

1 **Eelgrass-associated fishes show large interspecific differences in thermal
2 acclimation to marine heatwaves**

3 Elena Tamarit^{1*}, Felix Steinbrecher², Leon Pfeifer³, Emily R. Lechner³, Hannah Sauer²,
4 Leon Green^{3,4}, Diana Perry⁵, Hans W. Linderholm¹, Martin Gullström⁶, Fredrik Jutfelt³

5 ¹ Department of Earth Sciences, University of Gothenburg, Medicinaregatan 7B, 41262 Gothenburg, Sweden

6 ² Department of Marine Sciences, University of Gothenburg, Medicinaregatan 7B, 41262 Gothenburg, Sweden

7 ³ Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 7B, 41262 Gothenburg,
8 Sweden

9 ⁴ The Maritime Museum & Aquarium, Karl-Johansgatan 1-3, 41459 Gothenburg, Sweden

10 ⁵ Department of Aquatic Resources, Swedish University of Agricultural Sciences, Turistgatan 5, 453 30 Lysekil, Sweden

11 ⁶ School of Natural Sciences, Technology and Environmental Studies, Södertörn University, S-141 89 Huddinge, Sweden

12 * Corresponding author: elena.tamarit@gu.se

13

14 **Abstract**

15 Global warming is increasingly exposing shallow coastal habitats to thermal extremes, with
16 important consequences for the fish species they support. Eelgrass (*Zostera marina*), the
17 most widespread seagrass in the Northern Hemisphere, provides nursery habitats and
18 foraging opportunities for a high diversity of temperate fishes. However, light limitation is
19 compressing eelgrass depth distribution to shallower waters, increasing exposure of these
20 habitats and their associated fish assemblages to thermal stress during intensifying marine
21 heatwaves. Persistence in warming eelgrass habitats may therefore depend on species-
22 specific differences in thermal tolerance and the capacity for rapid thermal acclimation
23 among fishes. However, interspecific variation in acclimation capacity within shared habitats
24 remains poorly understood. To address this gap, we experimentally exposed twelve wild-
25 caught eelgrass-associated fish species to ambient (19 °C) and heated (23 °C)
26 temperatures, representative of current summer conditions of the Swedish west coast
27 (Skagerrak, North Sea). We quantified critical thermal maxima (CT_{max}) as a proxy for upper
28 thermal tolerance and assessed species' short-term acclimation capacity following five days
29 of exposure to a simulated marine heatwave in the laboratory. Most species increased

30 CT_{max}, but both baseline thermal tolerance and acclimation capacity varied markedly among
31 taxa. Juvenile Atlantic cod, whiting and plaice showed the lowest thermal tolerance and
32 weakest acclimation responses, suggesting limited capacity to physiologically buffer acute
33 warming and a greater reliance on behavioural avoidance. In contrast, sedentary species
34 such as gobies and pipefishes exhibited high thermal tolerance with moderate plasticity,
35 while wrasses showed moderate tolerance but the strongest short-term acclimation capacity.
36 Temperature records from regional eelgrass meadows revealed summer conditions
37 approaching or exceeding the upper thermal limits of several species examined. Together,
38 these results demonstrate pronounced interspecific variation in thermal tolerance and
39 acclimation capacity among eelgrass-associated fishes. This indicates that ongoing warming
40 and marine heatwaves are likely to reshape eelgrass fish assemblages with implications for
41 coastal food-web structure and functioning.

42

43 **Keywords**

44 Global warming, marine heatwaves, critical thermal maximum, thermal acclimation, seagrass
45 ecosystems, thermal extremes

46

47 **Introduction**

48 Coastal vegetated habitats, such as seagrass meadows, rank among the most productive
49 ecosystems on Earth, providing essential nursery grounds, foraging habitats and refuge for
50 juvenile fishes while supporting global biodiversity (Beck et al., 2001; Heck Hay et al., 2003;
51 Lefcheck et al., 2019; McDevitt-Irwin et al., 2016; Orth et al., 2006). However, anthropogenic
52 climate change is increasingly exposing shallow coastal habitats to warming and extreme
53 thermal events that threaten ecological functions (Oliver et al., 2018; D. A. Smale et al.,
54 2019). Marine heatwaves are discrete periods (≥ 5 days) of anomalously high seawater
55 temperature relative to a local historical baseline (Hobday et al., 2016; Smith et al., 2023),
56 that have increased in frequency, intensity and duration over recent decades, posing a

57 pervasive threat to marine biodiversity globally (Calvin et al., 2023; Cheng et al., 2025;
58 Wernberg et al., 2025).
59 The North Sea is among the fastest-warming regions worldwide, recently experiencing
60 record-breaking sea surface temperatures associated with the longest and most intense
61 heatwave reaching +4°C (Mohamed et al., 2025). Such events cause widespread impacts on
62 foundation species, including seagrasses, kelp and corals, as well as on fauna with strong
63 habitat specificity, including fish, crustaceans and birds (Brijs et al., 2025; Garrabou et al.,
64 2009; Olsen et al., 2022; Smith et al., 2024; Strydom et al., 2020). Marine heatwaves shape
65 population persistence of species occupying the warm edges of their thermal distributions
66 (Sunday et al., 2019). Understanding species' capacity for physiological acclimation is
67 therefore essential for predicting vulnerability to marine heatwaves and anticipating potential
68 shifts in species distributions and community composition under ongoing climate change
69 (Gómez-Gras et al., 2025).
70 Fishes can buffer short-term warming through behavioural thermoregulation, such as
71 relocating to cooler waters, or via acclimation, a reversible form of phenotypic plasticity
72 within individuals that can partially offset thermal impacts on metabolism and performance
73 (Brett, 1952; Jr, 2009; Seebacher et al., 2015). Broadly, phenotypic plasticity is the capacity
74 of organisms to alter aspects of their phenotype in response to environmental variation
75 (Morash, 2024). However, when warming exceeds upper thermal limits and outpace their
76 acclimation capacity, individuals lose motor control and can no longer escape heat (Fry,
77 1947; Jutfelt et al., 2024; McKenzie et al., 2021). This threshold is commonly quantified as
78 the Critical Thermal maximum (CT_{max}), defined as the temperature-inducing loss of
79 equilibrium (Becker & Genoway, 1979). Despite limited mechanistic insights, CT_{max} remains
80 widely used to assess acute thermal tolerance and acclimation capacity across fishes under
81 climate change scenarios (De Bonville et al., 2025; Desforges et al., 2023; Lefevre et al.,
82 2021; Madeira et al., 2012; Messmer et al., 2017; Moyano et al., 2017; Raby et al., 2025;
83 Vinagre et al., 2016). Derived metrics such as acclimation response ratio (ARR) and thermal

84 tolerance gain (TTgain) further quantify the magnitude of thermal acclimation following
85 exposure to elevated temperatures (L.Claussen, 1977; Morley et al., 2019).
86 Predicting which species are vulnerable to thermal extremes and how fish assemblages will
87 change under climate warming is challenging because thermal tolerance and acclimation
88 capacity vary widely among species (Burton & Einum, 2025; Jutfelt et al., 2024). While
89 acclimation capacity has been examined in subtropical, temperate and Antarctic fishes (Bilyk
90 & DeVries, 2011; De Bonville et al., 2025; Drost et al., 2016; Mottola et al., 2022; Peck et al.,
91 2014), few studies have compared multiple species co-occurring within the same habitat,
92 and to our knowledge, none have focused on seagrass-associated fish assemblages.
93 Eelgrass (*Zostera marina*) is the most widespread seagrass in the Northern Hemisphere,
94 occurring in Pacific and Atlantic oceans from temperate to Arctic environments (Short, 2003;
95 Yu et al., 2023). Eelgrass meadows host highly diverse fish assemblages including shallow-
96 water generalists (e.g., wrasses, gobies, sticklebacks), stationary specialists (e.g., pipefishes
97 and some gobies), and juvenile migrants such as gadids (codfishes) and flatfishes (Perry et
98 al., 2018; Pihl & Wennhage, 2002). However, eelgrass depth distribution has steeply
99 declined in Europe due to eutrophication and habitat destruction, with complex recovery
100 trajectories and an increasingly constrained distribution to the first meters of the shoreline
101 (Boström et al., 2014; de los Santos et al., 2019; Krause-Jensen et al., 2021; Lefcheck et al.,
102 2017). Eelgrass habitats are also becoming shallower due to deterioration of water quality,
103 which further exposes them to thermal extremes that threaten the provision of their
104 ecosystem services (Krause-Jensen et al., 2021; Nguyen et al., 2021; Saha et al., 2020).
105 Moreover, while eelgrass meadows exhibit strong temperature microclimates driven by
106 depth, hydrodynamics and exposure (Hattich et al., 2025), there is a lack of long-term, high-
107 resolution temperature records from eelgrass meadows (Nordlund et al., 2024). Recent
108 syntheses highlight that the ecological impacts of marine heatwaves depend strongly on
109 local environmental conditions and fine-scale habitat heterogeneity, which can amplify or
110 buffer thermal exposure relative to regional averages (Starko et al., 2024). Consequently,

111 the responses of eelgrass fish assemblages to marine heatwaves remain poorly understood
112 (Robinson et al., 2022; Thalmann et al., 2024).
113 Here, we experimentally quantified CT_{max} and short-term acclimation capacity in 12 fish
114 species associated with eelgrass habitats on the Swedish Skagerrak coast. Wild-caught
115 individuals were exposed to ecologically relevant ambient (19°C) and elevated (23°C)
116 temperatures for five days, followed by measuring CT_{max} through the behavioural response
117 temperature at loss of equilibrium. We then quantified acclimation capacity for all species
118 and further examined relationships between CT_{max} and species' thermal distribution ranges.
119 We also evaluated local thermal regimes using in situ logger records and historical
120 temperature data to detect marine heatwaves. We predicted that generalist species with
121 warmer thermal niches would exhibit higher CT_{max} and greater acclimation capacity, whereas
122 migratory species with narrower or cold ranges would show lower tolerance and limited
123 plasticity, indicating potential vulnerability to future marine heatwaves occurring in eelgrass
124 habitats.

125

126 **Materials and methods**

127 **Animal research permit**

128 The Swedish Board of Agriculture's ethical committee and the University of Gothenburg
129 approved this experiment (Ethics Permit Dnr 5.2.18-01447/2022). It followed the regulations
130 set by the Animal Welfare Body at the University of Gothenburg and the ARRIVE guidelines
131 (Animal Research: Reporting of *In Vivo* Experiments (Sert et al., 2020).

132 **Study area and fish husbandry**

133 The study was conducted between 15th of July and 23rd of September, 2024, at the
134 Kristineberg Marine Research Station, in the Gullmar Fjord on the Swedish Skagerrak coast
135 (58.24983° N, 11.44587° E). The fjord is connected to the North Sea and supports
136 productive eelgrass meadows in shallow, semi-sheltered areas.

137 Wild fish belonging to twelve different common temperate fish species associated with
 138 eelgrass were collected within two kilometres from Kristineberg at one to four meters depth.
 139 Species represented six families (Gadidae, Pleuronectidae, Labridae, Gasterosteidae,
 140 Gobiidae and Syngnathidae; Table 1) and included shallow water generalists, sedentary
 141 habitat specialists and juvenile migratory species. Fish were captured using beach seines,
 142 baited traps, fyke nets and hand nets while snorkelling, and immediately transported to the
 143 research station.

Study Species and Experimental Design							
Species	Family	Common name	N / treat	N / tank	Morphometrics		
					TL (mm)	Mass (g)	Life stage
<i>Gadus morhua</i>	Gadidae	Atlantic cod	9	1-2	103 ± 20	10.6 ± 6.0	J
<i>Merlangius merlangus</i>	Gadidae	Whiting	12	2-3	121 ± 9	13.4 ± 3.3	J
<i>Gasterosteus aculeatus</i>	Gasterosteidae	Three-spined stickleback	75	15	48 ± 4	1.0 ± 0.1	A
<i>Gobius niger</i>	Gobiidae	Black goby	35	7	82 ± 6	6.9 ± 0.5	J
<i>Pomatoschistus flavescent</i>	Gobiidae	Two-spotted goby	105	21	39 ± 7	0.4 ± 1.9	A
<i>Pomatoschistus minutus</i>	Gobiidae	Sand goby	30	6	64 ± 58	1.8 ± 0.4	A
<i>Ctenolabrus rupestris</i>	Labridae	Goldsinny wrasse	20	4	95 ± 11	11.2 ± 6.5	A
<i>Syphodus melops</i>	Labridae	Corkwing wrasse	30	6	122 ± 8	24.5 ± 0.5	A
<i>Pleuronectes platessa</i>	Pleuronectidae	Plaice	35	7	52 ± 10	1.6 ± 3.7	J
<i>Nerophis ophidion</i>	Syngnathidae	Straightnose pipefish	15	3	208 ± 52	0.7 ± 9.1	A / J
<i>Syngnathus acus</i>	Syngnathidae	Greater pipefish	3	1	376 ± 35	24.2 ± 0.8	A
<i>Syngnathus typhle</i>	Syngnathidae	Broadnosed pipefish	15	3	144 ± 9	1.2 ± 0.9	A / J

144
 145 **TABLE 1. Metadata for study species and experimental design.** N/treat = number of individuals per
 146 treatment; N/tank = number of fish per tank; TL (mm) = total length in millimeter, mean ± S.D.; Mass (g) = mass in
 147 grams, mean ± S.D. For life stage J = Juvenile; A = Adult.
 148 At the lab, fish were housed in a holding tank (1350 L, 275 × 79 × 62 cm, [L × W × H])
 149 supplied with flow-through filtered seawater pumped from seven meters depth and
 150 acclimated to captivity for one week under ambient fjord temperatures (18.6 ± 1.5°C, mean ±
 151 S.D.) and a 12:12 hour light:dark photoperiod. They were fed once daily to satiation with

152 thawed northern shrimp (*Pandalus borealis*) and brine shrimp (*Artemia* sp.), and tanks were
153 cleaned daily to maintain water quality.

