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Abstract

Widespread vulture population declines are often counteracted by conservation
strategies including reintroduction programs and supplementary feeding schemes.
However, the role of supplementary feeding — focusing on specific, predictable,
feeding sites - on movement behaviour, has been little explored, especially within
populations in which reintroduced and wild born birds of different age-classes may

show differing behavioural movement patterns. However, such information becomes
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crucial for improving conservation and management actions. We analysed GPS data
from both reintroduced (n = 31) and wild born (n = 28) cinereous vultures Aegypius
monachus in Catalonia, North-eastern Spain, collected during a long-term study
(2009-2020), to assess SFS use patterns according to natal origin, release method,
and age-classes of individuals. We found high age-related variation in SFS use;
juveniles revisited fewer SFS, and spent much longer in these locations compared
with immatures, subadults, and adults, pointing to a dependence of juveniles on social
information, along with a lack of foraging and flight skills. Regular adult revisits to
multiple SFS suggests that these vultures can develop a comprehensive spatial
memory of SFS by adulthood. Additionally, birds that were released via an
acclimatisation aviary showed lower affiliation with SFS compared with ‘hacked’ birds
and wild-born nestlings perhaps suggesting a tendency to spend more time exploring
the wider environment. Our study has particular relevance in light of the potential
public health-related legislation changes within the European Union or the changes in
management of SFS, which could alter movement patterns and demographic

parameters of Iberian vulture populations.

Keywords: Foraging, revisitation analysis, supplementary feeding, movement ecology,

spatial memory
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Introduction

Anthropogenic activities are among the major drivers of the global decline in
avian scavenger populations (Safford et al., 2019; Harfoot et al., 2021). Key threats
include illegal persecution(Margalida, Ogada and Botha, 2019), accidental poisoning
(Berny et al., 2015, Oliva-Vidal et al. 2022), and collision with anthropogenic
infrastructure (Carrete et al., 2009; Ives et al., 2022). Conservation actions such as
captive breeding and reintroduction programs, have to some extent mitigated these
population declines (Lorand et al., 2025). In combination with the establishment and
provision of foraging resources through supplementary feeding sites (SFS) (Moreno-

Opo, Trujillano and Margalida, 2015; Cortés-Avizanda et al., 2016),

Populations of certain vulture species (Margalida and Colomer, 2012), as well
as other bird species e.g., white storks Ciconia Ciconia (Lopez-Garcia and Aguirre,
2023), have become heavily reliant on predictable, human-modified resources,
including landfill sites (Monsarrat et al., 2013; Tauler-Ametller et al., 2017; Cortés-
Avizanda et al., 2025). As a result, the spatial distribution, movement patterns, and
home-range dynamics of these scavengers are therefore strongly influenced by the
location, quality, and temporal stability of such anthropogenic resources (Lépez-
Lopez et al. 2014, Margalida et al. 2016). However, some detrimental effects have
been documented related to the use of supplementary feeding sites (SFS; Carrete et
al. 2006, Cortés-Avizanda et al. 2016). Additionally, while predictable food resources
generally increase foraging opportunities, it also promotes high-density aggregations
that can exacerbate dominance hierarchies (Cortés-Avizanda, Carrete and Donazar,
2010; Moreno-Opo, Trujillano and Margalida, 2020), and cause negative density-

dependent effects on fecundity (Carrete, Donazar and Margalida, 2006), as well as
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increasing the risk of disease and parasite transmission (Van Overveld, Gangoso, et

al., 2020).

Studies conducted on vulture species on the Iberian Peninsula have identified
stratified age-related differences in the use of SFS. Juvenile foraging inefficiency is
common across many species (Carmona, Aymi and Navarro, 2021), linked to
inexperience in locating and competing for food resources (Fayet et al., 2015). This
means that although subdominant, non-breeding vultures prefer to exploit regularly
stocked SFS, such as smaller, farm-based carcass deposition sites (Kane et al.,
2016; Morant et al., 2020), their actual access to available food resources such as
carcasses remains restricted by competitive exclusion from dominant adults (Duriez,
Herman and Sarrazin, 2012; Van Overveld et al., 2018; Moreno-Opo, Trujillano and
Margalida, 2020). For example, adult griffon vultures (Gyps fulvus) tend to form
foraging groups at SFS located within short distances (5 -10km) of their breeding
colonies (Zuberogoitia et al., 2013a; Cerri et al., 2023), causing higher density

competition that may exclude juveniles from profitable sites.

