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ABSTRACT

Wetlands in the Brazilian Cerrado play key roles in regional carbon and water cycles but
remain poorly mapped due to their patchy distribution and seasonal variability. Therefore,
knowing where and when they occur is urgently needed. To address this gap, we
evaluated how spatial resolution and inclusion of thermal (on top of traditional
multispectral) data affected wetland vs. dry grassland mapping accuracy using
Unoccupied Aerial Vehicle (UAV) imagery. Additionally, we investigated variable
importance and how including topography and vegetation patch size as post-processing
constraints improved accuracy. We used multispectral and thermal data with resolutions
ranging from 0.10 to 1.50 m to train and validate Random Forest models across two

seasons. Mapping accuracy increased with pixel size up to 1.0 m, declining at coarser
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resolutions. Incorporating land surface temperature (LST) significantly improved
classification, increasing accuracy by 4.2 to 7.3 percentage points depending on the
season. Grassland type classification was primarily driven by the Normalized Difference
Vegetation Index (NDVI) and LST, with the latter being especially discriminant in the
wet season. Accuracy was further improved by incorporating ancillary data, reaching up
to 94% in the wet season. When compared with state-of-the-art land cover maps for
Brazil, our drone-based results reveal a wetland extent more than four times larger in the
study area than previously reported, underscoring the widespread underestimation of
these ecosystems. These findings highlight the value of combining UAV-based
multispectral and thermal data for identifying and monitoring Cerrado wetlands,
providing essential information to guide conservation efforts in this threatened

ecosystem.

Keywords: Cerrado, drone, grasslands, multispectral, thermal, wetlands.
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1. INTRODUCTION

The Brazilian Cerrado is a global biodiversity hotspot, home to approximately
4,400 endemic plants and 117 endemic vertebrate species (Myers et al., 2000), and
estimated to store 2 Tg C/ha/year (Sawyer, 2009). Cerrado wetlands, in particular,
regulate hydrological flows by storing rainfall and sustaining perennial rivers (Bassani et
al., 2025; Durigan et al., 2022), and in some regions, these wetlands can store ~ 1,500 Mg
C/ha (Verona et al., 2026). Despite their ecological importance, large-scale agricultural
expansion threatens carbon stocks and water provision across wetlands in the Cerrado
(Ribeiro et al., 2011). Moreover, these wetlands remain poorly characterized, and their
extent is likely underestimated due to mapping limitations. Wetlands in the Brazilian
Cerrado occur as scattered patches across a heterogeneous landscape, often only m to a
few km in extent and bordering savannas, dry grasslands (which are never waterlogged),
and riparian forests. This fine-scale spatial variability makes them particularly difficult to
map using widely available satellite products. Errors of only tens of m can translate into
substantial under- or over-estimation of wetland extent. Moreover, current national land
cover products (MapBiomas, 2024a) often miss seasonal expansions, since for mapping
the Cerrado region, they rely on imagery from periods when wetlands are contracted (i.e.,
the dry season; MapBiomas, 2024b). As such, these products primarily represent
permanently flooded systems, leading to a substantial underestimation of Cerrado
wetland extent. As a result, we still lack accurate, spatially explicit knowledge of where
Cerrado wetlands occur and how they vary through time, representing a major obstacle
for quantification of their contributions to water and carbon cycles and their protection
and conservation.

Unoccupied Aerial Vehicles (UAVS), or drones, offer an alternative for capturing

the fine spatial and temporal patterns of Cerrado wetlands by providing cm to m scale
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imagery across seasons. However, a fundamental challenge when using drones to map
vegetation types involves finding the optimal spatial resolution for the classification goal
(Liu et al., 2020; Woodcock and Strahler, 1987). Too fine resolutions can result in a
higher intra- than inter-class spectral variability, leading to spectral confusion and
hampering class separability (Liu et al., 2020; Meddens et al., 2011). Therefore, a better
understanding of the relationship between spatial scale and mapping accuracy in Cerrado
wetlands is needed not only to determine the strengths and limitations of using drone
imagery for monitoring wetlands (Steenvoorden and Limpens, 2023) but also to explore
potential ways to improve satellite-based large-scale mapping of these important and
understudied vegetation types.

