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Abstract 26 

Breeding Bird Monitoring Schemes (BMS), a cornerstone of large-scale volunteer-27 

based ecological monitoring, are central to biodiversity assessment and conservation 28 

decision-making. However, their generalist design means that detectability can vary 29 

across species, habitats and behavioral states, introducing noise into abundance 30 

estimates and population indices. Improving how BMS account for detectability-related 31 

bias is therefore essential for strengthening their applied value in conservation and 32 

management, particularly when population indicators are used to guide policy, 33 

prioritization and adaptive management actions. Here, we develop and test a calibration 34 

framework to adjust for detectability-related bias in BMS counts by integrating 35 

information from a targeted, species-specific high-detection survey conducted in 36 

parallel. Using the Common Quail (Coturnix coturnix), a farmland species whose 37 

irregular and density-dependent calling behavior generates strong variation in 38 

detectability, we quantified differences in detection, abundance estimates and temporal 39 

trends between the two monitoring approaches. The targeted survey detected quails in 40 

32% of surveys classified as absences by the BMS method, revealing substantial 41 

detectability mismatches. When detections occurred under both methods, the targeted 42 

survey recorded more than twice as many individuals per survey, indicating marked bias 43 

in local abundance estimates under general monitoring. We then fitted a habitat-44 

informed calibration model that adjusts BMS counts using vegetation greenness (NDVI) 45 

as a proxy of habitat quality. Discrepancies between methods were largest in high-46 

quality habitats and under low BMS counts. Applying the calibration reduced noise 47 

associated with detectability variability and improved the reliability of BMS-derived 48 

trend indices. By explicitly addressing detectability-related bias, this approach provides 49 

an operational and transferable framework for improving monitoring-based indicators 50 

used in conservation assessment and management. More broadly, it illustrates how 51 

integrating targeted, high-detection surveys with broad-scale volunteer-based 52 

monitoring can enhance the decision relevance of biodiversity monitoring programs 53 

without compromising their scalability or long-term continuity. 54 

  55 
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INTRODUCTION 56 

 57 

Breeding bird monitoring schemes (BMS) are the cornerstone of large-scale biodiversity 58 

assessment worldwide (Gregory et al. 2005, Likens and Lindenmayer 2018). Their 59 

standardized protocols, broad spatial coverage and long-term continuity allow robust 60 

quantification of population change and ecological responses to environmental 61 

pressures through abundance-based indicators and trend indices (e.g.: Devictor et al., 62 

2008; Rigal et al., 2023; Stephens et al., 2016). A defining feature of these schemes is 63 

their reliance on trained volunteer observers, whose coordinated effort generates large 64 

multispecies datasets that would be unfeasible through professional surveys alone 65 

(Moussy et al. 2022). By providing consistent information across extensive temporal 66 

and geographic scales, BMS programs play a key role in informing conservation policy, 67 

land-use planning and biodiversity indicators at national and international levels 68 

(Schmeller et al. 2009, Tulloch et al. 2013). Ensuring the methodological reliability and 69 

taxonomic representativeness of these schemes is therefore essential for accurately 70 

tracking environmental change (Yoccoz et al. 2001, Kissling et al. 2018). 71 

Despite the success of BMS, their generalist and multispecies design inevitably 72 

introduces substantial variation in detection probability across species, habitats and 73 

regions (Thompson, W.L. 2002, Diefenbach et al. 2003). Species whose behavior, 74 

spatial dynamics or social organization depart from the assumptions of standard count 75 

protocols may yield biased indicators outputs in general monitoring schemes. Such 76 

biases may arise through missed detections, ambiguous records or potential double-77 

counting (Guillera‐Arroita et al. 2017). These issues are especially problematic for 78 

species that fall outside the core “common bird” set typically covered by BMS 79 

programs, including those that are behaviorally atypical, patchily distributed or 80 

otherwise difficult to survey using standard protocols (Nichols et al. 2007, Sardà-81 

Palomera et al. 2012a). 82 

Biases in detection probability can propagate through population indices, affecting 83 

abundance-based indicators, temporal trends and the ability of monitoring schemes to 84 

detect true demographic change (Kéry and Schmidt 2008). When detection is variable 85 

or inconsistent, yearly indices may become distorted, trend precision decreases and 86 

interannual variability inflates, particularly when uncertain observations are unevenly 87 

distributed across space or time (Johnson 2008, Kellner and Swihart 2014). In long-term 88 
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monitoring schemes, these effects can compromise the reliability and interpretability of 89 

populations. 90 

As a consequence of these limitations, large-scale biodiversity indicators—such as those 91 

produced by the Pan-European Common Bird Monitoring Scheme (PECBMS, Brlík et 92 

al. 2021)—typically exclude species with low or highly variable detectability, focusing 93 

instead on widespread and consistently monitored taxa (Gregory et al. 2005, 2008, Brlík 94 

et al. 2021). This exclusion avoids introducing methodological noise into continental 95 

indicators, but it also means that many ecologically relevant or management-sensitive 96 

species remain poorly represented in general monitoring outputs. To address this gap, 97 

species-specific monitoring programs have been developed by universities, research 98 

institutes and public administrations, using tailored protocols that substantially increase 99 

detectability and provide more accurate abundance estimates for species whose behavior 100 

or ecology challenge standardized monitoring (Bibby et al. 2000). 101 

These limitations underscore the need for methodological comparisons between general 102 

BMS protocols and species-specific surveys. Such comparisons help clarify how 103 

detectability, sampling effort, observer performance and habitat structure influence 104 

indicators outputs (Johnson 2008), and they provide the basis for developing calibration 105 

approaches that improve the robustness, consistency and comparability of abundance-106 

based indicators derived from large-scale monitoring schemes (Kellner and Swihart 107 

