (ARR) and thermal
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tolerance gain (TTgain) further quantify the magnitude of thermal acclimation following
exposure to elevated temperatures (L.Claussen, 1977; Morley et al., 2019).

Predicting which species are vulnerable to thermal extremes and how fish assemblages will
change under climate warming is challenging because thermal tolerance and acclimation
capacity vary widely among species (Burton & Einum, 2025; Jutfelt et al., 2024). While
acclimation capacity has been examined in subtropical, temperate and Antarctic fishes (Bilyk
& DeVries, 2011; De Bonwville et al., 2025; Drost et al., 2016; Mottola et al., 2022; Peck et al.,
2014), few studies have compared multiple species co-occurring within the same habitat,
and to our knowledge, none have focused on seagrass-associated fish assemblages.
Eelgrass (Zostera marina) is the most widespread seagrass in the Northern Hemisphere,
occurring in Pacific and Atlantic oceans from temperate to Arctic environments (Short, 2003;
Yu et al., 2023). Eelgrass meadows host highly diverse fish assemblages including shallow-
water generalists (e.g., wrasses, gobies, sticklebacks), stationary specialists (e.g., pipefishes
and some gobies), and juvenile migrants such as gadids (codfishes) and flatfishes (Perry et
al., 2018; Pihl & Wennhage, 2002). However, eelgrass depth distribution has steeply
declined in Europe due to eutrophication and habitat destruction, with complex recovery
trajectories and an increasingly constrained distribution to the first meters of the shoreline
(Bostrom et al., 2014; de los Santos et al., 2019; Krause-Jensen et al., 2021; Lefcheck et al.,
2017). Eelgrass habitats are also becoming shallower due to deterioration of water quality,
which further exposes them to thermal extremes that threaten the provision of their
ecosystem services (Krause-Jensen et al., 2021; Nguyen et al., 2021; Saha et al., 2020).
Moreover, while eelgrass meadows exhibit strong temperature microclimates driven by
depth, hydrodynamics and exposure (Hattich et al., 2025), there is a lack of long-term, high-
resolution temperature records from eelgrass meadows (Nordlund et al., 2024). Recent
syntheses highlight that the ecological impacts of marine heatwaves depend strongly on
local environmental conditions and fine-scale habitat heterogeneity, which can amplify or

buffer thermal exposure relative to regional averages (Starko et al., 2024). Consequently,
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the responses of eelgrass fish assemblages to marine heatwaves remain poorly understood
(Robinson et al., 2022; Thalmann et al., 2024).

Here, we experimentally quantified CTmax and short-term acclimation capacity in 12 fish
species associated with eelgrass habitats on the Swedish Skagerrak coast. Wild-caught
individuals were exposed to ecologically relevant ambient (19°C) and elevated (23°C)
temperatures for five days, followed by measuring CTmax through the behavioural response
temperature at loss of equilibrium. We then quantified acclimation capacity for all species
and further examined relationships between CTmax and species’ thermal distribution ranges.
We also evaluated local thermal regimes using in situ logger records and historical
temperature data to detect marine heatwaves. We predicted that generalist species with
warmer thermal niches would exhibit higher CTnaxand greater acclimation capacity, whereas
migratory species with narrower or cold ranges would show lower tolerance and limited
plasticity, indicating potential vulnerability to future marine heatwaves occurring in eelgrass

habitats.

Materials and methods

Animal research permit

The Swedish Board of Agriculture’s ethical committee and the University of Gothenburg
approved this experiment (Ethics Permit Dnr 5.2.18-01447/2022). It followed the regulations
set by the Animal Welfare Body at the University of Gothenburg and the ARRIVE guidelines
(Animal Research: Reporting of In Vivo Experiments (Sert et al., 2020).

Study area and fish husbandry

The study was conducted between 15" of July and 23" of September, 2024, at the
Kristineberg Marine Research Station, in the Gullmar Fjord on the Swedish Skagerrak coast
(58.24983° N, 11.44587° E). The fjord is connected to the North Sea and supports

productive eelgrass meadows in shallow, semi-sheltered areas.



137  Wild fish belonging to twelve different common temperate fish species associated with

138 eelgrass were collected within two kilometres from Kristineberg at one to four meters depth.
139  Species represented six families (Gadidae, Pleuronectidae, Labridae, Gasterosteidae,

140 Gobiidae and Syngnathidae; Table 1) and included shallow water generalists, sedentary
141  habitat specialists and juvenile migratory species. Fish were captured using beach seines,
142  baited traps, fyke nets and hand nets while snorkelling, and immediately transported to the

143 research station.

Study Species and Experimental Design

Morphometrics

Species Family Common name N / treat N / tank TL (mm) Mass (g)  Life stage
Gadus morhua Gadidae Atlantic cod 9 1-2 103 £ 20 10.6 + 6.0 J
Merlangius . -
Gadidae Whiting 12 2-3 121+9 134 +33 J

merlangus
Gasterosteus | ¢ terosteidae 1o oPined 75 15 4854 10+0.1 A
aculeatus stickleback
Gobius niger Gobiidae Black goby 35 7 82+6 6.9+ 05 J
Pomatoschistus | .\ iidae Two-spotted 105 21 39+7 04+19 A
flavescens goby
Pomatoschistus .

