

1 **A new analysis of biodiversity and conservation
2 knowledge products to support environmental
3 assessments**

4 Thomas Starnes^{1*}, Laure Denos², Lewis Kramer³, Francesca A. Ridley^{4,5}, Tom Scott⁶, Simon
5 Tarr¹, Rosamunde Almond³, Stuart H. M. Butchart^{6,7}, Heather C Bingham³, Neil D. Burgess^{3,8},
6 Craig Hilton-Taylor¹, Louise Mair^{4,5}, Philip J. K. McGowan^{4,5}, Aidin Niamir⁹, Andrew J.
7 Plumptre^{6,7,10}, Thomas M. Brooks^{2,11,12*}

8 1. International Union for Conservation of Nature, Cambridge, UK
9 2. International Union for Conservation of Nature, Gland, Switzerland
10 3. United Nations Environment Programme World Conservation Monitoring Centre (UNEP-
11 WCMC), Cambridge, UK
12 4. School of Natural and Environmental Sciences, Newcastle University, Newcastle upon
13 Tyne, UK
14 5. IUCN Species Survival Commission Global Biodiversity Framework Task Force, Newcastle
15 University, UK
16 6. BirdLife International, Cambridge, UK
17 7. Department of Zoology, University of Cambridge, Cambridge, U.K.
18 8. Center for Macroecology, Evolution and Climate (CMEC), University of Copenhagen,
19 Denmark
20 9. Senckenberg – Leibniz Institution for Biodiversity and Earth System Research
21 10. KBA Secretariat, c/o BirdLife International, Cambridge, UK
22 11. World Agroforestry Center (ICRAF), University of the Philippines Los Baños, Los Baños,
23 Laguna, Philippines
24 12. Institute for Marine & Antarctic Studies, University of Tasmania, Hobart, TAS, Australia

25 * corresponding authors: Thomas Starnes (thomas.starnes@iucn.org) & Thomas M. Brooks
26 thomas.brooks@iucn.org)

27 **Abstract**

28 The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES)
29 second global assessment of the state of biodiversity is in preparation, to be completed in
30 2028. To support this and other global and regional environmental assessments, we
31 disaggregate three global knowledge products based on IUCN standards (the IUCN Red List of
32 Threatened Species, Key Biodiversity Areas and Protected Planet), by IPBES regions and
33 subregions, units of analysis and direct drivers. We present twenty-one data tables organised
34 in seven thematic data groups: i) threatened species; ii) endemic and exclusive species; iii)
35 trends in downscaled Red List Indices; iv) threat abatement potential (STAR_T); v) restoration
36 potential (STAR_R); vi) protected and conserved area coverage (and effectiveness); and vii) key
37 biodiversity area numbers and protected area coverage. We also present three novel
38 crosswalks from IUCN countries, habitats and threats to IPBES regions, units of analysis and
39 direct drivers, respectively. These data can readily be used to inform global, regional and
40 subregional assessments of the status of biodiversity and drivers of its change.

41 **Background & Summary**

42 The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES)
43 is undertaking a second global assessment of biodiversity and ecosystem services (second
44 global assessment, hereafter “GA2”). As outlined in the scoping report set out in Annex I to its
45 decision IPBES 11/1¹, GA2 will be broadly similar in scope to the first global assessment² while
46 building on it to avoid repetition or unnecessary duplication. It will therefore assess relevant
47 knowledge that has become available since the publication of first global assessment, and
48 assess progress towards achieving the goals of sustainability and living in harmony with
49 nature. The GA2 got underway with a first authors meeting in Paris in late 2025 and will be
50 considered for adoption by the 15th IPBES Plenary in 2028. The specific objectives of the second
51 global assessment are: a) to support implementation of multilateral environmental
52 agreements and the Sustainable Development Goals (SDGs); b) to support the assessment of
53 progress towards global targets for 2030 and the global goals for 2050 of the Kunming-
54 Montreal Global Biodiversity Framework (KMGBF) and of relevant Sustainable Development
55 Goals and targets; and c) to assess the scientific and technical basis for additional efforts
56 needed to achieve the 2050 Vision for Biodiversity.

57 Meanwhile, IPBES is also preparing methodological assessments on monitoring³ and on spatial
58 planning⁴ with expected delivery in 2027. Moreover, the Convention on Biological Diversity is
59 undertaking global reviews of collective progress in the implementation of the KMGBF, further
60 to its decision COP 16/32⁵, for presentation at its 17th COP in 2026 and 19th COP in 2030, while
61 other multilateral environmental agreements and institutions are planning further
62 environmental assessments at regional and global levels.

63 To ensure that the GA2 and other global and regional assessments are supported by the most
64 up-to-date and accurate information, it is important to provide regionally and thematically
65 disaggregated data from authoritative global biodiversity and conservation knowledge
66 products. This analysis updates and expands a previous analysis of global biodiversity and
67 conservation knowledge products based on IUCN standards⁶, providing updates to regional
68 and global metrics and indicators with the most recent data versions, corresponding to the
69 temporal coverage of GA2, and adding additional metrics.

70 The three updated knowledge products are;

- 71 i) the IUCN Red List of Threatened SpeciesTM (hereafter “IUCN Red List”) and derived
72 Red List Index (RLI),
- 73 ii) the World Database of Key Biodiversity Areas (WDKBA) and
- 74 iii) Protected Planet, underpinned by the World Database on Protected Areas
75 (WDPA).

76 In addition to these updates, we

- 77 i) incorporate the Species Threat Abatement and Restoration (STAR) metric⁷ derived
78 from the IUCN Red List;
- 79 ii) expand on the Protected Planet knowledge product to include the newly-launched
80 World Database on Protected and Conserved Areas (WDPCA), which combines
81 and replaces the pre-existing WDPA and World Database on Other Effective Area-
82 based Conservation Measures (WD-OECM), and the Global Database on Protected
83 Area Management Effectiveness (GD-PAME);
- 84 iii) include new disaggregations of the IUCN Red List by IPBES units of analysis; and
- 85 iv) include new disaggregations of the IUCN Red List by IPBES direct drivers of change.

86 The inclusion of IPBES units of analysis and direct drivers required 'crosswalks' (i.e. translation
87 tables) from the IUCN habitats classification scheme⁸ and IUCN-CMP threats classification
88 scheme⁹, respectively, which are themselves also novel in this analysis.

89 The IUCN Red List is the world's most comprehensive information source on the global
90 extinction risk of animal, fungus and plant species. The Red List Index (RLI), based on the IUCN
91 Red List, shows trends in overall extinction risk for species. The Species Threat Abatement and
92 Restoration (STAR) metric, also based on the IUCN Red List, measures the potential of threat
93 abatement ($STAR_T$) and restoration ($STAR_R$) actions at specific locations to contribute to
94 reducing species extinction risk. Key Biodiversity Areas (KBAs) are sites of significance for the
95 global persistence of biodiversity. Protected Planet is the global source of data on protected
96 and conserved areas, including the World Database on Protected and Conserved Areas
97 (WCPCA) and the Global Database on Protected Area Management Effectiveness (GD-PAME).
98 These knowledge products and their derivatives document, respectively, species-level
99 extinction risk, areas of particular importance for biodiversity, and spatial coverage and
100 management effectiveness of protected and conserved areas.

101 We present twenty-one Data Tables corresponding to the disaggregation of these knowledge
102 products by IPBES region and subregion, IPBES direct drivers and IPBES units of analysis,
103 including three translation tables. The Data Tables are listed in Table 1.

