

1 **General flowering in temperate forests arises from**
2 **multi-timescale community synchrony**

3

4 Valentin Journé¹, Jakub Szymkowiak², Jessie J. Foest², Marcin K. Dyderski³, Szymon Jastrzębowski⁴,
5 Andrew Hacket-Pain⁵, Michał Bogdziewicz^{*2}

6

7 ¹Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan

8 ²Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University,
9 Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.

10 ³Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik, 62-035, Poland.

11 ⁴Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Braci Leśnej 3, Sękocin Stary,
12 05-090, Raszyn, Poland.

13 ⁵Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool,
14 United Kingdom.

15

16 *corresponding author: michalbogdziewicz@gmail.com

17 *keywords:* Moran effect | mast seeding | spatial synchrony | seed production | community ecol-
18 ogy | resource pulses | climate synchrony

19

20 Abstract

21 Community-wide “general flowering” has been regarded as a tropical phenomenon. Here,
22 we show that temperate forests also exhibit community-wide flowering at the regional scale.
23 Annual seed-production records for seven dominant tree species across 432 forest sites, analysed
24 with timescale-explicit wavelet metrics, reveal landscape-scale synchrony structured by two
25 periods — a 2–4-year band and a 5–8-year band — and associated with spatially coherent
26 summer temperatures. This dual-band synchrony demonstrates that large-scale, cross-species
27 reproductive alignment is an emergent property of temperate forest communities, implying
28 shared climate cueing of reproduction and the potential for community-wide predator satiation.
29 Since ~2005, the short- and long-period synchrony has weakened, and the short-period signal
30 has shifted towards ~2 years (shorter period). Species-specific shifts in timescale structure no
31 longer sum constructively, implying smaller, less predictable resource pulses at the community
32 level, reduced community-wide predator satiation, and a decoupling of consumer–resource
33 dynamics under continued warming.

34 Introduction

35 Spatial synchrony occurs when populations or ecological processes fluctuate in concert across
36 different locations (1). Synchrony affects ecosystem stability when local dynamics combine to
37 determine the regional response; synchronous fluctuations align and generate larger regional
38 swings, whereas asynchrony dampens them (2). For example, when local populations rise and
39 fall together, rescue effects are weakened because neighboring populations are likely to crash
40 concurrently, elevating extinction risk (3). Synchrony also amplifies variability in regional
41 crop yield when farm-level yields fluctuate in concert, while asynchrony across farms increases
42 agrosystem resilience (4). Another striking example is the general flowering in tropical Asian
43 forests, where hundreds of species, especially those of the Dipterocarpaceae family, flower syn-
44 chronously at irregular multi-year intervals (2–10 years), creating resource pulses that reorganize
45 seed predation, tree recruitment, consumer dynamics, and nutrient fluxes (5). These spectac-
46 ular community-wide fluctuations have been viewed as unique to Southeast Asian dipterocarp

47 systems (5; 6). Here, we show that temperate forests also exhibit community-level synchronous
48 fluctuations in seed production, revealed when dynamics are resolved by timescale.

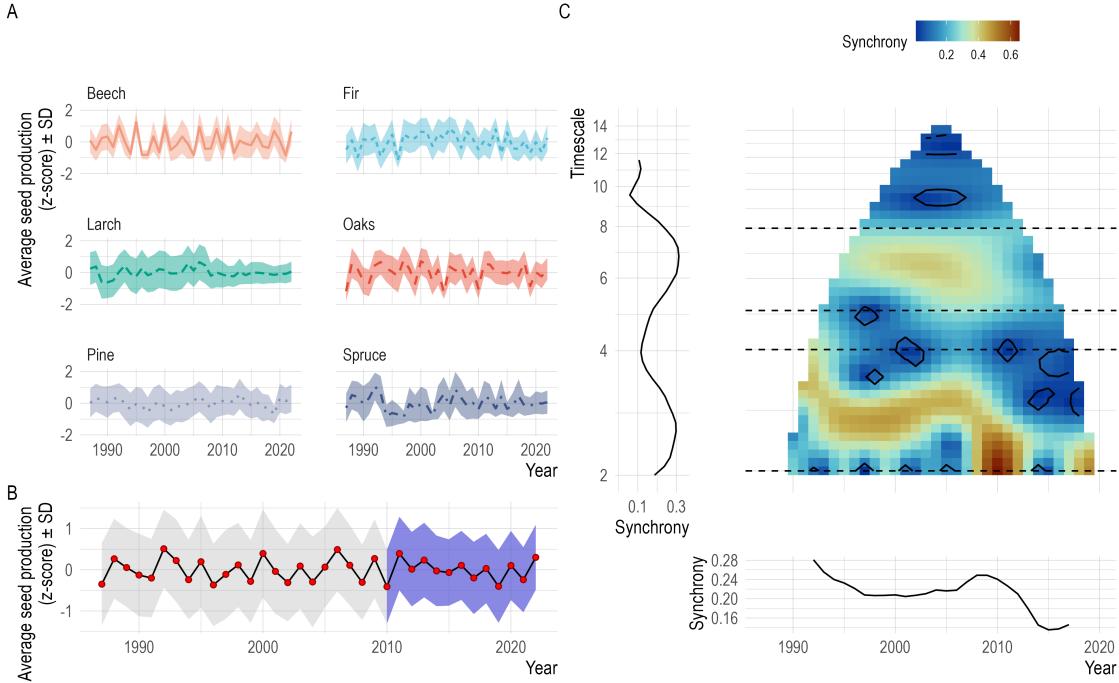
49 Mass flowering or masting — the highly interannually variable seed production synchronized
50 among conspecifics — is widespread in perennial plants (7; 8). Proximally, masting arises
51 from processes operating on distinct timescales. At shorter interannual scales (~2–4 years),
52 weather variation (called weather cues) shapes floral induction, pollination, and seed maturation
53 (9). For example, hot summers can promote massive floral initiation for the following year
54 (10; 11), and dry springs can enhance cross-pollination (12; 13). As reproduction responds
55 to weather, shared weather patterns produce regional synchrony (14; 15). At lower frequency
56 (~5–10 years), climate modes (e.g., North Atlantic Oscillation NAO or El Niño / Southern
57 Oscillation ENSO) may align favorable conditions across flower-to-fruit maturation stages and
58 over large areas, yielding sustained periods of elevated or depressed seed output (16; 17).
59 For example, sequences of positive winter NAO, summer heat, and dry springs have aligned
60 resource priming, bud initiation, and pollination, producing sustained periods of elevated seed
61 production and continent-scale beech (*Fagus sylvatica*) mast years in Europe (17). Conversely,
62 prolonged negative NAO has been associated with extended intervals of poor seed productivity
63 (17). Because these processes operate on distinct timescales, community seed production likely
64 contains multiple high- (~2–4 y) and low-frequency (~5–10 y) components that differ among
65 species and sites in strength (variance share) and phase (peak timing) (16; 18; 17). Analysing
66 the synchrony of reproduction across all timescales simultaneously mixes these components;
67 fluctuations at different frequencies can cancel and make community synchrony appear weak or
68 absent (2; 1).

69 Co-occurring species in the same region often respond to similar weather cues, likely
70 reflecting shared selective pressures or benefits of intraspecific masting synchrony, rather than
71 phylogenetic history (19). In temperate European trees, interannual variation in seed production
72 is linked to spring and summer temperature cues (11; 20), while at lower frequencies many
73 species show coherence with the NAO (17). Within species, regional synchrony is high and
74 extends over hundreds of kilometers (14; 21). By contrast, regional among-species synchrony
75 remains largely untested. Within-site studies often detect significant covariation among species

76 (22; 23), but one of the few regional analyses reported low or absent community-wide synchrony
77 (21). However, those inferences relied on period-pooled metrics that conflate high- and low-
78 frequency components and cannot resolve timescale structure, motivating a timescale-explicit
79 analysis here.

