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Abstract

Breeding Bird Monitoring Schemes (BMS), a cornerstone of large-scale volunteer-
based ecological monitoring, are central to biodiversity assessment and conservation
decision-making. However, their generalist design means that detectability can vary
across species, habitats and behavioral states, introducing noise into abundance
estimates and population indices. Improving how BMS account for detectability-related
bias is therefore essential for strengthening their applied value in conservation and
management, particularly when population indicators are used to guide policy,
prioritization and adaptive management actions. Here, we develop and test a calibration
framework to adjust for detectability-related bias in BMS counts by integrating
information from a targeted, species-specific high-detection survey conducted in
parallel. Using the Common Quail (Coturnix coturnix), a farmland species whose
irregular and density-dependent calling behavior generates strong variation in
detectability, we quantified differences in detection, abundance estimates and temporal
trends between the two monitoring approaches. The targeted survey detected quails in
32% of surveys classified as absences by the BMS method, revealing substantial
detectability mismatches. When detections occurred under both methods, the targeted
survey recorded more than twice as many individuals per survey, indicating marked bias
in local abundance estimates under general monitoring. We then fitted a habitat-
informed calibration model that adjusts BMS counts using vegetation greenness (NDVI)
as a proxy of habitat quality. Discrepancies between methods were largest in high-
quality habitats and under low BMS counts. Applying the calibration reduced noise
associated with detectability variability and improved the reliability of BMS-derived
trend indices. By explicitly addressing detectability-related bias, this approach provides
an operational and transferable framework for improving monitoring-based indicators
used in conservation assessment and management. More broadly, it illustrates how
integrating targeted, high-detection surveys with broad-scale volunteer-based
monitoring can enhance the decision relevance of biodiversity monitoring programs

without compromising their scalability or long-term continuity.
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INTRODUCTION

Breeding bird monitoring schemes (BMS) are the cornerstone of large-scale biodiversity
assessment worldwide (Gregory et al. 2005, Likens and Lindenmayer 2018). Their
standardized protocols, broad spatial coverage and long-term continuity allow robust
quantification of population change and ecological responses to environmental
pressures through abundance-based indicators and trend indices (e.g.: Devictor et al.,
2008; Rigal et al., 2023; Stephens et al., 2016). A defining feature of these schemes is
their reliance on trained volunteer observers, whose coordinated effort generates large
multispecies datasets that would be unfeasible through professional surveys alone
(Moussy et al. 2022). By providing consistent information across extensive temporal
and geographic scales, BMS programs play a key role in informing conservation policy,
land-use planning and biodiversity indicators at national and international levels
(Schmeller et al. 2009, Tulloch et al. 2013). Ensuring the methodological reliability and
taxonomic representativeness of these schemes is therefore essential for accurately

tracking environmental change (Yoccoz et al. 2001, Kissling et al. 2018).

Despite the success of BMS, their generalist and multispecies design inevitably
introduces substantial variation in detection probability across species, habitats and
regions (Thompson, W.L. 2002, Diefenbach et al. 2003). Species whose behavior,
spatial dynamics or social organization depart from the assumptions of standard count
protocols may yield biased indicators outputs in general monitoring schemes. Such
biases may arise through missed detections, ambiguous records or potential double-
counting (Guillera-Arroita et al. 2017). These issues are especially problematic for
species that fall outside the core “common bird” set typically covered by BMS
programs, including those that are behaviorally atypical, patchily distributed or
otherwise difficult to survey using standard protocols (Nichols et al. 2007, Sarda-

Palomera et al. 2012a).

Biases in detection probability can propagate through population indices, affecting
abundance-based indicators, temporal trends and the ability of monitoring schemes to
detect true demographic change (Kéry and Schmidt 2008). When detection is variable
or inconsistent, yearly indices may become distorted, trend precision decreases and
interannual variability inflates, particularly when uncertain observations are unevenly

distributed across space or time (Johnson 2008, Kellner and Swihart 2014). In long-term
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monitoring schemes, these effects can compromise the reliability and interpretability of

populations.

As a consequence of these limitations, large-scale biodiversity indicators—such as those
produced by the Pan-European Common Bird Monitoring Scheme (PECBMS, Brlik et
al. 2021)—typically exclude species with low or highly variable detectability, focusing
instead on widespread and consistently monitored taxa (Gregory et al. 2005, 2008, Brlik
et al. 2021). This exclusion avoids introducing methodological noise into continental
indicators, but it also means that many ecologically relevant or management-sensitive
species remain poorly represented in general monitoring outputs. To address this gap,
species-specific monitoring programs have been developed by universities, research
institutes and public administrations, using tailored protocols that substantially increase
detectability and provide more accurate abundance estimates for species whose behavior

or ecology challenge standardized monitoring (Bibby et al. 2000).

These limitations underscore the need for methodological comparisons between general
BMS protocols and species-specific surveys. Such comparisons help clarify how
detectability, sampling effort, observer performance and habitat structure influence
indicators outputs (Johnson 2008), and they provide the basis for developing calibration
approaches that improve the robustness, consistency and comparability of abundance-
based indicators derived from large-scale monitoring schemes (Kellner and Swihart

2014) .