104 By updating and extending these global conservation knowledge products based on IUCN
105 standards, these datasets provide a reproducible, transparent and policy-relevant foundation
106 for assessing global biodiversity and conservation. It is envisioned that these data will serve as
107 a useful reference for IPBES GA2 *Chapter 3: Status and trends*, particularly the subchapters on
108 *Nature* and on *Direct and indirect drivers*. Data Tables 1–3 and 7a, in reporting the status of
109 and trends in biodiversity, are anticipated to be particularly valuable in supporting assessment
110 of progress towards the KMGBF and SDG targets and goals (particularly relevant to GA2's
111 second objective, as well as the CBD global review), while Data Tables 4–6 and 7b-c, in
112 reporting on conservation progress and opportunities, are anticipated to be particularly
113 valuable in supporting implementation of multilateral environmental agreements and SDGs
114 (particularly relevant to GA2's first objective). As well as supporting IPBES GA2 and the CBD
115 global review, these datasets are intended to be of relevance to the wider research and policy
116 communities, in support of other regional and global environmental assessments.

117 Each of these datasets are constantly being updated and the data we provide here is the most
118 recent snapshot from the data hosted online by these datasets in December 2025. Users are
119 encouraged to use the databases where they need the latest data. All Data Tables are available
120 in CSV format on Zenodo under a CC BY-NC license¹⁰, following FAIR principles¹¹ and the IPBES
121 Data and Knowledge Management Policy¹².

122 **Methods**

123 **IPBES regions and sub-regions**

124 The IPBES second global assessment will cover all biogeographic and oceanographic zones
125 from the regional to the global level, including terrestrial, inland water, coastal and marine
126 ecosystems. However, the IPBES regions and sub-regions spatial dataset from the IPBES
127 Zenodo repository¹³ only covers the terrestrial realm above the shoreline.

128 For the STAR disaggregations (Data Tables 4a, 4b, 5a and 5b), a basemap of IPBES regions and
129 subregions that includes marine areas based on Exclusive Economic Zones (EEZs) was used for

130 the spatial analysis^{6,14}. For protected and conserved areas (Data Tables 6a and 6b), another
131 basemap is used which is a combination of terrestrial administrative boundaries aligned with
132 UN cartographic guidelines¹⁵, Exclusive Economic Zones (EEZ)¹⁶ and 30-metre resolution global
133 shoreline¹⁷. The high spatial resolution of the global shoreline dataset provides a more
134 accurate characterization of the terrestrial-marine boundary than previously available. This
135 results in the terrestrial area of small islands and complex shorelines being represented in
136 more detail and improves the accuracy of calculated coverage statistics.

137 For the other Data Tables, regional disaggregations were compiled by retrieving national and
138 sub-national data and then aggregating to IPBES regions and subregions based on a modified
139 version of the ISO 3166 lookup table from the IPBES Zenodo repository¹³. The lookup table was
140 modified to include Antarctica and Area Beyond National Jurisdiction (ABNJ), which are not
141 included within the IPBES regions but are nevertheless distinct and important areas for
142 biodiversity and conservation.

143 The assignment of countries or areas to specific groupings is for statistical convenience and
144 does not imply any opinion concerning the legal status of any country, territory, city or area of
145 its authorities, or concerning the delimitation of its frontiers or boundaries.

146 The modified countries-regions translation table is made available as Data Table 8.

147 **IPBES units of analysis**

148 The IPBES units of analysis were developed during the IPBES first global assessment² where
149 they are described in section 1.3.4 (pp. 33-35) and in Supplementary Material 1.5¹⁸. The
150 seventeen units of analysis represent coarse-scale global land cover types at the level of
151 natural “biomes” and human-modified “anthromes” and are intended to serve as a framework
152 for comparison within and across assessments in a policy context.

153 Species-habitat associations are recorded in the IUCN Red List according to the IUCN Habitats
154 Classification Scheme (Version 3.1)⁸. The scheme provides a hierarchical, standardised
155 classification of habitats associated with species assessed in the IUCN Red List.

156 To enable reporting aligned with the IPBES units of analysis, a one-to-many translation table
157 (hereafter “crosswalk”) was developed to map classes from the IUCN habitats classification
158 scheme to the most appropriate IPBES units of analysis. The crosswalk was based on an expert-
159 driven approach that evaluated the conceptual correspondence between habitat definitions
160 in the two classification schemes. The crosswalk includes one hundred IUCN habitat classes at
161 level 2 in the classification scheme, plus four habitats at level 1 which have no level 2 specific
162 habitats.

163 Six IUCN habitat classes were found to have no equivalent in the IPBES Units of Analysis – three
164 level 1 habitats and three level 2 habitats – and these are represented as N/A in the crosswalk.
165 These N/A habitats are reported here with the number of associated species in parentheses:
166 7.1. *Caves and Subterranean Habitats (non-aquatic)* – *Caves* (n = 1,374); 7.2. *Caves and*
167 *Subterranean Habitats (non-aquatic)* – *Other subterranean habitats* (n = 405); 15.5 *Artificial*
168 *aquatic - Excavations (open)* (n = 274); 16 *Introduced Vegetation* (n = 368), 17 *Other* (n = 785);
169 and 18 *Unknown* (n = 4,656). Notably, the IPBES Units of Analysis has no explicit representation
170 of subterranean systems, although IUCN habitat class 5.18. *Wetlands (inland)* – *Karst and other*
171 *subterranean hydrological systems (inland)* was mapped here to IPBES *Inland surface waters*
172 *and water bodies/freshwater*. IUCN habitat 15.5 *Excavations (open)* includes gravel, brick, clay
173 pits, borrow pits and mining pools, which did not have any clear mapping to IPBES Units of
174 Analysis.

175 Commercial forests were considered in the IPBES first global assessment to fit conceptually
176 within unit 10 Cultivated areas, but they could not be discriminated on a global scale from
177 natural forests (units 1 and 2), so could not reliably be mapped separately¹⁸. However, recent
178 advances in natural forest mapping may make this distinction possible in the future¹⁹.

179 The full translation table is made available as [Data Table 9](#).

180 **IPBES direct drivers of change**

181 We followed the IPBES model of direct drivers of biodiversity and ecosystem change (hereafter
182 “direct drivers”). Direct drivers (natural and anthropogenic) are drivers that unequivocally
183 influence biodiversity and ecosystem processes (also referred to as ‘pressures’). The IPBES
184 direct drivers are land-use change, climate change, pollution, natural resource use and
185 exploitation, and invasive species²⁰.

186 Threats to species are recorded on the IUCN Red List according to the IUCN-CMP Threats
187 Classification Scheme (Version 3.3)⁹. The scheme provides a hierarchical, standardised
188 classification of threats associated with species assessed in the IUCN Red List. In using this
189 hierarchical classification of the drivers of species decline, Assessors are asked to indicate the
190 threats that triggered the listing of the taxon concerned at the most detailed level possible.

191 To enable reporting aligned with the IPBES direct drivers, a one-to-many translation table
192 (hereafter “crosswalk”) was developed to map classes from the IUCN-CMP threats
193 classification scheme to the most appropriate IPBES direct drivers. The crosswalk was based
194 on an expert-driven approach that evaluated the conceptual correspondence between
195 threat/driver definitions in the two classification schemes. The crosswalk includes forty-five
196 IUCN habitat classes at level 2 in the classification scheme e.g. 1.1 *Housing & urban areas*,
197 nested within twelve level 1 threats e.g. 1. *Residential & commercial development*. For
198 developing the crosswalk table, we considered the forty-five level 2 threats on a case-by-case
199 basis. Ultimately, the crosswalk is effective at level 1 of the IUCN-CMP scheme, but we present
200 the full breakdown at level 2 for completeness.