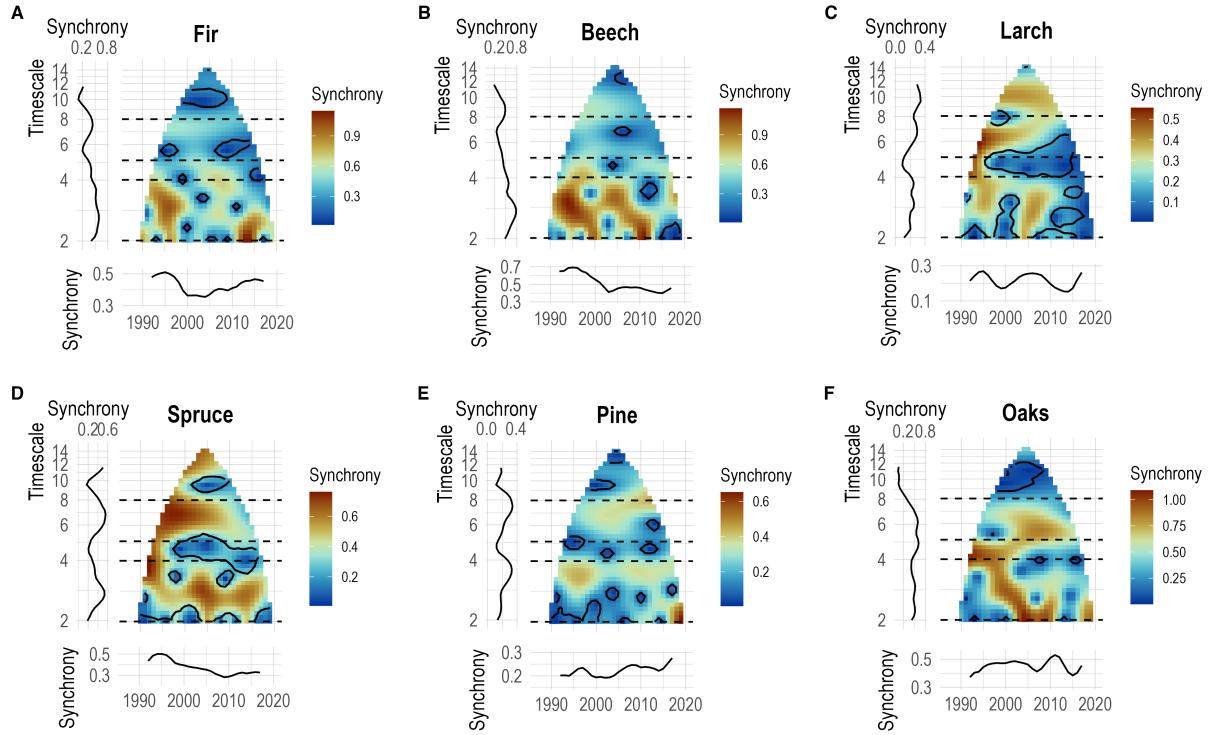
80 Progress on community-wide synchrony in seed production was limited by two constraints:
81 data and methods. Seed production records were often short and local (24). Crucially, multi-
82 species records spanning large areas and decades were unavailable, making multi-year structure
83 at regional scales difficult to detect. Yet, while no single site or species may exhibit a clear
84 “community–mass flowering” signal on its own, shared high- or low-frequency modes can align
85 across sites and sum to large regional pulses (2; 1). Standard tools for analyzing synchrony (e.g.,
86 correlations, regressions) pool across periods and cannot separate short- from long-timescale
87 fluctuations or attribute their causes, especially when effects interacted or were phase-shifted
88 across space (1). Timescale-specific wavelet approaches now address these gaps: they quantify
89 synchrony by time and period, identify timescale-specific links to candidate drivers and their lags,
90 and partition how much synchrony is explained by individual drivers versus their interactions
91 (25; 26; 1). We build on this framework to test for community-level synchrony in temperate
92 forests, revealing how high- and low-frequency components combine to produce regional pulses.

93 Recent evidence shows that synchrony of ecological phenomena, such as insect abundance or
94 tree growth (25; 27; 28), is changing under climate warming. Increased synchrony is emerging
95 as an important consequence of climate change (28), often reflecting increased spatial coherence
96 in weather patterns (28; 1). However, reproductive synchrony in masting species may respond
97 differently (8). Because masting depends not only on shared weather cues but also on a plant’s
98 internal resource dynamics (9; 29), increasing climatic synchrony does not necessarily translate
99 into greater reproductive synchrony (30). In fact, the opposite is expected: when warming
100 increases weather cue frequency (e.g., warm summers), repeated triggering of reproduction
101 depletes plant reserves and weakens the weather cue–masting coupling (31; 29). This mechanism
102 should first shorten effective cycle length (18) and can then reduce or cancel synchrony even
103 under increasingly coherent weather (31; 30) - producing a decoupling of biological coherence
104 from climatic coherence. If such declines in regional synchrony extend across co-flowering


105 species, the multi-year windows of seed abundance and scarcity that once organized consumer
106 dynamics can fragment into smaller, out-of-phase events, dulling trophic pulses, and reshaping
107 nutrient and consumer cascades at landscape scales.

108 Here, we used annual seed-production records for seven dominant, forest-forming tree species
109 across 431 sites in temperate Europe (Poland), collected between 1987 and 2022, to test for
110 community-wide synchronous reproduction, its timescale-specific drivers, and temporal trends.
111 We formulated three predictions. First, because reproduction in temperate trees is driven by
112 largely shared summer and spring temperature cues at interannual scales (20; 19) and because
113 resource-cue coupling generates a dominant 2–4-year period (32; 29), community-level syn-
114 chrony should emerge at short periods. Second, species such as European beech and spruce
115 (*Picea abies*) share low-frequency coherence with the NAO, so a secondary 6–12-year mode
116 should co-occur across species (17). Third, rising summer temperatures should increase cue
117 frequency, shorten effective masting periods, and — over time — decrease masting synchrony
118 (18; 31; 30).

119 Results


Table 1: Relationship between masting synchrony and driver variables. P-values are from tests of spatial wavelet coherence. We constructed separate models for weather variables and NAO indices. Phase relationships (ϕ) for drivers were obtained from multi-predictor wavelet linear models. Phase relationships are given in fractions of π , for significant drivers. Negative phase relationships that are not approximately in-phase ($\phi \approx 0$, interpreted as $-0.25 < \phi < 0.25$) or anti-phase ($\phi \approx \pm 1$, interpreted as $\phi < -0.75$ or $\phi > 0.75$) indicate that masting lags the driver variable; positive phase relationships that are not approximately in-phase or anti-phase indicate that mast peaks precede those of the driver variable. Cross term is diagnostic of the wavelet Moran theorem; no values were reported for NAO indices because those climate indices are not spatially resolved. Species-specific drivers are reported in Table S1.

Driver variable	Timescale	p-value	Mean phase (ϕ)	Cross terms
ΔT	2-4	0.01	-0.34	3.18
	5-8	0.003	-0.62	30.2
T_{spring}	2-4	0.79	-	3.18
	5-8	0.93	-	30.2
NAO_{winter}	5-8	0.12	-	-
NAO_{summer}	5-8	0.48	-	-

Figure 1: Dual-band synchrony organizes community-wide masting in temperate forests. A) The interannual variation in seed output in the studied taxa; the time series are summarised at the species level. Before analysis, series were normalised and detrended (see Methods). Each line shows annual means across all sites for each species (\pm SD). B) Region-wide synchrony cycles emerge through among-species synchrony. Post 2010, such synchrony declined strongly, dampening the pre-existing phase of 2–4 years (highlighted in purple). The black line shows annual means across all sites and species (\pm SD). C) Wavelet mean field (WMF) magnitude plots of time- and timescale-specific spatial synchrony in seed production for all studied species. Black contours indicate statistically significant synchrony (using standard significance level, $p < 0.05$) as determined from the wavelet phasor mean field (WPMF), with the WPMF plots in Fig. S1. Side panels are averages across times (bottom) or timescales (left side). In this analysis, time series from all species were analysed jointly and therefore reflect the combined effects of within- and among-species synchrony, i.e., community-level synchrony. Species-specific (within-species) synchrony is shown in Fig. 2. The vertical dashed lines highlight the synchrony bands analyzed with spatial wavelet coherence. The analysis is based on seed production data collected between 1987 and 2022 across 432 sites Poland (Fig. 4) for seven tree species: silver fir (*Abies alba*), European beech (*Fagus sylvatica*), European larch (*Larix decidua*), Norway spruce (*Picea abies*), Scots pine (*Pinus sylvestris*), sessile oak (*Quercus petraea*), and pedunculate oak (*Quercus robur*). Before 2008, oak harvests were not distinguished by species; therefore, records for the two oaks were pooled for the entire time series (see Methods). Results based on an independent dataset replicated the patterns - both the dual-band synchrony and its temporal decline - and are provided in Fig. S2.

