

First Report of Bilateral Gynandromorphism in the Australian Ant, *Dolichoderus scrobiculatus* (Mayr, 1876) (Hymenoptera: Formicidae)

Liam R. Falls^{*1}

¹ 2/2 Conondale Way, Waterford, QLD, 4133.

*Corresponding author; Email: noteofficial@gmail.com; ORCID: 0009-0007-7288-3008

Abstract

12 Gynandromorphism is a rare developmental phenomenon producing genetically
13 chimeric individuals expressing both male and female phenotypes simultaneously. Here,
14 I describe the morphological anomalies arising from a case of bilateral worker-male
15 gynandromorphism in the Australian ant *Dolichoderus scrobiculatus* (Mayr, 1876),
16 collected during a pitfall survey of native ant fauna. The specimen exhibits a pronounced
17 bilateral mosaic distribution of morphological sex characters along the longitudinal body
18 axis: male traits are explicitly restricted to the right side, although some female
19 characters are also present there, while no male morphology is externally apparent on
20 the left. Potential implications of the condition in relation to colony-level social
21 interaction and individual behaviour are discussed. This record contributes to the limited
22 number of reports of gynandromorphism in the Formicidae and for the genus
23 *Dolichoderus*.

KEYWORDS

Ergatandromorph, teratology, sex mosaic

Introduction

35 Historically perceived as “veritable entomological nightmares” and “monstrosities”
36 (Creighton, 1928; Wheeler, 1937), gynandromorphs are organisms which simultaneously
37 display both male and female characters (Wheeler, 1937; Donisthorpe, 1929).
38 Gynandromorphism is a rare process arising from defects during embryonic or post-
39 embryonic development (Mariano et al., 2022). True gynandromorphs are genetically
40 chimeric individuals exhibiting male–female phenotypes in a bilateral or patchwork
41 mosaic, whereas intercastes and intersexes are genetically uniform individuals
42 expressing, respectively, caste phenotypes that are intermediate between or opposite to
43 those expected for their genetic sex, or intermediate sexual phenotypes (Heinze and
44 Trenkle, 1997; Narita et al., 2010; Yang & Abouheif, 2011; but see Fusco and Minelli,
45 2023). In social Hymenoptera, gynandromorphs can involve combinations between
46 males and the various castes of females (workers, soldiers and gynes) (Mariano et al.,
47 2022). Gynandromorphism has now been reported for approximately 82 ant species from
48 37 genera in 6 subfamilies (Table 1 in Supplementary material).

49 Contemporary researchers may consider Formicidae exhibiting such somatic
50 developmental abnormalities as opportunistic model systems to better understand
51 modularity, evolvability, phenotypic variability, sex and caste determination,
52 morphophysiology, intraspecific trait variability, nestmate recognition, and their
53 astounding tolerance for developmental instability (Narita et al. 2010; Yang & Abouheif,
54 2011; Mariano et al., 2022).

55 Despite their relative detectability arising from the pronounced nature of sexual
56 dimorphism in social insects (Yang and Abouheif, 2011) and phenotypical plasticity and
57 morphological caste differentiation characters of ants (Mariano et al., 2022),
58 gynandromorphic ants have, for the last two centuries, proven infrequently encountered
59 and lesser-so formally described. Collections are likely depauperate of gynandromorphs
60 due to probable high intrinsic mortality of individuals, social expulsions from nests
61 resulting from low perceived (or actual) reproductive fitness (Mariano et al., 2022), and
62 their generally low frequency within natural populations (Skvarla and Dowling, 2014; but
63 see Donisthorpe, 1946; Weber, 1957; Kinomura and Yamauchi, 1994). However, Berndt
64 and Kremer (1982) experimentally induced multiple forms of gynandromorphism in
65 laboratory colonies of *Monomorium pharaonis* (Linnaeus, 1758) by heat-shocking larvae
66 during development. Detailed mechanisms of gynandromorphic development within the
67 Formicidae are described in Mariano et al. (2022), Yang and Abouheif (2011) and
68 references therein.

69 *Dolichoderus scrobiculatus* (Mayr, 1876) is an endemic Australian species of the
70 subgenus *Hypoclinea* Mayr, 1855 with widespread distribution along the eastern coast,
71 known from as far north as the Cape York Peninsula and south to north-eastern New
72 South Wales (Shattuck and Marsden, 2013), and a record from the Arnhem escarpment
73 of Kakadu National Park in the Northern Territory (Andersen et al., 2018). Shattuck and
74 Marsden (2013) provide note that the species can be found in savannah woodlands to

75 rainforests, nests in tussocks and under rocks, harvests honeydew from aphids and other
76 Hemiptera, with low vegetation being the predominant foraging strata of workers. The ant
77 has been implicated in ant-butterfly mutualisms, recorded tending to the larvae of
78 *Theclinesthes miskini* (Lucas, 1889), *Lampides boeticus* (Linnaeus, 1767) (Eastwood and
79 Fraser, 1999; Eastwood et al., 2008) and a late instar larva of *Nesolycaena medicea* Braby
80 (Braby, 2012) (all Lepidoptera: Lycaenidae).

81 Following contemporary terminology proposed by Mariano et al. (2022), the specimen
82 described and photographed here is best described as a bilateral worker-male
83 gynandromorph. For brevity, however, I adopt the terminology of Campos et al. (2011) and
84 refer to this specimen as an 'ergatandromorph' (male-worker morph). Henceforth, I also
85 employ the term 'morphotypical' to describe morphological characters normally present
86 in the sterile female (worker) caste of *D. scrobiculatus* but clearly modified in the unique
87 ergatandromorphic individual presented here. To my knowledge, this represents the first
88 published account of ergatandromorphism in this species. Torossian (1974) reported an
89 ergatandromorph of the Palearctic species *Dolichoderus quadripunctatus* (Linnaeus,
90 1771), Mariano et al. (2022) describe other teratological deformities observed in a male
91 of the Neotropical species *Dolichoderus attelaboides* (Fabricius, 1775), and Tripathy et
92 al. (2026) report an intercaste individual of the Palearctic species *Dolichoderus*
93 *taprobanae* (Smith, F., 1858).

94

95

96 Materials and Methods

97 Taxonomic identification of specimen

98 Despite its pronounced morphological disparities from a morphotypical female, this
99 specimen is still readily identifiable as *D. scrobiculatus* using Shattuck's (1999) genus-
100 level keys and Shattuck and Marsden's (2013) species-level keys, provided the
101 morphotypical (left) side is considered.