201 Some IUCN threat classes can fit multiple IPBES drivers. For example, a tree species might be
202 impacted by logging & wood harvesting through natural resource use and exploitation, while
203 an amphibian species might be impacted by logging & wood harvesting through land/sea use
204 change (habitat loss and degradation). Considering this caveat, we grouped all of IUCN threats
205 1-4 under IPBES land/sea use change, acknowledging this as a limitation of the crosswalk, and
206 noting that it is important to consider stresses in any analysis of the threats affecting a species.

207 Note that a new threats classification scheme has recently been published²¹ but it is not yet
208 operational within the IUCN Red List and is therefore not used in this analysis.

209 The full translation table is made available as [Data Table 10](#).

210 **IUCN Red List of Threatened Species**

211 Established in 1964, the IUCN Red List of Threatened Species is the world’s most
212 comprehensive information source on the global extinction risk of animal, fungus and plant
213 species. Species extinction risk is assessed into nine mutually exclusive categories according
214 to the IUCN Red List Categories and Criteria²². The Red List categories are Not Evaluated (NE);
215 Data Deficient (DD); Least Concern (LC); Near Threatened (NT); Vulnerable (VU); Endangered
216 (EN); Critically Endangered (CR); Extinct in the Wild (EW); and Extinct (EX). Version 2025-2 of
217 the IUCN Red List includes assessments of 172,620 species²³. For this analysis we included all

218 comprehensively assessed groups of species. Groups that have been comprehensively
219 assessed are those containing >80% of species evaluated within the described taxon group.
220 Comprehensively assessed groups are cycads, reef-forming corals, amphibians, selected dicots
221 (cacti and protea family), trees, sharks, rays & chimeras, conifers, selected crustaceans
222 (lobsters; freshwater crabs; freshwater crayfishes; and freshwater shrimps), mammals,
223 freshwater fishes, reptiles, selected insects (dragonflies & damselflies), birds and cephalopods
224 (nautiluses; octopuses; and squids).

225 Data downloaded from the IUCN Red List database included habitats, threats, countries of
226 occurrence and red list categories.

227 **Countries of occurrence**

228 The IUCN Red List assessments include countries of occurrence (COO), which are marked up
229 according to presence, origin and seasonality codes²⁴. The data presented in [Data Tables 1a-c](#)
230 [and 2a-c](#) include only certain distributions, reintroduced species and regionally extinct species
231 (i.e., the figures exclude all uncertain distributions, introduced species and vagrant records).
232 To this end, COOs with presence coded as extant, extinct or possibly extinct were included,
233 whereas those coded as possibly extant or uncertain were removed. COOs with origin coded
234 as native or reintroduced were included whereas those coded as vagrant, origin or assisted
235 colonisation were removed. All COO seasonality codes were included.

236 After applying the crosswalk to map IUCN country codes to IPBES subregions, a summary was
237 produced of the total numbers and percentages of assessed species per IUCN Red List category
238 per IPBES subregion, for all species ([Data Table 1a](#)) and for species exclusively threatened by
239 each IPBES driver ([Data Table 2a](#)).

240 **IUCN habitats**

241 For calculating the total number of species per IPBES Unit of Analysis ([Data Tables 1b and 2b](#)),
242 all IUCN level 3 habitat codes were truncated to level 2 of the IUCN habitats classification
243 scheme before mapping to IPBES Units of Analysis using the crosswalk table ([Data Table 9](#)).
244 Level 1 habitat codes were excluded from the analysis except for 6 – Rocky Areas, which is
245 mapped to IPBES Tundra and High Mountain habitats. Species-habitat associations are coded
246 as suitable (sometimes “major importance”), marginal and unknown. All habitats were
247 included regardless of their importance. Species habitat associations are also coded for
248 seasonality (resident, breeding, non-breeding, passage and unknown). All habitats were
249 included regardless of their seasonality.

250 After applying the crosswalk to map IUCN habitats to IPBES units of analysis, a summary was
251 produced of the total numbers and percentages of assessed species per IUCN Red List category
252 per IPBES unit of analysis, for all species ([Data Table 1b](#)) and for species “endemic” to the IPBES
253 units of analysis ([Data Table 2b](#)).

254 **IUCN threats**

255 IUCN Red List threats are marked up with timing, scope and severity, where scope is the
256 proportion of the species’ population impacted by the threat and severity is the expected rate
257 of population decline. Threats with timing ongoing, future, past and likely to return, unknown
258 and null values were included and those with timing in the past and unlikely to return were
259 removed. Threats with slow, significant declines, rapid declines, very rapid declines, causing
260 fluctuations and unknown and null values were included and those with negligible severity or
261 no decline were removed. All threat scopes were included.

262 For calculating the total number of species per IUCN Red List category per IPBES Direct Driver
263 (Data Tables 1c and 2c), IUCN threat codes at levels 2 and 3 were truncated to level 1 of the
264 IUCN threat classification scheme before mapping to IPBES drivers using the crosswalk table
265 (Data Table 10).

266 After applying the crosswalk to map IUCN threats to IPBES drivers, a summary was produced
267 of the total numbers and percentages of assessed species per IUCN Red List category per IPBES
268 unit of analysis, for all species (Data Table 1c) and for species exclusively threatened by each
269 IPBES driver (Data Table 2c).

270 **Red List Index**

271 The Red List Index (RLI), based on the IUCN Red List of Threatened Species, shows trends in
272 overall extinction risk for species. The methods and scientific basis for the Red List Index are
273 described in a series of articles^{25–28} and also summarised on the IUCN Red List website²⁹ and
274 in the SDG metadata for Indicator 15.5.1: Red List Index³⁰.

275 The RLI was not calculated for every IPBES driver and unit of analysis because some of the
276 disaggregations contained too few species with genuine changes in Red List category to
277 reliably calculate the index. However where RLIs are already available for thematic
278 disaggregations (e.g. invasive species, pollution), they were included in the relevant Data
279 Tables (Data Tables 3a-c).

280 **Species Threat Abatement and Restoration**

281 The Species Threat Abatement and Restoration (STAR) metric quantifies the potential for
282 threat abatement ($STAR_T$) and habitat restoration ($STAR_R$) in any given place to contribute to
283 the reduction of species extinction risk. STAR considers species that are assessed as Near
284 Threatened or threatened (Vulnerable, Endangered or Critically Endangered) on the IUCN Red
285 List and makes the underlying assumption that the complete alleviation of threats to a species
286 would halt population and/or distribution decline such that the species could be downlisted
287 to Least Concern. The maximum $STAR_T$ score per species is determined by the species IUCN
288 Red List extinction risk category (NT = 100, VU = 200, EN = 300, CR = 400). This maximum score
289 per species can be disaggregated spatially and among threats.

290 The contribution of any given location to the species total $STAR_T$ score is determined by the
291 proportion of the species' global current area of habitat (AOH) present at that location. The
292 contribution of each threat is determined by the scope and severity of each threat
293 documented in the species' IUCN Red List Assessment. The total $STAR_R$ per species is
294 determined by total global extent of potentially restorable AOH for the species relative to the
295 extent of current AOH for the species, and weighted by the species extinction risk. A multiplier
296 is also applied that down-weights $STAR_R$ scores to reflect the lower and slower conservation
297 return on restored habitat compared to threat abatement in existing habitat. $STAR_R$ can
298 similarly be disaggregated spatially (using extent of restorable AOH present in a location) and
299 by threat (in the same way as for $STAR_T$).

300 $STAR_T$ has been calculated for 9,100 species of terrestrial amphibians, birds, mammals and
301 reptiles at a 1 km x 1 km resolution globally using IUCN Red List 2025-1³¹. $STAR_T$ has also been
302 calculated for 1,646 marine species at a 5 km x 5 km resolution globally using IUCN Red List
303 2022-1³². $STAR_R$ has been calculated for 5,359 species of terrestrial amphibians, birds and
304 mammals at 5 km x 5 km resolution globally using IUCN Red List 2019-2⁷.