Further, vegetation similarity between dry and waterlogged grasslands can hamper
classification using only RGB or multispectral data. Although subtle differences exist,
they might be easier (or only) captured through the use of hyperspectral data (Adam et
al., 2010; Jarocinska et al., 2023). An alternative to costly hyperspectral sensors could be
using other system characteristics that differentiate these vegetation types, such as surface
temperature differences. Wetlands often exhibit distinct thermal regimes compared to
adjacent land cover types (Hemes et al., 2018; Muro et al., 2018), largely due to
differences in soil moisture and evapotranspiration (Hemes et al., 2018; Oke, 1987; Wu
et al., 2021). Such thermal contrasts, detectable by drone-mounted thermal sensors, may
therefore enhance discrimination between vegetation types and improve mapping
accuracy.

Here, we explore how spatial resolution, thermal remotely-sensed data, and
ancillary environmental data influence the accuracy of UAV-based mapping of Cerrado
wetlands. Additionally, we assessed how different predictor variables affect wetland

classification in distinct seasons. We hypothesize that mapping accuracy will be highest
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when spatial resolution matches the scale of the classification target (i.e., plant
communities), therefore, in the scale of m, and not cm or tens of m. We further
hypothesize that adding thermal data will facilitate discrimination between wet and dry
grasslands, improving mapping accuracy. Finally, we hypothesize that using ancillary
data on topography and vegetation community patch sizes will further improve
classification accuracy. Specifically, we address four questions: (1) What is the optimal
spatial resolution for mapping Cerrado wetlands using UAV data? (2) How does the
inclusion of thermal data affect mapping accuracy? (3) Which variables contribute most
to classification performance? (4) Does incorporating ancillary environmental data, such

as terrain topography, further improve wetland mapping?

2. METHODS
2.1. Study site

Our study site was located in the Cerrado in Chapada dos Veadeiros National Park
(CVNP), Goiés, Brazil (Fig. 1). There is a mosaic of different vegetation types in the park,
ranging from open ecosystems dominated by grasslands to closed ecosystems, including
woody savannas and riparian forests (Lewis et al., 2022; Ribeiro and Walter, 2008). For
this study, we selected a ~0.5 km? gradient from ever-wet peatland (continuously
waterlogged grassland) to seasonal wetland (seasonally waterlogged) to dry grassland

(never waterlogged).
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Fig. 1. Map of the study site. The Chapada dos Veadeiros National Park (CVNP)
borders are shown in gray with a true-color satellite image (Google Earth, 2018) in the
background. The study site location is represented as an orange triangle. The top left inset
map shows the location of CVNP in Brazil, as a green dot, and the Cerrado region in pink.
The bottom right inset map shows a true-color drone image from the study site in the

transition season (December 2024).

The mean annual precipitation in the park is ~1,365 mm/year, with a marked dry
season between June and August and a wet season between December and February
(Funk et al., 2015). We carried out two field campaigns including, (1) the transition from
the dry to wet season (December 2024) and (2) the peak of the wet season (February

2025). This sampling allows us to test for potential seasonal differences.

2.2. Drone flights and reference data
To map the extent of the wetlands, we flew a DJI Mavic 3 Multispectral and a DJI
Mavic 3 Thermal drone over the study site during each field campaign. The flights were

6
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performed between 10:00 am and 2:00 pm to avoid tree shading as much as possible
(Maes, 2025). Flights were planned using QGIS version 3.28.12 to create a polygon
covering the full study area, which was then exported and loaded to the drones’ remote
controllers. The flight area was approximately 0.45 km? in the transition season, and we
expanded it to 0.54 km? in the peak of the wet season to guarantee that the flight area
would cover the border between the waterlogged and dry grassland. Based on the polygon
generated in QGIS, the flight mission was planned on DJI’s remote controller app using
the following settings: single grid, nadir orientation, 100 m flight altitude, 75% frontal
overlap, 80% side overlap, 5 m/s flight speed (Maes, 2025). The same flight mission
planning was used for the multispectral and thermal drones. After drone imagery pre-
processing (section 2.3), the resulting orthomosaic raster files had a spatial resolution of
~1.3 cm for the multispectral imagery and 3.8 cm for the thermal imagery.

