

¹ Systematic review of triploidy among parasitic worms.

² Viktor Kovalov^{1,2,*} and Barbora Trubenova^{1,2}

³ ¹Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf,
⁴ Switzerland

⁵ ²Institute of Integrative Biology, D-USYS, ETH Zurich, Zurich, Switzerland

⁶ *Corresponding author: *viktor.kovalov@eawag.ch*

⁷ January 29, 2026

Abstract

9 Parasitic worms have significant medical, veterinary, and economic importance. Numerous studies have
10 therefore addressed various aspects of parasitic worms' biology. In contrast, the ploidy of parasitic worms
11 remains comparatively understudied, despite a few known triploid species. Polyploidy is known to have
12 phenotypic and genetic effects in animals, which can lead to changes at the evolutionary scale. The evolu-
13 tionary consequences of polyploidy have been addressed in host-parasite systems; however, most studies have
14 focused on the host perspective, with relatively few studies examining the parasitic side of the story. In this
15 review, we provide available information on the distribution of triploidy among parasitic worms, along with
16 information on such aspects as reproduction, origin of triploidy, and life history. Across 100 selected papers
17 (out of 416 screened), triploidy was reported for 15 parasitic Platyhelminthes and 13 parasitic Nematoda.
18 Most triploid species of parasitic worms (24 out of 28) were documented at the adult stage. Triploid lineages
19 reported for the adult stage reproduce predominantly via parthenogenesis. Finally, we discuss the potential
20 effects of ploidy variation for host-parasite dynamics and adaptation rates of parasitic worms. In particular,
21 we discuss how parasitic worms adapt to their hosts despite potential constraints of asexuality. As well as
22 whether triploid individuals outcompete diploid conspecifics when both ploidy levels coinfect the host, as
23 could be expected if triploids have higher virulence.

24 **Keywords:** polyploidy; Platyhelminthes; Nematoda; host-parasite interactions; evolution of ploidy

25 1 Introduction

26 Parasitic worms have a significant impact on humans, livestock, and important crop cultures. It is estimated
27 that a minimum of two billion people are infected by at least one parasitic worm, such as soil-transmitted
28 helminths (Wright et al. 2018), flukes (Fürst et al. 2012, Wright et al. 2018), or tapeworms (Eichenberger
29 et al. 2020, Scholz and Kuchta 2016). Nevertheless, the diseases they cause — helminthiasis — are severely
30 understudied and many belong to the group of neglected tropical diseases. Geographically, cases of helminthiasis
31 are not distributed evenly, as most human infections by helminths occur in low- and middle-income countries
32 (James et al. 2018, Weatherhead, Hotez, and Mejia 2017). Helminthiases are particularly prevalent among
33 children, which led to the launch of so-called Mass Drug Administration (MDA) programs that aim to provide
34 chemotherapy to school-aged children (Majid, Kang, and Hotez 2019, Weatherhead, Hotez, and Mejia 2017).
35 Helminths also impose a substantial economic burden on the livestock industry (€1.8 billion in Europe alone,
36 (Charlier et al. 2020)) and plant food production (\$80 billion worldwide, (Jones et al. 2013)). This has led to
37 the widespread use of the anthelmintic drugs, which, unfortunately, resulted in the emergence of drug resistance
38 to all classes of anthelmintics (Fissiha and Kinde 2021).

39 Given the importance of helminths and the emerging threat of drug resistance, numerous studies have
40 examined various aspects of parasitic worms' biology, including distribution, epidemiology, and host-parasite
41 interactions. However, one important aspect - worm ploidy - remains understudied. Ploidy is expected to
42 play an important role in the evolution of host-parasite interactions and drug resistance, both of which are
43 essential aspects of parasitic organisms. First, ploidy is hypothesised to affect host-parasite interaction by
44 altering the number of antigens to be detected by hosts (M'Gonigle and Otto 2011). However, this effect was
45 shown theoretically only in comparison of haploid and diploid pathogens, without any extrapolation to higher
46 levels of ploidy. Second, theoretical studies suggest that polyploidy affects the rate of adaptation, as increased
47 ploidy can lead to a higher number of beneficial mutations (Otto and Whitton 2000). Unfortunately, only a
48 limited number of experimental studies test theoretical predictions or even consider the effect of polyploidy on
49 host-parasite dynamics (King, Seppälä, and Neiman 2012), especially from the parasitic "point of view".

50 While little is known about the prevalence of polyploidy in parasitic worms — hence the reason for this
51 study — parasitic worms with higher ploidy (mostly triploid) have already been observed, coexisting with
52 their diploid conspecifics and congeners. The presence of such triploid parasitic species, usually reproducing
53 through mitotic parthenogenesis, is interesting for several reasons. First, mitotic parthenogenesis means that
54 oocytes are produced without recombination, and a new organism develops without fertilisation. Lack of
55 recombination in parasitic worms contradicts theoretical models suggesting that recombination (associated
56 with sexual reproduction) is beneficial for parasites under the strong selection they experience from their hosts
57 (Salathé et al. 2008), as hosts can develop rapidly resistance against asexual lineages. Moreover, without
58 recombination, asexual lineages are supposed to accumulate deleterious mutations and are therefore considered
59 evolutionary "dead ends". On the other hand, resistance to anthelmintics can arise from multiple loci (Doyle
60 et al. 2022), and the lack of recombination observed in several triploid parasitic worms can actually help preserve
61 multigenic traits. Thus, one may hypothesize that anthelmintic resistance spreads faster in a population through
62 asexual triploids, a hypothesis that is yet to be tested.

63 Second, triploidy can affect traits related to reproduction, physiology, and life history. For instance, compar-
64 ison between diploid and polyploid individuals of *Daphnia pulex* and brine shrimps *Artemia parthenogenetica*
65 has shown that polyploid individuals develop faster under harsher environments compared to diploid conspecifics
66 (Dufresne and Hebert 1998, Zhang and King 1993). Extrapolated to parasites, this observation suggests that
67 triploids can outcompete diploids coinfecting the same host due to higher virulence. Another comparison on
68 free-living flatworms reported triploid individuals to produce 58% more offspring in comparison to tetraploids
69 (D'souza, Storhas, and Michiels 2005). However, we still lack similar studies comparing different ploidy levels
70 in terms of reproductive output and life-history traits in the context of host-parasite systems from the parasite
71 perspective.

72 One of the first reviews mentioning polyploidy in animals was published in the context of parthenogenesis.
73 For example, Suomalainen (1950) provides a list of parthenogenetic polyploids among insects, molluscs, and
74 crustaceans. Suomalainen, Saura, and Lokki (1976) expanded the list of triploid parthenogenetic insects by

75 including other orders. In 2000, Otto and Whitton (2000) reported triploidy and tetraploidy cases across
76 insects and several vertebrate taxa. However, Otto and Whitton (2000) do not mention any groups of parasitic
77 worms. A more recent study by Román-Palacios et al. (2021) provides estimates of polyploidy incidence among
78 animals, including Platyhelminthes and Nematodes. However, because the main aim of the study was to compare
79 chromosome counts between plants and animals, the authors did not specify whether the species included in
80 the database are parasitic. Špakulová et al. (2011) have focused specifically on parasitic flatworms, reviewing
81 karyotypes of Cestoda species. According to this study, seven species of Cestoda are either exclusively triploid
82 or have triploid populations (Špakulová, Orosová, and Mackiewicz 2011). Triploidy has also been shown for
83 several species of plant-parasitic root-knot nematodes (RKN), members of the *Meloidogyne* genus (Janssen et al.
84 2017), that are known for their noticeable economic impact, infecting essential crops (Jones et al. 2013).

85 Despite the obvious importance of triploidy in the evolution of drug resistance, no studies to date have
86 investigated anthelmintic resistance in triploid parasitic worms. Thus, it is still to be investigated whether
87 triploidy affects the evolution of resistance. Moreover, it is not clear how prevalent triploidy is among parasitic
88 worms and what its physiological consequences are. Apart from the two overviews of triploidy in Cestoda and
89 the RKN, information on the prevalence of triploidy across helminths is still missing.

90 To address this gap, we conducted a systematic review searching for all published cases of triploidy in
91 parasitic worms. We aim to (1) provide data on the prevalence and distribution of triploidy, listing all reported
92 cases among parasitic worms, (2) present information when available on relevant aspects of triploid parasitic
93 worm biology, such as their origin, reproduction mode, coexistence with other ploidies, drug resistance, and
94 observed physiological differences. We believe this review will shed light on the importance of ploidy and serve
95 as a starting point for further helminth-related studies, especially those focused on drug resistance evolution or
96 host-parasite interactions.

97 2 Materials and Methods

98 A systematic literature search was carried out on March 26, 2025, with the follow-up search on March 28,
99 2025 (see details below). We searched for articles published before the search dates on the Web of Science and
100 Scopus platforms. The aim of the literature search was to find published English-language sources reporting
101 triploidy in species from two animal phyla: Platyhelminthes (flatworms) and Nematoda (roundworms). For
102 this, we used two sets of keywords. The first set covered terminology describing triploidy, such as "triploid*",
103 "autotriploid*", and "allotriploid*". The second set included scientific and common names of main taxonomic
104 groups from the two mentioned phyla (e.g., "cestod*", "trematod*", "nematod*"). See SI 1 for the complete
105 list of search terms and search strings for each platform.

106 The initial search (conducted on March 26) included keywords covering all roundworms and flatworms with
107 an emphasis on parasitic groups (such as cestodes and trematodes). The search returned 168 abstracts in Web
108 of Science and 355 abstracts in Scopus. After removing duplicates, 396 abstracts remained. The second search
109 run (conducted on March 28) included the same "triploidy" keyword set as the initial search, but only two
110 keywords covering two taxonomic groups, "monogenea*" and "turbellaria*". The rationale for this decision
111 is that the initial list of "taxonomic" keywords (which included the broad term "flatworm") did not specify
112 a separate class of parasitic worms — Monogenea. The initial list of keywords did not specify any groups of
113 free-living flatworms either. Although they are not considered a monophyletic group (Schockaert et al. 2008),
114 we still decided to use the currently deprecated term "Turbellaria", specifically to address the older literature.
115 The search resulted in 81 abstracts (21 in Web of Science, 60 in Scopus). After combining abstracts from both
116 searches and checking for duplicates, the final number of abstracts was 416.

117 During the initial abstract screening, 143 papers were included for the full-text screening. A paper was
118 marked as relevant if it was a published scientific material (an original paper, as well as a review) with an
119 explicit report on triploidy of a species from the taxonomic groups defined above. See SI 2 for more details on
120 the inclusion criteria for abstract screening and full-text reading. In total, 100 papers were marked as relevant
121 and used for data extraction. Whenever possible, we extracted the species name, reproductive system and
122 mode, origin of triploidy, other ploidy levels detected for a given species, and any potential benefits of triploidy
123 compared to diploidy. See SI 3 for the PRISMA flow diagram. When any of this information was not reported
124 for a given species in selected papers, we did an additional search. However, all the additional papers were not
125 included in the primary dataset, but were cited in the Results section.

126 3 Results

127 We identified 121 cases of triploidy reported for Platyhelminthes and Nematoda in 100 articles. All these
128 triploid cases have been reported in 52 species. Hereafter, by a triploid species we mean a species with popula-
129 tions that consist exclusively of triploid individuals or with a proportion of triploid individuals sampled at all
130 life-cycle stages (i.e., eggs, larval stages, mature individuals).

131 In the following subsections, we focus on parasitic Nematoda and three parasitic classes of Platyhelminthes
132 (Cestoda, Trematoda, and Monogenea). For each group, we provide the number of reported triploid species.
133 For each species, we provide (when available) information on the origin of triploidy, the presence of other
134 ploidy levels, and reproductive mode. Information on the phenotypic effects of triploidy includes any available
135 information for a given species on the difference between triploids and individuals of other ploidy, as well as on
136 potential drug resistance. See Table 1 for the complete list of triploid parasitic species within each taxonomic
137 group. Figure 1 provides a summary for each taxonomic group on main aspects of triploid parasitic worm
138 biology.

139 3.1 Triploidy among parasitic flatworms

140 We found 37 species of Platyhelminthes with reported triploidy, 22 of them are non-parasitic flatworms, and
141 15 species are parasitic. Parasitic triploid species belong to three classes: Cestoda (seven species), Trematoda
142 (seven species), and Monogenea (one species).

143 3.1.1 Cestoda

144 Reproduction

145 All triploid species of Cestoda origin from hermaphroditic diploid state. Parthenogenesis, as a reproductive
146 mode, was mentioned explicitly for four species out of seven. No information is available on reproductive
147 mode for the next species: *Caryophyllaeus laticeps*, *Isoglaridacris bulbocirrus*, and *Spirometra mansonioides*. An
148 additional search did not reveal any information. Apart from the parthenogenetic reproductive mode, three
149 triploid species (*A. huronensis*, *D. latus*, and *G. catostomi*) were reported to have abnormal spermatogenesis.