154 **Experimental design**

155 Separate experiments were conducted for each species, exposing the fish to two
156 temperature treatments for five days to trigger a short-term acclimation response. Each
157 experiment consisted of five replicated tanks with seawater at 19°C (“Ambient”) and five at
158 23°C (“Heated”). These temperatures reflected ecologically realistic summer conditions on
159 the Swedish Skagerrak coast based on high resolution *in situ* temperature records at one
160 meter depth at Kristineberg (<https://www.weather.loven.gu.se/kristineberg/en/>). “Ambient”
161 approximated the mean daily maximum sea temperature from 1st of June to 30th of
162 September for 2020-2023 (18.6 ± 1.9°C, mean ± S.D.), while “Heated” simulated a +4°C
163 marine heatwave anomaly.

164 Experiments were conducted in a temperature-controlled room with centralized air and sea
165 water heating. Tanks received flow-through seawater adjusted to target temperatures, which
166 were monitored daily (18.8°C ± 0.3 and 22.8 ± 0.2, mean ± S.D.; Thermometer Testo-112,
167 Testo, Lenzkirch, Germany). Fish were randomly assigned to treatments, and tank size was
168 adjusted according to species: small glass tanks (45 L): 35 x 37x 35 cm [L × W × H]; big
169 glass tanks (80 L): 38 x 60 x 35 cm. Tanks were dispersed throughout the room to minimize
170 location effects, and contained 2cm of sand substrate and plastic seaweed, mussel shells,
171 and PVC pipes for shelter. The feeding regime and photoperiod matched the holding period.

172 **Testing of acute warming tolerance (CT_{max}) on fish**

173 After the five-day exposure, one CT_{max} trial was conducted per experimental tank (five per
174 treatment), testing all fish from a tank simultaneously. Fish were fasted 24 hours before trials
175 (Raby et al., 2025). CT_{max} was measured using a standardized test with temperature at loss
176 of equilibrium (LOE) as the response variable for each fish (Beitinger et al., 2000; Morgan et
177 al., 2018). LOE was a behavioural response defined as the fish’s inability to maintain an
178 upright position for three seconds.

179 Trials were conducted in a custom arena filled with water from the corresponding
180 experimental tank. The CT_{max} arena was a plastic box (34 x 25 x 17 cm; ~14 liters) divided
181 into one small (a third of the box size) and one big compartment (two thirds) by a mesh. The
182 smaller compartment contained the heating elements (a coil heater and a heating chamber),
183 a submersible water pump for mixing and an air stone for aeration, while the larger
184 compartment housed the fish. A 300 W coil heater was placed inside a custom-made
185 cylindrical steel heating chamber, which was connected to the water pump (Eheim
186 compactON 1000 aquarium pump) for even heat distribution. The water pump was set to a
187 minimum level, so fish did not have to swim actively. A larger box (41 x 30 x 25 cm; ~23
188 liters) and a 500 W heater (Aqua Medic TH-500) were used for species with body sizes over
189 100 mm. The number of fish per trial ranged between three and 20 depending on species
190 (Table S1).

191 To start the test, all fish from one tank were placed into the arena and allowed to habituate
192 for ten minutes at the experimental temperature. Thereafter, the trial was started by plugging
193 the heater and the water temperature gradually increased at a rate of $0.3^{\circ}\text{C min}^{-1}$ (thermal
194 ramping curves and rates shown in Fig. S2 and Table S2). To avoid observer bias, one
195 person observed the fish and identified LOE blinded from the thermometer (Holman et al.,
196 2015), while another person recorded the time, temperature, and ramping rate (Testo-112
197 Digital Thermometer, Lenzkirch, Germany) (Raby et al., 2025). The CT_{max} arena was drained
198 and refilled between trials. Pilot trials were run to define species LOE and performed by the
199 same observer for all trials of a given species.

200 At LOE, the CT_{max} was recorded, and each fish was immediately transferred to a labelled jar
201 with water at the original experiment temperature for recovery. After monitoring survival for
202 30 minutes, fish were lightly anaesthetized (using 0.25 g/l Tricaine mesylate, MS222) to
203 measure total length (mm), mass (g), and, when possible, life-stage, and sex. The order of
204 CT_{max} trials was randomized across treatments and performed during daytime.

205 **Data analysis**

206 All data analyses were conducted in R (v 4.4.2, R Core Team, 2024). Linear mixed-effect
207 models were fitted using the *lme4* package (Bates et al., 2015); The packages *dplyr* and
208 *ggplot2* (Wickham, 2016) were used for data wrangling and visualization, and *emmeans* was
209 used to obtain estimated marginal means and pairwise contrasts.

210 **Comparing upper thermal tolerance across species**

211 We analysed CT_{max} using a linear mixed-effects model with species, treatment group
212 (Ambient vs. Heated), and their interaction as fixed effects, and CT_{max} trial as a random
213 intercept: `lmer(ctmax ~ species * group + (1 | trial))`.
214 This model tested: (i) differences in Ambient CT_{max} among species (species effect), (ii) the
215 overall effect of acclimation to elevated temperature (group effect), and (iii) species-specific
216 differences in acclimation capacity (species x group interaction). Fish from the same tank
217 were tested together within a CT_{max} trial and therefore, the trial represented the experimental
218 unit. Due to complete mortality of *Gadus morhua* in the Heated treatment, CT_{max} was only
219 measured for Ambient conditions for this species, and it was excluded from within-species
220 acclimation contrasts. Estimated marginal means for each species x group combination and
221 pairwise comparisons were obtained with *emmeans*.

222 **Comparing acclimation capacity across species**

223 Acclimation capacity was quantified using thermal tolerance gain (TTgain), the increase in
224 thermal tolerance following acclimation (Fangue et al., 2014). For each species:

$$225 TTgain_{species} = \text{mean } CT_{max,Heated} - \text{mean } CT_{max, Ambient}$$

226 To compare acclimation capacity among species, we calculated the acclimation response
227 ratio (ARR), which expresses the change in CT_{max} per $^{\circ}\text{C}$ of change in acclimation
228 temperature (Morley et al., 2019). For each species:

$$229 ARR_{species} = (\text{mean } CT_{max,Heated} - \text{mean } CT_{max, Ambient}) / 4$$

230 where $\text{mean } CT_{max,Heated}$ and $\text{mean } CT_{max, Ambient}$ are the estimated marginal means for each
231 species and treatment obtained from the mixed-effects model and 4°C is the difference
232 between treatments ($19 - 23^{\circ}\text{C}$).

233 To visualise within-species variation in acclimation responses, we also calculated an
234 individual-level ARR for fish exposed to the heated treatment as:
235 $\text{ARR}_{\text{individual}} = (\text{CT}_{\text{max,Heated, individual}} - \text{mean } \text{CT}_{\text{max, Ambient, Species}}) / 4$
236 where “mean $\text{CT}_{\text{max, Ambient, Species}}$ ” is the species’ ambient CT_{max} baseline estimated as the
237 marginal mean from the mixed-effects model. Negative ARR values were set to zero as they
238 indicate no measurable acclimation capacity.

239 **Exploring upper thermal tolerance across fish families**

240 To explore broad taxonomic patterns in upper thermal tolerance, we conducted an additional
241 family-level analysis using species as the unit of replication. Species-level CT_{max} (estimated
242 marginal means from the mixed-effects model) for Ambient and Heated treatments were
243 separately analysed as a function of family using a linear model (`lm(emmean ~ family)`),
244 followed by Tukey-adjusted pairwise comparisons. Given the number of species per family
245 was limited (1-3), this analysis was considered exploratory.

246 **Eelgrass summer temperatures and fish distribution ranges**

247 To investigate how current thermal regimes of eelgrass habitats compare to fish thermal
248 distribution ranges, we first selected a reference eelgrass meadow with *in situ* sea
249 temperature data available publicly. The meadow was located outside the Tjärnö Marine
250 Laboratory, 72 km northwest from Kristineberg (58.87877 N, 11.13467 E), and hosted a
251 logger at 1.5 m depth, recording temperature in 5-min intervals
252 (<https://snd.se/en/catalogue/dataset/2024-45> ; Jahnke et al. (2024)). For 1st of June to 30th of
253 September (2020-2023), negative values were filtered and data were aggregated to daily
254 maximum temperature. Then for each day of year, we calculated a multi-year mean and the
255 minimum and maximum of daily maxima. We also identified the warmest period in the
256 season and computed the multi-year mean, minimum and maximum, to obtain the warmest
257 temperature range of the reference eelgrass meadow. Then for each fish species, we
258 obtained the thermal limits (preferred and absolute) from AquaMaps’ defined native range
259 and environmental envelopes via FishBase. AquaMaps derive species-specific temperature
260 envelopes from occurrence records (GBIF, OBIS) and expert-defined distributional ranges

261 (<https://www.aquamaps.org/>; Kaschner et al., 2019). Finally, the relationship between
262 species' maximum range temperature and their mean CT_{max} (after acclimation to 19°C) was
263 explored using Pearson's correlation and simple linear regression.

264 **Warming trends and marine heatwaves**

265 To investigate longer trends in local summer temperatures, we used *in situ* measurements of
266 sea temperature from the Kristineberg weather station

267 (<https://www.weather.loven.gu.se/kristineberg/en/>), at 1m depth in 5-min intervals available
268 for 1996-2024, except 1997 and 2001-2006. Data from the 1st of June to the 30th of
269 September (referred to as "summer") were aggregated to daily maxima and used to
270 calculate decadal averages. Trends in annual summer maxima were calculated with linear
271 regression.

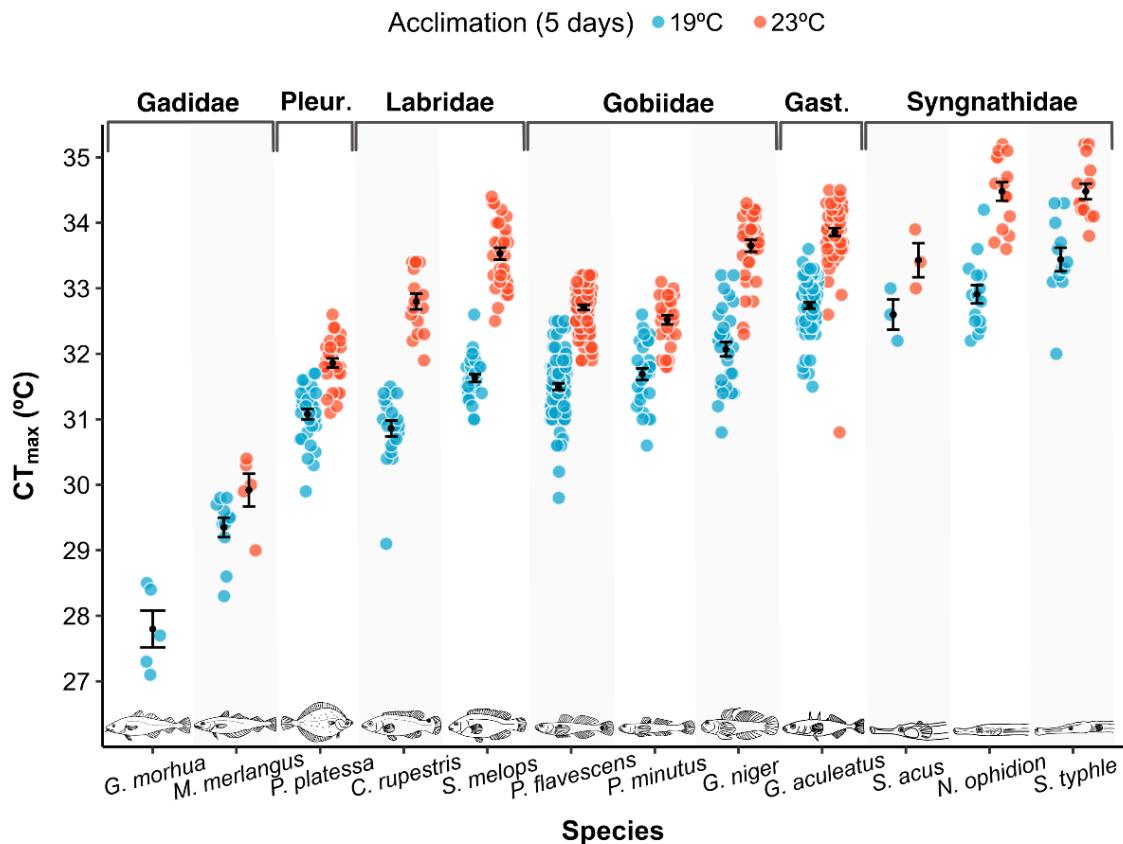
272 Since a 30-year climatology baseline is required for standard marine heatwave detection
273 (Smith et al., 2025), we used satellite-derived daily mean SST from the NOAA Optimum
274 Interpolation Sea Surface Temperature version 2.1 (NOAA OISST; (Huang et al., 2024;
275 Reynolds et al., 2007)), with 0.25° (27 km) resolution, extending back to 1982, and extracted
276 for the grid cell nearest Kristineberg (58.125°N, 11.375°E). For the 1st of January 1982 to the
277 31st of December 2024 temporal trends modelled with linear regression. Marine heatwave
278 frequency and cumulative intensity (°C and days) for each year were estimated using the
279 *heatwaveR* package (W. Schlegel & J. Smit, 2018), following the definition from Hobday et
280 al. (2016), with a 30-year climatology baseline record (1982-2011). Marine heatwave
281 frequency was modelled using a Poisson Generalized Linear Model (GLM) with robust (HC1)
282 confidence intervals. Marine heatwave annual cumulative intensity (the sum of daily sea
283 temperature anomalies across heatwave days within a year (°C·days) (Oliver et al., 2018)
284 was modelled using a Gamma GLM with a log link and robust confidence intervals, with a
285 log-transformed linear model and Newey-West correction when it did not converge. All
286 trends were expressed per decade.