To have in situ reference information, we sampled reference points (i.e.,
waterlogged and dry grassland locations) in the field using a Garmin GPSMAP 65s with
1.5 m accuracy, during field campaigns. These reference points were used to train and
validate a supervised classification machine learning model (i.e., Random Forest (RF);
section 2.4), to classify the studied area into one of three classes: waterlogged grassland,
dry grassland, and “other”, which included all other land cover types present in the study
area (i.e., bare soil, water bodies, large trees). We sampled 60 points for waterlogged
grasslands and 60 points for dry grasslands. The points were collected in areas with
homogeneous cover, i.e., not too close to other land cover types. These selections were
made visually in the field, with an estimated distance of at least 5 m. The number of
sampled reference points represents a trade-off between sample size and feasibility:
sampling enough points to train and validate the RF model, and what is feasible during a

field campaign. For the “other” class, we created 60 polygons in QGIS using a visual
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interpretation of the true color images obtained from the multispectral drone. Such
polygon creation is possible for this class, but not for the grassland classes, since bare
soil, water bodies, and trees are easily distinguishable in the images, while a precise
differentiation between waterlogged and dry grasslands is only possible in situ. Next, we
made 5 m buffers around the sampled grassland points, resulting in 10 x 10 m square
polygons surrounding the points. All pixels within these polygons were considered to be

from the same class as the sampled point, and thus, used to train or validate the RF models.

2.3. Drone imagery pre-processing

The multispectral images were pre-processed using Agisoft Metashape. The
processing steps involved: (i) reflectance calibration using the drone’s inbuilt sun sensor;
(i) imagery alignment using high accuracy, generic preselection, reference preselection
(source), 40,000 as the key point limit, 4,000 as the tie point limit, and excluding
stationary tie points; (iii) dense point cloud building, with medium quality and moderate
filtering; (iv) Digital Elevation Model (DEM) building, using the point cloud as source
data and enabling interpolation; (v) orthomosaic building, using the DEM as surface,
“mosaic” as blending mode, and enabling hole filing. The resulting orthomosaic and
DEM were exported as raster files. The orthomosaic was composed of a five-layered
raster, each layer containing reflectance data from one of the multispectral bands: blue
(450 £ 16 nm), green (560 £ 16 nm), red (650 + 16 nm), red edge (RE; 730 £ 16 nm), and
near infrared (NIR; 860 £ 26 nm). Green and red bands were duplicated in the exported
raster, since they were derived from both the RGB and multispectral cameras, but the
ones coming from the RGB camera were excluded from further analysis to avoid
redundancy. Therefore, we used the blue band from the RGB camera and the green and

red bands from the multispectral camera.
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Thermal images were corrected and converted from JPEG to TIF files using the
“theRmalUAV” R package (Metsu et al., 2025). Such conversion is needed since the
Mavic M3T measures at-sensor temperature, while we were interested in land surface
temperature (Metsu et al., 2025). Additionally, data are stored as digital numbers, not
actual temperature values. The package requires in situ measurements of temperature and
humidity, flight height (to correct for atmospheric interference), background temperature
(estimated according to the sky condition during the flight, which can be skyclear or
overcast, respectively “TRUE” or “FALSE” in the “SKC” argument), and surface
emissivity. The latter was estimated using the package based on the Normalized
Difference Vegetation Index (NDVI) data (more details in (Metsu et al., 2025)), which
we derived from the multispectral images (Fig. 2). The package provides as output TIF
files with actual land surface temperature values in centikelvin. The values were
converted to Celsius by dividing them by 100 and subtracting 273.15. The images were
pre-processed in Agisoft Metashape, following the same steps as described above for the
multispectral imagery, with the only difference being that the result is a raster file with a
single band containing temperature information. The alignment of the thermal and
multispectral raster files was done in QGIS v3.28.12, using the “georeferencer” tool and
ground control points located in the field site. The settings used in the tool were a linear
transformation type and a cubic resampling method. All other settings were left as default.
After corrections, the output was a land surface temperature (LST) orthomosaic with

temperature values in C (Fig. 2).
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Fig. 2. Workflow for the processing of drone thermal imagery. The workflow uses the
“theRmalUAV” R package (Metsu et al., 2025), Agisoft Metashape, and a GIS software.
The output is an orthomosaic containing land surface temperature values in degrees

Celsius.