In this study, we compare indicator outputs from a BMS with those from a species-
specific monitoring program for the Common Quail (Coturnix coturnix). The Common
Quail i1s a widespread farmland species whose behavioral particularities—most notably
its reliance on male vocal activity for detection — mean that strong context- and density-
dependent variation in calling behavior may generate substantial detectability bias under
standardized BMS protocols (see Section 2.1 for details). The species also holds high
socioeconomic relevance due to its importance in small-game hunting (Perennou, C.
2009). Consequently, robust population indicators are essential for conservation and
management, yet detectability related uncertainty remains a central point of debate in
quail monitoring and harvest regulation (Arroyo et al. 2022). This uncertainty is
reflected in the inconsistent treatment of the species across monitoring frameworks,

with continental indicator excluding it from trend reporting, while national or regional
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programs continue to publish Common quail population assessments (Brlik et al. 2021,

Escandell et al. 2023, ICO 2025).

In this context, we set out to (1) quantify differences in presence—absence detection and
abundance-based indicators between a general breeding bird monitoring scheme—the
Catalan Common Bird Monitoring Survey (SOCC)—and a species-specific survey
designed for the Common Quail (SEC), (2) develop a calibration model that translates
SOCC counts into SEC-equivalent abundance indicators, and (3) assess how applying
this correction influences long-term indicator trends. By developing and testing this
calibration tool, we evaluate whether data from a general BMS can be adjusted to
improve indicator performance for a behaviorally atypical farmland species and identify

the conditions under which detectability-related biases can be mitigated.

MATERIAL AND METHODS

Study species

The Common Quail is a small migratory galliform associated with open farmland in the
Western Palearctic, particularly cereal crops and other herbaceous vegetation
(McGowan et al. 2020). Individuals typically remain hidden within dense cover, making
visual detection uncommon. Consequently, male vocalizations constitute the primary

cue for detection in the field.

However, the environmental and social factors influencing calling activity remain
poorly understood. Calling behavior is further shaped by a non-territorial mating
system, characterized by loose and spatially dynamic male aggregations, whose calling
intensity and spatial arrangement fluctuate in response to social interactions (Rodriguez-
Teijeiro et al. 1992, Rodrigo-Rueda et al. 1997, Guyomarc’h et al. 1998, Sarda-
Palomera et al. 2011). This behavioral complexity makes it difficult to predict when and
where males will call, contributing to variable detectability across habitats and survey

conditions.

In addition to these behavioral complexities, habitat quality strongly shapes the seasonal

presence and abundance of the species. Quail distribution is known to shift in response
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to crop phenology and harvesting schedules, with individuals rapidly relocating as
vegetation structure changes during spring and early summer (Rodriguez-Teijeiro et al.
2009). Complementing this, remote-sensing analyses have shown that vegetation
greenness (NDVI) provides a reliable proxy for these habitat dynamics, with higher

NDVI values associated with increased quail presence (Sarda-Palomera et al. 2012b).

This combination of cryptic behavior, socially mediated calling patterns and strong
dependence on dynamic habitat conditions poses major challenges for general bird

monitoring schemes, where detectability-related biases directly affect indicators outputs.

Monitoring schemes and data collection

Common Bird Monitoring Survey (SOCC)
The Catalan Common Bird Monitoring Survey (SOCC, Herrando et al. 2008) is a

volunteer-based scheme in which observers conduct standardized breeding bird counts
along 3-km linear walking transects. Each transect is visited twice during the breeding
season (15 April-15 May and 16 May—15 June), following a common protocol
regarding survey duration (2-2.5 h), time of day (first four hours after sunrise), and
weather conditions (no rain, low wind and good visibility). All individual birds
(including Quails) detected by song or visually within the standardized survey period

are recorded.

The SOCC program was established in 2002 and currently includes 638 transects across
Catalonia. In this study, we used the subset of surveys conducted between 2005 and
2025 in which the Common Quail was detected at least once (N = 205 transects; Figure
1). The starting year was selected because it coincides with the availability of spatially
explicit agricultural land-use data, which allowed the identification of suitable habitat

for subsequent analyses (see Section 2.3).

Common Quail Specific Survey (SEC)

The Common Quail Specific Survey (SEC; from its Catalan acronym) is a targeted
monitoring protocol originally developed at the University of Barcelona to improve the
accuracy of quail counts based on behavioral research and extensive field experience

6
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with the species (Rodriguez-Teijeiro et al. 2010, Sarda-Palomera et al. 2012b). The
method was designed to maximize the detection of singing males by accounting for
their cryptic behavior, socially mediated calling activity and loose male aggregations.
SEC surveys were conducted by trained professional personnel along predefined

transects, following a structured sequence of listening stops and acoustic stimulation.

Observers moved along a fixed route and stopped at regular intervals to perform short
listening sessions outside the vehicle. At each listening point, observers remained silent
for 2 minutes to detect any spontaneously calling males. When spontaneous calling
occurred, these males were immediately located and targeted for capture, as they

provided reliable positional cues without requiring acoustic stimulation.