. Gobiidae Sand goby 30 6 64 + 58 1.8+04 A
minutus
Ctenolab Goldsi

enotanrus Labridae ocsinny 20 4 95+ 11 12465 A
rupestris wrasse
S hod Corkwi
ymphadus Labridae orwing 30 6 122+8 245 £ 05 A
melops wrasse
Pl t

CUrenectes  pleuronectidae  Plaice 35 7 52410 16137 )
platessa
Nerophis : Straightnose
ophidion Syngnathidae e 15 3 208 + 52 0.7 +9.1 ALl
Syngnathus . .
acus Syngnathidae Greater pipefish 3 1 376 + 35 242 + 0.8 A
Syngnathus . Broadnosed
typhle Syngnathidae pipefish 15 3 144 + 9 1.2+09 A/l

144
145 TABLE 1. Metadata for study species and experimental design. N/treat = number of individuals per
146 treatment; N/tank = number of fish per tank; TL (mm) = total length in millimeter, mean £ S.D.; Mass (g) = mass in

147 grams, mean * S.D. For life stage J = Juvenile; A = Adult.

148 At the lab, fish were housed in a holding tank (1350 L, 275 x 79 x 62 cm, [L x W x H])
149  supplied with flow-through filtered seawater pumped from seven meters depth and
150 acclimated to captivity for one week under ambient fjord temperatures (18.6 = 1.5°C, mean %

151 S.D.) and a 12:12 hour light:dark photoperiod. They were fed once daily to satiation with
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thawed northern shrimp (Pandalus borealis) and brine shrimp (Artemia sp.), and tanks were
cleaned daily to maintain water quality.

Experimental design

Separate experiments were conducted for each species, exposing the fish to two
temperature treatments for five days to trigger a short-term acclimation response. Each
experiment consisted of five replicated tanks with seawater at 19°C (“Ambient”) and five at
23°C (“Heated”). These temperatures reflected ecologically realistic summer conditions on
the Swedish Skagerrak coast based on high resolution in situ temperature records at one

meter depth at Kristineberg (https://www.weather.loven.qu.se/kristineberg/en/).“Ambient”

approximated the mean daily maximum sea temperature from 1%t of June to 30" of
September for 2020-2023 (18.6 £ 1.9°C, mean = S.D.), while “Heated” simulated a +4°C
marine heatwave anomaly.

Experiments were conducted in a temperature-controlled room with centralized air and sea
water heating. Tanks received flow-through seawater adjusted to target temperatures, which
were monitored daily (18.8°C £ 0.3 and 22.8 £ 0.2, mean + S.D.; Thermometer Testo-112,
Testo, Lenzkirch, Germany). Fish were randomly assigned to treatments, and tank size was
adjusted according to species: small glass tanks (45 L): 35 x 37x 35 cm [L x W x H]; big
glass tanks (80 L): 38 x 60 x 35 cm. Tanks were dispersed throughout the room to minimize
location effects, and contained 2cm of sand substrate and plastic seaweed, mussel shells,
and PVC pipes for shelter. The feeding regime and photoperiod matched the holding period.
Testing of acute warming tolerance (CTmax) on fish

After the five-day exposure, one CTmax trial was conducted per experimental tank (five per
treatment), testing all fish from a tank simultaneously. Fish were fasted 24 hours before trials
(Raby et al., 2025). CTmax was measured using a standardized test with temperature at loss
of equilibrium (LOE) as the response variable for each fish (Beitinger et al., 2000; Morgan et
al., 2018). LOE was a behavioural response defined as the fish’s inability to maintain an

upright position for three seconds.
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Trials were conducted in a custom arena filled with water from the corresponding
experimental tank. The CTmaxarena was a plastic box (34 x 25 x 17 cm; ~14 liters) divided
into one small (a third of the box size) and one big compartment (two thirds) by a mesh. The
smaller compartment contained the heating elements (a coil heater and a heating chamber),
a submersible water pump for mixing and an air stone for aeration, while the larger
compartment housed the fish. A 300 W coil heater was placed inside a custom-made
cylindrical steel heating chamber, which was connected to the water pump (Eheim
compactON 1000 aquarium pump) for even heat distribution. The water pump was set to a
minimum level, so fish did not have to swim actively. A larger box (41 x 30 x 25 cm; ~23
liters) and a 500 W heater (Aqua Medic TH-500) were used for species with body sizes over
100 mm. The number of fish per trial ranged between three and 20 depending on species
(Table S1).

To start the test, all fish from one tank were placed into the arena and allowed to habituate
for ten minutes at the experimental temperature. Thereafter, the trial was started by plugging
the heater and the water temperature gradually increased at a rate of 0.3°C min™' (thermal
ramping curves and rates shown in Fig. S2 and Table S2). To avoid observer bias, one
person observed the fish and identified LOE blinded from the thermometer (Holman et al.,
2015), while another person recorded the time, temperature, and ramping rate (Testo-112
Digital Thermometer, Lenzkirch, Germany) (Raby et al., 2025). The CTmax arena was drained
and refilled between trials. Pilot trials were run to define species LOE and performed by the
same observer for all trials of a given species.