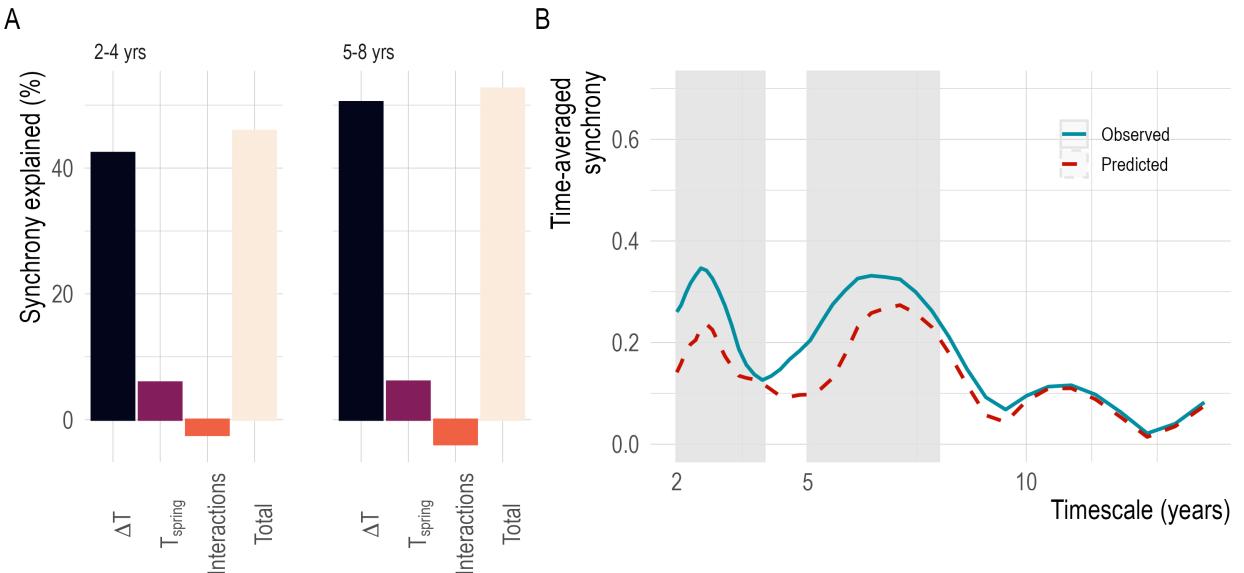

120 **Dual-band synchrony organizes community-wide masting (2–4 and 5–8 years).** Across
 121 seven dominant tree species, community seed production was synchronized at two distinct
 122 periods: a short-period 2–4-year band and a long-period 5–8-year band (Fig. 1). Both the
 123 Wavelet Phasor Mean Field (WPMF) (Fig. S1) and the Wavelet Mean Field (WMF) showed
 124 this dual-band structure, indicating alignment in phase (timing; WPMF) as well as in phase and
 125 amplitude (WMF) across species and sites, yielding region-wide seed pulses. Critically, the
 126 same two-band structure was replicated in a second independently collected dataset comprising
 127 16 regional seed production records spanning 32 years for the same species set, confirming

Figure 2: Dual-band intraspecific synchrony that underlies community-wide masting in temperate forests. Wavelet mean field (WMF) magnitude plots of time- and timescale-specific spatial synchrony in seed production for each species separately. Black contours indicate statistically significant synchrony as determined from the wavelet phasor mean field (WPMF), with the WPMF plots in Fig. S1. Side panels are averages across times (bottom) or timescales (left side). The vertical dashed lines highlight the synchrony bands analyzed with spatial wavelet coherence. The analysis is based on seed production data collected between 1987 and 2022 across 432 sites in Poland (Fig. 4). Species include silver fir (*Abies alba*), European beech (*Fagus sylvatica*), European larch (*Larix decidua*), Norway spruce (*Picea abies*), Scots pine (*Pinus sylvestris*), sessile oak (*Quercus petraea*), and pedunculate oak (*Quercus robur*). Before 2008, oak harvests were not distinguished by species; therefore, records for the two oaks were pooled for the entire time series. Results based on an independent dataset replicating the patterns are provided in Fig. S3.

128 that the community-wide mass-reproduction signal is robust to sampling design and data source
 129 (Fig. S2).

130 The community-wide synchronous reproduction arises from a shared timescale structure of
 131 synchrony within species. Within the studied species, WMF shows regional phase synchrony at
 132 a period of 2–4 years and secondary coherence at 6–10 years (Fig. 2). The synchrony estimated
 133 with the WPMF (Fig. S1) generally matched one estimated with WMF (Fig. 1), indicating both
 134 phase alignment and uniform amplitude: sites share years of peak and failed reproduction, as well
 135 as the magnitude of those events. The similar phase and amplitude synchrony, when summed
 136 across species, appears to drive the region-scale pulses in community-wide reproduction.

Figure 3: Spatial synchrony in community-wide mastинг is explained by the synchrony in summer temperature. (A) Fractions of synchrony in community-level mastинг explained by summer temperature cue (ΔT , see Methods), spring precipitation, and two-way interaction effects. Interaction effects can be positive (synergistic) or negative (antagonistic). B) The models explain substantial fractions of time-averaged spatial synchrony. The graph shows observed (solid blue line) and model-predicted (dashed red line) timescale-specific synchrony across all years, and compares these observations and model predictions across timescales. Grey bars highlight the two timescale bands (i.e., 2–4 and 5–8 years) for which the models at (A) were fitted. Cross terms exceed 10% at the 5–8-year band (Table 1), indicating violations of the wavelet Moran independence assumption and warranting caution in interpretation at this timescale.

137 **Synchrony driven by summer temperatures.** Community-wide synchrony at period of 2–4
 138 was explained by summer temperature synchrony (Fig. 3, Table 1). Spring temperature effects
 139 were not significant, and interaction terms were weak, indicating that synchrony arises primarily
 140 via temperature-cued flowering initiation rather than joint effects with spring conditions. The
 141 quarter-cycle phase lags between mastинг and the summer temperature cue (Table 1) corresponds
 142 to seed production peaking about 1 year after high cue values, consistent with past observations
 143 and the interpretation that hot summers promote floral initiation for the following year (11; 20).
 144 The driver set explained a large share of the variance in timescale-specific synchrony, and
 145 model predictions matched observations across species and sites (2–4 y: 46.4% synchrony
 146 explained; Fig. 3). Contrary to expectation, NAO indices were not significant drivers of
 147 synchrony at the 5–8-year band (Table 1). In addition, the high proportion of cross terms for
 148 summer temperature (ΔT) at the long-period band (30%) suggests violations of the independence
 149 assumption underlying the wavelet Moran theorem, warranting caution in the interpretation of
 150 results at this temporal scale.

151 Within species, synchrony at both high- and low-frequency modes was associated with spa-
152 tially coherent summer temperature (Table S1). Consequently, species-level synchrony driven
153 by summer heat can aggregate into community-level mass flowering across the region due to
154 largely shared masting cues. However, the consistently high cross terms at longer timescales
155 indicate that the independence assumption of the wavelet Moran theorem is violated (11 - 16
156 %, Table S1), warranting caution in the interpretation of low-frequency effects. Accordingly,
157 coherent summer temperature appears to be the dominant shared cue linking species and sites, al-
158 though the drivers of low-frequency synchrony cannot be reliably distinguished given violations
159 of model assumptions at longer timescales.

160 **Shifting timescale structure of synchrony.** The community-level short-period mode short-
161 ened after ~2005, shifting from a 3–4-year timescale toward ~2 years and weakening thereafter
162 (Fig. 1). Long-period coherence (5–8 years) was higher before ~2010 and largely absent after
163 ~2014 (Fig. 1), consistent with a recent loss of the low-period synchrony, though longer series
164 are needed to separate a transient dip from a new state.

165 Within species, WMF indicates that amplitude is shared in some years but not others, and
166 shows signals of temporal weakening of synchrony that is species- and period-dependent (Fig.
167 2). For example, in beech, long-period synchrony was largely absent, while the short-period
168 synchrony declined over time (Fig. 2). In larch and oaks, the short-period synchrony also
169 declined over time; while in spruce, the long-period synchrony declined (Fig. 2). In Scots
170 pine (*Pinus sylvestris*), synchrony does not show a clear temporal trend, except for a strongly
171 synchronized event in 2020 (Fig. 2). Thus, the attenuation of community-wide synchrony is
172 not due to uniform declines within species; rather, our data suggest that species-specific changes
173 in rhythms (period, phase) that increasingly fail to sum constructively, reducing community-
174 level mass flowering that was evident in the early decades of the record. The recent fading of
175 community-wide synchrony at both bands was also present in the independent dataset, lending
176 additional support for the pattern (Fig. S2).

177 **Discussion**

178 We show that European temperate forests species exhibit regional, community-wide masting
179 organized by two modes: a 2–4-year band and a secondary 5–8-year band. This reveals
180 that community-level reproduction, previously thought unique to tropical Asian forests (5), is
181 also a characteristic of European forest dynamics. The signal emerges from the dataset’s broad
182 spatial and temporal coverage, and from timescale-resolved wavelet metrics (WMF, WPMF) that
183 separate short- and long-period components rather than pooling them (25; 1). The implications
184 are broad: community-wide masting amplifies the ecosystem consequences of resource pulses
185 by synchronizing peaks and troughs in seed supply across species and sites (2), with knock-on
186 effects for seed consumers, tree recruitment, and ecosystem nutrient fluxes (33).

187 Community-wide synchrony that extends to the regional scale, as we show here, magnifies
188 the ecosystem consequences of seed pulses. In high-seed years, trees reallocate carbon, reducing
189 growth and defense while boosting pollination success and escape from predators via satiation
190 (34; 35; 36). When seed production fluctuates in step across species and large spatial scales, these
191 allocation shifts and their growth signatures are likely shared, which could produce coordinated
192 swings in growth across the landscape. To the extent that is true, the longer period (5–8 years)
193 synchrony band implies sub-decadal alternation between phases of improved landscape-scale
194 tree growth (when reproduction is suppressed by weak cues) and phases of reduced growth
195 during sustained reproduction; a hypothesis that can now be tested using the novel wavelet tools
196 (25; 1). Joint reproduction also enhances predator satiation: generalist consumers that usually
197 buffer shortfalls by switching foods can be overwhelmed when multiple species peak together,
198 reducing per-capita predation across species (37). Thus, plant–seed consumer dynamics long
199 associated with tropical systems may be more widespread, extending into temperate forests as
200 well.

