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Abstract20

Community-wide “general flowering” has been regarded as a tropical phenomenon. Here,21

we show that temperate forests also exhibit community-wide flowering at the regional scale.22

Annual seed-production records for seven dominant tree species across 432 forest sites, analysed23

with timescale-explicit wavelet metrics, reveal landscape-scale synchrony structured by two24

periods — a 2–4-year band and a 5–8-year band — and associated with spatially coherent25

summer temperatures. This dual-band synchrony demonstrates that large-scale, cross-species26

reproductive alignment is an emergent property of temperate forest communities, implying27

shared climate cueing of reproduction and the potential for community-wide predator satiation.28

Since ∼2005, the short- and long-period synchrony has weakened, and the short-period signal29

has shifted towards ∼2 years (shorter period). Species-specific shifts in timescale structure no30

longer sum constructively, implying smaller, less predictable resource pulses at the community31

level, reduced community-wide predator satiation, and a decoupling of consumer–resource32

dynamics under continued warming.33

Introduction34

Spatial synchrony occurs when populations or ecological processes fluctuate in concert across35

different locations (1). Synchrony affects ecosystem stability when local dynamics combine to36

determine the regional response; synchronous fluctuations align and generate larger regional37

swings, whereas asynchrony dampens them (2). For example, when local populations rise and38

fall together, rescue effects are weakened because neighboring populations are likely to crash39

concurrently, elevating extinction risk (3). Synchrony also amplifies variability in regional40

crop yield when farm-level yields fluctuate in concert, while asynchrony across farms increases41

agrosystem resilience (4). Another striking example is the general flowering in tropical Asian42

forests, where hundreds of species, especially those of the Dipterocarpaceae family, flower syn-43

chronously at irregular multi-year intervals (2–10 years), creating resource pulses that reorganize44

seed predation, tree recruitment, consumer dynamics, and nutrient fluxes (5). These spectac-45

ular community-wide fluctuations have been viewed as unique to Southeast Asian dipterocarp46
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systems (5; 6). Here, we show that temperate forests also exhibit community-level synchronous47

fluctuations in seed production, revealed when dynamics are resolved by timescale.48

Mass flowering or masting — the highly interannually variable seed production synchronized49

among conspecifics — is widespread in perennial plants (7; 8). Proximally, masting arises50

from processes operating on distinct timescales. At shorter interannual scales (∼2–4 years),51

weather variation (called weather cues) shapes floral induction, pollination, and seed maturation52

(9). For example, hot summers can promote massive floral initiation for the following year53

(10; 11), and dry springs can enhance cross-pollination (12; 13). As reproduction responds54

to weather, shared weather patterns produce regional synchrony (14; 15). At lower frequency55

(∼5–10 years), climate modes (e.g., North Atlantic Oscillation NAO or El Niño / Southern56

Oscillation ENSO) may align favorable conditions across flower-to-fruit maturation stages and57

over large areas, yielding sustained periods of elevated or depressed seed output (16; 17).58

For example, sequences of positive winter NAO, summer heat, and dry springs have aligned59

resource priming, bud initiation, and pollination, producing sustained periods of elevated seed60

production and continent-scale beech (Fagus sylvatica) mast years in Europe (17). Conversely,61

prolonged negative NAO has been associated with extended intervals of poor seed productivity62

(17). Because these processes operate on distinct timescales, community seed production likely63

contains multiple high- (∼2–4 y) and low-frequency (∼5–10 y) components that differ among64

species and sites in strength (variance share) and phase (peak timing) (16; 18; 17). Analysing65

the synchrony of reproduction across all timescales simultaneously mixes these components;66

fluctuations at different frequencies can cancel and make community synchrony appear weak or67

absent (2; 1).68

Co-occurring species in the same region often respond to similar weather cues, likely69

reflecting shared selective pressures or benefits of intraspecific masting synchrony, rather than70

phylogenetic history (19). In temperate European trees, interannual variation in seed production71

is linked to spring and summer temperature cues (11; 20), while at lower frequencies many72

species show coherence with the NAO (17). Within species, regional synchrony is high and73

extends over hundreds of kilometers (14; 21). By contrast, regional among-species synchrony74

remains largely untested. Within-site studies often detect significant covariation among species75
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(22; 23), but one of the few regional analyses reported low or absent community-wide synchrony76

(21). However, those inferences relied on period-pooled metrics that conflate high- and low-77

frequency components and cannot resolve timescale structure, motivating a timescale-explicit78

analysis here.79

Progress on community-wide synchrony in seed production was limited by two constraints:80

data and methods. Seed production records were often short and local (24). Crucially, multi-81

species records spanning large areas and decades were unavailable, making multi-year structure82

at regional scales difficult to detect. Yet, while no single site or species may exhibit a clear83