At LOE, the CTmax was recorded, and each fish was immediately transferred to a labelled jar
with water at the original experiment temperature for recovery. After monitoring survival for
30 minutes, fish were lightly anaesthetized (using 0.25 g/l Tricaine mesylate, MS222) to
measure total length (mm), mass (g), and, when possible, life-stage, and sex. The order of
CTmax trials was randomized across treatments and performed during daytime.

Data analysis
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All data analyses were conducted in R (v 4.4.2, R Core Team, 2024). Linear mixed-effect
models were fitted using the Ime4 package (Bates et al., 2015); The packages dplyr and
ggplot2 (Wickham, 2016) were used for data wrangling and visualization, and emmeans was
used to obtain estimated marginal means and pairwise contrasts.

Comparing upper thermal tolerance across species

We analysed CTmax Using a linear mixed-effects model with species, treatment group
(Ambient vs. Heated), and their interaction as fixed effects, and CTmax trial as a random
intercept: Imer(ctmax ~ species * group + (1 | trial)).

This model tested: (i) differences in Ambient CTmax among species (species effect), (ii) the
overall effect of acclimation to elevated temperature (group effect), and (iii) species-specific
differences in acclimation capacity (species x group interaction). Fish from the same tank
were tested together within a CTwax trial and therefore, the trial represented the experimental
unit. Due to complete mortality of Gadus morhua in the Heated treatment, CTmax was only
measured for Ambient conditions for this species, and it was excluded from within-species
acclimation contrasts. Estimated marginal means for each species x group combination and
pairwise comparisons were obtained with emmeans.

Comparing acclimation capacity across species

Acclimation capacity was quantified using thermal tolerance gain (TTgain), the increase in
thermal tolerance following acclimation (Fangue et al., 2014). For each species:
TTgainspecies = Mean CTmax Heated = MeaAN CTmax, Ambient

To compare acclimation capacity among species, we calculated the acclimation response
ratio (ARR), which expresses the change in CTmax per °C of change in acclimation
temperature (Morley et al., 2019). For each species:

ARRGgpecies = (Mean CTmax Heated = MeaAN CTmax, Ambient) / 4

where mean CTmaxHeated @aNd mean CTmax, ambient are the estimated marginal means for each
species and treatment obtained from the mixed-effects model and 4°C is the difference

between treatments (19 - 23°C).
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To visualise within-species variation in acclimation responses, we also calculated an
individual-level ARR for fish exposed to the heated treatment as:

ARRingividual = (CTmax,Heated, individual = Me€aN CTmax, Ambient, Species) / 4

where “mean CT max, ambient, species . iS the species’ ambient CTmax baseline estimated as the
marginal mean from the mixed-effects model. Negative ARR values were set to zero as they
indicate no measurable acclimation capacity.

Exploring upper thermal tolerance across fish families

To explore broad taxonomic patterns in upper thermal tolerance, we conducted an additional
family-level analysis using species as the unit of replication. Species-level CTmax (estimated
marginal means from the mixed-effects model) for Ambient and Heated treatments were
separately analysed as a function of family using a linear model (Im(emmean ~ family)),
followed by Tukey-adjusted pairwise comparisons. Given the number of species per family
was limited (1-3), this analysis was considered exploratory.

Eelgrass summer temperatures and fish distribution ranges

To investigate how current thermal regimes of eelgrass habitats compare to fish thermal
distribution ranges, we first selected a reference eelgrass meadow with in situ sea
temperature data available publicly. The meadow was located outside the Tjarné Marine
Laboratory, 72 km northwest from Kristineberg (58.87877 N, 11.13467 E), and hosted a
logger at 1.5 m depth, recording temperature in 5-min intervals

(https://snd.se/en/catalogue/dataset/2024-45 ; Jahnke et al. (2024)). For 1%t of June to 30™ of

September (2020-2023), negative values were filtered and data were aggregated to daily
maximum temperature. Then for each day of year, we calculated a multi-year mean and the
minimum and maximum of daily maxima. We also identified the warmest period in the
season and computed the multi-year mean, minimum and maximum, to obtain the warmest
temperature range of the reference eelgrass meadow. Then for each fish species, we
obtained the thermal limits (preferred and absolute) from AquaMaps’ defined native range
and environmental envelopes via FishBase. AquaMaps derive species-specific temperature

envelopes from occurrence records (GBIF, OBIS) and expert-defined distributional ranges
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(https://lwww.aquamaps.org/; Kaschner et al., 2019). Finally, the relationship between

species’ maximum range temperature and their mean CTnax (after acclimation to 19°C) was
explored using Pearson’s correlation and simple linear regression.