201 For consumers more generally, mast peaks generate resource pulses that drive primary
202 consumer outbreaks that cascade through food webs (33), elevate risk of disease in animals and
203 humans (38; 39), and increase allergenic pollen loads (40). Mast failures cause large-scale food
204 scarcity, rodent population crashes (33), reproductive failure in insects, birds, and mammals (35),
205 migration (41), and elevated human–wildlife conflict (42). When reproduction is synchronized

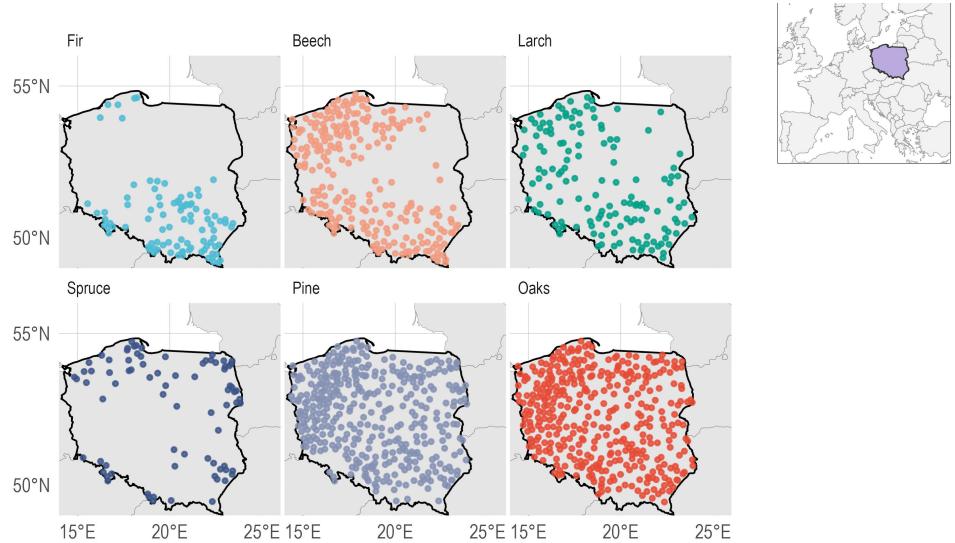
206 across species and across the landscape, these consequences are amplified: pulses in seed supply
207 do not remain local but instead generate region-wide swings in consumer abundance, predation
208 pressure, and disease dynamics. Short-period synchrony produces stronger, spatially extensive
209 resource pulses than any single species can create, while long-period synchrony drives multi-
210 year alternation between region-wide abundance and scarcity (6–8 y). A key next step is to test
211 whether consumer communities exhibit corresponding multi-year cycling, though assembling
212 spatially coherent, long-duration consumer data will be challenging.

213 Summer temperature emerged as the dominant correlate of masting synchrony, both within
214 and across species, consistent with case studies reporting associations between masting and sum-
215 mer temperature and interpreting these relationships as enhanced floral initiation (11; 20). In
216 contrast, spring temperature—although often an important local determinant of seed production
217 (13)—did not contribute to regional synchrony. Interaction terms between drivers were generally
218 weak, indicating that environmental influences did not combine synergistically or antagonis-
219 tically to modify synchrony (1). Somewhat unexpectedly, the North Atlantic Oscillation was
220 not a significant correlate of low-frequency synchrony. However, inference at longer timescales
221 requires caution, as violations of model assumptions limit attribution of low-frequency structure
222 to specific drivers. Moreover, Poland lies at the intersection of several large-scale teleconnection
223 regimes (including the NAO, East Atlantic/Western Russia, and Scandinavian patterns), which
224 may blur the imprint of any single mode.

225 The weakening of community-wide synchrony at both time bands indicates that, in recent
226 years, temperate forests studied lost the large-scale coordination of reproduction that once
227 generated multi-year pulses of resources; the disappearance of this pattern can be observed
228 in Fig. 1B. Climate-related declines in regional masting have previously been documented in
229 European beech, where summer temperatures act as the main cue for reproduction (30). As
230 summers have warmed, cues have become increasingly frequent, causing reproduction to be
231 triggered more often (31). Frequent flowering depletes stored resources (43), weakening plants'
232 ability to respond to subsequent cues (31; 29); as a result, climate sensitivity and regional
233 synchrony have both declined (30). This same pattern is reflected in our data, where the short-
234 period component of synchrony in beech has changed structure and weakened over time. Similar

235 tendencies appear in other species, such as larch and oaks. In other species, such as spruce,
236 only the long-period synchrony declined over time. These differences indicate that the loss
237 of community-wide coordination arises not from uniform synchrony declines within species,
238 but from a mix of species-specific shifts in synchrony and its timescale that no longer sum
239 constructively at the community level. Variation in cue sensitivity is expected to determine how
240 strongly each species' mastинг responds to ongoing climate change (8); because sensitivities
241 differ among species (44; 19), responses will be non-uniform, and community-level general
242 flowering is therefore the first to decline.

243 Apparent discrepancies with earlier analyses of the same dataset that used period-pooled
244 correlation metrics and reported weak community-wide synchrony (21) reflect methodological
245 rather than biological differences. Correlation-based approaches implicitly average across tem-
246 poral frequencies and therefore cannot detect synchrony that is confined to specific timescale
247 bands (1). When high- and low-frequency components differ in strength or phase, their effects
248 can cancel when aggregated, yielding weak or absent net correlations despite strong band-limited
249 synchrony (1). By contrast, timescale-explicit wavelet methods decompose synchrony by pe-
250 riod and time, revealing community-wide reproductive alignment that is otherwise obscured by
251 period-averaged analyses.


252 In closing, we show that temperate forests exhibit regional, community-wide mastинг at
253 two timescales (2–4 and 5–8 y), with the short (2–4 y) band coordinated by spatially coherent
254 summer temperatures, and that this coordination has weakened in recent decades. These findings
255 extend the concept of general flowering beyond tropical forests. The recent decline in community
256 synchrony—via species-specific shifts in synchrony and its timescale structure—implies smaller,
257 less predictable resource pulses and a decoupling of consumer–resource dynamics at landscape
258 scales. Building on this opens a new research program to test whether timescale-structured
259 synchrony propagates through processes linked to mastинг, including forest recruitment (45),
260 tree growth (43), disease risk (38), seed consumer dynamics (33), mycorrhizal abundance (46),
261 and nutrient fluxes (47).

262 Materials and Methods

263 **Masting data** Seed-production data were obtained from the Polish State Forests and are based
264 on annual seed harvests reported by local forest districts (30; 21). The dataset records the mass
265 (kg) of seeds or cones collected per district per year and spans 1987–2022. It covers seven
266 dominant forest-forming species: silver fir (*Abies alba*), European beech (*Fagus sylvatica*),
267 European larch (*Larix decidua*), Norway spruce (*Picea abies*), Scots pine (*Pinus sylvestris*),
268 sessile oak (*Quercus petraea*), and pedunculate oak (*Quercus robur*). These records document
269 both the mass of seeds and cones collected (hereafter referred to as seeds for brevity) from seed
270 stands in each district, and the demand driving collection intensity. Importantly, the synchrony
271 in seed production is not driven by the demand (Fig. S4). Prior to 2008, oak harvests were
272 not distinguished by species; therefore, records for the two oaks were summed for the entire
273 time series. Synchrony of sessile and pedunculate oak for 2008–2022 (analysed separately and
274 jointly) is shown in Fig. S5 and reveals strong temporal synchrony in seed production. Seeds are
275 collected annually by contracted companies from assigned seed-collection stands, either from
276 the ground or directly from tree canopies, depending on species. We compiled records from 432
277 forest districts (hereafter “sites”). For each species, we retained only sites with fewer than 80%
278 zero records, yielding 238 sites for beech, 385 for oaks, 381 for pine, 79 for spruce, 93 for fir, and
279 138 for larch (Fig. 4). A high proportion of failure years (zero seed production) is a common
280 feature of mast-seeding time series and was also present in our data (Fig. S6). However, re-
281 analysis using an independent dataset (see below) with fewer zeroes (mean proportion of zeroes
282 across species <5%) yielded qualitatively similar results, indicating that the prevalence of zeroes
283 did not influence our conclusions.

284 Independent dataset used for replication

285 To independently test for community-wide “general flowering,” we also analyzed the long-term
286 dataset of the proportion of seed-producing trees (PST) compiled by the Polish State Forests
287 for 16 Regional Forest Directorates. PST is the annual percentage of trees that fruited in a site
288 (estimated to the nearest 10% and converted to proportions), providing a stand-level index of
289 reproduction (48). These data were summarised at the level of Regional Forest Directorates and

Figure 4: Study sites across Poland for silver fir (*Abies alba*), European beech (*Fagus sylvatica*), European larch (*Larix decidua*), Norway spruce (*Picea abies*), Scots pine (*Pinus sylvestris*), sessile oak (*Quercus petraea*), and pedunculate oak (*Quercus robur*); the oaks are pooled for the analysis as prior to 2008, oak harvests were not distinguished by species. The data were collected by the Polish State Forests and spans 1987–2022. Fig. S7 summarizes site-specific species co-occurrence.