Despite both intra- and interspecific competition for such resources, time
spent at locations with predictable food resources is also likely used as a way to form
social relationships and identify suitable future breeding areas particularly among
juveniles (Van Overveld et al., 2018; Van Overveld, Gangoso, et al., 2020). Such
opportunities of social information exchange fit with the Information Centre
Hypothesis (Buckley, 1996; Harel et al., 2017), which may be particularly relevant for

reintroduced individuals.

Vulture reintroduction has proved highly successful in several areas of

Europe, with populations of Griffon, Bearded and Cinereous vulture Aegypius
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monachus translocated across Spain, France, Italy and Bulgaria primarily (Schaub et
al., 2009; lvanov et al., 2023; Monti et al., 2023; Stoyanov et al., 2023; Lorand et al.,
2025). Although many breeding populations have become well established, there is
a potential hindrance to population maintenance and expansion because birds that
are released from captive breeding or rehabilitation centres come with limited social
and foraging experience (Fozzi et al., 2023). Amongst reintroduced vultures,
acclimated individuals observe the release site and their conspecifics from an aviary
(as opposed to ‘hacked’ individuals that are released into a nest whilst flightless;
Mihoub et al., 2014), and have shown improved breeding success and survival as
adults, particularly those acclimated for a longer period of time, as they are able to
form partial cognitive maps to help them locate foraging sites (Fozzi et al. 2023).
Reintroduced individuals overall often display more erratic dispersal movements
(Rousteau et al., 2022; Tréhin et al., 2024a), and show species-specific differences
in home range size compared to wild-born birds (Rousteau et al. 2022, Fozzi et al.
2023), both of which are likely to affect the dynamics of SFS use. Concentrating food
resources in specific locations may unintentionally restrict juvenile dispersal among
individuals and hinder population expansion (Margalida et al., 2013; Cortés-Avizanda
et al., 2016; Reznikov et al., 2024), and can also reduce the efficiency of vulture

scavenging services throughout the wider landscape (Deygout et al., 2009).

European sanitary regulations modified carcass availability and stocking
densities at SFS, and in some cases led to their complete removal from the
landscape (Margalida, Pérez-Garcia and Moreno-Opo, 2017; Fernandez-Gomez,
Cortés-Avizanda, Arrondo, et al., 2022). These changes altered resource
distribution, and potentially population dynamics of both wild and reintroduced

obligate scavengers (Cerecedo-Iglesias et al., 2023; Colomer and Margalida, 2025).
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Therefore, future legislation aiming to ‘clean up’ landscapes by closing open landfill
sites and large carcass deposition sites has the potential to induce varying
responses in productivity, survival, and alter the use patterns of remaining SFS
(Zuberogoitia et al., 2010; Cerecedo-Iglesias et al., 2023). Empirical studies
examining responses to site closures remain limited, but reveal declines in apparent
survival, as well as changes in visit frequency and competitive behaviour
(Zuberogoitia et al., 2010; Margalida, Pérez-Garcia and Moreno-Opo, 2017; Arévalo-

Ayala et al., 2023).

Collectively, these findings highlight how limited our understanding remains
regarding the effects of SFS on vulture behaviour, including social associations and
foraging strategies. A more comprehensive understanding of the dynamics of SFS
use is needed to clarify how these sites support both reintroduced and wild vulture
populations. Although vulture movement is well studied using bird-borne devices
(Alarcén and Lambertucci, 2018), most GPS-based analyses have largely focused
on estimation of metrics such as home range, or geometric information (Morant et
al., 2023; Tobajas et al., 2024; Tréhin et al., 2024a), rather than specific site use
information, such as identifying which foraging locations are important to different
groups of individuals (ages, origins), that could inform conservation prioritization and

feeding site management regulation (Fernandez-Goémez et al. 2022).