Warming trends and marine heatwaves

To investigate longer trends in local summer temperatures, we used in situ measurements of
sea temperature from the Kristineberg weather station

(https://www.weather.loven.gu.se/kristineberg/en/), at 1m depth in 5-min intervals available

for 1996-2024, except 1997 and 2001-2006. Data from the 1%t of June to the 30" of
September (referred to as “summer”) were aggregated to daily maxima and used to
calculate decadal averages. Trends in annual summer maxima were calculated with linear
regression.

Since a 30-year climatology baseline is required for standard marine heatwave detection
(Smith et al., 2025), we used satellite-derived daily mean SST from the NOAA Optimum
Interpolation Sea Surface Temperature version 2.1 (NOAA OISST; (Huang et al., 2024;
Reynolds et al., 2007)), with 0.25° (27 km) resolution, extending back to 1982, and extracted
for the grid cell nearest Kristineberg (58.125°N, 11.375°E). For the 15t of January 1982 to the
315t of December 2024 temporal trends modelled with linear regression. Marine heatwave
frequency and cumulative intensity (°C and days) for each year were estimated using the
heatwaveR package (W. Schlegel & J. Smit, 2018), following the definition from Hobday et
al. (2016), with a 30-year climatology baseline record (1982-2011). Marine heatwave
frequency was modelled using a Poisson Generalized Linear Model (GLM) with robust (HC1)
confidence intervals. Marine heatwave annual cumulative intensity (the sum of daily sea
temperature anomalies across heatwave days within a year (°C-days) (Oliver et al., 2018)
was modelled using a Gamma GLM with a log link and robust confidence intervals, with a
log-transformed linear model and Newey-West correction when it did not converge. All
trends were expressed per decade.

Finally, to assess if the long-term data sets were representative of eelgrass habitats, we

compared in situ daily SST means from Kristineberg and satellite SSTs to in situ daily means


https://www.aquamaps.org/
https://www.weather.loven.gu.se/kristineberg/en/

289

290

291

292

293

294

295

296

297

208

299

300

301

302

303

304

305

306

from the reference eelgrass meadow in Tjarno (described above) for the summers 2020-
2023. Agreement among datasets was evaluated using Pearson correlations, mean bias,

and root-mean-square error (RMSE).

Results

Upper thermal tolerance (CTmax) across species and families

A linear mixed-effects model revealed strong effects of species (F = 123.23, p < 0.001) and
temperature treatment (F = 540.91, p < 0.001) on CTnax, as well as significant species x
treatment interaction (F = 10.96, p < 0.001), indicating pronounced interspecific differences
in upper thermal tolerance and species-specific responses to short-term warming.
Subsequent analyses using estimated marginal means are presented below.

Acclimation to 19°C (Ambient)

Under acclimation to 19°C, CTmax differed significantly among species (F = 94.3, p < 0.001;
Fig. 1; Table S4). Estimated marginal mean CTnax ranged from 27.8 in Gadus morhua to
33.4°C in Syngnathus typhle. Juvenile gadids (Gadidae) exhibited the lowest thermal
tolerance, followed by juvenile plaice and wrasses, whereas gobies, sticklebacks and
pipefishes showed higher CTmax values, with pipefishes (Syngnathidae) representing the

most heat tolerant family.
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FIGURE 1. Upper thermal tolerance (CTmax) of twelve eelgrass-associated fish species following five days of
acclimation to 19°C (Ambient; blue) or 23°C (Heated; orange). Coloured points represent individual CT max
measurements and are jittered horizontally for clarity. Black points and error bars indicate species means + S.E.
Y-axis values show temperature in °C; X-axis values are shortened species names (left to right): Gadus morhua;
Merlangius merlangus; Pleuronectes platessa; Ctenolabrus rupestris; Symphodus melops; Pomatoschistus
flavescens; Pomatoschistus minutus; Gobius niger; Gasterosteus aculeatus; Syngnathus acus; Nerophis

ophidion; Syngnathus typhle. Among families, Pleur. = Pleuronectidae; Gast. = Gasterosteidae.

Acclimation to 23°C (Heated)

Following exposure to 23°C, CTnax also differed significantly among species (F = 71.51, p <
0.001; Fig. 1; Table S3). All juvenile G. morhua and 58.3% of the juvenile whiting (M.
merlangus) died during the exposure period (Table S4). Among surviving fish, whiting
exhibited the lowest CTmax (29.9°C) whereas pipefishes reached values up to 34.5°C. The
relative ranking of species under 23°C broadly mirrored that observed at 19°C, although the
gobies P. flavescens and P. minutus displayed slightly lower CTnax than the wrasses C.

rupestris and S. melops.
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Family-level patterns

An exploratory family-level analysis indicated differences in CTmax under both Ambient (linear
model, F = 15.11, p < 0.01; Table S5) and Heated conditions (linear model, F = 8.80, p <
0.05; Table S6). Gadidae showed substantially lower CTmax (28.6 £ 0.4°C, mean £ S.E.) than
all other families, whereas Gasterosteidae and Syngnathidae were the most heat tolerant
(=33°C). Pleuronectidae, Labridae and Gobiidae showed intermediate mean CTax levels,
with comparatively small and non-significant differences among these families.
Acclimation capacity

Thermal tolerance gain (TTgain)

Species-specific contrasts revealed significant increases in CTmax following the short-term
warming for all species with measurements in both treatments (all p < 0.02; Table S7).
TTgain varied nearly threefold among species, ranging from 0.62°C to 1.94°C (Table S8).
The largest gains were observed in C. rupestris (1.94°C), S. melops (1.89°C), N. ophidion
(1.58°C), and G. niger (1.58°C), whereas juvenile gadids and plaice exhibited comparatively
weak responses. No TTgain could be estimated for G. morhua due to complete mortality in
the heated treatment.