102 Collection and preparation of specimens

103 The ergatandromorphic specimen of *D. scrobiculatus* was collected in a soil-surface
104 interface pitfall trap during a field survey at Wyaralong, Queensland, Australia (27.940°S,
105 152.861°E) between 26 September and 3 October 2025. The site was characterised by
106 primary sclerophyll forest dominated by ironbark *Eucalyptus* spp. L'Hér. (Myrtaceae),
107 weedy foliage such as Billygoat weed (*Ageratum houstonianum* Miller) (Asteraceae) and
108 sandy soils (Bruce Tiumalu, pers. comm.). Thirteen morphotypical *D. scrobiculatus* were
109 collected on nearby surveying sites prior to collection of the ergatandromorph, which
110 was the only *D. scrobiculatus* represented in the trap that collected it. This pitfall also
111 captured the ant genera *Rhytidoponera* Mayr, *Iridomyrmex* Mayr, and *Nylanderia* Emery,
112 as well as other invertebrates of the orders Araneae, Coleoptera, Collembola, Diptera,
113 Hemiptera, Hymenoptera, and Isopoda.

114 Following pitfall processing on 11 November 2025, the specimen was discovered and
115 washed in 98% denatured ethanol (2% isopropyl alcohol) for approximately five minutes
116 to remove external debris and propylene glycol used as the pitfall preservative. It was
117 then point-mounted for photographing and long-term storage purposes. The comparative
118 *D. scrobiculatus* specimen (Figs. 1b, d and f) was prepared in the same manner at a later
119 date. Both specimens are currently held in the author's personal collection.

120 All images (Figs. 1-3) were captured using a Nikon SMZ25 stereomicroscope fitted with a
121 Nikon SHR Plan Apo 1x objective lens, an integrated digital camera, and a Nikon C-FIDH
122 dual-arm LED lighting module. Images were taken using NIS-Elements software (version
123 5.02.03, Build 1273) and were post-processed using the GNU Image Manipulation
124 Program (GIMP) (version 3.0.6) to enhance the morphological detail and visual clarity.
125 Final figure preparation and editing were carried out in Inkscape (version 1.4.3).

126

127

128

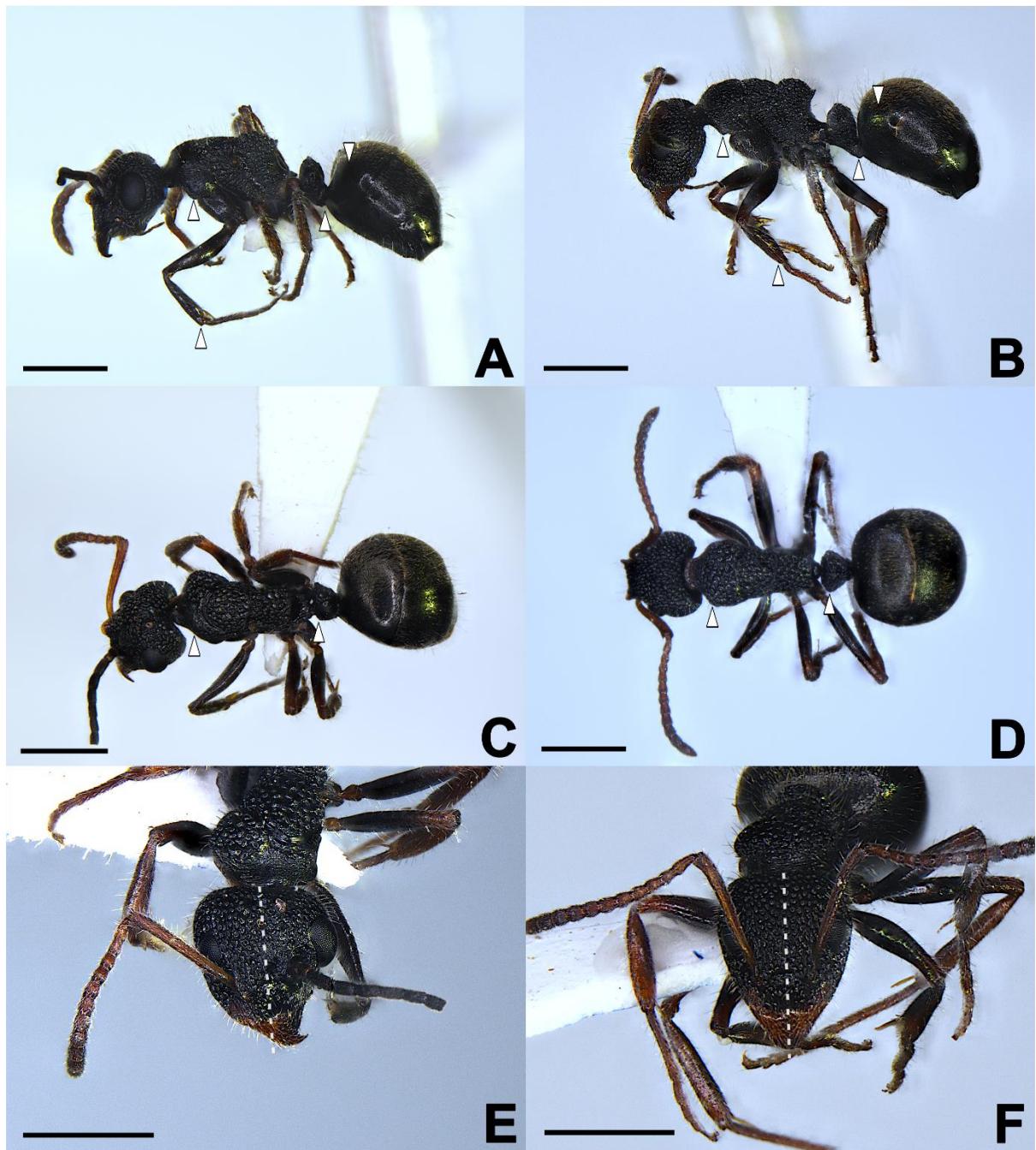
Results

129 **Description of *D. scrobiculatus* ergatandromorph**

130 The specimen exhibits a mosaic distribution of morphological sex characters along the
131 longitudinal body axis (Fig. 1). Male traits are explicitly restricted to the right side, though
132 some female characters are also present there, while no male morphology is externally
133 apparent on the left side. Below, I describe the externally visible morphological
134 abnormalities for each major body tagma.