Here, we use GPS tracking data collected over a 12-year period in north-
eastern Spain, to quantify use of SFS by both reintroduced and wild-born Cinereous
vultures. Globally, while this species remains in decline, the Iberian Peninsula
population has increased and is home of 90% of European population (Moreno-Opo
& Margalida 2012; Terraube et al. 2012). Movement studies centred on Extremadura,

Catalonia, and Aragon show that juveniles range farther than adults, especially
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during the breeding season when adults are constrained by nesting (Moreno-Opo,
Trujillano and Margalida, 2015; Tobajas et al., 2024). However, detailed information
on their use of SFSs and other discrete foraging areas is lacking. Here, we quantify
revisitation to SFS within and between age groups. Release origins, sexes, years
and months. Revisitation behaviour, i.e., the tendency to return to a previously visited
location, is associated with animals that possess the capacity for spatial memory to
exploit resources that deplete and renew predictably within a heterogeneous
environment (Berger-Tal and Bar-David, 2015; Bracis et al., 2015). Such behaviour
can enable individuals to optimize foraging efficiency, reduce uncertainty, and

enhance survival in dynamic landscapes.

Our study had two main objectives: 1) to identify patterns of use of specific,
known SFS by Cinereous vultures; 2) to investigate variation in site-use metrics (time
spent there, number of revisits) between age classes (birds born or released as
juveniles , became immature (IMM) in their third calendar year , subadults (SUB) in
their fourth, and full adults (FAD) in their fifth; and between wild-born and

reintroduced individuals.

Materials and methods

Tracking and data collection

We obtained GPS tracking data from 73 Cinereous vultures collected in
Catalonia (NE Spain; Figure 1) between 2009-2020 (Supp Mat), all of which accrued
more than 100 days tracked [113 — 4243 days]. Each bird was categorised as either
‘wild born’, ‘hacked’, or ‘acclimated’, and was molecularly sexed (Wink et al. 1998).

The individuals were tagged as part of the project to recover the cinereous vulture in
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the Pyrenees managed by Catalan government and Grupo de Rehabilitacion de la
Fauna Autéctona y su Habitat (GREFA). All cinereous vultures were classified into
four age-classes based on plumage characteristics following Clark (2004) and De la
Puente and Elorriaga (2012). Within the dataset, birds could age during the tracking
period; we therefore applied a universal threshold date of 15 March, chosen to align
with egg hatching, after which individuals were incremented in age (Ruby, Kumar

and Kanauijia, 2018).
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Figure 1: Density of GPS points from n = 59 Cinereous vultures per 2 km across Catalonia and
Aragén, north-eastern Spain, from 2009 to 2020. Pink points represent Supplementary Feeding
Sites (SFS).

Tracking data were categorised by season as follows; Spring: March — May,
summer: June - August, autumn: September — November, winter: December —

February. Phenologically, spring and summer correspond to the incubation and

rearing period. Autumn and winter correspond to the post-fledging and pre-laying



185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

period. To ensure comparability among individuals with differing sampling intervals,

the dataset was subsampled to retain one GPS location every four hours.

Reuvisitation analysis

After filtering the data, we conducted revisitation analysis on known feeding
sites (SFS and landfills) using the package recurse (v. 1.4.0; Bracis et al. 2018) in R
(v. 4.4.2). In order to understand how frequently SFS were revisited and whether this
varied among different ages and origins, each SFS location was buffered at a
biologically relevant distance; specifically, a 1 km buffer was applied to point
locations of SFS and landfills across Spain (Monsarrat et al. 2013). This distance
represents the approximate visual detection range from which vultures are able to
see conspecifics circling in the sky, and thus become aware of a potential carcass or

feeding opportunity, drawing them to that location (Jackson et al. 2008).