2014) . 108 

In this study, we compare indicator outputs from a BMS with those from a species-109 

specific monitoring program for the Common Quail (Coturnix coturnix). The Common 110 

Quail is a widespread farmland species whose behavioral particularities—most notably 111 

its reliance on male vocal activity for detection – mean that strong context- and density-112 

dependent variation in calling behavior may generate substantial detectability bias under 113 

standardized BMS protocols (see Section 2.1 for details). The species also holds high 114 

socioeconomic relevance due to its importance in small-game hunting (Perennou, C. 115 

2009). Consequently, robust population indicators are essential for conservation and 116 

management, yet detectability related uncertainty remains a central point of debate in 117 

quail monitoring and harvest regulation (Arroyo et al. 2022). This uncertainty is 118 

reflected in the inconsistent treatment of the species across monitoring frameworks, 119 

with continental indicator excluding it from trend reporting, while national or regional 120 
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programs continue to publish Common quail population assessments (Brlík et al. 2021, 121 

Escandell et al. 2023, ICO 2025). 122 

In this context, we set out to (1) quantify differences in presence–absence detection and 123 

abundance-based indicators between a general breeding bird monitoring scheme—the 124 

Catalan Common Bird Monitoring Survey (SOCC)—and a species-specific survey 125 

designed for the Common Quail (SEC), (2) develop a calibration model that translates 126 

SOCC counts into SEC-equivalent abundance indicators, and (3) assess how applying 127 

this correction influences long-term indicator trends. By developing and testing this 128 

calibration tool, we evaluate whether data from a general BMS can be adjusted to 129 

improve indicator performance for a behaviorally atypical farmland species and identify 130 

the conditions under which detectability-related biases can be mitigated. 131 

 132 

MATERIAL AND METHODS 133 

 134 

Study species 135 

 136 

The Common Quail is a small migratory galliform associated with open farmland in the 137 

Western Palearctic, particularly cereal crops and other herbaceous vegetation 138 

(McGowan et al. 2020). Individuals typically remain hidden within dense cover, making 139 

visual detection uncommon. Consequently, male vocalizations constitute the primary 140 

cue for detection in the field.  141 

However, the environmental and social factors influencing calling activity remain 142 

poorly understood. Calling behavior is further shaped by a non-territorial mating 143 

system, characterized by loose and spatially dynamic male aggregations, whose calling 144 

intensity and spatial arrangement fluctuate in response to social interactions (Rodríguez-145 

Teijeiro et al. 1992, Rodrigo‐Rueda et al. 1997, Guyomarc’h et al. 1998, Sardà-146 

Palomera et al. 2011). This behavioral complexity makes it difficult to predict when and 147 

where males will call, contributing to variable detectability across habitats and survey 148 

conditions. 149 

In addition to these behavioral complexities, habitat quality strongly shapes the seasonal 150 

presence and abundance of the species. Quail distribution is known to shift in response 151 
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to crop phenology and harvesting schedules, with individuals rapidly relocating as 152 

vegetation structure changes during spring and early summer (Rodríguez-Teijeiro et al. 153 

2009). Complementing this, remote-sensing analyses have shown that vegetation 154 

greenness (NDVI) provides a reliable proxy for these habitat dynamics, with higher 155 

NDVI values associated with increased quail presence (Sardà-Palomera et al. 2012b). 156 

This combination of cryptic behavior, socially mediated calling patterns and strong 157 

dependence on dynamic habitat conditions poses major challenges for general bird 158 

monitoring schemes, where detectability-related biases directly affect indicators outputs. 159 

 160 

Monitoring schemes and data collection 161 

 162 

Common Bird Monitoring Survey (SOCC) 163 

The Catalan Common Bird Monitoring Survey (SOCC, Herrando et al. 2008)  is a 164 

volunteer-based scheme in which observers conduct standardized breeding bird counts 165 

along 3-km linear walking transects. Each transect is visited twice during the breeding 166 

season (15 April–15 May and 16 May–15 June), following a common protocol 167 

regarding survey duration (2–2.5 h), time of day (first four hours after sunrise), and 168 

weather conditions (no rain, low wind and good visibility). All individual birds 169 

(including Quails) detected by song or visually within the standardized survey period 170 

are recorded. 171 

The SOCC program was established in 2002 and currently includes 638 transects across 172 

Catalonia. In this study, we used the subset of surveys conducted between 2005 and 173 

2025 in which the Common Quail was detected at least once (N = 205 transects; Figure 174 

1). The starting year was selected because it coincides with the availability of spatially 175 

explicit agricultural land-use data, which allowed the identification of suitable habitat 176 

for subsequent analyses (see Section 2.3). 177 

 178 

Common Quail Specific Survey (SEC) 179 

The Common Quail Specific Survey (SEC; from its Catalan acronym) is a targeted 180 

monitoring protocol originally developed at the University of Barcelona to improve the 181 

accuracy of quail counts based on behavioral research and extensive field experience 182 
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with the species (Rodríguez-Teijeiro et al. 2010, Sardà-Palomera et al. 2012b). The 183 

method was designed to maximize the detection of singing males by accounting for 184 

their cryptic behavior, socially mediated calling activity and loose male aggregations. 185 

SEC surveys were conducted by trained professional personnel along predefined 186 

transects, following a structured sequence of listening stops and acoustic stimulation.  187 