305 **Key Biodiversity Areas**

306 Key Biodiversity Areas are defined as sites of significance for the global persistence of
307 biodiversity³³. A site qualifies as a KBA if it meets one or more of eleven criteria relating to
308 threatened species or ecosystems, geographically restricted species or ecosystems, ecological
309 integrity, biological processes, and irreplaceability. KBAs are delineated as geographical areas
310 on land and/or in water with clearly defined ecological, physical, administrative or
311 management boundaries. Each KBA is actually or potentially manageable as a single unit to
312 ensure the persistence of the biodiversity elements for which it is important. The form of
313 management is not prescribed: some KBAs are formally designated as protected areas, others
314 are recognised OECMs, some are managed by local communities or individual landowners, and
315 some have no management in place. Some 16,602 KBAs have been identified to date in
316 virtually all countries and in terrestrial, freshwater and marine environments.

317 Data on KBAs are held in the World Database of KBAs (WDKBA) managed by BirdLife
318 International on behalf of the KBA Partnership³⁴. These data include the data on the sites, as
319 well as the species and ecosystems that qualify the sites as KBAs. Most of the KBA criteria
320 require estimates of the percentage of the global population of a species at a site or the
321 percentage of the global extent of an ecosystem at a site. These quantitative criteria ensure
322 that sites are comparable between countries or regions, making data on KBAs useful for
323 indicators in multilateral environment agreements.

324 The World Database of Key Biodiversity Areas contained 16,513 KBAs including 16,226 KBAs
325 with spatial boundaries (polygons) and 287 KBAs with only point locations. An additional 89
326 sensitive KBAs were not included in the analysis. The WDKBA ISO3 and Country columns were
327 used to crosswalk to IPBES regions and subregions for [Data Table 7a](#). Some minor
328 modifications were needed to complete the crosswalk. “High Seas/---” was assigned to ABNJ,
329 “Russia (Asian)/RUZ”, “Russia (Central Asian)/RUY” and “Russia (European)/RUX” were all
330 assigned to IPBES Eastern Europe (the entire Russian Federation is within the IPBES Eastern
331 Europe subregion). Nineteen Hawaiian KBAs were manually assigned to IPBES Oceania
332 subregion. Seven KBAs with country “Transboundary” were excluded from the analysis.

333 KBA coverage by protected areas and OECMs and their classification as marine, terrestrial and
334 freshwater was calculated following methods used to calculate Sustainable Development Goal
335 indicators 14.5.1³⁵, 15.1.2³⁶ and 15.4.1³⁷ ([Data Table 7b](#)).

336 Total coverage status of each KBA was classified as either complete (≥98%), partial (2-98%) or
337 none (≤2%). Data presented here use the March 2025 release of WDKBA and July 2025 WDPCA
338 ([Data Table 7c](#)).

339 **Protected Planet**

340 With its history dating back to a 1959 UN mandate, Protected Planet is the global source of
341 data on protected and conserved areas. A joint product of the United Nations Environment
342 Programme (UNEP) and the International Union for Conservation of Nature (IUCN), managed
343 by the UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC),
344 Protected Planet’s primary components are the World Database on Protected and Conserved
345 Areas (WDPCA) and Global Database on Protected Area Management Effectiveness (GD-
346 PAME).

347 The WDPCA was launched in November 2025 and aggregates the previously separate World
348 Database on Protected Areas (WDPA) and World Database on Other Effective Area-based
349 Conservation Measures (WD-OECM). The WDPCA is made up of spatial data and basic
350 descriptive attributes for protected areas and OECMs. Data are compiled primarily from
351 national governments, with additional data provided by the governance authorities of
352 protected or conserved areas, or by actors providing data on their behalf. These data form the
353 official global dataset used to monitor progress towards relevant multilateral environmental
354 agreements, including Sustainable Development Goals (SDG) 14 and 15, and Target 3 of the
355 KMGBF.

356 Area and percentage coverage values were calculated using the July 2025 version of the
357 WDPCA.

358 The GD-PAME supplements the WDPCA with descriptive data on assessments of effectiveness
359 (covering management effectiveness and/or governance quality) carried out in protected and
360 conserved areas. From September 2025, the GD-PAME also stores basic data derived from the
361 results of effectiveness assessments, categorised as data on 'design and planning',
362 'management effectiveness', 'governance quality', and 'conservation outcomes'. The GD-
363 PAME is used to monitor progress towards Target 3 of the KMGBF.

364 **Data Tables**

365 The dataset comprises twenty-one Data Tables in CSV format; eighteen Data Tables organised
366 into seven thematic data groups ([Data Tables 1a-7c](#)) and three crosswalk tables that support
367 harmonisation across IPBES regions, units of analysis, and drivers of change ([Data Tables 8-10](#)).

369 All Data Tables presented here are made available under a CC-BY-NC licence from Zenodo¹⁰.
370 These static records are not regularly updated. For the latest data, visit the respective data
371 repository.

372 In [Data Tables 1a-c and 2a-c](#), column headers represent the IUCN Red List categories using
373 abbreviations as follows: EX – Extinct; EW – Extinct in the Wild; CR – Critically Endangered; EN
374 – Endangered; VU – Vulnerable; NT – Near Threatened; LC – Least Concern; DD – Data
375 Deficient. Species in categories EW, CR, EN and VU are considered globally threatened.

376 ***Data group 1) IUCN Red List of Threatened Species***

377 Columns represent the numbers and percentages of species per Red List category. Extant
378 species include all categories except for those assessed as Extinct (EX). Threatened species are
379 all species assessed as Extinct in the Wild (EW), Critically Endangered (CR), Endangered (EN)
380 and Vulnerable (VU). The lower estimate includes threatened and EW species as if all DD
381 species are not threatened, i.e., $(EW + CR + EN + VU) / (\text{total assessed} - EX)$. The best estimate
382 includes threatened and EW extant species as if DD species are equally threatened as data
383 sufficient species, i.e., $(EW + CR + EN + VU) / (\text{total assessed} - EX - DD)$. The upper estimate
384 includes threatened and EW extant species as if all DD species are threatened, i.e., $(EW + CR +$
385 $EN + VU + DD) / (\text{total assessed} - EX)$.

386 Species found in Hawaii are recorded in the IUCN Red List as both HAW-HI (Hawaiian Is.) and
387 US (United States). It is not possible programmatically to distinguish between species which
388 occur only in Hawaii versus species occurring in both Hawaii and the mainland United States.

389 In the Data Tables, Hawaiian species are therefore counted both in the Oceania and North
390 America totals.

391 **Data Table 1a) Numbers and percentages of species per IUCN Red
392 List Category per IPBES region and subregion**

393 Columns as above. Rows represent IPBES subregions.

394 **Data Table 1b) Numbers and percentages of species per IUCN Red
395 List Category per IPBES unit of analysis**

396 Columns as above. Rows represent IPBES units of analysis.

397 **Data Table 1c) Numbers and percentages of species per IUCN Red
398 List Category per IPBES direct driver of change**

399 Columns as above. Rows represent IPBES direct drivers.

400 ***Data group 2) IUCN Red List of Threatened Species, endemic
401 and exclusive species***

402 Columns represent the numbers and percentages of species per Red List category. Extant
403 species include all categories except for those assessed as Extinct (EX). Threatened species are
404 all species assessed as Extinct in the Wild (EW), Critically Endangered (CR), Endangered (EN)
405 and Vulnerable (VU). The lower estimate includes threatened and EW species as if all DD
406 species are not threatened, i.e., $(EW + CR + EN + VU) / (\text{total assessed} - EX)$. The best estimate
407 includes threatened and EW extant species as if DD species are equally threatened as data
408 sufficient species, i.e., $(EW + CR + EN + VU) / (\text{total assessed} - EX - DD)$. The upper estimate
409 includes threatened and EW extant species as if all DD species are threatened, i.e., $(EW + CR +$
410 $EN + VU + DD) / (\text{total assessed} - EX)$.

