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ABSTRACT
Many plant species show chemical polymorphisms regarding the composition of specialized

metabolites belonging to certain chemical families. This led to the classification of
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chemotypes, that is, groups of plants that can be distinguished by their chemical profiles of
metabolites within one chemical family. We present existing definitions and approaches for
classifying chemotypes, and describe factors determining them. We argue that it should
always be made explicit on which organ the chemotype specification is based, because
chemical profiles can differ among organs. Moreover, the chemical family needs to be
explicitly stated, as plants may be grouped differently when other metabolites are taken into
account. We argue that gaining more knowledge on chemotypes is of high relevance for

basic and applied science.

MAIN TEXT

Chemotypes and their terminology

Within various species, different chemotypes can be distinguished. These chemotypes are
based on distinct profiles expressed within certain biochemical pathways, or chemical
families. The term “chemotype” was first used for a Drosophila mutant lacking xanthine
dehydrogenase activity, leading to a maroon eye color [1]. The term has also been used for
bacteria, such as Salmonella typhi strains, that either can or cannot attack D(+)-xylose [2].
However, these early examples refer to the presence or absence of an enzyme, rather than
profiles of certain chemical families. In plants, the German term “Chemische Rassen’
(chemical races) was introduced to distinguish individuals of medicinal plants or crops with
different profiles of essential oils, for example, in Tanacetum vulgare [3] or Daucus carota [4],
or in phenylpropanoid derivatives, found in Petroselinum [5]. The German term “chemische
Sippen” (chemical clans) was applied to differentiate between chemotypes of Solanum
dulcamara differing in steroidal alkaloid and sapogenin profiles during fruit development [6].
Other famous examples of chemotypes are the distinct occurrence of steroidal lactones in
Withania somnifera [7], of pyrrolizidine alkaloids in Senecio species [8], of glucosinolates in
different Brassicaceae [9-11], and of essential oils in various spices, such as Thymus [12], in
which dominant monoterpenoids cause a distinct smell and taste. In other plant species, the

complex interplay between both substrates and enzymes determines the presence of toxic
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metabolites, such as in Trifolium species that can be cyanogenic or not, giving rise to the
term “cyanotypes” [13]. Similar terms such as “chemovarieties” [14] or “chemical phenotypes”
[15] have been used as well. Chemical differences can also coincide with morphological
differences, which led to using the term “morphochemotypes”, such as in Annona emarginata
[16]. The term “metabotype” was coined to describe distinct metabolic phenotypes that refer
to numerous metabolites of different families, explored in untargeted metabolic fingerprinting

approaches [17]. The diversity of terms and meanings calls for a more unified terminology.

Assignment of chemotypes

Various approaches are used to assign chemotypes. Often, the percentage of a major
metabolite in relation to all metabolites of that chemical family is considered. For example, in
T. vulgare, “mono-chemotypes”, in which the main terpenoid accounts for 41-99 % of the
profile, are distinguished from “mixed chemotypes”, in which one to three additional (satellite)
terpenoids contribute to this amount [18]. Alternatively, different statistical methods taking all
metabolites within a chemical family into account can be applied. For example, using
hierarchical cluster analysis, 21 chemotypes of T. vulgare were detected across Europe and
North America [19]. Using a similar approach, 121 cultivars of Piper methysticum were
assigned to six chemotypes [20]. Using principal component analysis (PCA), steroidal
glycoside chemotypes were determined for S. dulcamara [21], cannabinoid chemotypes for
commercial Cannabis samples [15], and essential oil chemotypes in Crithmum maritimum
[22]. With non-metric multidimensional scaling (NMDS), glucosinolate chemotypes in
Arabidopsis halleri and Bunias orientalis were discriminated [10, 11]. Finally, heatmaps can
be used to depict differences among chemical families in chemotypes or metabotypes [17,
23]. The use of different classification methods may result in chemotypes being assigned
differently. Polatoglu [14] proposed a nomenclature where the frequency of chemotype
occurrence in a given location is also considered. This requires the full sampling of all
individuals within this given population and limits comparisons with other populations.

Moreoevere, the chemotype composition can also vary substantially among populations [24,
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25]. In order to stringently assign chemotypes, ideally multiple populations should be
screened completely. Considering that this is not possible, splitting the available dataset into
training, testing and validation sets, can help to identify robust chemotypes [26]. This
procedure would also prevent overfitting by the models that are used. While all methods are

legitimate, it should always be clearly stated how chemotypes were determined.