150 Origin of triploidy

151 Suggestions for the origin of triploidy are available for three triploid species out of seven. *A. huronensis* is
152 supposed to be of a hybrid origin (allopolyploidy) with another congeneric species, *A. tenuicollis*, as a potential
153 candidate for an ancestral role (Špakulová et al. 2019). Two other species, *D. latus* (Orosová et al. 2021) and
154 *G. catostomi* (Grey and Mackiewicz 1980, Oros et al. 2011), are assumed to have an autoploid origin. We
155 did not find any data on *C. laticeps*, *I. bulbocirrus*, *S. erinaceieuropaei*, and *S. mansonioides*.

156 Other ploidies

157 *A. huronensis* is found to have exclusively triploid populations with no diploid lines (Oros et al. 2011). *S. erinaceieuropaei* triploid individuals are present along with diploid individuals in the same populations (Okino
158 et al. 2017). Similar to *C. laticeps*, where a triploid individual was found in the same location as diploid
159 individuals (Petkeviciute and Kuperman 1992). Both diploid and triploid populations were reported for *I. bulbocirrus*. However, it is unclear whether both ploidy levels occur within the same population. *G. catostomi*
160 and *D. latus* can exist in both diploid and triploid state (see (Grey and Mackiewicz 1980) and (Radačovská,
161 Čisovská Bazsalovicová, and Králová-Hromadová 2022) respectively). However, individuals of different ploidy
162 levels do not occur within the same population.

163 Phenotypic effects of triploidy

164 *Spirometra erinaceieuropaei* is the only species of triploid Cestoda which may be drug resistant (Bennett
165 et al. 2014). The authors detected amino acids in β -tubulin genes of *S. erinaceieuropaei*, identical to those
166 that are associated with resistance to benzimidazole in another Cestoda species, *Echinococcus multilocularis*
167 (Bennett et al. 2014). At the same time, authors did not mention ploidy of the *S. erinaceieuropaei* sample, nor
168 have they experimentally tested this alleged resistance. No information was found on the difference between
169 triploid tapeworms and their diploid conspecifics.

172 **3.1.2 Trematoda**

173 **Reproduction**

174 Five species of trematodes with reported triploidy are hermaphrodites. Two species from the Schistosomatidae family (*Schistosoma mansoni* and *Schistosomatium douthitti*) are dioecious. Parthenogenesis, as a
175 reproductive mode, was mentioned for four species out of seven. There is no explicit information about the
176 reproductive mode of triploid individuals for *Ichthyocotylurus platycephalus* and *S. douthitti*. In case of *I. platy-
177 cephalus*, the original paper concluded triploidy based on chromosomal preparations of the intramolluscan stage
178 of the fluke. An additional search did not show any information about the reproductive mode. Despite this,
179 we can suggest parthenogenetic reproduction, given that this species is hermaphroditic. It is worth mentioning
180 that for *S. mansoni* triploidy was shown only for several cells at the intramolluscan stage of the parasite. No
181 studies were found reporting triploidy in adults.

182 Triploidy of *S. douthitti* was shown on miracidial and cercarial embryos with XXY (a male) and XYY (a
183 female) karyotypes. No adult triploid individuals were checked; therefore, no information is available about
184 their reproductive mode. However, females of *S. douthitti* are known to produce eggs parthenogenetically.

185 Triploid *P. westermani* reproduces parthenogenetically and has abnormal spermatogenesis. At the same
186 time, it was shown that non-reduced eggs (3n) of triploid individuals can fuse with reduced sperm (1n) from
187 diploid individuals (Terasaki et al. 1996) when both ploidy forms co-infect a definitive host. Such fusion leads
188 to the origin of tetraploid individuals, supporting the hypothesis that the tetraploid form of *P. westermani* has
189 an autopolyploid origin. This finding may indicate a possibility for triploids to reproduce sexually when there
190 are individuals with functional sperm.

192 **Origin of triploidy**

193 Limited information is available regarding the origin of triploidy among Trematoda. The most common way
194 appears to be autotriploidisation. For example, one study shows that triploid individuals of *S. douthitti* originate
195 from diploid conspecifics by fusion of a reduced sperm and an unreduced egg (Short and Menzel 1959). A similar
196 conclusion could be made for triploidy of *S. mansoni*. Triploid individuals of this species were found in a lab-
197 maintained population that was allegedly of diploid origin. This suggests a potential autotriploidisation event
198 where an unreduced gamete fused with a reduced gamete (Hirai and LoVerde 1989). In case of *Allocreadium
199 fasciatusi*, triploidy is supposed to appear as a result of the fusion of an unreduced gamete with a reduced
200 gamete within one species as well (Ramanjaneyulu and Madhavi 1984). Origin of triploidy for *P. westermani*
201 is not entirely clear (Blair 2024). It was suggested that different triploid populations of *P. westermani* might
202 have multiple origins, following autopolyploidisation events (Saijuntha et al. 2016).

203 A hybrid origin was suggested only for a triploid line referred to in the literature as *Fasciola* sp.. The genetic
204 structure of triploid *Fasciola* sp. individuals suggests that triploidisation followed two stages. First, an initial
205 crossing between *F. hepatica* and *F. gigantica* produces a hybrid diploid. Then, a hybrid diploid backcrosses
206 with either of the parental species and produces a triploid hybrid (Itagaki, Hayashi, and Ohari 2022).

207 **Other ploidies**

208 *A. fasciatusi* is the only reported species of Trematoda with exclusively triploid individuals (Ramanjaneyulu
209 and Madhavi 1984). Triploid individuals of *Fasciola hepatica* were reported from one population only, where
210 all sampled individuals possessed a triploid set of chromosomes (Fletcher et al. 2004). Other populations of
211 *Fasciola hepatica* seem to have only diploid individuals. A hybrid line of *Fasciola* sp. occurs in both triploid
212 and diploid forms, which are often present in the same populations. Moreover, both ploidy forms of *Fasciola*
213 sp. are found along with both or either parental species.

214 *Ichthyocotylurus platycephalus* shows two ploidy forms, diploid and triploid, originating from the same pop-
215 ulation. *Paragonimus westermani* is present in three ploidy forms: diploid, triploid, and tetraploid. All three
216 forms can occur sympatrically, while there are also areas where only one ploidy form is present (Kim et al.
217 2006). Both diploid and triploid individuals are shown for *S. mansoni*, which assumes that both ploidy forms
218 may coexist. However, triploidy was reported only in a population maintained in a laboratory for several gen-
219 erations. In case of *S. douthitti*, diploid and triploid forms were found among the progeny of bisexual infection
220 by diploid individuals.

221 **Phenotypic effects of triploidy**

222 Several studies have reported differences in life history traits between diploid and triploid individuals. For
223 example, triploid individuals of *P. westermani* develop faster than diploids (Blair 2024). In addition, it was
224 mentioned that triploid adult individuals, their metacercariae and eggs are larger compared to diploid individuals
225 (Blair 2022). Triploid form of *P. westermani* is also more pathogenic than diploid form (Blair et al. 1997).

226 Diploid *F. hepatica* is known to be resistant to several anthelmintics, such as triclabendazole (TCBZ),
227 albendazole (ABZ), and clorsulon (CLORS). Resistant individuals of *F. hepatica* were reported for several
228 countries from Europe and South America, as well as from Australia and New Zealand. See Fairweather et al.
229 (2020) for a review on resistance of *F. hepatica*. At the same time, triploid individuals of *F. hepatica* were
230 isolated from a population susceptible to TCBZ (Fletcher et al. 2004).

231 Resistance of *P. westermani* to TCBZ was suspected in one medical case, where two courses of treatment
232 with TCBZ did not treat a patient infected by *P. westermani* (Kyung et al. 2011). *S. mansoni* evolves resistance
233 to praziquantel in experimental conditions (Wang, Wang, and Liang 2012). Observations from the field show
234 few resistant isolates, but also several endemic populations with reduced susceptibility to praziquantel (Wang,
235 Wang, and Liang 2012). At the same time, no studies show that resistance is linked to triploidy in either of the
236 species.

237 **3.1.3 Monogenea**

238 One species of Monogenea, *Gyrodactylus salaris*, was reported to be triploid, the first triploid species in
239 this genus. *G. salaris* is a hermaphrodite reproducing parthenogenetically. Ziętara et al. (2006) assumed
240 that the triploid form originated from a diploid egg fertilised by a reduced sperm, which coincided with a
241 switch to a rainbow trout host. Their study also suggested that *G. salaris* produces diploid offspring, which
242 revert to sexual reproduction (Ziętara, Kuusela, and Lumme 2006). Diploid offspring are potentially produced
243 via pseudogamous parthenogenesis, which involves the activation of a diploid egg by sperm from non-selfing
244 hermaphrodites. However, there is no transfer of genetic material from sperm.

245 **3.2 Triploidy among parasitic roundworms**

246 Among Nematoda, 15 species are found to be triploid, with 13 of them parasitic. All triploid parasitic
247 Nematoda species are dioecious.

248 **Reproduction**

249 Diploid individuals of *Haemonchus contortus* reproduce sexually. The reproductive mode of triploid individuals
250 is not known because triploidy was detected at a larval stage post mortem (Doyle et al. 2018). No studies
251 show triploidy at the adult stage.

252 Three triploid species of plant parasites from *Heterodera* genus (*H. lespedezae*, *H. sacchari*, and *H. trifolii*)
253 reproduce parthenogenetically (Triantaphyllou and Hirschmann 1978). However, males, while rare and without
254 details on their ploidy, can be found in populations (Triantaphyllou and Hirschmann 1978).

255 Triploidy was detected in nine species of RKN, members of the *Meloidogyne* genus. All triploid RKN species
256 are reported to reproduce via mitotic parthenogenesis, in which an egg develops without meiosis (Janssen et al.
257 2017). Despite reproducing via mitotic parthenogenesis, studies have shown that males are present in triploid
258 populations of RKN species. Males are reported, among others, for *M. africana* (Janssen et al. 2017), *M.*
259 *inornata* (Carneiro et al. 2008), and *M. arenaria* (Cliff and Hirschmann 1985). In the case of *M. ardenensis*,
260 males are not only present but also appear to be sexually active, as the spermathecae of triploid females from
261 sampled populations were filled with sperm (Janssen et al. 2017). For two triploid species, *M. hapla* and *M.*
262 *javanica*, it was shown that spermatozoa are able to enter an oocyte, but without further transfer of genetic
263 material (Janssen et al. 2017). Males were also found together with triploid females in infected roots for *M.*
264 *oryzae* (Mattos et al. 2018). However, this species reproduces exclusively parthenogenetically (Besnard et al.
265 2019). In addition, there is some evidence for genome reshuffling in *M. oryzae*, potentially, due to a few meiotic
266 events soon after original polyploidisation (Besnard et al. 2019).

267 No information on males was found for triploid *M. incognita* and *M. enterolobii* from papers selected for the

268 systematic review. However, it is known that *M. incognita* females can reverse sex into males (Papadopoulou
269 and Traintaphyllou 1982).

270 Apart from parasitic nematodes, several free-living species of the genus *Panagrolaimus* are found to be
271 exclusively triploid and reproducing parthenogenetically (Villegas et al. 2024). Eggs of triploid *Panagrolaimus*
272 develop without sperm, with all offspring being females (Villegas et al. 2024).

273 **Origin of triploidy**

274 Triploid individuals of *Haemonchus contortus* are highly likely to originate from an autotriploidization event,
275 as triploid larvae were detected during the experimental infection by two lines of *H. contortus* (Doyle et al. 2018).
276 Two potential mechanisms are proposed: (1) polyspermy, when an egg is fertilised by two sperm cells, or (2)
277 fertilisation of a non-reduced egg. At the same time, it is not clear whether triploidy is prevalent in the field
278 and whether triploid larvae are viable and fertile after reaching maturity (Doyle et al. 2018). However, an
279 adult triploid female of *H. contortus* has been described earlier (Bremner 1954), which suggests that triploid
280 individuals are at least able to reach maturity.

281 The origin of triploid species from the genus *Meloidogyne* is still under investigation. There are data
282 available on the potential origin of the MIG complex that includes *M. incognita*, *M. javanica*, and *M. arenaria*
283 (Schoonmaker et al. 2020). Initially, it was suggested that *M. incognita* is a double-hybrid between the ancestor
284 of *M. floridensis* and another unknown species. (Lunt et al. 2014). Later, however, it was shown that *M. floridensis*
285 rather belongs to MIG group (Schoonmaker et al. 2020). While all MIG species diverged from *M. hapla* with the following radiation (Schoonmaker et al. 2020).