287 Finally, to assess if the long-term data sets were representative of eelgrass habitats, we
288 compared *in situ* daily SST means from Kristineberg and satellite SSTs to *in situ* daily means

289 from the reference eelgrass meadow in Tjärnö (described above) for the summers 2020-
290 2023. Agreement among datasets was evaluated using Pearson correlations, mean bias,
291 and root-mean-square error (RMSE).

292

293 **Results**


294 **Upper thermal tolerance (CT_{max}) across species and families**

295 A linear mixed-effects model revealed strong effects of species ($F = 123.23, p < 0.001$) and
296 temperature treatment ($F = 540.91, p < 0.001$) on CT_{max} , as well as significant species x
297 treatment interaction ($F = 10.96, p < 0.001$), indicating pronounced interspecific differences
298 in upper thermal tolerance and species-specific responses to short-term warming.

299 Subsequent analyses using estimated marginal means are presented below.

300 **Acclimation to 19°C (Ambient)**

301 Under acclimation to 19°C, CT_{max} differed significantly among species ($F = 94.3, p < 0.001$;
302 Fig. 1; Table S4). Estimated marginal mean CT_{max} ranged from 27.8 in *Gadus morhua* to
303 33.4°C in *Syngnathus typhle*. Juvenile gadids (Gadidae) exhibited the lowest thermal
304 tolerance, followed by juvenile plaice and wrasses, whereas gobies, sticklebacks and
305 pipefishes showed higher CT_{max} values, with pipefishes (Syngnathidae) representing the
306 most heat tolerant family.

307

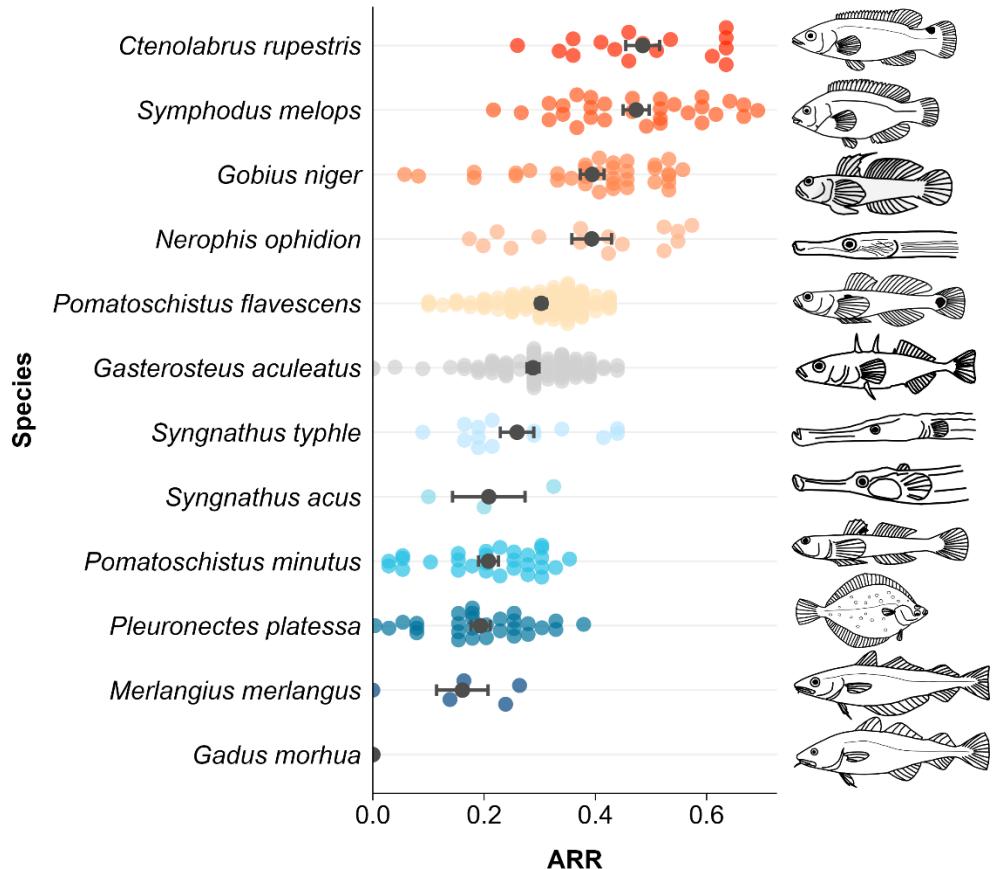
308 **FIGURE 1.** Upper thermal tolerance (CT_{max}) of twelve eelgrass-associated fish species following five days of
 309 acclimation to 19°C (Ambient; blue) or 23°C (Heated; orange). Coloured points represent individual CT_{max}
 310 measurements and are jittered horizontally for clarity. Black points and error bars indicate species means \pm S.E.
 311 Y-axis values show temperature in °C; X-axis values are shortened species names (left to right): *Gadus morhua*;
 312 *Merlangius merlangus*; *Pleuronectes platessa*; *Ctenolabrus rupestris*; *Syphodus melops*; *Pomatoschistus*
 313 *flavescens*; *Pomatoschistus minutus*; *Gobius niger*; *Gasterosteus aculeatus*; *Syngnathus acus*; *Nerophis*
 314 *ophidion*; *Syngnathus typhle*. Among families, Pleur. = *Pleuronectidae*; Gast. = *Gasterosteidae*.

315 **Acclimation to 23°C (Heated)**

316 Following exposure to 23°C, CT_{max} also differed significantly among species ($F = 71.51$, $p <$
 317 0.001; Fig. 1; Table S3). All juvenile *G. morhua* and 58.3% of the juvenile whiting (*M.*
 318 *merlangus*) died during the exposure period (Table S4). Among surviving fish, whiting
 319 exhibited the lowest CT_{max} (29.9°C) whereas pipefishes reached values up to 34.5°C. The
 320 relative ranking of species under 23°C broadly mirrored that observed at 19°C, although the
 321 gobies *P. flavescens* and *P. minutus* displayed slightly lower CT_{max} than the wrasses *C.*
 322 *rupestris* and *S. melops*.

323 **Family-level patterns**

324 An exploratory family-level analysis indicated differences in CT_{max} under both Ambient (linear
325 model, $F = 15.11$, $p < 0.01$; Table S5) and Heated conditions (linear model, $F = 8.80$, $p <$
326 0.05; Table S6). Gadidae showed substantially lower CT_{max} ($28.6 \pm 0.4^\circ\text{C}$, mean \pm S.E.) than
327 all other families, whereas Gasterosteidae and Syngnathidae were the most heat tolerant
328 ($\approx 33^\circ\text{C}$). Pleuronectidae, Labridae and Gobiidae showed intermediate mean CT_{max} levels,
329 with comparatively small and non-significant differences among these families.

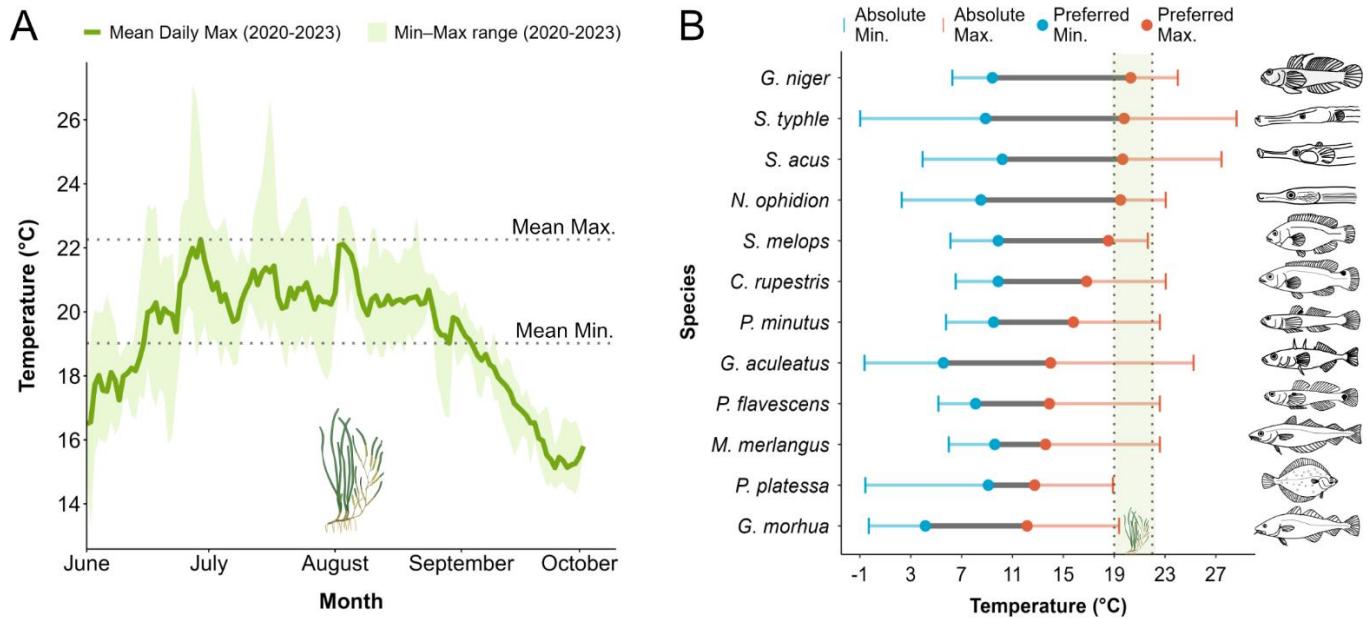

330 **Acclimation capacity**

331 ***Thermal tolerance gain (TT_{gain})***

332 Species-specific contrasts revealed significant increases in CT_{max} following the short-term
333 warming for all species with measurements in both treatments (all $p < 0.02$; Table S7).
334 TT_{gain} varied nearly threefold among species, ranging from 0.62°C to 1.94°C (Table S8).
335 The largest gains were observed in *C. rupestris* (1.94°C), *S. melops* (1.89°C), *N. ophidion*
336 (1.58°C), and *G. niger* (1.58°C), whereas juvenile gadids and plaice exhibited comparatively
337 weak responses. No TT_{gain} could be estimated for *G. morhua* due to complete mortality in
338 the heated treatment.

339 ***Acclimation response ratio (ARR)***

340 Full thermal acclimation (ARR = 1), equivalent to a 4°C increase in CT_{max} , was not achieved
341 in any species after five days at 23°C . Species-level ARR values derived from estimated
342 marginal means ranged from 0.13 to 0.48, showing partial but variable acclimation capacity
343 among species (Fig. 2; Table S8). Species exhibiting the highest ARR were primarily
344 wrasses and sedentary taxa, whereas juvenile gadids and flatfish had the lowest values.
345 Individual-level ARR values showed substantial within-species variation (Fig. 2). Most
346 individuals displayed positive acclimation responses, although some exhibited ARR values
347 near zero, indicating no measurable increase in CT_{max} . No ARR could be reported for *G.*
348 *morhua*.