“community–mass flowering” signal on its own, shared high- or low-frequency modes can align84

across sites and sum to large regional pulses (2; 1). Standard tools for analyzing synchrony (e.g.,85

correlations, regressions) pool across periods and cannot separate short- from long-timescale86

fluctuations or attribute their causes, especially when effects interacted or were phase-shifted87

across space (1). Timescale-specific wavelet approaches now address these gaps: they quantify88

synchrony by time and period, identify timescale-specific links to candidate drivers and their lags,89

and partition how much synchrony is explained by individual drivers versus their interactions90

(25; 26; 1). We build on this framework to test for community-level synchrony in temperate91

forests, revealing how high- and low-frequency components combine to produce regional pulses.92

Recent evidence shows that synchrony of ecological phenomena, such as insect abundance or93

tree growth (25; 27; 28), is changing under climate warming. Increased synchrony is emerging94

as an important consequence of climate change (28), often reflecting increased spatial coherence95

in weather patterns (28; 1). However, reproductive synchrony in masting species may respond96

differently (8). Because masting depends not only on shared weather cues but also on a plant’s97

internal resource dynamics (9; 29), increasing climatic synchrony does not necessarily translate98

into greater reproductive synchrony (30). In fact, the opposite is expected: when warming99

increases weather cue frequency (e.g., warm summers), repeated triggering of reproduction100

depletes plant reserves and weakens the weather cue–masting coupling (31; 29). This mechanism101

should first shorten effective cycle length (18) and can then reduce or cancel synchrony even102

under increasingly coherent weather (31; 30) - producing a decoupling of biological coherence103

from climatic coherence. If such declines in regional synchrony extend across co-flowering104
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species, the multi-year windows of seed abundance and scarcity that once organized consumer105

dynamics can fragment into smaller, out-of-phase events, dulling trophic pulses, and reshaping106

nutrient and consumer cascades at landscape scales.107

Here, we used annual seed-production records for seven dominant, forest-forming tree species108

across 431 sites in temperate Europe (Poland), collected between 1987 and 2022, to test for109

community-wide synchronous reproduction, its timescale-specific drivers, and temporal trends.110

We formulated three predictions. First, because reproduction in temperate trees is driven by111

largely shared summer and spring temperature cues at interannual scales (20; 19) and because112

resource–cue coupling generates a dominant 2–4-year period (32; 29), community-level syn-113

chrony should emerge at short periods. Second, species such as European beech and spruce114

(Picea abies) share low-frequency coherence with the NAO, so a secondary 6–12-year mode115

should co-occur across species (17). Third, rising summer temperatures should increase cue116

frequency, shorten effective masting periods, and — over time — decrease masting synchrony117

(18; 31; 30).118

Results119

Table 1: Relationship between masting synchrony and driver variables. P-values are from tests of spatial
wavelet coherence. We constructed separate models for weather variables and NAO indices. Phase relationships
(𝜙) for drivers were obtained from multi-predictor wavelet linear models. Phase relationships are given in fractions
of 𝜋, for significant drivers. Negative phase relationships that are not approximately in-phase (𝜙 ≈ 0, interpreted
as −0.25 < 𝜙 < 0.25) or anti-phase (𝜙 ≈ ±1, interpreted as 𝜙 < −0.75 or 𝜙 > 0.75) indicate that masting lags the
driver variable; positive phase relationships that are not approximately in-phase or anti-phase indicate that mast
peaks precede those of the driver variable. Cross term is diagnostic of the wavelet Moran theorem; no values were
reported for NAO indices because those climate indices are not spatially resolved. Species-specific drivers are
reported in Table S1.

Driver variable Timescale p-value Mean phase (𝜙) Cross terms
Δ𝑇 2-4 0.01 -0.34 3.18