Acclimation response ratio (ARR)

Full thermal acclimation (ARR = 1), equivalent to a 4°C increase in CTmax, was not achieved
in any species after five days at 23°C. Species-level ARR values derived from estimated
marginal means ranged from 0.13 to 0.48, showing partial but variable acclimation capacity
among species (Fig. 2; Table S8). Species exhibiting the highest ARR were primarily
wrasses and sedentary taxa, whereas juvenile gadids and flatfish had the lowest values.
Individual-level ARR values showed substantial within-species variation (Fig. 2). Most
individuals displayed positive acclimation responses, although some exhibited ARR values
near zero, indicating no measurable increase in CTmax. No ARR could be reported for G.

morhua.
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FIGURE 2. Acclimation response ratio (ARR) following five days of exposure to 23°C for twelve eelgrass-
associated fish species. Coloured points represent individual-level ARR values calculated for fish exposed to
23°C. Black points and error bars show species-level ARR mean + S.E. An ARR of 1.0 represents a complete
thermal compensation. Gadus morhua did not survive the heated treatment and is therefore shown without ARR

values.

Eelgrass summer temperatures and fish distribution ranges

Temperature records from the reference eelgrass meadow revealed that the warmest
seawater conditions occurred from the 15™ of June to the 1%t of September, when daily
maximum temperatures averaged 20.5°C, ranged between 19.0 and 22.3°C, and frequently
approached or exceeded 23°C (Fig. 3A). Over the full summer period (1% of June to the 30™
of September), daily maximum temperatures followed a clear seasonal pattern, averaging

19.3°C and ranging from 15.1 to 22.3°C (Fig. 3A).
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363 FIGURE 3. Summer sea temperatures in a temperate eelgrass (Zostera marina) meadow and fish species
364 thermal distribution ranges. A) Daily maximum seawater temperature in an eelgrass meadow at 1.5 m depth
365 during the summer (the 15t of June to the 30" of September, 2020-2023). Green line: mean daily maximum

366 across the four years; Shaded green ribbon: range between minimum and maximum daily maxima across years;
367 Grey dotted horizontal lines: minimum and maximum of the daily mean during the warmest period (the 15" of
368 June to the 15t of September). B) Thermal distribution ranges of the species ordered by maximum preferred

369 temperatures. Red and blue dots indicate preferred maximum and minimum temperatures, respectively, while the
370 grey segment indicates preferred temperature ranges. Red and blue ticks indicate absolute maximum and

371 minimum temperatures, respectively. Vertical grey dotted lines at 19°C and 22°C highlight the current

372  temperatures in eelgrass relating to panel A.

373  Thermal niches varied substantially among species (Fig. 3B). Most occupied broad thermal
374  ranges spanning approximately 5-23°C, while some taxa, including the three-spined

375  stickleback and broadnosed pipefish, exhibited wider distributions extending to 25-28°C. In
376  contrast, cod and plaice were restricted to cooler thermal environments, with upper

377  distribution limits around 19°C (Fig. 3B).

378  For several species, preferred temperature maxima were below present summer

379 temperatures measured in eelgrass habitats. Juvenile cod, whiting, plaice, two-spotted goby,
380 three-spined stickleback, sand goby, and goldsinny wrasse, showed preferred temperatures

381 inthe range of = 12-18°C, despite absolute maxima indicating persistence at higher
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temperatures. In contrast, corkwing wrasse, pipefishes, and black goby exhibited preferred
temperatures within or above the summer range of regional eelgrass (=19-21°C), with some
species occupying waters exceeding 24°C (Fig. 3B).

Upper thermal tolerance and thermal ranges

Mean CTnax increased with the absolute maximum temperatures experienced across
species’ geographic distributions (R? = 0.489, p < 0.05; Fig. 4). Hence, species from warmer
environments exhibited higher upper thermal limits, with CTmax broadly tracking the upper

bounds of their thermal ranges.

Species
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FIGURE 4. Relationship between species’ mean CTmax (at 19°C) and maximum temperatures of its predicted
distribution range (AquaMaps, Froese et al., 2019). Each point represents the mean Critical Thermal maximum
(CTmax) for a species under ambient conditions, with colors distinguishing species. The black line shows the fitted
linear regression (+ 95% confidence interval in gray), indicating a positive association between CTmax and range

maximum temperature.