When no spontaneous calling was detected, observers broadcast female calls (“lure”) to
stimulate vocal responses from males. The playback consisted of two series of 15-20
seconds separated by short listening pauses. If males responded, their approximate
locations were recorded and the observer attempted immediate capture using a hand net
while continuing to use the playback device as the lure. If no response was elicited, the
playback sequence was repeated 3 additional times (two series each), with 30-second

listening intervals between repetitions.

At each listening point, this sequence allowed observers to: (1) activate males that were
silent, (2) capture those that approached the lure, and (3) record those that continued
calling but did not move toward the observer. While acoustic stimulation is intended to
increase detectability and the number of males detected, capture aims to provide
individual-level confirmation, allowing observers to discriminate between distinct
individuals and to limit potential over-detection arising from moving individuals and
repeated or socially mediated vocal responses. Captured males were held temporarily

following ethical handling protocols.

At the end of the transect, all captured individuals were ringed and subsequently
released at the precise point of capture. The final count for each transect consisted of the
total number of males detected (captured + uncaptured), mapped at their initial detection
position, with the aim of providing a high-detection reference of local abundance

aligned with the behavioral characteristics of the species.



214 Paired sampling design for direct comparison between schemes

215  Between 2021 and 2025, we designed and monitored 28 dedicated SOCC transects
216  across Catalonia, spanning a wide range of quail suitable habitat types and altitudes
217 (381158 m a.s.l.) and selected to represent areas where different quail densities were
218  known or expected based on previous monitoring (Figure 1). Transects were

219  progressively incorporated over the study period, resulting in variable annual sampling
220  effort and partial overlap among years, with the maximum number of active transects
221  reached in 2024 (n = 27). All surveys were carried out during the breeding season,
222 between 1 April and 30 June. To ensure direct comparability between SOCC and SEC
223 data, each transect was surveyed on two consecutive days: the SOCC survey was

224 conducted first, followed the next day by the SEC survey at the same hour of the

225  morning, under very similar weather conditions and by the same observer, and for the
226  same duration. This paired and standardized sampling design minimized temporal
227  variation in male calling activity and provided a robust basis for comparing the two

228 monitoring schemes under equivalent site, habitat and weather conditions.
229

230 Habitat and vegetation covariates
231

232 To quantify the amount and quality of suitable breeding habitat available for Common
233 Quails along each transect and season, we combined agricultural land-use information
234  with remotely sensed vegetation indices. First, we identified the agricultural land-use
235  categories considered suitable for the species based on previous studies and expert

236  knowledge. These included cereal crops, fallows, legume crops, and herbaceous dryland
237  mosaics, which represent the primary breeding habitats for the species in Mediterranean
238  farmland systems. All polygons corresponding to these land-use categories were

239  extracted from two official agricultural mapping systems: SIGPAC (the national land-
240  parcel identification system) and DUN (the Catalan annual agricultural declaration

241  system), both of which provide georeferenced information on crop types and field

242  boundaries for each year between 2005 and 2025. A detailed description of the selected

243  land-use categories is provided in Supporting Information.

244 For each 3-km transect and year, we quantified the amount of suitable habitat within a

245  300-m buffer centered on the survey route. This buffer width was selected to match the
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effective detection distance used in the calibration analyses. All suitable habitat
polygons intersecting the buffer were merged, and the resulting area was calculated for
each transect—year combination. Suitable habitat area varied substantially among
transects, ranging from 45 to 171 ha, and was included as a covariate in subsequent

modelling steps.

To characterize vegetation productivity and structure, we extracted the Normalized
Difference Vegetation Index (NDVI) for each transect buffer using Landsat surface
reflectance imagery (Landsat 5, 7, 8, and 9; 30-m resolution). NDVI was calculated for
each 15-day and monthly intervals between 1 April and 30 June of each year, following
cloud and shadow masking based on the QA_PIXEL band. For each interval, NDVI
values were first aggregated at the pixel level using median composites, and transect-
level NDVI was then obtained by spatially averaging (mean) all pixels contained within
each buffered transect area. NDVI processing was conducted in Google Earth Engine
(Gorelick et al. 2017). NDVI values derived from 15-day composites were unavailable
for 16% of the paired surveys due to insufficient cloud-free observations, and these
surveys were therefore excluded from analyses requiring habitat classification based on

15-day NDVI. In contrast, monthly NDVI metrics were available for all surveys.

To classify SOCC transects into broad habitat-quality categories, we performed a k-
means clustering analysis based on three NDVI descriptors calculated for each transect:
the mean NDVI during the breeding season, the within-season standard deviation, and
the interannual standard deviation (see Supporting Information). These metrics
respectively captured overall vegetation greenness, short-term seasonal variability, and
longer-term temporal stability. All variables were standardized prior to clustering. A
two-cluster solution was selected based on minimization of the within-cluster sum of
squares, yielding two distinct habitat-quality groups: transects characterized by high and
stable vegetation greenness (high-quality habitat) and transects with lower and/or more

variable NDVI values (low-quality habitat).