With the multispectral and LST orthomosaic images, we derived predictor
variables to train the RF model, including reflectance values from each multispectral band
(blue, green, red, RE, and NIR), LST, NDVI (Tucker, 1979), Normalized Difference
Water Index (NDWI; (McFeeters, 2013, 1996)), and texture layers derived from NDVI
and LST data. Texture refers to the standard deviation of pixels within a moving window
(e.g., (Lewis et al., 2022)), representing the local heterogeneity in vegetation (NDVI) and
temperature (LST). We used moving windows of 5x5 and 7x7 pixels, resulting in two
texture layers for each of these variables. The two distinct texture layers were used to
represent more and less local heterogeneity.
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2.4. Training and evaluating the Random Forest models

We trained RF models targeted to classify all pixels in the image as one of the
three possible classes described in section 2.2. As reference data, we used vegetation type
classes and as predictor variables, we used drone data. Since one of our goals was to
investigate the impact of spatial resolution on the classification, we artificially generated
rasters with distinct spatial resolutions ranging from 0.1 to 1.5 m. These resolutions were
made by aggregating values of pixels in the fine-resolution images (originally with 1.3
cm for the multispectral and 3.8 cm for the thermal images) to coarser scales. We included
resolutions of 0.1 m, 0.25m, 0.5m, 0.75m, 1 m, 1.25m, and 1.5 m.

Since finer spatial resolutions imply a higher number of available pixels for
training the models, we under-sampled the training instances for finer spatial resolutions
than 1.5 m, according to the number available for that coarsest resolution: 1620 for
waterlogged and dry grasslands, and 419 for the “other” class. This selection guarantees
that differences in the model’s performance are due to differences in spatial resolution,
not availability of training instances. Finally, since spatial autocorrelation can affect
accuracy assessment (Roberts et al., 2017), we split the training and validation instances
into spatial blocks, large enough so that spatial autocorrelation would have a low impact
on the accuracy assessment. This step was done separately for each class. Within each
class, 75% of the polygons were used for training and 25% for validation. This selection
was done using the “blockCV” package in R (Hastie et al., 2009). Although such an
approach might result in underestimated accuracies, it guarantees that the accuracy level
achieved was due to the classification capabilities of the trained model, and not to
validating the model with instances too close to the training instances (Roberts et al.,

2017).
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After splitting the training and validation datasets, we used the “caret” package in
R (Kuhn, 2008) to train an RF model for each spatial resolution. We employed the “train”
function and set the “method” to “rf”’, and “ntree” to 500. The “ntree” argument
determines how many decision trees will be trained and combined (i.e., bagged) to form
the final model. The remaining arguments were set as default. For each spatial resolution,
we trained an RF model with and without including the thermal data, to assess the impact
of the inclusion of this type of data on the grassland classification accuracy.

Once trained, each RF model was evaluated using the overall accuracy as the
accuracy metric (Congalton, 1991). Since the “other” class had fewer validation instances
than the grassland classes, we undersampled the number of validation instances from the
waterlogged and dry grassland classes to match the number from the “other” class. Given
that some instances might be easier to classify than others, potentially impacting the
accuracy assessment, we iteratively repeated the validation process ten times with
different random subsets and used the mean overall accuracy as the representative
accuracy for that spatial resolution. This process guarantees that the achieved accuracy
was not due to the subset of instances used.