5-8 0.003 -0.62 30.2
𝑇𝑠𝑝𝑟𝑖𝑛𝑔 2-4 0.79 - 3.18

5-8 0.93 - 30.2
𝑁𝐴𝑂𝑤𝑖𝑛𝑡𝑒𝑟 5-8 0.12 - -
𝑁𝐴𝑂𝑠𝑢𝑚𝑚𝑚𝑒𝑟 5-8 0.48 - -
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Figure 1: Dual-band synchrony organizes community-wide masting in temperate forests. A) The interannual
variation in seed output in the studied taxa; the time series are summarised at the species level. Before analysis,
series were normalised and detrended (see Methods). Each line shows annual means across all sites for each
species (±SD). B) Region-wide synchrony cycles emerge through among-species synchrony. Post 2010, such
synchrony declined strongly, dampening the pre-existing phase of 2-4 years (highlighted in purple). The black
line shows annual means across all sites and species (±SD). C) Wavelet mean field (WMF) magnitude plots of
time- and timescale-specific spatial synchrony in seed production for all studied species. Black contours indicate
statistically significant synchrony (using standard significance level, p < 0.05) as determined from the wavelet
phasor mean field (WPMF), with the WPMF plots in Fig. S1. Side panels are averages across times (bottom)
or timescales (left side). In this analysis, time series from all species were analysed jointly and therefore reflect
the combined effects of within- and among-species synchrony, i.e., community-level synchrony. Species-specific
(within-species) synchrony is shown in Fig. 2. The vertical dashed lines highlight the synchrony bands analyzed
with spatial wavelet coherence. The analysis is based on seed production data collected between 1987 and 2022
across 432 sites Poland (Fig. 4) for seven tree species: silver fir (Abies alba), European beech (Fagus sylvatica),
European larch (Larix decidua), Norway spruce (Picea abies), Scots pine (Pinus sylvestris), sessile oak (Quercus
petraea), and pedunculate oak (Quercus robur). Before 2008, oak harvests were not distinguished by species;
therefore, records for the two oaks were pooled for the entire time series (see Methods). Results based on an
independent dataset replicated the patterns - both the dual-band synchrony and its temporal decline - and are
provided in Fig. S2.

Dual-band synchrony organizes community-wide masting (2–4 and 5–8 years). Across120

seven dominant tree species, community seed production was synchronized at two distinct121

periods: a short-period 2–4-year band and a long-period 5–8-year band (Fig. 1). Both the122

Wavelet Phasor Mean Field (WPMF) (Fig. S1) and the Wavelet Mean Field (WMF) showed123

this dual-band structure, indicating alignment in phase (timing; WPMF) as well as in phase and124

amplitude (WMF) across species and sites, yielding region-wide seed pulses. Critically, the125

same two-band structure was replicated in a second independently collected dataset comprising126

16 regional seed production records spanning 32 years for the same species set, confirming127

6



Figure 2: Dual-band intraspecific synchrony that underlies community-wide masting in temperate forests.
Wavelet mean field (WMF) magnitude plots of time- and timescale-specific spatial synchrony in seed production
for each species separately. Black contours indicate statistically significant synchrony as determined from the
wavelet phasor mean field (WPMF), with the WPMF plots in Fig. S1. Side panels are averages across times
(bottom) or timescales (left side). The vertical dashed lines highlight the synchrony bands analyzed with spatial
wavelet coherence. The analysis is based on seed production data collected between 1987 and 2022 across 432
sites in Poland (Fig. 4). Species include silver fir (Abies alba), European beech (Fagus sylvatica), European larch
(Larix decidua), Norway spruce (Picea abies), Scots pine (Pinus sylvestris), sessile oak (Quercus petraea), and
pedunculate oak (Quercus robur). Before 2008, oak harvests were not distinguished by species; therefore, records
for the two oaks were pooled for the entire time series. Results based on an independent dataset replicating the
patterns are provided in Fig. S3.

that the community-wide mass-reproduction signal is robust to sampling design and data source128

(Fig. S2).129

The community-wide synchronous reproduction arises from a shared timescale structure of130

synchrony within species. Within the studied species, WMF shows regional phase synchrony at131

a period of 2–4 years and secondary coherence at 6–10 years (Fig. 2). The synchrony estimated132

with the WPMF (Fig. S1) generally matched one estimated with WMF (Fig. 1), indicating both133

phase alignment and uniform amplitude: sites share years of peak and failed reproduction, as well134

as the magnitude of those events. The similar phase and amplitude synchrony, when summed135

across species, appears to drive the region-scale pulses in community-wide reproduction.136
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Figure 3: Spatial synchrony in community-wide masting is explained by the synchrony in summer tem-
perature. (A) Fractions of synchrony in community-level masting explained by summer temperature cue (ΔT, see
Methods), spring precipitation, and two-way interaction effects. Interaction effects can be positive (synergistic)
or negative (antagonistic). B) The models explain substantial fractions of time-averaged spatial synchrony. The
graph shows observed (solid blue line) and model-predicted (dashed red line) timescale-specific synchrony across
all years, and compares these observations and model predictions across timescales. Grey bars highlight the two
timescale bands (i.e., 2-4 and 5-8 years) for which the models at (A) were fitted. Cross terms exceed 10% at
the 5–8-year band (Table 1), indicating violations of the wavelet Moran independence assumption and warranting
caution in interpretation at this timescale.

