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ABSTRACT 15 

Wetlands in the Brazilian Cerrado play key roles in regional carbon and water cycles but 16 

remain poorly mapped due to their patchy distribution and seasonal variability. Therefore, 17 

knowing where and when they occur is urgently needed. To address this gap, we 18 

evaluated how spatial resolution and inclusion of thermal (on top of traditional 19 

multispectral) data affected wetland vs. dry grassland mapping accuracy using 20 

Unoccupied Aerial Vehicle (UAV) imagery. Additionally, we investigated variable 21 

importance and how including topography and vegetation patch size as post-processing 22 

constraints improved accuracy. We used multispectral and thermal data with resolutions 23 

ranging from 0.10 to 1.50 m to train and validate Random Forest models across two 24 

seasons. Mapping accuracy increased with pixel size up to 1.0 m, declining at coarser 25 

mailto:paulo.nbernardino@gmail.com


2 
 

resolutions. Incorporating land surface temperature (LST) significantly improved 26 

classification, increasing accuracy by 4.2 to 7.3 percentage points depending on the 27 

season. Grassland type classification was primarily driven by the Normalized Difference 28 

Vegetation Index (NDVI) and LST, with the latter being especially discriminant in the 29 

wet season. Accuracy was further improved by incorporating ancillary data, reaching up 30 

to 94% in the wet season. When compared with state-of-the-art land cover maps for 31 

Brazil, our drone-based results reveal a wetland extent more than four times larger in the 32 

study area than previously reported, underscoring the widespread underestimation of 33 

these ecosystems. These findings highlight the value of combining UAV-based 34 

multispectral and thermal data for identifying and monitoring Cerrado wetlands, 35 

providing essential information to guide conservation efforts in this threatened 36 

ecosystem. 37 

 38 
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1. INTRODUCTION 41 

The Brazilian Cerrado is a global biodiversity hotspot, home to approximately 42 

4,400 endemic plants and 117 endemic vertebrate species (Myers et al., 2000), and 43 

estimated to store 2 Tg C/ha/year (Sawyer, 2009). Cerrado wetlands, in particular, 44 

regulate hydrological flows by storing rainfall and sustaining perennial rivers (Bassani et 45 

al., 2025; Durigan et al., 2022), and in some regions, these wetlands can store ~ 1,500 Mg 46 

C/ha (Verona et al., 2026). Despite their ecological importance, large-scale agricultural 47 

expansion threatens carbon stocks and water provision across wetlands in the Cerrado 48 

(Ribeiro et al., 2011). Moreover, these wetlands remain poorly characterized, and their 49 

extent is likely underestimated due to mapping limitations. Wetlands in the Brazilian 50 

Cerrado occur as scattered patches across a heterogeneous landscape, often only m to a 51 

few km in extent and bordering savannas, dry grasslands (which are never waterlogged), 52 

and riparian forests. This fine-scale spatial variability makes them particularly difficult to 53 

map using widely available satellite products. Errors of only tens of m can translate into 54 

substantial under- or over-estimation of wetland extent. Moreover, current national land 55 

cover products (MapBiomas, 2024a) often miss seasonal expansions, since for mapping 56 

the Cerrado region, they rely on imagery from periods when wetlands are contracted (i.e., 57 

the dry season; MapBiomas, 2024b). As such, these products primarily represent 58 

permanently flooded systems, leading to a substantial underestimation of Cerrado 59 

wetland extent. As a result, we still lack accurate, spatially explicit knowledge of where 60 

Cerrado wetlands occur and how they vary through time, representing a major obstacle 61 

for quantification of their contributions to water and carbon cycles and their protection 62 

and conservation. 63 

Unoccupied Aerial Vehicles (UAVs), or drones, offer an alternative for capturing 64 

the fine spatial and temporal patterns of Cerrado wetlands by providing cm to m scale 65 
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imagery across seasons. However, a fundamental challenge when using drones to map 66 

vegetation types involves finding the optimal spatial resolution for the classification goal 67 

(Liu et al., 2020; Woodcock and Strahler, 1987). Too fine resolutions can result in a 68 

higher intra- than inter-class spectral variability, leading to spectral confusion and 69 

hampering class separability (Liu et al., 2020; Meddens et al., 2011). Therefore, a better 70 

understanding of the relationship between spatial scale and mapping accuracy in Cerrado 71 

wetlands is needed not only to determine the strengths and limitations of using drone 72 

imagery for monitoring wetlands (Steenvoorden and Limpens, 2023) but also to explore 73 

potential ways to improve satellite-based large-scale mapping of these important and 74 

understudied vegetation types.  75 

Further, vegetation similarity between dry and waterlogged grasslands can hamper 76 

classification using only RGB or multispectral data. Although subtle differences exist, 77 