To test for differences in the classification accuracies for distinct spatial
resolutions (research question 1), we used a Kruskal-Wallis test followed by a Dunn’s
post-hoc test (KW). We also compared the accuracies of models with the same spatial
resolution but with/without including the thermal data (research question 2). For this step,
we applied a Mann-Whitney-U test (MWU) as only two groups were compared. Finally,
using the best-performing model (i.e., best accuracy among the tested spatial resolutions
and including or excluding thermal data), we derived predictor variable importance to
identify which variables were fundamental for mapping different grassland types in the

Cerrado (research question 3). We used the Gini importance metric to estimate the
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predictor variable importance (Hastie et al., 2009). We also used this model to generate a
marginal effect plot for LST, to understand how distinct temperature levels influenced
the classification decision made by the RF models.

Finally, the process was repeated for data sampled during the rainy season, to

check for seasonal differences in the results.

2.5. Classification post-processing

To improve classification accuracy, two extra post-processing steps were taken.
First, we used spatial interpolation to remove single pixels or isolated small patches of
one grassland type surrounded by the other. Based on in situ knowledge, we knew that it
was highly unlikely that small patches (i.e., < 5 m?) of waterlogged grasslands occur in
the middle of a dry grassland and vice versa. Therefore, these small patches were
identified and their class was replaced by the grassland type surrounding them. Hereafter,
we refer to this process as “patch size thresholding”. Second, waterlogged grasslands
were also predicted in high-elevation locations on the landscape, often close to trees.
Waterlogged grasslands in these locations, far from the water table, were unlikely to
occur. Moreover, high-elevation pixels with nearby trees classified as waterlogged
grassland might represent an artefact of the model, which was classifying dry grasslands
in shaded spots as waterlogged grasslands. To tackle this issue, we used the DEM derived
from the drone imagery to set a threshold beyond which it was unlikely that waterlogged
grasslands occurred. This step was done by extracting the elevation values from the DEM
for all pixels classified as waterlogged grasslands and using the 95" percentile to identify
outliers (see Figure S1 in Supporting Information). These were converted to dry
grasslands. The same process was performed for dry grasslands occurring in low

elevations (i.e., close to the water table), using the 5" percentile. Although using the 95™
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and 5™ percentiles was an arbitrary decision, these are common cutoff values for outlier
removal in environmental sciences. Moreover, the thresholds made sense based on the
field-sampled reference data: all reference points above the 95™ percentile were indeed
dry grasslands (and the other way around for waterlogged grasslands). These two post-
processing steps were not performed for the “other” class.

This post-processing resulted in what we called a “two-stage classification”: in
the first stage, the trained model predicted grassland types based on the provided drone
data and in the second stage, we used ancillary data on elevation and a patch size

thresholding to post-process the classification map as described above.

3. RESULTS
3.1. The impact of spatial resolution and thermal data on mapping accuracy

The best classification accuracies were achieved with intermediate spatial
resolutions (between 0.75 and 1.25 m), both in the transition and wet seasons (Fig. 3a-b).
No significant (KW: chi-squared = 66.2, p < 0.05, df = 6 for the transition season; chi-
squared = 63.3, p < 0.05, df = 6 for the wet season) differences in overall accuracy were
found among these three spatial resolutions, although 1.0 m had a slightly better average
accuracy: 86.0% in the transition season and 90.2% in the wet season. These comparisons
were made among the accuracies obtained using the thermal data. The same comparisons,
but among the models without thermal data, can be found in Supporting Figure S2.

For all spatial resolutions tested, inclusion of the thermal data while training the
RF model significantly improved (MWU: U =0, p <0.05, for all comparisons) the overall
accuracy. In the transition season, the largest improvement was at a 0.75 m scale, with
the overall accuracy increasing from 76.0% to 83.4%. The average improvement in this

season, considering all spatial resolutions tested, was 4.2 percentage points. In the wet
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season, the largest improvement was at a 1.0 m scale, increasing from 81.2% to 90.2%.

The average improvement was 7.3 percentage points.
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Fig. 3. Overall accuracy of the classification with distinct spatial resolutions and
classification scenarios. Comparisons using thermal data () or not (N) for the transition
(@) and wet season (b) using the initial classification stage. Comparisons between the
initial and two-stage classification in the transition (c) and wet season (d). The accuracy
assessment was iteratively performed 10 times with a random subsample of the validation
dataset (see section 2.3). The average value of the iterations is presented, with their
respective error bars (£ one standard deviation). The accuracy of each iteration is
presented as gray points. Distinct letters represent significant differences in accuracy for
distinct spatial resolutions (KW). Within resolution comparisons (i.e., differences
between inclusion vs exclusion of thermal data, or between the initial vs two-stage
classification, for a given resolution) are not shown in the plot, although in all cases the

differences were significant (MWU).