290 therefore represent reproduction at a regional (meta-population) scale. We used the data from
 291 1987 - 2019 (data thereafter were unavailable) for the same set of species (*Abies alba*, *Fagus*
 292 *sylvatica*, *Larix decidua*, *Picea abies*, *Pinus sylvestris*, and *Quercus* spp.).

293 Weather data

294 Daily maximum temperature weather data for each site were obtained from the corresponding
 295 0.1° grid cells of the E-OBS dataset ((49), v.31.0e). North Atlantic Oscillation indices were
 296 extracted from [the National Oceanic and Atmospheric Administration](#).

297 Data analysis

298 **Timescale-explicit synchrony.** The *wsyn* package was used to analyze masting synchrony in
 299 R (50). We quantified timescale-specific spatial synchrony in seed production using the Wavelet
 300 Mean Field (WMF), which measures synchrony (in phase and amplitude) as a function of time
 301 and period across sites, and assesses statistical significance using the Wavelet Phasor Mean
 302 Field (WPMF). The WPMF measures synchrony in phase only, but provides a null model based
 303 on random phasors for inference (25; 2; 1). Each annual time series was normalised using a

304 Box–Cox transformation, detrended linearly, demeaned, and standardised to a variance of one
305 (25). That step is recommended for wavelet coherence testing procedures described below,
306 and includes detrending to remove trends that might otherwise obscure patterns of synchrony
307 (25; 2; 1). Results were robust to alternative normalisation schemes, including analyses based
308 on individually detrended, demeaned, and variance-standardised series, as well as the simplest
309 approach relying only on demeaning each time series. Significance of WPMF was evaluated
310 against 1,000 sets of random phasors, representing the null hypothesis of no synchrony except
311 by chance (25).

312 WMF/WPMF were computed separately for each species (to characterize within-species
313 regional synchrony) and then for all species’ time series combined to test for community-
314 level “general flowering.” To assess temporal change in band-specific synchrony, we traced
315 the WMF/WPMF fields through time, focusing on bands visible at the wavelet visualizations
316 (~2–4y, ~5–8y). The methods and inference procedures follow recent applications (51; 2; 1).
317 Independent replication of the community-level analyses was performed on the Regional Direc-
318 torate flowering dataset (PST; 16 series; see “Independent dataset”), using the same procedures
319 (Fig. S2, Fig. S3).

320 **Driver attribution: coherence and multivariate modeling.** To identify climatic drivers of
321 synchrony, we computed *spatial wavelet coherence* between seed production and candidate
322 variables on prespecified (based on visual assessment of the WMF) timescale bands. We tested
323 summer (ΔT , see below) and spring temperature (mean in March and April) on both bands (2–4
324 y; 5–8 y), and North Atlantic Oscillation (NAO) indices (winter: Dec, Jan, Feb; summer: Jun,
325 Jul, Aug) specifically for the 5–8 y band. Spring NAO was excluded due to high collinearity.
326 We build separate models for weather cues and NAO indices.

327 Spatial wavelet coherence provides, for each band, a magnitude (association strength, p-
328 value) and a phase (temporal offset), allowing estimation of cue–response lags (25; 1). We
329 obtained the mean phase values (ϕ) for each band and driver by using the “fast” method
330 introduced by (51), with 10,000 surrogate datasets (i.e., randomized datasets preserving spa-
331 tiotemporal autocorrelation of input variables). Following established practice (2; 1), variables
332 were advanced to *wavelet linear models* (WLMs), multivariate regressions in wavelet space used

333 to explain fractions of time-averaged synchrony and to partition contributions of predictors and
334 their pairwise interactions (25; 26; 1). We assessed the significance of drivers by fitting a wavelet
335 linear model to the selected drivers and by applying the wavelet Moran theorem (25; 26). We
336 applied the *wavelet Moran theorem* and *synchrony attribution theorem* developed by (25) to (i)
337 estimate the proportion of synchrony explained by WLMs and (ii) partition that explained syn-
338 chrony among main effects and interactions (25; 26; 1). Following (25; 52), we then calculated
339 cross-terms, a diagnostic of an independence assumption of the wavelet Moran theorem. Large
340 cross-terms (>10%) indicate the assumption is unmet, with large cross-terms indicating that the
341 unexplained synchrony in one location is correlated with the effect of the climate variable at
342 other locations (25).

343 We used the summer ΔT as a masting cue across species. Generally, seed production in
344 temperate tree species, including in our model species, is often triggered by subsequent cold
345 (two years before seedfall, T2) and hot (one year before seedfall, T1) summers (10; 20). These
346 two parameters (temperature in T1 and T2) can be collapsed into one by taking their difference
347 (ΔT , i.e., the difference between mean maximum June, July temperatures in T1 and T2) (44).
348 Thus, we used ΔT in our analysis as it allows the estimation of masting-cue relationships in with
349 just one parameter (53). Inclusion of summer T1 and summer T2 temperatures separately would
350 introduce collinearity into the model and bias estimates.

351 Acknowledgements

352 This study was funded by the European Union (ERC, ForestFuture, 101039066). JF was also
353 supported by the Foundation for Polish Science (FNP). Views and opinions expressed are, how-
354 ever, those of the authors only and do not necessarily reflect those of the European Union or the
355 European Research Council. Neither the European Union nor the granting authority can be held
356 responsible for them. We would like to express our gratitude to the Directorate-General of State
357 Forests for providing data on the abundance of seeds of major forest-forming species.

358

359 Author Contributions Statement

360 MB conceived the idea and designed the study, MB and VJ designed the analysis, VJ analyzed

361 the data, SJ, MKD, JF, and JS curated the data, and MB drafted the manuscript. All authors
362 critically contributed to the data interpretation and revised the paper.

363

364 **Declaration of interests**

365 No competing interests to declare.

366

367 **Data availability statement**

368 The data and code supporting the results will be archived in the [Open Science Framework \(OSF\)](#).

369 **References**

370 [1] D. C. Reuman, *et al.*, *Ecology Letters* **28**, e70112 (2025).

371 [2] T. L. Anderson, L. W. Sheppard, J. A. Walter, R. E. Rolley, D. C. Reuman, *Ecology Letters*
372 **24**, 337 (2020).

373 [3] D. J. Earn, S. A. Levin, P. Rohani, *Science* **290**, 1360 (2000).

374 [4] L. Egli, M. Schroter, C. Scherber, T. Tscharntke, R. Seppelt, *Nature* **588**, E7 (2020).

375 [5] S. Sakai, *Biological Journal of the Linnean Society* **75**, 233 (2002).

376 [6] M. Chechina, A. Hamann, *Journal of Tropical Ecology* **35**, 108 (2019).

377 [7] T. Qiu, *et al.*, *Nature Plants* **9**, 1044–1056 (2023).

378 [8] M. Bogdziewicz, *et al.*, *Trends in Ecology & Evolution* **39**, 851 (2024).

379 [9] I. S. Pearse, W. D. Koenig, D. Kelly, *New Phytologist* **212**, 546 (2016).

380 [10] G. Vacchiano, *et al.*, *New Phytologist* **215**, 595 (2017).

381 [11] V. Journé, *et al.*, *Nature Plants* **10**, 367 (2024).

382 [12] W. D. Koenig, J. M. Knops, W. J. Carmen, I. S. Pearse, *Ecology* **96**, 184 (2015).

383 [13] E. Fleurot, *et al.*, *Current Biology* **33**, 1117 (2023).

384 [14] J. M. LaMontagne, I. S. Pearse, D. F. Greene, W. D. Koenig, *Nature Plants* **6**, 460 (2020).

385 [15] M. Bogdziewicz, V. Journé, A. Hacket-Pain, J. Szymkowiak, *Ecology Letters* **26**, 754
386 (2023).

387 [16] S. J. Wright, O. Calderón, *Ecology Letters* **9**, 35 (2006).

388 [17] D. Ascoli, *et al.*, *Philosophical Transactions of the Royal Society B: Biological Sciences*
389 **376**, 20200380 (2021).

390 [18] M. Shibata, T. Masaki, T. Yagihashi, T. Shimada, T. Saitoh, *Journal of Ecology* **108**, 1088
391 (2020).

392 [19] V. Journé, *et al.*, *Nature Communications* **16**, 9226 (2025).

393 [20] M. Hirsch, H. Puhlmann, H.-J. Klemmt, T. Seifert, *European Journal of Forest Research*
394 **144**, 1505–1522 (2025).

395 [21] J. Szymkowiak, *et al.*, *PNAS* (2025).

396 [22] W. D. Koenig, J. M. H. Knops, *Ecology* **398**, 83 (2013).

397 [23] J. M. LaMontagne, *et al.*, *Ecology Letters* **27**, e14498 (2024).

398 [24] J. S. Clark, *et al.*, *Nature Communications 2021 12:1* **12**, 1 (2021).

399 [25] L. W. Sheppard, J. R. Bell, R. Harrington, D. C. Reuman, *Nature Climate Change* **6**, 610
400 (2016).

401 [26] L. W. Sheppard, E. J. Defriez, P. C. Reid, D. C. Reuman, *PLOS Computational Biology*
402 **15**, e1006744 (2019).

403 [27] T. A. Shestakova, *et al.*, *PNAS* **113**, 662 (2016).