Determinants of an individual’s chemotype

The chemotype of each individual is determined by several internal and external factors (Fig.
1), with the (epi)genome being central. Only if the gene coding for a specific transcription
factor or an enzyme involved in the biosynthesis of a particular metabolite is present,
transcribed, and functional, the metabolite can be produced [27, 28]. Whereas there is
evidence for epigenetic regulation in specialized metabolism, for example, for terpenoid
biosynthesis in Arabidopsis thaliana and monoterpene indole alkaloid synthesis in
Cantharanthus roseus [28], little is known about how epigenetic regulation may contribute to
chemotype formation. The second internal layer determining chemotypes is the plant’s
physiology. Genes involved in metabolite synthesis may show chemotype- [29] as well as
organ-specific expression patterns [30]. For example, in Senecio vulgaris pyrrolizidine
alkaloids are synthesized in the roots and transported to the shoots [31]. For glucosinolates,
the typical defenses of Brassicaceae, there are specific transporter proteins which are
responsible for the allocation of different classes of glucosinolates across the plant [32].
Other metabolites are emitted into the air or into the rhizosphere, which is likewise regulated
by (specific) transporter proteins [33, 34]. Next to transport, storage is important. Many
metabolites are stored in specific cells or structures, such as terpenoids in trichomes [35], or
glucosinolates or alkaloids in the vacuoles [31, 36].

These internal physiological processes are further modulated by external abiotic and biotic
factors. For example, temperature, water stress, and ultraviolet (UV) light are all known to
elicit the production of specific metabolites that should reduce damage to the plant, such as

proline after drought [37], and phenolics in response to UV exposure [38]. Similarly, attacks
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by herbivores or pathogens can trigger induced defense responses that affect the plant’s
metabolome [39]. Such environmental factors, alone or in combination, may promote the
biosynthesis of particular metabolites within a chemical family. For instance, drought and
herbivory induce indole glucosinolates in Arabidopsis thaliana [40]. When unnoticed,
differences in the intensity of such challenges may lead to chemotype assignments that are
not visible or robust under all environmental conditions.

Finally, plant metabolomes may be affected by temporal processes, such as time of day,
ontogeny, and the season. In particular, plant volatile emissions vary over the day, due to the
availability of sunlight, or due to the availability of mutualists, such as pollinators [41]. Across
ontogeny, the expression of genes and the resulting glycoalkaloid chemotype of S.
dulcamara plants differed between vegetative and flowering stages [42]. Shifts in
chemotypes have also been found between juvenile and mature leaves of Musa spp. [23]
and across the season in Conyza bonariensis [43]. Despite these various influences on plant

chemical profiles, individual chemotypes commonly remain distinguishable [3, 44, 45].

Differences within chemical families among organs

Chemotypes are usually determined based on the metabolite composition of one organ, most
often the leaves. However, more in-depth studies revealed that the metabolite profiles within
a chemical family can differ among organs. For example, Barbarea vulgaris has two
chemotypes based on leaf composition, one dominated by 2-phenylethylglucosinolate (NAS
type), the other by the hydroxylated form, (S)-2-hydroxy-2-phenylethylglucosinolate (BAR-
type) [9]. Within each chemotype, this respective glucosinolate also dominates in the seeds
and flowers. In contrast, both glucosinolates occur in comparable amounts in the roots of
BAR-type plants, meaning that chemotypes can no longer be distinguished there. In T.
vulgare, several chemotypes are distinguishable by their leaf monoterpenoid profiles, which
are mostly also reflected in the flower heads [46], while the profiles are very distinct in the
roots. In roots, fewer terpenoids, mostly sesquiterpenoids, and no separation into distinct

clusters are found [47, 48] (Fig. 2A). This may be due to the distinct localization of the
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respective biosynthetic pathways: while monoterpenoid biosynthesis is mostly taking place in
the plastids, sesquiterpenoids are formed in the cytosol [49]. In addition to the biosynthetic
machinery, the eco-physiological function of different terpenoids may determine this
allocation pattern; monoterpenoids are more volatile than sesquiterpenoids, and therefore
better suited to mediate interactions with other organisms in the air than in the soil, and vice
versa. Differences in terpenoid profiles between organs were also found in other species,
such as Smyrnium olusatrum [50] and Limoniastrum guyonianum [51]. In these species, the
term chemotype was even used to distinguish between the profiles of these organs within
individuals. Different steroidal glycoside chemotypes could also be determined in S.
dulcamara, with striking differences among leaves [45], but less in roots [52] (Fig. 2B). Even
within an organ, the metabolite composition can differ, as revealed for terpenoid profiles
across different root sections in a metabolic atlas for T. vulgare [53]. Similarly, root parts of
Brassica species differed in their glucosinolate profiles, with 2-phenylethylglucosinolate
dominating the profile of tap roots, whereas indole glucosinolates were more prominent in the
fine roots [54]. These findings underscore the need to explicitly state on which organ or plant

part the chemotype assignment is based.