135 **Head:** The specimen displays morphotypical female characters on the left side of the
136 head, while the right side displays male characters (as oriented in Figs. 1e and 2).
137 Compared with the female side, the male side shows a distinctly larger eye, a reduced
138 and darker mandible, a lateral (on the right side) and medial ocellus typical of the male
139 caste, male antennal morphology (although funicular segments beyond the seventh
140 distal from the scape had been damaged and lost). Overall, the head morphology on the
141 right side approximates that of a male.

142 Interestingly, the lateral ocellus on the left side did not develop, vestigial or otherwise.
143 This is expected, as workers in this genus lack this feature, and the left side of the head
144 is morphologically female in this specimen. This emphasises the strict bilateral nature of
145 cephalic gynandromorphic development observed here.


146 The general head deformity and asymmetry of the anterolateral clypeal margin and
147 mandible appear to have distorted the positioning of the left mandible, with the
148 masticatory margin exceeding the typical perpendicular angle relative to the
149 anteromedial clypeal margin at rest (see Fig. 1e-f). This may also result from the absence
150 of a reciprocal, equivalently sized mandible on the right side, which under normal
151 conditions could physically limit mandibular over-closure. Overall, the head appears
152 tilted to the right (Fig. 2).

153 **Alitrunk/mesosoma:** The right-side pronotum exhibits male development, with a
154 noticeable reduction in the size and anterolateral development of the pronotal shoulder
155 and a shallower depth of surface fovea compared with the left (Fig. 1c-d). The foreleg on
156 the right side also appears morphologically male and lacks the distinctive red colouration
157 prominent on the morphotypical trochanter, distal femur, tibia and tarsal segments. On
158 the right side of the mesonotum, a wing scar is present (Fig. 3), although it is unclear
159 whether the wing was removed, damaged, or failed to develop entirely.

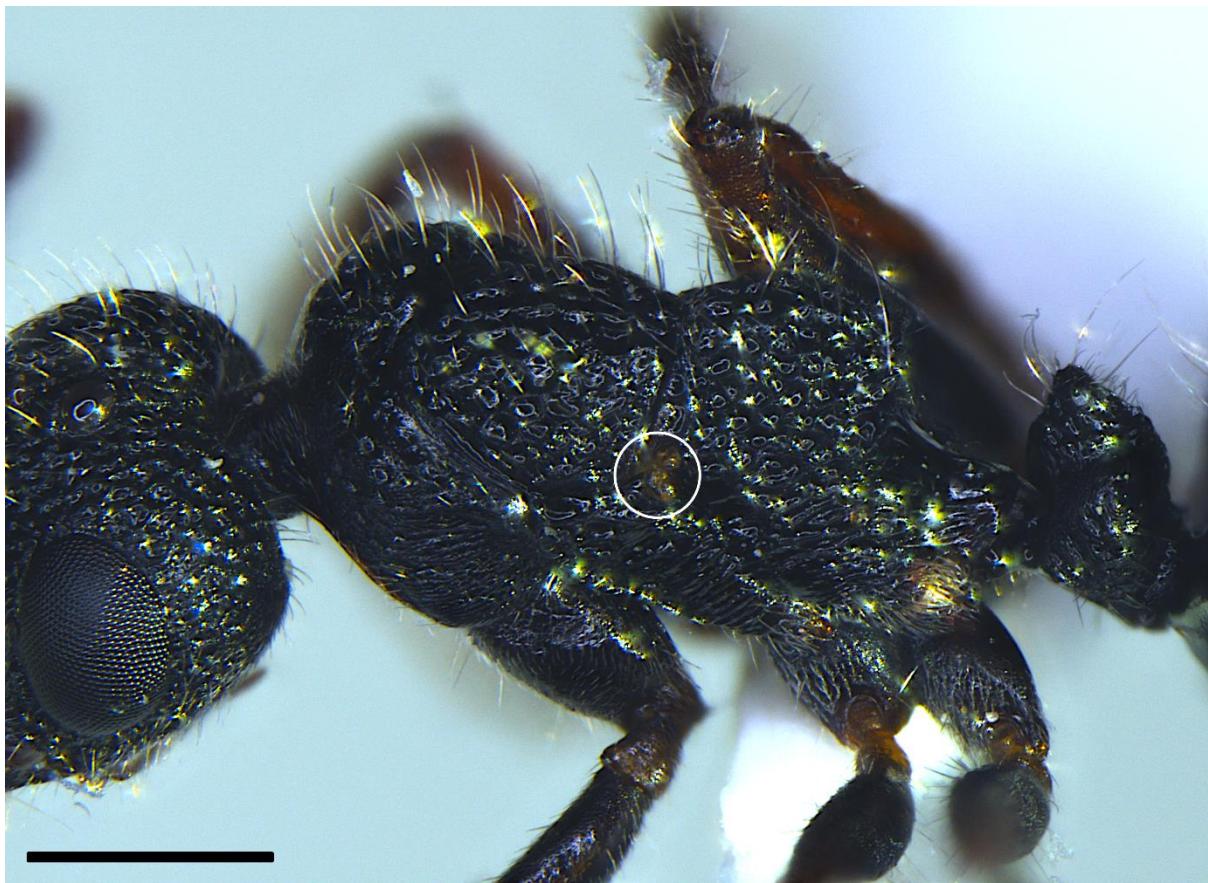
160 **Petiole:** The right side of the petiole exhibits abnormal development, lacking the distinct
161 anterolateral expansion visible in dorsal view (compare Figs. 1c-d). It also lacks the
162 typical posteroventral development of the sub-petiole (compare Figs. 1a-b). These right-
163 sided differences presumably reflect the expression of male morphology in this region.

164 **Gaster:** Overall, the gaster appears predominantly female. However, the anterolateral
165 surface of the first gastral tergite (AIII) lacks dense pubescence and erect hairs,
166 presenting as a 'bald patch' that exposes the underlying surface sculpturing (Fig. 1a). It
167 remains unclear whether this feature corresponds to male morphology or represents
168 another teratological defect.

169

170
171
172
173

Fig 1. Ergatandromorphic *Dolichoderus scrobiculatus* (A, C, E) shown in profile, dorsal, and full-face views, respectively. Morphotypical female worker of *D. scrobiculatus* (B, D, F) shown in profile, dorsal, and full-face views, respectively. White arrows on A, B, C and D indicate regions with subtle morphological changes


174 resulting from differing sexual phenotypic expression. Lines on E and F mark the midline of the head. Scale
175 bars = 1mm.

