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Abstract 54 

1. Offshore renewable developments (ORDs) are often located in habitat used by protected 55 

seabird species and may cause sublethal effects by altering movement patterns and 56 

displacing individuals from key resources. Predicting how these effects translate into 57 

population-level impacts is challenging for long-lived species because demographic 58 

consequences emerge from complex, state-dependent behavioural and energetic processes. 59 

Individual-based models (IBM) provide a mechanistic framework to link behavioural 60 

responses to fitness and demography. 61 

2. We present an IBM, ‘SeabORD’, to estimate the demographic consequences of sublethal 62 

displacement and barrier effects from ORDs. The model simulates time-energy budgets of 63 

individual seabirds during the chick-rearing period under scenarios with and without wind 64 

farms. From these simulations, we predict breeding success, adult mass change and year-65 

round survival, allowing assessment of cumulative effects from multiple developments. We 66 

apply the model to black-legged kittiwakes Rissa tridactyla and common guillemots Uria 67 

aalge breeding at a North Sea colony, examining how impacts scale with increasing number 68 

of hypothetical ORDs. We also conduct a sensitivity analysis focussing on parameters with 69 

limited empirical support. 70 

3. Model predictions indicate that demographic impacts do not increase linearly with exposure 71 

to ORDs. The strength and form of cumulative effects emerging from interaction between 72 

behavioural decisions and energetic constraints differed between species, highlighting the 73 

benefit of adopting a mechanistic approach in this context. The results of the sensitivity 74 

analysis indicated high sensitivity to some parameters, such as an adult body condition 75 

threshold below which adults abandon their breeding attempt. However, the emergent 76 

properties of model outputs were biologically plausible, and serve to highlight areas for 77 

future empirical work. 78 



4. Synthesis and applications. SeabORD provides a transparent, mechanistic approach for 79 

predicting population-level consequences of sublethal interactions with ORDs, with direct 80 

relevance for environmental impact assessment and marine spatial planning. Our results 81 

demonstrate that cumulative effects may be non-additive and species-specific, highlighting 82 

limitations of current simplistic assessment approaches. Sublethal effects are the result of 83 

complex, interacting state-related behavioural decisions, and IBMs provide a platform for 84 

estimating stressor impacts and facilitating exploration into underpinning processes and key 85 

areas for future research. 86 

1. Introduction  87 

Numerous countries around the world have invested extensively in offshore renewable 88 

developments (ORDs) in the past two decades, with instalments in offshore wind capacity 89 

amounting to around 83 GW in 2025, representing around 1% of global electricity generation (GWEC 90 

2025). Such developments alter the environment, with potential consequences for protected 91 

wildlife, including seabirds and marine mammals. Statutory regulations are in place that mandate 92 

the prediction of potential effects for a proposed ORD, where the objective is to determine the 93 

magnitude and range of effects on a population of interest and whether this exceeds specified 94 

threshold levels. With expanding development across the globe, thresholds are likely to be exceeded 95 

more regularly, causing cumulative impacts that may be sufficient to prevent consent or trigger the 96 

application of compensatory measures and adaptive management to offset potential impacts. 97 

Furthermore, with insufficient evidence concerning the impacts of offshore wind farms on seabirds 98 

leading to high uncertainty, a precautionary approach may be adopted, as institutionalised in UK and 99 

Europe legal frameworks (Horswill et al., 2017; Maclean et al., 2014).  100 

The main effects of ORDs on seabirds can be classed into three categories; (i) collision mortality from 101 

colliding with rapidly rotating rotors of a wind turbine, (ii) displacement, in which birds may be 102 

displaced from key habitat resources such as profitable foraging areas inside ORDs, with potential to 103 



experience higher competition in remaining areas devoid of ORDs, or (iii) barrier effects, wherein 104 

movement patterns are altered as individuals are unwilling to enter ORD footprints,  incurring 105 

additional energetic costs by flying farther to and from  foraging areas (Masden et al., 2009). The 106 

latter two effects are sublethal, as they may have energetic consequences through altered 107 

behaviour, which may in turn influence vital rates, such as adult survival and breeding success, 108 

resulting in population impacts. Such effects are likely to be exacerbated during the breeding season 109 

when seabirds are obligate central place foragers (Lamb et al., 2024). Predicting how displacement 110 

and barrier effects influence demographic impacts is challenging due to the underpinning set of 111 

behavioural and energetic changes that may reduce body condition and increase the probability of 112 

mortality in the affected individual, or if it is a breeding individual, result in reduced breeding success 113 

(e.g., Ashbrook et al., 2008; Hamer et al., 1993). Consequently, understanding and empirical 114 

evidence for the underlying mechanisms driving sublethal processes must be integrated into 115 

predictive models and linked to population-level impacts.  116 

Mechanistic or process-based models, such as individual based models (IBMs, also known as agent-117 

based models) simulate populations as being composed of discrete individuals, each having their 118 

own state variables accounting for different attributes and behaviours. Through simulating 119 

reproduction, growth and foraging of individuals, population-level dynamics emerge in a bottom-up 120 

fashion from agents’ interactions with their environment (Grimm & Railsback, 2013). IBMs provide a 121 

way to model key biological processes explicitly, guided by empirical data and observed ecological 122 

patterns. Through this method it is possible to establish a link between alterations to the 123 

environment and demographic rates, translated through explicitly modelled behavioural changes 124 

and energetic budgets, thus providing transparent predictions of the effects of altering a landscape 125 

on population outcomes. Previous work has developed a limited range of seabird IBMs applied to 126 

predict the impact of ORDs both for collision and sublethal effects (Warwick-Evans et al., 2018; 127 

Langton et al. 2014; Searle et al. 2014, 2018; van Kooten et al. 2019; van Bemmelen et al. 2025; 128 



Layton-Matthews et al. 2023), however their use remains limited in legislative processes guiding 129 

impact assessment frameworks.  130 

IBMs provide capacity for modelling discrete individuals across time, therefore it is possible to 131 

simulate multiple interactions with ORDs for any given individual across a seasonal period or year. As 132 

such, IBMs provide a natural framework for simulating cumulative effects of multiple developments 133 

on a particular population (Green et al., 2016), likely to be critical  for central place foragers due to 134 

the possibility of interaction with numerous developments on successive occasions within foraging 135 

range. Such cumulative effects are explicitly incorporated in assessment processes in many 136 

countries, including those in Europe through the Environmental Impact Assessment (EIA) Directive 137 

(EIA Directive 2014/52/EU). Efforts to assess cumulative effects have improved in the last decade 138 

since a landmark review from Masden et al. (Masden et al., 2010) that highlighted shortcomings, 139 

leading to updated regulatory guidance (Croll et al., 2022). However, a standardised quantitative 140 

consideration for how cumulative displacement and barrier effects impact on marine bird 141 

populations is still lacking, reducing confidence in the metrics adopted in population projections. 142 

We have developed an IBM, SeabORD, which simulates pairs of central-place foraging adults 143 

provisioning offspring during the chick-rearing season, each having separate simulations for their 144 

behaviour and energy budgets thus allowing changes in body mass, survival and breeding success to 145 

be predicted. By introducing ORD footprints through which adults may experience behavioural and 146 

energetic consequences by way of interaction through barrier and/or displacement effects, we can 147 

simulate a population of interest both with and without ORDs, with the resulting difference between 148 

the two simulations being solely attributable to wind farm impacts. Here, we provide a description 149 

of the model and its main components. We demonstrate use of the model using extensive 150 

hypothetical ORD arrays to predict how increasing cumulative effects on populations of two example 151 

seabird species, common guillemot Uria aalge and black-legged kittiwake Rissa tridactyla (hereafter 152 

“guillemot” and “kittiwake”), breeding at the Isle of May NNR, in eastern Scotland, drive predicted 153 



changes in breeding success and adult mass change and survival during the chick-rearing period. We 154 

chose this location because the North Sea is undergoing a rapid expansion of offshore wind 155 

development, with many projects potentially occurring within the foraging ranges of protected 156 

breeding seabirds, such as the Isle of May. Finally, we present a sensitivity analysis of model 157 

parameters focused on those parameters with the least empirical support.  158 

2. Methods  159 

2.1 Model description 160 

A full description of the model following the ODD (Overview, Design concepts, Details) protocol 161 

(Grimm et al., 2006, 2020) can be found in the appendix (Section 1). In brief, we constructed a model 162 

to predict the demographic impacts of sublethal effects emanating from ORD interaction in seabirds 163 

during the chick-rearing period (Figure 1). By simulating behaviour and time-energy budgets in the 164 

presence (“scenario”) and absence (“baseline”) of ORDs, the difference between outputs for 165 

breeding success and adult mass change and survival represents the demographic impacts of ORD(s). 166 

The model is parameterised for four species: kittiwake, guillemot, razorbill Alca torda and Atlantic 167 

puffin Fratercula arcitca, but can be adapted to any central-place foraging seabird, data-permitting. 168 

For our model application investigating cumulative effects we chose two of these four species, 169 

kittiwake and guillemots, due to the species differing ecologies when foraging at sea. As such, they 170 

are the focus here, but we expand on model details for puffins and razorbills in the appendix. The 171 

model was parameterised from empirical values for time activity budgets, adult mass change during 172 

chick-rearing, chick growth and chick survival from studies of these or closely related species from 173 

UKCEH's long term study of foraging behaviour, energetics and demography of seabirds on the Isle 174 

of May (Leedham et al., 2025; Newell et al., 2025) or from published studies elsewhere. In some 175 

instances, it has been necessary to set parameter values based on expert opinion because relevant 176 

empirical data do not exist (see Table 1 and Table S4 for details). The model was developed in R (R 177 

Core Team, 2024) and is available here: https://github.com/NERC-CEH/seabORD_pkg.   178 

https://github.com/NERC-CEH/seabORD_pkg


 179 

 180 

Table 1: List of key SeabORD parameters with values for kittiwakes and guillemots. “IMLOTS” refers to data from the Isle of 181 

May Long-Term Study. 182 

Parameter kittiwake guillemot 

value source value source 

Initial adult body mass mean (g)  372.69 UKCEH unpubl. data 920.34 UKCEH unpubl. data 

Initial adult body mass standard deviation (g) 33.62 UKCEH unpubl. data 57.44 UKCEH unpubl. data 

Critical mass below which adult is assumed 
dead (proportion of mean mass)   

0.6 Derived from 
Golovkin 1963 

0.6 Derived from Golovkin 
1963 

Critical mass below which adult abandons 
chick (proportion of mean mass)   

0.8 Expert judgement 0.8 Expert judgement 

Critical mass below which adult favours itself 
over its chick when foraging (proportion of 
mean mass)   

0.9 Expert judgement 0.9 Expert judgement 

Initial chick body mass mean (g) 36 UKCEH unpubl. data 75.8 UKCEH unpubl. data 

Initial chick body mass standard deviation (g) 2.2 UKCEH unpubl. data 1 UKCEH unpubl. data 

Critical mass below which chick is dead 
(proportion of initial mass)  

0.6 Derived from 
Golovkin 1963 

0.6 Derived from Golovkin 
1963 

Number of hours per time step (hours) 36 - 24 - 

Number of time steps per season 30 
(45 

days) 

UKCEH unpubl. data 21 
(21 

days) 

UKCEH unpubl. data 

Critical time threshold for unattendance at 
nest above which a chick is assumed to die 
through exposure or predation (hours) 

18 Expert judgement 18 Expert judgement 

Adult daily energy expenditure mean (kJ)  802 Daunt et al. 2008 
and refs therein 

1489.1 Daunt et al. 2008 and 
refs therein 

Adult daily energy expenditure standard 
deviation (kJ) 

196 Daunt et al. 2008 
and refs therein 

169.9 Daunt et al. 2008 and 
refs therein 

Chick energy requirement (kJ per day)  525.7 Enstipp et al. 2006 221.7 Thaxter et al. 2013 

Figure 1: Conceptual diagram showing the different behavioural mechanisms represented within SeabORD 



Maximum prey intake (g per minute)  4.369 UKCEH unpubl. data 2.95 UKCEH unpubl. data 

Prey density intake rate is half its max/the 
rate of intake rate decrease with prey 
depletion (g per minute)  

900 Calibrated in 
functional response 

700 Calibrated in functional 
response 

The effect of conspecific density on intake 
rate of individuals through assumed 
interference competition 

0.02 Expert judgement in 
conjunction with 
Hassell & Varley 
1969 

0.02 Expert judgement in 
conjunction with 
Hassell & Varley 1969 

Average speed in flight (m/sec) 13.1 Pennycuick 1997 19.1 Pennycuick 1997 

Assimilation efficiency 0.74 Hilton et al. 2000 0.78 Hilton et al. 2000 

Energy gained from prey (kJ per gram)  6.52 Leedham et al. 2025 
and refs therein 

9.26 Leedham et al. 2025 
and refs therein 

Energy cost of nesting at colony (kJ per day)  427.8 Leedham et al. 2025 
and refs therein 

780 Leedham et al. 2025 
and refs therein 

Energy cost of flight (kJ per day) 1400.7 Leedham et al. 2025 
and refs therein 

7266.2 Leedham et al. 2025 
and refs therein 

Energy cost of resting at seas (kJ per day) 400.6 Leedham et al. 2025 
and refs therein 

540.7 Enstipp et al. 2006 

Energy cost of foraging (kJ per day) 1400.7 Leedham et al. 2025 
and refs therein 

1894.9 Enstipp et al. 2006 

Energy cost of warming food (kJ per day) 26 Leedham et al.  
2025 and refs 
therein 

49.3 Leedham et al.  2025 
and refs therein 

Maximum chick mass gain per day (g)  11 UKCEH unpubl. data 9 UKCEH unpubl. data 

Energy density of the bird’s tissue (kJ g-1) 38.5 Gabrielsen 1996 38.5 Gabrielsen 1996 

Parameter for translation of adult mass 
change into year round survival 

0.038 Oro & Furness 2002 1.03 Erikstad et al. 2009 

 183 

Four entity types are represented: Adults, chicks (each belonging to a pair of adults), ORD footprints, 184 

and landscape grid cells. Adults are characterised by their sex, which pair they belong to and if their 185 

chick is alive, whether they are susceptible to ORD effects, body mass, Daily Energy Requirement 186 

(DER), Daily Energy Expenditure (DEE) relating to activity budgets, among others (see Table S1). 187 

Chicks are characterised by being alive or dead, their body mass, energy requirement, and hours 188 

unattended on each time step, the latter being a behaviour exhibited by parents when foraging 189 

conditions are suboptimal (e.g. Ashbrook et al., 2008). ORDs are represented as polygons within 190 

which all turbines in the development are contained, and a buffer and displacement zone, the 191 

widths of which are determined through user-set parameters. A buffer is the area around an ORD 192 

footprint from which birds are assumed to be displaced, and a displacement zone is the area around 193 

the footprint-plus-buffer into which displaced birds are assumed to disperse. The simulated 194 

landscape covers the North Sea and is composed of 1 x 1 km grid cells. Cells are classified as land or 195 

sea, and sea cells have prey value assigned following a calibration process (see below), which can 196 

either be uniform (i.e., all cells have the same prey value), or heterogenous, from simple distance 197 



decay to being informed by empirical data. A bird distribution map modelled on GPS tracking data 198 

determines the probability of foraging at a site (Figure S1 A). Time is represented in discrete time 199 

steps of 24 hours for guillemot and 36 hours for kittiwake (due to empirical data indicating longer 200 

foraging trips in this species), with the total number representing respective breeding season lengths 201 

(kittiwake = 30 time steps = 45 days, guillemot = 21 time steps/days). Key model inputs include ORD 202 

footprints, colony locations and population sizes, and maps for foraging density, conspecific density 203 

for inferring competition (Figure S1 B), and prey density. 204 

Simulation time steps proceed as follows (Figure S2): (1) adults conduct foraging trips and decide on 205 

their behavioural strategy (e.g., prioritising themselves or their chick’s needs) based on their current 206 

condition (2) the consequences of these behaviours on the chick are determined, (3) adult energy-207 

mass balances are updated in light of this and daily energy requirements for the next day are 208 

calculated, (4) at the end of the breeding season, adult survival over the subsequent winter period is 209 

estimated. 210 

Foraging and movement 211 

The model simulates foraging decisions of individual seabirds under the assumption that they are 212 

acting in accordance with optimal foraging theory (MacArthur & Pianka, 1966), minimising time 213 

away from offspring whilst maximising energy gain. In each time step an individual selects a location 214 

for feeding based on bird density maps, ideally derived from GPS data for the colony of interest via 215 

spatial modelling (e.g. using a generalised additive model, GAM) but where such data are lacking a 216 

simplified density decay option is advised (Appendix section 2). Subsequent behaviour of birds is 217 

then simulated (Figure 1), incorporating realistic assumptions and constraints derived from observed 218 

behaviour. Modelled foraging behaviour is driven by prey availability, travel costs, offspring 219 

provisioning requirements, and conspecific density, together determining the number of trips to the 220 

chosen foraging location in each time step. An individual’s movement is directly to and from a 221 



singular foraging location, each chosen independently for all time steps at the beginning of the 222 

simulation meaning there is no adaptation in the selection of locations, and no site fidelity. 223 

Intake rate and competition 224 

Intake rate by a bird at its foraging location is described by the Michaelis-Menten equation for Type 225 

II function response (Holling, 1959), where the relationship between increasing density of prey and 226 

instantaneous intake rate increases until reaching a maximum determined by handling time (Enstipp 227 

et al., 2007). This relationship is used to simulate the decline in intake rate over time spent foraging 228 

at a given location due to prey depletion, and to determine the amount of time an individual 229 

requires to attain a certain cumulative intake. The total daily intake can then be calculated, given (i) 230 

the number of foraging trips (n = 1-6) that the bird undertakes, and (ii) trip length.  231 

We assume prey depletion at a location within a foraging bout but when the bird returns to a 232 

location the amount of prey is reset to the original level on the basis of lacking evidence for long-233 

term prey depletion by seabirds (Birt et al., 1987), which instead may temporarily disturb prey (Lewis 234 

et al., 2001). Another assumption dictates that intra-specific competition between individuals 235 

foraging at the same location acts to reduce the intake rate multiplicatively, wherein competition is 236 

experienced from conspecifics from the same colony in that simulated time step and estimated from 237 

a competition map of the spatial abundance of birds from other colonies (Figure S1 B).  238 