they might be easier (or only) captured through the use of hyperspectral data (Adam et 78 

al., 2010; Jarocińska et al., 2023). An alternative to costly hyperspectral sensors could be 79 

using other system characteristics that differentiate these vegetation types, such as surface 80 

temperature differences. Wetlands often exhibit distinct thermal regimes compared to 81 

adjacent land cover types (Hemes et al., 2018; Muro et al., 2018), largely due to 82 

differences in soil moisture and evapotranspiration (Hemes et al., 2018; Oke, 1987; Wu 83 

et al., 2021). Such thermal contrasts, detectable by drone-mounted thermal sensors, may 84 

therefore enhance discrimination between vegetation types and improve mapping 85 

accuracy. 86 

 Here, we explore how spatial resolution, thermal remotely-sensed data, and 87 

ancillary environmental data influence the accuracy of UAV-based mapping of Cerrado 88 

wetlands. Additionally, we assessed how different predictor variables affect wetland 89 

classification in distinct seasons. We hypothesize that mapping accuracy will be highest 90 
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when spatial resolution matches the scale of the classification target (i.e., plant 91 

communities), therefore, in the scale of m, and not cm or tens of m. We further 92 

hypothesize that adding thermal data will facilitate discrimination between wet and dry 93 

grasslands, improving mapping accuracy. Finally, we hypothesize that using ancillary 94 

data on topography and vegetation community patch sizes will further improve 95 

classification accuracy. Specifically, we address four questions: (1) What is the optimal 96 

spatial resolution for mapping Cerrado wetlands using UAV data? (2) How does the 97 

inclusion of thermal data affect mapping accuracy? (3) Which variables contribute most 98 

to classification performance? (4) Does incorporating ancillary environmental data, such 99 

as terrain topography, further improve wetland mapping? 100 

 101 

2. METHODS 102 

2.1. Study site 103 

 Our study site was located in the Cerrado in Chapada dos Veadeiros National Park 104 

(CVNP), Goiás, Brazil (Fig. 1). There is a mosaic of different vegetation types in the park, 105 

ranging from open ecosystems dominated by grasslands to closed ecosystems, including 106 

woody savannas and riparian forests (Lewis et al., 2022; Ribeiro and Walter, 2008). For 107 

this study, we selected a ~0.5 km² gradient from ever-wet peatland (continuously 108 

waterlogged grassland) to seasonal wetland (seasonally waterlogged) to dry grassland 109 

(never waterlogged). 110 
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 111 

Fig. 1. Map of the study site. The Chapada dos Veadeiros National Park (CVNP) 112 

borders are shown in gray with a true-color satellite image (Google Earth, 2018) in the 113 

background. The study site location is represented as an orange triangle. The top left inset 114 

map shows the location of CVNP in Brazil, as a green dot, and the Cerrado region in pink. 115 

The bottom right inset map shows a true-color drone image from the study site in the 116 

transition season (December 2024).  117 

 118 

The mean annual precipitation in the park is ~1,365 mm/year, with a marked dry 119 

season between June and August and a wet season between December and February 120 

(Funk et al., 2015). We carried out two field campaigns including, (1) the transition from 121 

the dry to wet season (December 2024) and (2) the peak of the wet season (February 122 

2025). This sampling allows us to test for potential seasonal differences.  123 

 124 

2.2. Drone flights and reference data 125 

 To map the extent of the wetlands, we flew a DJI Mavic 3 Multispectral and a DJI 126 

Mavic 3 Thermal drone over the study site during each field campaign. The flights were 127 
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performed between 10:00 am and 2:00 pm to avoid tree shading as much as possible 128 

(Maes, 2025). Flights were planned using QGIS version 3.28.12 to create a polygon 129 

covering the full study area, which was then exported and loaded to the drones’ remote 130 

controllers. The flight area was approximately 0.45 km² in the transition season, and we 131 

expanded it to 0.54 km² in the peak of the wet season to guarantee that the flight area 132 

would cover the border between the waterlogged and dry grassland. Based on the polygon 133 

generated in QGIS, the flight mission was planned on DJI’s remote controller app using 134 

the following settings: single grid, nadir orientation, 100 m flight altitude, 75% frontal 135 

overlap, 80% side overlap, 5 m/s flight speed (Maes, 2025). The same flight mission 136 

planning was used for the multispectral and thermal drones. After drone imagery pre-137 

processing (section 2.3), the resulting orthomosaic raster files had a spatial resolution of 138 

~1.3 cm for the multispectral imagery and 3.8 cm for the thermal imagery.   139 

 To have in situ reference information, we sampled reference points (i.e., 140 

waterlogged and dry grassland locations) in the field using a Garmin GPSMAP 65s with 141 