Differences within organs between chemical families

A largely neglected aspect is that even within organs potentially distinct chemotypes can be
found, depending on which chemical family is considered. Using an existing metabolomics
dataset from leaves of five terpenoid chemotypes of T. vulgare [55], we show that these
chemotypes could also be predicted from alkaloids and fatty acids with over 70% accuracy
(Fig. 3A). Moreover, fatty acids predicted alkaloid and flavonoid clusters, and vice versa,
revealing strong cross-family co-variation. Despite these high levels of co-variation, the same
chemical families can define additional and (partially) independent chemotypes in the same
organ. For example, cluster analyses revealed different numbers of chemotypes if alkaloids
(three), fatty acids (four) or flavonoids (four) were considered, compared to the five terpenoid

chemotype clusters (Fig. 3B-D).
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Overall, an organ’s chemistry reflects the integrated interplay of multiple chemotypes whose
chemical building blocks co-vary to some extent. This may be explained by different gene
expression patterns and transcription factors regulating distinct biosynthetic pathways in
parallel [56]. Genes coding for different chemical families may also be located on different
chromosomes. In tomato, the GlycoAlkaloid MEtabolism (GAME) genes, involved in the
synthesis of steroidal glycoalkaloids, are clustered on two chromosomes [57], while the
genes coding for terpenoid synthases are clustered on five other chromosomes [58]. This
means that chemotypes in these two chemical families may evolve independently of each
other, and that alkaloid chemotypes may not predict terpenoid chemotypes very well. At the
same time, some chemical families are closely linked via shared biosynthetic pathways, for
example terpene indole-alkaloids in Catharantus roseus [59]. Under such conditions, it may
be more likely that terpenoid chemotypes can be predicted by alkaloid chemotypes.
However, little is known on the underlying mechanisms of co-variation or coupling versus

decoupling of chemotype formation, highlighting the need for more research in this direction.

The how and why of differences in chemotypes

A central premise of evolutionary theory is that selection acts on the phenotype. Considering
that plant metabolites are important for interactions with the environment, these interactions
likely contribute to the emergence and maintenance of chemodiversity [60, 61] and diverse
chemotypes within plant species. Both abiotic and biotic factors vary over time and space,
which may also explain the above-mentioned differences among organs and life stages.
Roots grow in the dark and dense soil, where they are confronted with a large diversity of
beneficial and harmful micro- and macro-organisms in the rhizosphere [54]. The
physicochemical properties of soils may impact the types of metabolites that perform best.
For example, 2-phenylethylglucosinolate, which is particularly prominent in Brassica tap root
profiles [54], yields breakdown products that are less volatile and more toxic in solid medium
than those of other glucosinolates that are more prominent in leaves [62]. Thus, the distinct

root and shoot chemical profiles may well result from differential selection pressures exerted
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by different organisms. Interactions also vary over ontogeny, in particular when plants start to
flower and pollinators must be attracted, again modulating plant chemistry [48].

Selection pressures also vary over larger spatial and temporal scales. This variation may
contribute to the maintenance of different chemotypes within a plant species. In particular
wind- or bird-dispersed seeds may germinate far away from their mother plant, where
environmental conditions may be completely different. If all plants were of the same
chemotype, the species may fail in establishing itself. For example, different herbivore
spectra were found on different chemotypes of T. vulgare and S. dulcamara within
populations, with some being more, some less resistant to certain herbivore species [21, 63].
Because the frequency of these species can vary in time and space, having multiple
chemotypes enhances the chances of survival of the species. Also, associational resistance

may reduce herbivore pressure if plants of different chemotypes grow in close proximity [63].

Relevance of chemotypes in applied fields

Distinguishing among chemotypes within a species depicts an important part of
chemodiversity. Next to its ecological consequences, chemotypic variation is also of high
relevance from an applied perspective. The exact chemical composition and chemotype of a
plant are, for example, important for their medicinal value. The different chemotypes for
cannabinoids and terpenoids of Cannabis determine their psycho-activity [15] while
chemotypes of W. somnifera differing in their composition of whitanolides and other
metabolites differ in their pharmacological activity [30]. Likewise, chemotypes need to be
considered for plants potentially used as pesticides. For example, in Tephrosia vogelii only
the chemotype containing rotenoids is bioactive against insects [64].