ORD interactions 239 

The user specifies the spatial footprint of one or multiple ORDs and two main responses of 240 

individuals to ORDs are simulated in the model: displacement and barrier effects. At the start of the 241 

simulation birds are assigned as either both displacement and barrier susceptible, or unsusceptible. 242 

A barrier event occurs when a susceptible bird has a foraging location that is obstructed by the ORD, 243 

assuming birds travel directly to the foraging site (Figure 2, example 1). In this circumstance birds 244 

take the shortest route to the foraging location whilst navigating around the edge of the ORD 245 

footprint, with obstructed distance calculated using the R package ‘gdistance’ (van Etten, 2017). 246 



Barrier effects may impact individuals negatively by increasing flight cost and time and reducing 247 

available foraging time and resulting in potential unattendance or lost adult condition.  248 

A displacement event occurs when a susceptible bird has a foraging location that falls within a 249 

footprint or surrounding buffer, they are displaced into the displacement zone (Figure 2, example 2) 250 

which extends beyond the footprint-plus-buffer (Figure 2). The foraging location in the displacement 251 

zone is selected with a probability proportional to the bird distribution map. Negative impacts may 252 

stem from increased flight cost (energetic or time) if displaced further from the location, and from 253 

increased competition in the displacement zone due to an increase in the abundance of birds using 254 

this area. Positive impacts may occur from decreased flight cost and/or flight time if an individual is 255 

displaced closer to the colony, or for non-displacement susceptible birds through reduced 256 

competition for birds that remain to forage within the ORD whilst others are displaced. If using a 257 

heterogenous prey map, there may be impacts stemming from being displaced to a foraging location 258 

with lower/higher prey density. Negative impacts from both barrier and displacement events 259 

manifest as increased DER for the following time step and positive effects as reduced DER at that 260 

time step.  261 

 262 

Figure 2: Examples of potential interactions with offshore renewable devices (ORDs). Foraging trip 1b (blue) represents a 263 

barrier-susceptible bird, which has to fly the shortest distance around the ORD to get to its obstructed foraging site on the 264 



far side relative to the colony, where 1a (light blue) shows the track in absence of the ORD and what would be experienced 265 

in baseline simulations. Foraging trip 2b (red) represents a displacement susceptible bird, which would have foraged within 266 

the ORD footprint, as shown by 2a (light red), but is now foraging in the displacement zone. In all cases birds use the same 267 

flightpath to both reach and return from their chosen foraging location.  268 

Mass-energy and activity budgets  269 

The daily mass change for each adult is calculated to be the difference between their current daily 270 

energy gain and current DER, divided by the energy density of the bird’s tissue (kJ/g)(Gabrielsen, 271 

1996; Montevecchi et al., 1984). Daily mass change for chicks assumes a simple linear function in 272 

relation to food provisioned by both parents. On the first time step of the simulation, adult DEE is 273 

drawn from a normal distribution parameterised using the mean and standard deviation of empirical 274 

data on the study species (Daunt et al., 2008). On all subsequent days, adult DER is matched to 275 

energy expended in the previous time step, by dividing the DEE by assimilation efficiency (0.78, 276 

Hilton et al., 2000). Chick DEE remains constant throughout the simulation, defined using species-277 

specific mean DERs are based on provisioning rates recorded from a sample of chicks of a range of 278 

ages.  279 

Adults divide their activities into four categories of behaviour – foraging, flight, time spent at the 280 

colony, and time spent resting on the sea surface (Figure 1) following empirical activity budgets 281 

(Daunt et al., 2002). The foraging model returns the simulated flight time spent travelling to the 282 

foraging location, and the simulated foraging time required to meet DER. The remaining time is split 283 

into time spent at the colony, where each bird attempts to spend half of each time step thereby 284 

preventing the chick being left unattended at the nest, and a minimum of one hour spent resting at 285 

sea (Daunt et al., 2002). Of the four listed, resting at sea is presumed to be the least constrained 286 

activity, and therefore most likely to be used by birds to perform other activities when under stress. 287 

The time spent carrying out each of these activities is then multiplied by species- and activity-specific 288 

energy costs available from the literature, with the addition of the energy cost of warming food to 289 



derive the total DER for each bird (Gremillet et al., 2003), that was converted into grams per day 290 

assuming a mean energy density of prey (Harris et al., 2008).  291 

The following set of decision rules were implemented based on a set of behavioural strategies which 292 

determine adult behaviour in relation to its chick:  293 

i. If an adult’s body mass was greater than 90% of its starting body mass at the onset of chick-294 

rearing it would avoid leaving its chick unattended, even if it had not met its DER. 295 

ii. If body mass was between 90% and 80% it would favour itself and leave its chick unattended 296 

in order to attempt to achieve its required DER (for example see Figure S5). 297 

iii. If body mass is less than 80%, they abandon the breeding attempt, and consequently their 298 

partner also gives up, resulting in chick death.  299 

iv. If an adult’s body mass falls below 60% of their starting mass, the adult dies and is removed 300 

from the simulation. This rarely happens in the model as an adult abandons its breeding 301 

attempt and its mass tends to stabilise for the remainder of the simulation reflecting their 302 

long-lived nature (see model processes in Figure 3). 303 

A similar assumption is made for chicks, which die if their body mass falls below 60% of that of a 304 

hypothetical chick that has received its DER on each model time step up to the current time. Chicks 305 

can also die through exposure from lack of attendance by its parents (>18 hours), or increased risk of 306 

predation if a chick was left unattended by both parents, modelled as a probability of death that 307 

increased linearly with time left unattended.  308 

Survival projections 309 

Past studies have shown a positive relationship between body mass at the end of the breeding 310 

season and survival during the subsequent winter period in adults (Erikstad et al., 2009; Oro & 311 

Furness, 2002). Accordingly, alongside the outputs of the status of chicks and adults as either bring 312 

alive or dead, the model simulates adult survival during the subsequent winter period from mass at 313 

the end of the breeding season, using the relationships in these studies (see Appendix section 1, 7.4 314 



for more details). The overall survival rate for a simulation run is calculated by simulating survival of 315 

each individual using a Bernoulli distribution, using individual-level survival probabilities based on 316 

the published relationships, and then calculating the proportion of individuals that have survived. 317 

Model calibration 318 

As prey levels are a key source of uncertainty in practice, since empirical data on absolute quantities 319 

of available prey at relevant spatial and temporal scales are rarely available, a prey calibration 320 

process is a prerequisite step required to determine prey levels that correspond to the desired 321 

conditions for this species/colony, which is typically set at “moderate” to align with the average 322 

metrics seen for the population of interest. We achieve this by running baseline simulations (i.e., no 323 

ORDs) across a range of prey values and assessing their outputs for adult mass loss over the chick-324 

rearing period and breeding success (proportion of chicks that fledge per nest) against upper and 325 

lower boundaries of moderate conditions (Figure 3, details in Appendix section 1, 5.3). The prey 326 

range captured by the overlap between the two outputs is then used in subsequent simulations 327 

including ORDs to input a uniform arbitrary prey value for all cells (assuming standard uniform prey 328 

distribution).  329 

 330 



 331 

Figure 3: Schematic plot of kittiwake adult mass loss (A) and breeding success (B) withdrawn from 300 baseline simulations 332 

(no ORD footprints) ranging from a prey value of 50 up to 250, to display a range of model dynamics. The red lines are for 333 

smoothed model outputs, which are overlaid on grey points indicating the individual estimates. For calibration we have 334 

upper and lower bound for each output (A & B) which are picked to reflect “moderate” conditions, i.e., what is observed in a 335 

typical year for kittiwakes at the Isle of May, and these are indicates by the dashed grey horizontal lines. The grey shaded 336 

blocks indicate where the respective outputs fall within these bound, and the light blue shaded block indicates the prey 337 

values where there is overlap between the estimates, which is the prey range used in subsequent simulations with ORDs 338 

included.  339 

Key model outputs: metrics of ORD impact 340 

Wind farm impacts on seabird populations can be assessed using the three primary SeabORD 341 

outputs; (i) adult mass change over the course of the chick-rearing season, (ii) year-round adult 342 

survival using published mass-survival relationships (Erikstad et al., 2009; Oro & Furness, 2002) 343 

translated from (i), and (iii) breeding success over the chick-rearing season. We evaluated the impact 344 



of ORDs by comparing outputs of scenarios with ORDs against a “baseline” scenario with no ORDs, 345 

so that: 346 

(i) ORD effect on adult mass change = Simulated mean proportional adult mass change 347 

over the chick rearing period with ORD(s) – Simulated mean proportional adult mass 348 

change over the chick rearing period under the baseline 349 

(ii) ORD effect on year-round adult survival = Simulated adult mortality rate with ORD(s) – 350 

Simulated adult mortality rate under baseline  351 

(iii) ORD effect on breeding success = Simulated fledged chicks per nest with ORD(s) – 352 

Simulated fledged chicks per nest under baseline  353 

Scenarios 354 

SeabORD is run such that each model scenario contains a set of matched pairs of simulations for the 355 

baseline (no ORDs present) and an impacted run (ORDs present), with the metrics of ORD impact 356 

calculated for each matched pair of baseline and impacted model simulations (which we refer to as a 357 

“replicate”).  Matching ensures that the outcomes of stochastic events within the model that are 358 

unrelated to wind farm impacts (e.g., in particular, initial body mass of each individual, and the 359 

foraging locations selected at each timestep) are identical within the baseline and impacted 360 

simulations.  361 

Matched pairs have identical model parameters and other inputs, with exception that (a) each uses a 362 

distinct random seed (so will have different outputs as a result of stochasticity) and (b) each uses a 363 

different prey value (selected uniformly from within the range determined by model calibration). 364 

2.2 Modelling cumulative effects of multiple ORDs  365 

To investigate how cumulative impacts scale with increasing exposure to ORDs we ran simulations 366 

on kittiwakes and guillemots at the Isle of May with hypothetical ORDs for each species (Figure 4A & 367 

B), with buffer and displacement zones extents set at two and five km, respectively. We ran 368 

simulations with all possible combinations of ORDs ranging from one up to the maximum of six, 369 



resulting in 26 – 1 = 63 different combinations for each species. ORDs were designed to result in 370 

comparable exposure interactions for each species, which was achieved by calculating birds 371 

displaced per time step (Figure 4C) using bird distribution utilisations for each species, and specifying 372 

the size and location of ORD footprints for each species in such a way that the frequency of 373 

interactions ranged from ~4% adults being displaced per time step for 1 ORD, up to ~25% adults for 374 

the maximum number of ORD footprints (n=6), to capture a wide range of potential exposure.  375 

Model calibration was conducted once for each species (Guillemot prey range = 172 – 174.5; 376 

kittiwake prey range = 170.5 – 172.5). Displacement and barrier rate was set to 60% for both 377 

species, following the NatureScot guidelines for auks (NatureScot 2023), and applying this rate to 378 

kittiwakes (NS guidance suggests the lower value of 30%) to ensure outputs were comparable 379 

between the two species. The number of breeding pairs was set to 10,906 for guillemots and 2,103 380 

for kittiwakes, reflecting real population sizes. 381 

We assessed the outputs of simulations against number of ORDs being simulated using the metrics 382 

for adult mass change, adult survival and breeding success as a result of ORD effects detailed above 383 

(Section 2.1). 384 



 385 

2.3 Sensitivity Analysis  386 

We conducted a local sensitivity analysis in which an individual parameter is perturbed separately to 387 

determine the model’s sensitivity. We selected six parameters based on their relative lack of 388 

empirical support: 389 

(i) adult_mass_KG  - Energy density of the bird’s tissue (kJ g−1) 390 

(ii) BM_adult_abdn - Critical mass below which adult abandons chick 391 

(iii) BM_Chick_mortf - Critical mass below which chick is dead 392 

Figure 4: Hypothetical offshore renewable development (ORD) scenarios for (A) kittiwakes and (B) guillemots. Solid 
black lines indicate the footprint of the ORD, with the dashed black line indicating the 2 km buffer and the dotted grey 
line indicating the displacement zone a further 5 km beyond the footprint-plus-buffer. Panel C is a boxplot showing 
the estimated proportion of birds displaced per time step for both species for increasing number of ORDs in the 
respective 63 potential scenarios, and panel D shows a table of statistics relating to the ORD with the area range 
(km2) being the minimum (i.e., one small ORD) and maximum (all 6 ORDs). 



(iv) unattend_max_hrs - Critical time threshold for unattendance at nest, which determines the 393 

probability that an unattended chick dies through exposure or predation 394 

(v) IR_half_b – A parameter controlling the influence of conspecific competition on intake rate 395 

(vi) Displacement zone extent – How far the displacement zone extends beyond the ORD 396 

footprint and buffer 397 

 398 

Parameters were varied singly, with four levels of variations for each. Variations on (i) – (iv) were a 399 

percentage change of the default value at +10%, +5%, -5%, and -10%. We lacked any empirical data 400 

on parameter (v), so it was varied by quadrupling, doubling, dividing by two, and dividing by four. 401 

For parameter (vi), which has a default value of 5km distance from the footprint border (Figure 3), 402 

two extended buffers of 20 and 10 km and two smaller buffers at 2.5 and 1 km comprised the 403 

parameter variations, based on empirical estimates of species responses to ORD footprints (Peschko 404 

et al., 2020). 405 

All sensitivity runs were conducted using the kittiwake population at Forth Islands SPA with 100 406 

replicates, a representative population of 2,103 breeding pairs, and the inclusion of six hypothetical 407 

ORDs (Figure 3 B). The buffer extending around ORD footprints was set at 2km, reflecting NatureScot 408 

guidelines (NatureScot 2023), while the displacement zone extended 5km beyond the ORD footprint 409 

and its buffer, based on expert judgement and knowledge of displacement in the two species (Searle 410 

et al. 2014)(Peschko et al., 2020). For each variation for parameters relating to birds (i.e., not the 411 

displacement zone width) the calibration process was repeated using baseline only simulations 412 

(Section 2.1) to determine a suitable prey range aligning with moderate conditions for this species 413 

(Table S4) where possible.  414 

We calculated the mean, standard deviation and 95% confidence intervals of change in each of the 415 

three key ORD-related outputs metrics (Section 2.1) between scenarios in which parameters had 416 

been varied and the default parameter scenario, for each of the 100 replicates. If the 95% 417 



confidence interval did not contain zero, we considered the output as significantly sensitive to that 418 

parameter variation with distinguished sign of change.   419 

3. Results  420 

3.1 Modelling cumulative effects 421 

The model revealed that decreases in kittiwake and guillemot adult mass change scaled positively 422 

with increasing number of ORDs (Figure 5 A & B). Model predictions showed greater predicted 423 

impacts on mass in adult guillemots compared to kittiwakes, corresponding to an additional 3.15g 424 

lost in guillemots, and 0.81g additional lost in kittiwake with all 6 ORDs compared to the baseline 425 

(Table S10). As anticipated, predicted decreases in mean adult survival were similar to adult mass 426 

change in response to increasing exposure to ORDs, but variation was markedly larger across model 427 

replicates, particularly in the kittiwake simulations (Figure 5 C & D). Decreases in breeding success 428 

with increasing number of ORDs were more severe for kittiwakes (8%) than guillemots (3.9%; Figure 429 

6 E &F). This corresponded to predicted breeding success dropping from 0.538 chicks per nest 430 

(baseline) to 0.457 in kittiwakes, and from 0.830 to 0.79 in guillemots (Table S10).  431 

 432 



 433 

 434 

3.2 Sensitivity analysis  435 

Critical mass below which the chick suffers mortality (BM_chick_mortf), had very little bearing on 436 

the difference in percentage of adult mass loss between scenario and baseline simulations (Figure 437 

6), and had a small but significant reduction in breeding success impacts with ORDs at its lowest 438 

parameter variation (BM_chick_mortf [0.54] breeding success mean ± sd = -0.213 ± 1.058, upper & 439 

Figure 5: The effect of increasing number of hypothetical ORDs on adult mass change, 
adult year-round survival and breeding success in kittiwake (A, C, E) and guillemot (B, D, 
E), respectively. In each panel, dark blue points indicate the means of each hypothetical 
ORD combination (n=63), light grey points indicate all replicates, with violin plots 
illustrating their associated distribution. 



lower CIs = -0.420, -0.006, Table 2). The critical time threshold for unattendance at the nest 440 

(unattend_max_hrs) parameter showed similarly low levels of sensitivity, with small but significant 441 

differences in adult mass loss for its highest and lowest variation (unattend_max_hrs = 18.9 & 16.2, 442 

Table 2). 443 

Energy density of the bird’s tissue (kJ g−1, adult_mass_KG) had small but significant effects for three 444 

out of four parameter variations (adult_mass_KG = 40.425, 36.57, 34.65) for the difference in adult 445 

mass loss between scenario and baseline simulations (Table 2), while there were no significant 446 

differences between ORDs and baseline simulations for breeding success. The displacement zone 447 

extent did not impact difference in adult mass loss significantly, except for when reduced to 1km 448 

where adult mass loss increased relative to baseline simulations (Table 2, Figure 6). Significant 449 

decreases in breeding success were seen with parameter reductions to 2.5km and 1km. The 450 

parameter controlling the influence of competition on intake rate (IR_half_b) was the most sensitive 451 

to the perturbations applied where all variations resulted in a significant difference in adult mass, 452 

and three out of four parameter variations in breeding success (Table 2). Upon quadrupling this 453 

parameter (IR_half_b = 0.08) adult mass decreased on average by 0.11% compared to the baseline, 454 

with a reduction in breeding success of -1.46% (Table 2), comprising the largest effects on both 455 

outputs across all parameter variations (Figure 6). We note that the higher relative magnitude of the 456 

variations set in this parameter, owing to a lack of empirical data, are likely responsible for these 457 

results and caveat direct comparisons with other parameters. 458 

It was not possible to calibrate the model appropriately when the parameter for critical mass below 459 

which the adult abandons chick was set to +10%, -5% & -10% of its original value in the model 460 

(BM_adult_abdn = 0.88, 0.84, 0.72). This was because there were no overlapping prey values 461 

resulting in corresponding model outputs for adult mass loss and breeding success within the 462 

respective moderate ranges set using empirical data (Table S9, Figure S10). Upon increasing this 463 

parameter by 5%/10% from its default value (BM_adult_abdn = 0.84 & 0.88), breeding success 464 



dropped considerably, while adult mass loss also decreased, with the inverse occurring upon 465 

decreasing the parameter value (BM_adult_abdn = 0.76 & 0.72). The magnitude of this divergence 466 

between changes in adult mass and breeding success was such that it was not possible to identify 467 

shared prey values corresponding to moderate conditions (Figure S10). This set of results highlights 468 

it as a key parameter to which model outputs are particularly sensitive. Further support comes from 469 

the parameter variation (-5% of default value) for which calibration was possible (BM_adult_abdn = 470 