Model building and projection

We developed a calibration model to relate SOCC counts to the more sensitive SEC

counts, with the aim of correcting detectability biases in the general bird monitoring
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scheme. For each paired SOCC-SEC survey, the SEC count was used as the reference
indicator of local abundance, and its relationship with the corresponding SOCC count
was modelled using a generalized linear modelling framework. SOCC counts were
included as the main predictor, and both linear and quadratic forms of the SOCC term
were evaluated. Habitat covariates such as suitable-habitat area and NDVI were
incorporated to account for local environmental variation, and interaction terms between

SOCC and NDVI were also included among the candidate formulations.

To determine the most appropriate calibration structure, we fitted a full set of candidate
models combining: (1) different NDVI metrics (mean, median, and monthly or 15-day
composites), (2) alternative error distributions (Poisson, negative binomial NB1 and
NB2), (3) the presence or absence of zero-inflation components, (4) linear versus
quadratic SOCC effects and (5) models with or without a random intercept for transect
identity. Candidate models were compared using Akaike’s Information Criterion (AIC),
and the most parsimonious model structure was selected based on relative AIC
differences. All models were inspected for residual patterns, dispersion, and potential
outliers following standard diagnostic procedures. Final model performance was
evaluated by assessing the agreement between predicted and observed SEC counts. In
addition, the relative contribution of individual predictors was examined using AAIC

values derived from reduced models.

After selecting the final calibration model, SOCC counts from all transects where
Common Quail had been detected at least once between 2005 and 2025 were converted
into SEC-equivalent abundance indicators. For each transect and year, the observed
SOCC count together with the corresponding habitat covariates was entered into the
calibration model, and the resulting predictions were rounded down to the nearest
integer to provide calibrated abundance-based indicators reflecting SEC-level

detectability.

Trend analysis

We assessed long-term population trends for both the original SOCC counts and the
calibrated SEC-equivalent indicators. Annual SOCC and SEC-equivalent counts were

obtained by selecting, for each transect and year, the maximum value from the two
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SOCC visits, following the standard procedure used by the Catalan Institute of
Ornithology (ICO) for deriving official SOCC trends.

For each dataset, we fitted TRIM log-linear models with site and time effects to estimate
annual population indices and impute missing values (Van Strien et al. 2004). To obtain
a single overall indicator trend, we regressed the logarithm of the TRIM-imputed annual
index against time using ordinary least squares; the slope of this regression provided a

measure of the average annual rate of change.

To evaluate whether trends differed across habitat quality, each transect was assigned to
one of the NDVI-based habitat clusters (see Supporting Information), and the TRIM and
log-linear trend analyses were repeated separately for each habitat group. Differences
between the original SOCC and calibrated SEC-equivalent indices within each habitat
group were formally tested using linear models in which the logarithm of the TRIM-
derived annual index was modelled as a function of time (covariate), data series (SOCC
vs calibrated SEC-equivalent; fixed factor), and their interaction. All analyses were

conducted in R (version 4.4.2) using the rtrim package (Bogaart et al. 2020).

RESULTS

Observed detection and count differences across schemes

The paired SOCC—SEC surveys revealed clear differences in detectability between the
two monitoring schemes. In 32% of paired surveys where SOCC recorded no Common
Quails, the SEC protocol detected at least one calling male (mean + SD =4 + 3.4),
whereas the opposite pattern was rare, with SOCC detecting a single individual while
SEC detected none in only one case (7%), corresponding to an isolated detection of a
single calling male. Overall, presence—absence detections differed significantly between
methods, with a clear asymmetry favoring SEC detections in surveys where SOCC

failed (McNemar’s test, p = 0.033).

Across all surveys, the SEC generally recorded higher numbers of calling males than

the SOCC. In 71% of paired surveys, SEC detected more individuals than SOCC, while

11
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26% yielded identical counts and only 3% (one case) resulted in higher counts under

SOCC.

Consistently, SEC detected significantly more Common Quail males per survey than
SOCC (paired Wilcoxon signed-rank test: p < 0.001), with a mean difference of 3.5
individuals per survey. On average, SOCC detected approximately 2.9 calling males per
survey, whereas SEC detected approximately 6.4, corresponding to more than a twofold

increase under the SEC protocol (Figure 2).

Calibration model performance

Model comparison showed that the best-performing calibration model was a negative-
binomial formulation (NB1) including the 15-day mean NDVI together with linear and
quadratic SOCC terms and SOCC x NDVI interactions. Models using monthly NDVI
metrics, or including random intercepts or zero-inflation components, all showed

substantially higher AIC values.

The final calibration model (Table 1) captured a substantial proportion of the variability
in SEC counts, providing a robust basis for converting SOCC-derived counts into SEC-
equivalent abundance indicators (Supplementary material S3). Standard residual
diagnostics indicated no relevant overdispersion, no zero inflation and no influential

outliers, confirming robust model behavior.