Revisits were defined as repeated visits to a specific SFS, having first exited
the 1km boundary. In addition to quantifying the number of revisits to a given feeding
site, the time spent at each feeding site was calculated using the function
getRecursionsAtLocations. These metrics were then summarized across sites and
individuals, and further aggregated by year and season, to describe the visitation

patterns and the number of feeding sites visited in relation to age classes and origin.

Data analysis

Following filtering of individuals represented by only a single occurrence in the
summarised dataset, and outliers in time spent at sites, the final dataset comprised
59 individuals. To examine variation in use of sites among age classes and release

origins, we fitted three generalised linear mixed models (GLMMs).



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

Individual identity was included as a random effect, with observations grouped
by year, to account for repeated measures across years. We tested for differences in
the number of SFS visited using a Poisson error distribution; in the number of revisits
to SFS using a negative binomial distribution; and in mean time spent at each
revisited location (i.e. > one single visit) using a Gaussian distribution applied to log-
transformed data. The fixed effects included season (as defined above), the number
of days each individual was tracked per season, year, sex, calendar age, and origin
(hacked, acclimated, or wild). Where model diagnostics indicated heteroscedasticity
across years and season, we incorporated one or more dispersion parameters to
improve model fit. For the gaussian model we report estimates and confidence
intervals in the text; for the Poisson and negative binomial models we report
incidence rate ratios and their confidence intervals (Brooks et al., 2017). Full model

output tables are available in the supplementary information.

Results

Overall use of supplementary feeding sites

There were 89 distinct feeding sites, all of which were SFS (not landfills), that
were revisited during the 12-year tracking period (Figure 1). The most frequently
revisited feeding sites were closely associated with the colony and release site
(within 10 km). SFS were visited by an average of 5.8 (+/- se. 0.22 birds), although
this mean was biased by the maximum of 23 birds, and many sites (per month and
year) that were only visited by one bird. The number of vultures using the SFSs was

also higher in winter (mean: 6.6 birds +/- se. 0.61), particularly compared to summer

10
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(mean: 5.3 +/- se. 0.37; figure 2).
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Figure 2: Number of Cinereous vultures visiting the 89 supplementary feeding sites (SFS) in Catalonia
and Aragoén, each season between 2009 to 2020.

Number of supplementary feeding sites visited by age, sex and origin

Individuals revisited between one and 20 sites within a year (mean: 4.5, SD:
2.65). Accounting for annual variation, there were large inter-seasonal differences in
the number of visits they made to these sites and the time spent in these sites
(Figure 3, Supp Mat). Significantly fewer sites were revisited in winter (IRR Winter:
0.78, Cl: 0.68 — 0.89), compared to all other seasons. Juveniles revisit significantly
fewer sites than all other age groups (/RR Juvenile: 0.53, Cl: 0.45 — 0.61), although
this difference became smaller in winter. Hacked birds and wild nestlings revisited

significantly more SFS than acclimated birds (Hacked IRR: 1.42, Cl: 1.17 — 1.72;

11
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Wild IRR: 1.24, CI: 1.08-1.41; figure 4). Lastly, males visited significantly fewer sites

that females (IRR Male: 0.89, CI: 0.81-0.98).
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Figure 3: Model effects plots including upper and lower 95% confidence intervals, testing the factors
driving the number of SFS revisited by a. year, b. age group (FAD = Full Adult, IMM = Immature, JUV

= Juvenile, SUB = Subadult), c. sex, d. season and e. origin.
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Figure 4: The number of different SFS revisited among age groups (acclimated, hacked, wild
nestlings) across all four seasons, for both females (left) and males (right).