287 In one study, triploid females of *M. hapla* resulted from a cross between diploid females and tetraploid males
288 of the same species (Triantaphyllou 1991). Triploid females were able to produce normal-sized eggs. However,
289 most of the eggs did not hatch (Triantaphyllou 1991), which raises uncertainty about whether triploidy in *M. hapla*
290 is stable.

291 One study examines the genetic relatedness of two RKN species, triploid *M. oryzae* and diploid *M. graminicola*,
292 suggesting that *M. graminicola* is a putative parent of *M. oryzae* (Besnard et al. 2019). We did not
293 find information on the possible origin of other triploid RKN species. There was one study claiming that *M. enterolobii*
294 has a hybrid origin. However, the paper was retracted by the authors due to contamination of
295 sequencing data with another species (Koutsovoulos et al. 2025).

296 Free-living triploid species of *Panagrolaimus* are shown to be a monophyletic group that originates from a
297 single triploidisation event (Schiffer et al. 2019, Villegas et al. 2024).

298 We did not find any information about the origin of triploidy for triploid species from the *Heterodera* genus.

299 **Other ploidies**

300 Six RKN species are assumed to be exclusively triploid. These species are *M. africana*, *M. ardenensis*,
301 *M. enterolobii*, *M. inornata*, *M. oryzae*, and *M. javanica*. The last species itself is rather a hypotriploid (or
302 paleotriploid) with 43-46 chromosomes, which does not correspond to the full triple set (Cenis 1992, Schoonmaker
303 et al. 2020). No information is available about the exclusivity of triploidy or the presence of other ploidies for
304 *M. incognita*.

305 *M. arenaria* is shown to have a hybrid origin (Schoonmaker et al. 2020). Despite this, one study describes
306 the presence of diploid individuals in one sampled population (Cliff and Hirschmann 1985).

307 Two stable ploidy lines are reported for *M. hapla*, diploid, and tetraploid. Triploid individuals appear due to
308 outcrossing between diploids and tetraploids when both lineages co-infect the same plant (Triantaphyllou 1991).
309 While its origin is plausible, triploidy does not seem to be stable given the low viability of eggs (Triantaphyllou
310 1991).

311 For *H. contortus*, seven individuals out of 41 progeny of a single female were identified as triploid at the
312 larval stage (Doyle et al. 2018). Ploidy for other progeny was not specified. However, diploidy can be assumed,
313 as the authors reported only triploidy among polyploid cases (Doyle et al. 2018).

314 **Phenotypic effects of triploidy**

315 *H. contortus* shows resistance to anthelmintics from different families, such as benzimidazoles, imidazothiazoles,
316 and macrocyclic lactones (Kotze and Prichard 2016). Triploid larvae of *H. contortus* were detected after

317 co-infection with two genetically divergent strains, one fully susceptible and one resistant (Doyle et al. 2018).
318 However, no information is available on whether triploid individuals inherited alleles responsible for resistance in
319 *H. contortus*. Although not related to anthelmintic resistance, it is worth mentioning that studies have reported
320 that triploid *M. enterolobii* overcomes the Mi-1 resistance gene in breeding cultivars (Santos, Abrantes, and
321 Maleita 2019).

322 **3.3 Non parasitic triploid species**

323 Among 100 selected papers, we found information on triploidy in 24 non-parasitic flatworms and nematodes.
324 Non-parasitic species of flatworms with triploid individuals belong to five genera: *Dolichoplana* - one species,
325 *Dugesia* - 15 species, *Girardia* - three species, *Polycelis* - two species, *Schmidtea* - one species. Non-parasitic
326 triploid flatworms reproduce parthenogenetically and by fission (splitting their body into two parts). In addition,
327 some triploid species (e.g., *Dugesia ryukyuensis*) can reproduce sexually, switching reproductive modes
328 seasonally (Nodono and Matsumoto 2022). Another species (*Schmidtea polychroa*) can produce fertile haploid
329 sperm (D'souza and Michiels 2008). Among Nematoda, the only non-parasitic triploid species are *Caenorhabditis elegans*
330 and members of the *Panagrolaimus* genus. *C. elegans* is the only reported triploid Nematoda species
331 with an androdioecious reproductive system. See SI 4 for the full list of non-parasitic triploid species.

332 4 Discussion

333 In our systematic review we report 28 species of parasitic worms in which triploid individuals or populations
334 have been detected. The number of known parasitic species with triploidy makes up only a tiny fraction of
335 the total number of estimated species within each taxonomic group of parasitic worms. For example, Cestoda
336 includes around 5'000 known species (Scholz and Kuchta 2022), and Trematoda includes at least 18'000 species
337 (Kostadinova and Pérez-del-Olmo 2014). There are around 3'400 species of plant-parasitic nematodes (Singh,
338 Hodda, and Ash 2013) and up to 28'000 estimated species of vertebrate-parasitic nematodes (Carlson et al.
339 2020).

340 The small number of known triploid species among parasitic worms, relative to their total number, could
341 be explained by two main factors. The first, and very likely one, is a sampling bias and the lack of available
342 information. Triploidy in animals, or polyploidy in the broader context, has been investigated over the last
343 few decades, primarily from genetic and physiological perspectives (Choleva and Janko 2013, Small, Benfey,
344 and Crawford 2022). However, parasitic worms were rarely present in reviews discussion polyploid animals. In
345 addition, only a few studies have addressed the evolutionary and ecological consequences of polyploidy (but
346 see (Wertheim, Beukeboom, and Zande 2013)), especially in the context of host-parasite interactions from a
347 parasite perspective. The most recent overview of tapeworm cytogenetics (Špakulová, Orosová, and Mackiewicz
348 2011) provided karyological data for 115 species of parasitic worms. However, this study does not cover most of
349 the species, because, as authors mentioned, only up to 2% of known Cestoda species were studied karyologically
350 (Špakulová, Orosová, and Mackiewicz 2011). From our limited observation, triploid tapeworms make up around
351 6% of the total number of Cestoda species for which ploidy information is available. Can we then expect to
352 have similar ratio of triploids out of the total number of tapeworm species?

353 The second explanation is the actual rarity of triploidy. There is a general perception that triploid animals
354 are either rare or that triploid lines are "evolutionary dead-ends" (Mable 2004). Their populations are thus
355 expected to be unstable and prone to dying out within a shorter time. However, such a perception may rely
356 on assumptions that do not always hold. For example, connected with polyploidy, parthenogenesis and the
357 consequent accumulation of deleterious mutations (see more in the following subsections).

358 Below, we focus on several aspects of triploid parasitic worms, including the origin of triploidy, reproduction,
359 comparison with diploid conspecifics, and how these factors can affect host-parasite dynamics and adaptation
360 rates, particularly in the context of drug resistance evolution.

361 4.1 Emergence of Triploidy

362 Origin of triploid parasitic worms can be broadly classified into two modes: hybrid origin (allotriploidy)
363 and non-hybrid origin (autotriploidy). In the first case, a triploid lineage arises from hybridisation between
364 two sexual diploid species. Autotriploids are formed from a mating within one diploid species. In both cases,
365 triploidy may result from the fusion of either two or three gametes. When two gametes are involved, one is
366 diploid (usually an ovum), the other is haploid (usually a spermatozoon). With three gametes, a haploid egg
367 is fertilised by two sperm. See Choleva and Janko (2013) for an informative review of the mechanisms by
368 which triploidy arises. While mechanisms describing the origin of triploidy are academically interesting, Soltis
369 et al. (2010) raised an important question whether the mode of origin makes any evolutionary difference. This
370 question can be formulated even more broadly: whether there is any difference between allo- and autotriploids
371 that their origin mode can explain.

372 Choleva and Janko have reviewed scenarios of polyploidisation among animals, both allo- and autoploidy-
373 ploidy, with many examples illustrating each scenario Choleva and Janko (2013). However, it remains unclear
374 which type of triploidy prevails in animals. This may be partly due to the challenges in identifying path-
375 ways to polyploidy, even in recently evolved lineages (Choleva and Janko 2013). As a result, the number of
376 autoployploids may be underestimated (Soltis et al. 2010).

377 On the other hand, studies of polyploidy in plants are more prevalent. For a long time in plant polyploidy
378 studies, there was a traditional view that autoployploids are rare and less fit than allopolyploids (discussed in
379 (Soltis et al. 2010)). Contrary to this, Ramsey and Schemske (1998) have estimated that the rate of autoployploid

formation among flowering plants is higher than the rate of allopolyploid formation. This finding suggested that autopolyploids appear more common than previously thought. They have also stated that triploids play an important role in the formation of tetraploids among plants through the so-called "triploidy bridge" (Ramsey and Schemske 1998). Later, a literature review by Barker et al. (2016) revealed near parity between auto- and allopolyploids within plant genera. While such results clearly contrast with the traditional view on the rarity of autopolyploids, Barker et al. (2016) have concluded that autopolyploids do have an evolutionary advantage. Such a conclusion is based on the suggestion that autopolyploid plants should outnumber allopolyploids with at least a five-fold difference (Barker et al. 2016), which is not the case. At the same time, a recent meta-analysis showed that autopolyploid plants exhibit slightly greater resistance to some pathogenic groups than diploids and allopolyploids (Hagen and Mason 2024). However, the general finding states a lack of any consistent overall differences between di- and polyploids, as well as between the two types of polyploidy (Hagen and Mason 2024).

It is hypothesised that the reproductive system of original diploid lines can predispose triploids to be formed in a particular way. For example, many flatworm species (with several exceptions among Trematoda) are hermaphrodites with the potential for self-fertilisation. This raises an important question: Can we expect more cases of triploidy among hermaphrodites? We found data on the origin of triploidy for 10 species of flatworms. Only two of them have supposedly a hybrid origin, Cestoda species *Atractolytocestus huronensis* and Trematoda *Fasciola* sp. complex. On the other hand, most triploid nematodes are found within the RKN group, which includes exclusively dioecious species. Most RKN triploid species (five out of six) show a hybrid origin, resulting from a cross between two parental species.

A recent study on the dioecy-polyploidy association among plants revealed that polyploids are rare in genera where the majority of the species are dioecious (Osterman et al. 2024). The authors even suggested a reverse relationship, in which polyploidisation in hermaphrodites favours a transition to dioecy. However, the authors considered a species as a polyploid only if its chromosome count was typical of autopolyploids (Osterman et al. 2024). This may suggest that hermaphrodites do transit to polyploids more often than dioecious plants, but only through the non-hybrid pathway. Otto and Whitton formulated a similar idea for animals. They proposed that polyploidy should be more common, among others, in taxa with hermaphroditic or asexual reproduction (Otto and Whitton 2000). Again, this suggestion considers only potential autopolyploids. Thus, it is not yet clear whether allopolyploids are more common in taxa with predominantly dioecious species.

After their emergence, triploid animals can maintain reproductive connectivity with parental species, especially in cases of hybrid origin. One example is a hybrid species of the edible frog *Pelophylax esculentus* with triploid lines. Triploid individuals are fertile and, for reproduction, rely on gametes from one of the parental species (Biriuk et al. 2016). Among all triploid worm species we found, only one case resembles such a relationship - the triploid *Fasciola* sp. complex. Molecular studies revealed a potential scenario of hybrid *Fasciola* emergence. It was suggested that triploid lines have emerged via backcrossing between initial diploid hybrids and either parental species (reviewed in (Itagaki, Hayashi, and Ohari 2022)). An experimental crossing between *F. hepatica* and *F. gigantica* indicated that the first hybrid generation is fertile and can produce viable offspring (Itagaki et al. 2011). We did not find studies reporting whether backcrossing of *Fasciola* hybrids keeps occurring in natural populations. At the same time, the experimental study suggests that a reproductive connection between triploid *Fasciola* and parental species is possible during co-infection.

4.2 Reproduction of Triploids

Polyploidy in animals has long been associated with parthenogenesis (Suomalainen, Saura, and Lokki 1976, Suomalainen 1950). Our findings show that the association between triploidy (a specific case of polyploidy) and parthenogenesis holds across most triploid parasitic worms. An ability to reproduce sexually (along with parthenogenesis) has been suggested only for one species from our list of triploids - *P. westermani* when a host was coinfected by diploids and triploids (Terasaki et al. 1996). Triploid individuals, when coinfected with diploids, had sperm cells in their reproductive tracts. While no sperm was observed after infections of a host with several triploid metacercaria (Terasaki et al. 1996).