Observers moved along a fixed route and stopped at regular intervals to perform short 188 

listening sessions outside the vehicle. At each listening point, observers remained silent 189 

for 2 minutes to detect any spontaneously calling males. When spontaneous calling 190 

occurred, these males were immediately located and targeted for capture, as they 191 

provided reliable positional cues without requiring acoustic stimulation. 192 

When no spontaneous calling was detected, observers broadcast female calls (“lure”) to 193 

stimulate vocal responses from males. The playback consisted of two series of 15–20 194 

seconds separated by short listening pauses. If males responded, their approximate 195 

locations were recorded and the observer attempted immediate capture using a hand net 196 

while continuing to use the playback device as the lure. If no response was elicited, the 197 

playback sequence was repeated 3 additional times (two series each), with 30-second 198 

listening intervals between repetitions. 199 

At each listening point, this sequence allowed observers to: (1) activate males that were 200 

silent, (2) capture those that approached the lure, and (3) record those that continued 201 

calling but did not move toward the observer. While acoustic stimulation is intended to 202 

increase detectability and the number of males detected, capture aims to provide 203 

individual-level confirmation, allowing observers to discriminate between distinct 204 

individuals and to limit potential over-detection arising from moving individuals and 205 

repeated or socially mediated vocal responses. Captured males were held temporarily 206 

following ethical handling protocols. 207 

At the end of the transect, all captured individuals were ringed and subsequently 208 

released at the precise point of capture. The final count for each transect consisted of the 209 

total number of males detected (captured + uncaptured), mapped at their initial detection 210 

position, with the aim of providing a high-detection reference of local abundance 211 

aligned with the behavioral characteristics of the species. 212 

 213 
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Paired sampling design for direct comparison between schemes 214 

Between 2021 and 2025, we designed and monitored 28 dedicated SOCC transects 215 

across Catalonia, spanning a wide range of quail suitable habitat types and altitudes 216 

(38–1158 m a.s.l.) and selected to represent areas where different quail densities were 217 

known or expected based on previous monitoring (Figure 1). Transects were 218 

progressively incorporated over the study period, resulting in variable annual sampling 219 

effort and partial overlap among years, with the maximum number of active transects 220 

reached in 2024 (n = 27). All surveys were carried out during the breeding season, 221 

between 1 April and 30 June. To ensure direct comparability between SOCC and SEC 222 

data, each transect was surveyed on two consecutive days: the SOCC survey was 223 

conducted first, followed the next day by the SEC survey at the same hour of the 224 

morning, under very similar weather conditions and by the same observer, and for the 225 

same duration. This paired and standardized sampling design minimized temporal 226 

variation in male calling activity and provided a robust basis for comparing the two 227 

monitoring schemes under equivalent site, habitat and weather conditions. 228 

 229 

Habitat and vegetation covariates 230 

 231 

To quantify the amount and quality of suitable breeding habitat available for Common 232 

Quails along each transect and season, we combined agricultural land-use information 233 

with remotely sensed vegetation indices. First, we identified the agricultural land-use 234 

categories considered suitable for the species based on previous studies and expert 235 

knowledge. These included cereal crops, fallows, legume crops, and herbaceous dryland 236 

mosaics, which represent the primary breeding habitats for the species in Mediterranean 237 

farmland systems. All polygons corresponding to these land-use categories were 238 

extracted from two official agricultural mapping systems: SIGPAC (the national land-239 

parcel identification system) and DUN (the Catalan annual agricultural declaration 240 

system), both of which provide georeferenced information on crop types and field 241 

boundaries for each year between 2005 and 2025. A detailed description of the selected 242 

land-use categories is provided in Supporting Information. 243 

For each 3-km transect and year, we quantified the amount of suitable habitat within a 244 

300-m buffer centered on the survey route. This buffer width was selected to match the 245 
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effective detection distance used in the calibration analyses. All suitable habitat 246 

polygons intersecting the buffer were merged, and the resulting area was calculated for 247 

each transect–year combination. Suitable habitat area varied substantially among 248 

transects, ranging from 45 to 171 ha, and was included as a covariate in subsequent 249 

modelling steps. 250 

To characterize vegetation productivity and structure, we extracted the Normalized 251 

Difference Vegetation Index (NDVI) for each transect buffer using Landsat surface 252 

reflectance imagery (Landsat 5, 7, 8, and 9; 30-m resolution). NDVI was calculated for 253 

each 15-day and monthly intervals between 1 April and 30 June of each year, following 254 

cloud and shadow masking based on the QA_PIXEL band. For each interval, NDVI 255 

values were first aggregated at the pixel level using median composites, and transect-256 

level NDVI was then obtained by spatially averaging (mean) all pixels contained within 257 

each buffered transect area. NDVI processing was conducted in Google Earth Engine 258 

(Gorelick et al. 2017). NDVI values derived from 15-day composites were unavailable 259 

for 16% of the paired surveys due to insufficient cloud-free observations, and these 260 

surveys were therefore excluded from analyses requiring habitat classification based on 261 

15-day NDVI. In contrast, monthly NDVI metrics were available for all surveys. 262 