404 [28] B. B. Hansen, V. Grøtan, I. Herfindal, A. M. Lee, *Ecography* **43**, 1591 (2020).

405 [29] D. Kelly, J. Szymkowiak, A. Hacket-Pain, M. Bogdziewicz, *New Phytologist* **246**, 1975
406 (2025).

407 [30] J. Foest, *et al.*, *Ecology Letters* (2025).

408 [31] M. Bogdziewicz, *et al.*, *Global Change Biology* **27**, 1952 (2021).

409 [32] K. Kondrat, *et al.*, *EcoEvoRxiv* <https://doi.org/10.32942/X2H93H> (2025).

410 [33] R. S. Ostfeld, F. Keesing, *Trends in Ecology & Evolution* **15**, 232 (2000).

411 [34] D. Kelly, D. E. Hart, R. B. Allen, *Ecology* **82**, 117 (2001).

412 [35] J. D. Lauder, E. V. Moran, S. C. Hart, *Tree Physiology* **39**, 1071 (2019).

413 [36] R. Zwolak, P. Celebias, M. Bogdziewicz, *PNAS* **119**, e2105655119 (2022).

414 [37] L. M. Curran, C. O. Webb, *Ecological Monographs* **70**, 129 (2000).

415 [38] C. G. Jones, R. S. Ostfeld, M. P. Richard, E. M. Schauber, J. O. Wolff, *Science* **279**, 1023
416 (1998).

417 [39] B. A. Tonelli, C. Youngflesh, M. W. Tingley, *Proceedings of the National Academy of
418 Sciences* **123**, e2511209123 (2026).

419 [40] Y. T. Tseng, S. Kawashima, S. Kobayashi, S. Takeuchi, K. Nakamura, *Science of the Total
420 Environment* **698**, 134246 (2020).

421 [41] B. Zuckerberg, *et al.*, *Trends in Ecology & Evolution* **35**, 440 (2020).

422 [42] C. Tattoni, *et al.*, *Ecology and Evolution* **15**, e71693 (2025).

423 [43] A. Hacket-Pain, *et al.*, *PNAS* **122**, e2423181122 (2025).

424 [44] D. Kelly, *et al.*, *Ecology Letters* **16**, 90 (2013).

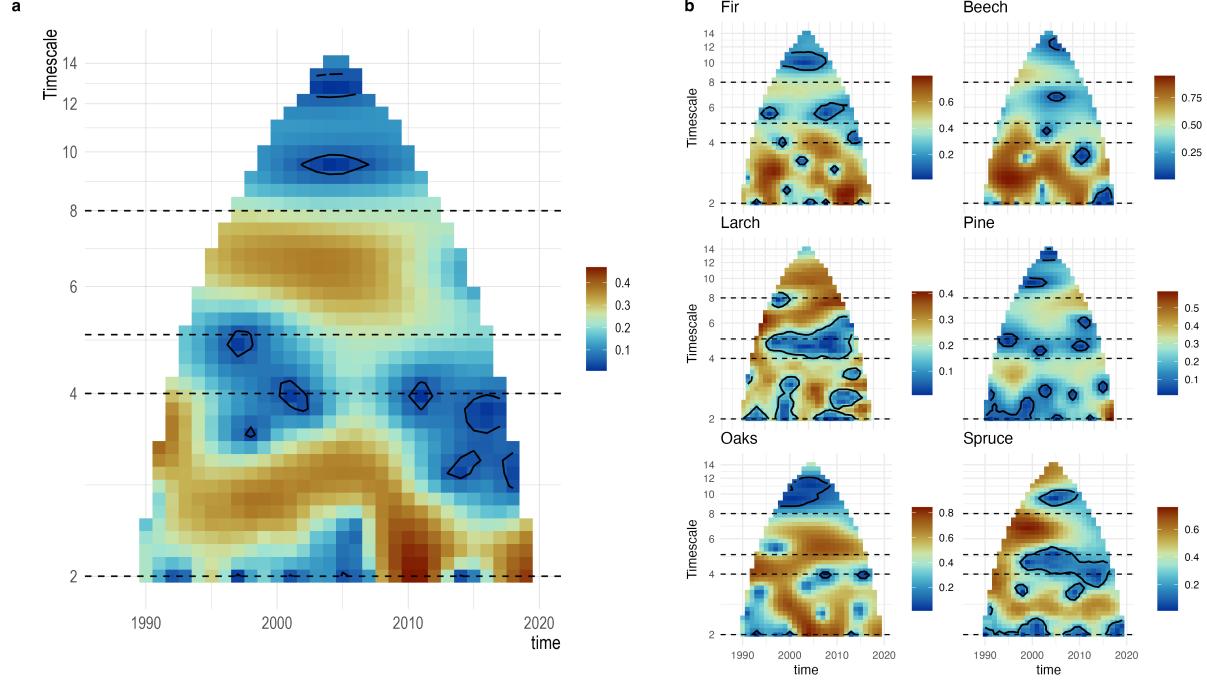
425 [45] M. Bogdziewicz, *et al.*, *Ecology letters* **27**, e14514 (2024).

426 [46] T. J. Michaud, I. S. Pearse, H. Kauserud, C. J. Andrew, P. G. Kennedy, *Ecology Letters* p.
427 e14460.

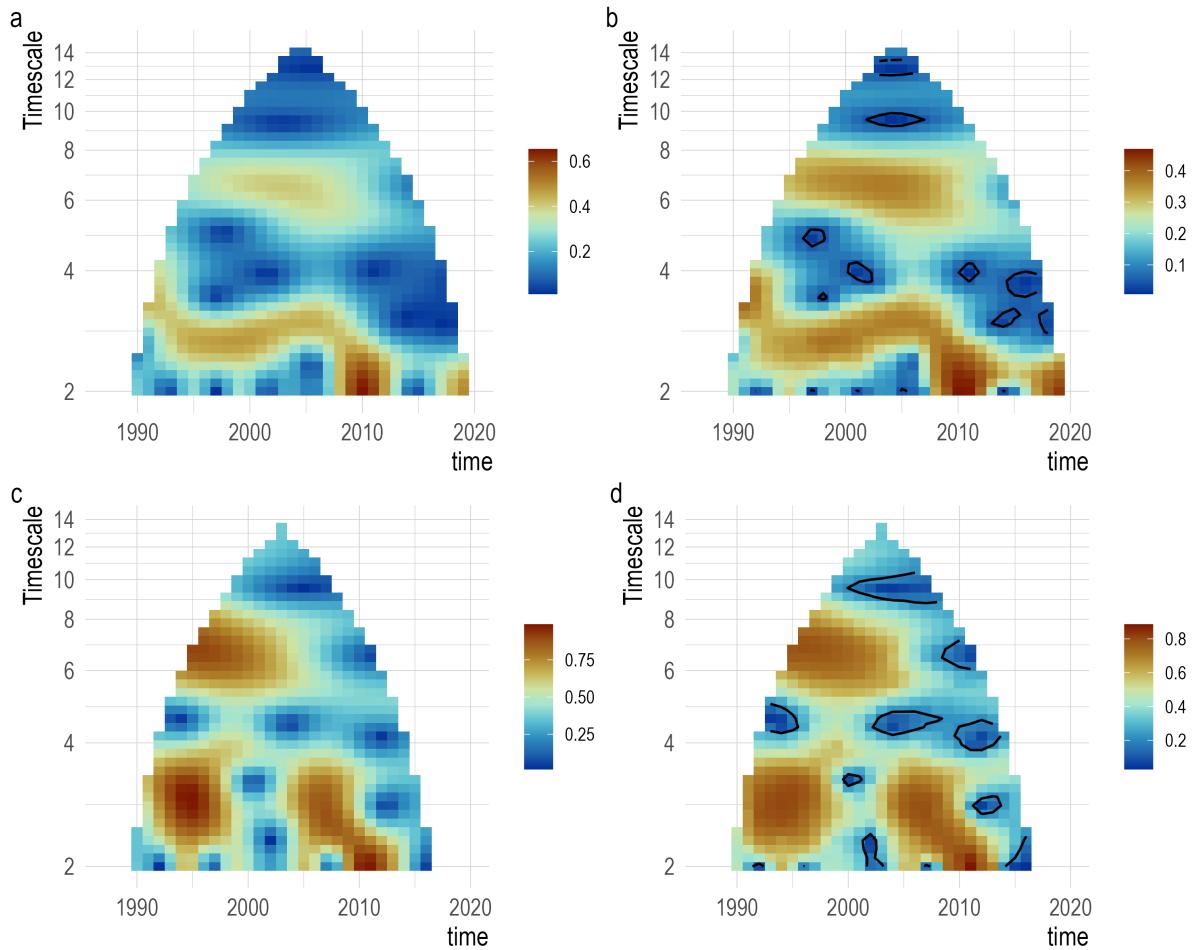
428 [47] H. Müller-Haubold, D. Hertel, C. Leuschner, *Ecosystems* **18**, 1083 (2015).

429 [48] M. B. Pesendorfer, *et al.*, *Global Change Biology* **26**, 1654 (2020).