411 **Data Record 2a) Numbers and percentages of endemic species per
412 IUCN Red List Category, per IPBES region and subregion**

413 Columns as above. Rows represent IPBES subregions. Numbers represent the numbers and
414 percentages of species endemic to each IPBES subregion.

415 **Data Record 2b) Numbers and percentages of species per IUCN Red
416 List Category, exclusive per IPBES unit of analysis**

417 Columns as above. Rows represent IPBES units of analysis. Numbers represent the numbers
418 and percentages of species exclusively associated with each IPBES unit of analysis.

419 **Data Record 2c) Numbers and percentages of species per IUCN Red
420 List Category, exclusive per IPBES direct driver of change**

421 Columns as above. Rows represent IPBES direct drivers of change. Values represent the
422 numbers and percentages of species exclusively threatened by each IPBES driver.

423 ***Data group 3) Red List Index trends***

424 Columns contain the aggregated Red List Index (RLI) values and the 5th and 95th centile
425 confidence intervals. Confidence intervals are calculated to account for the number of Data
426 Deficient species in each region and the uncertainty over exactly when changes in status
427 occurred, given that assessments are repeated only at multi-year intervals, and therefore the
428 precise value for any particular year is uncertain. RLI values range from 0 to 1, where an RLI

429 value of 1 equates to all species being classified as Least Concern (i.e., not expected to become
430 Extinct in the near future), and an RLI value of 0 equates to all species having gone Extinct.

431 **Data Table 3a) Red List Index trends per IPBES region and**
432 **subregion**

433 Columns as above. Rows represent IPBES regions and subregions for years between 1993 and
434 2020 inclusive.

435 Index values for Africa are based on data from mammals (1484), birds (2524), amphibians
436 (1164), corals (464), cycads (68). Index values for Americas are based on data from mammals
437 (2042), birds (4706), amphibians (3523), corals (338), cycads (94). Index values for Asia and
438 the Pacific are based on data from mammals (2273), birds (4633), amphibians (1915), corals
439 (744), cycads (142). Index values for Europe and Central Asia are based on data from mammals
440 (569), birds (959), amphibians (128), corals (384); no cycad species occur in Europe.

441 **Data Table 3b) Red List Index trends per IPBES unit of analysis**

442 Columns as above. Rows represent IPBES units of analysis for years between 1993 and 2020
443 inclusive.

444 **Data Table 3c) Red List Index trends per IPBES direct driver**

445 Columns as above. Rows represent IPBES direct drivers of change and years between 1993 and
446 2020 inclusive.

447 ***Data group 4) Threat abatement component of the Species***
448 ***Threat Abatement and Restoration metric (STAR_T)***

449 Columns represent realms (terrestrial or marine), the number of STAR_T cells (~ 1 km x 1 km for
450 terrestrial, ~ 5 km x 5 km for marine, including zero value cells and excluding null cells), the
451 STAR_T score sum (total), mean, median, standard deviation, minimum and maximum STAR_T
452 values. The percentage column is the percentage of terrestrial and of marine STAR_T,
453 respectively, so that all values in the column add to 200.

454 **Data Table 4a) Threat abatement component of the Species Threat**
455 **Abatement and Restoration metric (STAR_T) per IPBES region and**
456 **subregion**

457 Columns as above. Rows represent IPBES subregions.

458 **Data Table 4b) Threat abatement component of the Species Threat**
459 **Abatement and Restoration metric (STAR_T) per IPBES direct driver**

460 Columns as above. Rows represent IPBES direct drivers of change.

461 ***Data group 5) Restoration component of the Species Threat***
462 ***Abatement and Restoration metric (STAR_R)***

463 Columns represent the number of STAR_R cells (~ 5 km x 5 km, including zero value cells and
464 excluding null cells), the STAR_T score sum (total), mean, median, standard deviation, minimum
465 and maximum STAR_T values. Note that there is not yet a marine representation of STAR_R.

466 **Data Table 5a) Restoration component of the Species Threat**
467 **Abatement and Restoration metric (STAR_R) per IPBES region and**
468 **subregion**

469 Columns as above. Rows represent IPBES regions and subregions.

470 **Data Table 5b) Restoration component of the Species Threat**
471 **Abatement and Restoration metric (STAR_R) per IPBES direct driver**
472 Columns as above. Rows represent IPBES direct drivers of change.

473 ***Data group 6) Protected and conserved areas***

474 **Data Table 6a) Area and percentage coverage of land and sea by**
475 **protected and conserved areas per IPBES region and subregion**

476 Rows represent IPBES regions and subregions. Columns report: (i) total terrestrial and inland
477 water area ("total_land_area_km2") and total marine and coastal area
478 ("total_marine_area_km2"), expressed in square kilometres; (ii) total area covered by
479 protected areas, or by protected areas and OECMs, within each IPBES subregion,
480 disaggregated by land and sea (e.g. "pa_oecm_land_area_km2"); and (iii) the percentage of
481 each IPBES subregion covered by protected areas, or by protected areas and OECMs,
482 disaggregated by land and sea (e.g. "percent_pa_oecm_land_coverage").

483 **Data Table 6b) Area and percentage coverage of land and sea by**
484 **protected and conserved areas with effectiveness assessments per**
485 **IPBES region and subregion**

486 Rows represent IPBES regions and subregions. Columns report: (i) total terrestrial and inland
487 water area ("total_land_area_km2") and total marine and coastal area
488 ("total_marine_area_km2"), expressed in square kilometres; (ii) total area of protected areas
489 within each IPBES subregion where an effectiveness assessment has been completed and
490 reported, disaggregated by land and sea (e.g. "pa_land_pame_area_km2"); and (iii) the
491 percentage of each IPBES subregion covered by protected areas where an effectiveness
492 assessment has been completed and reported, disaggregated by land and sea (e.g.
493 "percent_pa_land_pame_coverage"). At the time of the analysis, no OECMs with an
494 effectiveness assessment had been reported.

495 ***Data 7) Key Biodiversity Areas***

496 Two formulations are presented for understanding the coverage of KBAs by protected and
497 conserved areas.

498 **Data Table 7a) Numbers and mean sizes of KBAs per IPBES region**
499 **and subregion**

500 Rows represent IPBES subregions. Columns represent the number of KBAs, the mean KBA size
501 in km², and the percentage coverage of the subregion by KBAs.

502 **Data Table 7b) Mean percentage coverage of KBAs by protected and**
503 **conserved areas per IPBES region and subregion**

504 Rows represent IPBES regions and subregions, and areas beyond national jurisdiction, for years
505 between 1980 and 2025 inclusive. Columns represent the coverage of KBAs by protected
506 areas, OECMs, and both protected areas and OECMs combined, and for marine, terrestrial,
507 freshwater and all realms. For each region, an additional set of rows represent the regional
508 totals. This is the formulation used in the SDG indicators³⁵⁻³⁷.

509 **Data Table 7c) Percentage of KBAs that are completely/partially/not**
510 **covered by protected and conserved areas, per IPBES region and**
511 **subregion**

512 This is another formulation of KBA coverage by protected and conserved areas. Rows
513 represent IPBES regions and subregions, and areas beyond national jurisdiction. Columns
514 represent the protected and conserved area type (protected areas, OECMS, or both), the type
515 of coverage (complete, partial, none, and the percentage of KBAs within the IPBES subregion.
516 Coverage is defined by three classes; covered ($\geq 98\%$), partial ($< 98\%$ and $> 2\%$) and none (\leq
517 2%). For each region, an additional set of rows represent the regional totals.