To classify SOCC transects into broad habitat-quality categories, we performed a k-263 

means clustering analysis based on three NDVI descriptors calculated for each transect: 264 

the mean NDVI during the breeding season, the within-season standard deviation, and 265 

the interannual standard deviation (see Supporting Information). These metrics 266 

respectively captured overall vegetation greenness, short-term seasonal variability, and 267 

longer-term temporal stability. All variables were standardized prior to clustering. A 268 

two-cluster solution was selected based on minimization of the within-cluster sum of 269 

squares, yielding two distinct habitat-quality groups: transects characterized by high and 270 

stable vegetation greenness (high-quality habitat) and transects with lower and/or more 271 

variable NDVI values (low-quality habitat). 272 

 273 

Model building and projection 274 

 275 

We developed a calibration model to relate SOCC counts to the more sensitive SEC 276 

counts, with the aim of correcting detectability biases in the general bird monitoring 277 
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scheme. For each paired SOCC–SEC survey, the SEC count was used as the reference 278 

indicator of local abundance, and its relationship with the corresponding SOCC count 279 

was modelled using a generalized linear modelling framework. SOCC counts were 280 

included as the main predictor, and both linear and quadratic forms of the SOCC term 281 

were evaluated. Habitat covariates such as suitable-habitat area and NDVI were 282 

incorporated to account for local environmental variation, and interaction terms between 283 

SOCC and NDVI were also included among the candidate formulations. 284 

To determine the most appropriate calibration structure, we fitted a full set of candidate 285 

models combining: (1) different NDVI metrics (mean, median, and monthly or 15-day 286 

composites), (2) alternative error distributions (Poisson, negative binomial NB1 and 287 

NB2), (3) the presence or absence of zero-inflation components, (4) linear versus 288 

quadratic SOCC effects and (5) models with or without a random intercept for transect 289 

identity. Candidate models were compared using Akaike’s Information Criterion (AIC), 290 

and the most parsimonious model structure was selected based on relative AIC 291 

differences. All models were inspected for residual patterns, dispersion, and potential 292 

outliers following standard diagnostic procedures. Final model performance was 293 

evaluated by assessing the agreement between predicted and observed SEC counts. In 294 

addition, the relative contribution of individual predictors was examined using ΔAIC 295 

values derived from reduced models. 296 

After selecting the final calibration model, SOCC counts from all transects where 297 

Common Quail had been detected at least once between 2005 and 2025 were converted 298 

into SEC-equivalent abundance indicators. For each transect and year, the observed 299 

SOCC count together with the corresponding habitat covariates was entered into the 300 

calibration model, and the resulting predictions were rounded down to the nearest 301 

integer to provide calibrated abundance-based indicators reflecting SEC-level 302 

detectability.  303 

 304 

Trend analysis 305 

 306 

We assessed long-term population trends for both the original SOCC counts and the 307 

calibrated SEC-equivalent indicators. Annual SOCC and SEC-equivalent counts were 308 

obtained by selecting, for each transect and year, the maximum value from the two 309 
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SOCC visits, following the standard procedure used by the Catalan Institute of 310 

Ornithology (ICO) for deriving official SOCC trends.  311 

For each dataset, we fitted TRIM log-linear models with site and time effects to estimate 312 

annual population indices and impute missing values (Van Strien et al. 2004). To obtain 313 

a single overall indicator trend, we regressed the logarithm of the TRIM-imputed annual 314 

index against time using ordinary least squares; the slope of this regression provided a 315 

measure of the average annual rate of change. 316 

To evaluate whether trends differed across habitat quality, each transect was assigned to 317 

one of the NDVI-based habitat clusters (see Supporting Information), and the TRIM and 318 

log-linear trend analyses were repeated separately for each habitat group. Differences 319 

between the original SOCC and calibrated SEC-equivalent indices within each habitat 320 

group were formally tested using linear models in which the logarithm of the TRIM-321 

derived annual index was modelled as a function of time (covariate), data series (SOCC 322 

vs calibrated SEC-equivalent; fixed factor), and their interaction. All analyses were 323 

conducted in R (version 4.4.2) using the rtrim package (Bogaart et al. 2020). 324 

 325 

RESULTS 326 

 327 

Observed detection and count differences across schemes 328 

 329 

The paired SOCC–SEC surveys revealed clear differences in detectability between the 330 

two monitoring schemes. In 32% of paired surveys where SOCC recorded no Common 331 

Quails, the SEC protocol detected at least one calling male (mean ± SD = 4 ± 3.4), 332 

whereas the opposite pattern was rare, with SOCC detecting a single individual while 333 

SEC detected none in only one case (7%), corresponding to an isolated detection of a 334 

single calling male. Overall, presence–absence detections differed significantly between 335 

methods, with a clear asymmetry favoring SEC detections in surveys where SOCC 336 

failed (McNemar’s test, p = 0.033). 337 

Across all surveys, the SEC generally recorded higher numbers of calling males than 338 

the SOCC. In 71% of paired surveys, SEC detected more individuals than SOCC, while 339 
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26% yielded identical counts and only 3% (one case) resulted in higher counts under 340 

SOCC. 341 

Consistently, SEC detected significantly more Common Quail males per survey than 342 

SOCC (paired Wilcoxon signed-rank test: p < 0.001), with a mean difference of 3.5 343 

individuals per survey. On average, SOCC detected approximately 2.9 calling males per 344 

survey, whereas SEC detected approximately 6.4, corresponding to more than a twofold 345 

increase under the SEC protocol (Figure 2). 346 

 347 

Calibration model performance 348 

 349 

Model comparison showed that the best-performing calibration model was a negative-350 

binomial formulation (NB1) including the 15-day mean NDVI together with linear and 351 

quadratic SOCC terms and SOCC × NDVI interactions. Models using monthly NDVI 352 

metrics, or including random intercepts or zero-inflation components, all showed 353 

substantially higher AIC values. 354 

The final calibration model (Table 1) captured a substantial proportion of the variability 355 

in SEC counts, providing a robust basis for converting SOCC-derived counts into SEC-356 

equivalent abundance indicators (Supplementary material S3). Standard residual 357 

diagnostics indicated no relevant overdispersion, no zero inflation and no influential 358 

outliers, confirming robust model behavior. 359 

An AIC-based assessment of predictor contributions revealed that NDVI was the most 360 

influential variable: removing NDVI together with its interactions produced by far the 361 

largest increase in AIC (ΔAIC = 74.3). The linear (ΔAIC = 53.5) and quadratic (ΔAIC = 362 