349

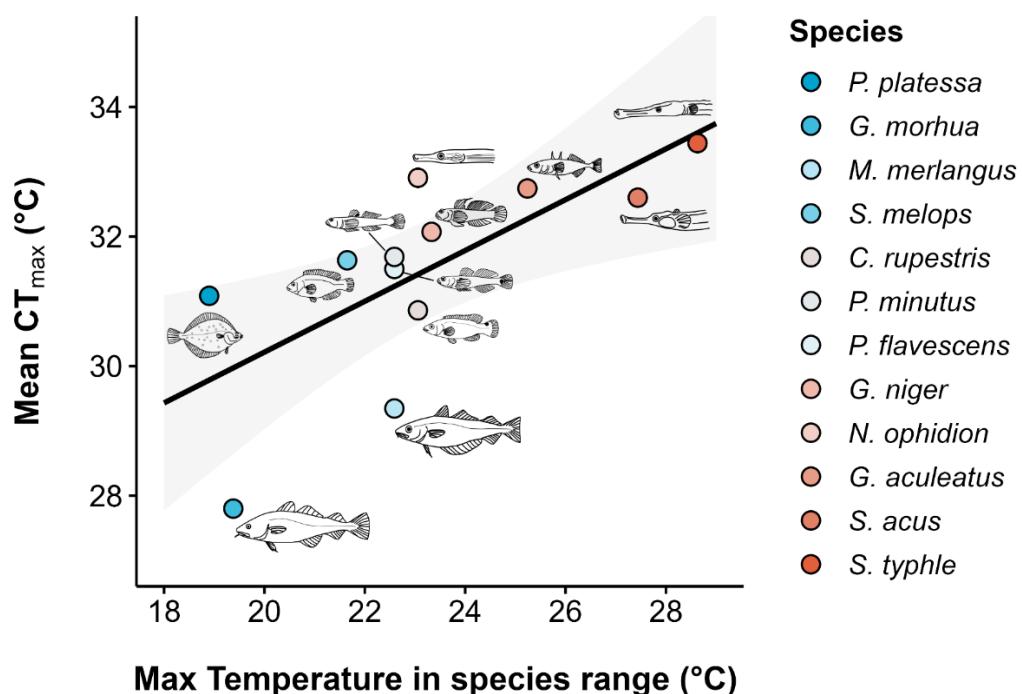
350 **FIGURE 2.** Acclimation response ratio (ARR) following five days of exposure to 23°C for twelve eelgrass-
 351 associated fish species. Coloured points represent individual-level ARR values calculated for fish exposed to
 352 23°C. Black points and error bars show species-level ARR mean \pm S.E. An ARR of 1.0 represents a complete
 353 thermal compensation. *Gadus morhua* did not survive the heated treatment and is therefore shown without ARR
 354 values.

355 **Eelgrass summer temperatures and fish distribution ranges**

356 Temperature records from the reference eelgrass meadow revealed that the warmest
 357 seawater conditions occurred from the 15th of June to the 1st of September, when daily
 358 maximum temperatures averaged 20.5°C, ranged between 19.0 and 22.3°C, and frequently
 359 approached or exceeded 23°C (Fig. 3A). Over the full summer period (1st of June to the 30th
 360 of September), daily maximum temperatures followed a clear seasonal pattern, averaging
 361 19.3°C and ranging from 15.1 to 22.3°C (Fig. 3A).

362

363 **FIGURE 3. Summer sea temperatures in a temperate eelgrass (*Zostera marina*) meadow and fish species**
 364 **thermal distribution ranges.** A) Daily maximum seawater temperature in an eelgrass meadow at 1.5 m depth
 365 during the summer (the 1st of June to the 30th of September, 2020-2023). Green line: mean daily maximum
 366 across the four years; Shaded green ribbon: range between minimum and maximum daily maxima across years;
 367 Grey dotted horizontal lines: minimum and maximum of the daily mean during the warmest period (the 15th of
 368 June to the 1st of September). B) Thermal distribution ranges of the species ordered by maximum preferred
 369 temperatures. Red and blue dots indicate preferred maximum and minimum temperatures, respectively, while the
 370 grey segment indicates preferred temperature ranges. Red and blue ticks indicate absolute maximum and
 371 minimum temperatures, respectively. Vertical grey dotted lines at 19°C and 22°C highlight the current
 372 temperatures in eelgrass relating to panel A.

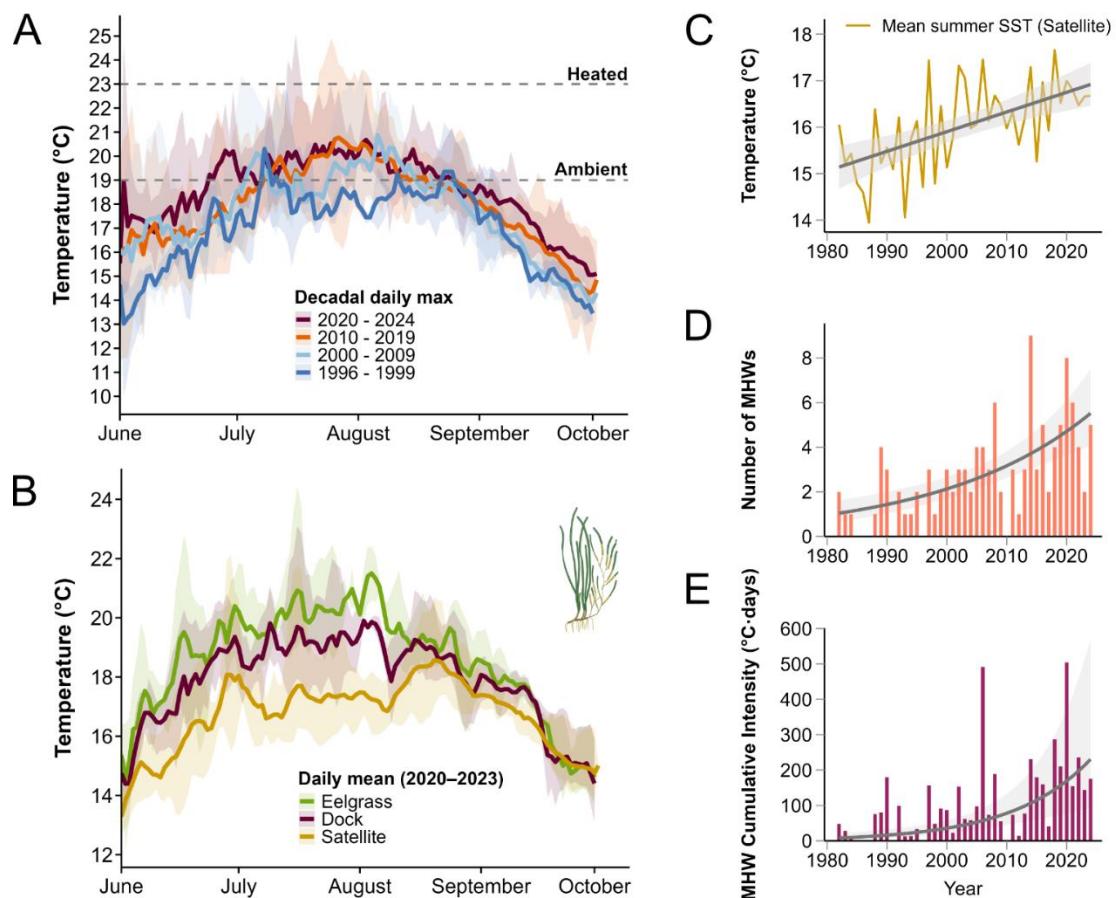

373 Thermal niches varied substantially among species (Fig. 3B). Most occupied broad thermal
 374 ranges spanning approximately 5-23°C, while some taxa, including the three-spined
 375 stickleback and broadnosed pipefish, exhibited wider distributions extending to 25-28°C. In
 376 contrast, cod and plaice were restricted to cooler thermal environments, with upper
 377 distribution limits around 19°C (Fig. 3B).

378 For several species, preferred temperature maxima were below present summer
 379 temperatures measured in eelgrass habitats. Juvenile cod, whiting, plaice, two-spotted goby,
 380 three-spined stickleback, sand goby, and goldsinny wrasse, showed preferred temperatures
 381 in the range of ≈ 12–18°C, despite absolute maxima indicating persistence at higher

382 temperatures. In contrast, corkwing wrasse, pipefishes, and black goby exhibited preferred
383 temperatures within or above the summer range of regional eelgrass ($\approx 19\text{--}21^\circ\text{C}$), with some
384 species occupying waters exceeding 24°C (Fig. 3B).

385 **Upper thermal tolerance and thermal ranges**

386 Mean CT_{max} increased with the absolute maximum temperatures experienced across
387 species' geographic distributions ($R^2 = 0.489$, $p < 0.05$; Fig. 4). Hence, species from warmer
388 environments exhibited higher upper thermal limits, with CT_{max} broadly tracking the upper
389 bounds of their thermal ranges.



390
391 **FIGURE 4.** Relationship between species' mean CT_{max} (at 19°C) and maximum temperatures of its predicted
392 distribution range (AquaMaps, Froese et al., 2019). Each point represents the mean Critical Thermal maximum
393 (CT_{max}) for a species under ambient conditions, with colors distinguishing species. The black line shows the fitted
394 linear regression ($\pm 95\%$ confidence interval in gray), indicating a positive association between CT_{max} and range
395 maximum temperature.

396 **Thermal variability, warming trends and marine heatwaves**

397 Long-term *in situ* measurements at Kristineberg indicated substantial warming of summer
398 seawater temperatures between 1996 and 2024, with annual daily maximum temperatures
399 increasing by 2.6°C , equivalent to 0.92°C per decade ($0.092^\circ\text{C yr}^{-1}$; 95% CI: $0.014\text{--}0.170^\circ\text{C}$

400 yr^{-1} ; $R^2 = 0.23, p < 0.05$; Fig. 5A). Seasonal patterns showed progressive warming from
 401 early June to late July or early August, followed by cooling through September. Decadal
 402 comparisons revealed that the most recent period (2020–2024) experienced the highest
 403 daily maxima, frequently exceeding 20°C and occasionally surpassing 23°C.

404
 405 **FIGURE 5. Long-term summer sea surface temperature (SST) and marine heatwaves at Kristineberg (1982**
 406 **- 2024). A)** Daily maximum SST at 1m depth (1st of June to 30th of September), grouped by decade: 1996 - 1999
 407 (dark blue), 2000 - 2009 (light blue), 2010 - 2019 (orange), and 2020 - 2024 (purple-red). Thin lines represent
 408 individual years; thick lines represent decadal means, and shaded ribbons show the interannual minimum-
 409 maximum range. Dashed horizontal lines indicate experimental temperature treatments ("Ambient" and
 410 "Heated"). **B)** Daily mean SST (2020-2023) measured *in situ* within an eelgrass meadow at 1.5m depth (Tjärnö;
 411 green), at the dock at 1m depth at Kristineberg (purple-red), and from satellite SST (yellow). Shaded ribbons
 412 indicate the interannual minimum-maximum range. **C)** Mean summer SST by year derived from satellite data,
 413 with a linear trend and 95% CI; warming rate = $0.42^\circ\text{C}\cdot\text{decade}^{-1}$ (95% CI 0.29-0.56). **D)** Annual frequency of
 414 marine heatwaves (MHWS) with a fitted temporal trend and 95% CI; change = $49\%\cdot\text{decade}^{-1}$ (95% CI 28-73); **E)**

415 Annual cumulative MHW intensity with fitted temporal trend and 95% CI; change = 116%·decade⁻¹ (95% CI 49-
416 212).

417 Daily mean eelgrass temperatures were consistently higher than those measured at the
418 dock or estimated from satellite data during summer (2020-2023; Fig. 5B). Eelgrass
419 temperatures exceeded dock measurements by an average of 0.67°C, and satellite-derived
420 SST by 1.76°C, with both offsets being statistically significant (one-sample t-tests on paired
421 daily differences: $p < 0.001$ in both cases). Satellite SST showed a systematic cool bias
422 relative to both in situ measurements (dock: -1.09°C, RMSE = 1.45°C; eelgrass: -1.76°C,
423 RMSE = 2.25°C), although temporal variability was captured reasonably well (Pearson $r =$
424 0.86 for satellite vs dock; $r = 0.75$ for satellite vs eelgrass). Differences between eelgrass
425 and satellite temperatures frequently exceeded 4°C and reached a maximum of 5.82°C,
426 indicating that satellite SST substantially underestimates thermal extremes in shallow
427 eelgrass meadows.

428 Satellite-derived SST further revealed a significant long-term warming in the summers and
429 increasing marine heatwaves at Kristineberg between 1982-2024. Mean summer SST
430 increased by 0.42°C per decade (95% CI 0.29-0.56; $p < 0.001$; Fig 5C). Marine heatwave
431 frequency increased by 49% per decade (95% CI 28-73; $p < 0.001$; Fig. 5D), corresponding
432 to an additional 1.02 events per decade (95% CI 0.65-1.39; $p < 0.001$). Annual cumulative
433 marine heatwave intensity increased by 116% per decade (95% CI 49–212; $p < 0.001$; Fig.
434 5E), equivalent to 48.6°C·days per decade (95% CI 26.6–70.7; $p < 0.001$; Fig. 5E), indicating
435 a marked rise in total thermal exposure associated with marine heatwaves.

436

437 **Discussion**

438 This study provides the first comparative assessment of upper thermal tolerance and short-
439 term acclimation capacity across multiple eelgrass-associated fish species, linking
440 experimental physiology with long-term habitat warming and regional trends in marine
441 heatwaves. We reveal pronounced interspecific variation in upper thermal tolerance (CT_{max})
442 and rapid acclimation capacity. Although most species increased their CT_{max} following short-

443 term warming, the magnitude of acclimation differed markedly among species. Cold-water
444 juvenile migrants using eelgrass and nearby sandy habitats as nurseries (e.g., Atlantic cod,
445 whiting, and plaice) exhibited weak acclimation capacity and high mortality, whereas warm-
446 tolerant generalists and stationary species (e.g. three-spined stickleback, black goby,
447 goldsinny wrasse and corkwing wrasse) showed higher tolerance and greater plasticity.
448 Importantly, these physiological differences occur in shallow eelgrass-associated fish
449 communities that already experience temperatures near or exceeding the upper thermal
450 limits of several associated species. Together, our results indicate that ongoing warming and
451 intensifying marine heatwaves are likely to restructure eelgrass fish assemblages through
452 differential physiological vulnerability.