15



329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

3.2. Two-stage classification and variable importance

The additional post-processing steps (i.e., two-stage classification) significantly
improved the overall accuracy of grassland classification across all spatial resolutions
tested (MWU: U =0, p <0.05, for all comparisons). The patterns observed were the same
as with initial classifications: increasing accuracy as spatial resolution decreased, up to
1.0 m, beyond which accuracy declined. Although the model trained with 1.0 m resolution
presented a slightly better overall accuracy (91.2% in the transition and 94.0% in the wet
season), no significant differences were found among the 0.75, 1.0, and 1.25 m scales,
both in the transition and wet season (Fig. 3c-d). On average, in the transition season, the
two-stage classification performed 7.7 percentage points better than the initial one. In the
wet season, the average improvement was 4.6 percentage points. In the wet season, the
difference in mapped wetland area between the initial and two-stage classification was of
0.79 ha (i.e., 26.19 and 25.4 ha, respectively; see classification maps for the wet season
in Figure S3 in the Supporting Information).

Next, we tested differences in predictor variable importance. In the transition
season, the most important variable to classify grassland types was NDVI, while in the
wet season, LST was the most important (Fig. 4a-b). For both seasons, the likelihood of
a pixel being classified as waterlogged grassland increased at low temperatures (~36 °C
in the transition season and 34 °C in the wet season), while increasing temperatures (~39
°C in both seasons) were related to a greater likelihood of dry grassland classification

(Figs. 4c-d, S4 Supporting Information).
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Fig. 4. Variable importance and marginal effect plots. Importance of the five most
important predictor variables for the model trained in the transition (a) and wet (b)
seasons, measured as the mean decrease in Gini impurity standardized to vary from 0 to
100. Marginal effect plots showing the probability of pixels being classified as either a
waterlogged or dry grassland according solely to the LST data. Plots derived from the
transition (c) and wet (d) season Random Forest models. Marginal effect plots for NDVI

are shown in Figure S5 in Supporting Information.

4. DISCUSSION

Here, our multi-step workflow provided a significant advance in mapping
accuracy of Cerrado wetlands. We accomplished these goals through determining the
optimal spatial resolution and inclusion of thermal and topography data, as well as patch
size thresholding. Our methods are robust and repeatable and the code is free and
accessible. For endangered Cerrado wetlands, knowing where they occur is the first step
toward protecting them. In the following sections, we highlight our main findings and the

importance of application of these results.
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4.1 Key factors affecting grassland classification

The spatial resolution of drone imagery used to classify the study site into either
waterlogged or dry grassland had a significant impact on mapping accuracy. Changes in
overall accuracy showed a clear pattern: a gradual increase in accuracy from fine to coarse
resolutions, up to 1.0 m, after which accuracy declined. Studies in agricultural fields and
forests found similar results, with specific resolutions providing optimal results (Liu et
al., 2020; Meddens et al., 2011). Here, we found that the optimal spatial resolution for
mapping Cerrado wetlands was between 0.75 and 1.25 m, with no significant differences
in performance among these resolutions, although 1.0 m showed a slightly better overall
accuracy. This result is probably because 1.0 m is closer to the grain size of the object
being classified, i.e., a plant community (Jensen, 2007). Resolutions that are too fine (e.qg.,
10 and 25 cm) add confusion to the trained algorithm, compromising an accurate
classification, while too coarse resolutions (e.g., 1.5 m) do not provide the necessary level
of detail for accurately mapping the different grassland types (Meddens et al., 2011;
Woodcock and Strahler, 1987).