0.76), where assessing the differences between baseline and scenario of our two main outputs were 471 

relatively large compared to other parameter variations (Figure 6), and confidence intervals for both 472 

did not contain zero (Table 2). 473 

 474 

 475 

 476 

 477 
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 483 



Table 2: Sensitivity analysis results. 95% confidence intervals (CI) ranges shown in bold where they don’t contain zero. Only 484 

one parameter is varied in each model. Differences are relative to the model run in which all parameters are fixed at their 485 

standard value (i.e. no parameters are varied). 486 

Parameter 
(abbreviated name, 
standard value) 

Variation ORD effect on adult mass 
change (%) 

ORD effect on breeding success 
(%) 

Mean ± s.d. Lower-
upper 95% 
CI 

Mean ± s.d. Lower-upper 
95% CI 

Energy density of 
bird’s tissue 
(adult_mass_KG, 
38.5 kJ g−1) 

42.35 (+10%) 0.000 ± 0.035 -0.007, 0.007 -0.201 ± 1.388 -0.473, 0.0007 

40.425 (+5%) 0.009 ± 0.030 0.003, 0.015 -0.147 ± 1.362 -0.414, 0.119 

36.575 (-5%) 0.009 ± 0.034 0.002, 0.016 0.164 ± 1.188 -0.069, 0.397 

34.65 (-10%) 0.010 ± 0.033 0.004, 0.017 0.159 ± 1368 -0.109, 0.428 

Critical mass below 
which adult 
abandons chick 
(BM_adult_abdn, 
0.8) 

0.88 (+10%) - - - - 

0.84 (+5%) - - - - 

0.76 (-5%) -0.059 ± 0.043 -0.068, -0.051 -0.525 ± 1.409 -0.801, -0.249 
0.72 (-10%) 

- - - - 

Critical mass below 
which chick is dead 
(BM_chick_mortf, 
0.6) 

0.66 (+10%) 0.002 ± 0.031 -0.005, 0.008 -0.057 ± 1.469 -0.345, 0.231 

0.63 (+5%) -0.004 ± 0.032 -0.010, 0.003 -0.066 ± 1.405 -0.342, 0.209 

(0.57) -5% -0.002 ± 0.026 -0.008, 0.003 -0.133 ± 1.046 -0.338, 0.072 

0.54 (-10%) -0.004 ± 0.028 -0.010, 0.001 -0.213 ± 1.058 -0.420, -0.006 

Critical time 
threshold for 
unattendance at 
nest 
(unattend_max_hrs, 
18 hrs) 

19.8 (+10%) 0.005 ± 0.036 -0.002, 0.012 0.145 ± 1.401 -0.130, 0.420 

18.9 (+5%) 0.009 ± 0.032 0.002, 0.015 0.041 ± 1.332 -0.220, 0.302 

17.1 (-5%) 0.002 ± 0.031 -0.004, 0.008 0.029 ± 1.471 -0.259, 0.316 

16.2 (-10%) 

-0.010 ± 0.035 -0.017, -0.003 -0.077 ± 1.308 -0.333, 0.180 

Influence of 
conspecific 
competition on 
intake rate 
(IR_half_b, 0.02) 

0.08 (*4) -0.115 ± 0.037 -0.122, -0.107 -1.174 ± 1.442 -1.457, -0.891 

0.04 (*2) -0.016 ± 0.031 -0.022, -0.010 -0.356 ± 1.260 -0.603, -0.109 

0.01 (/2) 0.015 ± 0.032 0.008, 0.021 0.168 ± 1.347 -0.096, 0.432 

0.005 (/4) 
0.011 ± 0.034 0.004, 0.017 0.441 ± 1.394 0.168, 0.714 

Displacement zone 
extent  
(5 km) 

20km -0.001 ± 0.026 -0.006, 0.004 -0.168 ± 1.008 -0.365, 0.030 

10km 0.000 ± 0.026 -0.005, 0.005 -0.058 ± 0.967 -0.247, 0.132 

2.5km -0.001 ± 0.029 -0.007, 0.004 -0.386 ± 1.326 -0.646, -0.126 

1km -0.015 ± 0.034 -0.022, -0.009 -0.382 ± 1.446 -0.666, -0.099 

 487 



 488 

Figure 6: Sensitivity analysis results for variations of six parameters showing the difference between effects due to ORDs 489 

(baseline output – scenario output) for a particular parameter variation and a standard baseline run (where parameters are 490 

not varied) for the following two primary model outputs: (A) percentage of adult mass, and (B) breeding success. The legend 491 

refers to the four levels of parameter variation which varied for different parameters: IR_half_b was varied by dividing by 492 

four (lowest) and by two (low), and by multiplying by two (high) and by four (highest), while displacement zone extent 493 

variations were 1 km (lowest), 2.5 km (low), 10 km (high), and 20 km (highest). All other parameters were varied at the 494 

standardised rate of -10% (lowest), -5% (low), +5% (high), and + 10% (highest). Bars indicate 95% confidence intervals.  495 

4. Discussion  496 

We have developed a process-based model that represents the relevant mechanisms pertaining to 497 

time-energy budgets and behaviour of protected seabird species during the chick-rearing season and 498 

demonstrate that it captures realistic system dynamics in line with empirical evidence for time-499 

activity budgets, adult condition, breeding success and survival in the absence of ORDs. With the 500 



inclusion of ORDs, and assumptions relating to how seabirds interact with developments, we have 501 

produced a transparent means of predicting sublethal impacts of renewable developments on the 502 

demographic rates of protected seabird populations, informed by the full breadth of available 503 

literature available. We demonstrate the IBM’s ability to predict the demographic impacts resulting 504 

from sublethal individual interactions with cumulative ORDs, where demographic impacts scale 505 

positively with increasing exposure to ORDs in kittiwakes and guillemots. Critically, we provide a 506 

transparent method for predicting how the cumulative interactions of breeding seabirds with 507 

multiple ORDs permits estimation of a policy relevant set of population-level outputs that can readily 508 

be used as inputs for population viability analysis, thus increasing confidence in seabird population 509 

projections used in environmental management decisions concerning planned ORDs. 510 

4.2 Modelling cumulative effects 511 

Our results indicate that demographic impacts of sublethal interactions scale positively with 512 

cumulative exposure to ORDs, and that despite the model simulations having similar exposure across 513 

the two species, the outcomes varied in both form and extent. Guillemots experienced a larger 514 

effect on adult mass change than kittiwakes but increasing numbers of ORDs had comparatively 515 

lower impact on their breeding success. This result is likely attributable to respective parameters 516 

sets capturing behavioural and energetic dynamics for each species, thus highlighting the 517 

importance of using mechanistic models that are capable of including such nuanced processes. We 518 

also conducted a more in-depth analysis into how different metrics relating to proxies for barrier 519 

effects, displacement, and competition were associated with changes in adult condition and 520 

demography (Appendix Section 2, 4). Here, we demonstrate that such impacts do not always scale in 521 

a linear fashion with increasing ORD exposure, with predicted impacts of ORDs becoming more 522 

severe with increasing magnitude of interactions. This violates the simplifying assumption currently 523 

used in cumulative impact assessments, where the impacts from different developments are 524 

assumed to be additive (Masden et al., 2010).  This divergence may be driven by behavioural 525 

buffering where the model captures threshold behaviour across a range of mechanisms, for example 526 



when adults favour their own survival over that of their chick. The ability of IBMs to represent such 527 

dynamics in a transparent way reinforces the advantage in using such models over other, more 528 

simplistic methods. 529 

It is difficult to disentangle how such nonlinear relationships between model output metrics for 530 

condition and demography and ORD interactions arise. Due to high flight costs in some seabird 531 

species, modelled individuals may experience larger energetic costs for barrier effects than for 532 

displacement effects, particularly when displacement does not incur an additional travel cost when 533 

compared to the foraging location chosen in the baseline. Flight is a costly activity, particularly for 534 

guillemots, so barrier effects incurring longer distances flown tend to result in greater energetic 535 

consequences than those incurred via increased foraging competition. Building such mechanisms 536 

into IBMs provides a transparent and flexible modelling platform to explore the consequences of 537 

such mechanisms on the demography of seabirds, revealing key areas for future research that will 538 

lead to an improved evidence base and will reduce uncertainty in impact assessments, facilitating 539 

the transition to renewable energy 540 

4.1 Sensitivity analysis 541 

The results of the sensitivity analysis show that model outputs are relatively robust to realistic 542 

variation in key model parameters lacking in empirical support. However, the parameter variations 543 

in one of the behavioural parameters – determining the mass below which adults abandon their 544 

chick (BM_adult_abdn) – resulted in model calibration not being possible, due to divergence in the 545 

set of model outputs upon which calibration is based (adult mass loss and breeding success). 546 

Nevertheless, model outputs demonstrated that the model mechanisms relating to behaviour and 547 

consequent impact on breeding success have been captured in a way consistent with ecological 548 

understanding, where the directionality of changes in impacts that arose from parameter variation 549 

demonstrated that the model is successfully capturing the underpinning biological processes known 550 

to exist in breeding seabirds. The strong sensitivity of this model parameter highlights the priority for 551 



further empirical investigation in understanding the condition-related causes of breeding attempt 552 

abandonment in these species.  553 

A previous model predicting the effects of ORDs on northern gannets Morus bassanus (Warwick-554 

Evans et al., 2018) was particularly sensitive to parameters relating to prey, intake and assimilation. 555 

Our model has analogous parameters, but a considerable amount of its sensitivity to them is likely 556 

absorbed by adopting the calibration procedure, which acts to stabilise the model to produce 557 

empirically consistent model outputs before the introduction of ORDs and prediction of their 558 

influence on demographic rates. This process is essential in ensuring the model’s transferability, as 559 

ultimately it is designed to be applied to any breeding colony for the four parameterised species 560 

(kittiwake, guillemot, razorbill, puffin) with potential for wider application (Section 4.4). 561 

Reducing the displacement zone extent to below 5 km negatively influenced breeding success more 562 

than adult mass change, which is likely a result of mechanisms within the model whereby adults 563 

prioritise their own condition over that of their chicks in response to increased competition for prey 564 

resources when displacement is confined to a smaller area. The precise value of this key model 565 

parameter is likely to depend on ecological and environmental factors such as population size, 566 

foraging range, prey selection, prey availability and social foraging patterns. Seabird responses to 567 

ORDs vary considerably between species, with some being completely avoidant such as red-throated 568 

diver Gavia stellata (Heinänen et al., 2020), and other species attracted to the areas around turbines 569 

such as some large gulls Larus spp. and cormorants Phalacrocorax carbo (Dierschke et al., 2016; 570 

Johnston et al., 2022). For our focal species, kittiwakes and guillemots, analysis of response radii to 571 

ORDs indicates behavioural reactions at ~20 km and ~9km respectively (Peschko et al., 2020). The 572 

same study also reported reduced density inside the footprint during the breeding season of 45% for 573 

kittiwakes, and 44% for guillemots. Variation in responses has also been seen within species, where 574 

individuals may show differing responses as in gannets (Peschko et al., 2021), or populations may 575 

respond differently to ORDs depending on the season (Peschko et al., 2020), the latter likely being a 576 



consequence of the differing constraints experienced throughout the year. Variation in responses 577 

both between and within species could be linked to factors such as turbine density or prey 578 

availability (Thaxter et al., 2024; van Bemmelen et al., 2024), and the shape of these responses will 579 

often depend on the spatial scale of data and analyses. For example, kittiwakes display attraction to 580 

ORD footprints on the macro-scale (0-4 km away from the ORD footprint), but avoidance when 581 

considering response at the turbine level (Pollock et al., 2024). IBMs provide a flexible platform to 582 

include such variation in responses as evidence emerges. 583 

4.3 Future development  584 

A key area for IBM development is the incorporation of more realistic foraging tracks(e.g., 585 

Chudzinska et al., 2021) to accommodate nuanced responses to ORDs as evidence emerges for how 586 

foraging birds alter movement patterns in and around offshore wind farms. The development of 587 

tracks to include further behavioural mechanisms, such as active choice in foraging site during trips 588 

and adaptive decisions based on previous successful foraging areas, would facilitate the inclusion of 589 

heterogenous prey distributions informed from empirical data, such as the lesser sandeel 590 

Ammodytes marinus (Langton et al., 2021). Furthermore, the indirect effects of renewable 591 

developments on prey redistribution, for which evidence is accumulating (e.g., Bicknell et al., 2025), 592 

could also be accounted for by including mechanisms linking seabird movement and space use to 593 

prey density. By using a pattern-orientated modelling approach (Gallagher et al., 2021; Wiegand et 594 

al., 2003), simulation experiments with foraging mechanisms invoking various forms of memory 595 

and/or social interaction to guide adaptation to profitable foraging sites could help underpin which 596 

mechanisms drive foraging site fidelity. Such an approach has already been used in gannets (Pollock 597 

et al. in review), where model outputs were compared against empirical levels of foraging site 598 

fidelity that have recently been quantified in SeabORD’s focal species (Regan et al., 2024). Several 599 

other avenues for development include extending SeabORD to cover the incubation period when 600 

reduced constraints will influence behaviour, or updating the mass-survival equations used to 601 

predict year-round adult survival in light of new evidence (Daunt et al. 2020).  602 



4.4 Wider applications 603 

We have developed an open source, transparent, evidence-based IBM for predicting demographic 604 

impacts of sub-lethal effects arising from breeding seabird interactions with ORDs. We demonstrate 605 

the model using empirical information for two species of key consent risk, however we also provide 606 

parameter sets for a further two species thereby expanding the potential use of the model. Our 607 

Appendix contains extensive information on the inputs (Table S3) and parameters (Table S4) 608 

required to run the model, providing a platform for others to further develop and apply the model to 609 

other species in new contexts. We also provide alternative model options for accommodating 610 

varying complexity dependent on the level of information available, for example the use of bird 611 

distribution maps derived from GPS data when available, or alternatively, provision of a distance 612 

decay function with a minimum requirement of a species’ typical foraging distance. With 613 

development of renewables continuing apace across the globe, our approach is likely to be useful for 614 

practitioners elsewhere, either in scoping exercises or in EIA equivalents relating to specific 615 

developments. 616 

4.5 Conclusion 617 

We provide a novel analytical tool for estimating the population level consequences of displacement 618 

and barrier effects for breeding seabirds. By simulating the individual interactions of seabirds with 619 

their environment, including one or more ORDs, and then scaling up to the population-level, we 620 

provide policy-relevant metrics that emerge from the interaction of key ecological processes, 621 

generating predictions based on the best available evidence. We apply the model to demonstrate 622 

that increasing exposure to cumulative ORDs may result in higher demographic impacts in two 623 

seabird species, highlighting the need for models that can incorporate mechanistic processes and 624 

allow for increased confidence in predictions of anthropogenic alterations to the environment. The 625 

use of IBMs in contexts such as this, especially when underpinned by strong empirical data (e.g., 626 

Leedham et al., 2025), should form a central role in legislative frameworks for understanding and 627 



predicting anthropogenic impacts on species for which complex behavioural pathways shape 628 

emergent demographic rates and population change. 629 
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Supplementary material section 1: SeabORD ODD
Introduction
This document comprises a description of the SeabORD individual-based model (IBM), that was
developed in R (R Core Team, 2024). The code is provided in GitHub (https://github.com/NERC-
CEH/seabORD_pkg with guidelines available at the following page: https://nerc-
ceh.github.io/seabORD_pkg/index.html). We follow the ODD (Objectives, Design concepts, Details)
protocol for describing individual- and agent-based models (Grimm et al., 2006, 2020).
ODD
1. Purpose and patterns
The purpose of the model is to predict the demographic impacts on seabirds of sub-lethal
displacement and barrier effects resulting from interactions with ORDs, evaluated through predicted
changes to adult mass, adult survival and breeding success. Demographic impacts are derived by
estimating alterations to behaviour and time-energy budgets of four different seabird species during
the chick-rearing period, when exposed to ORDs within their foraging ranges. To estimate the
impacts of ORDs, baseline scenarios (no ORD footprints included) are compared with scenarios
containing one or more ORDs, providing estimates of potential changes to adult mass, adult survival,
and breeding success under alternative scenarios of ORD exposure.
To evaluate if our model represents these key behavioural and energetic processes in line with
empirical data, we parameterised and evaluated the model against the following patterns obtained
from empirical data or available literature or, where information from these sources was not
available, expert opinion: time activity budgets, adult mass change during chick-rearing, chick
growth and chick survival, distribution of foraging birds, and the form and frequency of interactions
with ORDs. Body condition and behavioural data comes from the Isle of May long-term study
(“IMLOTS”, Leedham et al., 2025; Newell et al., 2025) and expert opinion. The spatial distribution of
foraging birds is another key pattern which we derive from GPS data.
2. Entities, state variables and scales
The model is composed of four kinds of entities: adults, chicks, landscape grid cells, and ORD
footprints (Table S1). The adults and chicks may belong to one of four species for which the model
has been parameterised: common guillemot (Uria aalge), razorbill (Alca torda), Atlantic puffin
(Fratercula arctica), and black-legged kittiwake (Rissa tridactyla). One simulation of the model
involves selecting one of these species and one breeding population to simulate. Adults in these
species form breeding pairs, which between them have a viable chick(s) at the beginning of the
breeding season. In the case of kittiwakes, which often have two chicks in a brood, the energy
requirements are modelled as such, but we will hereafter refer to chick as singular for consistency.