176

177

178 **Fig 2.** Close up of head of ergatandromorphic *Dolichoderus scrobiculatus*, oriented to show the
179 mandibular masticatory margin near-vertical, highlighting the asymmetry between the female (left) and
180 male (right) mandible and the rightward head tilt of the specimen. The prominent right-side lateral and
181 medial ocelli are indicated by white arrows. Notably, the left-side lateral ocellus is absent. Scale bar =
182 0.5mm.

183
184
185

Fig 3. Close-up photograph of an ergatandromorphic *Dolichoderus scrobiculatus*, with a wing scar marked with a white circle. Scale bar = 0.5mm.

186
187

188

Discussion

189 This paper documents a rare developmental anomaly in the Australian ant species
190 *Dolichoderus scrobiculatus* through a case of bilateral male-worker gynandromorphism
191 and characterises the resulting morphological asymmetries along the lateral body axis.
192 Behavioural data for gynandromorphic ants remains scarce, with most documented
193 accounts of the condition in the Formicidae focussing on aberrant morphological
194 characters, thus leaving the potential effects of such a condition on colony function and
195 individual behaviour largely unexplored.

196 The behavioural implications of bilateral male-worker gynandromorphism in this *D.*
197 *scrobiculatus* specimen cannot be determined with certainty as its incidence is
198 represented by a single deceased individual that was not observed while alive. However,
199 because the specimen was recovered from a pitfall trap, which are used to entrap
200 surface-active invertebrates (New, 1998), it is plausible that prior to entrapment the
201 individual (1) was engaged in worker-typical foraging behaviour, (2) had attempted to
202 partake in a mating event (despite lacking apparent reproductive genitalia), or (3) was
203 expelled from its natal colony by nestmates.

204 Yang and Abouheif (2011) reported that a *Pheidole morrisi* Forel gynandromorph
205 “seemed to be a functional member of its colony” and references therein observed the
206 same phenomena in other species, lending speculative support to the first hypothesis
207 (Wheeler, 1937; Donisthorpe, 1946; Pearson and Child, 1980; Kinomura and Yamauchi,
208 1994; Heinze and Trenkle, 1997; Yoshizawa et al., 2008; see also Chiyoda et al., 2023).
209 Conversely, the latter hypothesis is also plausible, as Mariano et al. (2017; 2022)
210 documented gynandromorphic individuals collected from the surrounds of their nests
211 and attributed their frequent out-of-nest occurrence to colony expulsion driven by
212 nestmate recognition of reduced reproductive fitness (but see below for an alternative
213 explanation). It therefore remains possible that, following the event of an expulsion, the
214 *D. scrobiculatus* ergatandromorph dispersed some distance from its nest before
215 encountering the pitfall trap. This scenario is consistent with the absence of other *D.*
216 *scrobiculatus* in the same trap, a contrast to earlier surveys on nearby sites in which this
217 species was commonly collected in multiples (Falls, unpubl. data).

218 Relevant to the individual presented here, Mariano et al. (2022) raise the question of how
219 bilateral gynandromorphs process sensory information received by their strongly
220 dimorphic antennal structures and specific receptors. As one of the primary sensory
221 organs of the head, antennae mediate communication, behavioural and physiological
222 responses; in males, detection of chemical signals via the antennae underlies attraction
223 to females (Mariano et al., 2022). Torossian (1974) observed antennation behaviour
224 between an ergatandromorphic *Dolichoderus quadripunctatus* and its nestmates, noting
225 that it displayed a “significantly simplified antennal ritual” which appeared to inhibit
226 stomodeal and proctodial trophallactic exchanges. Torossian also states that, via its own
227 attitude, the individual “flee[d] from his fellow creatures most of the time” (In this context,
228 “his” was used to describe a specimen that was not uniformly genetically male). This
229 behaviour subsequently resulted in a type of social exclusion not explicitly enforced by
230 nestmates, potentially representing an alternative mechanism of colony-level social
231 expulsion to that proposed by Mariano et al. (2017). Ultimately, without direct
232 observation of the living individual described here, any behavioural inferences remain
233 speculative.

234 It remains important to document these rare occurrences of gynandromorphism as they
235 may provide a meaningfully useful model for understanding developmental,
236 morphological, social, physiological and evolutionary processes of social insects
237 including ants. If for no other reason, these fortuitously collected “veritable
238 entomological nightmares” continue to fascinate and captivate myrmecologists, as they
239 have for nearly two centuries.

240

241

242

243

244 **Acknowledgements**

245 I thank Vivian Sandoval and Tamara Taylor for providing access to a high-quality
246 stereomicroscope for photographing purposes and for their support and expertise in
247 preparing images, and Mark Wong and Melinda McNaught for providing valuable
248 feedback on the manuscript. I also thank Jessica Hill, Nicole Bowen, Jacob Matthews,
249 Bruce Tiumalu, Peta Burgess, Gregory Croome and Gary Mant for their tireless efforts in
250 the field and for deploying and collecting the pitfall trap that led to this discovery.

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275 **References**

276 Andersen A.N., Hoffman B., Oberprieler S. 2018. Diversity and biogeography of a species-
277 rich ant fauna of the Australian seasonal tropics. *Insect Science* **25**: 519-526.
278 <https://doi.org/10.1111/1744-7917.12402>

279 Berndt K.P., Kremer G. 1982. Heat shock-induced gynandromorphism in the pharaoh's
280 ant, *Monomorium pharaonis* (L.). *Experientia* **38**: 798-799.
281 <https://doi.org/10.1007/bf01972277>

282 Berndt K.P., Kremer G. 1983. New categories in the gynandromorphism of ants. *Insectes
283 Sociaux* **30**: 461-465. <https://doi.org/10.1007/BF02223977>

284 Braby M.F. 2012. New larval food plants and biological notes for some butterflies
285 (Lepidoptera: Papilioidea) from eastern Australia. *Australian Entomologist*
286 **39(2)**: 65-68. <https://biostor.org/reference/274405>

287 Buschinger A., Stoewesand H. 1971. Teratologische untersuchungen an ameisen
288 (Hymenoptera: Formicidae). *Beitr. Entomol.* **21**: 211-241.
289 <https://doi.org/10.21248/contrib.entomol.21.1-2.211-241>

290 Campos, A.E., Kato, L.M., Zarzuela, M.F. 2011. Occurrence of Different Gynandromorphs
291 and Ergatandromorphs in Laboratory Colonies of the Urban Ant, *Monomorium
292 floricola*. *Journal of Insect Science* **11(17)**. <https://doi.org/10.1673/031.011.0117>