20.0) components of SOCC activity also contributed substantially to model fit, 363 

indicating a non-linear relationship between SOCC and SEC counts. SOCC × NDVI 364 

interactions further improved model performance (ΔAIC = 8.9), showing that the 365 

strength of the SOCC–SEC relationship varied along the NDVI gradient. In contrast, 366 

available habitat surface had no detectable effect (ΔAIC = –1.9). Overall, SEC counts 367 

were primarily driven by habitat greenness and SOCC activity, with NDVI modulating 368 

both the shape and magnitude of the calibration relationship. 369 
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The magnitude of the correction predicted by the calibration model varied across the 370 

SOCC–NDVI space. The largest discrepancies between SOCC and predicted SEC-371 

equivalent indicators occurred when SOCC counts were low and NDVI values were 372 

high, whereas predicted SEC-equivalent counts and SOCC converged under conditions 373 

of low NDVI or when SOCC counts were relatively high (≥4).  These patterns reflect 374 

the structure of the fitted SOCC × NDVI interactions (Figure 3). 375 

 376 

Population trends 377 

 378 

Applying the calibration model to the full SOCC dataset yielded SEC-equivalent 379 

abundance indicators for all transect–year combinations with available predictor 380 

information (N = 205 transects, 2005–2025). 381 

TRIM analyses revealed minor differences in temporal patterns between the original 382 

SOCC counts and the calibrated SEC-equivalent indicator series. Across 2005–2025, 383 

the SOCC-based population index showed a slight decline (–2.1% per year), whereas 384 

the calibrated series remained approximately stable (+0.1% per year). A joint analysis of 385 

both series indicated that the difference in long-term trends was not statistically 386 

significant (time × series: β = –0.028, p = 0.066), providing only weak evidence for 387 

divergence, and suggesting that, when all transects were pooled, both indices described 388 

broadly comparable overall trajectories (Figure 4A). 389 

However, analyses stratified by NDVI-based habitat clusters revealed marked habitat-390 

dependent differences. In transects characterized by habitat with high and stable NDVI 391 

values, the interaction between time and data series was statistically significant (β = –392 

0.047, p = 0.0079). In these greener habitats, SOCC-based indices showed a clear 393 

decline (–4.51% per year), whereas the calibrated SEC-equivalent indicator series 394 

remained stable (+0.15% per year), indicating diverging temporal trajectories between 395 

the two approaches (Figure 4B). 396 

In contrast, in transects with habitat with low or highly variable NDVI, the interaction 397 

was not statistically significant (β = –0.016, p = 0.306), and both SOCC and calibrated 398 

series produced similar long-term indicator trends (SOCC: –1.36% per year; SEC-399 

equivalent: +0.29% per year). In these habitats, the two monitoring approaches yielded 400 
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broadly comparable temporal patterns, with limited divergence across the study period 401 

(Figure 4C). 402 

  403 

DISCUSSION 404 

 405 

BMS face important challenges when applied to species characterized by behavioral or 406 

ecological traits that produce high variability in detectability across space and time (e.g. 407 

(Thompson, W.L. 2002, Diefenbach et al. 2003, Guillera‐Arroita et al. 2017). The 408 

Common Quail is a clear example of this broader class of species, as its irregular calling 409 

activity, spatially dynamic male aggregations and complex mating system generate 410 

presence and abundance-based indicator patterns that standard multispecies protocols 411 

struggle to capture consistently. By incorporating a species-specific monitoring protocol 412 

and conducting parallel surveys, we quantified the extent to which these biological traits 413 

influence detectability and indicator consistency, and developed a calibration model 414 

capable of correcting these biases using data from a broad-scale monitoring scheme.  415 

Differences between the two methodologies were evident not only in abundance-based 416 

indicators but also in basic presence–absence detection, highlighting that detectability 417 

itself is a major source of divergence. Poor agreement in low-count situations suggests 418 

that many individuals remain undetected when spontaneous calling activity is low, a 419 

pattern common to species whose vocal behavior varies over short temporal scales 420 

(Bibby et al. 2000, Sutherland 2006). Under these conditions, passive multispecies 421 

surveys may fail to register a substantial fraction of individuals, whereas targeted 422 

protocols using acoustic stimulation can reveal a larger proportion of the population (De 423 

Rosa et al. 2022). This mechanism explains why the species-specific survey performs 424 

consistently better at both presence–absence detection and abundance-based indicator 425 

performance.  426 

NDVI emerged as the strongest environmental predictor in the calibration model, 427 

indicating that habitat greenness and phenological state strongly modulate the 428 

relationship between the two monitoring schemes. Importantly, the magnitude of the 429 

correction was not constant across sites: discrepancies were greatest in high-NDVI 430 

habitat when the BMS protocol recorded low counts. Because NDVI varies 431 

considerably among regions and years (Pettorelli et al. 2005), the degree of 432 
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underestimation in BMS data is inherently context-dependent. Accordingly, the 433 

calibration does not act as a uniform multiplier but as a habitat-mediated adjustment 434 

shaped by local vegetation dynamics. On the other hand, the lack of a detectable effect 435 

of suitable-habitat area is consistent with the fact that all paired transects were located in 436 

landscapes where quails are normally present and habitat extent was not limiting. 437 