1.5 m accuracy, during field campaigns. These reference points were used to train and 142 

validate a supervised classification machine learning model (i.e., Random Forest (RF); 143 

section 2.4), to classify the studied area into one of three classes: waterlogged grassland, 144 

dry grassland, and “other”, which included all other land cover types present in the study 145 

area (i.e., bare soil, water bodies, large trees). We sampled 60 points for waterlogged 146 

grasslands and 60 points for dry grasslands. The points were collected in areas with 147 

homogeneous cover, i.e., not too close to other land cover types. These selections were 148 

made visually in the field, with an estimated distance of at least 5 m. The number of 149 

sampled reference points represents a trade-off between sample size and feasibility: 150 

sampling enough points to train and validate the RF model, and what is feasible during a 151 

field campaign. For the “other” class, we created 60 polygons in QGIS using a visual 152 
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interpretation of the true color images obtained from the multispectral drone. Such 153 

polygon creation is possible for this class, but not for the grassland classes, since bare 154 

soil, water bodies, and trees are easily distinguishable in the images, while a precise 155 

differentiation between waterlogged and dry grasslands is only possible in situ. Next, we 156 

made 5 m buffers around the sampled grassland points, resulting in 10 x 10 m square 157 

polygons surrounding the points. All pixels within these polygons were considered to be 158 

from the same class as the sampled point, and thus, used to train or validate the RF models. 159 

 160 

2.3. Drone imagery pre-processing 161 

The multispectral images were pre-processed using Agisoft Metashape. The 162 

processing steps involved: (i) reflectance calibration using the drone’s inbuilt sun sensor; 163 

(ii) imagery alignment using high accuracy, generic preselection, reference preselection 164 

(source), 40,000 as the key point limit, 4,000 as the tie point limit, and excluding 165 

stationary tie points; (iii) dense point cloud building, with medium quality and moderate 166 

filtering; (iv) Digital Elevation Model (DEM) building, using the point cloud as source 167 

data and enabling interpolation; (v) orthomosaic building, using the DEM as surface, 168 

“mosaic” as blending mode, and enabling hole filing. The resulting orthomosaic and 169 

DEM were exported as raster files. The orthomosaic was composed of a five-layered 170 

raster, each layer containing reflectance data from one of the multispectral bands: blue 171 

(450 ± 16 nm), green (560 ± 16 nm), red (650 ± 16 nm), red edge (RE; 730 ± 16 nm), and 172 

near infrared (NIR; 860 ± 26 nm). Green and red bands were duplicated in the exported 173 

raster, since they were derived from both the RGB and multispectral cameras, but the 174 

ones coming from the RGB camera were excluded from further analysis to avoid 175 

redundancy. Therefore, we used the blue band from the RGB camera and the green and 176 

red bands from the multispectral camera. 177 
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Thermal images were corrected and converted from JPEG to TIF files using the 178 

“theRmalUAV” R package (Metsu et al., 2025). Such conversion is needed since the 179 

Mavic M3T measures at-sensor temperature, while we were interested in land surface 180 

temperature (Metsu et al., 2025). Additionally, data are stored as digital numbers, not 181 

actual temperature values. The package requires in situ measurements of temperature and 182 

humidity, flight height (to correct for atmospheric interference), background temperature 183 

(estimated according to the sky condition during the flight, which can be skyclear or 184 

overcast, respectively “TRUE” or “FALSE” in the “SKC” argument), and surface 185 

emissivity. The latter was estimated using the package based on the Normalized 186 

Difference Vegetation Index (NDVI) data (more details in (Metsu et al., 2025)), which 187 

we derived from the multispectral images (Fig. 2). The package provides as output TIF 188 

files with actual land surface temperature values in centikelvin. The values were 189 

converted to Celsius by dividing them by 100 and subtracting 273.15. The images were 190 

pre-processed in Agisoft Metashape, following the same steps as described above for the 191 

multispectral imagery, with the only difference being that the result is a raster file with a 192 

single band containing temperature information. The alignment of the thermal and 193 

multispectral raster files was done in QGIS v3.28.12, using the “georeferencer” tool and 194 

ground control points located in the field site. The settings used in the tool were a linear 195 

transformation type and a cubic resampling method. All other settings were left as default. 196 

After corrections, the output was a land surface temperature (LST) orthomosaic with 197 

temperature values in C (Fig. 2). 198 
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 199 

Fig. 2. Workflow for the processing of drone thermal imagery. The workflow uses the 200 

“theRmalUAV” R package (Metsu et al., 2025), Agisoft Metashape, and a GIS software. 201 

The output is an orthomosaic containing land surface temperature values in degrees 202 

Celsius. 203 

 204 

 With the multispectral and LST orthomosaic images, we derived predictor 205 

variables to train the RF model, including reflectance values from each multispectral band 206 