293 Chiyoda K., Yoshimura H., Inoue K., Yamasaki K., Satoh T., Koyama S. 2023. Morphology
294 and behaviour of ergatandromorph in *Camponotus yamaokai* Terayama & Satoh,
295 1990 (Hymenoptera: Formicidae). *Entomological Science* **26(4)**: e12565.
296 <https://doi.org/10.1111/ens.12565>

297 Cokendolpher J.C., Francke O.F. 1983. Gynandromorphic desert fire ant, *Solenopsis
298 aurea* Wheeler (Hymenoptera: Formicidae). *J.N.Y Entomol. Soc* **91**: 242-245.
299 <http://www.jstor.org/stable/25009362>

300 Creighton W.S. 1928. Notes on three abnormal ants. *Psyche: A journal of Entomology*
301 **35(1)**: 51-55. <https://doi.org/10.1155/1928/64216>

302 Crosland M.W.J., Crozier R.H., Jefferson E. 1988. Aspects of the biology of the primitive
303 and genus *Myrmecia* F. (Hymenoptera: Formicidae). *Journal of the Australian
304 Entomological Society* **27**: 305-309. <https://doi.org/10.1111/j.1440-6055.1988.tb01179.x>

306 Dobata S., Shimoji H., Ohnishi H., Hasegawa E., Tsuji K. 2011. Paternally inherited alleles
307 in male body parts of an ant (*Diacamma* sp.) sex mosaic: implication for
308 androgenetic male production in the Hymenoptera. *Insectes Sociaux* **59**: 55-59.
309 <https://doi.org/10.1007/s00040-011-0187-5>

310 Donisthorpe H.S.J.K. 1929. Gynandromorphism in ants. *Zoologischer Anzeiger* **82**: 92-96.

311 Donisthorpe, H. 1946. Fifty gynandromorphous ants taken in a single colony of *Myrmica
312 sabuleti* Meinert. *Ireland Entomology (London)* **79**: 121-131.

313 Eastwood R.G., Braby M.F., Lohman D.J., King A. 2008. New ant-lycaenid associations
314 and biological data for some Australian butterflies (Lepidoptera: Lycaenidae).
315 *Australian Entomologist* **35**: 47-56. <https://biostor.org/reference/274314>

316 Eastwood R.G., Fraser A.M. 1999. Associations between lycaenid butterflies and ants in
317 Australia. *Australian Journal of Ecology* **24**: 503-507.
318 <https://doi.org/10.1046/j.1440-169x.1999.01000.x>

319 Forbes, J. 1954. The anatomy and histology of the male reproductive system of
320 *Camponotus pennsylvanicus* DeGeer (Formicidae, Hymenoptera). *Journal of*
321 *Morphology* **95(3)**: 523-555. <https://doi.org/10.1002/jmor.1050950307>

322 Fusco G., Minelli A. 2023. Descriptive versus causal morphology: gynandromorphism
323 and intersexuality. *Theory in Biosciences* **142**: 1-11.
324 <https://doi.org/10.1007/s12064-023-00385-1>

325 *Gynandromorphs - AntWiki*. Available at <https://www.antwiki.org/wiki/Gynandromorphs>
326 [Accessed 23/01/2026]

327 Haskins C.P. 1951. Note on a Gynandromorph in *Amblyopone australis* Erichson
328 (Hymenoptera: Formicidae). *Journal of the New York Entomological Society* **59(4)**:
329 221-224. <https://biostor.org/reference/171046>

330 Heinze J., Trenkle S. 1997. Male polymorphism and gynandromorphs in the ant
331 *Cardiocondyla emeryi*. *Naturwissenschaften* **84**: 129-131.
332 <https://doi.org/10.1007/s001140050362>

333 Hung A.C.F., Norton W.N., Vinson S.B. 1975. Gynandromorphism in the red imported fire
334 ant, *Solenopsis invicta* Buren (Hymenoptera: Formicidae). *Evolution* **7**: 127-235.
335 <https://biostor.org/reference/77456>

336 Jan Ove G., Frode Ø., Arnstein S., Kjell Magne O. 2016. Records of bilateral
337 gynandromorphism in three species of ants (Hymenoptera, Formicidae) in
338 Norway. *Norwegian Journal of Entomology* **63(1)**: 65-70.

339 Jones S.R., Phillips S.A. 1985. Gynandromorphism in the ant *Pheidole dentata* Mayr
340 (Hymenoptera: Formicidae). *Proc. Entomol. Soc. Wash* **87(3)**: 583-586.
341 <https://biostor.org/reference/75198>

342 Kinomura K., Yamauchi K. 1994. Frequent occurrence of gynandromorphs in the natural
343 population of the ant *Vollenhovia emeryi* (Hymenoptera: Formicidae). *Insectes*
344 *Sociaux* **41**: 273-278. <https://doi.org/10.1007/BF01242298>

345 Kremer G., Berndt K.P. 1986. Zur Morphologie normaler und gynandromorpher
346 Pharaameisen *Monomorium pharaonis* (L.). *Deutsche Entomologische*
347 *Zeitschrift* **33(3-5)**: 177-221. <https://doi.org/10.1002/mmnd.4800330309>

348 Mariano C.S.F., Araujo E.S., Delabie J.H.C. 2022. Somatic anomalies in Formicidae: new
349 cases and discussion of anomaly origin during immature development. *Insectes*
350 *Sociaux* **69**: 197-213. <https://doi.org/10.1007/s00040-022-00863-7>

351 Mariano C.S.F., Rios E.O., Araujo E.A., Delabie J.H.C. 2017. From back-to-back bilaterality
352 and viability of sexual mosaics in Myrmecinae (Formicidae). In: XXIII Simpósio de
353 Mirmecologia, an International Ant Meeting. Curitiba, UFPR.

354 Munsee J.R. 1977. A gynandromorph of Smithistruma (Hymenoptera: Formicidae). *Proceedings of the Indiana Academy of Science* **87**: 246-251.