453 **Warming eelgrass habitats**

454 During summer (2020-2023) daily mean and maximum temperatures in the reference
455 eelgrass meadow (1.5m depth) frequently reached 22-23°C, approaching or exceeding the
456 preferred thermal ranges of several associated fishes. Eelgrass temperatures were
457 consistently warmer than those recorded at the research station dock and were
458 underestimated from satellite-derived SST by approximately 1–3°C on average and up to 4–
459 5°C during thermal extremes. This pattern is consistent with previous work showing that
460 satellite SST products capture broad temporal variability reasonably well, but systematically
461 underestimate thermal extremes in shallow, vegetated habitats with restricted water
462 exchange (Pearce et al., 2006; Phinn et al., 2018; D. Smale & Wernberg, 2009).
463 Sheltered eelgrass meadows also experience greater thermal variability and more frequent
464 extremes than wave-exposed habitats (Hattich et al., 2025). Such variability can have
465 disproportionate effects on organismal performance compared to changes in mean
466 temperature (Vasseur et al., 2014), particularly when extremes push individuals to their
467 physiological limits. Microhabitat differences therefore modulate the temperatures organisms
468 experience, creating opportunities for behavioural thermoregulation and refugia from
469 extremes (Sunday et al., 2019). Broadly, the ecological impacts of marine heatwaves
470 depend strongly on local environmental conditions and fine-scale habitat heterogeneity,

471 which can amplify or buffer thermal exposure relative to regional averages (Starko et al.,
472 2024).
473 Furthermore, our findings show that shallow eelgrass habitats warm faster than the regional
474 warming trends. Although global oceans have warmed by $\sim 0.13^{\circ}\text{C}$ per decade since 1982
475 (Calvin et al., 2023; Von Schuckmann et al., 2024), the North Sea has warmed nearly four
476 times faster, at $\sim 0.38^{\circ}\text{C}$ per decade (Mohamed et al., 2025). We detected a comparable
477 warming rate on the Swedish west coast ($\sim 0.42^{\circ}\text{C}$ per decade) together with an increase in
478 marine heatwave frequency. However, the cumulative intensity change was $48.6^{\circ}\text{C}\cdot\text{days}$ per
479 decade, which is about ten times stronger than in the full basin at $4.23^{\circ}\text{C}\cdot\text{days}$ per decade
480 (Mohamed et al., 2025). Therefore, our findings suggest that shallow eelgrass meadows
481 may already be experiencing more severe and biologically relevant heatwaves than what is
482 inferred from regional satellite time series, and future summer temperatures are likely to
483 outpace the acclimation capacity of less plastic species.

484 **Species-specific vulnerability to marine heatwaves**

485 Species living close to their upper thermal limits showed the weakest acclimation capacity
486 and the highest vulnerability to the simulated heatwave. Juvenile Atlantic cod suffered
487 complete mortality at 23°C , while juvenile whiting showed high mortality and negligible
488 acclimation despite higher survival. These results indicate that gadids occupying warm
489 nursery habitats have little scope for thermal acclimation under acute warming (Ern et al.,
490 2023; Jutfelt et al., 2024). Cod and whiting are cold-temperate demersal fishes whose
491 juveniles rely on shallow coastal nursery habitats, including eelgrass meadows (Heck Hay et
492 al., 2003). Juvenile cod prefers temperatures below 16°C and actively avoids warmer
493 conditions by diurnal vertical migration, and migrating between eelgrass meadows
494 (Bjornsson, 2001; Claireaux et al., 1995; Freitas et al., 2016; Staveley et al., 2017). Growth
495 also declines sharply above 16°C (Rogers et al., 2011). Juvenile whiting similarly prefers
496 temperatures around 15°C , despite occupying a warmer distribution than cod (Asciutto et al.,
497 2024; Calì et al., 2023). Our sea temperature analysis shows that eelgrass habitats routinely
498 exceed these preferred temperatures during summer (Hattich et al., 2025), suggesting that

499 juvenile gadids with strong behavioural thermoregulation are already excluded from these
500 shallow habitats during warm periods. With continued warming, such exclusion is likely to
501 intensify, compromising the ability of young gadids to access nursery habitats that provide
502 shelter and foraging opportunities, likely with negative consequences for population
503 persistence (Freitas et al., 2016).

504 Another juvenile migrant, plaice, showed higher thermal tolerance than gadids but low
505 acclimation capacity, indicating limited physiological buffering against thermal extremes. This
506 pattern aligns with previous work on juvenile flatfish (De Bonville et al., 2025) and suggests
507 reliance on behavioural thermoregulation, such as habitat shifting or substrate burial (Ziegler
508 & Frisk, 2019). While the juvenile migrants studied showed low acclimation capacity, the
509 shallow-water habitat generalists proved more tolerant to thermal stress. Gobies and
510 sticklebacks displayed comparatively high thermal tolerance and moderate acclimation
511 capacity, consistent with their broad habitat use. These generalist species are among the
512 most abundant fishes in eelgrass habitats and play key roles as mesopredators and prey for
513 fishes at higher trophic levels (Perry et al., 2018; Staveley et al., 2017). The black goby was
514 both the most heat-tolerant and most plastic goby, with CT_{max} and ARR exceeding most
515 other species, in line with previous estimates (Cowan et al., 2023).

516 Sticklebacks exhibited high thermal tolerance and a moderate acclimation capacity,
517 consistent with previous work (Cowan et al., 2023; De Bonville et al., 2025; Mottola et al.,
518 2022). Their ability to tolerate temperatures up to 25°C, combined with rapid generation time
519 and increasing abundance under warming and eutrophication, suggests they may increase
520 in dominance in warming eelgrass habitats (Olin et al., 2022). While sticklebacks are highly
521 robust species, the wrasses outperformed them in terms of acclimation capacity.

522 Wrasses exhibited the strongest short-term acclimation capacity of all species tested,
523 despite intermediate CT_{max} values under ambient conditions. Their high ARR values
524 matched earlier work on goldsinny wrasse (De Bonville et al., 2025) and suggests
525 substantial phenotypic plasticity, consistent with their broad thermal niches and generalist
526 habitat use across rocky reefs and seagrass meadows. Previous studies have documented

527 high aerobic performance and plasticity in wrasses at temperatures exceeding those
528 currently experienced in northern regions (Palma et al., 2025; Yuen et al., 2019), supporting
529 the idea that these species are better equipped to tolerate future warming than others.
530 However, wrasses have also shown significant physiological stress and mortality with
531 exposure to multiple ocean stressors (Perry, Tamarit, Morgenroth, et al., 2024). The high
532 acclimation capacity exhibited by wrasses is well suited to their habitat generalist strategy as
533 they move regularly between different environmental conditions.
534 In contrast, stationary species may be less able to avoid longer-term temperature extremes.
535 For example, the stationary pipefishes tested in our study displayed the highest thermal
536 tolerance among all taxa but showed moderate acclimation capacity. As they are strongly
537 associated with eelgrass meadows, pipefishes may benefit from high thermal tolerance in
538 warming habitats, although limited plasticity could constrain their ability to cope with extreme
539 temperatures. The three tested pipefishes all had preferred thermal maxima well above the
540 simulated heatwave (Fig. 3B). Among pipefishes, the straightnose pipefish showed relatively
541 high ARR, suggesting it might be better equipped to withstand increasingly frequent marine
542 heatwaves in their northern distribution ranges (Monteiro et al., 2023).
543 A partial explanation for the observed interspecific differences in CT_{max} and ARR is the
544 declining gain in thermal tolerance as species approach their upper thermal limits (Brett,
545 1952; Doudoroff, 1942; Fangue et al., 2014; Sandblom et al., 2016). Theoretically, cold-
546 water species living above their optimal temperature have limited scope for further warm
547 acclimation, whereas warm-tolerant species living below their optimum retain greater
548 capacity for plasticity (Ern et al., 2023). This likely explains the weak acclimation observed in
549 gadids and flatfishes, but it does not fully account for all patterns observed in the current
550 study. Notably, pipefishes exhibited high CT_{max} but modest acclimation capacity, whereas
551 wrasses showed strong plasticity despite intermediate tolerance. These differences likely
552 reflect evolutionary and phylogenetic constraints of the tested groups (Comte & Olden,
553 2017). In our study, we measured CT_{max} using a standardized rapid ramping protocol to
554 facilitate interspecific comparison, but such approaches may overestimate tolerance relative

555 to natural warming rates and should be interpreted as comparative indices rather than direct
556 predictors of survival under heatwaves (Ern et al., 2023; Jutfelt et al., 2019; Lefevre et al.,
557 2021). Also, we designed the five-day exposure to reflect the minimum duration of a marine
558 heatwave, but longer-term acclimation, long-term heat injury, developmental plasticity, or
559 transgenerational effects could further modify responses. Population-level variation and local
560 adaptation may also contribute to interspecific differences, as phenotypic and genotypic
561 divergence has been documented in gobies, wrasses, and sympatric cod ecotypes in the
562 Skagerrak (Faust et al., 2021; Green et al., 2023; Henriksson et al., 2023; Leder et al., 2021;
563 Perry, Tamarit, Sundell, et al., 2024).

564 **Community and ecosystem implications**

565 Differential thermal tolerance and acclimation capacity among eelgrass-associated fishes
566 are likely to have cascading consequences for assemblage structure and ecosystem
567 functioning. Such cascading effects are increasingly recognized as a hallmark of marine
568 heatwave impacts in coastal ecosystems (Wernberg et al., 2025). Seagrass ecosystems
569 experiencing warming have already shown increased dominance of warm-water species and
570 declines of cold-water species, accompanied by poleward or depth distribution shifts in
571 coastal regions globally (Burrows et al., 2019; Cheung et al., 2013; Fodrie et al., 2010). Such
572 temperature-driven changes in community composition can modify predator–prey
573 interactions and grazing pressure, triggering cascading effects through food webs and
574 altering ecosystem functioning (Baden et al., 2012; Casini et al., 2009; Frank et al., 2005;
575 Olin et al., 2022). Experimental and field studies have shown that increased abundance of
576 mesopredatory fishes, such as gobies and sticklebacks, can intensify predation on
577 invertebrate grazers, thereby promoting filamentous algal growth and reducing eelgrass
578 resilience (Moksnes et al., 2008; Östman et al., 2016). If warming disproportionately
579 excludes cold-affinity predators while favouring thermally tolerant mesopredators,
580 temperature may act as an additional driver amplifying predator-release cascades in
581 seagrass ecosystems, with implications for the long-term stability of coastal seascapes.

582 To conclude, our study demonstrates that eelgrass-associated fishes differ markedly in both
583 upper thermal tolerance and short-term acclimation capacity, with important consequences
584 for species persistence in warming eelgrass habitats. By analysing fine-scale temperature
585 data, we show that eelgrass meadows off the Swedish West coast already experience larger
586 extremes than reported regional warming trends estimated with satellite products, and that
587 approach the thermal distribution ranges of several associated fishes. As a result, juveniles
588 of cold-affinity demersal species that rely on behavioural thermoregulation are likely to
589 become increasingly excluded from this important nursery habitat during warm periods. In
590 contrast, mesopredatory fishes with generalist life histories and moderate-to-high thermal
591 tolerance or acclimation capacity may persist or increase in dominance as marine
592 heatwaves intensify. Together, our findings highlight how species-specific physiological
593 constraints combined with habitat specific warming can shape future eelgrass fish
594 assemblages.

595

596 **Acknowledgements**

597 We are grateful to Jelena Lewin for assistance in the laboratory, to Sara Forsberg for help
598 with fieldwork, and to Joachim Sturve for lending tanks. We thank Kristineberg Marine
599 Research Station and its staff for access to excellent infrastructure and work environment.
600 E.T. was supported by the Center for Sea and Society, the Department of Earth Sciences at
601 the University of Gothenburg and Wählströms Stiftelse.

602

603 **CRediT**

604 Conceptualization: ET, FJ; Methodology: ET, FS, FJ; Investigation: ET, FS, LP, ERL,
605 HS; Validation: LG, DP, HL, MG, FJ; Visualization: ET; Data Curation: ET; Formal
606 Analysis: ET; Resources: LG, HL, DP, MG, FJ; Project Administration: ET; Software:
607 ET; Writing – original draft: ET; Supervision: DP, HL, MG, FJ; Writing-review &
608 editing: ET, FS, LP, ERM, HS, LG, DP, HL, MG, FJ.