(blue, green, red, RE, and NIR), LST, NDVI (Tucker, 1979), Normalized Difference 207 

Water Index (NDWI; (McFeeters, 2013, 1996)), and texture layers derived from NDVI 208 

and LST data. Texture refers to the standard deviation of pixels within a moving window 209 

(e.g., (Lewis et al., 2022)), representing the local heterogeneity in vegetation (NDVI) and 210 

temperature (LST). We used moving windows of 5x5 and 7x7 pixels, resulting in two 211 

texture layers for each of these variables. The two distinct texture layers were used to 212 

represent more and less local heterogeneity.  213 
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 214 

2.4. Training and evaluating the Random Forest models 215 

 We trained RF models targeted to classify all pixels in the image as one of the 216 

three possible classes described in section 2.2. As reference data, we used vegetation type 217 

classes and as predictor variables, we used drone data. Since one of our goals was to 218 

investigate the impact of spatial resolution on the classification, we artificially generated 219 

rasters with distinct spatial resolutions ranging from 0.1 to 1.5 m. These resolutions were 220 

made by aggregating values of pixels in the fine-resolution images (originally with 1.3 221 

cm for the multispectral and 3.8 cm for the thermal images) to coarser scales. We included 222 

resolutions of 0.1 m, 0.25 m, 0.5 m, 0.75 m, 1 m, 1.25 m, and 1.5 m.  223 

 Since finer spatial resolutions imply a higher number of available pixels for 224 

training the models, we under-sampled the training instances for finer spatial resolutions 225 

than 1.5 m, according to the number available for that coarsest resolution: 1620 for 226 

waterlogged and dry grasslands, and 419 for the “other” class. This selection guarantees 227 

that differences in the model’s performance are due to differences in spatial resolution, 228 

not availability of training instances. Finally, since spatial autocorrelation can affect 229 

accuracy assessment (Roberts et al., 2017), we split the training and validation instances 230 

into spatial blocks, large enough so that spatial autocorrelation would have a low impact 231 

on the accuracy assessment. This step was done separately for each class. Within each 232 

class, 75% of the polygons were used for training and 25% for validation. This selection 233 

was done using the “blockCV” package in R (Hastie et al., 2009). Although such an 234 

approach might result in underestimated accuracies, it guarantees that the accuracy level 235 

achieved was due to the classification capabilities of the trained model, and not to 236 

validating the model with instances too close to the training instances (Roberts et al., 237 

2017). 238 
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 After splitting the training and validation datasets, we used the “caret” package in 239 

R (Kuhn, 2008) to train an RF model for each spatial resolution. We employed the “train” 240 

function and set the “method” to “rf”, and “ntree” to 500. The “ntree” argument 241 

determines how many decision trees will be trained and combined (i.e., bagged) to form 242 

the final model. The remaining arguments were set as default. For each spatial resolution, 243 

we trained an RF model with and without including the thermal data, to assess the impact 244 

of the inclusion of this type of data on the grassland classification accuracy. 245 

 Once trained, each RF model was evaluated using the overall accuracy as the 246 

accuracy metric (Congalton, 1991). Since the “other” class had fewer validation instances 247 

than the grassland classes, we undersampled the number of validation instances from the 248 

waterlogged and dry grassland classes to match the number from the “other” class. Given 249 

that some instances might be easier to classify than others, potentially impacting the 250 

accuracy assessment, we iteratively repeated the validation process ten times with 251 

different random subsets and used the mean overall accuracy as the representative 252 

accuracy for that spatial resolution. This process guarantees that the achieved accuracy 253 

was not due to the subset of instances used.  254 

To test for differences in the classification accuracies for distinct spatial 255 

resolutions (research question 1), we used a Kruskal-Wallis test followed by a Dunn’s 256 

post-hoc test (KW). We also compared the accuracies of models with the same spatial 257 

resolution but with/without including the thermal data (research question 2). For this step, 258 

we applied a Mann-Whitney-U test (MWU) as only two groups were compared. Finally, 259 

using the best-performing model (i.e., best accuracy among the tested spatial resolutions 260 

and including or excluding thermal data), we derived predictor variable importance to 261 

identify which variables were fundamental for mapping different grassland types in the 262 

Cerrado (research question 3). We used the Gini importance metric to estimate the 263 
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predictor variable importance (Hastie et al., 2009). We also used this model to generate a 264 

marginal effect plot for LST, to understand how distinct temperature levels influenced 265 

the classification decision made by the RF models. 266 

 Finally, the process was repeated for data sampled during the rainy season, to 267 

check for seasonal differences in the results. 268 

 269 

2.5. Classification post-processing 270 

To improve classification accuracy, two extra post-processing steps were taken. 271 