356 Narita S., Pereira R.A.S., Kjellberg F., Kageyama D. 2010. Gynandromorphs and
357 intersexes: potential to understand the mechanism of sex determination in
358 arthropods. *Terrestrial Arthropod Reviews* **3**: 63-96.
359 <https://doi.org/10.1163/187498310X496190>

360 New T.R. 1998. Invertebrate Surveys for Conservation. *Oxford University Press*. Oxford,
361 UK.

362 Pearson B., Child A.R. 1980. The distribution of an esterase polymorphism in macrogynes
363 and microgynes of *Myrmica rubra* Latrielle. *Evolution* **34**: 105-109.
364 <https://doi.org/10.1111/j.1558-5646.1980.tb04792.x>

365 Pitts J.P., McHugh J.V., Ross K.G. 2002. A cladistic analysis of the Solenopsis saevissima
366 species-group (Hymenoptera: Formicidae). *Zoologica Scripta* **34(5)**: 493-505.
367 <https://doi.org/10.1111/j.1463-6409.2005.00203.x>

368 Purkart A., Krčmárik S., Jancík L. 2024. First record of ergatandromorphous *Temnothorax*
369 *turcicus* Santschi, 1934 (Hymenoptera: Formicidae) in Slovakia. *Fragmenta entomologica* **56(1)**: 119-122. <https://doi.org/10.13133/2284-4880/1527>

371 Schifani E., Castracini C., Spotti F.A., Giannetti D., Ghizzoni M., Gobbi M., Predrotti L.,
372 Grasso D.A., Mori A. 2020. Ergatandromorphism in the ant *Myrmica lobulicornis*
373 Nylander, 1857 (Formicidae: Myrmecinae). *Sociobiology* **67(2)**: 330-334.
374 <https://doi.org/10.13102/sociobiology.v67i2.5084>

375 Scupola A. 1994. Un caso di ginandromorfismo in *Myrmica* Latr. (Hymenoptera:
376 Formicidae). *Bollettino della Società Entomologica Italiana* **125**: 252-254.

377 Shattuck S.O. 1999. Australian Ants: Their Biology and Identification. *Collingwood, Vic:*
378 *CSIRO Publishing*.

379 Shattuck S.O., Marsden S. 2013. Australian species of the ant genus *Dolichoderus*
380 (Hymenoptera: Formicidae). *Zootaxa* **3716**: 101-143.
381 <https://doi.org/10.11646/zootaxa.3716.2.1>

382 Skvarla M.J., Dowling P.G. 2014. First Report of Gynandromorphism in *Temnothorax*
383 *curvispinosus* (Mayr, 1866) (Hymenoptera: Formicidae). *Proceedings of the*
384 *Entomological Society of Washington* **116(3)**: 349-353.
385 <https://doi.org/10.4289/0013-8797.116.3.349>

386 Taber S.W., Francke O.F. 1986. A Bilateral Gynandromorph of the Western Harvester Ant,
387 *Pogonomyrmex occidentalis* (Hymenoptera: Formicidae). *The Southwestern*
388 *Naturalist* **31(2)**: 274-276. <https://doi.org/10.2307/3670583>

389 Tripathy A., Bharti H., Singh A.P. 2026. First Report of an Intercaste of *Dolichoderus*
390 *taprobanae* Smith, F., 1858 (Formicidae: Dolichoderinae) from India. *Proceedings*
391 *of the Zoological Society*. <https://doi.org/10.1007/s12595-026-00605-8>

392 Vandel A. 1931. Etude d'un gynandromorphe (dinergatandromorphe) de *Pheidole*
393 *pallidula* Nyl. (hyménoptères-formicidés). *Bull. Biol. France Belg* **65**: 114-129.

394 Weber N.A. 1937. The nest of an anomalous colony of the arboreal ant *Cephalotes*
395 *atratus*. *Psyche* **61(2)**: 60-69. <https://doi.org/10.115/1957/71981>

396 Wheeler W.M. 1903. Some New Gynandromorphous Ants, with a Review of the Previously
397 Recorded Cases. *American Museum of Natural History* **19(29)**: 653-683.

398 Wheeler W.M. 1914. Gynandromorphous ants described during the decade 1903-1913.
399 *The American Naturalist* **48**: 49-56. <http://www.jstor.org/stable/2456242>

400 Wheeler W.M. 1919. Two gynandromorphous ants. *Psyche* **26(1)**: 1-7.
401 <https://doi.org/10.1155/1919/37951>

402 Wheeler W.M. 1931. Concerning some ant gynandromorphs. *Psyche* **38**: 80-85.
403 <https://doi.org/10.1155/1931/51940>

404 Wheeler W.M. 1937. Mosaics and other anomalies among ants. *Cambridge: Harvard*
405 *University Press*.

406 Yang S.A., Abouheif E. 2011. Gynandromorphs as Indicators of Modularity and
407 Evolvability in Ants. *Journal of Experimental Zoology Part B Molecular and*
408 *Developmental Evolution* **316(5)**: 313-8.

409 Yoshizawa J., Mimori K., Yamauchi K., Tsuchida K. 2008. Sex mosaics in a male dimorphic
410 ant *Cardiocondyla kagutsuchi*. *Naturwissenschaften* **96**: 49-55.
411 <https://doi.org/10.1007/s00114-008-0447-z>

412

413

414

415

416

417

418

419

420

421

422

423 **Supplementary Materials**

424 **Table 1:** List of published and recorded accounts of gynandromorphic Formicidae. The first column lists
 425 species as they were reported at the time of publication, with the second column amending for
 426 contemporary taxonomic classification. The third column lists the condition of the specimen(s) as reported
 427 by their respective authors. In the Supplementary material of Mariano et al. (2022), a more comprehensive
 428 table is provided, including additional records of anomalous teratology.