Thermal variability, warming trends and marine heatwaves
Long-term in situ measurements at Kristineberg indicated substantial warming of summer
seawater temperatures between 1996 and 2024, with annual daily maximum temperatures

increasing by 2.6°C, equivalent to 0.92°C per decade (0.092°C yr™*; 95% CI: 0.014-0.170°C
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yr''; R2=0.23, p <0.05; Fig. 5A). Seasonal patterns showed progressive warming from
early June to late July or early August, followed by cooling through September. Decadal
comparisons revealed that the most recent period (2020-2024) experienced the highest

daily maxima, frequently exceeding 20°C and occasionally surpassing 23°C.
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FIGURE 5. Long-term summer sea surface temperature (SST) and marine heatwaves at Kristineberg (1982
- 2024). A) Daily maximum SST at 1m depth (1st of June to 30th of September), grouped by decade: 1996 - 1999
(dark blue), 2000 - 2009 (light blue), 2010 - 2019 (orange), and 2020 - 2024 (purple-red). Thin lines represent
individual years; thick lines represent decadal means, and shaded ribbons show the interannual minimum-
maximum range. Dashed horizontal lines indicate experimental temperature treatments (“Ambient” and
“Heated”). B) Daily mean SST (2020-2023) measured in situ within an eelgrass meadow at 1.5m depth (Tjarng;
green), at the dock at 1m depth at Kristineberg (purple-red), and from satellite SST (yellow). Shaded ribbons
indicate the interannual minimum-maximum range. C) Mean summer SST by year derived from satellite data,
with with linear trend and 95% CI; warming rate = 0.42°C-decade™ (95% CI 0.29-0.56). D) Annual frequency of

marine heatwaves (MHWSs) with fitted temporal trend and 95% CI; change = 49%-decade™ (95% CI 28-73); E)
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212).

Daily mean eelgrass temperatures were consistently higher than those measured at the
dock or estimated from satellite data during summer (2020-2023; Fig. 5B). Eelgrass
temperatures exceeded dock measurements by an average of 0.67°C, and satellite-derived
SST by 1.76°C, with both offsets being statistically significant (one-sample t-tests on paired
daily differences: p < 0.001 in both cases). Satellite SST showed a systematic cool bias
relative to both in situ measurements (dock: -1.09°C, RMSE = 1.45°C; eelgrass: -1.76°C,
RMSE = 2.25°C), although temporal variability was captured reasonably well (Pearson r =
0.86 for satellite vs dock; r = 0.75 for satellite vs eelgrass). Differences between eelgrass
and satellite temperatures frequently exceeded 4°C and reached a maximum of 5.82°C,
indicating that satellite SST substantially underestimates thermal extremes in shallow
eelgrass meadows.

Satellite-derived SST further revealed a significant long-term warming in the summers and
increasing marine heatwaves at Kristineberg between 1982-2024. Mean summer SST
increased by 0.42°C per decade (95% CI 0.29-0.56; p < 0.001; Fig 5C). Marine heatwave
frequency increased by 49% per decade (95% CI 28-73; p < 0.001; Fig. 5D), corresponding
to an additional 1.02 events per decade (95% CI 0.65-1.39; p < 0.001). Annual cumulative
marine heatwave intensity increased by 116% per decade (95% CIl 49-212; p < 0.001; Fig.
5E), equivalent to 48.6°C-days per decade (95% Cl 26.6—70.7; p < 0.001; Fig. 5E), indicating

a marked rise in total thermal exposure associated with marine heatwaves.

Discussion

This study provides the first comparative assessment of upper thermal tolerance and short-
term acclimation capacity across multiple eelgrass-associated fish species, linking
experimental physiology with long-term habitat warming and regional trends in marine
heatwaves. We reveal pronounced interspecific variation in upper thermal tolerance (CTmax)

and rapid acclimation capacity. Although most species increased their CTmax following short-
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term warming, the magnitude of acclimation differed markedly among species. Cold-water
juvenile migrants using eelgrass and nearby sandy habitats as nurseries (e.g., Atlantic cod,
whiting, and plaice) exhibited weak acclimation capacity and high mortality, whereas warm-
tolerant generalists and stationary species (e.g. three-spined stickleback, black goby,
goldsinny wrasse and corkwing wrasse) showed higher tolerance and greater plasticity.
Importantly, these physiological differences occur in shallow eelgrass-associated fish
communities that already experience temperatures near or exceeding the upper thermal
limits of several associated species. Together, our results indicate that ongoing warming and
intensifying marine heatwaves are likely to restructure eelgrass fish assemblages through
differential physiological vulnerability.

Warming eelgrass habitats

During summer (2020-2023) daily mean and maximum temperatures in the reference
eelgrass meadow (1.5m depth) frequently reached 22-23°C, approaching or exceeding the
preferred thermal ranges of several associated fishes. Eelgrass temperatures were
consistently warmer than those recorded at the research station dock and were
underestimated from satellite-derived SST by approximately 1-3°C on average and up to 4—
5°C during thermal extremes. This pattern is consistent with previous work showing that
satellite SST products capture broad temporal variability reasonably well, but systematically
underestimate thermal extremes in shallow, vegetated habitats with restricted water
exchange (Pearce et al., 2006; Phinn et al., 2018; D. Smale & Wernberg, 2009).