https://github.com/NERC-CEH/seabORD_pkg
https://nerc-ceh.github.io/seabORD_pkg/index.html
https://github.com/NERC-CEH/seabORD_pkg
https://nerc-ceh.github.io/seabORD_pkg/index.html
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The population being investigated is partitioned into different categories of individuals relating to
susceptibility to ORD interactions, where they can be either unsusceptible, and thus flying around
ORDs does not change their behaviour, or susceptible to both displacement and barrier effects. All
parameters used in simulations can be found in Table S4.
Table S1: Model entities and the state variables they are characterised by
Entity Name of statevariable Unit/option Type Description and associatedsubmodel(s)
adults Species Kittiwake/ puffin/guillemot/ razorbill Static Which seabird species is beingmodelledColony e.g. Isle of May Static Which colony/SPA is being modelledBird ID Integer Static A unique ID for the individualPair ID Integer Static A unique ID for the pair which twoindividuals will shareSex Male/female StaticDisplacementsusceptible Boolean Static If true, the bird will experiencedisplacement effectsBarriersusceptible Boolean Static If true, the bird will experience barriereffectsBody mass, T = 0 Grams Static Body mass of adult at the beginning ofthe time stepBody mass Grams Dynamic Body mass of adult in the current timestepBM_condition proportion Dynamic Relative condition at any point duringthe simulation to initial body massEnergyrequirement total Kilojoules Dynamic Total daily energy requirement for adultbird plus its share of the chickEnergyrequirement adult Kilojoules Dynamic The energy requirement for the adult inthis timestepEnergyrequirement chick Kilojoules Dynamic The energy requirement for the adult’schick in this timestepEnergy caught Kilojoules Dynamic The energetic content of prey caught bythe birdEreq_intakef_a Proportion Dynamic Fraction of the food intake that goes tothe adult birdEnergy gain adult Kilojoules Dynamic Energy gain by the adultEnergy gain chick Kilojoules Dynamic Energy gain by the chickReq_gram Grams Dynamic Quantity of food required in thistimestep (to cover previous step’sactivity)Number of tripsper timestep Integer (1-6) Dynamic The maximum number of potential tripsto choose from is six for all speciesTime flying Hours Dynamic Time spent flying in this time stepTime foraging Hours Dynamic Time spent foraging in this time stepTime at colony Hours Dynamic Time spent at the colony in this timestepTime spentresting at sea Hours Dynamic Time spent resting at sea in this timestepFeeding mode Integer (1-4) Dynamic Dictate’s the adults foraging strategy:1 = Provisioning optimally, 2 = Nest isunattended, 3 = Nest abandoned, 4 =Adult is dead
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Is chick alive? Boolean Dynamic Is this adult’s chick alive in this timestep?Destination Integer Dynamic Grid cell number of the foragingdestinationDisplaced? Boolean Dynamic Did this adult experience displacementin this time step?Barriered? Boolean Dynamic Was this adult barriered in this timestep?Extra Km flown Kilometres Dynamic Extra km flown in this timestep due tobarrier/displacement effectsCause of death none/starved Dynamic The adult’s cause of death
chicks Pair ID Integer Static Indicates which adult Pair ID this chickbelongs toBody mass, T = 0 Grams Static Body mass at the beginning of thesimulationBody mass Grams Chick body mass in this time stepAlive? Boolean Is this chick alive or deadCause of death none/Starved/killed/ unattended/other

If the chick died, what was its cause ofdeath?
Energyrequirement Kilojoules Dynamic Energy required in this time step
Unattended hours H Dynamic How many hours was this chickunattended in the current time step

patches Prey0 g/area Static Prey available at the foraging site
Bird density Proportion Static Probability of foraging in a particulararea each time stepCompetition fromother colonies Individuals per gridcell Static Derived from a map of the modelleddistribution of birds from nearbycolonies

Offshorerenewabledevelopments(ORDs)

Name e.g. “ORD1” Static A unique ID for each of the ORDs in thescenario run

Location, size andshape Static A polygon provided in a shapefile toindicate the extent of the ORD footprintBuffer Km from footprintedge Static The area around an ORD footprint fromwhich birds are assumed to bedisplacedDisplacementzone Km from bufferedge Static When a bird is displaced from inside theORD footprint-plus-buffer, itsalternative foraging area is located inthe displacement zone.

Space is represented as two-dimensional, where cells in the landscape are 1 x 1 km in dimension and
can represent anywhere in the UK. The extent of the grid of foraging locations is dictated by the bird
distribution maps which are an input to the model alongside a distribution map of conspecifics from
surrounding colonies, used to infer competition, and they set the model domain. For example, the
guillemot bird distribution map (Fig S1) has an extent of 201 x 275 km.
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Cells are designated as land or sea, and if they are sea cells, they have a prey value assigned to them
that is determined in the prey calibration process (section 2.1.5), which dictates the amount of prey
an adult encounters if it visits the location. Selection of foraging locations is based on probabilities
from the bird distribution map (Figure S1 A), typically a utilisation distribution specifying the
proportion of time birds from the focal population spend in each habitat grid cell. All adults are
assumed to fly directly over sea (i.e., if straight line path to foraging site is obstructed by land, they
will take the shortest path possible) to and from the colony to foraging patches unless they are
obstructed by an ORD due to barrier effects.

ORD footprints are static objects in the landscape that have a buffer around the footprint, in which
displaced and barriered adults will be excluded from, and a wider displacement zone into which
birds that choose a foraging site in the footprint-plus-buffer will be displaced. These two parameters
may be varied within the model and were set at 2km (buffer), in line with current UK guidance from
NatureScot (NatureScot 2023), and 5km (displacement zone) for the purposes of the cumulative
effects modelling presented here. Adults may enter ORDs if they are not barrier/displacement
susceptible, but if they are they will need to negotiate depending on the wind farm impact they are
experiencing (further described in section 7.5).

Figure S1: Landscape example using the guillemot (A) bird distribution map from the Isle of May and (B) map ofcompetition from conspecifics with colony location indicated by the orange triangle. Darker areas within the birddistribution extent indicate a higher probability of picking these locations as foraging areas each time step for A.
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Time is represented in discrete time steps, during which multiple foraging trips can take place, and
are 24 hours for all species apart from kittiwakes, which have 36-hour long time steps to
accommodate longer foraging trips in this species according to empirical data. The number of time
steps in each simulation varies with species, allowing the model to be representative of their
respective breeding season lengths (kittiwake = 45 days, guillemot = 21 days, razorbill = 21 days,
puffin = 40 days).
3. Process overview and scheduling
The model is developed to represent the chick-rearing season of four different seabird species found
in UK waters with each time step being structured into three main procedures. The scheduling of the
procedures is iterated on each individual in the same order in each sub model. Therefore, there are
no interactions between individuals simulated at sea which could be influenced by the scheduling of
processes, and thus no unintentional advantages are imparted on the adults, nor consequently on
the chicks in the model.
The model can be separated into the set-up process and main model, which has a nested structure
(Figure S2). Within each time step the adults make foraging decisions and then based on the
outcomes of those decisions, a pair’s chick’s condition is updated depending on whether its parents
managed to catch enough prey to feed themselves and their chick, with prioritisation of themselves
occurring when constraints imposed by foraging conditions and/or experienced body condition are
sufficiently bad. Names in bold refer to the submodels within these processes which are elaborated
on in the submodels section.

i) Foraging and adult behaviour – At the beginning of a time step, each adult is stochastically
assigned a location for feeding during each foraging trip from the colony based on bird
density maps. The prey available in this foraging location is used to calculate the time taken
to forage their required amount in this time step (calc_foragecapture) using an intake rate
based on a Type II functional response (Holling, 1959), with an adjustment to account for the
effect of competition from conspecifics on individual instantaneous intake rate. Using this
information in conjunction with knowledge of associated activities such as flying to and from
the foraging site (including barrier effects of flying around the ORD), plus a knowledge of
their own condition and whether or not their chick is alive, each adult then chooses the
optimal foraging strategy for this time step (calc_strategy), which is based upon attempting
to acquire their required energy intake for the day, whilst minimising time spent away from
their chick to avoid unattendance. This determines how many trips the adult will undertake
in this time step and what behavioural strategy the adults exhibit with respect to their chick
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(“feeding mode”, Table S1), such as potentially leaving them unattended or abandoning the
breeding attempt due to constraints.

ii) Consequences for chicks – The amount of food captured by each adult during the time step is
then converted to energy shared between themselves and the chick and summed to
estimate the energy provided to the chick. The resulting increase in chick body mass, based
upon food provided by both its parent, is calculated and compared to a corresponding
optimum body mass for a chick at the given stage of the season (calc_chickcare). If this value
falls below a defined threshold the chick starves and suffers mortality. At this point the
consequences of the adults’ behaviour towards the chick determine whether the chick
remains alive, or if it dies through abandonment, a parent dying, which is followed by
several stochastic processes relating to other potential causes of death: unattendance by the
parents (calc_unattendance), other mortality from causes like storms (calc_othermortality),
or in the case of puffins, mortality from predation via hunger driving them to the entrance of
the burrow (calc_puffinmortality).

iii) Update adults – Each adult’s state variables are then updated with the chick’s status, which
can result in a change in the feeding mode if their chick dies, having consequences for their
foraging strategy in the next time step. Adult body masses are then updated based on the
energy gained and expended foraging and in other activities (calc_adultbmchange). Daily
energy requirement (DER) for the following time step is then calculated (calc_adultdee).

iv) Adult survival – Upon completion of all time steps for each season (baseline/scenario) within
each replicate, adult survival over the subsequent winter period is estimated using the mass
of each adult which survived to the final time step, representing the end of the chick-rearing
season. Survival is estimated using relationships from previously published studies (Erikstad
et al., 2009; Oro & Furness, 2002), by converting the mass of each adult into a probability of
survival via mass-survival relationships (calc_pSurvival). This probability is then passed to a
stochastic process which dictates which individuals survive according to their relative
probabilities.
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Figure S2: Schematic of SeabORD model, divided into two parts with the set up including calibration at the top andthe main model below, with nested structure shown by black boxes with looping indicated in blue text whererelevant. Purple rounded boxes indicate inputs and outputs of the model, yellow boxes indicate initialisation andhousekeeping, with the green boxes corresponding to the main processes elaborated on in Section 2.1.3.
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4. Design concepts
4.1 Basic principles
The model simulates foraging decisions of individual seabirds under the assumption that they are
acting in accordance with optimal foraging theory, minimising time away from offspring whilst
maximising energy gain. The model assumes that the foraging behaviour of individual seabirds is
driven by prey availability, travel costs, provisioning requirements for offspring, and behaviour of
conspecifics with all assumptions and constraints derived from observed behaviour to the fullest
extent possible.
Adult behaviour concerning sublethal interactions with ORDs is split into two widely accepted
potential impacts, barrier and displacement effects. A barrier effect is thought to occur when a bird
is attempting to access a foraging site from the colony where the most direct path is obstructed,
such that avoiding the ORD results in increased travelling distance with potential energetic
consequences (Masden et al., 2009). Barrier effects operate within the model by adjusting baseline
flight paths (when no ORDs are present) using the shortest path directly around the ORD in the
scenario run (Figure S3, example 1). A displacement effect occurs when an individual is excluded
from foraging in a potentially productive area within an ORD footprint. The model represents this by
displacing a bird from its previously chosen foraging location inside an ORD footprint into a new
location in the displacement zone, with new foraging locations chosen proportional to the
probability of bird usage within the displacement zone (Figure S3, example 2).

Figure S3: Examples of potential interactions with offshore renewable devices (ORDs). Foraging trip 1b (blue) represents abarrier-susceptible bird, which has to fly the shortest distance around the ORD to get to its obstructed foraging site on thefar side relative to the colony, where 1a (light blue) shows the track in absence of the ORD and what would be experiencedin baseline simulations. Foraging trip 2b (red) represents a displacement susceptible bird, which would have foraged withinthe ORD footprint, as shown by 2a (light red), but is now foraging in the displacement zone. In all cases birds use the sameflightpath to both reach and return from their chosen foraging location.



11

The three key model outputs are adult mass change over a season, from which we estimate adult
overwinter survival, and productivity. By providing individual and population level estimates for
change in adult mass and productivity, we provide a direct link for observed or estimated foraging
patterns of breeding seabirds in the presence or absence of ORDs, through to metrics important for
assessing demographic effects on populations, the unit of interest in many statutory assessments
and conservation efforts.
4.2 Emergence
The key outputs of the model, adult mass change throughout the breeding season and breeding
productivity, vary in a non-linear fashion with variation in prey availability. The emergence of these
patterns is driven by the behavioural mechanisms of adults in response to the amount of prey they
can obtain and what their current body condition and constraints are. One example of this is how
decreasing availability of prey from the point at which both adult mass change and chicks per nest
outputs are representative of moderate conditions causes chicks per nest to reach zero, at which
point adult mass loss levels off and plateaus for a considerable range (Fig S4). This indicates that
when adult kittiwakes prioritise their own survival over chicks, they can sustain themselves in
relatively poor prey conditions. In our model, general adult survival is much more robust to changes
in conditions than chicks, which require relatively good conditions to experience a productive year,
which is similar to what is observed in reality given that many seabird species are long-lived and thus
parents prioritise their own survival over that of their chicks.
Another of the model’s emergent properties regards the effects of ORD interactions on adult mass
loss and chick survival. Barrier effects, which cause the adults to fly further longer distances around
the footprint that they would in the baseline, seem to have a larger impact on model outputs than
displacement effects. When an adult is displaced, it picks another foraging site within the 5 km
buffer around the ORD footprint it has been displaced from, and since this alternative site is chosen
through the bird distribution map which shows a general trend of decreasing with distance from the
colony (Fig S1A), it will more often than not be closer to the colony that the site it was displaced
from. The consequence of this is shorter flying time to reach the foraging site, which results in less
energy expenditure for that trip. This may be offset by increased competition with conspecifics
within the buffer zone where this individual and others are displaced into, resulting in a higher
density of birds than seen in the landscape beyond ORDs and their buffers. As yet, there is a lack of
empirical evidence to corroborate this emergent pattern although there is some evidence of
aggregations of seabirds around the outside of ORD footprints which aligns with our model
(Johnston et al., 2022; Pollock et al., 2024; Vanermen et al., 2020).
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Figure S4: Schematic plot of kittiwake adult mass loss (A) and chicks per nest (B) withdrawn from 300 baseline simulations
(no ORD footprints) ranging from a prey value of 50 up to 250, to display a range of model dynamics. The red lines are for
smoothed model outputs, which are overlaid on grey points indicating the individual estimates. For calibration we have
upper and lower bound for each output (A & B) which are picked to reflect “moderate” conditions, i.e., what is observed in a
typical year for kittiwakes at the Isle of May, and these are indicates by the dashed grey horizontal lines. The grey shaded
blocks indicate where the respective outputs fall within these bounds, and the light blue shaded block indicates the prey
values where there is overlap between the estimates, which is the prey range used in subsequent simulations with ORDs
included. We also highlight some patterns which emerge in the outputs driven by model processes of adult behaviour and
how it relates to chick survival.
4.3 Adaptation
Adults decide how many trips are optimal in a given time step, based on how far away the foraging
destination is from the colony, what condition they are in, provisioning requirements for the
offspring, and behaviour of conspecifics. Adults also adapt their behaviour towards their chick
depending on their own condition and depending on whether they are still rearing a chick or have
abandoned the attempt. Adults also attempt to compensate for higher energy output in previous
days by acquiring more energy on subsequent days. It is important to note that adults are not
adaptive in trying to compensate for their partner’s behaviour e.g., by feeding the chick more or
making up any attendance deficit.
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Foraging decisions are modelled implicitly as individuals have a higher probability of selecting
foraging sites from areas which have a higher density on the normalised bird distribution map (which
is preferably derived from GPS data). This means that there is no adaptation in movement and space
use for choosing profitable foraging sites based on prior experience in the model, and as such no
foraging site fidelity between time steps.
4.4 Objectives
The objective of adult birds is to optimise their foraging strategy to maximise energy gain while
minimising time away from the nest depending on the condition of the adult. If conditions become
suboptimal it is possible for adults to adopt a strategy which favours their own survival over that of
the chick.
4.5 Learning
There are no adaptive behaviours of agents that are modelled in a way which includes learning.
4.6 Prediction
There is no estimation of the future consequences of decisions, beyond that of the current time step
which has already been described.
4.7 Sensing
Adults can sense their own body condition, which is their mass at the current timestep, t, relative to
their mass at the beginning of the simulation (mass, t0). They can also sense what their energy
requirement is for the current time step, the condition of their chick, and whether their chick will be
left unattended due to their own actions.
Adults can sense the relative prey availability of the patch they are foraging on in the current time
step (t). They are aware of the coastline and the location of their breeding colony, as well as the
location of ORDs, and choose the shortest path available to avoid obstructions on the way to and
from their foraging site. This extends to birds which are susceptible to ORD interactions. When the
path to their foraging site is obstructed by an ORD birds may choose the shortest path around it to
their intended foraging site (Figure S3), constituting a barrier event. If they were planning on
foraging within a wind farm footprint and choose a location within the surrounding displacement
zone, this is a displacement event.
4.8 Interaction
Competition does not arise from direct interaction, but indirectly through the sum of all other
individuals using the same grid cell during the same time step which influences the intake rate.
Included in this calculation are other individuals from the colony of interest, and conspecifics from
other colonies.
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4.9 Stochasticity
The key stochastic processes are listed in Table S2. Stochasticity is used to (i) capture variability in
the characteristics in individuals, such as initial body mass, to (ii) represent the stochastic processes
occurring during foraging, such as choosing foraging area, and to infer competition, and finally (iii) in
processes to decide the fate of adults at the end of the breeding season and chicks in different
context-dependent situations.
Table S2: List of key stochastic processes and a brief description with and the associated procedure (section 3)
Stochastic process Description AssociatedprocedureInter-individualvariability in theinitial values ofbody mass in adultsand chicks

Adult/chick body mass (g) withdrawn fromrespective normal distributionscharacterised by initial body mass mean andstandard deviation withdrawn fromempirical data.

Initialisation

Initial Daily EnergyExpenditure (DEE) On first time step adult DEE drawn from anormal distribution parameterised using themean and standard deviation of adult DEEfrom empirical data.Susceptibility towind farm impacts In the model set up, adults are randomlyassigned displacement susceptibility(Boolean) based on the displacement rateinput, and then the subset of displacementsusceptible birds are randomly assigned asbarrier susceptible or not based on theequivalent barrier input.Choice of foraginglocation Adults choose a random foraging location inproportion to the expected intensity ofusage in bird maps.
Foraging and adultbehaviour

Foraging locationfollowingdisplacement
If an adult’s chosen foraging location iswithin a wind farm footprint and the bird isdisplacement susceptible it will chooseanother foraging location based on expectedintensity of usage in the subset of cells whichare within the displacement zonesurrounding the given wind farm.Simulating otherbirds forcompetition
A stochastic process is used to simulate thenumber of birds in each grid cell per timestep, which is used to infer competition inthe foraging effort. This is conductedseparately for baseline and scenario runs,where in the scenario the displacement rateused to assign displacement susceptibility ofeach adult in initialisation is also used in astochastic process to simulate the number ofbirds being displaced into the displacementzone of each wind farm.Chick death There are several potential ways for a chick Consequences for
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to die which all have a stochastic element,including through: (i) unattendance, whereprobability of death increases with timeunattended; (ii) “other” mortality from othercauses such as flooding or storms, whichoccurs randomly with a fixed probability andis not dependent on other variables, and (iii)puffin chick mortality from predation due tohunger, which is dependent on chickcondition dropping below a threshold inwhich a chick might take the risk ofventuring to the burrow entrance.

chicks

Adult survival Probability of survival, which is calculated byconverting each adult’s mass at the end ofthe breeding season and using publishedmass-survival rates, is used to decide,through simulation from a Bernoullidistribution, whether each adult survives theupcoming winter period or not.