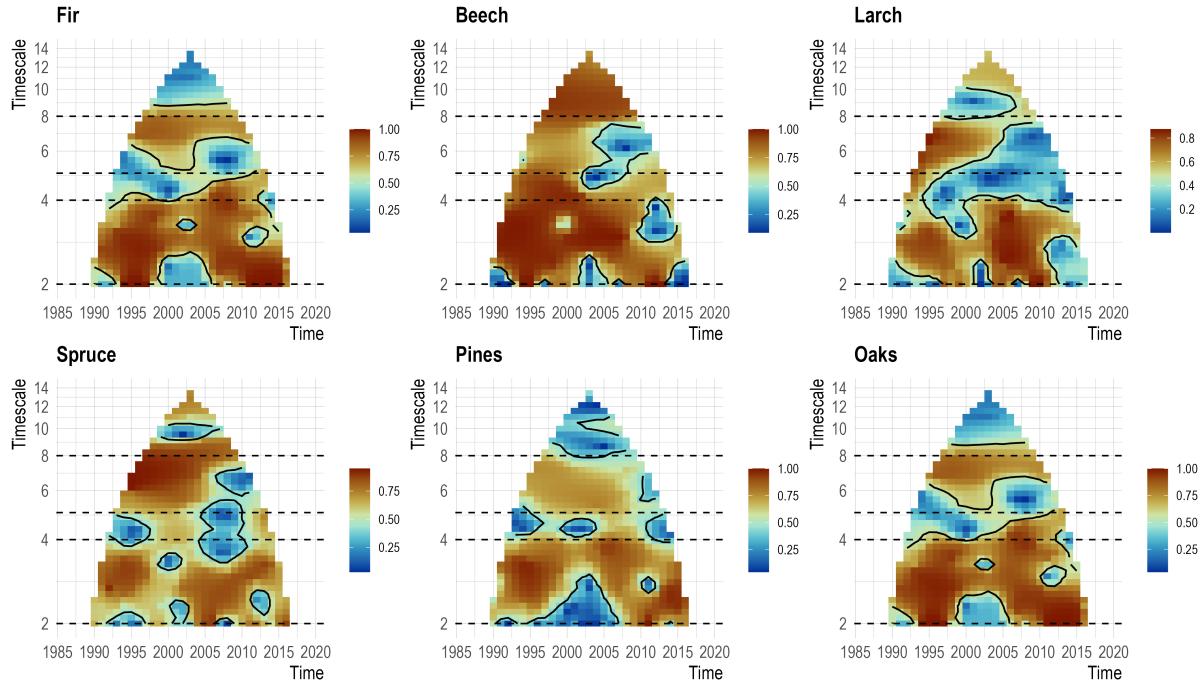
430 [49] R. C. Cornes, G. van der Schrier, E. J. van den Besselaar, P. D. Jones, *Journal of Geophysical*
431 *Research: Atmospheres* **123**, 9391 (2018).

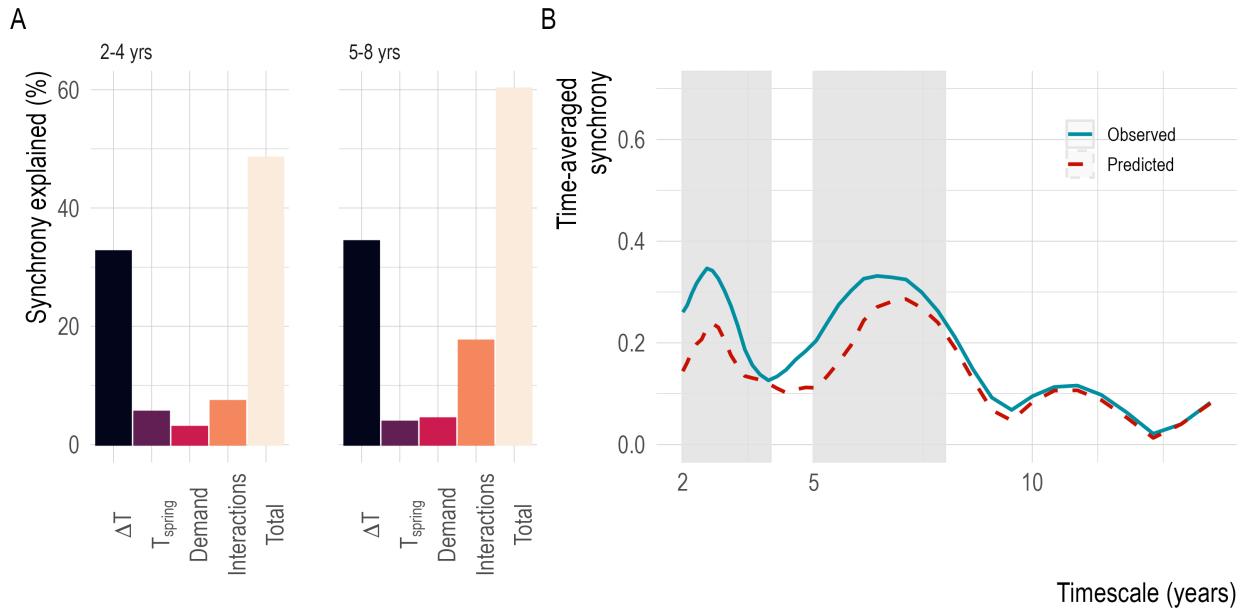

432 [50] D. C. Reuman, T. L. Anderson, J. A. Walter, L. Zhao, L. W. Sheppard, *wsyn: Wavelet*
433 *Approaches to Studies of Synchrony in Ecology and Other Fields* (2021). R package version
434 1.0.4.

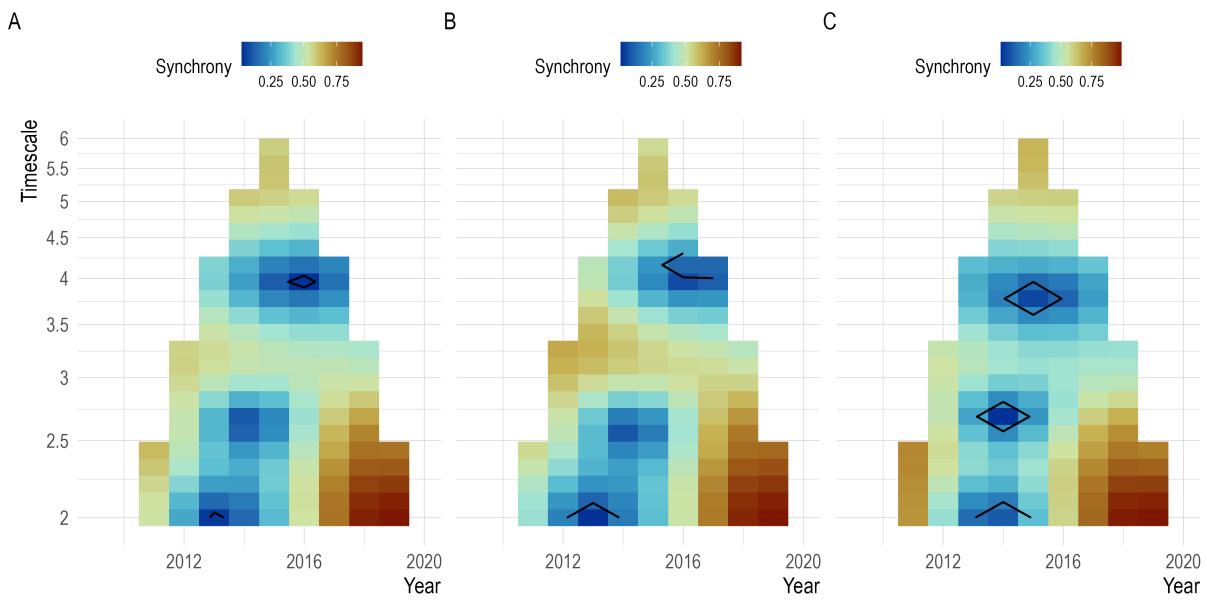
435 [51] L. W. Sheppard, P. C. Reid, D. C. Reuman, *EPJ Nonlinear Biomedical Physics* **5**, 1 (2017).