First, we used spatial interpolation to remove single pixels or isolated small patches of 272 

one grassland type surrounded by the other. Based on in situ knowledge, we knew that it 273 

was highly unlikely that small patches (i.e., < 5 m²) of waterlogged grasslands occur in 274 

the middle of a dry grassland and vice versa. Therefore, these small patches were 275 

identified and their class was replaced by the grassland type surrounding them. Hereafter, 276 

we refer to this process as “patch size thresholding”. Second, waterlogged grasslands 277 

were also predicted in high-elevation locations on the landscape, often close to trees. 278 

Waterlogged grasslands in these locations, far from the water table, were unlikely to 279 

occur. Moreover, high-elevation pixels with nearby trees classified as waterlogged 280 

grassland might represent an artefact of the model, which was classifying dry grasslands 281 

in shaded spots as waterlogged grasslands. To tackle this issue, we used the DEM derived 282 

from the drone imagery to set a threshold beyond which it was unlikely that waterlogged 283 

grasslands occurred. This step was done by extracting the elevation values from the DEM 284 

for all pixels classified as waterlogged grasslands and using the 95th percentile to identify 285 

outliers (see Figure S1 in Supporting Information). These were converted to dry 286 

grasslands. The same process was performed for dry grasslands occurring in low 287 

elevations (i.e., close to the water table), using the 5th percentile. Although using the 95th 288 
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and 5th percentiles was an arbitrary decision, these are common cutoff values for outlier 289 

removal in environmental sciences. Moreover, the thresholds made sense based on the 290 

field-sampled reference data: all reference points above the 95th percentile were indeed 291 

dry grasslands (and the other way around for waterlogged grasslands). These two post-292 

processing steps were not performed for the “other” class. 293 

This post-processing resulted in what we called a “two-stage classification”: in 294 

the first stage, the trained model predicted grassland types based on the provided drone 295 

data and in the second stage, we used ancillary data on elevation and a patch size 296 

thresholding to post-process the classification map as described above.    297 

 298 

3. RESULTS 299 

3.1. The impact of spatial resolution and thermal data on mapping accuracy 300 

 The best classification accuracies were achieved with intermediate spatial 301 

resolutions (between 0.75 and 1.25 m), both in the transition and wet seasons (Fig. 3a-b). 302 

No significant (KW: chi-squared = 66.2, p < 0.05, df = 6 for the transition season; chi-303 

squared = 63.3, p < 0.05, df = 6 for the wet season) differences in overall accuracy were 304 

found among these three spatial resolutions, although 1.0 m had a slightly better average 305 

accuracy: 86.0% in the transition season and 90.2% in the wet season. These comparisons 306 

were made among the accuracies obtained using the thermal data. The same comparisons, 307 

but among the models without thermal data, can be found in Supporting Figure S2. 308 

  For all spatial resolutions tested, inclusion of the thermal data while training the 309 

RF model significantly improved (MWU: U = 0, p < 0.05, for all comparisons) the overall 310 

accuracy. In the transition season, the largest improvement was at a 0.75 m scale, with 311 

the overall accuracy increasing from 76.0% to 83.4%. The average improvement in this 312 

season, considering all spatial resolutions tested, was 4.2 percentage points. In the wet 313 
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season, the largest improvement was at a 1.0 m scale, increasing from 81.2% to 90.2%. 314 

The average improvement was 7.3 percentage points. 315 

 316 

Fig. 3. Overall accuracy of the classification with distinct spatial resolutions and 317 

classification scenarios. Comparisons using thermal data (Y) or not (N) for the transition 318 

(a) and wet season (b) using the initial classification stage. Comparisons between the 319 

initial and two-stage classification in the transition (c) and wet season (d). The accuracy 320 

assessment was iteratively performed 10 times with a random subsample of the validation 321 

dataset (see section 2.3). The average value of the iterations is presented, with their 322 

respective error bars (± one standard deviation). The accuracy of each iteration is 323 

presented as gray points. Distinct letters represent significant differences in accuracy for 324 

distinct spatial resolutions (KW). Within resolution comparisons (i.e., differences 325 

between inclusion vs exclusion of thermal data, or between the initial vs two-stage 326 

classification, for a given resolution) are not shown in the plot, although in all cases the 327 

differences were significant (MWU).  328 
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 329 

3.2. Two-stage classification and variable importance 330 

 The additional post-processing steps (i.e., two-stage classification) significantly 331 

improved the overall accuracy of grassland classification across all spatial resolutions 332 

tested (MWU: U = 0, p < 0.05, for all comparisons). The patterns observed were the same 333 

as with initial classifications: increasing accuracy as spatial resolution decreased, up to 334 