An AIC-based assessment of predictor contributions revealed that NDVI was the most
influential variable: removing NDVI together with its interactions produced by far the
largest increase in AIC (AAIC = 74.3). The linear (AAIC = 53.5) and quadratic (AAIC =
20.0) components of SOCC activity also contributed substantially to model fit,
indicating a non-linear relationship between SOCC and SEC counts. SOCC x NDVI
interactions further improved model performance (AAIC = 8.9), showing that the
strength of the SOCC—SEC relationship varied along the NDVI gradient. In contrast,
available habitat surface had no detectable effect (AAIC =—1.9). Overall, SEC counts
were primarily driven by habitat greenness and SOCC activity, with NDVI modulating
both the shape and magnitude of the calibration relationship.
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The magnitude of the correction predicted by the calibration model varied across the
SOCC-NDVI space. The largest discrepancies between SOCC and predicted SEC-
equivalent indicators occurred when SOCC counts were low and NDVI values were
high, whereas predicted SEC-equivalent counts and SOCC converged under conditions
of low NDVI or when SOCC counts were relatively high (>4). These patterns reflect
the structure of the fitted SOCC x NDVI interactions (Figure 3).

Population trends

Applying the calibration model to the full SOCC dataset yielded SEC-equivalent
abundance indicators for all transect—year combinations with available predictor

information (N = 205 transects, 2005-2025).

TRIM analyses revealed minor differences in temporal patterns between the original
SOCC counts and the calibrated SEC-equivalent indicator series. Across 2005-2025,
the SOCC-based population index showed a slight decline (-2.1% per year), whereas
the calibrated series remained approximately stable (+0.1% per year). A joint analysis of
both series indicated that the difference in long-term trends was not statistically
significant (time x series: B =—0.028, p = 0.066), providing only weak evidence for
divergence, and suggesting that, when all transects were pooled, both indices described

broadly comparable overall trajectories (Figure 4A).

However, analyses stratified by NDVI-based habitat clusters revealed marked habitat-
dependent differences. In transects characterized by habitat with high and stable NDVI
values, the interaction between time and data series was statistically significant ( =—
0.047, p =0.0079). In these greener habitats, SOCC-based indices showed a clear
decline (—4.51% per year), whereas the calibrated SEC-equivalent indicator series
remained stable (+0.15% per year), indicating diverging temporal trajectories between

the two approaches (Figure 4B).

In contrast, in transects with habitat with low or highly variable NDVI, the interaction
was not statistically significant (B =—-0.016, p = 0.306), and both SOCC and calibrated
series produced similar long-term indicator trends (SOCC: —1.36% per year; SEC-

equivalent: +0.29% per year). In these habitats, the two monitoring approaches yielded
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broadly comparable temporal patterns, with limited divergence across the study period

(Figure 4C).

DISCUSSION

BMS face important challenges when applied to species characterized by behavioral or
ecological traits that produce high variability in detectability across space and time (e.g.
(Thompson, W.L. 2002, Diefenbach et al. 2003, Guillera-Arroita et al. 2017). The
Common Quail is a clear example of this broader class of species, as its irregular calling
activity, spatially dynamic male aggregations and complex mating system generate
presence and abundance-based indicator patterns that standard multispecies protocols
struggle to capture consistently. By incorporating a species-specific monitoring protocol
and conducting parallel surveys, we quantified the extent to which these biological traits
influence detectability and indicator consistency, and developed a calibration model

capable of correcting these biases using data from a broad-scale monitoring scheme.

Differences between the two methodologies were evident not only in abundance-based
indicators but also in basic presence—absence detection, highlighting that detectability
itself is a major source of divergence. Poor agreement in low-count situations suggests
that many individuals remain undetected when spontaneous calling activity is low, a
pattern common to species whose vocal behavior varies over short temporal scales
(Bibby et al. 2000, Sutherland 2006). Under these conditions, passive multispecies
surveys may fail to register a substantial fraction of individuals, whereas targeted
protocols using acoustic stimulation can reveal a larger proportion of the population (De
Rosa et al. 2022). This mechanism explains why the species-specific survey performs
consistently better at both presence—absence detection and abundance-based indicator

performance.

NDVI emerged as the strongest environmental predictor in the calibration model,
indicating that habitat greenness and phenological state strongly modulate the
relationship between the two monitoring schemes. Importantly, the magnitude of the
correction was not constant across sites: discrepancies were greatest in high-NDVI
habitat when the BMS protocol recorded low counts. Because NDVI varies
considerably among regions and years (Pettorelli et al. 2005), the degree of
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underestimation in BMS data is inherently context-dependent. Accordingly, the
calibration does not act as a uniform multiplier but as a habitat-mediated adjustment
shaped by local vegetation dynamics. On the other hand, the lack of a detectable effect
of suitable-habitat area is consistent with the fact that all paired transects were located in
landscapes where quails are normally present and habitat extent was not limiting.
Within this range of conditions, habitat quality—as captured by NDVI—clearly

outweighed habitat quantity in determining both local abundance and detectability.

Although the calibration improves the consistency of local abundance-based indicators,
it is not designed to be directly extrapolated to derive absolute population sizes at
regional or higher scales without accounting for population dynamics. Common Quail
males frequently undertake movements across farmland landscapes during the breeding
season, tracking changes in vegetation structure, harvesting schedules and social cues
(Puigcerver et al. 1989, Rodriguez-Teijeiro et al. 2009, Sarda-Palomera et al. 2012b).
Recent GPS-based tracking data indicate that individuals may move not only between
neighboring SOCC transects but also across wider regional, and occasionally
international, distances within the same breeding period (Sarda-Palomera et al. 2025,
unpublished data), highlighting the highly dynamic nature of populations over short

temporal windows.