Adult survival

4.10 Collectives
For competition calculations the aggregated number of individual conspecifics in the current cell is
calculated from the number of individuals from the simulated colony currently at this location and
an estimate of conspecific competition from the supplied competition map (Figure S1B). Aside from
this there are no other aggregations of individuals or direct interaction between adults at sea or at
the colony.
4.11 Observation
The key outputs of the model are population-level estimates of breeding success and adult survival,
the latter being inferred from estimates of adult mass at the end of the breeding season and
published adult mass-over winter survival relationships for the respective species. To determine ORD
effects, baseline scenarios are compared with scenarios containing one or more ORDs. More
detailed outputs are available, such as records of each individual’s state variables at the end of each
timestep, thus permitting further inspection of changes in state and characteristics of a particular
pair of adults and their chick throughout a simulation (Figure S5).
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Figure S5: An individual-level plot tracking a pair of kittiwake adults and their chick through one full season in matchedbaseline and scenario simulations plotted using the individual outputs from a SeabORD simulation run. All plots run fromtime step 1 to 30, which is the duration of a kittiwake simulation. The top row tracks adult condition with red linesindicating the female, and blue for the male, where the dashed line represents baseline (no ORDs) adults, and the solid linefor scenario (including ORDs). Vertical dashed lines throughout plots indicate male interactions with an ORD (female notsusceptible), with green representing barrier effects and purple showing displacement. The second row from the top is thepercentage of daily energy requirement (DER) not achieved on that particular day, where red and blue bars representfemale and male respectively, and the hashed bars indicate the scenario runs, with no hash indicating the baselineindividual. The third row from the top tracks the chick condition, where the solid points and line represent the scenariochick, and the dashed line and hollow points represent the baseline. The bottom row indicates the number of hours aparticular chick was unattended during that day where black bars indicate the scenario chick being unattended and whitefor the baseline chick. The numbered stars indicate key events that we wish to highlight: Males from both seasons (baselineand scenario) have not achieved ~30% of their DER on time step 4 (1a), resulting in a drop in their condition (1b). On timestep 11, 12 and 13 the males of both seasons are increasing in % of DER not achieved (2a), with the scenario male havingslightly exaggerated impacts from experiencing barrier effect, which results in the scenario and baseline males’ conditionsdiverging (2b). As their condition continues to drop, at time step 19 the scenario male falls below the threshold whichresults in this individual being more likely to prioritise their own upkeep (3) which means the possibility for unattendance oftheir chick. At time step 29 the scenario male remains below this threshold, while the baseline bird remains above it (4a),which results in the scenario chick being unattended for ~8 hours (4b), which results in its death (4c), while the baselinechick survives to the end of the simulation.
ORD related individual metrics
The effects of ORDs are summarized by calculating the relative difference in mortality with and
without an ORD, via
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(Number of birds simulated to die when the ORD is present −
Number of birds simulated to die when the ORD is absent)

Population size

This relative difference is calculated for the entire population (we term this metric P1). A range of
metrics (I1-I6) are also derived by calculating this relative difference for subsets of the population
determined by the frequency with which individuals interact with the ORD and the nature of these
interactions (barrier or displacement effects):

i. birds that never interact with the ORD at any point during the breeding season, via
either displacement or barrier effects (I1);

ii. birds that ever (at least once) interact with the ORD at any point during the breeding
season, via either displacement or barrier effects (I2);

iii. birds that are displaced by the ORD at least once during the breeding season, but are
never barrier affected (I3);

iv. birds that are barrier affected by the ORD at least once during the breeding season, but
are never displaced (I4);

v. birds that are displaced and barrier affected by the ORD at least once during the
breeding season (I5);

vi. birds that are displaced on exactly 𝑑 time steps, and barrier affected on exactly 𝑏 time
steps (I6).

Quantifying uncertainty
Outputs are generated for each of 𝑅 model runs. For each metric we calculate the mean 𝑚 across
runs to provide our “best estimate” for this quantity. We quantify uncertainty by calculating the
standard deviation across runs, 𝑠, and the 95% prediction interval 𝑚 ± 𝑇𝑅−1𝑠 1 + 1 𝑅 (where 𝑇𝑅−1

represents the 2.5% quantile of a t-distribution with 𝑅 − 1 degrees of freedom). The prediction
interval, which is derived under an assumption of normality, represents the uncertainty associated
with using outputs from the 𝑅 simulated populations to predict the output that we would have
obtained for the true but unobserved “real” population.
The standard errors and prediction interval represent the uncertainties that arise from both inherent
stochastic variability between populations and the uncertainty associated with determining the
overall level of prey. It is crucial to note that the standard errors and prediction intervals do not
account for any other sources of uncertainty: e.g., for the uncertainty associated with estimating
model parameters, for the uncertainty associated with the underlying structure of the model, or the
uncertainty associated with the spatial distribution of birds. Since a number of these other sources
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of uncertainty – particularly the uncertainty in the adult mass-survival relationship – are likely to be
large, the prediction intervals that we present should be treated with caution and regarded as lower
bounds on the actual level of uncertainty.
5. Initialisation
5.1 Inputs
SeabORD is applicable to multiple sites/species/ORD set ups. The user must define the form of
simulation being conducted through a range of inputs which are listed in Table S3. A key component
of the seabORD model is the need to calibrate the prey level inputs used for each new species and
colony combination. This currently involves running the model without ORDs (baseline simulations)
with a range of prey levels to ascertain the range of values that returns adult mass and chick
mortality rates that are consistent with pre-defined values representing “moderate” conditions
based on empirical data (Figure S4). This is to allow simulation of the range of outcomes expected
under these conditions, as the model is highly sensitive to the prey density parameter.
We do this as empirical data on absolute quantities of available prey at relevant spatial and temporal
scales are rarely available, so the intake rate function has been parameterised to unitless prey to
produce time-activity budgets that match with those observed in empirical data. This means that the
prey value used in calibration (determining prey values in all cells) has to be adjusted for each new
bird density map to ensure that the outputs from the model are consistent with empirical data.
Table S3: List of key user inputs for determining the type of SeabORD run
Associatedentity/process Input Options
General setup Model mode “calibration” (baseline runs over a wide range of preydensities to determine prey range used in scenario runs,Section 5.2) or “scenario” (runs with ORDs included onceprey level has been calibrated)Modelenvironment Options for running the model replicates in “serial” (i.e.,for capabilities of running on a local computer) or“parallel” (for the capabilities of high-performancecomputing clusters to reduce runtime and increasereplicate capacity)Number ofreplicates The number of replicates to run for this simulation

Initial seed Set the value of a seed to ensure reproducibilityBird population Species Kittiwake/Guillemot/Puffin/Razorbill – this will dictatewhat species parameters are used (Table S4)Colony/SPA Choose the Special Protected Area (SPA) you wish tomodel. It’s possible to override this and model just onecolony which you specify yourself but may requireadditional inputs (e.g., colony coordinates, distance by
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sea to colony map).Number of pairs Specify the population size you wish to simulateScale factor Here you can specify if you want to run only a proportionof individuals in the population which reduces runtime.
Landscape Prey The prey value which is withdrawn according to thereplicate number from the range determined in thecalibration stage.Bird distributionmap Map specifying the density of birds which determinesforaging locationsCompetition map Map specifying the density of birds from surroundingcolonies of conspecifics, used to infer competitionORD ORDs to include List of ORD names corresponding to shapefiles for windfarms footprints around the UK, otherwise the user canprovide their own polygons.ORD buffer size Specify the extent of the buffer around the wind farmwhich birds will avoid if barriered or be displaced from inthe simulation. Typically set to 2 km.ORD displacementzone size Specify how far the beyond the buffer you want thedisplacement zone to extend, where will be displaced into for respective wind farms.Displacement rate Determines the proportion of birds of the populationthat will be susceptible to displacement effects for theduration of the simulation.Barrier rate Determines the proportion of barrier susceptible birdsfrom the subset of birds already defined as displacementsusceptible.
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Table S4: Parameters and their sources
Parameter kittiwake guillemot razorbill puffinName Description (units) value source value source value source value sourceBM_adult_mn Initial adult body mass mean (g) 372.69 UKCEH unpubl.data 920.34 UKCEH unpubl.data 582.9 UKCEH unpubl.data 392.8 UKCEH unpubl.dataBM_adult_sd Initial adult body mass standarddeviation (g) 33.62 UKCEH unpubl.data 57.44 UKCEH unpubl.data 26 UKCEH unpubl.data 21.95 UKCEH unpubl.dataBM_adult_mortf Critical mass below which adult isassumed dead (proportion of meanmass)

0.6 Derived fromGolovkin 1963 0.6 Derived fromGolovkin 1963 0.6 Derived fromGolovkin 1963 0.6 Derived fromGolovkin 1963
BM_adult_abdn Critical mass below which adultabandons chick (proportion of meanmass)

0.8 Expertjudgement 0.8 Expertjudgement 0.8 Expertjudgement 0.8 Expertjudgement
BM_adult_hlthy Critical mass below which adultfavours itself over its chick whenforaging (proportion of mean mass)

0.9 Expertjudgement 0.9 Expertjudgement 0.9 Expertjudgement 0.9 Expertjudgement
BM_chick_mn Initial chick body mass mean (g) 36 UKCEH unpubl.data 75.8 UKCEH unpubl.data 64.9 UKCEH unpubl.data 42.2 UKCEH unpubl.dataBM_chick_sd Initial chick body mass standarddeviation (g) 2.2 UKCEH unpubl.data 1 UKCEH unpubl.data 6.3 UKCEH unpubl.data 3.7 UKCEH unpubl.dataBM_chick_mortf Critical mass below which chick isdead (proportion of initial mass) 0.6 Derived fromGolovkin 1963 0.6 Derived fromGolovkin 1963 0.6 Derived fromGolovkin 1963 0.6 Derived fromGolovkin 1963daylength Number of hours per time step(hours) 36 - 24 - 24 - 24 -
seasonlength Number of time steps per season 30(45 days) UKCEH unpubl.data 21(21 days) UKCEH unpubl.data 21(21days)

UKCEH unpubl.data 40(40days)
UKCEH unpubl.data

unattend_max_hrs Critical time threshold forunattendance at nest above which achick is assumed to die throughexposure or predation (hours)

18 Expertjudgement 18 Expertjudgement 18 Expertjudgement NA -

adult_DEE_mn Adult daily energy expenditure mean(kJ) 802 Daunt et al.2008 and refstherein
1489.1 Daunt et al.2008 and refstherein

1231.89 Daunt et al.2008 and refstherein
871.5 Daunt et al.2008 and refsthereinadult_DEE_sd Adult daily energy expenditurestandard deviation (kJ) 196 Daunt et al.2008 and refstherein

169.9 Daunt et al.2008 and refstherein
95.3 Daunt et al.2008 and refstherein

80 Daunt et al.2008 and refsthereinchick_DER Chick energy requirement (kJ perday) 525.7 Enstipp et al.2006 221.7 Thaxter et al.2013 195.67 Thaxter et al.2013 325 Harris &Wanless 2011
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IR_max Maximum prey intake (g per minute) 4.369 UKCEH unpubl.data 2.95 UKCEH unpubl.data 3.066 UKCEH unpubl.data 3.293 UKCEH unpubl.dataIIR_half_a Prey density intake rate is half itsmax/the rate of intake rate decreasewith prey depletion (g)
900 Calibrated infunctionalresponse

700 Calibrated infunctionalresponse
600 Calibrated infunctionalresponse

1000 Calibrated infunctionalresponseIR_half_b The effect of conspecific density onintake rate of individuals throughassumed interference competition
0.02 Expertjudgement inconjunction withHassell & Varley1969

0.02 Expertjudgement inconjunctionwith Hassell &Varley 1969

0.02 Expertjudgement inconjunctionwith Hassell &Varley 1969

0.02 Expertjudgement inconjunctionwith Hassell &Varley 1969flight_msec Average speed in flight (m/sec) 13.1 Pennycuick 1997 19.1 Pennycuick1997 16 Pennycuick1997 17.6 Pennycuick1997assim_eff Assimilation efficiency 0.74 Hilton et al.2000a 0.78 Hilton et al.2000a 0.79 Hilton et al.2000a 0.78 Hilton et al.2000aenergy_prey Energy gained from prey (kJ pergram) 6.52 Leedham et al.2025 and refstherein
9.26 Leedham et al.2025 and refstherein

6.1 Harris et al.2008 6.1 Harris et al.2008
energy_nest Energy cost of nesting at colony (kJper day) 427.8 Leedham et al.2025 and refstherein

780 Leedham et al.2025 and refstherein
932.17 Hilton et al.2000b 665.41 Hilton et al.2000b

energy_flight Energy cost of flight (kJ per day) 1400.7 Leedham et al.2025 and refstherein
7266.2 Leedham et al.2025 and refstherein

3581.34 Pennycuick1989 3113.9 Pennycuick1989
energy_searest Energy cost of resting at sea (kJ perday) 400.6 Leedham et al.2025 and refstherein

540.7 Enstipp et al.2006 646.15 Enstipp et al.2006 461.24 Enstipp et al.2006
energy_forage Energy cost of foraging (kJ per day) 1400.7 Leedham et al.2025 and refstherein

1894.9 Enstipp et al.2006 1421.45 Birt-Friesen etal. 1989 974.97 Birt-Friesen etal. 1989
energy_warming Energy cost of warming food (kJ perday) 26 Leedham et al.2025 and refstherein

49.3 Leedham et al.2025 and refstherein
47.317 Gremillet et al.2003 35.84 Gremillet et al.2003

chick_mass_a Maximum chick mass gain per day (g) 11 UKCEH unpubl.data 9 UKCEH unpubl.data 7 UKCEH unpubl.data 6 Harris &Wanless 2011adult_mass_kg Energy density of the bird’s tissue (kJg-1) 38.5 Gabrielsen 1996 38.5 Gabrielsen 1996 38 Gabrielsen 1996 38 Gabrielsen 1996
beta Parameter for translation of adultmass change into year round survival 0.038 Oro & Furness2002 1.03 Erikstad et al.2009 1.03 Erikstad et al.2009 1.03 Erikstad et al.2009
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Once inputs have been decided, the way the model agents and landscapes are initialised is largely
similar for calibration (baseline only) and scenario (ORDs included). Data structures which contain all
individuals are created, summing to the specified number of pairs (inputs, Table S3), including the
stochastic process of setting initial body mass of adults and chicks (Table S2), with parameters
sourced for chosen species (Table S4). The landscape, coastline and how the bird and competition
maps are included are the same for calibration and scenario runs. They diverge in how they treat
ORDs, where there is no inclusion of ORDs in the calibration runs and there is only a baseline set of
runs, while the scenario runs will have the same baseline runs and a set of matched runs with the
specified ORD footprints included. This provides a counterfactual to allow assessment of the wind
farm impacts.
5.2 Scenarios
SeabORD is run such that each model scenario contains a set of matched pairs of simulations for the
baseline (no ORDs present) and an impacted run (ORDs present), with the metrics of ORD impact
calculated for each matched pair of baseline and impacted model simulations (which we refer to as a
“replicate”). Each pair of baseline and impacted simulations is “matched” in the sense that the
outcomes of stochastic events within the model that are unrelated to wind farm impacts (e.g., in
particular, initial body mass of each individual, and the foraging locations selected at each timestep)
are assumed to be exactly identical within the baseline and impacted simulations. Matching is used
in order to isolate, and thereby provide more precise estimates of, the ORD impacts, by ensuring
that unnecessary stochastic differences between the impacted and baseline run do not arise.
Replicates (matched pairs of impacted and baseline simulations) have identical model parameters
and other inputs to each other, with exception that (a) each replicate uses a distinct random seed
(so will have different outputs as a result of stochasticity) and (b) each replicate uses a different prey
value (selected uniformly from within the range determined by model calibration).
5.3 Prey calibration process
Calibration entails conducting a series of baseline runs (i.e., no ORD footprint) across a range of prey
values attempting to encompass a wide range of conditions in the model, from poor to good. These
conditions are assessed by plotting mean adult percentage mass loss and nest survival outputs
obtained at the end of each run against the range of prey values which we have simulated and
identifying the range of prey values which correspond with the range of values for both outputs we
consider “moderate”, or representative of a standard year, for the species/population being
modelled (Table S5). In the case where there is no overlap between the set of prey values that yield
plausible values for mass loss and nest survival, it is not possible for the model to be calibrated, and
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you should not continue. In this case, we advise that you go back and reassess the plausibility of
input parameter values.
For example, in Figure S4 we show outputs from 300 baseline simulations ranging over prey values
of 50 up to 250 in a population of kittiwakes. In Figure S4A we can see that there is a wide range of
prey values (103 – 172) within the range of mass loss (9 – 11%, Table S4) indicating moderate
conditions. However, for nest survival (Fig S4B) we can see the range of prey values (170 – 173)
corresponding with moderate conditions in nest survival (45 – 55%, Table S4) is much narrower
owing to the steeper slope. In this case we select only the shared prey values across the two
outputs, 170 – 172, indicated by the blue area in Figure S4, which is the prey range used for any
subsequent scenario runs conducted.
We note that it is important to do a sufficiently high resolution of prey ranges to allow for
characterisation of the nonlinear relationships often present which thus permits precision in finding
the (potentially small) overlapping shared prey values for both outputs. It is possible that this will
require a staged approach, where a very wide range of prey values with lower resolution is assessed
to find the general range indicating moderate conditions, before targeting a narrower range with a
higher resolution to pinpoint the best values for the given conditions.
Table S5: Example of output ranges indicating moderate conditions for each species. Please note that you will need to
source your own site- and species-specific ranges for moderate conditions if conducting your own simulations.
Species Adult mass loss and range (%) Nest survival (%)
Kittiwake 10 (9 – 11) 50 (45 – 55)
Guillemot 6 (5 – 7) 72.5 (65.3 – 79.8)
Razorbill 6 (5 – 7) 75 (67.5 – 82.5)
Puffin 6 (5 – 7) 75 (67.5 – 82.5)

5.4 Bird and competition maps
Other key inputs are the bird distribution and competition maps. The maps used will depend on the
amount of GPS data available for the species, colony and surrounding colonies of conspecifics in
question. Here, we consider a suite of methods classed within two standard alternatives:

1. If reasonable amounts of GPS data are available for this species at the focal and surrounding
colonies then those data can be modelled (e.g., using a GAM, similar to the methods used in
Searle et al. (2014);

2. If GPS data are unavailable or very limited for a species, then the foraging distribution can be
specified more simply by assuming a simple relationship between the distance from the
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focal colony and the foraging density (e.g., that the density decays exponentially as distance
increases).