Given that triploidy is associated with parthenogenesis, the difference between triploids and diploids in terms of reproduction can be explained partially by the difference between asexuals and sexuals. Exploring

429 such a difference between asexual triploids and sexual diploids could be useful in explaining (alleged) stability
430 of some triploid lines. For example, triploid parthenogens can benefit from reduced costs associated with sex.
431 The classic approach states that sexual reproduction imposes a twofold cost due to either the production of
432 males or genome dilution (Maynard Smith 1971). Thus, parthenogens are likely to avoid any costs related to
433 the production of males (for dioecious organisms) or the development of male gonads (for hermaphrodites).

434 Avoiding costs can explain why several triploid hermaphroditic species have abnormal testes or non-functional
435 sperm (e.g., *D. latus* and *A. huronensis* from Cestoda (Bruňanská, Nebesářová, and Oros 2011, Orosová et al.
436 2021), or *Fasciola* sp., from Trematoda (Itagaki, Hayashi, and Ohari 2022)). When a triploid line can reproduce
437 without sperm, male gonads play no role. Thus, there is no need to invest in male gonads. At the same time,
438 it remains unclear to what extent costs related to the production of male gonads (or individuals) contribute to
439 the origin or stability of triploidy. We assume that any cost reduction follows triploidisation events, without
440 playing a primary selective factor in establishing triploid lines. A similar idea was proposed by Lundmark and
441 Saura (2006), stating that asexuality per se did not play a primary role in the success of asexual species over
442 sexual ones. Our assumption is also supported by a few observations from the RKN species complex, where
443 triploid species include both females and males, despite the predominant occurrence of mitotic parthenogenesis
444 (e.g., *M. africana* (Janssen et al. 2017)). It should be mentioned, however, that *Meloidogyne* species seem to
445 have environmental sex determination (for example, *M. hapla* and *M. incognita*, (Eisenback and Triantaphyllou
446 1991, Papadopoulou and Triantaphyllou 1982)). This observation suggests that the type of sex determination
447 should be taken into account when comparing asexual parasitic worms with sexual ones.

448 Apart from the direct cost related to sex, parthenogens can have an advantage over sexual populations
449 in populations with lower density. A recent study on the prevalence of *D. latus* in Alpine lakes shows that
450 this species is usually found as a single plerocercoid per fish, a second intermediate host (Radačovská et al.
451 2020). This often leads to infection of a definitive host by a single worm (Bazsalovicsová et al. 2018, Orosová
452 et al. 2021). Under such conditions, parthenogens can reproduce without relying on mating. In general, the
453 probability of encounters between individuals (a proxy for population density) appears to play an important role
454 in the transition to female-dominated parthenogenetic populations. Schwander et al. (2010) have developed an
455 analytical model to investigate the conditions under which males are lost in populations with parthenogenetic
456 females. They found that females dominate in a population under a low encounter rate and a medium-to-high
457 proportion of eggs that develop without fertilisation (Schwander et al. 2010). However, this model implicitly
458 assumes that sex is determined genetically, an assumption that cannot be applied to all parasitic worms, as
459 mentioned earlier. Thus, it might be useful to investigate the spread of parthenogenesis in a population with
460 environmental sex determination, in which males are present and fertile.

461 Discussion of cost comparison between sexuals and asexuals often includes recombination as a double-edged
462 sword. Asexual triploid parasitic worms reproduce through mitotic parthenogenesis, in which an oocyte develops
463 without meiosis and, consequently, without recombination. On the one hand, the lack of recombination is one
464 of the reasons why parthenogenetic lineages are considered evolutionary dead-ends (Lodé 2013). In theory,
465 deleterious mutations accumulate in the absence of recombination. This accumulation eventually limits the
466 long-term persistence of asexual lineages, a phenomenon known as "Muller's ratchet" (Muller 1964). Thus,
467 alternative mechanisms might be required to sustaining asexuality. For example, Vogt (2017) has suggested
468 that epigenetic mechanisms can increase phenotypic diversity within genetically identical clonal lines, thereby
469 contributing to environmental adaptation. It is not clear, however, whether asexual triploid lines adapt such a
470 mechanism.

471 On the other hand, recombination is assumed to be the most general cost of sex (in the short-term per-
472 spective), because it breaks up beneficial gene combinations (Lehtonen, Jennions, and Kokko 2012, Maynard
473 Smith 1971). When, for example, heterozygosity confers higher fitness than homozygosity, asexual lineages
474 maintain this difference by preserving the same level of heterozygosity (assuming a negligible mutational load).
475 In contrast, already the first generation of sexuals will experience at least 50% heterozygosity decrease (Lewis
476 1987).

477 4.3 Comparison Between Diploids and Triploids

478 Stability of triploid parasitic species, or even their expansion, relies on the competitive advantages triploidy
479 provides compared to diploidy. In their review, Otto and Whitton (2000) proposed a useful framework for
480 comparing polyploids with diploids, splitting all effects into two categories: phenotypic and genetic. One of
481 the most common phenotypic effects of polyploidy is increased cell size and, consequently, increased body size
482 (see examples in (Otto and Whitton 2000) and (Choleva and Janko 2013)). These effects were shown for one
483 species from our review - *P. westermani*. Triploid individuals have larger eggs, metacercariae, and adult body
484 size compared to diploids (Blair 2024). In addition, triploid individuals of *P. westermani* reach maturity in two
485 months in infected cats and dogs, while diploid flukes develop in almost two and a half months (Habe et al.
486 1996). All these life-history traits (while potentially associated with increased metabolic costs (Milosavljevic
487 et al. 2024)) may provide selective advantages for triploids in competition with diploids for the host.

488 Furthermore, it has been hypothesised that polyploid animals better tolerate stressful environments (Van
489 de Peer et al. 2021). Such a hypothesis has been tested experimentally with synthetic tetraploid *C. elegans*.
490 Chauve et al. (2025) have shown that tetraploid individuals resist cold stress better than diploid conspecifics.
491 Tertraploid individuals also produce more offspring under cold stress compared to diploid ones (Chauve et al.
492 2025). Irrespective of whether abiotic stressors limit the dispersal of triploid parasitic worms, the general ability
493 to tolerate stress can be beneficial for triploids.

494 Genetic effects of triploidy can also provide a selective advantage over diploids. A theoretical model of Otto
495 and Whitton (2000) showed that newly formed polyploids have an initial advantage of masking deleterious
496 mutations. This advantage, however, diminishes later as mutational load in a stable state correlates with ploidy
497 level (Otto 2007). In the same model, polyploids obtained beneficial mutations more often when the population
498 was small, and mutations had partial dominance (Otto and Whitton 2000). While this model did not provide
499 a parasitic perspective, it may be useful to apply a similar framework for comparing host-parasite dynamics
500 between diploids and triploids.

501 4.4 The Effect of Triploidy on Host-Parasite Interaction

502 One aspect of polyploidy that, to the best of our knowledge, has been addressed quite rarely is parasitism.
503 Namely, whether polyploidy of parasites affects the host-parasite dynamic. A few theoretical models have
504 tested the effect of ploidy on the evolution of parasitism (M'Gonigle and Otto 2011, Nuismer and Otto 2004).
505 However, they are limited to two ploidy levels only - haploidy and diploidy. The main conclusion of the
506 mentioned models is that parasites benefit from being haploid as it limits an array of antigens that could be
507 detected by a host (M'Gonigle and Otto 2011, Nuismer and Otto 2004). While diploidy is favoured among
508 hosts as it helps to recognise a broader range of antigens (M'Gonigle and Otto 2011, Nuismer and Otto 2004).
509 Applying this framework, can we expect triploids to be more easily detected by a host than diploid conspecifics?
510 Which host recognition models (following description of Nuismer and Otto (2004)) will better detect triploids?
511 Which role does the type of triploidy origin play in parasite recognition?

512 Sexual reproduction is expected to be maintained in systems with antagonistic interactions between hosts
513 and parasites, a notion formulated as the Red Queen Hypothesis (Hamilton, Axelrod, and Tanese 1990, Ladle
514 1992). The main prediction of the Red Queen Hypothesis (that hosts increase recombination rate in the presence
515 of coevolving virulent parasites) has been supported empirically in many systems (see examples in (Gibson and
516 Fuentes 2015)). Theoretically, similar logic applies to parasites (Galvani, Coleman, and Ferguson 2003, Salathé
517 et al. 2008), as they experience at least an equivalent level of selective pressure. A recent empirical study
518 even shows that asexuality is less likely to arise on parasitic lineages of Nematoda compared to free-living ones
519 (Gibson and Fuentes 2015). Thus, we see a potential contradiction to theoretical predictions, given examples
520 when asexual triploids either expand their host range, as in *A. huronensis* (Špakulová et al. 2019), or overcome
521 resistance against congeners, as in *M. enterolobii* (Poulet et al. 2025). One should also not forget that
522 parasitic worms can be infected by hyperparasites. For example, *Pasteuria penetrans* is an obligate parasite of
523 phytonematodes that is used as a biocontrol agent (Mohan et al. 2020). As a result, asexual triploid parasitic
524 worms experience simultaneous selective pressure from their hosts and their hyperparasites. Such contradictions
525 open new prospects for further theoretical studies. One direction, for example, is to investigate conditions that

526 allow asexual triploid lines to sustain themselves without recombination under selection from two sides.

527 **4.5 Triploidy and Resistance**

528 Triploid parasitic worms pose a noticeable threat to health and economy, which could intensify as drug resistance
529 has been reported for all class of anthelmintics (Fissiha and Kinde 2021). We found several species reported
530 to have triploid individuals in some populations, as well as cases of drug resistance. However, no data indicate
531 that both are linked. At the same time, given examples of successful adaptation to new hosts, we should
532 address questions related to anthelmintic resistance. One question of particular importance is whether triploid
533 worms evolve resistance faster than diploids. What exactly can triploidy provide for resistance to evolve faster?
534 As Doyle et al. (2018) stated, resistance to some anthelmintics has a multigenic nature. In this case, can we
535 suppose that a lack of recombination will lead to a faster spread of a multigenic trait after its emergence? As
536 was mentioned before, polyploids can receive more beneficial mutations under certain conditions. Would this
537 factor play any role in the emergence of resistance? Given the importance of some triploid parasitic worms (e.g.,
538 members of RKN species), we see here a need to investigate the effect of polyploidy on the evolution of drug
539 resistance. Theoretical models can serve as a first step, identifying which parameters should be considered in
540 subsequent experimental studies.

541 5 Conclusion

542 Polyploidy in animals has received noticeable attention with the development of, broadly speaking, molecular
543 methods, as polyploidy has been detected in a wider selection of taxa. Thanks to this, we have a general
544 understanding of how often polyploidy appears among animals compared to plants. In addition, several studies
545 have reported effects of polyploidy on genomics, as well as physiological and life history traits in animals.
546 Partially due to such substantial progress, we can identify gaps in our understanding of the general effect
547 of polyploidy on evolutionary dynamics and formulate new questions. For example, whether there are any
548 consequences of triploidisation of parasitic worms on the host-parasite dynamic remains an open question. This
549 is one of the aspects of polyploidy that was not investigated thoroughly before.

550 With this systematic review, we addressed two main aims. First, we wanted to attract attention to a
551 parasitic aspect of triploidy (and polyploidy in general). Despite a perception that polyploid lineages are
552 evolutionary “dead-ends”, we have shown that some triploid species can have a noticeable effect on livestock
553 health and crop production. Second, we aimed to collect and report available information on the distribution
554 of triploidy, its origin, the reproduction of triploid lineages, and any phenotypic effects of triploidy. We believe
555 that this information, as well as raised questions, will motivate further studies investigating various aspects of
556 triploidy. Such as the effects of triploidy on parasite life history, host-parasite interactions, or the evolution
557 of antihelminthic resistance. Any potential findings from these research areas may be of both academic and
558 practical importance.

559 Acknowledgement

560 The authors are grateful to the members of the Pathogen Evolution group and the Department of Aquatic
561 Ecology for their comments, questions, and suggestions during group meetings and departmental seminars at
562 the earlier stages of this project. We are grateful to Prof. Dr. Jukka Jokela for reading and commenting on the
563 original draft. Special thank for Dr. Giacomo Moggioli for the artwork in this manuscript.

564 Authors' Contribution

565 Conceptualisation: VK and BT. Literature search and screening: VK. Synthesis and writing: VK and BT

566 Financial Support

567 This work has been supported by the Swiss National Science Foundation Starting Grant TMSGI3_218475: *Drug*
568 *resistance evolution across taxonomic boundaries: investigating the effects of ploidy, lifestyle, and reproductive*
569 *strategy.*

570 Conflict of Interest

571 Authors declare no competing interests.

572 Ethical Statement

573 Non-applicable

Table 1: List of species of parasitic worms from two classes – Platyhelminthes and Nematoda – with reported triploidy.