609 **Supporting information**

610 Table S1. Metadata for CT_{max} trials.

611 Figure S1. Thermal ramping curves of CT_{max} trials for each species.

612 Table S2. Thermal ramping rates estimated for all CT_{max} trials.

613 Table S3. Estimated marginal means of CT_{max} for each species and treatment.

614 Table S4. Percentage mortality of each species at the end of experimental exposure.

615 Table S5. Family-level differences in CT_{max} (Ambient).

616 Table S6. Family-level differences in CT_{max} (Heated).

617 Table S7. CT_{max} statistical contrasts.

618 Table S8. Thermal tolerance gain (TTgain) and acclimation response ratio (ARR) by species.

619

620 **References**

621 Asciutto, E., Maioli, F., Manfredi, C., Anibaldi, A., Cimini, J., Isailović, I., Marčeta, B., &
622 Casini, M. (2024). Spatio-temporal patterns of whiting (*Merlangius merlangus*) in the Adriatic
623 Sea under environmental forcing. *PLOS ONE*, 19(3), e0289999.
624 <https://doi.org/10.1371/journal.pone.0289999>

625

626 Baden, S., Emanuelsson, A., Pihl, L., Svensson, C., & Åberg, P. (2012). Shift in seagrass
627 food web structure over decades is linked to overfishing. *Marine Ecology Progress Series*,
628 451, 61–73. <https://doi.org/10.3354/meps09585>

629

630 Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models
631 Using *lme4*. *Journal of Statistical Software*, 67, 1–48. <https://doi.org/10.18637/jss.v067.i01>

632

633 Beck, M. W., Heck, K. L., Able, K. W., Childers, D. L., Eggleston, D. B., Gillanders, B. M.,
634 Halpern, B., Hays, C. G., Hoshino, K., Minello, T. J., Orth, R. J., Sheridan, P. F., &
635 Weinstein, M. P. (2001). The Identification, Conservation, and Management of Estuarine and
636 Marine Nurseries for Fish and Invertebrates: A better understanding of the habitats that
637 serve as nurseries for marine species and the factors that create site-specific variability in
638 nursery quality will improve conservation and management of these areas. *BioScience*,
639 51(8), 633–641. [https://doi.org/10.1641/0006-3568\(2001\)051\[0633:TICAMO\]2.0.CO;2](https://doi.org/10.1641/0006-3568(2001)051[0633:TICAMO]2.0.CO;2)

640

641 Becker, C. D., & Genoway, R. G. (1979). Evaluation of the critical thermal maximum for
642 determining thermal tolerance of freshwater fish. *Environmental Biology of Fishes*, 4(3),
643 245–256. <https://doi.org/10.1007/BF00005481>

644

645 Beitinger, T. L., Bennett, W. A., & McCauley, R. W. (2000). Temperature Tolerances of North
646 American Freshwater Fishes Exposed to Dynamic Changes in Temperature. *Environmental*
647 *Biology of Fishes*, 58(3), 237–275. <https://doi.org/10.1023/A:1007676325825>

648

649 Bilyk, K. T., & DeVries, A. L. (2011). Heat tolerance and its plasticity in Antarctic fishes.
650 *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology*,
651 158(4), 382–390. <https://doi.org/10.1016/j.cbpa.2010.12.010>

652

653 Bjornsson, B. (2001). Optimal temperature for growth and feed conversion of immature cod
654 (*Gadus morhua* L.). *ICES Journal of Marine Science*, 58(1), 29–38.
655 <https://doi.org/10.1006/jmsc.2000.0986>

656

657 Boström, C., Baden, S., Bockelmann, A., Dromph, K., Fredriksen, S., Gustafsson, C.,
658 Krause-Jensen, D., Möller, T., Nielsen, S. L., Olesen, B., Olsen, J., Pihl, L., & Rinde, E.
659 (2014). Distribution, structure and function of Nordic eelgrass (*Zostera marina*) ecosystems:
660 Implications for coastal management and conservation. *Aquatic Conservation: Marine and*
661 *Freshwater Ecosystems*, 24(3), 410–434. <https://doi.org/10.1002/aqc.2424>

662

663 Brett, J. R. (1952). Temperature Tolerance in Young Pacific Salmon, Genus *Oncorhynchus*.
664 *Journal of the Fisheries Research Board of Canada*, 9(6), 265–323.
665 <https://doi.org/10.1139/f52-016>

666 Brijs, J., Tran, L. L., Moore, C., Souza, T., Schakmann, M., Grellman, K., & Johansen, J. L.
667 (2025). Outlasting the Heat: Collapse of Herbivorous Fish Control of Invasive Algae During
668 Marine Heatwaves. *Global Change Biology*, 31(8), e70438.
669 <https://doi.org/10.1111/gcb.70438>

670

671 Burrows, M. T., Bates, A. E., Costello, M. J., Edwards, M., Edgar, G. J., Fox, C. J., Halpern,
672 B. S., Hiddink, J. G., Pinsky, M. L., Batt, R. D., García Molinos, J., Payne, B. L., Schoeman,
673 D. S., Stuart-Smith, R. D., & Poloczanska, E. S. (2019). Ocean community warming
674 responses explained by thermal affinities and temperature gradients. *Nature Climate
675 Change*, 9(12), 959–963. <https://doi.org/10.1038/s41558-019-0631-5>

676

677 Burton, T., & Einum, S. (2025). High Capacity for Physiological Plasticity Occurs at a Slow
678 Rate in Ectotherms. *Ecology Letters*, 28(1), e70046. <https://doi.org/10.1111/ele.70046>

679

680 Calì, F., Stranci, F., La Mesa, M., Mazzoldi, C., Arneri, E., & Santojanni, A. (2023). Whiting
681 (*Merlangius merlangus*) Grows Slower and Smaller in the Adriatic Sea: New Insights from a
682 Comparison of Two Populations with a Time Interval of 30 Years. *Fishes*, 8(7), 341.
683 <https://doi.org/10.3390/fishes8070341>

684

685 Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J.,
686 Aldunce, P., Barrett, K., Blanco, G., Cheung, W. W. L., Connors, S., Denton, F., Diongue-
687 Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., ... Péan, C.
688 (2023). *IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working
689 Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on
690 Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva,
691 Switzerland.* (First). Intergovernmental Panel on Climate Change (IPCC).
692 <https://doi.org/10.59327/IPCC/AR6-9789291691647>

693
694 Casini, M., Hjelm, J., Molinero, J.-C., Lövgren, J., Cardinale, M., Bartolino, V., Belgrano, A.,
695 & Kornilovs, G. (2009). Trophic cascades promote threshold-like shifts in pelagic marine
696 ecosystems. *Proceedings of the National Academy of Sciences*, 106(1), 197–202.
697 <https://doi.org/10.1073/pnas.0806649105>

698
699 Cheng, L., Abraham, J., Trenberth, K. E., Reagan, J., Zhang, H.-M., Storto, A., Von
700 Schuckmann, K., Pan, Y., Zhu, Y., Mann, M. E., Zhu, J., Wang, F., Yu, F., Locarnini, R.,
701 Fasullo, J., Huang, B., Graham, G., Yin, X., Gouretski, V., ... Gues, F. (2025). Record High
702 Temperatures in the Ocean in 2024. *Advances in Atmospheric Sciences*, 42(6), 1092–1109.
703 <https://doi.org/10.1007/s00376-025-4541-3>

704
705 Cheung, W. W. L., Watson, R., & Pauly, D. (2013). Signature of ocean warming in global
706 fisheries catch. *Nature*, 497(7449), Article 7449. <https://doi.org/10.1038/nature12156>

707 Claireaux, G., Webber, D. M., Kerr, S. R., & Boutilier, R. G. (1995). Physiology and
708 Behaviour of Free-Swimming Atlantic COD (*Gadus Morhua*) Facing Fluctuating Temperature
709 Conditions. *Journal of Experimental Biology*, 198(1), 49–60.
710 <https://doi.org/10.1242/jeb.198.1.49>

711
712 Comte, L., & Olden, J. D. (2017). Evolutionary and environmental determinants of freshwater
713 fish thermal tolerance and plasticity. *Global Change Biology*, 23(2), 728–736.
714 <https://doi.org/10.1111/gcb.13427>

715
716 Cowan, Z.-L., Andreassen, A. H., De Bonville, J., Green, L., Binning, S. A., Silva-Garay, L.,
717 Jutfelt, F., & Sundin, J. (2023). A novel method for measuring acute thermal tolerance in fish
718 embryos. *Conservation Physiology*, 11(1), coad061.
719 <https://doi.org/10.1093/conphys/coad061>

720
721 De Bonville, J., Andreassen, A. H., Cowan, Z.-L., Silva-Garay, L., Leeuwis, R. H. J., Åsheim,
722 E. R., Speers-Roesch, B., Raby, G. D., Binning, S. A., & Jutfelt, F. (2025). Dynamics of
723 thermal tolerance plasticity across fish species and life stages. *Journal of Thermal Biology*,
724 127, 104024. <https://doi.org/10.1016/j.jtherbio.2024.104024>

725
726 de los Santos, C. B., Krause-Jensen, D., Alcoverro, T., Marbà, N., Duarte, C. M., van
727 Katwijk, M. M., Pérez, M., Romero, J., Sánchez-Lizaso, J. L., Roca, G., Jankowska, E.,
728 Pérez-Lloréns, J. L., Fournier, J., Montefalcone, M., Pergent, G., Ruiz, J. M., Cabaço, S.,
729 Cook, K., Wilkes, R. J., ... Santos, R. (2019). Recent trend reversal for declining European
730 seagrass meadows. *Nature Communications*, 10(1), 3356. <https://doi.org/10.1038/s41467-019-11340-4>

732
733 Desforges, J. E., Birnie-Gauvin, K., Jutfelt, F., Gilmour, K. M., Eliason, E. J., Dressler, T. L.,
734 McKenzie, D. J., Bates, A. E., Lawrence, M. J., Fangue, N., & Cooke, S. J. (2023). The
735 ecological relevance of critical thermal maxima methodology for fishes. *Journal of Fish
736 Biology*, 102(5), 1000–1016. <https://doi.org/10.1111/jfb.15368>

737
738 Doudoroff, P. (1942). The resistance and acclimatization of marine fishes to temperature
739 changes. I. Experiments with *girella nigricans* (ayres). *The Biological Bulletin*, 83(2), 219–
740 244. <https://doi.org/10.2307/1538144>

741
742 Drost, H. E., Lo, M., Carmack, E. C., & Farrell, A. P. (2016). Acclimation potential of Arctic
743 cod (*Boreogadus saida*) from the rapidly warming Arctic Ocean. *Journal of Experimental*
744 *Biology*, 219(19), 3114–3125. <https://doi.org/10.1242/jeb.140194>

745
746 Ern, R., Andreassen, A. H., & Jutfelt, F. (2023). Physiological Mechanisms of Acute Upper
747 Thermal Tolerance in Fish. *Physiology*, 38(3), 141–158.
748 <https://doi.org/10.1152/physiol.00027.2022>

749
750 Fangue, N. A., Wunderly, M. A., Dabruzzi, T. F., & Bennett, W. A. (2014). Asymmetric
751 Thermal Acclimation Responses Allow Sheepshead Minnow *Cyprinodon variegatus* to Cope
752 with Rapidly Changing Temperatures. *Physiological and Biochemical Zoology*, 87(6), 805–
753 816. <https://doi.org/10.1086/678965>

754
755 Faust, E., Jansson, E., André, C., Halvorsen, K. T., Dahle, G., Knutsen, H., Quintela, M., &
756 Glover, K. A. (2021). Not that clean: Aquaculture-mediated translocation of cleaner fish has
757 led to hybridization on the northern edge of the species' range. *Evolutionary Applications*,
758 14(6), 1572–1587. <https://doi.org/10.1111/eva.13220>

759
760 Fodrie, F. J., HECK Jr, K. L., Powers, S. P., Graham, W. M., & Robinson, K. L. (2010).
761 Climate-related, decadal-scale assemblage changes of seagrass-associated fishes in the
762 northern Gulf of Mexico. *Global Change Biology*, 16(1), 48–59.
763 <https://doi.org/10.1111/j.1365-2486.2009.01889.x>

764
765 Frank, K. T., Petrie, B., Choi, J. S., & Leggett, W. C. (2005). Trophic Cascades in a Formerly
766 Cod-Dominated Ecosystem. *Science*, 308(5728), 1621–1623.
767 <https://doi.org/10.1126/science.1113075>

768
769 Freitas, C., Olsen, E. M., Knutsen, H., Albretsen, J., & Moland, E. (2016). Temperature-
770 associated habitat selection in a cold-water marine fish. *Journal of Animal Ecology*, 85(3),
771 628–637. <https://doi.org/10.1111/1365-2656.12458>

772
773 Garrabou, J., Coma, R., Bensoussan, N., Bally, M., Chevaldonné, P., Cigliano, M., Diaz, D.,
774 Harmelin, J. G., Gambi, M. C., Kersting, D. K., Ledoux, J. B., Lejeusne, C., Linares, C.,
775 Marschal, C., Pérez, T., Ribes, M., Romano, J. C., Serrano, E., Teixido, N., ... Cerrano, C.
776 (2009). Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of
777 the 2003 heat wave. *Global Change Biology*, 15(5), 1090–1103.
778 <https://doi.org/10.1111/j.1365-2486.2008.01823.x>

779
780 Gómez-Gras, D., Linares, C., & Capdevila, P. (2025). Novel contributions to marine
781 heatwave ecology: Identifying and addressing knowledge gaps in ecological impacts.
782 *Journal of Animal Ecology*, 94(8), 1481–1491. <https://doi.org/10.1111/1365-2656.70084>

783
784 Green, L., Faust, E., Hinchcliffe, J., Brijs, J., Holmes, A., Englund Örn, F., Svensson, O.,
785 Roques, J. A. C., Leder, E. H., Sandblom, E., & Kvarnemo, C. (2023). Invader at the edge—
786 Genomic origins and physiological differences of round gobies across a steep urban salinity
787 gradient. *Evolutionary Applications*, 16(2), 321–337. <https://doi.org/10.1111/eva.13437>