Number of revisits made supplementary feeding sites visited by age, sex and origin

Immature, subadult and adult birds made significantly more revisits to SFS than

juvenile birds (IRR Juvenile: 0.48, Cl: 0.38 — 0.60), but here only wild born birds

13
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made significantly more visits to SFS than acclimated birds (IRR Wild: 1.45, Cl: 1.20-

1.75; IRR hacked: 1.30, Cl: 0.97 — 1.73; figures 5 & 6, Supp Mat).
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Figure 5: Model effects plots including upper and lower 95% confidence intervals, testing the factors

driving the number of revisits made to SFS by a. year, b. age group (FAD = Full Adult, IMM =
Immature, JUV = Juvenile, SUB = Subadult), c. sex, d. season and e. origin.
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Figure 6: Number of revisits made to SFS by all four age classes across all four seasons.

Time spent at supplementary feeding sites by age, sex and origin

Birds spent an average of 9.7 hours (range: 4.1 - 175 hours) at SFS, but this
declined significantly over the years included in the study period (Figure 7 and 8,
supp mat). Mean time spent at sites was significantly lower in spring and summer,
(estimate spring: -0.13, Cl: -0.22 — -0.03; estimate summer: -0.14, Cl: -0.23 - -0.04;
Figure 8, Supp Mat). However, there was a large amount of heteroscedascity within
and across years and seasons, represented by significant dispersion parameters

(Supp Mat). Adults spent less time compared with the other age groups, particularly

15
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277  subadult: 0.31, Cl: 0.16-0.46; Figure 7).
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279 Figure 7: Model effects plots including upper and lower 95% confidence intervals, testing the factors
280  driving the mean time spent at revisited SFS by a. year, b. age group (FAD = Full Adult, IMM =
281 Immature, JUV = Juvenile, SUB = Subadult), c. sex, d. season and e. origin.
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Figure 8: Mean time spent in SFSs (hours; log transformed) among age groups and across years.

Discussion

Our analyses revealed significant age-class and release origin differences in
the number of SFS visited, the number of revisits to these SFS, and the time spent
there. Supplementary Feeding Sites located in Catalonia and Aragén, were used
frequently and for long periods of time by Cinereous vultures, both within and
between years, and among individuals. Temporal differences were also evident, both
seasonally and interannually, indicating that SFS use is influenced by dynamic

ecological and life-history factors.
Overall population use

Overwhelmingly the most used SFSs were within 10 km of the release site
and breeding colony, which aligns with the highly philopatric behaviour of Cinereous

vultures (Garcia-Macia et al., 2023; Tobajas et al. 2024). Specifically, the most used

17
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SFS were the three closest to the colony, located in the Boumort area. These
received several hundred revisits a year by almost all of the individuals tracked, and

outside of these three SFS the visitation rates declined swiftly.

Differential use among age classes

Our analyses consistently revealed strong age-class differences in SFS use.
Immatures, subadults and adults made more revisits to a larger number of SFS,
whereas juveniles revisited fewer SFS, less often, and spent much longer in these
locations. This pattern aligns with known developmental constraints: juveniles are
inexperienced, have lower flight efficiency (Van Overveld, Gangoso, et al., 2020;
Reznikov et al., 2024), and lack detailed knowledge of the spatial distribution of the
SFS throughout the region and so often explore more widely (Garcia-Macia et al.,

2024).

Young birds are more social (Van Overveld, Gangoso, et al., 2020), and by
spending more time at specific SFSs, they may facilitate information transfer from
older conspecifics, and gain information as well as competitive foraging skills.
Kleptoparasitism has been recorded in a high percentage of juvenile Spanish
Imperial eagles Aquila adalberti (Margalida, Colomer, et al., 2017), as well as
immature Bearded vultures (Margalida and Bertran, 2003), and Black vultures
Coragyps atratus (Richard, Contreras Zapata and Angeoletto, 2022); perhaps for
juvenile Cinereous vultures, whose foraging abilities are still underdeveloped,
prolonged use of SFSs may therefore provide both energetic benefits and
opportunities for learning, contributing to their relatively sedentary behaviour at these