Reported species	Senior synonym	Reported condition(s)	Reference(s)
<i>Acromyrmex octospinosus</i>	<i>Acromyrmex octospinosus</i> (Reich, 1793)	Gynandromorph	Wheeler (1937)
<i>Amblyopone australis</i>	<i>Amblyopone australis</i> Erichson, 1842	Gynandromorph	Haskins (1951)
<i>Anergates atratulus</i>	<i>Tetramorium atratum</i> (Schenck, 1852)	Gynandromorph	Described by Adler in Donisthorpe (1929)
<i>Azteca instabilis</i>	<i>Azteca instabilis</i> (Smith, F. 1862)	Gynandromorph	Described by Forel in Wheeler (1903)
<i>Bothriomyrmex communista</i>	<i>Bothriomyrmex communista</i> Santschi, 1919	Gynandromorph	Described by Karawajew in Donisthorpe (1929)
<i>Camponotus (Colobopsis) albocinctus</i>	<i>Camponotus albocinctus</i> (Ashmead, 1905)	Dinergatandromorph	Wheeler (1919)
<i>Camponotus ligniperdus</i>	<i>Camponotus ligniperda</i> (Latrielle, 1802)	Gynandromorph	Described by Klapálek in Wheeler (1903)
<i>Camponotus yamaokai</i>	<i>Camponotus yamaokai</i> Terayama & Satoh, 1990	Ergatandromorph	Chiyoda et al. 2023
<i>Cardiocondyla batesi</i> Forel var. <i>nigra</i> Forel	<i>Cardiocondyla nigra</i> Forel, 1905	Gynandromorph	Wheeler (1914); Described by Santschi in Donisthorpe (1929)
<i>Cardiocondyla emeryi</i>	<i>Cardiocondyla emeryi</i> Forel, 1881	Gynandromorph	Heinze & Trenkle (1997)
<i>Cardiocondyla kagutsuchi</i>	<i>Cardiocondyla kagutsuchi</i> Terayama, 1999	Gynandromorph / ergatandromorph	Yoshizawa et al. 2008
<i>Cardiocondyla minutior</i>	<i>Cardiocondyla minutior</i> Forel, 1899	Gynandromorph	Wheeler (1931)
<i>Cardiocondyla wroughtoni</i> var. <i>hawaiiensis</i>	<i>Cardiocondyla wroughtonii</i> (Forel, 1890)	Gynandromorph	Wheeler (1931)
<i>Cataglyphis albicans</i>	<i>Cataglyphis albicans</i> (Roger, 1859)	Gynandromorph	Described by Santschi in Donisthorpe (1929); Wheeler (1931)
<i>Cataglyphis</i> sp.	<i>Cataglyphis</i> sp. Foerster, 1850	Gynandromorph	AntWiki.org (2026)
<i>Cephalotes atratus quadridens</i>	<i>Cephalotes atratus</i> (Linnaeus, 1758)	Gynandromorph	Wheeler (1937)
<i>Diacamma</i> sp.	<i>Diacamma</i> sp. Mayr, 1862	Gynandromorph	Dobata et al. 2011
<i>Dinoponera quadriiceps</i>	<i>Dinoponera quadriiceps</i> Kempf, 1971	Harlequin gynandromorph	Mariano et al. 2022
<i>Dolichoderus scrobiculatus</i>	<i>Dolichoderus scrobiculatus</i> (Mayr, 1876)	Ergatandromorph	Current study
<i>Ectatomma tuberculatum</i>	<i>Ectatomma tuberculatum</i> (Olivier, 1792)	Harlequin gynandromorph	Mariano et al. 2022
<i>Epipheidole inquilina</i>	<i>Pheidole inquilina</i> (Wheeler, W.M., 1903)	Gynandromorph	Wheeler (1903)
<i>Formica exsecta</i>	<i>Formica exsecta</i> Nylander, 1846	Gynandromorph	Described by Forel in Wheeler 1903
<i>Formica lugubris</i>	<i>Formica lugubris</i> Zetterstedt, 1838	Gynandromorph	Jan Ove et al. 2016
<i>Formica microgyna</i>	<i>Formica microgyna</i> Wheeler, W.M., 1903	Gynandromorph	Wheeler (1903)
<i>Formica nitidiventris</i>	<i>Formica pallidefulva</i> Latreille, 1802	Ergatandromorph	Creighton (1928)

<i>Formica rufa</i>	<i>Formica rufa</i> Linnaeus, 1761	Gynandromorph	Forbes (1954)
<i>Formica rufibarbis</i>	<i>Formica rufibarbis</i> Fabricius, 1793	Gynandromorph	Described by Forel in Wheeler (1903)
<i>Formica sanguinea</i>	<i>Formica sanguinea</i> Latreille, 1798	Ergatandromorph, Gynandromorph	Described by Tischbein, and Klug in Wheeler (1903)
<i>Formica truncicola</i>	<i>Formica truncorum</i> Fabricius, 1804	Gynandromorph	Described by Forel in Wheeler (1903)
<i>Gnamptogenys</i> sp. (male)	<i>Gnamptogenys</i> sp.	Harlequin gynandromorph	Mariano et al. 2022
<i>Harpagoxenus sublaevis</i>	<i>Harpagoxenus sublaevis</i> (Nylander, 1849)	Gynandromorph	Buschinger & Stoewesand (1971)
<i>Iridomyrmex constrictus</i>	† <i>Yantaromyrmex constrictus</i> (Mayr, 1868)	Gynandromorph	Wheeler (1914)
<i>Lasius (Acanthomyops) latipes</i>	<i>Lasius latipes</i> (Walsh, 1863)	Gynandromorph	Wheeler (1919)
<i>Leptothorax acervorum</i>	<i>Leptothorax acervorum</i> (Fabricius, 1793)	Gynandromorph	Buschinger & Stoewesand (1971)
<i>Leptothorax gredleri</i>	<i>Leptothorax gredleri</i> Mayr, 1855	Gynandromorph	Buschinger & Stoewesand (1971)
<i>Leptothorax kutteri</i>	<i>Leptothorax kutteri</i> Buschinger, 1966	Gynandromorph	Jan Ove et al. 2016
<i>Leptothorax muscorum</i>	<i>Leptothorax muscorum</i> (Nylander, 1846)	Gynandromorph	Buschinger & Stoewesand (1971)
<i>Leptothorax nylanderi</i>	<i>Temnothorax nylanderi</i> (Foerster, 1850)	Gynandromorph	Buschinger & Stoewesand (1971)
<i>Leptothorax obturator</i>	<i>Temnothorax obturator</i> (Wheeler, W.M., 1903)	Gynandromorph	Wheeler (1903); Donisthorpe (1929)
<i>Leptothorax tuberum</i>	<i>Temnothorax tuberum</i> (Fabricius, 1775)	Gynandromorph	Described by Adlerz in Wheeler (1903)
<i>Monomorium floricola</i>	<i>Monomorium floricola</i> (Jerdon, 1851)	Gynandromorph, ergatandromorph	Donisthorpe (1929); Campos et al. 2011
<i>Monomorium pharaonis</i>	<i>Monomorium pharaonis</i> (Linnaeus, 1758)	Gynandromorph, gynergatandromorph, ergatandromorph, androgynergatogynomorph & androergatogynomorph	Berndt & Kremer (1982); Berndt & Kremer (1983); Kremer & Berndt (1986)
<i>Myrmica sabuleti</i>	<i>Myrmica sabuleti</i> Meinert, 1861	Gynandromorph	Donisthorpe (1946); Scupola (1994)
<i>Myrmica laevinodis</i> , <i>Myrmica laevinodis</i> var. <i>Ruginodo-laevinodus</i>	<i>Myrmica rubra</i> (Linnaeus, 1758)	Gynandromorph	Described by Smith, Cooke, and Wasmann in Wheeler (1903); Donisthorpe (1929)
<i>Myrmica lobicornis</i>	<i>Myrmica lobicornis</i> Nylander, 1846	Gynandromorph	Described by Meinert in Wheeler (1903)
<i>Myrmica lobulicornis</i>	<i>Myrmica lobulicornis</i> Nylander 1857	Ergatandromorph	Schifani et al. (2020)
<i>Myrmica ruginodis</i>	<i>Myrmica ruginodis</i> Nylander, 1846	Gynandromorph	Described by Forel in Wheeler 1903
<i>Myrmica rugulosa</i>	<i>Myrmica rugulosa</i> Nylander, 1849	Gynandromorph	Donisthorpe (1929); Wheeler (1931)
<i>Myrmica scabrinodis</i>	<i>Myrmica scabrinodis</i> Nylander, 1846	Ergatandromorph, Gynandromorph	Described by Wasmann in Wheeler (1903); Donisthorpe (1929)
<i>Myrmica</i> sp.	<i>Myrmica</i> sp. Latreille, 1804	Gynandromorph	Buschinger & Stoewesand (1971)
<i>Myrmica sulcinodis</i>	<i>Myrmica sulcinodis</i> Nylander, 1846	Gynandromorph	Donisthorpe (1929)
<i>Myrmecia gulosa</i>	<i>Myrmecia gulosa</i> (Fabricius, 1775)	Ergatandromorph	Crosland et al. 1988