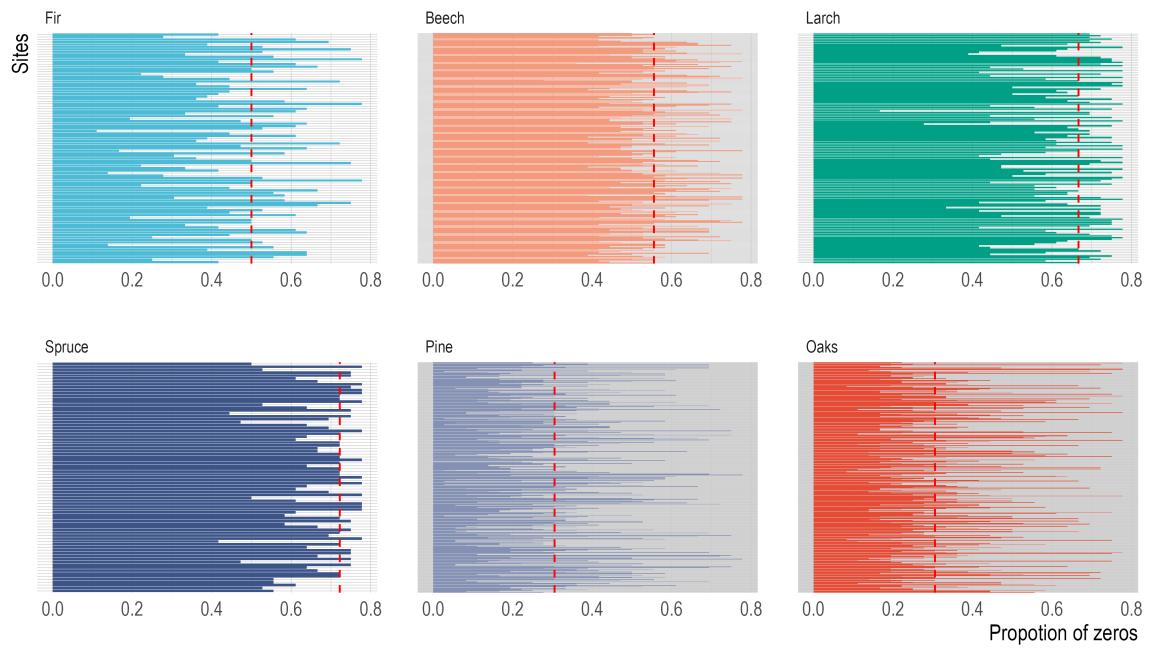

436 [52] C. A. Rodenberg, J. A. Walter, K. J. Haynes, *Ecology Letters* **28**, e70140 (2025).

437 [53] J. Szymkowiak, *et al.*, *Ecology Letters* **27**, e14474 (2024).


438 Supporting Information


Figure S1: Wavelet phasor mean field (WPMF) magnitude plots of time- and timescale-specific spatial synchrony in seed production for all studied species (a) and for each species separately (b). Black contours indicate statistically significant synchrony. At (a) all time series from all species were analysed jointly and therefore reflect the combined effects of within- and among-species synchrony, i.e., community-level synchrony. Species-specific (within-species) synchrony is shown in (b). The analysis is based on seed production data collected between 1987 and 2022 across 432 sites in temperate Europe. Species include silver fir (*Abies alba*), European beech (*Fagus sylvatica*), European larch (*Larix decidua*), Norway spruce (*Picea abies*), Scots pine (*Pinus sylvestris*), sessile oak (*Quercus petraea*), and pedunculate oak (*Quercus robur*). Prior to 2008, oak harvests were not distinguished by species; therefore, records for the two oaks were pooled for the entire time series. Results based on an independent dataset that replicated the pattern are provided in Fig. S2.


Figure S2: Independent dataset replicates the dual-band synchrony that organizes community-wide mastинг in temperate forests. The top panels show the analysis as reported in the main text (432 sites, and 1314 site-species combinations), while the bottom panel shows an independent dataset from the same region (16 sites, 151 site-species combinations). Left column (a, c) shows wavelet mean field (WMF), while the right column shows wavelet phasor mean field (WPMF) magnitude plots (b, d). In this analysis, time series from all species were analysed jointly and therefore reflect the combined effects of within- and among-species synchrony, i.e., community-level synchrony.


Figure S3: Dual-band interspecific synchrony that underlies community-wide masting in temperate forests (independent dataset). Wavelet mean field (WMF) magnitude plots of time- and timescale-specific spatial synchrony in seed production for each species separately. Black contours indicate statistically significant synchrony as determined from the wavelet phasor mean field (WPMF), with the WPMF plots in Fig. S1. The analysis is based on seed production data collected between 1987 and 2019 across 16 sites in temperate Europe. Species include silver fir (*Abies alba*), European beech (*Fagus sylvatica*), European larch (*Larix decidua*), Norway spruce (*Picea abies*), Scots pine (*Pinus sylvestris*), sessile oak (*Quercus petraea*), and pedunculate oak (*Quercus robur*).

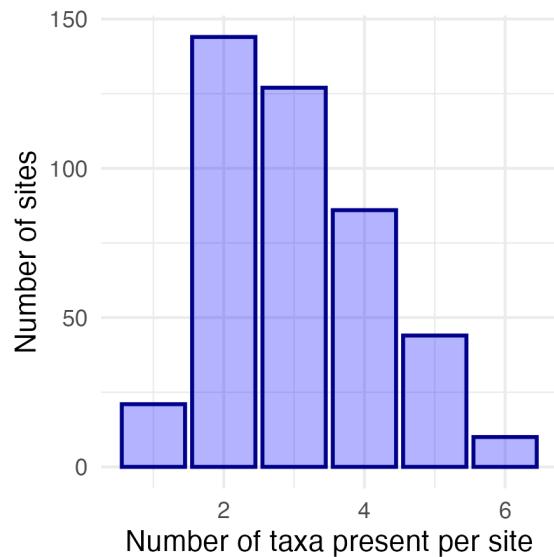

Figure S4: Spatial synchrony in community-wide masting is explained by the synchrony in summer temperature. (A) Fractions of synchrony in community-level masting explained by summer temperature cue (ΔT , see Methods), spring precipitation, Demand, and three-way interaction effects. Interaction effects can be positive (synergistic) or negative (antagonistic). B) The models explain substantial fractions of time-averaged spatial synchrony. The graph shows observed (solid blue line) and model-predicted (dashed red line) timescale-specific synchrony across all years, and compares these observations and model predictions across timescales. Grey bars highlight the two timescale bands for which the models at (A) were fitted.

Figure S5: High within and among-species synchrony in oaks, for the period when records allow separation of the two species (in 2008-2022). Wavelet mean field (WMF) magnitude plots of time- and timescale-specific spatial synchrony in seed production for A) pedunculate and sessile oak analyzed together (N=538 sites); B) pedunculate oaks (N=330 sites) and C) Sessile oaks separately (N=208 sites). Black contours indicate statistically significant synchrony as determined from the wavelet phasor mean field (WPMF).

Figure S6: Proportion of zero records within each taxa time series. The red dotted vertical line represent median value; Beech, 0.56; Fir, 0.50; Larch, 0.67; Oaks, 0.31; Pine, 0.31; Spruce, 0.72.

Figure S7: Species co-occurrence across sites. Bars show the number of taxa present per site (1–6) in the analyzed dataset (N=432 sites). Oaks are pooled together (see Methods).

Table S1: Species-specific relationship between masting synchrony and driver variables. P-values are from tests of spatial wavelet coherence. Phase relationships (ϕ) for drivers were obtained from multi-predictor wavelet linear models. Phase relationships are given in fractions of π , for significant drivers. Negative phase relationships that are not approximately in-phase ($\phi \approx 0$, interpreted as $-0.25 < \phi < 0.25$) or anti-phase ($\phi \approx \pm 1$, interpreted as $\phi < -0.75$ or $\phi > 0.75$) indicate that mast lags the driver variable; positive phase relationships that are not approximately in-phase or anti-phase indicate that mast peaks precede those of the driver variable. Cross term is a diagnostic of the wavelet Moran theorem; no values were reported for NAO indices because those climate indices are not spatially resolved.

Variable	Species	Timescale	p-value	Mean phase	Cross term
ΔT	<i>Abies alba</i>	2-4	0.02	-1.45	7.38
		5-8	0.02	-0.56	16.1
	<i>Fagus sylvatica</i>	2-4	0.0009	-0.36	4.37
		5-8	0.003	-0.036	13.4
	<i>Larix decidua</i>	2-4	0.08	0.70	5.04
		5-8	0.41	-	16.5
	<i>Picea abies</i>	2-4	0.01	0.32	10.1
		5-8	0.01	-0.46	25.9
	<i>Pinus sylvestris</i>	2-4	0.18	-	5.04
		5-8	0.004	-0.95	16.5
T_{spring}	<i>Abies alba</i>	2-4	0.13	-	7.38
		5-8	0.31	-	16.1
	<i>Fagus sylvatica</i>	2-4	0.57	-	4.37
		5-8	0.30	-	13.4
	<i>Larix decidua</i>	2-4	0.13	-	5.04
		5-8	0.83	-	16.5
	<i>Picea abies</i>	2-4	0.33	-	10.1
		5-8	0.12	-	25.9
	<i>Pinus sylvestris</i>	2-4	0.18	-	5.04
		5-8	0.89	-	16.5
NAO_{winter}	<i>Abies alba</i>	5-8	0.15	-	-
	<i>Fagus sylvatica</i>	5-8	0.52	-	-
	<i>Larix decidua</i>	5-8	0.02	-0.28	-
	<i>Picea abies</i>	5-8	0.05	-0.62	-
	<i>Pinus sylvestris</i>	5-8	0.23	-	-
	<i>Quercus spp.</i>	5-8	0.28	-	-
	<i>Abies alba</i>	5-8	0.35	-	-
	<i>Fagus sylvatica</i>	5-8	0.21	-	-
	<i>Larix decidua</i>	5-8	0.17	-	-
	<i>Picea abies</i>	5-8	0.34	-	-
$NAO_{summerT1}$	<i>Pinus sylvestris</i>	5-8	0.80	-	-
	<i>Quercus spp.</i>	5-8	0.52	-	-