sites.
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Foraging efficiency in vultures is developed over the first few years of life (Efrat et
al., 2023), thus by the time they reach potential breeding age (around five years old),
they are likely to have developed a comprehensive map of SFS in the area and to
move directly among known profitable locations. Adult Cinereous vultures, in
contrast, are dominant at feeding sites, able to displace younger individuals (Duriez,
Herman and Sarrazin, 2012; Moreno-Opo et al. 2020). Although our results show
they revisit more SFS and do so often, they do not spend more time at such sites,
suggesting perhaps that they are either ‘monitoring’ their environment using well-
developed memory (McGrady et al., 2018), or their dominance at active feeding
stations allows them to feed and leave quicker. Similar patterns have been
documented in adult Egyptian vultures, whose home range sizes are essentially
dictated by the distribution of SFS (Lopez-Lépez, Garcia-Ripollés and Urios, 2014),
and which are smaller than the ranges of immature and subadult birds due to their
ability to exploit these predictable resources efficiently, minimising roaming

(Monsarrat et al., 2013; Morant et al., 2020).

The use of SFS by immature and subadult Cinereous vultures (between two and
five years post-fledging) was highly variable, and represent transitional behaviour
between the juvenile and adult life stage. These age classes show different seasonal
patterns, visiting fewer sites in spring, but more sites in summer compared to adults,
who are constrained by nest attendance during the breeding season (Zuberogoitia et
al., 2013a; Tobajas et al., 2024). Despite prospecting widely, immatures and
subadults still show their reliance on predictable food resources, including not only
SFS but landfills that may be of lower quality but provide less competitive feeding

(Fernandez-Gdémez et al., 2022).
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Release origin influence

Release origin also explained variation in the number of SFS revisited and the
number of revisits made to these SFS, although it did not influence the time spent
resident within 1 km of the SFS. Acclimated birds revisited fewer SFS, made fewer
revisits overall, and spent (slightly) less time at these sites compared with hacked
and wild-born birds. This pattern may indicate that acclimated birds are spending
more time exploring the wider region rather than returning to known SFS, whereas
particularly hacked birds rely more on supplemented food and the presence of con-
and heterospecifics (Mihoub et al., 2011), and may represent a lack of exploratory
behaviours in such birds. Success of birds released via aviaries increases generally
with longer periods of acclimation (Fozzi et al., 2023), but is variable, dependent on
the length of time they are acclimated for (Mihoub et al., 2014; lvanov et al., 2023).
However, lower survival rates of other hacked raptors e.g., hacked juvenile ospreys
Pandion haliaetus compared to their wild-born conspecifics, particularly in winter,
likely due to underdeveloped foraging skills, lack of parental care, and reliance on
human-provided during early development (Monti et al., 2014), demonstrating how
captive breeding and translocations can influence social and population structure in

potentially unpredictable ways (Van Overveld, Gangoso, et al., 2020).

Seasonal and annual variation

Season and year also strongly influenced patterns of SFS use, which has also
been found in other vulture research (Monsarrat et al., 2013; Van Overveld et al.,
2018; Van Overveld, Gangoso, et al., 2020; Genero et al., 2020; Tréhin et al.,

2024b). The strongest differences occurred between winter (December- February)
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and the remaining seasons; during winter, individuals visited fewer SFSs, did so less
frequently, and spent longer periods at the sites they used. During winter, flying
conditions are generally poor (lower temperatures meaning fewer thermal uplift;
Genero et al., 2020), and hunting activity and subsequent carcass deposition provide
higher food availability, affecting vultures movements and drawing birds to feeding
sites for longer periods (Tobajas et al. 2024). This pattern is consistent with
‘encamped” foraging behaviour described in other vulture populations, in which
experienced adults remain close to reliable resources under suboptimal flight
conditions (Morant et al., 2020), while juvenile dispersal has not fully begun resulting
in a more intense concentration of multiple age classes (lvanov et al., 2023; Tréhin

et al., 2024Db).