Such mobility implies open populations with substantial turnover, increasing the risk of
double counting when survey data are aggregated across space and time without
explicitly modelling movement and availability. Under these conditions, the local
relationship between SOCC and SEC counts should be interpreted as a calibration of
detectability rather than as a direct estimator of regional population totals. Nevertheless,
this limitation does not preclude the use of calibrated counts for assessing temporal
change or informing population indicators when embedded within appropriate analytical

frameworks that explicitly consider population openness and mobility.

Additional information on movement rates, seasonal redistribution, and connectivity
among breeding areas will be essential to refine such models. In the long term,
integrating movement data into calibration or state-space frameworks could allow more
accurate estimates at larger spatial scales. For now, however, the high mobility of the

species implies that monitoring outputs should be interpreted within narrow temporal
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windows and, where appropriate, at the scale of migratory flyways rather than at lower

administrative units.

From a temporal perspective, the calibration refines the ability of general BMS data to
describe long-term indicator trends. Although the uncorrected BMS series broadly
captured the overall regional trajectory of the species, the calibrated values reduced
noise associated with detectability variability and produced indices that more closely
reflect true temporal dynamics. This is particularly relevant for a species whose calling
behavior fluctuates across the season and whose detectability is not constant through
time. By stabilizing detection-related variability, the calibration addresses a central
concern in multispecies monitoring: detectability biases can propagate into long-term
indices and compromise the ability of BMS programs to detect true demographic
change (Kéry and Schmidt 2008, Kellner and Swihart 2014). Correcting these biases

therefore directly enhances the reliability of trend indicators.

Despite these limitations, BMS remain an indispensable component of large-scale

biodiversity monitoring, providing unparalleled temporal and geographic coverage that
no species-specific program could realistically achieve. The challenge, therefore, is not
to replace general monitoring schemes, but to complement them in ways that explicitly

address detectability-related bias.

Methodologically, the calibration establishes a functional bridge between general and
species-specific monitoring schemes. It leverages the extensive spatial and temporal
coverage of BMS programs while embedding information from targeted surveys that
maximize detectability. This integration allows general schemes to retain their logistical
advantages without inheriting the full extent of their detectability biases. Beyond the
present case, similar bridging approaches could be explored for other species facing
detectability challenges that may require the development of specialized monitoring
protocols (e.g: Crex crex, Burhinus oedicnemus). In several taxa, dedicated monitoring
programs now incorporate passive acoustic recorders (Sugai, et al. 2018), thermal-
imaging devices (Lahoz-Monfortand Magrath, 2021) or camera-trap systems (Wearn
and Glover-Kapfer 2019), among others, to increase detection rates under conditions
where standard BMS protocols perform poorly. Although these technologies are
generally too costly or labor-intensive for broad implementation within BMS networks,
they can provide high-quality reference data that enable calibration or validation of
general monitoring outputs in a manner analogous to the approach demonstrated here.
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Such complementary use of broad-scale and species-specific data provides a practical
way to improve detection in species that are poorly sampled by standard monitoring
schemes, while highlighting the remaining challenge of translating detection-based

information into abundance-based indicators suitable for robust trend assessment.

Overall, our study demonstrates that general BMS data can be partially reconciled with
species-specific information to improve local abundance-based indicators and indicator
trend interpretation for species with highly variable detectability. By developing a
calibration model grounded in paired surveys and habitat context, we provide a practical
framework that addresses major sources of detectability-related bias while retaining the
extensive spatial and temporal coverage of general monitoring programs. However, the
calibration obtained here is necessarily context-dependent. Behavioral patterns,
population dynamics, and habitat phenology may vary across regions, years or
management systems, potentially altering the relationship between general and species-
specific surveys. Consequently, applying this approach to other areas may require
region-specific calibration analyses to identify the most appropriate model structure.
Despite this, the proposed framework offers a transferable methodological basis for
integrating general and specialized monitoring schemes. More broadly, our results
highlight the value of combining broad-scale volunteer-based programs with targeted
high-detection surveys to generate more robust and interpretable population indicators

for species whose detectability is shaped by behavioral or environmental processes.
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665

666  Table 1 Summary of the negative-binomial calibration model (NB1) relating SEC

667  counts to SOCC counts and habitat variables.

Predictor Estimate | SE z p-value
Intercept 1.739 0.104 | 16.690 | <0.001
SOCC (linear) 1.218 0.166 | 7.343 | <0.001

SOCC? (quadratic) —0.370 | 0.090 | 4.125 | <0.001

NDVI (15-day mean) | 0.266 0.112 | 2.387 |0.017

Habitat area (ha) —0.034 | 0.087 | —0.388 | 0.698
SOCC x NDVI —0.499 | 0.146 | -3.412 | <0.001
SOCC? x NDVI 0.184 0.063 | 2.919 | 0.003
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FIGURE CAPTIONS

Figure 1. Geographic distribution of transects used in this study across Catalonia. Blue
lines show the 28 specifically designed SOCC transects monitored with both SOCC and
SEC protocols between 2021 and 2025, which were used to calibrate the SOCC—SEC
relationship. Green lines represent all SOCC transects where at least one Common
Quail was detected between 2005 and 2025 (N = 205), for which the calibration model

was applied to generate SEC-equivalent abundance-based indicators.