788

789 Hattich, G. S. I., Jahnke, M., Enge, S., Niemi, N., Bernal-Gómez, M., De Wit, P., Havenhand,
790 J. N., & Pansch, C. (2025). Small-scale thermal habitat variability may not determine
791 seagrass resilience to climate change. *Limnology and Oceanography*, n/a(n/a).
792 <https://doi.org/10.1002/lo.70049>

793

794 Heck Hay, K., Hays, G., & Orth, R. (2003). Critical evaluation of the nursery role hypothesis
795 for seagrass meadows. *Marine Ecology Progress Series*, 253, 123–136.
796 <https://doi.org/10.3354/meps253123>

797

798 Henriksson, S., Pereyra, R. T., Sodeland, M., Ortega-Martinez, O., Knutsen, H., Wennhage,
799 H., & André, C. (2023). Mixed origin of juvenile Atlantic cod (*Gadus morhua*) along the
800 Swedish west coast. *ICES Journal of Marine Science*, 80(1), 145–157.
801 <https://doi.org/10.1093/icesjms/fsac220>

802

803 Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C. J.,
804 Benthuysen, J. A., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Moore, P. J.,
805 Scannell, H. A., Sen Gupta, A., & Wernberg, T. (2016). A hierarchical approach to defining
806 marine heatwaves. *Progress in Oceanography*, 141, 227–238.
807 <https://doi.org/10.1016/j.pocean.2015.12.014>

808

809 Holman, L., Head, M. L., Lanfear, R., & Jennions, M. D. (2015). Evidence of Experimental
810 Bias in the Life Sciences: Why We Need Blind Data Recording. *PLOS Biology*, 13(7),
811 e1002190. <https://doi.org/10.1371/journal.pbio.1002190>

812

813 Huang, B., Yin, X., Carton, J. A., Chen, L., Graham, G., Hogan, P., Smith, T., & Zhang, H.-
814 M. (2024). Record High Sea Surface Temperatures in 2023. *Geophysical Research Letters*,
815 51(14), e2024GL108369. <https://doi.org/10.1029/2024GL108369>

816

817 Jr, M. J. A. (2009). *Thermal Adaptation: A Theoretical and Empirical Synthesis*. Oxford
818 University Press.

819

820 Jutfelt, F., Ern, R., Leeuwis, R. H. J., & Clark, T. D. (2024). Effects of climate warming. In
821 *Encyclopedia of Fish Physiology* (pp. 14–31). Elsevier. <https://doi.org/10.1016/B978-0-323-90801-6.00183-X>

823

824 Jutfelt, F., Roche, D. G., Clark, T. D., Norin, T., Binning, S. A., Speers-Roesch, B., Amcoff,
825 M., Morgan, R., Andreassen, A. H., & Sundin, J. (2019). Brain cooling marginally increases
826 acute upper thermal tolerance in Atlantic cod. *Journal of Experimental Biology*, 222(19),
827 jeb208249. <https://doi.org/10.1242/jeb.208249>

828

829 Krause-Jensen, D., Duarte, C. M., Sand-Jensen, K., & Carstensen, J. (2021). Century-long
830 records reveal shifting challenges to seagrass recovery. *Global Change Biology*, 27(3), 563–
831 575. <https://doi.org/10.1111/gcb.15440>

832

833 L.Claussen, D. (1977). Thermal acclimation in ambystomatid salamanders. *Comparative
834 Biochemistry and Physiology Part A: Physiology*, 58(4), 333–340.
835 [https://doi.org/10.1016/0300-9629\(77\)90150-5](https://doi.org/10.1016/0300-9629(77)90150-5)

836

837 Leder, E. H., André, C., Le Moan, A., Töpel, M., Blomberg, A., Havenhand, J. N., Lindström,
838 K., Volckaert, F. A. M., Kvarnemo, C., Johannesson, K., & Svensson, O. (2021). Post-glacial
839 establishment of locally adapted fish populations over a steep salinity gradient. *Journal of*
840 *Evolutionary Biology*, 34(1), 138–156. <https://doi.org/10.1111/jeb.13668>

841

842 Lefcheck, J. S., Hughes, B. B., Johnson, A. J., Pfirrmann, B. W., Rasher, D. B., Smyth, A.
843 R., Williams, B. L., Beck, M. W., & Orth, R. J. (2019). Are coastal habitats important
844 nurseries? A meta-analysis. *Conservation Letters*, 12(4), e12645.
845 <https://doi.org/10.1111/conl.12645>

846

847 Lefcheck, J. S., Wilcox, D. J., Murphy, R. R., Marion, S. R., & Orth, R. J. (2017). Multiple
848 stressors threaten the imperiled coastal foundation species eelgrass (*Zostera marina*) in
849 Chesapeake Bay, USA. *Global Change Biology*, 23(9), 3474–3483.
850 <https://doi.org/10.1111/gcb.13623>

851

852 Lefevre, S., Wang, T., & McKenzie, D. J. (2021). The role of mechanistic physiology in
853 investigating impacts of global warming on fishes. *Journal of Experimental Biology*,
854 224(Suppl_1), jeb238840. <https://doi.org/10.1242/jeb.238840>

855

856 Madeira, D., Narciso, L., Cabral, H. N., & Vinagre, C. (2012). Thermal tolerance and
857 potential impacts of climate change on coastal and estuarine organisms. *Journal of Sea*
858 *Research*, 70, 32–41. <https://doi.org/10.1016/j.seares.2012.03.002>

859

860 McDevitt-Irwin, J. M., Iacarella, J. C., & Baum, J. K. (2016). Reassessing the nursery role of
861 seagrass habitats from temperate to tropical regions: A meta-analysis. *Marine Ecology*
862 *Progress Series*, 557, 133–143. <https://doi.org/10.3354/meps11848>

863

864 McKenzie, D. J., Zhang, Y., Eliason, E. J., Schulte, P. M., Claireaux, G., Blasco, F. R., Nati,
865 J. J. H., & Farrell, A. P. (2021). Intraspecific variation in tolerance of warming in fishes.
866 *Journal of Fish Biology*, 98(6), 1536–1555. <https://doi.org/10.1111/jfb.14620>

867

868 Messmer, V., Pratchett, M. S., Hoey, A. S., Tobin, A. J., Coker, D. J., Cooke, S. J., & Clark,
869 T. D. (2017). Global warming may disproportionately affect larger adults in a predatory coral
870 reef fish. *Global Change Biology*, 23(6), 2230–2240. <https://doi.org/10.1111/gcb.13552>

871

872 Mohamed, B., Barth, A., Van Der Zande, D., & Alvera-Azcárate, A. (2025). Amplified
873 warming and marine heatwaves in the North Sea under a warming climate and their impacts.
874 *Ocean Science*, 21(5), 2505–2525. <https://doi.org/10.5194/os-21-2505-2025>

875

876 Moksnes, P.-O., Gullström, M., Tryman, K., & Baden, S. (2008). Trophic cascades in a
877 temperate seagrass community. *Oikos*, 117(5), 763–777. <https://doi.org/10.1111/j.0030-1299.2008.16521.x>

878

879

880 Monteiro, N., Pinheiro, S., Magalhães, S., Tarroso, P., & Vincent, A. (2023). Predicting the
881 impacts of climate change on the distribution of European syngnathids over the next century.
882 *Frontiers in Marine Science*, 10. <https://doi.org/10.3389/fmars.2023.1138657>

883

884 Morash, A. J. (2024). Measures of thermal tolerance. In *Encyclopedia of Fish Physiology*
885 (pp. 32–46). Elsevier. <https://doi.org/10.1016/B978-0-323-90801-6.00136-1>

886 Morgan, R., Finnøen, M. H., & Jutfelt, F. (2018). CTmax is repeatable and doesn't reduce
887 growth in zebrafish. *Scientific Reports*, 8(1), Article 1. <https://doi.org/10.1038/s41598-018-25593-4>

889

890 Morley, S. A., Peck, L. S., Sunday, J. M., Heiser, S., & Bates, A. E. (2019). Physiological
891 acclimation and persistence of ectothermic species under extreme heat events. *Global
892 Ecology and Biogeography*, 28(7), 1018–1037. <https://doi.org/10.1111/geb.12911>

893 Mottola, G., López, M. E., Vasemägi, A., Nikinmaa, M., & Anttila, K. (2022). Are you ready
894 for the heat? Phenotypic plasticity versus adaptation of heat tolerance in three-spined
895 stickleback. *Ecosphere*, 13(4), e4015. <https://doi.org/10.1002/ecs2.4015>

896

897 Moyano, M., Candebat, C., Ruhbaum, Y., Álvarez-Fernández, S., Claireaux, G., Zambonino-
898 Infante, J.-L., & Peck, M. A. (2017). Effects of warming rate, acclimation temperature and
899 ontogeny on the critical thermal maximum of temperate marine fish larvae. *PLOS ONE*,
900 12(7), e0179928. <https://doi.org/10.1371/journal.pone.0179928>

901

902 Nguyen, H. M., Ralph, P. J., Marín-Guirao, L., Pernice, M., & Procaccini, G. (2021).
903 Seagrasses in an era of ocean warming: A review. *Biological Reviews*, 96(5), 2009–2030.
904 <https://doi.org/10.1111/brv.12736>

905

906 Nordlund, L. M., Unsworth, R. K. F., Wallner-Hahn, S., Ratnarajah, L., Beca-Carretero, P.,
907 Boikova, E., Bull, J. C., Chefaoui, R. M., de los Santos, C. B., Gagnon, K., Garmendia, J. M.,
908 Gizzi, F., Govers, L. L., Gustafsson, C., Hineva, E., Infantes, E., Canning-Clode, J., Jahnke,
909 M., Kleitou, P., ... Wilkes, R. (2024). One hundred priority questions for advancing seagrass
910 conservation in Europe. *PLANTS, PEOPLE, PLANET*, 6(3), 587–603.
911 <https://doi.org/10.1002/ppp3.10486>

912

913 Olin, A. B., Olsson, J., Eklöf, J. S., Eriksson, B. K., Kaljuste, O., Briekmane, L., & Bergström,
914 U. (2022). Increases of opportunistic species in response to ecosystem change: The case of
915 the Baltic Sea three-spined stickleback. *ICES Journal of Marine Science*, 79(5), 1419–1434.
916 <https://doi.org/10.1093/icesjms/fsac073>

917

918 Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander, L. V.,
919 Benthuysen, J. A., Feng, M., Sen Gupta, A., Hobday, A. J., Holbrook, N. J., Perkins-
920 Kirkpatrick, S. E., Scannell, H. A., Straub, S. C., & Wernberg, T. (2018). Longer and more
921 frequent marine heatwaves over the past century. *Nature Communications*, 9(1), 1324.
922 <https://doi.org/10.1038/s41467-018-03732-9>

923

924 Olsen, A. Y., Larson, S., Padilla-Gamiño, J. L., & Klinger, T. (2022). Changes in fish
925 assemblages after marine heatwave events in West Hawai'i Island. *Marine Ecology
926 Progress Series*, 698, 95–109. <https://doi.org/10.3354/meps14156>

927

928 Orth, R. J., Carruthers, T. J. B., Dennison, W. C., Duarte, C. M., Fourqurean, J. W., Heck, K.
929 L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Olyarnik, S., Short, F. T., Waycott, M.,
930 & Williams, S. L. (2006). A Global Crisis for Seagrass Ecosystems. *BioScience*, 56(12), 987–
931 996. [https://doi.org/10.1641/0006-3568\(2006\)56\[987:AGCFSE\]2.0.CO;2](https://doi.org/10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2)

932
933 Östman, Ö., Eklöf, J., Eriksson, B. K., Olsson, J., Moksnes, P.-O., & Bergström, U. (2016).
934 Top-down control as important as nutrient enrichment for eutrophication effects in North
935 Atlantic coastal ecosystems. *Journal of Applied Ecology*, 53(4), 1138–1147.
936 <https://doi.org/10.1111/1365-2664.12654>

937
938 Palma, P. A., Bekaert, M., Gutierrez, A. P., Abacan, E. J. C., Migaud, H., & Betancor, M. B.
939 (2025). Plasticity of thermal tolerance and associated gill transcriptome in ballan wrasse
940 (*Labrus bergylta*). *Frontiers in Marine Science*, 11.
941 <https://doi.org/10.3389/fmars.2024.1507994>

942
943 Pearce, A., Faskel, F., & Hyndes, G. (2006). Nearshore sea temperature variability off
944 Rottnest Island (Western Australia) derived from satellite data. *International Journal of
945 Remote Sensing*, 27(12), 2503–2518. <https://doi.org/10.1080/01431160500472138>
946 Peck, L. S., Morley, S. A., Richard, J., & Clark, M. S. (2014). Acclimation and thermal
947 tolerance in Antarctic marine ectotherms. *Journal of Experimental Biology*, 217(1), 16–22.
948 <https://doi.org/10.1242/jeb.089946>

949
950 Perry, D., Staveley, T. A. B., & Gullström, M. (2018). Habitat Connectivity of Fish in
951 Temperate Shallow-Water Seascapes. *Frontiers in Marine Science*, 4, 440.
952 <https://doi.org/10.3389/fmars.2017.00440>