Synchrony driven by summer temperatures. Community-wide synchrony at period of 2–4137

was explained by summer temperature synchrony (Fig. 3, Table 1). Spring temperature effects138

were not significant, and interaction terms were weak, indicating that synchrony arises primarily139

via temperature-cued flowering initiation rather than joint effects with spring conditions. The140

quarter-cycle phase lags between masting and the summer temperature cue (Table 1) corresponds141

to seed production peaking about 1 year after high cue values, consistent with past observations142

and the interpretation that hot summers promote floral initiation for the following year (11; 20).143

The driver set explained a large share of the variance in timescale-specific synchrony, and144

model predictions matched observations across species and sites (2–4 y: 46.4% synchrony145

explained; Fig. 3). Contrary to expectation, NAO indices were not significant drivers of146

synchrony at the 5–8-year band (Table 1). In addition, the high proportion of cross terms for147

summer temperature (ΔT) at the long-period band (30%) suggests violations of the independence148

assumption underlying the wavelet Moran theorem, warranting caution in the interpretation of149

results at this temporal scale.150
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Within species, synchrony at both high- and low-frequency modes was associated with spa-151

tially coherent summer temperature (Table S1). Consequently, species-level synchrony driven152

by summer heat can aggregate into community-level mass flowering across the region due to153

largely shared masting cues. However, the consistently high cross terms at longer timescales154

indicate that the independence assumption of the wavelet Moran theorem is violated (11 - 16155

%, Table S1), warranting caution in the interpretation of low-frequency effects. Accordingly,156

coherent summer temperature appears to be the dominant shared cue linking species and sites, al-157

though the drivers of low-frequency synchrony cannot be reliably distinguished given violations158

of model assumptions at longer timescales.159

Shifting timescale structure of synchrony. The community-level short-period mode short-160

ened after ∼2005, shifting from a 3–4-year timescale toward ∼2 years and weakening thereafter161

(Fig. 1). Long-period coherence (5–8 years) was higher before ∼2010 and largely absent after162

∼2014 (Fig. 1), consistent with a recent loss of the low-period synchrony, though longer series163

are needed to separate a transient dip from a new state.164

Within species, WMF indicates that amplitude is shared in some years but not others, and165

shows signals of temporal weakening of synchrony that is species- and period-dependent (Fig.166

2). For example, in beech, long-period synchrony was largely absent, while the short-period167

synchrony declined over time (Fig. 2). In larch and oaks, the short-period synchrony also168

declined over time; while in spruce, the long-period synchrony declined (Fig. 2). In Scots169

pine (Pinus sylvestris), synchrony does not show a clear temporal trend, except for a strongly170

synchronized event in 2020 (Fig. 2). Thus, the attenuation of community-wide synchrony is171

not due to uniform declines within species; rather, our data suggest that species-specific changes172

in rhythms (period, phase) that increasingly fail to sum constructively, reducing community-173

level mass flowering that was evident in the early decades of the record. The recent fading of174

community-wide synchrony at both bands was also present in the independent dataset, lending175

additional support for the pattern (Fig. S2).176
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Discussion177

We show that European temperate forests species exhibit regional, community-wide masting178

organized by two modes: a 2–4-year band and a secondary 5–8-year band. This reveals179

that community-level reproduction, previously thought unique to tropical Asian forests (5), is180

also a characteristic of European forest dynamics. The signal emerges from the dataset’s broad181

spatial and temporal coverage, and from timescale-resolved wavelet metrics (WMF, WPMF) that182

separate short- and long-period components rather than pooling them (25; 1). The implications183

are broad: community-wide masting amplifies the ecosystem consequences of resource pulses184

by synchronizing peaks and troughs in seed supply across species and sites (2), with knock-on185

effects for seed consumers, tree recruitment, and ecosystem nutrient fluxes (33).186

Community-wide synchrony that extends to the regional scale, as we show here, magnifies187

the ecosystem consequences of seed pulses. In high-seed years, trees reallocate carbon, reducing188

growth and defense while boosting pollination success and escape from predators via satiation189

(34; 35; 36). When seed production fluctuates in step across species and large spatial scales, these190

allocation shifts and their growth signatures are likely shared, which could produce coordinated191

swings in growth across the landscape. To the extent that is true, the longer period (5–8 years)192

synchrony band implies sub-decadal alternation between phases of improved landscape-scale193

tree growth (when reproduction is suppressed by weak cues) and phases of reduced growth194

during sustained reproduction; a hypothesis that can now be tested using the novel wavelet tools195