Figure 2. Mean number of Common Quail males detected per transect (£ SD) by the
SOCC and SEC protocols. Only transects with confirmed quail detection were included.

Bars show mean values and error bars indicate standard deviation.

Figure 3. Predicted SEC-equivalent quail counts as a function of SOCC counts and 15-
day mean NDVI, based on the final NB1 calibration model. The surface illustrates the

combined non-linear effects of SOCC and habitat greenness, as well as their interaction.

Figure 4 Temporal dynamics of the population index derived from original SOCC
counts (red) and from SEC-equivalent calibrated indicators (blue). Solid lines show
annual TRIM indices and shaded areas represent standard errors. Dashed lines indicate
the fitted log-linear trends, with annual percentage changes shown at the right of each
panel. (A) All transects combined. (B) Transects within high and stable NDVT habitats.
(C) Transects within low or highly variable NDVTI habitats. * denotes a statistically
significant difference between SOCC and SEC-equivalent trends (time x series

interaction).
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Supporting Information S1 — Description of agricultural land-use datasets (SIGPAC and DUN)
and habitat categories used in the analyses

To classify suitable agricultural habitats for the Common Quail, we relied on two official,
georeferenced land-use datasets that together cover the full study period (2005-2025):

SIGPAC (2005-2014)

The Sistema de Informacion Geogrdfica de Parcelas Agricolas (SIGPAC) is the Spanish Land
Parcel Identification System used for the management of the EU Common Agricultural Policy. It
provides annual polygon-based information on crop type and agricultural land use at field
scale. For the years 2005 to 2014, suitable quail habitat was identified by selecting all SIGPAC
polygons whose Uso (“TA”, Tierra Arable) and PS (“Pastos”) codes corresponded to cereal
crops, fallows, herbaceous crops or other dryland habitats consistent with quail breeding
ecology.

DUN (2015-2025)

From 2015 onwards, land-use information was obtained from the Declaracié Unica Agraria
(DUN), the annual agricultural declaration system used in Catalonia and derived from SIGPAC.
DUN provides detailed crop information at field level and is fully harmonised with CAP
reporting requirements. For each year between 2015 and 2025, we selected all DUN polygons
corresponding to herbaceous crops, cereals, legumes, fallows and other dryland herbaceous
habitats considered suitable for quail breeding.

Table S1 shows the correspondence between SIGPAC and DUN crop codes

Habitat classification for modelling

All selected SIGPAC and DUN land-use categories were grouped into a single set of suitable
breeding habitat types.

These habitat categories were used to:
1. calculate the area of suitable habitat within a 300-m buffer around each transect, and

2. extract vegetation indices (NDVI) for modelling quail abundance and detectability.



Table S1 provides the full lists of categories and their correspondence across datasets.

Sigpac - Suitable

DUN - Suitable habitat for

DUN - Suitable habitat for quail

habitat for quail quail (English) (Catalan)
TA Arable Land Alfalfa ALFALS
TA Arable Land Forage mix BARREJA FARRATGERES
TA Arable Land Wheat BLAT

TA Arable Land Chard BLEDA
TA Arable Land Chickpea CIGRO
TA Arable Land Oat CIVADA
TA Arable Land Rapeseed COLZA
TA Arable Land Ryegrass ERB

TA Arable Land Spelt ESPELTA
TA Arable Land Fescue FESTUCA
TA Arable Land Sunflower GIRA-SOL
TA Arable Land Fallow GUARET
TA Arable Land Lentil LLENTIA
TA Arable Land Millet MILL

TA Arable Land Barley ORDI

PS Pastures

Pastures < 5 years old

PASTURES DE MENYS DE 5 ANYS

TA Arable Land Pea PESOL

TA Arable Land Quinoa QUINOA

TA Arable Land Ryegrass RAIGRAS

TA Arable Land Rye SEGOL

TA Arable Land Soybean SOIA

TA Arable Land Sorghum SORGO

TA Arable Land Sainfoin TREPADELLA
TA Arable Land Triticale TRITICALE
TA Arable Land Vetch VECA




Supporting Information S2. NDVI-based habitat classification
S$2.1. NDVI data processing

We characterised habitat greenness for all SOCC transects with confirmed Common Quail
presence using 15-day NDVI composites derived from Landsat imagery (2005—-2025). For each
transect and year, we computed:

1. Annual mean NDVI: average NDVI during the breeding season.

2. Intra-annual NDVI variability: standard deviation of NDVI within the breeding season
for each year.

These annual summaries were then used to derive three long-term NDVI indicators per
transect:

e NDVI_mean: mean annual NDVI across all sampled years.
e NDVI_SD_intra: mean intra-annual NDVI variability.

e NDVI_SD_inter: inter-annual variability, measured as the standard deviation of annual
NDVI means.

e n_years: number of years with available NDVI information.

Only transects with confirmed quail detections were retained to ensure ecologically
meaningful habitat summarisation.