We expand on this further in the dedicated section “Bird distribution and competition maps” in
Supplementary Information 2.
5.5 Selecting the number and size of the simulations
The size of each simulated population and the number of simulated populations are features of the
model simulations, and as such can be specified by the user. Ideally, we recommend using simulated
populations which are specified to have the same size as the actual population and for replicates of
this population simulation to be carried out. In practice, it will often only be computationally feasible
to run the model for simulated populations that are smaller than the population of interest,
especially when running on a machine locally. SeabORD does, in this situation, adjust the levels of
competition to account for the fact that only a subset of individuals have been simulated. However,
this approach will increase the width of the prediction intervals and reduce the reliability of
estimates of the mean and standard deviations calculated from aggregated outputs.
It is possible to run SeabORD in parallel, using a high-performance computer system such as JASMIN,
which is available to environmental researchers in the UK. The model lends itself well to this
environment, as each replicate containing a population can be sent of independently to run in
parallel, as long as the initial seed and prey value for that replicate are supplied in the initiation. We
provide an example of a parallelised script on the GitHub hosted website (https://nerc-
ceh.github.io/seabORD_pkg/index.html).
6. Input data
There is no input to represent processes that change over time throughout the duration of the
model.
7. Submodels
Submodels perform the behaviour of adults on each foraging trip and consequent decisions relating
to daily energy requirement (DER), the mass-energy consequences for chicks and adults, and survival
projections as listed in section 3. Here we elaborate further on these submodels, while initialisation
and housekeeping submodels which are listed in Table S6 are covered adequately in the description
column.
Table S6: List of the different functions used in SeabORD and which model process they are used in.
Process Function Description
Initialisation set_seedvalues Sets the seeds needed for reproducibility.

set_medianprey Set the median prey value across the region – if not using

https://nerc-ceh.github.io/seabORD_pkg/index.html
https://nerc-ceh.github.io/seabORD_pkg/index.html
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uniform prey levels the median value is used to scale the
prey availability.

set_initialbirdtype Create a table object (tibble) which holds one row per
individual seabird describing characteristics that remain
constant like species, sex and colony.

set_initialbirdstate Set initial values for adult birds in the simulation such as
body mass at t=0 and initial daily energy expenditure (DEE)
used to calculate DER on the first time step of the
simulation.

set_initialchickstate Set initial values for individual chicks including body mass at
t=0.

make_fltdist_scen Knowing the choice of colonies and ORDs, we can generate
the obstructed distance by sea to all sea cells.

select_destinations Used to create a list of default foraging locations for each
adult (FlightListA), based on the bird distribution map, and a
list of alternative locations if a bird is displaced in the
displacement zone, given the ORD footprints (FlightListB).

sim_nbirds_wwf_
pertimestep

Simulate the number of birds in each grid cell at each time
step in the baseline and with one or more ORDs present,
under a specific displacement rate for use in the calculation
of how competition affects intake rate.

Foraging and
adult behaviour

calc_foragecapture Estimate how long it would take for a given adult to acquire
the food it needs given the starting prey density and
competition for food.

calc_strategy Given the information about one flight and the time
available, determine the foraging strategy and update the
feeding mode (1-4) chosen by an individual bird.

Consequences
for chicks

calc_chickcare Tally the food received by the chick from both parents and
update the chicks body mass.

calc_unattendance Chick mortality as a function of the duration of time they
have been unattended by their parent(s).

calc_othermortality Chick mortality from other causes such as flooding or storms.
calc_puffinmortality Calculates puffin chick mortality from predation from

emerging from the burrow due to hunger.
Update adults calc_adultbmchange Update adult body mass at the end of each day based on the

energy they gain and expend foraging and in other activities.
calc_adultdee Calculate adults’ daily energy expenditure based on the

activities carried out.
Adult survival calc_pSurvival Calculate year-round survival based on the body mass of the

individual relative to the population mean, species expected
survival and parameters.
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Figure S6: Schematic of the code structure within a time step (seabord_daystep). Blue boxes are main actions, green boxesare explanatory notes of these actions, orange parallelograms are data inputs with their name in the code, and pink ovalsrepresent functions called from within a time step.
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7.1 Foraging and adult behaviour submodels
Intake rate and conspecific competition
In the submodel calc_foragecapture an individual must calculate the time taken to forage their
required amount in this time step, given the prey density and competition for food. This intake rate
is achieved with a Michaelis-Menten equation for a Type II functional response (Holling, 1959),
which describes the relationship between the density of prey and instantaneous intake rate for an
individual. Despite some studies suggesting that piscivorous marine predators exhibit a Type III
response (Enstipp et al., 2007; Middlemas et al., 2006), wherein the response of predators to prey is
depressed at low prey density, we have adopted the more widely used Type II response here to
minimise the number of unknown parameters being incorporated. The Type II form, which has a
stronger theoretical underpinning, assumes that intake rate increases asymptotically with the
density of prey:

Intake rate at time 𝑡 = 𝐼𝑅_𝑀𝐴𝑋 ∗ Prey at time 𝑡 / (𝐼𝑅_𝐻𝐴𝐿𝐹 + Prey at time 𝑡)

Where IR_MAX is a parameter denoting the maximum possible intake rate, which we estimated from
empirical data (see following section), and IR_HALF is a parameter noting the prey level that is
associated with the intake rate reaching half of the maximum possible value. The value of IR_HALF
was determined as part of the model calibration process and is specific to each species.
We use this relationship to simulate the decline in intake rate over time spent foraging at a location
due to prey depletion, and to determine the amount of time an individual requires at a location to
attain a certain cumulative intake of prey. This form of the functional response implies that the prey
quantity remaining at the foraging location at time t is equal to:

𝑥 𝑡 = 𝑥: 𝑥 − 𝑥0 + 𝐼𝑅𝑀𝐴𝑋 + 𝐼𝑅𝐻𝐴𝐿𝐹 log 𝑥 − 𝐼𝑅𝐻𝐴𝐿𝐹 log 𝑥0 = 0  # 1

where xodenotes the prey quantity at time 0.
This in turn implies that the total prey consumed by foraging up to time t is equal to:

𝑦 𝑡,𝑥0 = 𝑥0 − 𝑥 𝑡,𝑥0  # 2

and this formula is used to calculate the total daily prey intake for a bird given a) the number of
foraging trips that a bird undertakes, and b) the length of each trip. Note that “time” is assumed to
return to zero at the start of each new foraging trip – we assume prey depletion at a location within
a foraging bout or trip, but when the bird returns to a location for a subsequent foraging bout the
amount of prey in that location is reset to the original level. The solution to Equation 2 cannot be
written down analytically, but it can be calculated numerically using a non-linear solver. Using
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numerical methods, we pre-calculate the total prey consumed for a grid of times t and initial prey
quantities x0 at a foraging location.
For example, when x0= 300, IR_MAX = 900, IR_HALF = 4.369, andMAXT = 2160, whereMAXT is the
maximum number of minutes available in one kittiwake time step (equivalent to 36 hours), providing
the grid of times to pass to the nonlinear solver from the ‘nleqslv’ package (Hasselman, 2023). Which
would return a look up table which has been plotted below (Figure S7).

Derivation of intake rate parameters
Empirical data on the relationship between prey availability and intake rate is not available for these
species of seabirds. Therefore, we parameterised the functional response using data from time-
activity budgets of individuals from each species for the average number of foraging trips per day
and the average amount of time spent foraging (Table S7). We implemented the widely used
Michaelis-Menton form of the Type II functional response formula to simulate intake rates over a
range of values for the model parameter, IR_HALF_a, with parameter IR_MAX derived from
empirical data) across hypothetical variation in prey levels. The value of IR_HALF_a was then set so
as to match the desired number of trips and time spent foraging to reach the individual’s DER based
on the summaries of empirical data (Table S7: ‘parameters set to achieve:’), with the minimum and
maximum time spent foraging constrained to be within those observed from empirical data (Table
S7). No interference competition was assumed when calibrating the functional response.
The value for parameter IR_HALF_b (which controls the effect of conspecifics at the same foraging
location on intake rate) was set to 0.02 for all species based on expert judgement.

Figure S7: Plot of look up table output from calc_foragecapture
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Table S7: Empirical data from time-activity budgets used to parameterise the functional response curve for each species,relating the intake rate of individuals to prey availability at the chosen foraging location.
Black-leggedkittiwake Commonguillemot Razorbill Atlantic puffin

Mean number oftrips per 24 hours 1.9 2.0 2.35 3.3

Foraging hoursper day (24 hours) 3.2 5.6 5.1 6.5

Flying hours perday (24 hours) 4.9 0.8 1.9 2.4

Parameters set toachieve:
3 foraging trips over
model time step (36
hours) lasting in total
4.8 hours

2 foraging trips
over model time
step (24 hours)
lasting in total 5.0
hours

2 foraging trips
over model time
step (24 hours)
lasting in total 5.0
hours

3 foraging trips
over model time
step (24 hours)
lasting in total 6.0
hours

Effect of competition on intake rate
We assume that intra-specific competition between individuals foraging at the same location acts to
reduce the intake rate. More specifically, the intra-specific competition effect is assumed to be a
power-law model of the form:

Intraspecific competition effect

=  Total number of birds within the grid cell, summed across all colonies 𝑚

in which the unknown parameterm controls the magnitude of the intra-specific competition effect.
The value of this parameter must, in terms of the biology, lie between zero and one. A value of zero
corresponds to the special case in which there is no competition (i.e., the intake rate for each bird is
unaffected by the number of other birds present), while a value of one corresponds to the special
case in which competition is linearly related to the number of birds present.
Within the model we apply the intra-specific competition function to the IR_half parameter in the
functional response (which controls the shape of the curve relating intake rate to prey density). We
assume that:

IR_half with competition = IR_half without competition ∗ Intraspecific competition effect

The approach to simulation the total number of birds within the grid cell, summed across all
colonies, is detailed in Appendix 2, Section 2.
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Calculation of levels of competition
The level of competition that is used in calculating the intake rate for a particular individual at a
particular timestep is based on summing all of the other individuals (of the species of interest) that
are using the same grid cell as the individual being simulated within the same time step. The “other
individuals” involved in this calculation arise from two different sources: (a) other individuals from
the colony of interest, and (b) individuals from other colonies.
The location of other individuals from the colony of interest is already being simulated as part of the
SeabORD run, so we can simply sum up the number of such individuals using the grid cell at this time
step. Note, however, that if only a proportion of the population is being simulated in SeabORD, for
computational reasons, this will be divided by proportion in order to scale the number of individuals
up to the entire population.
To calculate the level of competition arising from other colonies we assume that each population of
interest has a “competition map” (e.g. Fig S1 B), in addition to the “bird distribution map” (e.g. Fig S1
A) that was already associated with each population. This competition map specifies the total
(combined) expected number of birds in each grid cell that arise from all colonies other than the
colony of interest – it does not separate which colony these birds arose from, just that they were
from colonies other than the colony of interest.
The competition map is constructed in the same way as the bird distribution map: so if the user
provides a bird map derived from GPS tracking data then they also need to provide a competition
map, and if the bird map is derived using distance-decay maps then the competition map is
constructed using distance-decay maps (with the same foraging range and decay parameter).
Within the baseline (i.e. without windfarms) the number of competing individuals in each grid cell at
each time point, from all colonies other than the colony of interest, is simulated from the
competition map by simulating independently from a multinomial distribution at each time point.
The sample size for the multinomial distribution is the sum of the competition map (i.e. the total
abundance from colonies other than the colony of interest) and the multinomial probabilities are
given by the normalized competition map (rescaled to sum to one across grid cells). The
corresponding simulated number of competing individuals once windfarms are present is then
calculated by adjusting the number of competing individuals in the baseline by the number of birds
that are net number of birds that displaced into the grid cell by the windfarm. The net number of
displaced birds is simulated via applying a binomial distribution (to determine the probability of
being displaced away from each grid cell) followed by a multinomial distribution (to determine the
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probabilities associated with the destination of a displaced birds). Full mathematical details are given
in Supplementary Information 2.
calc_strategy
The look up table produced from calc_foragecapture is used in conjunction with a key adult state
variable, bm_condition, which is an index indicating the condition of the adult and is derived from of
the mass of the bird in the current time step t, relative to its starting mass at t = 0. Using this
information in conjunction with knowledge of associated activities such as flying to and from the
foraging site (barrier effects of flying around the ORD are incorporated here), plus a knowledge of
their own condition and whether or not their chick is alive, each adult then chooses the optimal
behavioural strategy for this time step (calc_strategy). This dictates how many trips the adult will
undertake in this time step and what behaviour the adults exhibit with respect to their chick
(“feeding mode”, Table S1) such as leaving them unattended or abandoning due to constraints the
adult is facing (Figure S8).
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Behavioural (feeding) modes for adults were determined by a critical mass threshold below which
the adult is assumed to defend its own survival over that of its chick, based on expert judgement
because the lack of empirical data on these thresholds. Therefore, when an adult’s body mass was
greater than 90% of its starting body mass at the onset of chick-rearing it would avoid leaving its
chick unattended, even if it had not met its DER. However, if its body mass was between 90% and
80% of its initial mass it would favour itself, and leave its chick unattended in order to attempt to
achieve its required DER. There are no precise empirical data available to set these thresholds,
therefore, in the model the thresholds were set based on similar logic to that used by Langton et al.
(2014). Using guillemot as an example, the 90% threshold represents an average mass of around 820

Figure S8: Schematic of calc_strategy function. Blue boxes are main actions, pink ovals represent function names, orangeparallelograms indicate data inputs, pink diamonds indicate decisions, and green boxes represent the final behaviouralstrategy outcome of the function.
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g, which is well above the starvation mass (Golovkin, 1963) and about 2/3 of the difference in mean
initial mass (920g) and the minimum mass recorded in UK ringing data (770g; Robinson 2005), the
majority of which probably came from birds at breeding colonies (Langton et al. 2014). The 80%
threshold corresponds to around 735 g in guillemots, which is below the minimum mass recorded in
UK ringing data for this species, and, therefore, likely to represent a reasonable mass at which
individuals give up the breeding attempt to minimise further mass loss and safeguard their own
survival. Therefore, for all species, we set behavioural models to switch using the 90% and 80%
thresholds of the individuals starting mass.
Adults with a body mass of less than 80% of their starting mass abandon the breeding attempt. This
necessarily means that their partner also gives up the breeding attempt, resulting in chick death.
Golovkin (1963) found that unfed guillemot adults had lost approximately 40% of their body mass at
death, therefore, should an adult’s body mass fall below that deemed critical for survival (60% of the
average pre-breeding season adult body mass for each species; Golovkin 1963), the adult is assumed
to have died and is removed from the simulation. This causes its partner to abandon the breeding
attempt for the remainder of the simulation. A similar assumption is made for chicks, which are
assumed to have died if their body mass falls below 60% of that for a hypothetical chick that has
received its DER on each model time step up to the current time.
Number of trips
We select the number of trips per time step (for each species the chick-rearing period is divided into
biologically relevant time steps - 24 hours for all species in this report except black-legged kittiwakes
where the time step was 36 hours) that a bird undertakes by considering the possible outcomes that
occur for each possible number of trips from one to six. An upper limit of six trips per time step was
selected because the vast majority of empirical data on these species suggest that most individuals
complete between two and four foraging trips per time step. Specifically, for each potential number
of trips, r, we divide the daily energy requirements (DER; of both chick and adult) by r, and the
numerically invert Equation 2 to determine the total amount of foraging time required to achieve
this energy intake. We then calculate the total time required to be

Total time required for all 𝑟 trips on a day
=  Foraging time required to achieve 𝐷𝐸𝑅𝑟 + flying time required per trip ∗ 𝑟

where the ‘Foraging time required to achieve DERr’ is dependent upon the number of trips (r)
because of the link between foraging time at a location and decline in intake rate whilst foraging. We
do this for all possible values of r. We then select the number of trips in one of two ways depending
upon whether the bird is able to acquire its DER within the time available for foraging:
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1. If the total time requirement is less than the total time available, for at least one possible
value of 𝑟, then we select the number of trips to be the value that minimises the total time
requirement required to achieve the DER;

2. If the total time requirement exceeds the total time available for all possible values of 𝑟 then
it is impossible for the bird to achieve their DER on this day. In this situation we select the
value of 𝑟 that leads to the greatest total prey intake by the bird (i.e., which minimises their
shortfall in intake relative to the DER).