Species Name	Life Stage ^a	Definitive Host	Reproductive System ^b	Reproductive Mode ^c	Origin of Triploidy ^d	Other Ploidies ^e	Chromosome Number ^f	Method ^g	Reference
Platyhelminthes									
Cestoda									
<i>Atractolytocestus huronensis</i>	Adult	Fish	Hermaphro	Partheno	Allo	No	24 (8)	CC	[14, 62, 82, 112, 113]
<i>Caryophyllaeus laticeps</i>	Adult	Fish	Hermaphro	NI ^h	NI	2n SP	30 (10)	CC	[89, 113]
<i>Dibothriocephalus latus</i>	Adult	Humans	Hermaphro	Partheno	Auto	2n OP	27 (9)	CC	[83, 92, 93]
<i>Glaridacris catostomi</i>	Adult	Fish	Hermaphro	Partheno	Auto	2n OP	30 (10)	CC	[36, 113]
<i>Isoglaridacris bulbocirrus</i>	Adult	Fish	Hermaphro	NI	NI	2n	30 (10)	CC	[113]
<i>Spirometra erinaceieuropaei</i>	Adult	Mammals	Hermaphro	Partheno	NI	2n SP	27 (9)	CC	[81, 113]
<i>Spirometra mansonoides</i>	Adult	Mammals	Hermaphro	NI	NI	NI	27 (9)	CC	[113]
Monogenea									
<i>Gyrodactylus salaris</i>	Adult	Fish	Hermaphro	Pseudogamous	Auto	NI	NI	AC	[132]
Trematoda									
<i>Allocereadium fasciatusi</i>	Adult	Fish	Hermaphro	Partheno	Auto	NI	21 (7)	CC	[94]
<i>Fasciola hepatica</i>	Adult	Mammals	Hermaphro	Partheno	Auto	2n OP	30 (10)	CC	[6, 26, 40]
<i>Fasciola</i> sp.	Adult	Mammals	Hermaphro	Partheno	Allo	2n SP	30 (10)	CC	[46, 48–50, 80, 117–120]
<i>Ichthyocotylurus platycephalus</i>	Larvae	Fish	Hermaphro	NI	NI	2n SP	30 (10)	CC	[114]
<i>Paragonimus westermani</i>	Adult	Mammals	Hermaphro	Partheno, Sex	Auto	2n+4n SP	33 (11)	CC	[1–3, 10, 26, 41–43, 45, 51, 55, 57, 58, 88, 100, 107, 121]
<i>Schistosoma mansoni</i>	Larvae	Mammals	Dioecious	NI	Auto	2n SP	24 (8)	CC	[44]
<i>Schistosomatium douthitti</i>	Larvae	Mammals	Dioecious	NI	Auto	2n SP	21 (7)	CC	[108]
Nematoda									

Continued on next page

(continued)

Species Name	Life Stage ^a	Definitive Host	Reproductive System ^b	Reproductive Mode ^c	Origin of Triploidy ^d	Other Ploidies ^e	Chromosome Number ^f	Method ^g	Reference
<i>Haemonchus contortus</i>	Larvae	Mammals	Dioecious	NI	Auto	2n SP	18 (6)	WGS	[24]
<i>Heterodera lespedezae</i>	Adult	Plants	Dioecious	Partheno	NI	NI	27 (9)	CC	[122]
<i>Heterodera sacchari</i>	Adult	Plants	Dioecious	Partheno	NI	NI	27 (9)	CC	[53]
<i>Heterodera trifolii</i>	Adult	Plants	Dioecious	Partheno	NI	NI	26-35 (9)	CC	[122]
<i>Meloidogyne africana</i>	Adult	Plants	Dioecious	Partheno	Allo	No	21 (9)	CC	[53]
<i>Meloidogyne ardenensis</i>	Adult	Plants	Dioecious	Partheno	NI	No	51-54 (17-18)	CC	[53]
<i>Meloidogyne arenaria</i>	Adult	Plants	Dioecious	Partheno	Allo	2n SP	51-56 (17-18)	CC	[21, 53, 105]
<i>Meloidogyne enterolobii</i>	Adult	Plants	Dioecious	Partheno	NI	No	NI	WGS	[90]
<i>Meloidogyne hapla</i>	Adult	Plants	Dioecious	Partheno	Auto	2n+4n SP	(13-17)	CC	[123]
<i>Meloidogyne incognita</i>	Adult	Plants	Dioecious	Partheno	Allo	NI	NI	WGS	[69, 105]
<i>Meloidogyne inornata</i>	Adult	Plants	Dioecious	Partheno	NI	No	54-58 (18-19)	CC	[53]
<i>Meloidogyne javanica</i>	Adult	Plants	Dioecious	Partheno	Allo	No	44	CC	[105]
<i>Meloidogyne oryzae</i>	Adult	Plants	Dioecious	Partheno	Allo	No	54 (18)	WGS	[8, 53]

574 Notes

575 ^a Life stage at which triploidy was detected. Adult — triploidy was detected at the adult stage; Larvae — triploidy was reported at a larval stage in any of the intermediate hosts.

576 ^b Hermaphro — adult individuals are hermaphroditic; Dioecious — adult individuals are dioecious (gonochoric).

577 ^c Reported reproductive mode of triploids. Partheno — triploid individuals reproduce through parthenogenesis; Pseudogamous — a triploid egg is activated by sperm without incorporating sperm genetic material; Sex — a triploid egg can fuse with haploid sperm to produce a zygote.

578 ^d Proposed origin of triploidy. Allo — allotriploidy, the hybrid origin of triploidy; Auto — autotriploidy, triploidy origins within one diploid species.

579 ^e No — a species is supposed to be exclusively triploid; 2n — both triploid and diploids are reported with no information whether both are from the same population; 2n OP — diploids are present in other populations; 2n SP — diploids are present in the same population with triploids; 2n+4n SP — diploids and tetraploids are reported in the same population with triploids.

580 ^f A triploid chromosome count (a haploid chromosome count).

581 ^g A method how triploidy was confirmed for this species. AC - allele counting; CC - chromosome count; WGS - whole-genome sequencing.

582 ^h NI indicates that no information was found.

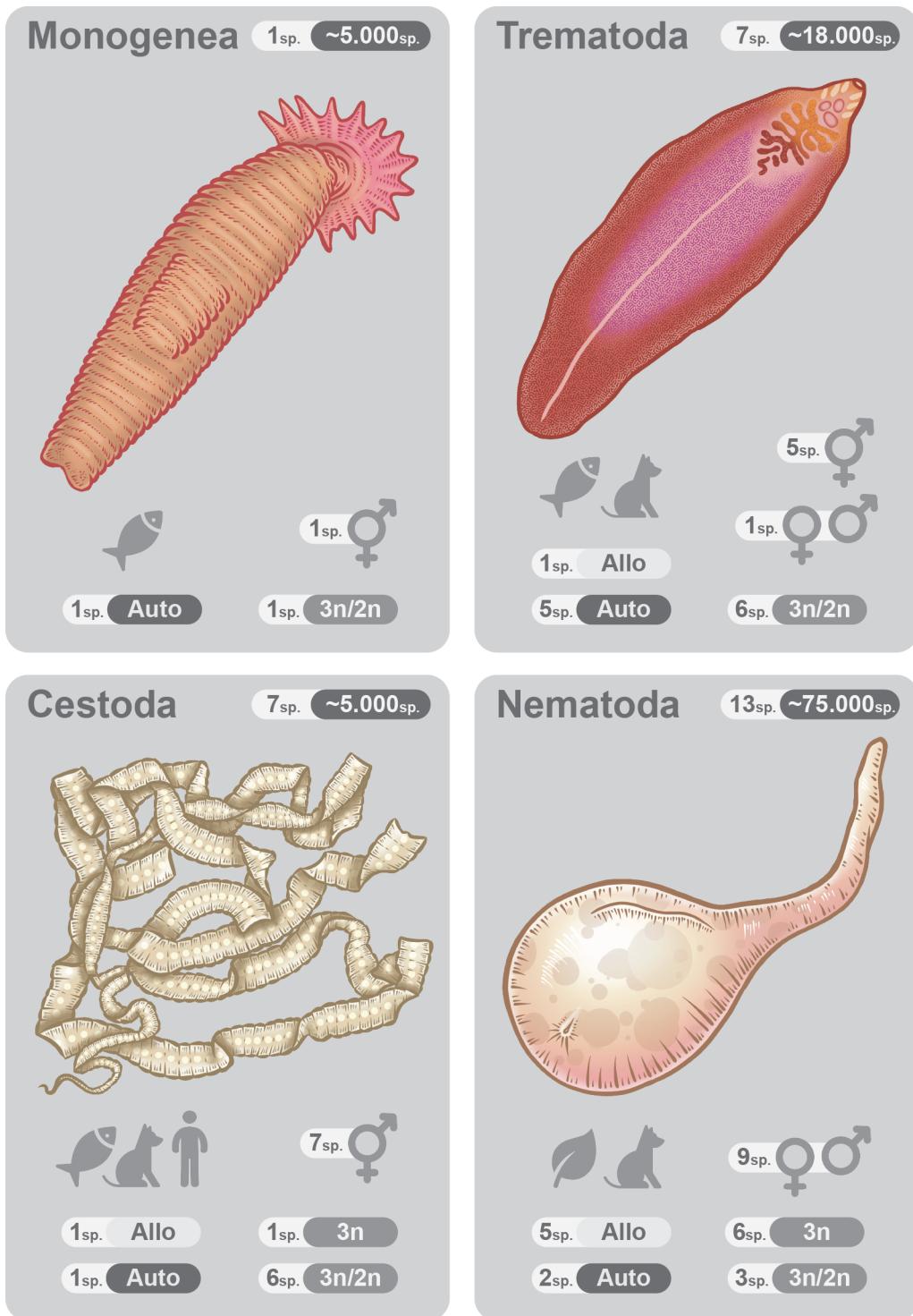


Figure 1: Summary of the main findings for each taxonomic group of parasitic worms included in the systematic review. Numbers at the top-right indicate the number of triploid species (white background) and the estimate of the total number of species. Icons at the bottom-left represent definitive hosts — fish, mammals (a dog), humans, and plants (a leaf). Auto - number of triploid species with alleged autotriploid origin. Allo - number of triploid species with alleged allotriploid origin. The hermaphrodite sign shows the number of hermaphrodite species. Venus and Mars signs show the number of dioecious species. 3n - a species is exclusively triploid. 3n/2n - both triploid and diploid populations can be found. Note that information on origin, reproductive system, and ploidy levels was available for not all triploid species.

585 **References**

[1] T. Agatsuma, M. Iwagami, Y. Sato, J. Iwashita, S. J. Hong, S. Y. Kang, L. Y. Ho, K. E. Su, K. Kawashima, and T. Abe. "The origin of the triploid in *Paragonimus westermani* on the basis of variable regions in the mitochondrial DNA". en. In: *Journal of Helminthology* 77.4 (Dec. 2003), pp. 279–285.

[2] T. Agatsuma and S. Habe. "Electrophoretic studies on enzymes of diploid and triploid *paragonimus westermani*". en. In: *Parasitology* 91.3 (Dec. 1985), pp. 489–497.

[3] A. Banzai, H. Sugiyama, M. Hasegawa, Y. Morishima, and Y. Kawakami. "Paragonimus westermani metacercariae in two freshwater crab species in Kagoshima Prefecture, Japan, as a possible source of infection in wild boars and sika deer". In: *Journal of Veterinary Medical Science* 83.3 (2021), pp. 412–418.

[4] M. S. Barker, N. Arrigo, A. E. Baniaga, Z. Li, and D. A. Levin. "On the relative abundance of autopolyploids and allopolyploids". In: *The New Phytologist* 210.2 (2016), pp. 391–398.

[5] E. Bazsalovicová, A. Koleničová, I. Králová-Hromadová, G. Minárik, K. Šoltys, R. Kuchta, and J. Štefka. "Development of microsatellite loci in zoonotic tapeworm *Dibothriocephalus latus* (Linnaeus, 1758), Lühe, 1899 (syn. *Diphyllobothrium latum*) using microsatellite library screening". en-US. In: *Molecular and Biochemical Parasitology* 225 (Oct. 2018), pp. 1–3.

[6] N. J. Beesley, K. Cwiklinski, D. J. L. Williams, and J. Hodgkinson. "Fasciola hepatica from naturally infected sheep and cattle in Great Britain are diploid". en. In: *Parasitology* 142.9 (Aug. 2015), pp. 1196–1201.

[7] H. M. Bennett, H. P. Mok, E. Gkrania-Klotsas, I. J. Tsai, E. J. Stanley, N. M. Antoun, A. Coghlan, B. Harsha, A. Traini, D. M. Ribeiro, et al. "The genome of the sparganosis tapeworm *Spirometra erinaceieuropaei* isolated from the biopsy of a migrating brain lesion". In: *Genome Biology* 15.11 (Nov. 2014), p. 510.