953
954 Perry, D., Tamarit, E., Morgenroth, D., Gräns, A., Sturve, J., Gullström, M., Thor, P., &
955 Wennhage, H. (2024). The heat is on: Sensitivity of goldsinny wrasse to global climate
956 change. *Conservation Physiology*, 12(1), coae068. <https://doi.org/10.1093/conphys/coae068>
957 Perry, D., Tamarit, E., Sundell, E., Axelsson, M., Bergman, S., Gräns, A., Gullström, M.,
958 Sturve, J., & Wennhage, H. (2024). Physiological responses of Atlantic cod to climate
959 change indicate that coastal ecotypes may be better adapted to tolerate ocean stressors.
960 *Scientific Reports*, 14(1), 12896. <https://doi.org/10.1038/s41598-024-62700-0>

961
962 Phinn, S. R., Kovacs, E. M., Roelfsema, C. M., Canto, R. F., Collier, C. J., & McKenzie, L. J.
963 (2018). Assessing the potential for satellite image monitoring of seagrass thermal dynamics:
964 For inter- and shallow sub-tidal seagrasses in the inshore Great Barrier Reef World Heritage
965 Area, Australia. *International Journal of Digital Earth*, 11(8), 803–824.
966 <https://doi.org/10.1080/17538947.2017.1359343>

967
968 Pihl, L., & Wennhage, H. (2002). Structure and diversity of fish assemblages on rocky and
969 soft bottom shores on the Swedish west coast. *Journal of Fish Biology*, 61(sA), 148–166.
970 <https://doi.org/10.1111/j.1095-8649.2002.tb01768.x>

971
972 Raby, G. D., Morgan, R., Andreassen, A. H., Stewart, E. M. C., De Bonville, J., Hoots, E. C.,
973 Kuchenmüller, L., Metz, M., Rowsey, L. E., Green, L., Griffin, R. A., Martin, S., Reid, H. B.,
974 Ern, R., Åsheim, E. R., Cowan, Z.-L., Leeuwis, R. H. J., Blewett, T. A., Speers-Roesch, B.,
975 ... Jutfelt, F. (2025). Measuring critical thermal maximum in aquatic ectotherms: A practical
976 guide. *Methods in Ecology and Evolution*, 16(10), 2208–2228. <https://doi.org/10.1111/2041-210X.70103>

977
978

979 Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., & Schlax, M. G. (2007).
980 Daily High-Resolution-Blended Analyses for Sea Surface Temperature. *Journal of Climate*,
981 20(22), 5473–5496. <https://doi.org/10.1175/2007JCLI1824.1>

982

983 Robinson, C. L. K., Yakimishyn, J., & Evans, R. (2022). Minimal effects of the 2014-16
984 marine heatwave on fish assemblages found in eelgrass meadows on the southwestern
985 coast of Vancouver Island, British Columbia, Canada. *Frontiers in Marine Science*, 9.
986 <https://doi.org/10.3389/fmars.2022.980703>

987

988 Rogers, L. A., Stige, L. C., Olsen, E. M., Knutsen, H., Chan, K.-S., & Stenseth, N. Chr.
989 (2011). Climate and population density drive changes in cod body size throughout a century
990 on the Norwegian coast. *Proceedings of the National Academy of Sciences*, 108(5), 1961–
991 1966. <https://doi.org/10.1073/pnas.1010314108>

992

993 Saha, M., Barboza, F., Somerfield, P., Al-Janabi, B., Beck, M., Brakel, J., Ito, M., Pansch, C.,
994 Nascimento-Schulze, J., Thor, S., Weinberger, F., & Sawall, Y. (2020). Response of
995 foundation macrophytes to near-natural simulated marine heatwaves. *GLOBAL CHANGE
996 BIOLOGY*, 26(2), 417–430. <https://doi.org/10.1111/gcb.14801>

997

998 Sandblom, E., Clark, T. D., Gräns, A., Ekström, A., Brijs, J., Sundström, L. F., Odelström, A.,
999 Adill, A., Aho, T., & Jutfelt, F. (2016). Physiological constraints to climate warming in fish
1000 follow principles of plastic floors and concrete ceilings. *Nature Communications*, 7(1), 11447.
1001 <https://doi.org/10.1038/ncomms11447>

1002

1003 Seebacher, F., White, C. R., & Franklin, C. E. (2015). Physiological plasticity increases
1004 resilience of ectothermic animals to climate change. *Nature Climate Change*, 5(1), 61–66.
1005 <https://doi.org/10.1038/nclimate2457>

1006

1007 Sert, N. P. du, Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A.,
1008 Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Hurst, V.,
1009 Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., ... Würbel, H. (2020).
1010 Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0.
1011 *PLOS Biology*, 18(7), e3000411. <https://doi.org/10.1371/journal.pbio.3000411>

1012

1013 Short, F. T. (2003). *World Atlas of Seagrasses*. University of California Press.

1014 Smale, D. A., Wernberg, T., Oliver, E. C. J., Thomsen, M., Harvey, B. P., Straub, S. C.,
1015 Burrows, M. T., Alexander, L. V., Benthuyzen, J. A., Donat, M. G., Feng, M., Hobday, A. J.,
1016 Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., Sen Gupta, A., Payne, B. L., &
1017 Moore, P. J. (2019). Marine heatwaves threaten global biodiversity and the provision of
1018 ecosystem services. *Nature Climate Change*, 9(4), 306–312. <https://doi.org/10.1038/s41558-019-0412-1>

1019

1020

1021 Smale, D., & Wernberg, T. (2009). Satellite-derived SST data as a proxy for water
1022 temperature in nearshore benthic ecology. *Marine Ecology Progress Series*, 387, 27–37.
1023 <https://doi.org/10.3354/meps08132>

1024

1025 Smith, K. E., Aubin, M., Burrows, M. T., Filbee-Dexter, K., Hobday, A. J., Holbrook, N. J.,
1026 King, N. G., Moore, P. J., Sen Gupta, A., Thomsen, M., Wernberg, T., Wilson, E., & Smale,

1027 D. A. (2024). Global impacts of marine heatwaves on coastal foundation species. *Nature Communications*, 15(1), 5052. <https://doi.org/10.1038/s41467-024-49307-9>

1028

1029

1030 Smith, K. E., Burrows, M. T., Hobday, A. J., King, N. G., Moore, P. J., Sen Gupta, A.,
1031 Thomsen, M. S., Wernberg, T., & Smale, D. A. (2023). Biological Impacts of Marine
1032 Heatwaves. *Annual Review of Marine Science*, 15(1), 119–145.
1033 <https://doi.org/10.1146/annurev-marine-032122-121437>

1034

1035 Smith, K. E., Sen Gupta, A., Amaya, D., Benthuyzen, J. A., Burrows, M. T., Capotondi, A.,
1036 Filbee-Dexter, K., Frölicher, T. L., Hobday, A. J., Holbrook, N. J., Malan, N., Moore, P. J.,
1037 Oliver, E. C. J., Richaud, B., Salcedo-Castro, J., Smale, D. A., Thomsen, M., & Wernberg, T.
1038 (2025). Baseline matters: Challenges and implications of different marine heatwave
1039 baselines. *Progress in Oceanography*, 231, 103404.
1040 <https://doi.org/10.1016/j.pocean.2024.103404>

1041

1042 Starko, S., van der Mheen, M., Pessarrodona, A., Wood, G. V., Filbee-Dexter, K., Neufeld,
1043 C. J., Montie, S., Coleman, M. A., & Wernberg, T. (2024). Impacts of marine heatwaves in
1044 coastal ecosystems depend on local environmental conditions. *Global Change Biology*,
1045 30(8), e17469. <https://doi.org/10.1111/gcb.17469>

1046 Staveley, T. A. B., Perry, D., Lindborg, R., & Gullström, M. (2017). Seascape structure and
1047 complexity influence temperate seagrass fish assemblage composition. *Ecography*, 40(8),
1048 936–946. <https://doi.org/10.1111/ecog.02745>

1049

1050 Strydom, S., Murray, K., Wilson, S., Huntley, B., Rule, M., Heithaus, M., Bessey, C.,
1051 Kendrick, G. A., Burkholder, D., Fraser, M. W., & Zdunic, K. (2020). Too hot to handle:
1052 Unprecedented seagrass death driven by marine heatwave in a World Heritage Area. *Global
1053 Change Biology*, 26(6), 3525–3538. <https://doi.org/10.1111/gcb.15065>

1054

1055 Sunday, J., Bennett, J. M., Calosi, P., Clusella-Trullas, S., Gravel, S., Hargreaves, A. L.,
1056 Leiva, F. P., Verberk, W. C. E. P., Olalla-Tárraga, M. Á., & Morales-Castilla, I. (2019).
1057 Thermal tolerance patterns across latitude and elevation. *Philosophical Transactions of the
1058 Royal Society B: Biological Sciences*, 374(1778), 20190036.
1059 <https://doi.org/10.1098/rstb.2019.0036>

1060

1061 Thalmann, H. L., Laurel, B. J., Almeida, L. Z., Osborne, K. E., Marshall, K., & Miller, J. A.
1062 (2024). Marine heatwaves alter the nursery function of coastal habitats for juvenile Gulf of
1063 Alaska Pacific cod. *Scientific Reports*, 14(1), 14018. [https://doi.org/10.1038/s41598-024-63897-w](https://doi.org/10.1038/s41598-024-
1064 63897-w)

1065

1066 Vasseur, D. A., DeLong, J. P., Gilbert, B., Greig, H. S., Harley, C. D. G., McCann, K. S.,
1067 Savage, V., Tunney, T. D., & O'Connor, M. I. (2014). Increased temperature variation poses
1068 a greater risk to species than climate warming. *Proceedings of the Royal Society B:
1069 Biological Sciences*, 281(1779), 20132612. <https://doi.org/10.1098/rspb.2013.2612>

1070

1071 Vinagre, C., Leal, I., Mendonça, V., Madeira, D., Narciso, L., Diniz, M. S., & Flores, A. A. V.
1072 (2016). Vulnerability to climate warming and acclimation capacity of tropical and temperate
1073 coastal organisms. *Ecological Indicators*, 62, 317–327.
1074 <https://doi.org/10.1016/j.ecolind.2015.11.010>

1075
1076 Von Schuckmann, K., Moreira, L., Cancet, M., Gues, F., Autret, E., Baker, J., Bricaud, C.,
1077 Bourdalle-Badie, R., Castrillo, L., Cheng, L., Chevallier, F., Ciani, D., De Pascual-Collar, A.,
1078 De Toma, V., Drevillon, M., Fanelli, C., Garric, G., Gehlen, M., Giesen, R., ... Zuo, H. (2024).
1079 The state of the global ocean. *State of the Planet*, 4-osr8, 1–30. <https://doi.org/10.5194/sp-4-osr8-1-2024>
1080
1081
1082 W. Schlegel, R., & J. Smit, A. (2018). heatwaveR: A central algorithm for the detection of
1083 heatwaves and cold-spells. *Journal of Open Source Software*, 3(27), 821.
1084 <https://doi.org/10.21105/joss.00821>
1085
1086 Wernberg, T., Thomsen, M. S., Burrows, M. T., Filbee-Dexter, K., Hobday, A. J., Holbrook,
1087 N. J., Montie, S., Moore, P. J., Oliver, E. C. J., Sen Gupta, A., Smale, D. A., & Smith, K.
1088 (2025). Marine heatwaves as hot spots of climate change and impacts on biodiversity and
1089 ecosystem services. *Nature Reviews Biodiversity*, 1(7), 461–479.
1090 <https://doi.org/10.1038/s44358-025-00058-5>
1091
1092 Wickham, H. (2016). Programming with ggplot2. In H. Wickham (Ed.), *Ggplot2: Elegant
1093 Graphics for Data Analysis* (pp. 241–253). Springer International Publishing.
1094 https://doi.org/10.1007/978-3-319-24277-4_12
1095
1096 Yu, L., Khachaturyan, M., Matschiner, M., Healey, A., Bauer, D., Cameron, B., Cusson, M.,
1097 Emmett Duffy, J., Joel Fodrie, F., Gill, D., Grimwood, J., Hori, M., Hovel, K., Hughes, A. R.,
1098 Jahnke, M., Jenkins, J., Keymanesh, K., Kruschel, C., Mamidi, S., ... Reusch, T. B. H.
1099 (2023). Ocean current patterns drive the worldwide colonization of eelgrass (*Zostera
1100 marina*). *Nature Plants*, 9(8), 1207–1220. <https://doi.org/10.1038/s41477-023-01464-3>
1101
1102 Yuen, J. W., Dempster, T., Oppedal, F., & Hvas, M. (2019). Physiological performance of
1103 ballan wrasse (*Labrus bergylta*) at different temperatures and its implication for cleaner fish
1104 usage in salmon aquaculture. *Biological Control*, 135, 117–123.
1105 <https://doi.org/10.1016/j.biocontrol.2019.05.007>
1106
1107 Ziegler, C. M., & Frisk, M. G. (2019). Flatfish utilize sediment blanket to facilitate
1108 thermoregulation. *Marine Ecology Progress Series*, 609, 179–186.
1109 <https://doi.org/10.3354/meps12817>
1110