7.2 Consequences for chicks submodels
calc_chickcare
This function calculates the chick-mass growth rate according to how much food has been provided
by both of its parents. Chick growth in relation to food provisioning has not been well estimated
under field conditions. Therefore, we assume a simple linear function for daily mass change of chicks
in relation to food provisioned by its parents. One of the parameters for this function (‘P’, below) is
derived from an energetics study on the growth and physiology of kittiwake chicks (Gabrielsen et al.,
1992). Given the lack of empirical data on the other study species, we used the value of P obtained
from kittiwakes, and it is challenging to judge the implications of this decision. The second
parameter (‘G’, below) is estimated from observations of chick mass change from hatching to
fledging for each species (CEH unpublished data; Harris & Wanless, 2011). More specifically, we
assume that

Mass change = 𝐺 ∗  𝑖𝑛𝑡𝑎𝑘𝑒 / 𝐷𝐸𝑅 − 𝑃 / 1 − 𝑃

Where ‘intake’ is the actual amount of food provided to the chick, the parameter “G” represents the
maximum possible mass gain (g) per day if the chick receives 100% of its DER, and the parameter “P”
represents the proportion of the daily energy requirement (DER) for the chick that corresponds to
zero mass change: i.e., to neither an increase nor a decrease in mass.
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The resulting increase in body mass is calculated and compared to a corresponding optimum body
mass for a chick at the given stage of the season (calc_chickcare), and if this falls below a defined
threshold the chick starves (Figure S9).

calc_unattendance
If the time a chick’s parents spend attending the nest falls below a critical threshold the chick is
assumed to die through exposure. This parameter (‘unattendance_hrs’) could not be set using

Figure S9: Schematic of calc_chickcare function. Blue boxes are main actions, green rectanglesaccompanying blue boxes are explanatory notes of these actions, pink ovals represent function names,orange parallelograms indicate data inputs, pink diamonds indicate decisions, and green boxes with awavy bottom line represent the final outcome of the function for the chick in any given time step.
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empirical data, therefore, we set it to be 18 hours for all species (except Atlantic puffins – see
calc_puffinmortality below and Figure S6) based on expert judgement. If a chick suffers mortality its
parents switch to ‘nest abandonment’ mode. We also incorporated an increased risk of predation if
a chick was left unattended by both parents for an amount of time less than that which would result
in its death through exposure. This was modelled as a probability of death that increased linearly
with time left unattended, up until the time threshold was reached at which point the chick was
assumed to have died from exposure or predation (‘unattendance_hrs’).
calc_puffinmortality
For burrow-nesting puffins, once the chick reached a certain energy deficit (80% of the body mass of
a chick that has been provisioned with all its requirements at every previous time step, using the
same threshold employed for adults abandoning young, given the absence of empirical data) it was
assumed the chick ventured to the entrance of the burrow and suffered a linearly increasing
predation risk with its body mass deficit as a consequence (between 60% and 80%). Above the
threshold body mass value of 80% there was no risk to the chick from being left unattended by
parents. Below the lower threshold of 60% the chick was assumed to have died.
calc_othermortality
As chicks can be lost from other causes such as flooding, storms etc. this function takes that into
account and calculates the probability of death per time step. This amounts to around ~5% of chicks
dying in a run when conditions are optimal, and no other mortality is taking place from
unattendance or starvation. This can be seen for higher prey values (>200) in Figure S4B where chick
survival never reaches 100%.
7.3 Update adults submodels
calc_adultbmchange
In the model all adult birds update their body mass at the end of each day based on the energy they
gained and expended in foraging and other activities. We used the published equation from Langton
et al. (2014) to calculate the body mass of all adults at the end of each time step:

𝑀𝑎𝑠𝑠𝑡+1 =  𝑀𝑎𝑠𝑠𝑡 + 𝐸𝑛𝑒𝑟𝑔𝑦_𝑔𝑎𝑖𝑛𝑒𝑑𝑡 − 𝐷𝐸𝑅𝑡 
𝐾𝐺

whereMasst+1 is the body mass at the start of the next time step,Masst is the body mass in the
current time step, Energy_gainedt is the energy the individual acquired during the current time step,
DERt is the daily energy requirement for the adult for the current time step, and KG is the energy
density of the bird’s tissue (kJ/g). Published values for the energy density of bird’s tissue are
available for guillemots (Gabrielsen, 1996) and gannets (Montevecchi et al., 1984), both of which are
close to 38.5 kJ/g; therefore for all species in the model we use this value.
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calc_adultdee
This submodel calculates the energy expenditure in time step t for adult birds, based on the
proportion of activities carried out during the time step multiplied by activity-specific energy costs
available from the literature (see Table S4) and the cost of warming food derived from (Leedham et
al., 2025) and (Gremillet et al., 2003).

𝐴𝑑𝑢𝑙𝑡 𝐷𝐸𝐸
= 𝑒𝑛𝑒𝑟𝑔𝑦𝑛𝑒𝑠𝑡 ∗ 𝑝𝑟𝑜𝑝𝑑𝑎𝑦𝑐𝑜𝑙𝑜𝑛𝑦 + 𝑒𝑛𝑒𝑟𝑔𝑦𝑓𝑙𝑖𝑔ℎ𝑡 ∗ 𝑝𝑟𝑜𝑝𝑑𝑎𝑦𝑓𝑙𝑦𝑖𝑛𝑔 + 𝑒𝑛𝑒𝑟𝑔𝑦𝑓𝑜𝑟𝑎𝑔𝑒 ∗ 𝑝𝑟𝑜𝑝𝑑𝑎𝑦𝑓𝑜𝑟𝑎𝑔𝑒

+ 𝑒𝑛𝑒𝑟𝑔𝑦𝑠𝑒𝑎𝑟𝑒𝑠𝑡 ∗ 𝑝𝑟𝑜𝑝𝑑𝑎𝑦𝑟𝑒𝑠𝑡𝑖𝑛𝑔𝑠𝑒𝑎 + 𝑒𝑛𝑒𝑟𝑔𝑦𝑤𝑎𝑟𝑚𝑖𝑛𝑔 ∗ (𝑑𝑎𝑦𝑙𝑒𝑛𝑔𝑡ℎ/24)

This is then converted to the energy requirement for the following time step, t+1 with the following
equation:

𝐸𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑏𝑦 𝑎𝑑𝑢𝑙𝑡 = 𝐴𝑑𝑢𝑙𝑡 𝐷𝐸𝐸
𝐴𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑛𝑒𝑐𝑦

Activity costs
Foraging cost for each bird is defined by the energetic costs of foraging and the amount of time an
individual is required to spend foraging to meet both its own DER and 50% of the DER of its
offspring. On the first time step of the simulation, adult Daily Energy Expenditure (DER) was drawn
from a normal distribution parameterised using the mean and standard deviation of adult DEE from
empirical data on the study species ((Daunt et al., 2008) and references therein) divided by an
assimilation efficiency (0.78, (Hilton et al., 2000a)). On all subsequent days adult DER was set to
match the energy expended by each bird in the previous time step divided by assimilation efficiency.
Chick DER (Table S4) remained constant throughout the simulation. We chose not to model
increases in chick DER with growth in order to constrain model processing time to reasonable limits,
but species-specific mean daily energy requirement of chicks was based on provisioning rates
recorded at colonies for each species, from a sample of chicks of a range of ages, so we do not think
this simplification in the model would have had a large bearing on the results. This calculation
implies both parents share the costs of provisioning equally.
Empirical daily time budgets of birds during chick-rearing demonstrate that adults divide their
activities into four categories of behaviour - foraging, flight, time spent at the colony, and time spent
resting on the sea surface (Daunt et al., 2002). For each bird, the foraging model returns the
simulated flight time for each bird spent travelling to its chosen foraging location, and the simulated
foraging time required to meet its required DER. The remaining time during each model time period
is split into time spent at the colony and time spent resting at sea. A minimum of one hour spent
resting at sea was required for each bird (Daunt et al., 2002), and each bird attempted to spend half



38

of each time step at the colony thereby preventing the chick being left unattended at the nest. Any
remaining time was split evenly between time at the colony and time resting at sea. If a bird could
not meet its DER in the time available without leaving its nest unattended, a set of decision rules
were implemented based on the energy state of the adult (Figure S8).
We derived the flight cost incurred by each bird by calculating the time taken to travel the distance
both to and from the chosen foraging location assuming a mean flight speed for each species
(Pennycuick, 1997), upscaled to match the chosen number of trips per time step.
We then multiplied the time spent carrying out each of these activities by species- and activity-
specific energy costs available from the literature (i.e. cost of flight, foraging, resting at and time at
colony). In addition, we incorporated the energy cost of warming food to derive the total DER for
each bird (Gremillet et al., 2003). These DER were converted into grams per day assuming a mean
energy density of 6.1 kJg-1 (Harris et al., 2008).
7.4 Adult survival submodel
Calc_pSurvival
The mass of each leaving adult (g) at the end of the breeding season provides an indirect way of
quantifying the adult survival rate during the subsequent winter period. We used published
relationships between adult mass and annual survival rates in order to convert simulated adult mass
values into estimated survival rates. This is done in the same way for baseline simulations and for
simulations that have been generated in the presence of ORDs such that we may assess the impact
of the ORD upon the adult survival rate by contrasting the paired model runs.
The procedure for converting individual adult mass values into an overall estimate of adult survival
for each simulation run is summarised here. Our approach is essentially based previously published
studies (Erikstad et al., 2009; Oro & Furness, 2002) where the general assumption is that mass and
survival are linked via a logistic regression – i.e. through the equation:

log 𝑝𝑖
1 − 𝑝𝑖

= log 𝑠0
1 − 𝑠0

+ 𝑏𝑚𝑖

where midenotes the standardized mass of individual i and pi denotes the (annual winter) survival
probability of this individual. The value of b quantifies the strength of the relationship between mass
and survival, and the value of s0 denotes the ‘baseline’ survival (i.e., the survival rate that would be
associated with a bird of average mass in the absence of an ORD). The overall survival rate for a
simulation run, P is simply assumed to be the average (mean) of the survival probabilities for all of
the individuals within it, so that
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𝑃 = 1
𝑛

𝑛

𝑖=1
𝑝𝑖

(where 𝑛 denotes the total number of individuals).
The validity of this approach will depend primarily upon the validity of the values that are selected
for 𝑏 and 𝑠0. It is worth noting that the approach also makes one substantive assumption - that the
relationship between mass and survival is linear, on a logit-transformed scale - but it would be
impossible in practice to check the validity of this assumption using currently available information.
The value of the baseline survival, 𝑠0, is assumed to vary between species - the specific values are
based upon the results of the population modelling performed by CEH for Marine Scotland (Freeman
et al. 2014).
Table S8: Baseline survival probabilities for birds under baseline conditions (no ORDs present) with poor, moderate andgood prey availability (Freeman et al. 2014). The level of prey availability is determined by the percentage mass loss ofadults birds over the chick-rearing season.

Poor Moderate Good
Kittiwake 0.65 0.80 0.90
Puffin 0.85 0.90 0.95
Guillemot 0.82 0.92 0.94
Razorbill 0.80 0.90 0.95

The strength of the relationship between mass and survival, b, is determined using values given in
the published literature. For kittiwakes the value of b is based on the value given in Oro & Furness
(Oro & Furness, 2002), and for all other species it is based on the value given in Erikstad et al.
(Erikstad et al., 2009), published values do not exist for razorbill or guillemot, so we assume that
they have the same value as that estimated for puffin in the Erikstad et al. (Erikstad et al., 2009)
paper. The kittiwake study was undertaken on a population in Shetland experiencing low food
abundance, and the puffin study was based on a population in northern Norway. Both populations
may have differed in terms of adult body mass and relationships between condition and survival
from populations in the Forth/Tay region. Furthermore, mass/survival relationships in guillemots and
razorbills may differ from puffins. The actual estimated values for b are 1.03 (Erikstad et al., 2009)
and 0.038 (Oro & Furness, 2002), but it is important to note that these values cannot be directly
compared because they relate to mass values that are expressed on direct scales: for kittiwakes the
mass is standardised solely by deducting the mean mass under the baseline scenario (because the
paper by Oro & Furness 2002 expresses b in grams), whereas for other species the standardisation
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also involves dividing by the standard deviation under the baseline scenario (because Erikstad et al.,
2009, expresses mass as a unit-free quantity).
7.5 ORD effects on individuals
Two main behavioural responses to ORDs are simulated in the model: displacement and barrier
effects (Figure S3).
At the start of each simulation run, individuals can be assigned as either birds that would be
displaced if their foraging location fell within the ORD footprint (‘displacement-susceptible birds’),
and/or as birds that would choose to fly around the ORD footprint (‘barrier-susceptible birds’) if
their chosen foraging location lay on the far side of a wind farm. These values were fixed for the
lifetime of each bird meaning that no habituation to wind farms occurred. The proportion of birds
that were assigned by the user to be displacement-susceptible and barrier-susceptible depended
upon the species and scenario.
In the model the user specifies the width of an exclusion ‘buffer’ zone to be added to the ORD
footprint supplied by the user as a shapefile. This buffer zone represents the area around an ORD
footprint into which displacement or barrier susceptible birds will not enter due to assumed
disturbance effects. If a displacement-susceptible bird chooses a foraging location within the ORD
footprint plus the exclusion ‘buffer’ area (solid & dashed line, Figure S3) then it instead chooses a
new foraging location within a 5 km displacement zone (dotted line, Figure S3) of the ORD footprint
plus the selected buffer zone. This distance was chosen by the steering group of the previous project
(Searle et al. 2014) based on expert judgement and carried forward into this project. The precise
foraging location in the 5 km buffer is selected with a probability proportional to the prey availability
in the buffer zone. Displacement-susceptible birds only incur an additional travel cost if their new
foraging location in the buffer zone lies on the far side of the ORD from their source colony. Should
their new foraging location lie on the nearside of the ORD in relation to the source colony, it is
assumed that no additional travel cost is incurred as a result of displacement and that the bird flies
directly to the new location using the shortest route. We did not impose an additional travel cost for
these birds because we assume that over the course of the breeding season birds will have
determined the location of the ORD and, therefore, fly directly to the location displaced to.
Additional travel costs are incurred as a result of barrier effects if its chosen foraging location lies on
the far side of the ORD relative to the colony. The barrier affected bird takes the shortest route to
the new foraging location whilst navigating around the edge of the ORD footprint-plus-buffer. This is
calculated using the R package ‘gdistance’ (van Etten, 2017). We chose this flight path as it
corresponds to the assumption that birds know the location of the ORD and adjust their flight path
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to minimise travel costs. This implies that birds have spatial memory for the position of the ORD as
well as spatial memory for a pre-determined foraging location selected before leaving the colony. All
birds that navigate around a coastline use this pathfinding routine to identify the shortest route
around land.
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Supplementary material section 2
1. Method for deriving maps from GPS tracking data

Where possible, we recommend using GPS tracking data to create colony-specific bird distribution
maps, in order to account for the effects of environmental heterogeneity and competition. Spatial
models can be used to estimate spatial distributions from tracking data.
Within the SeabORD runs used in this paper we use the maps generated as part of the SEANSE
project (Searle et al., 2020) by modelling GPS tracking data from 2010 to 2018 for colonies in the
Forth-Tay region – further context and details can be found within that report.
Wakefield et al. (2017) fitted habitat association models to a large multi-colony GPS tracking dataset,
collected within the FAME and STAR projects, by using a Binomial Generalized Linear Model (GLM)
to model “cases” (GPS tracking point) versus “controls” (points on a regular grid) in relation to a
range of potential explanatory variables relating to accessibility (e.g. distance to colony), parapatric
(inter-colony) competition effects and environmental suitability (e.g. sea surface temperature,
chlorophyll). Model selection was applied in two stages, in order to account for the effects of
parapatric competition: (1) fitting models that included only effects of accessibility (e.g. distance to
colony by sea) as explanatory variables and using these to calculate an index of parapatric
competition; and then (2) fitting models that also included variables relating to environmental
suitability and the parapatric competition index as potential explanatory variables. Final models for
each species were then used to generate predicted maps of spatial distributions for each colony
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(rescaled so that the maps sum to one), including both colonies with GPS tracking data and those
without.
The maps produced for SEANSE used a similar approach to Wakefield et al. (2017), but whilst the
focus of Wakefield et al. (2017) was on the production of national-scale maps (including a large
number of colonies without GPS tracking data) the SEANSE project was focused on a specific area
with good coverage, in which colony-specific GPS tracking data were available for the key colonies of
interest. Rather than explaining environmental heterogeneity in terms of explanatory variables (such
as sea surface temperature) SEANSE therefore instead focused solely upon providing an empirical
map of environmental heterogeneity. The second stage of modelling for SEANSE therefore used a
Generalized Additive Model (GAM) rather than GLM, which contained the explanatory variables for
accessibility and competition considered in Wakefield et al (2017) and a smooth spatial term for
“location” (in place of explanatory variables that aim to describe environmental suitability). This
semi-parametric approach assumes that the maps vary smoothly with location but imposes no other
constraints upon the form (shape) of the relationship between bird density and environment, in
contrast to the parametric habitat association model used in Wakefield et al. (2017). The degree of
smoothing is determined automatically via a form of cross-validation; the model uses a fixed effect
for “colony” to adjust for overall differences in abundance between colonies. The models were fitted
in R using the ‘bam’ function within the ‘mgcv’ package (Wood, 2001), using a regular grid with a
spatial resolution of 1x1 km. For further information on the modelling approach used in SEANSE, and
how it relates to Wakefield et al. (2017), please see Appendix A of Searle et al. (2020).
1.1 Method for deriving distance decay maps
Where there is limited or no tracking data available, we recommend creating bird distribution maps
using a simple distance-decay relationship. In this case, users provide parameters that are used to
create a bird density map associated with a simple distance-decay function.
The distance-decay model used within SeabORD assumes that the proportion of time that birds from
the colony of interest spend within each grid cell (the utilisation distribution) is proportional to
exp − 𝛽𝑑 /𝑑, where 𝑑 represents the distance (in a straight line along a great circle) from the colony
of interest to the midpoint of this grid cell. The values of the distribution are normalised so that they
sum to one across all grid cells. The parameter β determines the rate of distance decay.
This model is motivated by two assumptions:

1. That the total number of birds within each distance band decays exponentially with distance
- i.e., that the total number of birds that lie at distance 𝑑 from the colony is proportional to
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exp (−𝛽𝑑). The exponential decay model is not the only possible model for decay with
distance but is a widely used model and has the advantages of (a) only containing a single
unknown parameter and (b) having a finite value at a distance of zero.

2. That birds within this distance band are distributed uniformly throughout the band, which
seems a reasonable assumption in the absence of any other information. The division by
distance within the model (1/𝑑) then follows directly from geometric considerations: there
are fewer grid cells within distance bands close to the colony than within distance bands far
from the colony, with the circumference of each distance band being equal to 2𝜋𝑑. The
normalisation step renders the constant, 2𝜋, irrelevant. If birds were equally likely to visit
each distance band the density of birds in space would therefore decay with distance at a
rate 1/𝑑, but since the overall probability of being within each distance band is exp exp −

𝛽𝑑 the density of birds in space is instead proportional to exp − 𝛽𝑑 /𝑑.