Within this range of conditions, habitat quality—as captured by NDVI—clearly 438 

outweighed habitat quantity in determining both local abundance and detectability. 439 

Although the calibration improves the consistency of local abundance-based indicators, 440 

it is not designed to be directly extrapolated to derive absolute population sizes at 441 

regional or higher scales without accounting for population dynamics. Common Quail 442 

males frequently undertake movements across farmland landscapes during the breeding 443 

season, tracking changes in vegetation structure, harvesting schedules and social cues 444 

(Puigcerver et al. 1989, Rodríguez-Teijeiro et al. 2009, Sardà-Palomera et al. 2012b). 445 

Recent GPS-based tracking data indicate that individuals may move not only between 446 

neighboring SOCC transects but also across wider regional, and occasionally 447 

international, distances within the same breeding period (Sardà-Palomera et al. 2025, 448 

unpublished data), highlighting the highly dynamic nature of populations over short 449 

temporal windows. 450 

Such mobility implies open populations with substantial turnover, increasing the risk of 451 

double counting when survey data are aggregated across space and time without 452 

explicitly modelling movement and availability. Under these conditions, the local 453 

relationship between SOCC and SEC counts should be interpreted as a calibration of 454 

detectability rather than as a direct estimator of regional population totals. Nevertheless, 455 

this limitation does not preclude the use of calibrated counts for assessing temporal 456 

change or informing population indicators when embedded within appropriate analytical 457 

frameworks that explicitly consider population openness and mobility. 458 

Additional information on movement rates, seasonal redistribution, and connectivity 459 

among breeding areas will be essential to refine such models. In the long term, 460 

integrating movement data into calibration or state-space frameworks could allow more 461 

accurate estimates at larger spatial scales. For now, however, the high mobility of the 462 

species implies that monitoring outputs should be interpreted within narrow temporal 463 
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windows and, where appropriate, at the scale of migratory flyways rather than at lower 464 

administrative units. 465 

From a temporal perspective, the calibration refines the ability of general BMS data to 466 

describe long-term indicator trends. Although the uncorrected BMS series broadly 467 

captured the overall regional trajectory of the species, the calibrated values reduced 468 

noise associated with detectability variability and produced indices that more closely 469 

reflect true temporal dynamics. This is particularly relevant for a species whose calling 470 

behavior fluctuates across the season and whose detectability is not constant through 471 

time. By stabilizing detection-related variability, the calibration addresses a central 472 

concern in multispecies monitoring: detectability biases can propagate into long-term 473 

indices and compromise the ability of BMS programs to detect true demographic 474 

change (Kéry and Schmidt 2008, Kellner and Swihart 2014). Correcting these biases 475 

therefore directly enhances the reliability of trend indicators.  476 

Despite these limitations, BMS remain an indispensable component of large-scale 477 

biodiversity monitoring, providing unparalleled temporal and geographic coverage that 478 

no species-specific program could realistically achieve. The challenge, therefore, is not 479 

to replace general monitoring schemes, but to complement them in ways that explicitly 480 

address detectability-related bias. 481 

Methodologically, the calibration establishes a functional bridge between general and 482 

species-specific monitoring schemes. It leverages the extensive spatial and temporal 483 

coverage of BMS programs while embedding information from targeted surveys that 484 

maximize detectability. This integration allows general schemes to retain their logistical 485 

advantages without inheriting the full extent of their detectability biases. Beyond the 486 

present case, similar bridging approaches could be explored for other species facing 487 

detectability challenges that may require the development of specialized monitoring 488 

protocols (e.g: Crex crex, Burhinus oedicnemus). In several taxa, dedicated monitoring 489 

programs now incorporate passive acoustic recorders (Sugai, et al. 2018), thermal-490 

imaging devices (Lahoz-Monfortand Magrath, 2021) or camera-trap systems (Wearn 491 

and Glover-Kapfer 2019), among others, to increase detection rates under conditions 492 

where standard BMS protocols perform poorly. Although these technologies are 493 

generally too costly or labor-intensive for broad implementation within BMS networks, 494 

they can provide high-quality reference data that enable calibration or validation of 495 

general monitoring outputs in a manner analogous to the approach demonstrated here. 496 
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Such complementary use of broad-scale and species-specific data provides a practical 497 

way to improve detection in species that are poorly sampled by standard monitoring 498 

schemes, while highlighting the remaining challenge of translating detection-based 499 

information into abundance-based indicators suitable for robust trend assessment. 500 

Overall, our study demonstrates that general BMS data can be partially reconciled with 501 

species-specific information to improve local abundance-based indicators and indicator 502 

trend interpretation for species with highly variable detectability. By developing a 503 

calibration model grounded in paired surveys and habitat context, we provide a practical 504 

framework that addresses major sources of detectability-related bias while retaining the 505 

extensive spatial and temporal coverage of general monitoring programs. However, the 506 

calibration obtained here is necessarily context-dependent. Behavioral patterns, 507 

population dynamics, and habitat phenology may vary across regions, years or 508 

management systems, potentially altering the relationship between general and species-509 

specific surveys. Consequently, applying this approach to other areas may require 510 

region-specific calibration analyses to identify the most appropriate model structure. 511 

Despite this, the proposed framework offers a transferable methodological basis for 512 

integrating general and specialized monitoring schemes. More broadly, our results 513 

highlight the value of combining broad-scale volunteer-based programs with targeted 514 

high-detection surveys to generate more robust and interpretable population indicators 515 

for species whose detectability is shaped by behavioral or environmental processes. 516 
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TABLES  664 