Sheltered eelgrass meadows also experience greater thermal variability and more frequent
extremes than wave-exposed habitats (Hattich et al., 2025). Such variability can have
disproportionate effects on organismal performance compared to changes in mean
temperature (Vasseur et al., 2014), particularly when extremes push individuals to their
physiological limits. Microhabitat differences therefore modulate the temperatures organisms
experience, creating opportunities for behavioural thermoregulation and refugia from
extremes (Sunday et al., 2019). Broadly, the ecological impacts of marine heatwaves

depend strongly on local environmental conditions and fine-scale habitat heterogeneity,
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which can amplify or buffer thermal exposure relative to regional averages (Starko et al.,
2024).

Furthermore, our findings show that shallow eelgrass habitats warm faster than the regional
warming trends. Although global oceans have warmed by ~0.13°C per decade since 1982
(Calvin et al., 2023; Von Schuckmann et al., 2024), the North Sea has warmed nearly four
times faster, at ~0.38°C per decade (Mohamed et al., 2025). We detected a comparable
warming rate on the Swedish west coast (~0.42°C per decade) together with an increase in
marine heatwave frequency. However, the cumulative intensity change was 48.6°C-days per
decade, which is about ten times stronger than in the full basin at 4.23°C-days per decade
(Mohamed et al., 2025). Therefore, our findings suggest that shallow eelgrass meadows
may already be experiencing more severe and biologically relevant heatwaves than what is
inferred from regional satellite time series, and future summer temperatures are likely to
outpace the acclimation capacity of less plastic species.

Species-specific vulnerability to marine heatwaves

Species living close to their upper thermal limits showed the weakest acclimation capacity
and the highest vulnerability to the simulated heatwave. Juvenile Atlantic cod suffered
complete mortality at 23°C, while juvenile whiting showed high mortality and negligible
acclimation despite higher survival. These results indicate that gadids occupying warm
nursery habitats have little scope for thermal acclimation under acute warming (Ern et al.,
2023; Jutfelt et al., 2024). Cod and whiting are cold-temperate demersal fishes whose
juveniles rely on shallow coastal nursery habitats, including eelgrass meadows (Heck Hay et
al., 2003). Juvenile cod prefers temperatures below 16°C and actively avoids warmer
conditions by diurnal vertical migration, and migrating between eelgrass meadows
(Bjornsson, 2001; Claireaux et al., 1995; Freitas et al., 2016; Staveley et al., 2017). Growth
also declines sharply above 16°C (Rogers et al., 2011). Juvenile whiting similarly prefers
temperatures around 15°C, despite occupying a warmer distribution than cod (Asciutto et al.,
2024; Cali et al., 2023). Our sea temperature analysis shows that eelgrass habitats routinely

exceed these preferred temperatures during summer (Hattich et al., 2025), suggesting that
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juvenile gadids with strong behavioural thermoregulation are already excluded from these
shallow habitats during warm periods. With continued warming, such exclusion is likely to
intensify, compromising the ability of young gadids to access nursery habitats that provide
shelter and foraging opportunities, likely with negative consequences for population
persistence (Freitas et al., 2016).

Another juvenile migrant, plaice, showed higher thermal tolerance than gadids but low
acclimation capacity, indicating limited physiological buffering against thermal extremes. This
pattern aligns with previous work on juvenile flatfish (De Bonville et al., 2025) and suggests
reliance on behavioural thermoregulation, such as habitat shifting or substrate burial (Ziegler
& Frisk, 2019). While the juvenile migrants studied showed low acclimation capacity, the
shallow-water habitat generalists proved more tolerant to thermal stress. Gobies and
sticklebacks displayed comparatively high thermal tolerance and moderate acclimation
capacity, consistent with their broad habitat use. These generalist species are among the
most abundant fishes in eelgrass habitats and play key roles as mesopredators and prey for
fishes at higher trophic levels (Perry et al., 2018; Staveley et al., 2017). The black goby was
both the most heat-tolerant and most plastic goby, with CTmax and ARR exceeding most
other species, in line with previous estimates (Cowan et al., 2023).

Sticklebacks exhibited high thermal tolerance and a moderate acclimation capacity,
consistent with previous work (Cowan et al., 2023; De Bonville et al., 2025; Mottola et al.,
2022). Their ability to tolerate temperatures up to 25°C, combined with rapid generation time
and increasing abundance under warming and eutrophication, suggests they may increase
in dominance in warming eelgrass habitats (Olin et al., 2022). While sticklebacks are highly
robust species, the wrasses outperformed them in terms of acclimation capacity.