(25; 1). Joint reproduction also enhances predator satiation: generalist consumers that usually196

buffer shortfalls by switching foods can be overwhelmed when multiple species peak together,197

reducing per-capita predation across species (37). Thus, plant–seed consumer dynamics long198

associated with tropical systems may be more widespread, extending into temperate forests as199

well.200

For consumers more generally, mast peaks generate resource pulses that drive primary201

consumer outbreaks that cascade through food webs (33), elevate risk of disease in animals and202

humans (38; 39), and increase allergenic pollen loads (40). Mast failures cause large-scale food203

scarcity, rodent population crashes (33), reproductive failure in insects, birds, and mammals (35),204

migration (41), and elevated human–wildlife conflict (42). When reproduction is synchronized205
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across species and across the landscape, these consequences are amplified: pulses in seed supply206

do not remain local but instead generate region-wide swings in consumer abundance, predation207

pressure, and disease dynamics. Short-period synchrony produces stronger, spatially extensive208

resource pulses than any single species can create, while long-period synchrony drives multi-209

year alternation between region-wide abundance and scarcity (6–8 y). A key next step is to test210

whether consumer communities exhibit corresponding multi-year cycling, though assembling211

spatially coherent, long-duration consumer data will be challenging.212

Summer temperature emerged as the dominant correlate of masting synchrony, both within213

and across species, consistent with case studies reporting associations between masting and sum-214

mer temperature and interpreting these relationships as enhanced floral initiation (11; 20). In215

contrast, spring temperature—although often an important local determinant of seed production216

(13)—did not contribute to regional synchrony. Interaction terms between drivers were generally217

weak, indicating that environmental influences did not combine synergistically or antagonis-218

tically to modify synchrony (1). Somewhat unexpectedly, the North Atlantic Oscillation was219

not a significant correlate of low-frequency synchrony. However, inference at longer timescales220

requires caution, as violations of model assumptions limit attribution of low-frequency structure221

to specific drivers. Moreover, Poland lies at the intersection of several large-scale teleconnection222

regimes (including the NAO, East Atlantic/Western Russia, and Scandinavian patterns), which223

may blur the imprint of any single mode.224

The weakening of community-wide synchrony at both time bands indicates that, in recent225

years, temperate forests studied lost the large-scale coordination of reproduction that once226

generated multi-year pulses of resources; the disappearance of this pattern can be observed227

in Fig. 1B. Climate-related declines in regional masting have previously been documented in228

European beech, where summer temperatures act as the main cue for reproduction (30). As229

summers have warmed, cues have become increasingly frequent, causing reproduction to be230

triggered more often (31). Frequent flowering depletes stored resources (43), weakening plants’231

ability to respond to subsequent cues (31; 29); as a result, climate sensitivity and regional232

synchrony have both declined (30). This same pattern is reflected in our data, where the short-233

period component of synchrony in beech has changed structure and weakened over time. Similar234
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tendencies appear in other species, such as larch and oaks. In other species, such as spruce,235

only the long-period synchrony declined over time. These differences indicate that the loss236

of community-wide coordination arises not from uniform synchrony declines within species,237

but from a mix of species-specific shifts in synchrony and its timescale that no longer sum238

constructively at the community level. Variation in cue sensitivity is expected to determine how239

strongly each species’ masting responds to ongoing climate change (8); because sensitivities240

differ among species (44; 19), responses will be non-uniform, and community-level general241

flowering is therefore the first to decline.242

Apparent discrepancies with earlier analyses of the same dataset that used period-pooled243

correlation metrics and reported weak community-wide synchrony (21) reflect methodological244

rather than biological differences. Correlation-based approaches implicitly average across tem-245

poral frequencies and therefore cannot detect synchrony that is confined to specific timescale246

bands (1). When high- and low-frequency components differ in strength or phase, their effects247

can cancel when aggregated, yielding weak or absent net correlations despite strong band-limited248

synchrony (1). By contrast, timescale-explicit wavelet methods decompose synchrony by pe-249

riod and time, revealing community-wide reproductive alignment that is otherwise obscured by250

period-averaged analyses.251

In closing, we show that temperate forests exhibit regional, community-wide masting at252

two timescales (2–4 and 5–8 y), with the short (2–4 y) band coordinated by spatially coherent253

summer temperatures, and that this coordination has weakened in recent decades. These findings254

extend the concept of general flowering beyond tropical forests. The recent decline in community255

synchrony—via species-specific shifts in synchrony and its timescale structure—implies smaller,256

less predictable resource pulses and a decoupling of consumer–resource dynamics at landscape257

scales. Building on this opens a new research program to test whether timescale-structured258

synchrony propagates through processes linked to masting, including forest recruitment (45),259

tree growth (43), disease risk (38), seed consumer dynamics (33), mycorrhizal abundance (46),260

and nutrient fluxes (47).261
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Materials and Methods262