[8] G. Besnard, N. Thi-Phan, H. Ho-Bich, A. Dereeper, H. Trang Nguyen, P. Quénéhervé, J. Aribi, and S. Bellafiore. "On the Close Relatedness of Two Rice-Parasitic Root-Knot Nematode Species and the Recent Expansion of *Meloidogyne graminicola* in Southeast Asia". en. In: *Genes* 10.2 (Feb. 2019), p. 175.

[9] O. V. Biriuk, D. A. Shabanov, A. V. Korshunov, L. J. Borkin, G. A. Lada, R. A. Pasynkova, J. M. Rosanov, and S. N. Litvinchuk. "Gamete production patterns and mating systems in water frogs of the hybridogenetic *Pelophylax esculentus* complex in north-eastern Ukraine". en. In: *Journal of Zoological Systematics and Evolutionary Research* 54.3 (2016), pp. 215–225.

[10] D. Blair. "Paragonimiasis". In: *Advances in Experimental Medicine and Biology*. Vol. 1454. 2024, pp. 203–238.

[11] D. Blair, T. Agatsuma, T. Watanobe, M. Okamoto, and A. Ito. "Geographical genetic structure within the human lung fluke, *Paragonimus westermani*, detected from DNA sequences". en. In: *Parasitology* 115.4 (Oct. 1997), pp. 411–417.

[12] D. Blair. "Lung flukes of the genus *Paragonimus*: ancient and re-emerging pathogens". In: *Parasitology* 149.10 (2022), pp. 1286–1295.

[13] K. C. Bremner. "Cytological Polymorphism in the Nematode *Haemonchus contortus* (Rudolphi 1803) Cobb 1898". en. In: *Nature* 174.4432 (Oct. 1954), pp. 704–705.

[14] M. Bruňanská, J. Nebesářová, and M. Oros. "Ultrastructural aspects of spermatogenesis, testes, and vas deferens in the parthenogenetic tapeworm *Atractolytocestus huronensis* Anthony, 1958 (Cestoda: Caryophyllidea), a carp parasite from Slovakia". en. In: *Parasitology Research* 108.1 (Jan. 2011), pp. 61–68.

[15] C. J. Carlson, T. A. Dallas, L. W. Alexander, A. L. Phelan, and A. J. Phillips. "What would it take to describe the global diversity of parasites?" In: *Proceedings of the Royal Society B: Biological Sciences* 287.1939 (Nov. 2020), p. 20201841.

631 [16] R. M. D. G. Carneiro, M. d. L. Mendes, M. R. A. Almeida, M. F. A. d. Santos, A. C. M. M. Gomes, and G.
632 Karssen. "Additional information on *Meloidogyne inornata* Lordello, 1956 (Tylenchida: Meloidogynidae)
633 and its characterisation as a valid species". en. In: *Nematology* 10.1 (Jan. 2008), pp. 123–136.

634 [17] J. L. Cenis. "Cytogenetic, Enzymatic, and Restriction Fragment Length Polymorphism Variation of
635 *Meloidogyne* spp. from Spain". In: *Phytopathology* 82.5 (1992), p. 527.

636 [18] J. Charlier, L. Rinaldi, V. Musella, H. W. Ploeger, C. Chartier, H. R. Vineer, B. Hinney, G. von Samson-
637 Himmelstjerna, B. Băcescu, M. Mickiewicz, et al. "Initial assessment of the economic burden of major
638 parasitic helminth infections to the ruminant livestock industry in Europe". In: *Preventive Veterinary
639 Medicine* 182 (Sept. 2020), p. 105103.

640 [19] L. Chauve, E. Bazzani, C. Verdier, L. Butler, M. E. Atimise, A. McGarry, and A. McLysaght. *Evidence
641 for increased stress resistance due to polyploidy from synthetic autotetraploid Caenorhabditis elegans*. en.
642 Jan. 2025.

643 [20] L. Choleva and K. Janko. "Rise and Persistence of Animal Polyploidy: Evolutionary Constraints and
644 Potential". In: *Cytogenetic and Genome Research* 140.2-4 (July 2013), pp. 151–170.

645 [21] G. Cliff and H. Hirschmann. "Evaluation of Morphological Variability in *Meloidogyne arenaria*". In:
646 *Journal of Nematology* 17.4 (1985), pp. 445–459.

647 [22] T. G. D'souza and N. K. Michiels. "Correlations between sex rate estimates and fitness across predom-
648 inantly parthenogenetic flatworm populations". In: *Journal of Evolutionary Biology* 21.1 (Jan. 2008),
649 pp. 276–286.

650 [23] T. G. D'souza, M. Storhas, and N. K. Michiels. "The effect of ploidy level on fitness in parthenogenetic
651 flatworms". en. In: *Biological Journal of the Linnean Society* 85.2 (2005), pp. 191–198.

652 [24] S. R. Doyle, R. Laing, D. J. Bartley, C. Britton, U. Chaudhry, J. S. Gilleard, N. Holroyd, B. K. Mable,
653 K. Maitland, A. A. Morrison, et al. "A Genome Resequencing-Based Genetic Map Reveals the Recombi-
654 nation Landscape of an Outbred Parasitic Nematode in the Presence of Polyploidy and Polyandry". In:
655 *Genome Biology and Evolution* 10.2 (Feb. 2018), pp. 396–409.

656 [25] S. R. Doyle, R. Laing, D. Bartley, A. Morrison, N. Holroyd, K. Maitland, A. Antonopoulos, U. Chaudhry,
657 I. Flis, S. Howell, et al. "Genomic landscape of drug response reveals mediators of anthelmintic resistance".
658 English. In: *Cell Reports* 41.3 (Oct. 2022).

659 [26] G. Dreyfuss and D. Rondelaud. "Biodiversity of flukes". en. In: *Parasite* 15.3 (Sept. 2008), pp. 282–285.

660 [27] F. Dufresne and P. D. N. Hebert. "Temperature-related differences in life-history characteristics between
661 diploid and polyploid clones of the *Daphnia pulex* complex". In: *Écoscience* 5.4 (Jan. 1998), pp. 433–437.

662 [28] R. M. Eichenberger, L. F. Thomas, S. Gabriël, B. Bobić, B. Devleesschauwer, L. J. Robertson, A.
663 Saratsis, P. R. Torgerson, U. C. Braae, V. Dermauw, et al. "Epidemiology of *Taenia saginata* taenio-
664 sis/cysticercosis: a systematic review of the distribution in East, Southeast and South Asia". en. In:
665 *Parasites & Vectors* 13.1 (May 2020), p. 234.

666 [29] J. D. Eisenback and H. H. Triantaphyllou. "Root-Knot Nematodes: *Meloidogyne* Species and Races". In:
667 *Manual of Agricultural Nematology*. CRC Press, 1991.

668 [30] I. Fairweather, G. P. Brennan, R. E. B. Hanna, M. W. Robinson, and P. J. Skuce. "Drug resistance
669 in liver flukes". In: *International Journal for Parasitology: Drugs and Drug Resistance* 12 (Apr. 2020),
670 pp. 39–59.

671 [31] W. Fissiha and M. Z. Kinde. "Anthelmintic Resistance and Its Mechanism: A Review". In: *Infection and
672 Drug Resistance* 14 (Dec. 2021), pp. 5403–5410.

673 [32] H. L. Fletcher, E. M. Hoey, N. Orr, A. Trudgett, I. Fairweather, and M. W. Robinson. "The occurrence
674 and significance of triploidy in the liver fluke, *Fasciola hepatica*". en. In: *Parasitology* 128.1 (Jan. 2004),
675 pp. 69–72.

676 [33] T. Fürst, U. Duthaler, B. Sripa, J. Utzinger, and J. Keiser. “Trematode Infections: Liver and Lung
677 Flukes”. In: *Infectious Disease Clinics of North America*. Tropical Diseases 26.2 (June 2012), pp. 399–
678 419.

679 [34] A. P. Galvani, R. M. Coleman, and N. M. Ferguson. “The maintenance of sex in parasites”. In: *Proceedings
680 of the Royal Society of London. Series B: Biological Sciences* 270.1510 (Jan. 2003), pp. 19–28.

681 [35] A. K. Gibson and J. A. Fuentes. “A phylogenetic test of the Red Queen Hypothesis: Outcrossing and
682 parasitism in the Nematode phylum”. In: *Evolution* 69.2 (Feb. 2015), pp. 530–540.

683 [36] A. J. Grey and J. S. Mackiewicz. “Chromosomes of caryophyllidean cestodes: Diploidy, triploidy, and
684 parthenogenesis in *Glaridacris catostomi*”. In: *International Journal for Parasitology* 10.5 (Nov. 1980),
685 pp. 397–407.

686 [37] S. Habe, K. P. F. Lai, T. Agatsuma, C. K. Ow-Yang, and K. Kawashima. “Growth of Malaysian Parag-
687 onimus Westermani in Mammals and the Mode of Transmission of the Fluke Among Mammals”. In:
688 *Japanese Journal of Tropical Medicine and Hygiene* 24.4 (1996), pp. 225–232.

689 [38] E. R. Hagen and C. M. Mason. “Differences in pathogen resistance between diploid and polyploid plants:
690 a systematic review and meta-analysis”. en. In: *Oikos* 2024.5 (May 2024), e09908.

691 [39] W. D. Hamilton, R. Axelrod, and R. Tanese. “Sexual reproduction as an adaptation to resist parasites
692 (a review).” In: *Proceedings of the National Academy of Sciences* 87.9 (May 1990), pp. 3566–3573.

693 [40] R. E. B. Hanna, D. Moffett, F. I. Forster, A. G. Trudgett, G. P. Brennan, and I. Fairweather. “*Fasciola
694 hepatica*: a light and electron microscope study of the ovary and of the development of oocytes within
695 eggs in the uterus provides an insight into reproductive strategy”. In: *Veterinary Parasitology* 221 (May
696 2016), pp. 93–103.

697 [41] L. He, H. Zhong, P. Gao, H. Li, and Z. Xu. “Preliminary Studies on Chromosomes of 9 Species and
698 Subspecies of Lung Fluke in China”. In: *Chinese Medical Journal* 95.6 (1982), pp. 404–408.

699 [42] L. van Herwerden, D. Blair, and T. Agatsuma. “Genetic diversity in parthenogenetic triploid *Paragonimus
700 westermani*”. In: *International Journal for Parasitology* 29.9 (Sept. 1999), pp. 1477–1482.

701 [43] H. Hirai, Y. Sakaguchi, S. Habe, and H. T. Imai. “C-banding analysis of six species of lung flukes, *Paragonimus*
702 spp. (Trematoda: Platyhelminthes), from Japan and Korea”. en. In: *Zeitschrift für Parasitenkunde* 71.5
703 (Sept. 1985), pp. 617–629.

704 [44] H. Hirai and P. T. LoVerde. “Triploid Cells Found in Intramolluscan Stages of *Schistosoma mansoni*”.
705 In: *The Journal of Parasitology* 75.5 (1989), pp. 800–802.

706 [45] M. Ishida, C. Kaneko, T. Irie, Y. Maruyama, A. Tokuda, and A. Yoshida. “Sporadic endemicity of
707 zoonotic *Paragonimus* in raccoon dogs and Japanese badgers from Miyazaki Prefecture, Japan”. In:
708 *Journal of Veterinary Medical Science* 84.3 (2022), pp. 454–456.

709 [46] T. Itagaki, M. Honnami, D. Ito, K. Ito, K. Tsutsumi, K. Terasaki, T. Shibahara, and Y. Noda. “Mitochondrial
710 DNA polymorphism of a triploid form of *Fasciola* in Japan”. en. In: *Journal of Helminthology*
711 75.2 (June 2001), pp. 193–196.

712 [47] T. Itagaki, M. Ichinomiya, K. Fukuda, S. Fusyuku, and C. Carmona. “Hybridization experiments indicate
713 incomplete reproductive isolating mechanism between *Fasciola hepatica* and *Fasciola gigantica*”. en. In:
714 *Parasitology* 138.10 (Sept. 2011), pp. 1278–1284.

715 [48] T. Itagaki, K. Hayashi, and Y. Ohari. “The causative agents of fascioliasis in animals and humans:
716 Parthenogenetic *Fasciola* in Asia and other regions”. In: *Infection, Genetics and Evolution* 99 (Apr.
717 2022), p. 105248.

718 [49] T. Itagaki, K. Sakaguchi, K. Terasaki, O. Sasaki, S. Yoshihara, and T. Van Dung. “Occurrence of spermic
719 diploid and aspermic triploid forms of *Fasciola* in Vietnam and their molecular characterization based
720 on nuclear and mitochondrial DNA”. In: *Parasitology International* 58.1 (Mar. 2009), pp. 81–85.