 665 

Table 1 Summary of the negative-binomial calibration model (NB1) relating SEC 666 

counts to SOCC counts and habitat variables. 667 

Predictor Estimate SE z p-value 

Intercept 1.739 0.104 16.690 <0.001 

SOCC (linear) 1.218 0.166 7.343 <0.001 

SOCC² (quadratic) –0.370 0.090 –4.125 <0.001 

NDVI (15-day mean) 0.266 0.112 2.387 0.017 

Habitat area (ha) –0.034 0.087 –0.388 0.698 

SOCC × NDVI –0.499 0.146 –3.412 <0.001 

SOCC² × NDVI 0.184 0.063 2.919 0.003 

 668 

 669 

  670 
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FIGURE CAPTIONS 671 

 672 

Figure 1. Geographic distribution of transects used in this study across Catalonia. Blue 673 

lines show the 28 specifically designed SOCC transects monitored with both SOCC and 674 

SEC protocols between 2021 and 2025, which were used to calibrate the SOCC–SEC 675 

relationship. Green lines represent all SOCC transects where at least one Common 676 

Quail was detected between 2005 and 2025 (N = 205), for which the calibration model 677 

was applied to generate SEC-equivalent abundance-based indicators. 678 

 679 

Figure 2. Mean number of Common Quail males detected per transect (± SD) by the 680 

SOCC and SEC protocols. Only transects with confirmed quail detection were included. 681 

Bars show mean values and error bars indicate standard deviation. 682 

 683 

Figure 3. Predicted SEC-equivalent quail counts as a function of SOCC counts and 15-684 

day mean NDVI, based on the final NB1 calibration model. The surface illustrates the 685 

combined non-linear effects of SOCC and habitat greenness, as well as their interaction. 686 

 687 

Figure 4 Temporal dynamics of the population index derived from original SOCC 688 

counts (red) and from SEC-equivalent calibrated indicators (blue). Solid lines show 689 

annual TRIM indices and shaded areas represent standard errors. Dashed lines indicate 690 

the fitted log-linear trends, with annual percentage changes shown at the right of each 691 

panel. (A) All transects combined. (B) Transects within high and stable NDVI habitats. 692 

(C) Transects within low or highly variable NDVI habitats. * denotes a statistically 693 

significant difference between SOCC and SEC-equivalent trends (time × series 694 

interaction). 695 
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Supporting Information S1 – Description of agricultural land-use datasets (SIGPAC and DUN) 

and habitat categories used in the analyses 

 

To classify suitable agricultural habitats for the Common Quail, we relied on two official, 

georeferenced land-use datasets that together cover the full study period (2005–2025): 

 

SIGPAC (2005–2014) 

The Sistema de Información Geográfica de Parcelas Agrícolas (SIGPAC) is the Spanish Land 

Parcel Identification System used for the management of the EU Common Agricultural Policy. It 

provides annual polygon-based information on crop type and agricultural land use at field 

scale. For the years 2005 to 2014, suitable quail habitat was identified by selecting all SIGPAC 

polygons whose Uso (“TA”, Tierra Arable) and PS (“Pastos”) codes corresponded to cereal 

crops, fallows, herbaceous crops or other dryland habitats consistent with quail breeding 

ecology. 

 

DUN (2015–2025) 

From 2015 onwards, land-use information was obtained from the Declaració Única Agraria 

(DUN), the annual agricultural declaration system used in Catalonia and derived from SIGPAC. 

DUN provides detailed crop information at field level and is fully harmonised with CAP 

reporting requirements. For each year between 2015 and 2025, we selected all DUN polygons 

corresponding to herbaceous crops, cereals, legumes, fallows and other dryland herbaceous 

habitats considered suitable for quail breeding. 

 

Table S1 shows the correspondence between SIGPAC and DUN crop codes 

 

Habitat classification for modelling 

All selected SIGPAC and DUN land-use categories were grouped into a single set of suitable 

breeding habitat types. 

 

These habitat categories were used to: 

1. calculate the area of suitable habitat within a 300-m buffer around each transect, and 

2. extract vegetation indices (NDVI) for modelling quail abundance and detectability. 

 

 

 

 

 



Table S1 provides the full lists of categories and their correspondence across datasets. 

Sigpac - Suitable 
habitat for quail 

DUN - Suitable habitat for 
quail (English) 

DUN - Suitable habitat for quail 
(Catalan) 

TA Arable Land Alfalfa ALFALS 

TA Arable Land Forage mix BARREJA FARRATGERES 

TA Arable Land Wheat BLAT 

TA Arable Land Chard BLEDA 

TA Arable Land Chickpea CIGRÓ 

TA Arable Land Oat CIVADA 

TA Arable Land Rapeseed COLZA 

TA Arable Land Ryegrass ERB 

TA Arable Land Spelt ESPELTA 

TA Arable Land Fescue FESTUCA 

TA Arable Land Sunflower GIRA-SOL 

TA Arable Land Fallow GUARET 

TA Arable Land Lentil LLENTIA 

TA Arable Land Millet MILL 

TA Arable Land Barley ORDI 

PS Pastures Pastures < 5 years old PASTURES DE MENYS DE 5 ANYS 

TA Arable Land Pea PÈSOL 

TA Arable Land Quinoa QUINOA 

TA Arable Land Ryegrass RAIGRAS 

TA Arable Land Rye SÈGOL 

TA Arable Land Soybean SOIA 

TA Arable Land Sorghum SORGO 

TA Arable Land Sainfoin TREPADELLA 

TA Arable Land Triticale TRITICALE 

TA Arable Land Vetch VEÇA 

  



Supporting Information S2. NDVI-based habitat classification 

S2.1. NDVI data processing 

We characterised habitat greenness for all SOCC transects with confirmed Common Quail 

presence using 15-day NDVI composites derived from Landsat imagery (2005–2025). For each 

transect and year, we computed: 

1. Annual mean NDVI: average NDVI during the breeding season. 

2. Intra-annual NDVI variability: standard deviation of NDVI within the breeding season 

for each year. 