1.0 m, beyond which accuracy declined. Although the model trained with 1.0 m resolution 335 

presented a slightly better overall accuracy (91.2% in the transition and 94.0% in the wet 336 

season), no significant differences were found among the 0.75, 1.0, and 1.25 m scales, 337 

both in the transition and wet season (Fig. 3c-d). On average, in the transition season, the 338 

two-stage classification performed 7.7 percentage points better than the initial one. In the 339 

wet season, the average improvement was 4.6 percentage points. In the wet season, the 340 

difference in mapped wetland area between the initial and two-stage classification was of 341 

0.79 ha (i.e., 26.19 and 25.4 ha, respectively; see classification maps for the wet season 342 

in Figure S3 in the Supporting Information). 343 

 Next, we tested differences in predictor variable importance. In the transition 344 

season, the most important variable to classify grassland types was NDVI, while in the 345 

wet season, LST was the most important (Fig. 4a-b). For both seasons, the likelihood of 346 

a pixel being classified as waterlogged grassland increased at low temperatures (~36 °C 347 

in the transition season and 34 °C in the wet season), while increasing temperatures (~39 348 

°C in both seasons) were related to a greater likelihood of dry grassland classification 349 

(Figs. 4c-d, S4 Supporting Information).  350 
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 351 

Fig. 4. Variable importance and marginal effect plots. Importance of the five most 352 

important predictor variables for the model trained in the transition (a) and wet (b) 353 

seasons, measured as the mean decrease in Gini impurity standardized to vary from 0 to 354 

100. Marginal effect plots showing the probability of pixels being classified as either a 355 

waterlogged or dry grassland according solely to the LST data. Plots derived from the 356 

transition (c) and wet (d) season Random Forest models. Marginal effect plots for NDVI 357 

are shown in Figure S5 in Supporting Information. 358 

 359 

4. DISCUSSION 360 

         Here, our multi-step workflow provided a significant advance in mapping 361 

accuracy of Cerrado wetlands. We accomplished these goals through determining the 362 

optimal spatial resolution and inclusion of thermal and topography data, as well as patch 363 

size thresholding. Our methods are robust and repeatable and the code is free and 364 

accessible. For endangered Cerrado wetlands, knowing where they occur is the first step 365 

toward protecting them. In the following sections, we highlight our main findings and the 366 

importance of application of these results. 367 
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  368 

4.1 Key factors affecting grassland classification 369 

         The spatial resolution of drone imagery used to classify the study site into either 370 

waterlogged or dry grassland had a significant impact on mapping accuracy. Changes in 371 

overall accuracy showed a clear pattern: a gradual increase in accuracy from fine to coarse 372 

resolutions, up to 1.0 m, after which accuracy declined. Studies in agricultural fields and 373 

forests found similar results, with specific resolutions providing optimal results (Liu et 374 

al., 2020; Meddens et al., 2011). Here, we found that the optimal spatial resolution for 375 

mapping Cerrado wetlands was between 0.75 and 1.25 m, with no significant differences 376 

in performance among these resolutions, although 1.0 m showed a slightly better overall 377 

accuracy. This result is probably because 1.0 m is closer to the grain size of the object 378 

being classified, i.e., a plant community (Jensen, 2007). Resolutions that are too fine (e.g., 379 

10 and 25 cm) add confusion to the trained algorithm, compromising an accurate 380 

classification, while too coarse resolutions (e.g., 1.5 m) do not provide the necessary level 381 

of detail for accurately mapping the different grassland types (Meddens et al., 2011; 382 

Woodcock and Strahler, 1987). 383 

         Another factor that significantly affected mapping accuracy was the inclusion of 384 

thermal data for training the RF algorithm. For all spatial resolutions tested, inclusion of 385 

thermal data significantly improved overall accuracy, providing answers about the utility 386 

of thermal data as a complement to multispectral. On average, the models that included 387 

thermal data performed 4.2 percentage points better in the transition season and 7.3 388 

percentage points better in the wet season. Achieving higher accuracies when using 389 

thermal data highlights the importance of using LST information to better distinguish 390 

waterlogged from dry grasslands in multi-time point Cerrado land cover mapping. While 391 

LST in dry grasslands is highly variable throughout the year, the high soil water 392 
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availability in permanently and seasonally waterlogged grasslands results in higher 393 

evapotranspiration rates, leading to increased evaporative and transpiration cooling and 394 

lower temperatures locally (Fleischmann et al., 2023; Rodrigues et al., 2014; Wu et al., 395 

2021). LST is also lower in waterlogged soils, even during warmer seasons, since the 396 

higher heat capacity of these soils makes them warm up slower than their dry counterparts 397 