721 [50] T. Itagaki and K.-i. Tsutsumi. “Triploid form of *Fasciola* in Japan: genetic relationships between *Fasciola*
722 *hepatica* and *Fasciola gigantica* determined by ITS-2 sequence of nuclear rDNA”. In: *International Journal*
723 *for Parasitology* 28.5 (May 1998), pp. 777–781.

724 [51] N. Itoh, M. Tsukahara, H. Yamasaki, Y. Morishima, H. Sugiyama, and H. Kurai. “*Paragonimus westermani*
725 infection mimicking recurrent lung cancer: A case report”. In: *Journal of Infection and Chemotherapy*
726 22.12 (Dec. 2016), pp. 815–818.

727 [52] S. L. James, D. Abate, K. H. Abate, S. M. Abay, C. Abbafati, N. Abbasi, H. Abbastabar, F. Abd-Allah,
728 J. Abdela, A. Abdelalim, et al. “Global, regional, and national incidence, prevalence, and years lived with
729 disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis
730 for the Global Burden of Disease Study 2017”. In: *The Lancet* 392.10159 (Nov. 2018), pp. 1789–1858.

731 [53] T. Janssen, G. Karssen, O. Topalović, D. Coyne, and W. Bert. “Integrative taxonomy of root-knot
732 nematodes reveals multiple independent origins of mitotic parthenogenesis”. en. In: *PLOS ONE* 12.3
733 (Mar. 2017), e0172190.

734 [54] J. T. Jones, A. Haegeman, E. G. J. Danchin, H. S. Gaur, J. Helder, M. G. K. Jones, T. Kikuchi, R.
735 Manzanilla-López, J. E. Palomares-Rius, W. M. L. Wesemael, et al. “Top 10 plant-parasitic nematodes
736 in molecular plant pathology”. en. In: *Molecular Plant Pathology* 14.9 (2013), pp. 946–961.

737 [55] T.-S. Kim, J. V. d. Guzman, H.-H. Kong, and D.-I. Chung. “Comparison of Gene Representation Between
738 Diploid and Triploid *Paragonimus Westermani* by Expressed Sequence Tag Analyses”. In: *Journal of*
739 *Parasitology* 92.4 (Aug. 2006), pp. 803–816.

740 [56] K. C. King, O. Seppälä, and M. Neiman. “Is more better? Polyploidy and parasite resistance”. In: *Biology*
741 *Letters* 8.4 (Jan. 2012), pp. 598–600.

742 [57] M. Kodama, M. Akaki, H. Tanaka, H. Maruyama, E. Nagayasu, T. Yokouchi, Y. Arimura, and H.
743 Kataoka. “Cutaneous paragonimiasis due to triploid *Paragonimus westermani* presenting as a non-
744 migratory subcutaneous nodule: a case report”. In: *Journal of Medical Case Reports* 8.1 (Oct. 2014),
745 p. 346.

746 [58] F. Koichi. “Differentiation and degeneration of tegumental cells in adult lung flukes, *Paragonimus* species
747 (trematoda: *Troglotrematidae*)”. In: *International Journal for Parasitology* 16.2 (Apr. 1986), pp. 147–
748 156.

749 [59] A. Kostadinova and A. Pérez-del-Olmo. “The Systematics of the Trematoda”. en. In: *Digenetic Trematodes*. Ed. by R. Toledo and B. Fried. New York, NY: Springer, 2014, pp. 21–44.

750 [60] A. C. Kotze and R. K. Prichard. “Anthelmintic Resistance in *Haemonchus contortus*”. In: *Advances in*
751 *Parasitology*. Ed. by R. B. Gasser and G. V. Samson-Himmelstjerna. Vol. 93. and Haemonchosis – Past,
752 Present and Future Trends. Academic Press, Jan. 2016, pp. 397–428.

753 [61] G. D. Koutsovoulos, M. Poulet, A. Elashry, D. K. L. Kozlowski, E. Sallet, M. Da Rocha, L. Perfus-
754 Barbeoch, C. Martin-Jimenez, J. E. Frey, C. H. Ahrens, et al. “Retraction Note: Genome assembly
755 and annotation of *Meloidogyne enterolobii*, an emerging parthenogenetic root-knot nematode”. en. In:
756 *Scientific Data* 12.1 (Jan. 2025), p. 183.

757 [62] I. Králová-Hromadová, J. Štefka, M. Špakulová, M. Orosová, M. Bombarová, V. Hanzelová, E. Bazsá-
758 lovicová, and T. Scholz. “Intra-individual internal transcribed spacer 1 (ITS1) and ITS2 ribosomal
759 sequence variation linked with multiple rDNA loci: A case of triploid *Atractolytocestus huronensis*, the
760 monozoic cestode of common carp”. In: *International Journal for Parasitology* 40.2 (Feb. 2010), pp. 175–
761 181.

762 [63] S. Y. Kyung, Y. K. Cho, Y. J. Kim, J.-W. Park, S. H. Jeong, J.-I. Lee, Y. M. Sung, and S. P. Lee. “A
763 Paragonimiasis Patient with Allergic Reaction to Praziquantel and Resistance to Triclabendazole: Suc-
764 cessful Treatment after Desensitization to Praziquantel”. English. In: *The Korean Journal of Parasitology*
765 49.1 (Mar. 2011), pp. 73–77.

766 [64] R. J. Ladle. “Parasites and sex: Catching the red queen”. In: *Trends in Ecology & Evolution* 7.12 (Dec.
767 1992), pp. 405–408.

769 [65] J. Lehtonen, M. D. Jennions, and H. Kokko. "The many costs of sex". English. In: *Trends in Ecology & Evolution* 27.3 (Mar. 2012), pp. 172–178.

770

771 [66] W. M. Lewis. "The cost of sex". en. In: *The Evolution of Sex and its Consequences*. Ed. by S. C. Stearns.

772 Basel: Birkhäuser, 1987, pp. 33–57.

773 [67] T. Lodé. "Adaptive Significance and Long-Term Survival of Asexual Lineages". en. In: *Evolutionary Biology* 40.3 (Sept. 2013), pp. 450–460.

774

775 [68] M. Lundmark and A. Saura. "Asexuality alone does not explain the success of clonal forms in insects with geographical parthenogenesis". en. In: *Hereditas* 143.2006 (2006), pp. 23–32.

776

777 [69] D. H. Lunt, S. Kumar, G. Koutsovoulos, and M. L. Blaxter. "The complex hybrid origins of the root knot nematodes revealed through comparative genomics". en. In: *PeerJ* 2 (May 2014), e356.

778

779 [70] L. K. M'Gonigle and S. P. Otto. "Ploidy and the evolution of parasitism". en. In: *Proceedings of the Royal Society B: Biological Sciences* 278.1719 (Sept. 2011), pp. 2814–2822.

780

781 [71] B. K. Mable. "Why polyploidy is rarer in animals than in plants": myths and mechanisms". In: *Biological Journal of the Linnean Society* 82.4 (Aug. 2004), pp. 453–466.

782

783 [72] M. F. Majid, S. J. Kang, and P. J. Hotez. "Resolving "worm wars": An extended comparison review of findings from key economics and epidemiological studies". en. In: *PLOS Neglected Tropical Diseases* 13.3 (Mar. 2019), e0006940.

784

785 [73] V. S. da Mattos, J. E. Cares, C. B. Gomes, A. C. M. M. Gomes, J. d. M. d. S. Monteiro, G. M. Gomez, P. Castagnone-Sereno, and R. M. D. G. Carneiro. "Integrative Taxonomy of Meloidogyne oryzae (Nematoda: Meloidogyninae) parasitizing rice crops in Southern Brazil". en. In: *European Journal of Plant Pathology* 151.3 (July 2018), pp. 649–662.

786

787 [74] J. Maynard Smith. "What use is sex?" In: *Journal of Theoretical Biology* 30.2 (Feb. 1971), pp. 319–335.

788

789 [75] S. Milosavljevic, F. Kauai, F. Mortier, Y. Van de Peer, and D. Bonte. "A metabolic perspective on poly-ploid invasion and the emergence of life histories: Insights from a mechanistic model". en. In: *American Journal of Botany* 111.8 (2024), e16387.

790

791 [76] S. Mohan, K. Kiran Kumar, V. Sutar, S. Saha, J. Rowe, and K. G. Davies. "Plant Root-Exudates Recruit Hyperparasitic Bacteria of Phytonematodes by Altered Cuticle Aging: Implications for Biological Control Strategies". English. In: *Frontiers in Plant Science* 11 (June 2020).

792

793 [77] H. J. Muller. "The relation of recombination to mutational advance". In: *Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis* 1.1 (May 1964), pp. 2–9.

794

795 [78] H. Nodono and M. Matsumoto. "Annual rhythmicity in the switching of reproductive mode in planarians". In: *Zoology* 155 (Dec. 2022), p. 126053.

796

797 [79] S. L. Nuismer and S. P. Otto. "Host–parasite interactions and the evolution of ploidy". en. In: *Proceedings of the National Academy of Sciences* 101.30 (July 2004), pp. 11036–11039.

798

803 [80] Y. Ohari, K. Hayashi, Y. Takashima, and T. Itagaki. "Do aspermic (parthenogenetic) *Fasciola* forms have the ability to reproduce their progeny via parthenogenesis?" en. In: *Journal of Helminthology* 95 (Jan. 2021), e36.

804

805 [81] T. Okino, H. Ushirogawa, K. Matoba, S.-i. Nishimatsu, and M. Saito. "Establishment of the complete life cycle of *Spirometra* (Cestoda: Diphyllobothriidae) in the laboratory using a newly isolated triploid clone". In: *Parasitology International* 66.2 (Apr. 2017), pp. 116–118.

806

809 [82] M. Oros, I. Král'ová-Hromadová, V. Hanzelová, M. Bruňanská, and M. Orosová. "Atractolytocestus Huro-nensis (Cestoda): A new invasive parasite of common carp in Europe". In: *Carp: Habitat, Management and Diseases*. 2011, pp. 63–94.

810

812 [83] M. Orosová, A. Marková, I. Provazníková, M. Oros, A. Radačovská, Z. Čadková, and F. Marec. "Molecular cytogenetic analysis of a triploid population of the human broad tapeworm, *Dibothriocephalus latus* (Diphyllobothriidea)". en. In: *Parasitology* 148.7 (June 2021), pp. 787–797.

813

814

815 [84] W. H. A. Osterman, A. Hill, J. G. Hagan, J. Whitton, C. D. Bacon, and A. D. Bjorkman. "Rethinking
816 pathways to the dioecy–polyploidy association: Genera with many dioecious species have fewer polyploids". en. In: *American Journal of Botany* 111.8 (2024), e16318.

817

818 [85] S. P. Otto. "The Evolutionary Consequences of Polyploidy". In: *Cell* 131.3 (Nov. 2007), pp. 452–462.

819 [86] S. P. Otto and J. Whitton. "Polyploid Incidence and Evolution". en. In: *Annual Review of Genetics*
820 34. Volume 34, 2000 (Dec. 2000), pp. 401–437.

821 [87] J. Papadopoulou and A. C. Traintaphyllou. "Sex Differentiation in *Meloidogyne incognita* and Anatomical
822 Evidence of Sex Reversal". In: *Journal of Nematology* 14.4 (Oct. 1982), pp. 549–566.

823 [88] G.-M. Park, K.-I. Im, and T.-S. Yong. "Phylogenetic relationship of ribosomal ITS2 and mitochondrial
824 COI among diploid and triploid *Paragonimus westermani* isolates". English. In: *The
825 Korean Journal of Parasitology* 41.1 (Mar. 2003), pp. 47–55.

826 [89] R. Petkeviciute and B. Kuperman. "Karyological investigations of *Caryophyllaeus laticeps* (Pallas, 1781)
827 (Cestoda: Caryophyllidae)." In: *Folia parasitologica* 39.2 (1992), pp. 115–121.

828 [90] M. Pouillet, H. Konigopal, C. Rancurel, M. Sallaberry, C. Lopez-Roques, A. P. Z. Mota, J. Lledo, S.
829 Kiewnick, and E. G. J. Danchin. "High-fidelity annotated triploid genome of the quarantine root-knot
830 nematode, *Meloidogyne enterolobii*". en. In: *Scientific Data* 12.1 (Jan. 2025), p. 184.

831 [91] A. Radačovská, E. Bazsalovicsová, I. B. Costa, M. Orosová, A. Gustinelli, and I. Králová-Hromadová.
832 "Occurrence of *Dibothriocephalus latus* in European perch from Alpine lakes, an important focus of
833 diphyllobothriosis in Europe". In: *Revue suisse de Zoologie* 126.2 (Jan. 2020), pp. 219–225.