These annual summaries were then used to derive three long-term NDVI indicators per 

transect: 

• NDVI_mean: mean annual NDVI across all sampled years. 

• NDVI_SD_intra: mean intra-annual NDVI variability. 

• NDVI_SD_inter: inter-annual variability, measured as the standard deviation of annual 

NDVI means. 

• n_years: number of years with available NDVI information. 

Only transects with confirmed quail detections were retained to ensure ecologically 

meaningful habitat summarisation. 

 

S2.2. Clustering analysis 

To classify transects according to habitat greenness and stability, we performed k-means 

clustering (k = 2) on the scaled values of the three NDVI indicators: 

• NDVI_mean 

• NDVI_SD_intra 

• NDVI_SD_inter 

The number of clusters (k = 2) was selected to differentiate high-quality stable habitats from 

low or highly variable habitats, consistent with ecological interpretations from previous NDVI-

based analyses of quail occurrence. 

Cluster identities were assigned based on maximum NDVI_mean in the cluster centroids. 

The two habitat categories were therefore defined as: 

• “NDVI high and stable” — high mean NDVI, low variability. 

• “NDVI low or highly variable” — low greenness and/or high temporal fluctuation. 

 

S2.3. Principal Component Analysis (PCA) 



To validate the clustering structure, we performed a PCA using the same NDVI indicators. The 

first two principal components explained 46.2% (PC1) and 33.0% (PC2) of the variance, 

respectively. 

A clear separation between the two NDVI groups was observed along PC1 (Figure S2.2), 

confirming that the k-means clusters captured meaningful gradients of habitat greenness and 

stability. 

 

 

 

Figure S2.1. Principal Component Analysis of NDVI indicators. PCA of NDVI_mean, 

NDVI_SD_intra and NDVI_SD_inter for transects with quail presence. Colours indicate k-means 

habitat groups, with 95% confidence ellipses. Separation along PC1 validates the clustering 

structure. 

 

S2.4. Statistical comparison of NDVI indicators between groups 

To evaluate whether NDVI indicators differed significantly between habitat groups, we 

performed normality tests (Shapiro–Wilk) and subsequently applied either: 

• Student’s t-test (when both groups were normally distributed), or 

• Mann–Whitney U test (for non-normal distributions). 

The comparison was conducted for (Table S2.1): 

• NDVI_mean 

• NDVI_SD_intra 

• NDVI_SD_inter 

 

 

 

 



Table S2.1. Statistical comparison of NDVI indicators between habitat-quality groups. Results 

of parametric (t-test) and non-parametric (Mann–Whitney U) tests comparing mean NDVI, 

intra-annual NDVI variability and interannual NDVI variability between the two NDVI-based 

habitat clusters (“NDVI high and stable” vs. “NDVI low or highly variable”). Reported p-values 

correspond to two-tailed tests. 

Variable    Test         p_value 

Mean NDVI             t-test (paramètric)             < 0.001 

Intra-annual NDVI SD NDVI SD Mann–Whitney U (no paramètric) < 0.001 

Interannual NDVI SD NDVI SD Mann–Whitney U (no paramètric) < 0.001 

 

 

 

 

 

Figure S2.2. Distribution of NDVI indicators according to habitat-quality group. Boxplots 

showing (A) mean NDVI, (B) inter-annual NDVI variability, and (C) intra-annual NDVI variability 

for the two NDVI groups. High-NDVI stable transects show greater greenness and lower 

temporal variability. 

  



Supporting Information S3 – Predictor contribution analysis 

To evaluate the contribution of each predictor to the final calibration model, we compared the 

full model (NB1 error structure with linear and quadratic SOCC effects, 15-day mean NDVI, 

SOCC × NDVI interactions and suitable habitat area) with a series of reduced models in which 

individual terms or groups of terms were removed. Differences in Akaike Information Criterion 

(ΔAIC) quantify the loss of model support resulting from the removal of each component. 

 

Table S3. Contribution of each predictor to the final calibration model based on AIC differences 

between the full model and models with individual terms removed. 

Removed term df AIC ΔAIC 

Full model 8 282.52 0 

NDVI_mean + interactions 5 356.85 74.33 

socc (linear) + interaction 6 336.02 53.50 

socc² + interaction 6 302.48 19.96 

NDVI interactions only 6 291.45 8.93 

Suitable habitat (ha) 7 280.67 –1.85 

 

 

 

 

 

Figure S3.1. Relative importance of each predictor based on ΔAIC values obtained by removing 

individual terms or groups of terms from the full model. Larger ΔAIC values indicate greater 

loss of model support. NDVI (including interactions with SOCC) was the most influential 

predictor, followed by the linear and quadratic components of SOCC activity, whereas suitable 

habitat area had no detectable effect on indicator performance. 

 



 

Figure S3.2. Relationship between observed and predicted SEC counts from the final 

calibration model (negative binomial with log link). Points are shown on the original count 

scale. The solid curve is the back-transformed fit from a linear regression on log(count+1), and 

the dashed line indicates the 1:1 relationship. Pearson correlation was computed on 

log(count+1) (R = 0.87). 

 