If the parameter 𝛽 were taken to be equal to zero then the model would assume that birds are
uniformly distributed across distance to colony, so that the density decays with distance solely due
to geometric considerations. If the parameter 𝛽 is taken to be large, then the model assumes a very
rapid decay of density with distance: far more rapid than would be explained by geometry alone.
1.1.1 User specification of the parameters for distance-decay
Users specify the foraging range, and a parameter that controls the rate of decays with distance
within the distance decay model. The exponential decay parameter 𝛽 does not have a
straightforward ecological interpretation, so may not be a parameter that users can readily specify
based on expert judgement.
Users therefore instead provide a parameter 𝑞 that specifies the proportion q of the foraging range
that (in an idealised situation without land) contains half the population, on the basis that this is
more ecologically interpretable than 𝛽 and so will be easier to specify based on expert judgement. If
this proportion is equal to 0.5 then it implies that the number of birds is the same in every distance
band out to the foraging range (so that the decline in bird density is solely because of the increasing
area covered by each distance band). If this proportion is close to zero then it implies, in contrast,
that the distribution is heavily concentrated towards the colony.
The value of the parameter 𝑞 can be converted into the parameter 𝛽 by using standard numerical
optimisation (implemented in R via the `optimise` function) to identify the value of 𝛽 such that

Probability of distance from colony being less than 𝑟𝑞
Probability of distance from colony being less than 𝑟

= 1 − exp (− 𝛽𝑟𝑞)
1 − exp (− 𝛽𝑟) = 1

2
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Note that previous versions of SeabORD (Searle et al. 2014, 2018) used an alternative
parameterisation, which relied on the user defining the proportion of the total distribution that lies
within the foraging range, but the current approach has been adopted following user feedback on
the basis that it involves users specifying a parameter that has a clearer ecological interpretation,
and so may be easier to specify based on expert judgement.
2. Method for simulating competition within SeabORD
We provide mathematical details around the simulation of the number of competing birds, from all
colonies except the colony of interest, for each grid cell at each time point. The number of
competing birds from the colony of interest is simulated directly within SeabORD and is added on to
the number of birds simulated to arise from other colonies.
2.2.1 User-defined inputs relevant to calculation of competition
Users provide a competition map representing the number of individuals per grid cell from all
colonies other than the colony of interest, from which it is possible to extract:

 the number of grid cells n:
 T: the total abundance of birds from all non-focal colonies (i.e., the sum of the competition

map)
 (u1, …, un): the normalized competition map i.e., the probability of birds from non-focal

colonies being in grid cell j = 1, …, n at any given time step. This is calculated by dividing the
competition map by T.

Users also specify:
 the displacement rate, d, which represents the proportion of individuals that are susceptible

to displacement by windfarm
 windfarm polygons, which can be used to define a binary variable λj that indicates for each

cell j whether the cell lies within any wind farm
 the width of buffer and displacement zone, which can be used, in conjunction with the

windfarm polygons, to construct a binary variable θjk for each pair of grid cells j and k. This
binary variable indicates whether birds foraging in grid cell j have the potential to be
displaced to grid cell k or not: this will be equal to one if grid cell j is within a wind farm and
grid cell k is in the area surrounding the same wind farm into which birds from that wind
farm are displaced (the “displacement zone”), and zero for all other pairs of grid cells.

2.2.2 Simulation of number of non-focal colony birds foraging in each grid cell in the baseline
The total number of birds Btj from non-focal colonies that are simulated to forage in each of the j =
1, ..., n grid cells at each timestep t under the baseline (i.e. without windfarms) can be simulated
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using an independent multinomial simulation for each time step, using the colony size as the
multinomial size and the normalized competition map as the multinomial probability, so that:

(𝐵𝑡1, ..., 𝐵𝑡𝑛)  ~ Multinomial(𝑇, 𝑢1, …, 𝑢𝑛 )

2.2.3 Simulation of number of non-focal colony birds foraging in each grid cell with a windfarm
We can simulate the number of birds that are displaced away from grid cell j at a particular time
point t via a binomial simulation

𝑀𝑗𝑡 ~ Binomial(𝐵𝑗𝑡,𝜆𝑗𝑑)

which will always be zero for grid cells not in a windfarm (𝜆𝑗 = 0).
The probability that a bird which was displaced away from foraging in grid cell j will choose to forage
in grid cell k can be calculated as

𝑞𝑗𝑘 =  
𝜃𝑗𝑘𝑢𝑘

∑𝑛
𝑙=1 𝜃 𝑗𝑙𝑢 𝑙

which represents the part of the competition map (rescaled to sum to one) that lies in the area that
birds are displaced into from the wind farm containing grid cell j. The number of displaced birds Djkt
that are simulated to move from grid cell j to grid cell k at time step t is simulated via a multinomial
distribution that determines the destinations of the displaced birds originating from each grid cell 𝑗:

𝐷𝑗1𝑡, …, 𝐷𝑗𝑛𝑡 ~ Multinomial 𝑀𝑗𝑡, 𝑞𝑗1, .,𝑞𝑗𝑛  

In practice, this only needs to be calculated for pairs of grid cells in which cell j lies in a wind farm
and cell k lies in the displacement zone for the wind farm associated with grid cell j, because values
will be zero by definition for all other grid cells.
Finally, we can calculate 𝐵∗

𝑗𝑡, which we define to be the number of birds from this colony foraging in
this grid cell at this time step over once one or more wind farms have been introduced, to be:

𝐵∗
𝑗𝑡 =  𝐵𝑗𝑡 +

𝑛

𝑘=1
𝐷𝑘𝑗𝑡 −  𝐷𝑗𝑘𝑡

i.e., to be the number of birds that were foraging at this grid cell in this baseline, plus the number of
birds moving into this grid cell from the wind farm (non-zero only for grid cells in the displacement
zone around a wind farm into which displacement occurs), minus the number of birds moving away
from this grid cell (non-zero only for grid cells in a wind farm or buffer).
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3. Extended sensitivity analysis results
Table S9: Resulting calibrated prey ranges, where possible, for all parameter variations used in the sensitivity analysis
Parameter name Description Newparametervalue

Calibrationindicating newprey range?
Prey range

default The prey range for defaultparameter set NA NA 170.5 - 172.5
adult_mass_KG Energy density of the bird’stissue (kJ g−1) 34.65 yes 171.5 - 174

36.575 yes 171 - 173
40.425 yes 169.5 - 171.5
42.35 yes 169-171

BM_adult_abdn Critical mass below whichadult abandons chick 0.72 not possible NA
0.76 just 168.5 - 169.5
0.84 not possible NA
0.88 not possible NA

BM_Chick_mortf Critical mass below whichchick is dead 0.54 yes 170.5 - 172.5
0.57 no 170.5 - 172.5
0.63 no 170.5 - 172.5
0.66 no 170.5 - 172.5

unattend_max_hrs Critical time threshold forunattendance at nest abovewhich a chick is assumed todie through exposure orpredation

16.2 yes 171 - 173
17.1 no 170.5 - 172.5
18.9 yes 170-172
19.8 yes 170-172

IR_half_b Competition effect on intakerate parameter 0.005 yes 167 - 168.5
0.01 yes 168 - 169.5
0.04 yes 176 - 177.5
0.08 yes 189 - 191

Displacement zoneextent How far the displacementzone buffer extends (km) 1 not required 170.5 - 172.5
2.5 not required 170.5 - 172.5
10 not required 170.5 - 172.5
20 not required 170.5 - 172.5
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Figure S10: Calibration plots showing 90 baseline simulations with varying prey values for each BM_adult_abdn parametervariation used in the sensitivity analysis, including the default values in black, dark red 0.72 (-10%), light red 0.76 (-5%),light blue 0.84 (+5%), and dark blue 0.88 (+10%). Upper and lower horizontal dashed lines indicate the range for moderateconditions for respective outputs, adult mass loss and chicks per nest. Vertical solid lines indicate any shared overlap acrossthese two outputs, with colours respective to parameter variations – i.e., there was only overlap for the default parametervalue and 0.76 (-5%).
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4. Extended modelling of cumulative effects
4.1 Introduction
One advantage of IBMs is that you can start to examine how complex behaviours accumulate and
reflect in emergent properties at the population level. In the context of SeabORD, there is nothing in
the model that explicitly tells demographic rates how they should change in relation to a barrier or
displacement effect, whether relating to one or several wind farms within their modelled foraging
distribution.
A simplifying assumption often seen in cumulative impact assessments is that the impacts are
additive, but it is accepted that it may contradicted by varying behaviour of individuals towards
developments, resulting in sublethal effects that are likely to be non-linear and possess threshold
characteristics (Masden et al., 2010) driven by behaviour seen in long-lived seabird where adults
favour their own survival over that of their chick. We explore this further in our paper by using our
IBM, SeabORD, to model extensive hypothetical ORD arrays to predict how increasing cumulative
effects on populations of two seabird species, common guillemot Uria aalge and black-legged
kittiwake (hereafter “guillemot” and “kittiwake”, respectively), breeding at the Isle of May NNR, in
eastern Scotland, drive predicted changes in breeding success and adult survival during the chick-
rearing period.
4.2 Methods
In addition to assessing our three output metrics (ORD adult mass change, adult year-round survival
and breeding success) against number of ORDs in the main report, we also investigated three
response variables used to assess the magnitude of cumulative effects:

(i) Energetic cost of extra km flown due to barrier effects
(ii) Proportion of individuals displaced per time step
(iii) Expected total number of additional pairwise competition events occurring per grid cell

per time step in the displacement zone as a result of the windfarm
These variables were calculated for each ORD scenario (n = 63) and species (n = 2) combination (total
n = 126). Variable (i) was achieved by estimating the time taken to fly the model output ‘total extra
km flown’, which is the extra distance flown through experiencing barrier effects, and then
multiplying this by the kJ/sec cost of flight (Leedham et al., 2025), while (ii) was extracted directly
from model outputs, and is a proxy for displacement effects. Variable (iii) can be calculated from
model inputs by multiplying together:
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(a) the number of grid cells in the displacement zone;
(b) the expected number of adults foraging within each grid cell of the displacement zone in the

baseline, which is equal to the population for the focal colony (i.e. total number of adults
being simulated) multiplied by the proportion of the bird map’s UD cells contained within
the displacement zone(s) of the ORD(s), divided by the number of grid cells in the
displacement zone; and

(c) the expected number of adults displaced into each grid cell within the displacment zone as a
result of the windfarm, which is equal to the population size of the focal colony multplied by
the proportion of the bird map contained by the ORD footprint(s) and their 2km buffers and
the proportion of individuals susceptible to displacement (the displacement rate, set at 60%
for all simulations), and then divided by the number of grid cells in the displacement zone.

4.3 Results & discussion
Table S10: The mean effect of different numbers of ORDs on key model outputs with minimum and maximum outputswhere relevant (n>1).
Species Output Number of ORDs0(baseline,n=63)

1(n=6) 2(n=15) 3(n=20) 4(n=15) 5(n=6) 6(n=1)
Kittiwake Adult mass loss(g) 34.22(34.21,34.23)

34.32(34.26,34.38)
34.44(34.31,34.58)

34.57(34.40,34.72)
34.72(34.51,34.84)

34.87(34.77,34.94)
35.03

Adult survival 0.743(0.742,0.745)
0.743(0.742,0.744)

0.743(0.742,0.744)
0.742(0.741,0.743)

0.741(0.739,0.742)
0.741(0.740,0.741)

0.740

Chicks per nest 0.538(0.536,0.539)
0.529(0.524,0.534)

0.519(0.506,0.530)
0.506(0.494,0.524)

0.492(0.479,0.514)
0.476(0.466,0.489)

0.457

Guillemot Adult mass loss(g) 60.51(60.50,60.52)
60.81(60.43,61.32)

61.20(60.40,62.27)
61.68(60.59,63.46)

62.22(61.00,63.71)
62.89(62.06,63.69)

63.66

Adult survival 0.888(0.888,0.888)
0.888(0.887,0.888)

0.887(0.885,0.888)
0.886(0.884,0.888)

0.886(0.883,0.887)
0.885(0.883,0.886)

0.884

Chicks per nest 0.830(0.829,0.830)
0.826(0.820,0.831)

0.822(0.810,0.830)
0.816(0.794,0.828)

0.809(0.790,0.823)
0.801(0.790,0.812)

0.79
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Table S11: R-squared and Delta-AIC values (i.e. AIC values relative to the model with lowest AIC) for the alternative linearand quadratic models considered for the mean value of each response variable on birds from the scenario (ORDs included)runs only. An asterisk indicates when one of the paired models (linear versus quadratic) received considerably more supportin the data compared to the alternative model (delta AIC (ΔAIC) values >2).
Responsevariable Model structure Kittiwake guillemot

R-squared ΔAIC R-squared ΔAIC
Adult masslost Cost of extra km flown 91.9 0 94.2 0

Cost of extra km flown +Cost of extra km flown2 91.9 1.91 94.4 0.64
Proportion displaced pertstep 94 0.76 77.6 5.43
Proportion displaced pertstep + Proportiondisplaced per tstep2

94.2 0 80.2 0*

Number competitionevents 78.2 0 63 0.03
Number competitionevents + Numbercompetition events2

78.2 1.99 64.1 0

Adultsurvival Cost of extra km flown 60.8 0.54 94.3 0
Cost of extra km flown +Cost of extra km flown2 62.4 0 94.4 1.47
Proportion displaced pertstep 67.9 0 72.8 7.04
Proportion displaced pertstep + Proportiondisplaced per tstep2

68.7 0.33 76.4 0*

Number competitionevents 54.5 0 58.4 0.93
Number competitionevents + Numbercompetition events2

55.2 0.92 60.3 0

Chicks pernest Cost of extra km flown 92.2 2.5 93.7 0
Cost of extra km flown +Cost of extra km flown2 92.7 0* 93.7 1.8
Proportion displaced pertstep 93.7 12.33 77.4 9.29
Proportion displaced pertstep + Proportiondisplaced per tstep2

95 0* 81.1 0*

Number competitionevents 77.3 0 60 0.94
Number competitionevents + Numbercompetition events2

77.6 1.32 61.8 0

Adult mass loss appeared to increase in an approximately linear fashion with mean energetic cost of
extra km flown in simulations including ORDs for both kittiwakes and guillemots (Table S11, Figure
S11 A & B), which represents the energetic cost when experiencing barrier effects occurring as a
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result of ORD interactions. The mean total extra km flown for adults due to barrier effects when
including all six ORDs was ~120km, compared to guillemots which flew ~38km further for their
configuration, but the energy cost between species was comparable (Figure S11 A & B), attributed to
the difference in flight costs and speeds between the two. Increases in adult mass loss also
appeared approximately linear for kittiwakes in relation to the proportion of birds being displaced
per time step (Figure S12 A), whilst for guillemot there was some evidence for a quadratic rather
than linear effect (Table S11). When comparing adult mass loss against the estimated number of
competition events, the linear model was the best supported for both species (Figure S13 A & B,
Table S11) and adult survival generally decreases with increasing exposure to ORDs. This was also
reflected in the models that were supported, with all linear models receiving greater support in the
data, apart from the proportion of birds displaced per time step where the model including the
quadratic term again received the greater support (R2= 76.4%, ΔAIC = 7.04, Table S11).
Chicks per nest showed consistent declines in relation to increasing ORD interactions. For mean
energetic cost of extra km flown, the model including the quadratic term was the best supported for
kittiwakes (R2= 92.7%, ΔAIC = 2.5, Table S11) indicating that as barrier effects increased the decline
in chicks per nest also increased (Figure S11 E). Whereas, for guillemots, this decline was linear (R2=
93.7%, ΔAIC = 1.8, Table 3, Figure S11 F). The decrease in chicks per nest against the proportion of
birds displaced per time step was nonlinear for both kittiwakes and guillemots (Table S11, Figure S12
E & F). In response to the estimated number of competition events, chicks per nest decreased in an
apparently linear fashion for both kittiwakes and guillemots (Table S11), but for guillemots the
explanatory power of the model was relatively low (R2= 60%), (Figure S13 E & F).
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Figure S11: Mean energetic cost of extra km flown (kJ), experienced as consequence ofbarrier effects, plotted against three primary SeabORD outputs from scenario birds only (nobaseline included) for the two modelled species. In each plot (A-F), the blue points representthe modelled means of the 63 different ORD scenarios, with the spread of each point’srespective 100 replicates (not modelled) shown in grey. The red line and 95% confidenceintervals represent the most supported model which is alluded to at the top of respectiveplots.
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Figure S12: Proportion displaced per time step plotted against three primary SeabORDoutputs from scenario birds only (no baseline included) for the two modelled species. In eachplot (A-F), the blue points represent the modelled means of the 63 different ORD scenarios,with the spread of each point’s respective 100 replicates (not modelled) shown in grey. Thered line and 95% confidence intervals represent the most supported model which is alludedto at the top of respective plots.
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Figure S13: The estimated number of competition events plotted against three primarySeabORD outputs from scenario birds only (no baseline included) for the two modelledspecies. In each plot (A-F), the blue points represent the modelled means of the 63 differentORD scenarios, with the spread of each point’s respective 100 replicates (not modelled)shown in grey. The red line and 95% confidence intervals represent the most supportedmodel which is alluded to at the top of respective plots.
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For further insight into the relationship between adult mass loss during the simulations we
partitioned the results into birds impacted at least once, and those that were never impacted and
fitted linear and non-linear models of each response variable to the mean total extra km flown
(analogous to the energetic cost of extra km flown due to barrier effects) and the proportion of birds
displaced per time step. Kittiwakes that were impacted at least once by an ORD (i.e. suffered a
barrier or displacement event) saw increases in mass loss with increasing total extra km flown in an
approximately linear fashion, while unimpacted kittiwakes resulted in a nonlinear decrease in mass
losses with increasing exposure. A similar pattern was seen in guillemots with respect to increasing
total extra km flown, however both impacted and unimpacted birds lost mass in an apparently linear
fashion. With increasing proportion of birds displaced per time step adult mass loss increased in a
nonlinear fashion, with effects becoming stronger as this proportion increased (Figure S14 C), with
the same pattern observed for guillemots (S14 C).

Figure S14: Plots showing birds impacted at least once (“impacted”, red) and birds never directlyimpacted (“unimpacted”, blue), which includes scenario birds only (i.e., no baseline runs without ORDs).Kittiwake adult mass loss during the season versus mean total extra km flown (A), and proportiondisplaced per time step (C), and the same respective plots for guillemots (B & D).
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