Another factor that significantly affected mapping accuracy was the inclusion of
thermal data for training the RF algorithm. For all spatial resolutions tested, inclusion of
thermal data significantly improved overall accuracy, providing answers about the utility
of thermal data as a complement to multispectral. On average, the models that included
thermal data performed 4.2 percentage points better in the transition season and 7.3
percentage points better in the wet season. Achieving higher accuracies when using
thermal data highlights the importance of using LST information to better distinguish
waterlogged from dry grasslands in multi-time point Cerrado land cover mapping. While

LST in dry grasslands is highly variable throughout the year, the high soil water
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availability in permanently and seasonally waterlogged grasslands results in higher
evapotranspiration rates, leading to increased evaporative and transpiration cooling and
lower temperatures locally (Fleischmann et al., 2023; Rodrigues et al., 2014; Wu et al.,
2021). LST is also lower in waterlogged soils, even during warmer seasons, since the
higher heat capacity of these soils makes them warm up slower than their dry counterparts
(Gan et al., 2012; Hillel, 2003).

Lastly, by using data on landscape topography and applying a patch size threshold
to the classification maps generated (i.e., two-stage classification), we significantly
improved mapping accuracy. In both seasons, the two-stage classification performed
significantly better than the initial one: on average, 7.7 percentage points in the transition
and 4.6 in the wet season. Although a 4.6 percentage point improvement might not sound
substantial, it is important to remember that the overall accuracy went from 81.2% (initial
classification without thermal data) to 94.0% (using thermal data and the two-stage
classification) in the wet season.

Besides the high accuracy obtained, we improved wetland extent estimation for
the study area. While current state-of-the-art land cover maps showed a 5.6 ha wetland
area overlapping with our study site (MapBiomas, 2024a), our maps for the wet season,
i.e., when wetlands reach their largest extent, showed an area of 25.4 ha, a 4.5x increase
(see Figure S6 in Supporting Information). This large mismatch is most probably due to

methodological decisions, as we will discuss further below (section 4.3).

4.2 Temperature and vegetation greenness are important predictors for grassland
classification
Among the predictor variables used, LST and NDV1 appeared among the top five

most important both in the transition (5" and 1%, respectively) and wet (1% and 5™,
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respectively) seasons. Including thermal data for RF model training was especially
important in the wet season (see above, section 4.1). In the transition season, since some
rainfall had already fallen in the ecosystems, grassy vegetation in parts of the dry
grasslands were starting to green up. This partial transition resulted in considerable
variation in vegetation greenness within dry grasslands in this season. Meanwhile, in the
wet season, when soil water is widely available for both grassland types, vegetation in
both should be green, making it harder to distinguish solely based on greenness. This
variation in greenness due to distinct rainfall availability in each season helps explain
why NDVI shifted from the most important variable in the transition season to the 5" in
the wet season. This pattern was also observed in the marginal effect plots of NDVI: while
the transition season plot had larger probability differences for low and high NDVI
values, the wet season plot had similar probabilities across the range of NDVI values.
These results align with findings by Nemani and Running (Nemani and Running,
1997), who mapped land cover types in North America using satellite data and found
similar NDVI values between irrigated crops and broadleaf forests, while their
temperature profiles differed. Moreover, these results strengthen our argument regarding
the importance of using thermal data for differentiating vegetation types, mainly in the
wet season, aligning with studies conducted in other regions with spaceborne remote

sensing data (Eisavi et al., 2015; Sun and Schulz, 2015).

4.3 An urgent need to better protect Cerrado wetlands

The Cerrado is a cornerstone of South American hydrology, harboring the
headwaters of approximately two-thirds of Brazil’s major watersheds (Durigan et al.,
2022; Lima and Silva, 2007). Cerrado wetlands, including permanently and seasonally

waterlogged grasslands, buffer excess rainfall and slowly release water throughout the
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year, sustaining perennial rivers and securing water provision far beyond the biome’s
boundaries (Bassani et al., 2025; Durigan et al., 2022).