(Gan et al., 2012; Hillel, 2003). 398 

Lastly, by using data on landscape topography and applying a patch size threshold 399 

to the classification maps generated (i.e., two-stage classification), we significantly 400 

improved mapping accuracy. In both seasons, the two-stage classification performed 401 

significantly better than the initial one: on average, 7.7 percentage points in the transition 402 

and 4.6 in the wet season. Although a 4.6 percentage point improvement might not sound 403 

substantial, it is important to remember that the overall accuracy went from 81.2% (initial 404 

classification without thermal data) to 94.0% (using thermal data and the two-stage 405 

classification) in the wet season.  406 

Besides the high accuracy obtained, we improved wetland extent estimation for 407 

the study area. While current state-of-the-art land cover maps showed a 5.6 ha wetland 408 

area overlapping with our study site (MapBiomas, 2024a), our maps for the wet season, 409 

i.e., when wetlands reach their largest extent, showed an area of 25.4 ha, a 4.5x increase 410 

(see Figure S6 in Supporting Information). This large mismatch is most probably due to 411 

methodological decisions, as we will discuss further below (section 4.3).  412 

  413 

4.2 Temperature and vegetation greenness are important predictors for grassland 414 

classification 415 

         Among the predictor variables used, LST and NDVI appeared among the top five 416 

most important both in the transition (5th and 1st, respectively) and wet (1st and 5th, 417 
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respectively) seasons. Including thermal data for RF model training was especially 418 

important in the wet season (see above, section 4.1). In the transition season, since some 419 

rainfall had already fallen in the ecosystems, grassy vegetation in parts of the dry 420 

grasslands were starting to green up. This partial transition resulted in considerable 421 

variation in vegetation greenness within dry grasslands in this season. Meanwhile, in the 422 

wet season, when soil water is widely available for both grassland types, vegetation in 423 

both should be green, making it harder to distinguish solely based on greenness. This 424 

variation in greenness due to distinct rainfall availability in each season helps explain 425 

why NDVI shifted from the most important variable in the transition season to the 5th in 426 

the wet season. This pattern was also observed in the marginal effect plots of NDVI: while 427 

the transition season plot had larger probability differences for low and high NDVI 428 

values, the wet season plot had similar probabilities across the range of NDVI values. 429 

These results align with findings by Nemani and Running (Nemani and Running, 430 

1997), who mapped land cover types in North America using satellite data and found 431 

similar NDVI values between irrigated crops and broadleaf forests, while their 432 

temperature profiles differed. Moreover, these results strengthen our argument regarding 433 

the importance of using thermal data for differentiating vegetation types, mainly in the 434 

wet season, aligning with studies conducted in other regions with spaceborne remote 435 

sensing data (Eisavi et al., 2015; Sun and Schulz, 2015). 436 

  437 

4.3 An urgent need to better protect Cerrado wetlands 438 

The Cerrado is a cornerstone of South American hydrology, harboring the 439 

headwaters of approximately two-thirds of Brazil’s major watersheds (Durigan et al., 440 

2022; Lima and Silva, 2007). Cerrado wetlands, including permanently and seasonally 441 

waterlogged grasslands, buffer excess rainfall and slowly release water throughout the 442 
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year, sustaining perennial rivers and securing water provision far beyond the biome’s 443 

boundaries (Bassani et al., 2025; Durigan et al., 2022).  444 

Legally, springs and concentrated seeps receive formal protection, but equivalent 445 

safeguards were not historically applied to diffuse seep-formed wetlands such as 446 

waterlogged grasslands occurring in interfluves (Bassani et al., 2025). Recent legal 447 

interpretation argues that Brazil’s existing environmental framework already enables the 448 

recognition of non-floodplain wetlands as seep-formed ecosystems, supporting stronger 449 

protection for waterlogged grasslands (Bassani et al., 2025). Despite this, current 450 

national-scale land cover maps detect only permanently flooded wetlands in the Cerrado, 451 

due to the use of dry-season data for their classifications (MapBiomas, 2024b, 2024a). 452 

This dry-season focus leads to a systematic underestimation of wetland extent. Although 453 

such an underestimation is understandable due to methodological decisions, we stress 454 

here the importance of both estimating wetland area extent in different seasons and 455 

targeting mapping of seep-formed wetlands, which account for the majority of Cerrado 456 

wetlands (Bassani et al., 2025). Both are important steps for a more accurate carbon 457 

accounting and precise estimates of water-related ecosystem services provision by 458 

Cerrado landscapes. 459 

Given accelerating agricultural expansion in the Cerrado (Ribeiro et al., 2011), 460 

accurately mapping Cerrado waterlogged grasslands across seasons is essential to enforce 461 

legal protection, and therefore, preserve downstream ecosystem services. Our findings, 462 

by showing improved accuracies with spatial resolutions close to 1 m and thermal data 463 

fusion across space and time, helped address this need by advancing wetland detectability 464 

at ecologically relevant scales. 465 

 466 

4.4 Conclusions 467 
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         In this study, we found that both the spatial scale and use of thermal data had a 468 

significant impact on accuracy of Cerrado grassland mapping. By comparing our drone-469 

based wetland maps with state-of-the-art satellite-derived land cover maps for Brazil, we 470 

identified a wetland extent more than four times larger in our study area than previously 471 

reported, illustrating how the occurrence of these ecosystems is often underestimated. 472 