518 **Translation tables**

519 These are the three crosswalk tables that were created specifically for this analysis in order to
520 harmonise IUCN countries, habitats and threats to IPBES regions, units of analysis and drivers,
521 respectively.

522 **Data Table 8) Administrative units to IPBES regions and subregions**
523 **translation table**

524 Columns represent IUCN country of occurrence (COO) names and codes, IPBES country names,
525 GID_0 codes from GADM, and ISO 3166-1 alpha-3, IPBES regions and subregions. A notes
526 column records notes for seven subnational country codes used in the crosswalk. There is one
527 row per IUCN full country code, plus seven subnational codes to map to exceptional cases in
528 the IPBES regions¹³.

529 **Data Table 9) IUCN habitats classification scheme to IPBES Units of**
530 **Analysis translation table**

531 The table contains one row per IUCN level 2 habitat from the IUCN habitat classification
532 scheme, plus four level 1 habitats that have no level 2 nested “child” habitat. Columns
533 represent IUCN habitats at levels 1 and 2, the IPBES Unit of Analysis that was used in the
534 crosswalk, and an Alternative Unit of Analysis where a different Unit of Analysis was
535 considered but not ultimately selected for the crosswalk.

536 **Data Table 10) IUCN threats classification scheme to IPBES Direct**
537 **Drivers translation table**

538 Columns represent IUCN threats at levels 1 and 2 of the classification scheme, and the
539 corresponding IPBES drivers. There is a notes column that contains some nuances relating to
540 some of the relationships between IUCN threats and IPBES drivers. There is one row per IUCN
541 threat at level 2 of the classification scheme.

542 **Technical Validation**

543 ***IUCN Red List of Threatened Species***

544 All assessments in the IUCN Red List are produced following the IUCN Red List Categories and
545 Criteria, a globally standardised, versioned framework for assessing species extinction risk ²².
546 The IUCN Red List is centrally managed by the Red List Unit (RLU), which forms part of the
547 IUCN Secretariat. All assessments must be submitted through the RLU, who carry out checks
548 on criteria use, supporting information, consistency, etc, before publishing the assessments.
549 All assessments undergo an independent review process before they can be accepted for
550 publication on the IUCN Red List. This involves at least one expert on the IUCN assessment
551 process reviewing the assessment and agreeing that the data used have been interpreted
552 correctly and consistently, and that uncertainty has been handled appropriately. Each

553 assessment has a unique assessment ID, assessment date and DOI, allowing for full
554 transparency and tracking of assessments across Red List versions.

555 Confidence intervals for the number of threatened species were calculated by considering the
556 number of Data Deficient species, with upper and lower limits respectively including or
557 excluding the number of Data Deficient species, and the “best estimate” calculated by
558 assuming that the same proportion of Data Deficient species are threatened as for data-
559 sufficient species. Some 10276 species (14.6%) within comprehensively assessed groups are
560 assessed as Data Deficient as of Red List version 2025-2²³.

561 **Red List Index**

562 The IUCN Red List Index is based on the standardised categories and criteria of the IUCN Red
563 List. The RLI shows trends in the status of groups of species based only on genuine
564 improvements or deteriorations in status (i.e. excluding changes resulting from improved
565 knowledge or taxonomic revisions²⁵⁻²⁷) of sufficient magnitude to qualify species for listing in
566 more threatened or less threatened Red List Categories²². For species newly assessed since
567 the beginning of the RLI assessment period, their Red List categories are “back-cast”, assuming
568 that the current Red List categories for these species have applied since the earliest
569 assessment period, unless there is information to the contrary that genuine status changes
570 have occurred²⁷. Species that are too poorly known for the Red List Criteria to be applied are
571 assigned to the Data Deficient category. The degree of uncertainty this introduces is estimated
572 through a bootstrapping procedure that randomly assigns each Data Deficient species a
573 category based on the numbers of non-Data Deficient species in each Red List category for the
574 set of species under consideration, and repeats this for 1,000 iterations, plotting the 5th and
575 95th percentiles as lower and upper confidence intervals³⁰.

576 **Species Threat Abatement and Restoration**

577 STAR scores are derived from data collected in IUCN Red List assessments, for which the
578 process of review and validation is described above. The underlying AoH maps used in the
579 calculation of terrestrial STAR_T were validated according to a two-stage protocol which
580 includes a model-based evaluation of model prevalence (i.e. the proportion of suitable habitat
581 within a species’ range), and a second validation using species point localities (presence-only)
582^{31,38}. Additional challenges are inherent in validating the marine AoH maps used in STAR_T and
583 STAR_R, largely due to the paucity of suitable species point localities, particularly for validating
584 historical AoH maps used in STAR_R. Future updates to marine STAR_T and STAR_R are expected
585 to further explore appropriate validation methods. The STAR scores presented here are
586 estimated from global datasets. STAR scores can be calibrated at the local scale by confirming
587 the species and threats within the area of interest³⁹.

588 **Key Biodiversity Areas**

589 All Key Biodiversity Areas are identified following the Global Standard for the Identification of
590 Key Biodiversity Areas³³, which provides a standardised, quantitative and repeatable
591 framework for site identification. Each KBA meets one or more criteria with quantitative
592 thresholds specified in the KBA Standard. Uncertainty is documented within the assessment
593 framework and the best available data are used to assess sites against the criteria. Species
594 triggering KBA identification are based on published Red List assessments or, where a Red List
595 assessment is unavailable, based on accepted taxonomic references approved by the IUCN
596 Red List Unit. All KBA proposals undergo multiple stages of independent review by KBA
597 Regional Focal Points and additional external reviewers, before being nominated for a final
598 validation check by the KBA Secretariat. KBA spatial boundaries are also reviewed to ensure
599 that they align with relevant ecological features and management units. Each KBA is assigned

600 a unique ID. Any modifications to KBA site boundaries, trigger criteria are versioned and
601 traceable. KBA identification has been validated for several countries and regions where
602 comprehensive biodiversity data allow formal calculation of the site importance (or
603 “irreplaceability”) using systematic conservation planning techniques^{40,41}.

604 **Protected Planet**

605 Protected area data in the World Database on Protected and Conserved Areas are based on
606 an IUCN standard that defines protected areas and provides a framework for grouping them
607 by management category⁴² and governance type⁴³. OECM data in the World Database on
608 Protected and Conserved Areas are based on the CBD definition of an OECM⁴⁴ and associated
609 guidance of the IUCN WCPA⁴⁵.

610 Data submitted to the WDP觅A by government authorities are considered state verified. Non-
611 state entities can submit data on protected areas or OECMs under their own governance (or
612 on behalf of other non-state governance authorities), and such data are reviewed to confirm
613 they meet relevant standards (IUCN or CBD definition of a protected area or CBD definition of
614 an OECM) prior to inclusion. The review process is conducted either by the relevant national
615 government or through peer-review by Indigenous Peoples and local communities. The latter
616 occurs only for data submitted by Indigenous Peoples or local communities on protected areas
617 or OECMs under their own governance.

618 The GD-PAME serves as a repository for data collected using different approaches. This
619 includes Protected Area Management Effectiveness (PAME) assessments, which are based on
620 the IUCN WCPA framework for protected area management effectiveness⁴⁶. Data providers
621 are asked to submit high-level information relating to the governance, design and planning,
622 management and conservation outcomes of a protected area or OECM, aligning with the core
623 components of the IUCN Green List Standard⁴⁷. Data in the GD-PAME are not subject to a
624 review process but must relate to a protected area or OECM included in the WDP觅A.