Masting data Seed-production data were obtained from the Polish State Forests and are based263

on annual seed harvests reported by local forest districts (30; 21). The dataset records the mass264

(kg) of seeds or cones collected per district per year and spans 1987–2022. It covers seven265

dominant forest-forming species: silver fir (Abies alba), European beech (Fagus sylvatica),266

European larch (Larix decidua), Norway spruce (Picea abies), Scots pine (Pinus sylvestris),267

sessile oak (Quercus petraea), and pedunculate oak (Quercus robur). These records document268

both the mass of seeds and cones collected (hereafter referred to as seeds for brevity) from seed269

stands in each district, and the demand driving collection intensity. Importantly, the synchrony270

in seed production is not driven by the demand (Fig. S4). Prior to 2008, oak harvests were271

not distinguished by species; therefore, records for the two oaks were summed for the entire272

time series. Synchrony of sessile and pedunculate oak for 2008–2022 (analysed separately and273

jointly) is shown in Fig. S5 and reveals strong temporal synchrony in seed production. Seeds are274

collected annually by contracted companies from assigned seed-collection stands, either from275

the ground or directly from tree canopies, depending on species. We compiled records from 432276

forest districts (hereafter “sites”). For each species, we retained only sites with fewer than 80%277

zero records, yielding 238 sites for beech, 385 for oaks, 381 for pine, 79 for spruce, 93 for fir, and278

138 for larch (Fig. 4). A high proportion of failure years (zero seed production) is a common279

feature of mast-seeding time series and was also present in our data (Fig. S6). However, re-280

analysis using an independent dataset (see below) with fewer zeroes (mean proportion of zeroes281

across species <5%) yielded qualitatively similar results, indicating that the prevalence of zeroes282

did not influence our conclusions.283

Independent dataset used for replication284

To independently test for community-wide “general flowering,” we also analyzed the long-term285

dataset of the proportion of seed-producing trees (PST) compiled by the Polish State Forests286

for 16 Regional Forest Directorates. PST is the annual percentage of trees that fruited in a site287

(estimated to the nearest 10% and converted to proportions), providing a stand-level index of288

reproduction (48). These data were summarised at the level of Regional Forest Directorates and289
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Figure 4: Study sites across Poland for silver fir (Abies alba), European beech (Fagus sylvatica), European
larch (Larix decidua), Norway spruce (Picea abies), Scots pine (Pinus sylvestris), sessile oak (Quercus petraea),
and pedunculate oak (Quercus robur); the oaks are pooled for the analysis as prior to 2008, oak harvests were
not distinguished by species. The data were collected by the Polish State Forests and spans 1987–2022. Fig. S7
summarizes site-specific species co-occurance.

therefore represent reproduction at a regional (meta-population) scale. We used the data from290

1987 - 2019 (data thereafter were unavailable) for the same set of species (Abies alba, Fagus291

sylvatica, Larix decidua, Picea abies, Pinus sylvestris, and Quercus spp.).292

Weather data293

Daily maximum temperature weather data for each site were obtained from the corresponding294

0.1° grid cells of the E-OBS dataset ((49), v.31.0e). North Atlantic Oscillation indices were295

extracted from the National Oceanic and Atmospheric Administration.296

Data analysis297

Timescale-explicit synchrony. The wsyn package was used to analyze masting synchrony in298

R (50). We quantified timescale-specific spatial synchrony in seed production using the Wavelet299

Mean Field (WMF), which measures synchrony (in phase and amplitude) as a function of time300

and period across sites, and assesses statistical significance using the Wavelet Phasor Mean301

Field (WPMF). The WPMF measures synchrony in phase only, but provides a null model based302

on random phasors for inference (25; 2; 1). Each annual time series was normalised using a303
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Box–Cox transformation, detrended linearly, demeaned, and standardised to a variance of one304

(25). That step is recommended for wavelet coherence testing procedures described below,305

and includes detrending to remove trends that might otherwise obscure patterns of synchrony306

(25; 2; 1). Results were robust to alternative normalisation schemes, including analyses based307

on individually detrended, demeaned, and variance-standardised series, as well as the simplest308

approach relying only on demeaning each time series. Significance of WPMF was evaluated309

against 1,000 sets of random phasors, representing the null hypothesis of no synchrony except310

by chance (25).311

WMF/WPMF were computed separately for each species (to characterize within-species312

regional synchrony) and then for all species’ time series combined to test for community-313

level “general flowering.” To assess temporal change in band-specific synchrony, we traced314

the WMF/WPMF fields through time, focusing on bands visible at the wavelet visualizations315

(∼2–4y, ∼5–8y). The methods and inference procedures follow recent applications (51; 2; 1).316