We also found a linear increase in both the number of revisits and number of SFS
visited over time (i.e. across years), coupled with a decline in the time spent at these
sites. This does not correspond to more birds being tagged in the later years; more
birds were tagged between 2014-2017, yet the biggest increases in revisits and
locations come after 2017. One plausible explanation is demographic, because from
2017 onwards, a greater proportion of experienced adults were present in the
population, which had developed a comprehensive map of feeding sites, thereby
driving this linear change. Another potential contributing factor may be also related to
a slight delayed response to changes in Spanish sanitary legislation, approved in
2011 but implemented from 2014 (Lépez-Bao and Margalida, 2018), which increased
carcasses availability in the landscape (Fernandez-Gémez et al., 2022). Lastly, the
growing presence of acclimated individuals, who have become accustomed to
human-provisioned food during the early stages of reintroduction, may reinforce

population-level reliance on predictable food resources.
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Population affiliation with SFS and management implications

We observed consistently high use of SFS close to the colony throughout the 12-
years study period. Such spatial concentration raises concerns that the population
may fail to expand into the wider landscape, remaining dependent on a limited
number of predictable feeding sites. Movement, including post-natal dispersal of
vultures, whether released or wild born, are undoubtedly influenced by
supplementary feeding and restocking frequency, and can change over time (see
Fernandez-Goémez et al., 2022; Reznikov et al., 2024; Tréhin et al., 2024b). Large
aggregations of vultures may not negatively impact survival, in fact the opposite is
more commonly reported (Margalida, Martinez, et al., 2017; Rousteau et al., 2022),
but they may push juveniles to disperse further, or use less frequently stocked or
poorer quality sites to avoid heavy competition (Fernandez-Gémez et al., 2022;
Reznikov et al., 2024). However, movement data of cinereous vultures in the area
show a high residence rate and low long-distance dispersal behaviour of individuals
in all non-adult age classes (Tobajas et al. 2024), suggesting that a population

threshold detrimental to young birds has not been reached.

Management of SFS must integrate both the ecological and social aspects of
vulture foraging behaviour (Van Overveld, Blanco, et al., 2020), and going forward, a
more dispersed network of lightly stocked feeding sites could better mimic the
natural carcass deposition in the landscape preventing extreme competition and
encouraging more efficient scavenging behaviours (Deygout et al., 2009; Cortés-
Avizanda, Carrete and Donazar, 2010; Dupont et al., 2012; Monsarrat et al., 2013).

Unfortunately, we lacked information on stocking patterns to contribute to the
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analysis conducted in this study, which could allow us to make a more detailed
examination of the influence of food distribution on movements and behaviour.
Previous research shows that distributing carcasses across a larger number of
feeding sites and a further distances from colonies may encourage dispersal
(Margalida and Colomer, 2012; Reznikov et al., 2024), particularly during spring
when vultures are expanding their ranges. In the context of European health
regulations, the potential closure of SFS for public health reasons may impact vulture
populations. Previous work on SFS closure found a change in diet composition in
Griffon vultures (Donazar, Cortés-Avizanda and Carrete, 2010), and a decrease in
survival, particularly of juveniles (Zuberogoitia et al., 2013b), although it should be
noted that Bearded vultures were not affected by regulations in the same way

(Margalida, Pérez-Garcia and Moreno-Opo, 2017).

Closure of large SFS in our study system is likely to change movement patterns,
as seen in the removal of key ‘node’ sites in Cerecedo-Iglesias et al., (2023).
However, consequences on survival are harder to predict. Depending on the precise
nature of future legislation, if farmers remain able to deposit carcasses on their land
at lower densities, food would still be available in the landscape (Colomer &
Margalida 2025). However, dominant adults that are more skilled at identifying
carcasses in the landscape may push juveniles to disperse further, with potential
survival effects, altering the spatial network use of these younger, non-breeding birds
(Cerecedo-lglesias et al., 2023). The long-term implications of reduced volume or
quality of predictable resources for future vulture population viability are still unclear;
movements of birds in response to changes in SFS availability should be monitored

and ideally linked to survival, and breeding performance in order to implement any
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necessary compensatory conservation measures and better plan future release

locations of rehabilitated or captive bred birds.
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