834 [92] A. Radačovská, E. Č. Bazsalovicsová, K. Šoltys, J. Štefka, G. Minárik, A. Gustinelli, J. K. Chugunova,
835 and I. Králová-Hromadová. "Unique genetic structure of the human tapeworm *Dibothriocephalus latus*
836 from the Alpine lakes region – a successful adaptation?" en. In: *Parasitology* 149.8 (July 2022), pp. 1106–
837 1118.

838 [93] A. Radačovská, E. Čisovská Bazsalovicsová, and I. Králová-Hromadová. "Mitochondrial and microsatellite
839 data show close genetic relationships between *Dibothriocephalus latus* from South America (Argentina)
840 and Europe (the Alpine lakes region)". en. In: *Parasitology Research* 121.12 (Dec. 2022), pp. 3635–3639.

841 [94] J. V. Ramanjaneyulu and R. Madhavi. "Cytological investigations on two species of allocereiid trematodes
842 with special reference to the occurrence of triploidy and parthenogenesis in *Allocereidium fasciatus*".
843 In: *International Journal for Parasitology* 14.3 (June 1984), pp. 309–316.

844 [95] J. Ramsey and D. W. Schemske. "Pathways, Mechanisms, and Rates of Polyploid Formation in Flowering
845 Plants". en. In: *Annual Review of Ecology, Evolution, and Systematics* 29 (Nov. 1998), pp. 467–501.

846 [96] C. Román-Palacios, C. A. Medina, S. H. Zhan, and M. S. Barker. "Animal chromosome counts reveal a
847 similar range of chromosome numbers but with less polyploidy in animals compared to flowering plants".
848 In: *Journal of Evolutionary Biology* 34.8 (Aug. 2021), pp. 1333–1339.

849 [97] W. Saijuntha, C. Tantrawatpan, B. R. Jarilla, T. Agatsuma, R. H. Andrews, and T. N. Petney. "Intron
850 sequence of the taurocyamine kinase gene as a marker to investigate genetic variation of *Paragonimus*
851 species in Japan and the origins of triploidy in *P. westermani*". In: *Transactions of The Royal Society of
852 Tropical Medicine and Hygiene* 110.1 (Jan. 2016), pp. 67–73.

853 [98] M. Salathé, R. D. Kouyos, R. R. Regoes, and S. Bonhoeffer. "Rapid Parasite Adaptation Drives Selection
854 for High Recombination Rates". In: *Evolution* 62.2 (Feb. 2008), pp. 295–300.

855 [99] D. Santos, I. Abrantes, and C. Maleita. "The quarantine root-knot nematode *Meloidogyne enterolobii* –
856 a potential threat to Portugal and Europe". en. In: *Plant Pathology* 68.9 (2019), pp. 1607–1615.

857 [100] H. Sato, K. Suzuki, A. Osanai, and M. Aoki. "Paragonimus westermani and Some Rare Intestinal
858 Trematodes Recovered from Raccoon Dogs (*Nyctereutes procyonoides viverrinus*) Introduced Recently
859 on Yakushima Island, Japan". In: *Journal of Veterinary Medical Science* 68.7 (2006), pp. 681–687.

860 [101] P. H. Schiffer, E. G. J. Danchin, A. M. Burnell, C. J. Creevey, S. Wong, I. Dix, G. O'Mahony, B. A.
861 Culleton, C. Rancurel, G. Stier, et al. "Signatures of the Evolution of Parthenogenesis and Cryptobiosis
862 in the Genomes of Panagrolaimid Nematodes". In: *iScience* 21 (Nov. 2019), pp. 587–602.

863 [102] E. R. Schockaert, M. Hooge, R. Sluys, S. Schilling, S. Tyler, and T. Artois. "Global diversity of free
864 living flatworms (Platyhelminthes, "Turbellaria") in freshwater". en. In: *Hydrobiologia* 595.1 (Jan. 2008),
865 pp. 41–48.

866 [103] T. Scholz and R. Kuchta. "Fish-borne, zoonotic cestodes (*Diphyllobothrium* and relatives) in cold cli-
867 mates: A never-ending story of neglected and (re)-emergent parasites". In: *Food and Waterborne Para-
868 sitology. Foodborne Parasites in Cold Climates* 4 (Sept. 2016), pp. 23–38.

869 [104] T. Scholz and R. Kuchta. "Fish tapeworms (Cestoda) in the molecular era: achievements, gaps and
870 prospects". en. In: *Parasitology* 149.14 (Dec. 2022), pp. 1876–1893.

871 [105] A. Schoonmaker, Y. Hao, D. M. Bird, and G. C. Conant. "A Single, Shared Triploidy in Three Species
872 of Parasitic Nematodes". In: *G3 Genes/Genomes/Genetics* 10.1 (Jan. 2020), pp. 225–233.

873 [106] T. Schwander, S. Vuilleumier, J. Dubman, and B. J. Crespi. "Positive feedback in the transition from
874 sexual reproduction to parthenogenesis". In: *Proceedings of the Royal Society B: Biological Sciences*
875 277.1686 (Jan. 2010), pp. 1435–1442.

876 [107] T. Shibahara. "Experimental infection of raccoon dogs with two types (diploid and triploid) of the lung
877 fluke, *Paragonimus westermani*". In: *Japanese Journal of Parasitology* 34.3 (1985), pp. 165–171.

878 [108] R. B. Short and M. Y. Menzel. "Chromosomes in parthenogenetic miracidia and embryonic cercariae of
879 *Schistosomatium douthitti*". In: *Experimental Parasitology* 8.3 (June 1959), pp. 249–264.

880 [109] S. K. Singh, M. Hodda, and G. J. Ash. "Plant-parasitic nematodes of potential phytosanitary importance,
881 their main hosts and reported yield losses". fr. In: *EPPO Bulletin* 43.2 (2013), pp. 334–374.

882 [110] C. D. Small, T. J. Benfey, and B. D. Crawford. *Tissue-Specific Compensatory Mechanisms Maintain
883 Tissue Architecture and Body Size Independent of Cell Size in Polyploid Zebrafish*. en. SSRN Scholarly
884 Paper. Rochester, NY, Nov. 2022.

885 [111] D. E. Soltis, R. J. Buggs, J. J. Doyle, and P. S. Soltis. "What we still don't know about polyploidy". en.
886 In: *Taxon* 59.5 (2010), pp. 1387–1403.

887 [112] M. Špakulová, M. Bombarová, D. Miklisová, S. Nechybová, and I. Langrová. "How to become a successful
888 invasive tapeworm: a case study of abandoned sexuality and exceptional chromosome diversification in
889 the triploid carp parasite *Atractolytocestus huronensis* Anthony, 1958 (Caryophyllidea: Lytostidae)".
890 In: *Parasites & Vectors* 12.1 (Apr. 2019), p. 161.

891 [113] M. Špakulová, M. Orosová, and J. S. Mackiewicz. "Chapter 3 - Cytogenetics and Chromosomes of Tape-
892 worms (Platyhelminthes, Cestoda)". In: *Advances in Parasitology*. Ed. by D. Rollinson and S. I. Hay.
893 Vol. 74. Academic Press, Jan. 2011, pp. 177–230.

894 [114] G. Stanevičiūtė and V. Kiseliénė. "Chromosome studies of *Ichthyocotylurus platycephalus* (Creplin, 1825)
895 Odening 1969 with description of triploid variant and comparative karyology of the genus *Ichthyocoty-
896 lurus*". en. In: *Parasite* 8.2 (June 2001), pp. 137–145.

897 [115] E. Suomalainen, A. Saura, and J. Lokki. "Evolution of Parthenogenetic Insects". en. In: *Evolutionary
898 Biology*. Ed. by M. Hecht, W. Steere, and B. Wallace. Boston, MA: Springer US, 1976.

899 [116] E. Suomalainen. "Parthenogenesis in Animals". en-US. In: *Advances in Genetics*. Vol. 3. Academic Press,
900 Jan. 1950, pp. 193–253.

901 [117] K. Terasaki, Y. Noda, T. Itagaki, T. Shibahara, K. Tsuchiya, K. Fukuda, Y. Inoue, M. Iwamura, and
902 A. Hino. "The rat-like hamster, *Tscherskia triton*, as a host for the parthenogenetic liver fluke *Fasciola*
903 sp." In: *Journal of Parasitology* 88.5 (2002), pp. 1035–1037.

904 [118] K. Terasaki, T. Itagaki, T. Shibahara, Y. Noda, and N. Moriyama-Gonda. "Comparative Study of the
905 Reproductive Organs of *Fasciola* Groups by Optical Microscope". In: *Journal of Veterinary Medical
906 Science* 63.7 (2001), pp. 735–742.

907 [119] K. Terasaki, N. Moriyama-Gonda, and Y. Noda. "Abnormal Spermatogenesis in the Common Liver Fluke
908 (Fasciola sp.) from Japan and Korea". In: *Journal of Veterinary Medical Science* 60.12 (1998), pp. 1305–
909 1309.

910 [120] K. Terasaki, Y. Noda, T. Shibahara, and T. Itagaki. "Morphological Comparisons and Hypotheses on
911 the Origin of Polyploids in Parthenogenetic *Fasciola* Sp". In: *Journal of Parasitology* 86.4 (Aug. 2000),
912 pp. 724–729.

913 [121] K. Terasaki, T. Shibahara, Y. Noda, and H. Kayano. "The Oocyte of Triploid Fluke Receiving Intrusion
914 of Sperm from a Diploid Fluke: Evidence for the Origin of Tetraploids in *Paragonimus westermani*". In:
915 *The Journal of Parasitology* 82.6 (1996), pp. 947–950.

916 [122] A. C. Triantaphyllou and H. Hirschmann. "Cytology of the *Heterodera trifolii* Parthenogenetic Species
917 Complex". en. In: *Nematologica* 24.4 (Jan. 1978), pp. 418–424.

918 [123] A. Triantaphyllou. "Further Studies on the Role of Polyploidy in the Evolution of *Meloidogyne*". In:
919 *Journal of Nematology* 23.2 (1991), pp. 249–253.

920 [124] Y. Van de Peer, T.-L. Ashman, P. S. Soltis, and D. E. Soltis. "Polyploidy: an evolutionary and ecological
921 force in stressful times". In: *The Plant Cell* 33.1 (Jan. 2021), pp. 11–26.

922 [125] L. I. Villegas, L. Ferretti, T. Wiehe, A.-M. Waldvogel, and P. H. Schiffer. "Parthenogenomics: Insights on
923 mutation rates and nucleotide diversity in parthenogenetic *Panagrolaimus* nematodes". en. In: *Ecology
924 and Evolution* 14.1 (2024), e10831.

925 [126] G. Vogt. "Facilitation of environmental adaptation and evolution by epigenetic phenotype variation:
926 insights from clonal, invasive, polyploid, and domesticated animals". In: *Environmental Epigenetics* 3.1
927 (Jan. 2017), p. dvx002.

928 [127] W. Wang, L. Wang, and Y.-S. Liang. "Susceptibility or resistance of praziquantel in human schistosomiasis:
929 a review". en. In: *Parasitology Research* 111.5 (Nov. 2012), pp. 1871–1877.

930 [128] J. E. Weatherhead, P. J. Hotez, and R. Mejia. "The Global State of Helminth Control and Elimination in
931 Children". In: *Pediatric Clinics of North America. Global Infections and Child Health* 64.4 (Aug. 2017),
932 pp. 867–877.

933 [129] B. Wertheim, L. Beukeboom, and L. van de Zande. "Polyploidy in Animals: Effects of Gene Expression
934 on Sex Determination, Evolution and Ecology". In: *Cytogenetic and Genome Research* 140.2-4 (June
935 2013), pp. 256–269.

936 [130] J. E. Wright, M. Werkman, J. C. Dunn, and R. M. Anderson. "Current epidemiological evidence for
937 predisposition to high or low intensity human helminth infection: a systematic review". en. In: *Parasites
938 & Vectors* 11.1 (Jan. 2018), p. 65.

939 [131] L. Zhang and C. E. King. "Life history divergence of sympatric diploid and polyploid populations of
940 brine shrimp *Artemia parthenogenetica*". en. In: *Oecologia* 93.2 (Mar. 1993), pp. 177–183.

941 [132] S. M. Ziętara, J. Kuusela, and J. Lumme. "Escape from an evolutionary dead end: a triploid clone of
942 *Gyrodactylus salaris* is able to revert to sex and switch host (Platyhelminthes, Monogenea, Gyrodactylidae)". en. In: *Hereditas* 143.2006 (2006), pp. 84–90.