Independent replication of the community-level analyses was performed on the Regional Direc-317

torate flowering dataset (PST; 16 series; see “Independent dataset”), using the same procedures318

(Fig. S2, Fig. S3).319

Driver attribution: coherence and multivariate modeling. To identify climatic drivers of320

synchrony, we computed spatial wavelet coherence between seed production and candidate321

variables on prespecified (based on visual assessment of the WMF) timescale bands. We tested322

summer (ΔT, see below) and spring temperature (mean in March and April) on both bands (2–4323

y; 5–8 y), and North Atlantic Oscillation (NAO) indices (winter: Dec, Jan, Feb; summer: Jun,324

Jul, Aug) specifically for the 5–8 y band. Spring NAO was excluded due to high collinearity.325

We build separate models for weather cues and NAO indices.326

Spatial wavelet coherence provides, for each band, a magnitude (association strength, p-327

value) and a phase (temporal offset), allowing estimation of cue–response lags (25; 1). We328

obtained the mean phase values (𝜙) for each band and driver by using the “fast” method329

introduced by (51), with 10,000 surrogate datasets (i.e., randomized datasets preserving spa-330

tiotemporal autocorrelation of input variables). Following established practice (2; 1), variables331

were advanced to wavelet linear models (WLMs), multivariate regressions in wavelet space used332
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to explain fractions of time-averaged synchrony and to partition contributions of predictors and333

their pairwise interactions (25; 26; 1). We assessed the significance of drivers by fitting a wavelet334

linear model to the selected drivers and by applying the wavelet Moran theorem (25; 26). We335

applied the wavelet Moran theorem and synchrony attribution theorem developed by (25) to (i)336

estimate the proportion of synchrony explained by WLMs and (ii) partition that explained syn-337

chrony among main effects and interactions (25; 26; 1). Following (25; 52), we then calculated338

cross-terms, a diagnostic of an independence assumption of the wavelet Moran theorem. Large339

cross-terms (>10%) indicate the assumption is unmet, with large cross-terms indicating that the340

unexplained synchrony in one location is correlated with the effect of the climate variable at341

other locations (25).342

We used the summer ΔT as a masting cue across species. Generally, seed production in343

temperate tree species, including in our model species, is often triggered by subsequent cold344

(two years before seedfall, T2) and hot (one year before seedfall, T1) summers (10; 20). These345

two parameters (temperature in T1 and T2) can be collapsed into one by taking their difference346

(ΔT, i.e., the difference between mean maximum June, July temperatures in T1 and T2) (44).347

Thus, we used ΔT in our analysis as it allows the estimation of masting-cue relationships in with348

just one parameter (53). Inclusion of summer T1 and summer T2 temperatures separately would349

introduce collinearity into the model and bias estimates.350
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Supporting Information438