625 **Usage Notes**

626 All Data Tables presented here are made available under a CC-BY-NC licence from Zenodo¹⁰.
627 These static records are not regularly updated. For the latest data, visit the respective data
628 repository.

629 The IUCN Red List Terms and Conditions of Use (Version 3.1, June 2024) are available at
630 <https://www.iucnredlist.org/terms/terms-of-use>.

631 The World Database of Key Biodiversity Areas™ Terms and Conditions of Use (Version 2.0,
632 November 2023) are available at <https://www.keybiodiversityareas.org/terms-service>.

633 The Protected Planet Terms and Conditions are available at
634 <https://www.protectedplanet.net/en/legal>.

635 For commercial uses of any of these datasets, please go to the IBAT website:
636 <https://www.ibat-alliance.org/>.

637 **Code Availability**

638 The codes and instructions for running the Red List Index calculations are available at
639 <https://github.com/BirdLifeInternational/rli-codes>.

640 The full code used to both calculate coverage of KBAs by protected areas and OECMs and
641 aggregate this to regional levels following SDG methodology is available at:
642 <https://github.com/BirdLifeInternational/kba-overlap>.

643 The full methodology used to calculate protected and conserved area coverage at national and
644 global scales is available from the Protected Planet website at
645 <https://www.protectedplanet.net/en/resources/calculating-protected-area-coverage>.

646 Acknowledgements

647 TSt, LD and TMB acknowledge funding from France, from the Ministère de la Transition
648 écologique, de la Biodiversité et des Négociations internationales sur le climat et la nature.

649 RA, LK, NDB and HCB acknowledge funding from Arcadia.

650 TSt thanks Joanna Clay, Caroline Pollock and Janet Scott in the IUCN Red List Unit for advice
651 on the IUCN Red List data analysis.

652 Author contributions

653 TMB and LD conceived and supervised the project. TSt administered the work and wrote the
654 manuscript. LK, FAR, TS, TSt and ST produced the Data Tables. SHMB, TMB, NDB, AN and TSt
655 contributed to the IUCN-IPBES crosswalk tables. RA, SHMB, TMB, HCB, NDB, LK, CHT, LM,
656 PJKM, AN, AJP, FAR and TS contributed to the main text.

657 Competing interests

658 The authors declare no conflicts of interest.

659 Tables

660 *Table 1) List of Data Tables. An extended version of this file is available as a readme CSV file in the data record.*

Data Table	Short name	Description
1a	Red List species per IPBES region	Numbers and percentages of species per IUCN Red List Category per IPBES region and subregion
1b	Red List species per IPBES unit of analysis	Numbers and percentages of species per IUCN Red List Category per IPBES unit of analysis
1c	Red List species per IPBES driver	Numbers and percentages of species per IUCN Red List Category per IPBES direct driver of change
2a	Red List endemic species per IPBES region	Numbers and percentages of endemic species per IUCN Red List Category, per IPBES region and subregion
2b	Red List exclusive species per IPBES unit of analysis	Numbers and percentages of species per IUCN Red List Category, exclusive per IPBES unit of analysis
2c	Red List exclusive species per IPBES driver	Numbers and percentages of species per IUCN Red List Category, exclusive per IPBES direct driver of change
3a	RLI per IPBES region	Red List Index trends per IPBES region and subregion
3b	RLI per IPBES unit of analysis	Red List Index trends per IPBES unit of analysis
3c	RLI per IPBES driver	Red List Index trends per IPBES direct driver
4a	STAR-T per IPBES region	Threat abatement component of the Species Threat Abatement and Restoration metric (START) per IPBES region and subregion

4b	STAR-T per IPBES driver	Threat abatement component of the Species Threat Abatement and Restoration metric (START) per IPBES direct driver
5a	STAR-R per IPBES region	Restoration component of the Species Threat Abatement and Restoration metric (STARR) per IPBES region and subregion
5b	STAR-R per IPBES driver	Restoration component of the Species Threat Abatement and Restoration metric (STARR) per IPBES direct driver
6a	PCA coverage per IPBES region	Area and percentage coverage of land and sea by protected and conserved areas per IPBES region and subregion
6b	PAME coverage per IPBES region	Area and percentage coverage of land and sea by protected and conserved areas with effectiveness assessments per IPBES region and subregion
7a	KBA summary per IPBES region	Numbers and mean sizes of KBAs per IPBES region and subregion
7b	KBA PCA coverage trends per IPBES region	Mean percentage coverage of KBAs by protected and conserved areas per IPBES region and subregion
7c	KBA PCA coverage classes per IPBES region	Percentage of KBAs that are completely/partially/not covered by protected and conserved areas, per IPBES region and subregion
8	Admin units - IPBES regions crosswalk	Administrative units to IPBES regions and subregions translation table
9	IUCN habitats - IPBES units of analysis crosswalk	IUCN habitats classification scheme to IPBES Units of Analysis translation table
10	IUCN threats - IPBES drivers crosswalk	IUCN threats classification scheme to IPBES Direct Drivers translation table

661

662 References

- 663 1. IPBES. *Annex I to Decision IPBES-11/1: Scoping Report for a Second Global Assessment of Biodiversity and Ecosystem Services*. https://files.ipbes.net/ipbes-web-prod-public-files/2025-02/annex_1_decision_ipbes11_1_en_ADVANCE.pdf (2024).
- 664 2. IPBES. *Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services*. 1144 <https://doi.org/10.5281/zenodo.3831673> (2019).
- 665 3. IPBES. Annex I to decision IPBES-10/1: Scoping report for a methodological assessment on monitoring biodiversity and nature's contributions to people. in *Implementation of the rolling work programme of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services up to 2030* (Bonn, 2023).
- 666 4. IPBES. Annex II to decision IPBES-10/1: Scoping report for a methodological assessment of integrated biodiversity-inclusive spatial planning and ecological connectivity. in *Implementation of the rolling work programme of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services up to 2030* (Bonn, 2023).
- 667 5. Convention on Biological Diversity. Decision 16/32: Mechanisms for planning, monitoring, reporting and review, including the global review of collective progress in the implementation of the Kunming–Montreal Global Biodiversity Framework. in *Sixteenth meeting, second resumed session* (Rome, 2025).
- 668 6. Brooks, T. M. *et al.* Analysing biodiversity and conservation knowledge products to support regional environmental assessments. *Sci Data* **3**, 160007 (2016).
- 669 7. Mair, L. *et al.* A metric for spatially explicit contributions to science-based species targets. *Nat Ecol Evol* **5**, 836–844 (2021).

685 8. IUCN. IUCN Habitats Classification Scheme, Version 3.1. *IUCN Red List of Threatened Species*
686 <https://www.iucnredlist.org/resources/habitat-classification-scheme>.

687 9. IUCN & CMP. IUCN-CMP Threats Classification Scheme, Version 3.3. *IUCN Red List of*
688 *Threatened Species* <https://www.iucnredlist.org/en>.

689 10. Starnes, T. *et al.* A new analysis of biodiversity and conservation knowledge products
690 to support environmental assessments. *Zenodo* <https://doi.org/10.5281/zenodo.18348560>
691 (2026) doi:<https://doi.org/10.5281/zenodo.18348560>.

692 11. Wilkinson, M. D. *et al.* The FAIR Guiding Principles for scientific data management and
693 stewardship. *Sci Data* **3**, 160018 (2016).

694 12. IPBES. IPBES Data and Knowledge Management Policy ver. 2.1, Krug, R.M. and Niamir,
695 A. (eds.). in (IPBES Secretariat, Bonn, Germany, 2024). doi:[10.5281/zenodo.15741349](https://doi.org/10.5281/zenodo.15741349).