Wrasses exhibited the strongest short-term acclimation capacity of all species tested,
despite intermediate CTmax Values under ambient conditions. Their high ARR values
matched earlier work on goldsinny wrasse (De Bonville et al., 2025) and suggests
substantial phenotypic plasticity, consistent with their broad thermal niches and generalist

habitat use across rocky reefs and seagrass meadows. Previous studies have documented
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high aerobic performance and plasticity in wrasses at temperatures exceeding those
currently experienced in northern regions (Palma et al., 2025; Yuen et al., 2019), supporting
the idea that these species are better equipped to tolerate future warming than others.
However, wrasses have also shown significant physiological stress and mortality with
exposure to multiple ocean stressors (Perry, Tamarit, Morgenroth, et al., 2024). The high
acclimation capacity exhibited by wrasses is well suited to their habitat generalist strategy as
they move regularly between different environmental conditions.

In contrast, stationary species may be less able to avoid longer-term temperature extremes.
For example, the stationary pipefishes tested in our study displayed the highest thermal
tolerance among all taxa but showed moderate acclimation capacity. As they are strongly
associated with eelgrass meadows, pipefishes may benefit from high thermal tolerance in
warming habitats, although limited plasticity could constrain their ability to cope with extreme
temperatures. The three tested pipefishes all had preferred thermal maxima well above the
simulated heatwave (Fig. 3B). Among pipefishes, the straightnose pipefish showed relatively
high ARR, suggesting it might be better equipped to withstand increasingly frequent marine
heatwaves in their northern distribution ranges (Monteiro et al., 2023).

A partial explanation for the observed interspecific differences in CTmax and ARR is the
declining gain in thermal tolerance as species approach their upper thermal limits (Brett,
1952; Doudoroff, 1942; Fangue et al., 2014; Sandblom et al., 2016). Theoretically, cold-
water species living above their optimal temperature have limited scope for further warm
acclimation, whereas warm-tolerant species living below their optimum retain greater
capacity for plasticity (Ern et al., 2023). This likely explains the weak acclimation observed in
gadids and flatfishes, but it does not fully account for all patterns observed in the current
study. Notably, pipefishes exhibited high CTmax but modest acclimation capacity, whereas
wrasses showed strong plasticity despite intermediate tolerance. These differences likely
reflect evolutionary and phylogenetic constraints of the tested groups (Comte & Olden,
2017). In our study, we measured CTmax Using a standardized rapid ramping protocol to

facilitate interspecific comparison, but such approaches may overestimate tolerance relative
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to natural warming rates and should be interpreted as comparative indices rather than direct
predictors of survival under heatwaves (Ern et al., 2023; Jutfelt et al., 2019; Lefevre et al.,
2021). Also, we designed the five-day exposure to reflect the minimum duration of a marine
heatwave, but longer-term acclimation, long-term heat injury, developmental plasticity, or
transgenerational effects could further modify responses. Population-level variation and local
adaptation may also contribute to interspecific differences, as phenotypic and genotypic
divergence has been documented in gobies, wrasses, and sympatric cod ecotypes in the
Skagerrak (Faust et al., 2021; Green et al., 2023; Henriksson et al., 2023; Leder et al., 2021;
Perry, Tamarit, Sundell, et al., 2024).

Community and ecosystem implications

Differential thermal tolerance and acclimation capacity among eelgrass-associated fishes
are likely to have cascading consequences for assemblage structure and ecosystem
functioning. Such cascading effects are increasingly recognized as a hallmark of marine
heatwave impacts in coastal ecosystems (Wernberg et al., 2025). Seagrass ecosystems
experiencing warming have already shown increased dominance of warm-water species and
declines of cold-water species, accompanied by poleward or depth distribution shifts in
coastal regions globally (Burrows et al., 2019; Cheung et al., 2013; Fodrie et al., 2010). Such
temperature-driven changes in community composition can modify predator—prey
interactions and grazing pressure, triggering cascading effects through food webs and
altering ecosystem functioning (Baden et al., 2012; Casini et al., 2009; Frank et al., 2005;
Olin et al., 2022). Experimental and field studies have shown that increased abundance of
mesopredatory fishes, such as gobies and sticklebacks, can intensify predation on
invertebrate grazers, thereby promoting filamentous algal growth and reducing eelgrass
resilience (Moksnes et al., 2008; Ostman et al., 2016). If warming disproportionately
excludes cold-affinity predators while favouring thermally tolerant mesopredators,
temperature may act as an additional driver amplifying predator-release cascades in

seagrass ecosystems, with implications for the long-term stability of coastal seascapes.
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To conclude, our study demonstrates that eelgrass-associated fishes differ markedly in both
upper thermal tolerance and short-term acclimation capacity, with important consequences
for species persistence in warming eelgrass habitats. By analysing fine-scale temperature
data, we show that eelgrass meadows off the Swedish West coast already experience larger
extremes than reported regional warming trends estimated with satellite products, and that
approach the thermal distribution ranges of several associated fishes. As a result, juveniles
of cold-affinity demersal species that rely on behavioural thermoregulation are likely to
become increasingly excluded from this important nursery habitat during warm periods. In
contrast, mesopredatory fishes with generalist life histories and moderate-to-high thermal
tolerance or acclimation capacity may persist or increase in dominance as marine
heatwaves intensify. Together, our findings highlight how species-specific physiological
constraints combined with habitat specific warming can shape future eelgrass fish

assemblages.
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