$2.2. Clustering analysis

To classify transects according to habitat greenness and stability, we performed k-means
clustering (k = 2) on the scaled values of the three NDVI indicators:

e NDVI_mean
e NDVI_SD intra
e NDVI_SD_inter

The number of clusters (k = 2) was selected to differentiate high-quality stable habitats from
low or highly variable habitats, consistent with ecological interpretations from previous NDVI-
based analyses of quail occurrence.

Cluster identities were assigned based on maximum NDVI_mean in the cluster centroids.
The two habitat categories were therefore defined as:

e “NDVI high and stable” — high mean NDVI, low variability.

e “NDVIlow or highly variable” — low greenness and/or high temporal fluctuation.

$2.3. Principal Component Analysis (PCA)



To validate the clustering structure, we performed a PCA using the same NDVI indicators. The
first two principal components explained 46.2% (PC1) and 33.0% (PC2) of the variance,
respectively.

A clear separation between the two NDVI groups was observed along PC1 (Figure S2.2),
confirming that the k-means clusters captured meaningful gradients of habitat greenness and
stability.

PCA NDVI (Only transects with Common quail presence)

Group NDVI
[®] novihigh and stable
NDVIlow or highly variable

Dim1 (46.2%)

Figure S2.1. Principal Component Analysis of NDVI indicators. PCA of NDVI_mean,
NDVI_SD_intra and NDVI_SD _inter for transects with quail presence. Colours indicate k-means
habitat groups, with 95% confidence ellipses. Separation along PC1 validates the clustering
structure.

$2.4. Statistical comparison of NDVI indicators between groups

To evaluate whether NDVI indicators differed significantly between habitat groups, we
performed normality tests (Shapiro—Wilk) and subsequently applied either:

e Student’s t-test (when both groups were normally distributed), or
e Mann—Whitney U test (for non-normal distributions).
The comparison was conducted for (Table S2.1):
e NDVI_mean
e NDVI_SD_intra

e NDVI_SD_inter



Table S2.1. Statistical comparison of NDVI indicators between habitat-quality groups. Results
of parametric (t-test) and non-parametric (Mann—Whitney U) tests comparing mean NDVI,
intra-annual NDVI variability and interannual NDVI variability between the two NDVI-based
habitat clusters (“NDVI high and stable” vs. “NDVI low or highly variable”). Reported p-values
correspond to two-tailed tests.

Variable Test p_value

Mean NDVI t-test (parametric) <0.001
Intra-annual NDVI SD NDVI SD Mann—Whitney U (no parametric) <0.001
Interannual NDVI SD NDVI SD Mann—Whitney U (no parametric) <0.001

Distribution of NDVI indicators according to habitat quality

NDVI_mean NDVI_SD_interannual NDVI_SD_intra-annual
0.06
0.15
03 0.05
@
> 0.10
© 0.04
>
02 0.03
0.05
0.02
NDVI high and stable ~ NDVI low or highly variable NDVI high and stable ~ NDVI low or highly variable NDVI high and stable  NDVI low or highly variable
Group NDVI

Figure S2.2. Distribution of NDVI indicators according to habitat-quality group. Boxplots
showing (A) mean NDVI, (B) inter-annual NDVI variability, and (C) intra-annual NDVI variability
for the two NDVI groups. High-NDVI stable transects show greater greenness and lower
temporal variability.



Supporting Information S3 — Predictor contribution analysis

To evaluate the contribution of each predictor to the final calibration model, we compared the
full model (NB1 error structure with linear and quadratic SOCC effects, 15-day mean NDVI,
SOCC x NDVI interactions and suitable habitat area) with a series of reduced models in which
individual terms or groups of terms were removed. Differences in Akaike Information Criterion
(AAIC) quantify the loss of model support resulting from the removal of each component.

Table S3. Contribution of each predictor to the final calibration model based on AIC differences
between the full model and models with individual terms removed.

Removed term df | AIC AAIC

Full model 8 28252 |0

NDVI_mean +interactions | 5 | 356.85 | 74.33

socc (linear) + interaction | 6 | 336.02 | 53.50

socc? + interaction 6 | 302.48 | 19.96

NDVI interactions only 6 | 291.45 | 8.93

Suitable habitat (ha) 7 | 280.67 | -1.85

Relative importance of predictors based on AAIC

NDVI + interactions

SOCC (linear)

socce

Predictor removed

Interactions

Suitable habitat area

0 10 20
Relative importance (%)

30 40

Figure S3.1. Relative importance of each predictor based on AAIC values obtained by removing
individual terms or groups of terms from the full model. Larger AAIC values indicate greater
loss of model support. NDVI (including interactions with SOCC) was the most influential
predictor, followed by the linear and quadratic components of SOCC activity, whereas suitable
habitat area had no detectable effect on indicator performance.



Observed vs predicted SEC counts
Curve = back-transformed linear fit on log(count+1) scale; dashed line = 1:1

30

Observed SEC (original scale)
N

=}

’ ’ Predicted SEC (original SC;IZ) "
Figure S3.2. Relationship between observed and predicted SEC counts from the final
calibration model (negative binomial with log link). Points are shown on the original count
scale. The solid curve is the back-transformed fit from a linear regression on log(count+1), and
the dashed line indicates the 1:1 relationship. Pearson correlation was computed on
log(count+1) (R = 0.87).