<i>Myrmecia pavida</i>	<i>Myrmecia pavida</i> Clark, 1951	Ergatandromorph	AntWiki.org (2026)
<i>Pheidole dentata</i>	<i>Pheidole dentata</i> Mayr, 1886	Gynandromorph	Jones & Phillips (1985)
<i>Pheidole morissi</i>	<i>Pheidole morissi</i> Forel, 1886	Gynandromorph	Yang & Abouheif (2011)
<i>Pheidole pallidula</i>	<i>Pheidole pallidula</i> (Nylander, 1849)	Dinergatandromorph	Vandel (1931)
<i>Pheidole</i> sp. <i>diligens</i> group	<i>Pheidole</i> sp. <i>diligens</i> group	Gynandromorph	Mariano et al. 2022
<i>Phyracaces singaporenensis</i>	<i>Lioponera singaporenensis</i> (Viehmeyer, 1916)	Gynandromorph	Described by Viehmeyer in Donisthorpe (1929)
<i>Pogonomyrmex occidentalis</i>	<i>Pogonomyrmex occidentalis</i> (Cresson, 1865)	Gynandromorph	Taber & Francke (1986)
<i>Polyergus rufescens</i>	<i>Polyergus rufescens</i> (Latreille, 1798)	Gynandromorph	Described by Forel in Wheeler (1903); Jan Ove et al. 2016
<i>Polyergus rufescens</i> Latr. subsp. <i>lucidus</i> Mayr	<i>Polyergus lucidus</i> Mayr, 1870	Gynandromorph	Wheeler (1903)
<i>Polyergus samurai</i>	<i>Polyergus samurai</i> Yano, 1911	Gynandromorph	Tsuneoka (2008)
<i>Polyrhachis lamellidens</i>	<i>Polyrhachis lamellidens</i> Smith, F., 1874	Ergatandromorph	AntWiki.org (2026)
<i>Ponera coarctata</i> <i>pennsylvanica</i>	<i>Ponera pennsylvanica</i> Buckley, 1866	Gynandromorph	Described by Wheeler in Haskins (1951)
<i>Ponera punctatissima</i>	<i>Hypoponera punctatissima</i> (Roger, 1859)	Ergatomorph, Gynandromorph	Wheeler (1931)
<i>Promyrmecia aberrans</i>	<i>Myrmecia aberrans</i> Forel, 1900	Gynergate	Described by Tulloch in Haskins (1951)
<i>Smithistruma</i> sp.	<i>Smithistruma</i> sp. Brown, 1948	Gynandromorph	Munsee (1977)
<i>Strumigenys denticulata</i>	<i>Strumigenys denticulata</i> Mayr, 1887	Gynandromorph	Mariano et al. 2022
<i>Strumigenys filitalpa</i>	<i>Strumigenys filitalpa</i> (Brown, 1950)	Gynandromorph	Munsee (1977)
<i>Solenopsis aurea</i>	<i>Solenopsis aurea</i> Wheeler, W.M., 1906	Gynandromorph	Cokendolpher & Francke (1983)
<i>Solenopsis fugax</i>	<i>Solenopsis fugax</i> (Latreille, 1798)	Gynandromorph	Described by Santschi in Donisthorpe (1929)
<i>Solenopsis invicta</i>	<i>Solenopsis invicta</i> Buren, 1972	Gynandromorph	Hung et al. 1975
<i>Solenopsis quinquecuspis</i>	<i>Solenopsis quinquecuspis</i> Forel, 1913	Gynandromorph	Pitts (2002)
<i>Stenamma (Aphaenogaster) fulvum</i> Roger subsp. <i>aquia</i> Buckley var. <i>piceum</i> Emery	<i>Aphaenogaster picea</i> (Wheeler, W.M., 1908)	Gynandromorph	Wheeler (1903)
<i>Stenamma westwoodi</i>	<i>Stenamma westwoodii</i> Westwood, 1839	Gynandromorph	Described by Perkins in Wheeler (1903)
<i>Temnothorax turcicus</i>	<i>Temnothorax turcicus</i> (Santschi, 1934)	Ergatandromorph	Purkart et al. 2024
<i>Temnothorax curvispinosus</i>	<i>Temnothorax curvispinosus</i> Mayr, 1866)	Gynandromorph	Skvarla & Dowling (2014)
<i>Tetramorium bicarinatum</i>	<i>Tetramorium bicarinatum</i> (Nylander, 1846)	Gynandromorph	Mariano et al. 2022
<i>Tetramorium guineense</i>	<i>Tetramorium guineense</i> (Bernard, 1953)	Gynandromorph	Described by Karawajew in Donisthorpe (1929)
<i>Tetramorium simillimum</i>	<i>Tetramorium simillimum</i> (Smith, F., 1851)	Gynandromorph	Described by Roger, and Meinert in Wheeler (1903); recorded by

			Santschi in Donisthorpe (1929)
<i>Vollenhovia emeryi</i>	<i>Vollenhovia emeryi</i> Wheeler, W.M., 1906	Gynandromorph	Kinomura & Yamauchi (1994)
<i>Wasmannia europunctata</i>	<i>Wasmannia europunctata</i> (Roger, 1863)	Gynandromorph	Mariano et al. 2022

429

† - indicates a fossil species.