Figure S1: Wavelet phasor mean field (WPMF) magnitude plots of time- and timescale-specific spatial synchrony
in seed production for all studied species (a) and for each species separately (b). Black contours indicate statistically
significant synchrony. At (a) all time series from all species were analysed jointly and therefore reflect the combined
effects of within- and among-species synchrony, i.e., community-level synchrony. Species-specific (within-species)
synchrony is shown in (b). The analysis is based on seed production data collected between 1987 and 2022 across
432 sites in temperate Europe. Species include silver fir (Abies alba), European beech (Fagus sylvatica), European
larch (Larix decidua), Norway spruce (Picea abies), Scots pine (Pinus sylvestris), sessile oak (Quercus petraea),
and pedunculate oak (Quercus robur). Prior to 2008, oak harvests were not distinguished by species; therefore,
records for the two oaks were pooled for the entire time series. Results based on an independent dataset that
replicated the pattern are provided in Fig. S2.
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Figure S2: Independent dataset replicates the dual-band synchrony that organizes community-wide
masting in temperate forests. The top panels show the analysis as reported in the main text (432 sites, and 1314
site-species combinations), while the bottom panel shows an independent dataset from the same region (16 sites,
151 site-species combinations). Left column (a, c) shows wavelet mean field (WMF), while the right column
shows wavelet phasor mean field (WPMF) magnitude plots (b, d). In this analysis, time series from all species
were analysed jointly and therefore reflect the combined effects of within- and among-species synchrony, i.e.,
community-level synchrony.
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Figure S3: Dual-band interspecific synchrony that underlies community-wide masting in temperate
forests (independent dataset). Wavelet mean field (WMF) magnitude plots of time- and timescale-specific spatial
synchrony in seed production for each species separately. Black contours indicate statistically significant synchrony
as determined from the wavelet phasor mean field (WPMF), with the WPMF plots in Fig. S1. The analysis is based
on seed production data collected between 1987 and 2019 across 16 sites in temperate Europe. Species include
silver fir (Abies alba), European beech (Fagus sylvatica), European larch (Larix decidua), Norway spruce (Picea
abies), Scots pine (Pinus sylvestris), sessile oak (Quercus petraea), and pedunculate oak (Quercus robur).
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Figure S4: Spatial synchrony in community-wide masting is explained by the synchrony in summer
temperature. (A) Fractions of synchrony in community-level masting explained by summer temperature cue (ΔT,
see Methods), spring precipitation, Demand, and three-way interaction effects. Interaction effects can be positive
(synergistic) or negative (antagonistic). B) The models explain substantial fractions of time-averaged spatial
synchrony. The graph shows observed (solid blue line) and model-predicted (dashed red line) timescale-specific
synchrony across all years, and compares these observations and model predictions across timescales. Grey bars
highlight the two timescale bands for which the models at (A) were fitted.
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Figure S5: High within and among-species synchrony in oaks, for the period when records allow separation
of the two species (in 2008-2022). Wavelet mean field (WMF) magnitude plots of time- and timescale-specific
spatial synchrony in seed production for A) pedunculate and sessile oak analyzed together (N=538 sites); B)
pedunculate oaks (N=330 sites) and C) Sessile oaks separately (N=208 sites). Black contours indicate statistically
significant synchrony as determined from the wavelet phasor mean field (WPMF).
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Figure S6: Proportion of zero records within each taxa time series. The red dotted vertical line represent
median value; Beech, 0.56; Fir, 0.50; Larch, 0.67; Oaks, 0.31; Pine, 0.31; Spruce, 0.72.
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Figure S7: Species co-occurrence across sites. Bars show the number of taxa present per site (1–6) in the
analyzed dataset (N=432 sites). Oaks are pooled together (see Methods).
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Table S1: Species-specific relationship between masting synchrony and driver variables. P-values are from
tests of spatial wavelet coherence. Phase relationships (𝜙) for drivers were obtained from multi-predictor wavelet
linear models. Phase relationships are given in fractions of 𝜋, for significant drivers. Negative phase relationships
that are not approximately in-phase (𝜙 ≈ 0, interpreted as −0.25 < 𝜙 < 0.25) or anti-phase (𝜙 ≈ ±1, interpreted
as 𝜙 < −0.75 or 𝜙 > 0.75) indicate that masting lags the driver variable; positive phase relationships that are not
approximately in-phase or anti-phase indicate that mast peaks precede those of the driver variable. Cross term is a
diagnostic of the wavelet Moran theorem; no values were reported for NAO indices because those climate indices
are not spatially resolved.

Variable Species Timescale p-value Mean phase Cross term
Δ𝑇 Abies alba 2-4 0.02 -1.45 7.38

5-8 0.02 -0.56 16.1
Fagus sylvatica 2-4 0.0009 -0.36 4.37

5-8 0.003 -0.036 13.4
Larix decidua 2-4 0.08 0.70 5.04

5-8 0.41 - 16.5
Picea abies 2-4 0.01 0.32 10.1

5-8 0.01 -0.46 25.9
Pinus sylvestris 2-4 0.18 - 5.04

5-8 0.004 -0.95 16.5
Quercus spp. 2-4 0.64 - 11.4

5-8 0.02 -0.60 26.6

𝑇𝑠𝑝𝑟𝑖𝑛𝑔 Abies alba 2-4 0.13 - 7.38
5-8 0.31 - 16.1

Fagus sylvatica 2-4 0.57 - 4.37
5-8 0.30 - 13.4

Larix decidua 2-4 0.13 - 5.04
5-8 0.83 - 16.5

Picea abies 2-4 0.33 - 10.1
5-8 0.12 - 25.9

Pinus sylvestris 2-4 0.18 - 5.04
5-8 0.89 - 16.5

Quercus spp. 2-4 0.76 - 11.4
5-8 0.96 - 26.6

𝑁𝐴𝑂𝑤𝑖𝑛𝑡𝑒𝑟 Abies alba 5-8 0.15 - -
Fagus sylvatica 5-8 0.52 - -
Larix decidua 5-8 0.02 -0.28 -
Picea abies 5-8 0.05 -0.62 -
Pinus sylvestris 5-8 0.23 - -
Quercus spp. 5-8 0.28 - -

𝑁𝐴𝑂𝑠𝑢𝑚𝑚𝑒𝑟𝑇1 Abies alba 5-8 0.35 - -
Fagus sylvatica 5-8 0.21 - -
Larix decidua 5-8 0.17 - -
Picea abies 5-8 0.34 - -
Pinus sylvestris 5-8 0.80 - -
Quercus spp. 5-8 0.52 - -
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