696 13. IPBES Technical Support Unit on Knowledge and Data. IPBES regions and sub-regions.
697 <https://doi.org/10.5281/zenodo.5719431> (2021).

698 14. UNEP-WCMC. *Dataset Combining Exclusive Economic Zones (EEZ; VLIZ 2014) and*
699 *Terrestrial Country Boundaries (World Vector Shoreline, 3rd Edition, National Geospatial-*
700 *Intelligence Agency)*. (2015).

701 15. UN Geodata. UN GeoPortal. <https://geoportal.un.org/arcgis/home/index.html>.

702 16. Flanders Marine Institute. Maritime Boundaries Geodatabase: Territorial Seas
703 (12NM), version 4. <https://doi.org/10.14284/633> doi:<https://doi.org/10.14284/633>.

704 17. Sayre, R. *et al.* A new 30 meter resolution global shoreline vector and associated global
705 islands database for the development of standardized ecological coastal units. *Journal of*
706 *Operational Oceanography* **12**, S47–S56 (2019).

707 18. IPBES. IPBES First Global assessment – Supplementary materials of Chapter 1.
708 <https://doi.org/10.5281/zenodo.11577375> (2019) doi:[10.5281/zenodo.11577375](https://doi.org/10.5281/zenodo.11577375).

709 19. Neumann, M. *et al.* Natural forests of the world – a 2020 baseline for deforestation
710 and degradation monitoring. *Sci Data* **12**, 1715 (2025).

711 20. IPBES. Models of drivers of biodiversity and ecosystem change. *IPBES*
712 <https://www.ipbes.net/node/16157> (2017).

713 21. Salafsky, N. *et al.* Classification of direct threats to the conservation of ecosystems and
714 species 4.0. *Conservation Biology* **39**, e14434 (2025).

715 22. IUCN. *IUCN Red List Categories and Criteria 3.1 Second Edition.* 32
716 <https://portals.iucn.org/library/node/10315> (2012).

717 23. IUCN. The IUCN Red List of Threatened Species. Version 2025-2.
718 <https://www.iucnredlist.org> (2025).

719 24. UCN SSC Red List Technical Working Group. *Mapping Standards and Data Quality for*
720 *the IUCN Red List Spatial Data*. (2024).

721 25. Butchart, S. H. M. *et al.* Measuring Global Trends in the Status of Biodiversity: Red List
722 Indices for Birds. *PLOS Biology* **2**, e383 (2004).

723 26. Butchart, S. H. M. *et al.* Using Red List Indices to measure progress towards the 2010
724 target and beyond. *Philos Trans R Soc Lond B Biol Sci* **360**, 255–268 (2005).

725 27. Butchart, S. H. M. *et al.* Improvements to the Red List Index. *PLOS ONE* **2**, e140 (2007).

726 28. Butchart, S. H. M. *et al.* Global Biodiversity: Indicators of Recent Declines. *Science* **328**,
727 1164–1168 (2010).

728 29. IUCN. Red List Index (RLI). *IUCN Red List of Threatened Species*
729 <https://www.iucnredlist.org/assessment/red-list-index>.

730 30. UN Statistics Division. *SDG Indicator Metadata for Indicator 15.5.1 Red List Index*.
731 <https://unstats.un.org/sdgs/metadata/files/Metadata-15-05-01.pdf> (2023).

732 31. Ridley, F. A. *et al.* *Global Threat Abatement Potential for Terrestrial Vertebrates*
733 [*Manuscript Submitted for Publication*]. (2025).

734 32. Turner, J. A. *et al.* Targeting ocean conservation outcomes through threat reduction.
735 *npj Ocean Sustain* **3**, 4 (2024).

736 33. IUCN. *A Global Standard for the Identification of Key Biodiversity Areas*. (IUCN, Gland,
737 Switzerland and Cambridge, UK, 2016).

738 34. BirdLife International. *World Database of Key Biodiversity Areas. The World Database*
739 *of Key Biodiversity Areas. Developed by the KBA Partnership: BirdLife International,*
740 *International Union for the Conservation of Nature, Amphibian Survival Alliance,*
741 *Conservation International, Critical Ecosystem Partnership Fund, Global Environment*
742 *Facility, Re:Wild, NatureServe, Rainforest Trust, Royal Society for the Protection of Birds,*
743 *Wildlife Conservation Society and World Wildlife Fund.* www.keybiodiversityareas.org
744 (2025).

745 35. UN Statistics Division. *SDG Indicator Metadata for Indicator 14.5.1: Coverage of*
746 *Protected Areas in Relation to Marine Areas*.
747 <https://unstats.un.org/sdgs/metadata/files/Metadata-14-05-01.pdf> (2024).

748 36. UN Statistics Division. *SDG Indicator Metadata for Indicator 15.1.2: Proportion of*
749 *Important Sites for Terrestrial and Freshwater Biodiversity That Are Covered by Protected*
750 *Areas, by Ecosystem Type*. <https://unstats.un.org/sdgs/metadata/files/Metadata-15-01-02.pdf> (2024).

752 37. UN Statistics Division. *SDG Indicator Metadata for Indicator 15.4.1: Coverage by*
753 *Protected Areas of Important Sites for Mountain Biodiversity*.
754 <https://unstats.un.org/sdgs/metadata/files/Metadata-15-04-01.pdf> (2024).

755 38. Dahal, P. R., Lumbierres, M., Butchart, S. H. M., Donald, P. F. & Rondinini, C. A
756 validation standard for area of habitat maps for terrestrial birds and mammals.
757 *Geoscientific Model Development* **15**, 5093–5105 (2022).

758 39. Mair, L. *et al.* Calibration of the species threat abatement and restoration metric's
759 threat abatement component in a Costa Rican landscape. *Conservation Biology*
760 <https://doi.org/10.1111/cobi.70231> (In press) doi:<https://doi.org/10.1111/cobi.70231>.

761 40. Di Marco, M. *et al.* Quantifying the relative irreplaceability of important bird and
762 biodiversity areas. *Conservation Biology* **30**, 392–402 (2016).

763 41. Montesino Pouzols, F. *et al.* Global protected area expansion is compromised by
764 projected land-use and parochialism. *Nature* **516**, 383–386 (2014).

765 42. *Guidelines for Applying Protected Area Management Categories*. (IUCN, Gland,
766 Switzerland, 2008). doi:10.2305/IUCN.CH.2008.PAPS.2.en.

767 43. Borrini-Feyerabend, G. *et al.* *Governance of Protected Areas: From Understanding to*
768 *Action*. (IUCN, Gland, Switzerland, 2013).

769 44. Convention on Biological Diversity. Decision 14/8: Protected areas and other effective
770 area-based conservation measures. in *Fourteenth meeting* (Sharm El-Sheikh, Egypt, 2018).

771 45. *Guidance on Other Effective Area-Based Conservation Measures (OECMs)*. (IUCN,
772 International Union for Conservation of Nature, 2024). doi:10.2305/LAAW4624.

773 46. Hockings, M., Stolton, S., Leverington, F., Dudley, N. & Courrau, J. *Evaluating*
774 *Effectiveness : A Framework for Assessing Management Effectiveness of Protected Areas*.
775 (IUCN, Gland, Switzerland and Cambridge, UK, 2006).

776 47. IUCN and World Commission on Protected Areas (WCPA). *IUCN Green List of Protected*
777 *and Conserved Areas: Standard, Version 1.1*. 43 [https://iucngreenlist.org/standard/global-](https://iucngreenlist.org/standard/global-standard/)
778 [standard/](https://iucngreenlist.org/standard/global-standard/) (2017).

779