With these findings, we advocate for an increased focus on a more accurate mapping of 473 

Cerrado wetlands (and seasonal wetlands more broadly). These ecosystems have patchy 474 

vegetation types that are challenging to map yet represent major carbon and water stores, 475 

serving as the headwaters of Brazil’s most important rivers. From a management 476 

perspective, accurately mapping waterlogged grasslands and their boundaries with dry 477 

grasslands provides essential information for the delineation of areas to be legally 478 

protected and managed (e.g., for biodiversity, carbon storage or fire). For example, given 479 

the seasonal nature of many of the Cerrado wetlands, fire is a natural and necessary 480 

process in these ecosystems; this is a very different situation to other Brazilian permanent 481 

wetlands, e.g., the Amazon or Pantanal, although with climate change even these systems 482 

are at increasing risk of droughts and fire. Importantly, optimal fire regimes differ among 483 

ecosystems and even grassland types. By accurately mapping these different grassland 484 

types across seasons, we can identify where seasonal wetlands occur. The delineation of 485 

seasonal wetlands is important since they behave differently from ever-wet or ever-dry 486 

grasslands, e.g., in terms of gas emissions and plant productivity in different seasons 487 

(Verona et al., 2026). With greater knowledge of how they function and how large they 488 

are, we can more accurately estimate their shifting contributions to water and carbon 489 

dynamics across seasons. Ultimately, our workflow and findings provide novel tools for 490 

a more accurate future upscaling of Cerrado wetland mapping, e.g., to state, biome, and 491 
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even country levels, enabling improved assessment of their role in carbon storage and 492 

fluxes. 493 

 494 

DATA AVAILABILITY 495 

The drone multispectral and thermal images used in this study, together with the 496 

classification of the study area in the transition and wet seasons are made available at 497 

https://doi.org/10.5281/zenodo.18304662. 498 
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SUPPORTING INFORMATION 637 

 638 

 639 

Figure S1. Elevation where distinct grassland types occur and identification of 640 

outliers. The 5th and 95th percentiles (dashed lines) were used, respectively, to identify 641 

lower outliers for dry grasslands and upper outliers for waterlogged grasslands (“w. 642 

grassland” in the legend). The plots represent the outlier identification in the transition 643 

(a) and wet (b) season.  644 
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 645 

Figure S2. Overall accuracy of the classification with distinct spatial resolutions and 646 

for different classification scenarios. Comparisons using thermal data (Y) or not (N) for 647 

the transition (a) and wet season (b) using the initial classification stage. The accuracy 648 

assessment was iteratively performed 10 times with a random subsample of the validation 649 

dataset (see section 2.3 in the main text). The average value of the iterations is presented, 650 

with their respective error bars (± one standard deviation). The accuracy of each iteration 651 

is presented as gray points. Distinct letters represent significant differences in accuracy 652 

for distinct spatial resolutions, comparing the models trained without thermal data, 653 

according to a Kruskal-Wallis followed by a Dunn’s test. Comparisons for the model with 654 

thermal data are presented in the main text (Fig. 3).   655 
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 656 

Figure S3. Classification map of the study site in the wet season. The maps were made 657 

using the initial (a) and two-stage (b) classification approaches. W. grassland: 658 

waterlogged grassland. 659 

660 
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 661 

Figure S4. Distribution of Land Surface Temperature (LST) values for the two 662 

grassland types mapped. The values are presented for the transition season (a) and for 663 

the wet season (b). Note that the y-axes show a different range of values, since using the 664 

same range would hamper the visualization of dry grasslands distribution, mainly in the 665 

wet season, when their area is very limited.   666 
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 667 

Figure S5. Marginal effect plots for the NDVI predictor variable. The plots show the 668 

probability of pixels being classified as either a waterlogged or dry grassland according 669 

solely to the NDVI data. Plots derived from the transition season (a) and wet season (b) 670 

RF models.  671 
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 672 

Figure S6. Mapped wetland extent using drone and satellite data. The rainy season 673 

wetland area mapped in this study (a), using multispectral and thermal drones, was 25.4 674 

ha. MapBiomas Collection 9 land cover map (MapBiomas, 2024a), which uses dry season 675 

satellite data at 30 m spatial resolution, mapped only 5.6 ha in the overlapping area in 676 

2022 (b). 677 