Legally, springs and concentrated seeps receive formal protection, but equivalent
safeguards were not historically applied to diffuse seep-formed wetlands such as
waterlogged grasslands occurring in interfluves (Bassani et al., 2025). Recent legal
interpretation argues that Brazil’s existing environmental framework already enables the
recognition of non-floodplain wetlands as seep-formed ecosystems, supporting stronger
protection for waterlogged grasslands (Bassani et al., 2025). Despite this, current
national-scale land cover maps detect only permanently flooded wetlands in the Cerrado,
due to the use of dry-season data for their classifications (MapBiomas, 2024b, 2024a).
This dry-season focus leads to a systematic underestimation of wetland extent. Although
such an underestimation is understandable due to methodological decisions, we stress
here the importance of both estimating wetland area extent in different seasons and
targeting mapping of seep-formed wetlands, which account for the majority of Cerrado
wetlands (Bassani et al., 2025). Both are important steps for a more accurate carbon
accounting and precise estimates of water-related ecosystem services provision by
Cerrado landscapes.

Given accelerating agricultural expansion in the Cerrado (Ribeiro et al., 2011),
accurately mapping Cerrado waterlogged grasslands across seasons is essential to enforce
legal protection, and therefore, preserve downstream ecosystem services. Our findings,
by showing improved accuracies with spatial resolutions close to 1 m and thermal data
fusion across space and time, helped address this need by advancing wetland detectability

at ecologically relevant scales.

4.4 Conclusions
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In this study, we found that both the spatial scale and use of thermal data had a
significant impact on accuracy of Cerrado grassland mapping. By comparing our drone-
based wetland maps with state-of-the-art satellite-derived land cover maps for Brazil, we
identified a wetland extent more than four times larger in our study area than previously
reported, illustrating how the occurrence of these ecosystems is often underestimated.
With these findings, we advocate for an increased focus on a more accurate mapping of
Cerrado wetlands (and seasonal wetlands more broadly). These ecosystems have patchy
vegetation types that are challenging to map yet represent major carbon and water stores,
serving as the headwaters of Brazil’s most important rivers. From a management
perspective, accurately mapping waterlogged grasslands and their boundaries with dry
grasslands provides essential information for the delineation of areas to be legally
protected and managed (e.g., for biodiversity, carbon storage or fire). For example, given
the seasonal nature of many of the Cerrado wetlands, fire is a natural and necessary
process in these ecosystems; this is a very different situation to other Brazilian permanent
wetlands, e.g., the Amazon or Pantanal, although with climate change even these systems
are at increasing risk of droughts and fire. Importantly, optimal fire regimes differ among
ecosystems and even grassland types. By accurately mapping these different grassland
types across seasons, we can identify where seasonal wetlands occur. The delineation of
seasonal wetlands is important since they behave differently from ever-wet or ever-dry
grasslands, e.g., in terms of gas emissions and plant productivity in different seasons
(Verona et al., 2026). With greater knowledge of how they function and how large they
are, we can more accurately estimate their shifting contributions to water and carbon
dynamics across seasons. Ultimately, our workflow and findings provide novel tools for

a more accurate future upscaling of Cerrado wetland mapping, e.g., to state, biome, and

22



492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

even country levels, enabling improved assessment of their role in carbon storage and

fluxes.
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640  Figure S1. Elevation where distinct grassland types occur and identification of
641  outliers. The 5" and 95" percentiles (dashed lines) were used, respectively, to identify
642  lower outliers for dry grasslands and upper outliers for waterlogged grasslands (“w.
643  grassland” in the legend). The plots represent the outlier identification in the transition

644  (a) and wet (b) season.
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Figure S2. Overall accuracy of the classification with distinct spatial resolutions and
for different classification scenarios. Comparisons using thermal data (Y) or not (N) for
the transition (a) and wet season (b) using the initial classification stage. The accuracy
assessment was iteratively performed 10 times with a random subsample of the validation
dataset (see section 2.3 in the main text). The average value of the iterations is presented,
with their respective error bars (+ one standard deviation). The accuracy of each iteration
IS presented as gray points. Distinct letters represent significant differences in accuracy
for distinct spatial resolutions, comparing the models trained without thermal data,
according to a Kruskal-Wallis followed by a Dunn’s test. Comparisons for the model with

thermal data are presented in the main text (Fig. 3).
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the wet season (b). Note that the y-axes show a different range of values, since using the
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