The chemical profiles of crop plants determine their value as human food or animal feed as
well as their level of resistance to herbivores and pathogens. Sometimes these aspects may
conflict. Metabolites acting as defenses against pests can also render the crop unpalatable
and even toxic. Therefore, crop breeders have selected certain chemotypes with low levels

of these metabolites. An example are the double zero canola (Brassica napus) varieties,
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which were bred to have low erucic acid and glucosinolate levels, turning the oil safe for
human consumption and the meal for animal feed [65]. At the same time, these varieties are
more susceptible to slug herbivory than their wild relatives with higher levels of
glucosinolates [66]. Chemodiversity has also dropped inadvertently, leading to higher
susceptibility to antagonists. For example, most American maize varieties lost the ability to
produce E-B-caryophyllene in their roots, which reduced their ability to attract
entomopathogenic nematodes to herbivore-damaged roots [67]. In view of growing concerns
regarding pesticide toxicity and resistance development in pest organisms [68], older
chemotypes or landraces should be revisited to breed pest-resistant plants. This not only
requires knowledge of the efficacy of different chemical families [69], but also knowledge on
the genetic and regulatory mechanisms determining chemotypes, including temporal and
spatial allocation patterns of metabolites within crops.

Besides, exploring chemodiversity through chemotypes represents a step forward in efforts
to preserve chemical functions in ecosystems. In an ecosystem, the distribution of chemical
families, and therefore chemotypes, is linked to the identity and coverage of plant species
and to the environment [70]. Understanding and, ultimately, predicting loss or gain of
chemotypes under climate change is another dimension and objective for preserving

ecosystem services and protect biodiversity.

Concluding remarks

Overall, the chemotype concept is useful, as it helps us to analyze how chemotypes emerge
and are maintained in natural plant populations, what roles they play in wild and cultivated
plant species and how chemotype variation may enhance resilience of plant populations.
Explicit mentioning of the organ, the chemical family, and the (statistical) method on which
the chemotype is defined is needed. Otherwise, one is left with the question what a

chemotype is anyway.
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431 Figure 1: Intrinsic and external factors together determine the observed chemotype of an
432 individual plant. From the inside out: 1) the (epi)genome determines whether a functional
433  gene or transcription factor is coded for and can be transcribed; 2) the plant’s internal
434  physiological program determines organ-specific metabolite biosynthesis, transport, and
435 storage; 3) the abiotic and biotic environment determine whether specific genes and

436 metabolites are upregulated in response to stressors, and 4) time causes diurnal,

437 ontogenetic, and seasonal variation in the metabolic profiles of plants. This means that
438 chemotypes must be chosen such that they can be consistently identified accounting for
439 additional levels of variation. Exp.: expression.

440
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Figure 2: Organ-specific relative composition of A. stored terpenoids (extracted with n-
heptane and analyzed with GC-MS) in three leaf-terpenoid-chemotypes of Tanacetum
vulgare dominated either by artemisia ketone (Keto), a- and B-thujone (afThu), or a mixture
of Z-myroxide, artemisyl acetate, and santolina triene (Myrox) (data redrawn from [48],
average of 10-11 replicates per chemotype), and B. of steroidal glycosides (extracted with
water:methanol 3:1 and analyzed with LC-QToF-MS) in three accessions of Solanum
dulcamara (samples of clones from accessions mentioned in [45], average of 3 replicates).

Unknw. ST — unknown sesquiterpene.
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Figure 3: Predictability of different leaf chemotypes using various chemical families in
Tanacetum vulgare. A. Average capacity of different chemical families (in black) to predict
distinct chemotypes (in red). For instance, the first column of the matrix represents the
average accuracy of terpenoid chemotypes prediction using alkaloids, fatty acids and
flavonoids. The bottom line represents additional predictions of terpenoid chemotypes using
other chemical families. Average model accuracy was defined on 500 generalized linear
models to predict terpenoid chemotype and 100 models for the other chemical families, as
previously described [26]. To test the likelihood of spurious predictions, 500 permuted
datasets, where chemotypes were randomly swapped among samples, were created.
Numbers between parentheses represent the number of chemical features in the
corresponding chemical family. Terpenoid chemotypes, defined using GC-MS data, were
predicted from LC-MS data from [26]. B-D. Clusters defined by different chemical families (B:
alkaloids, C: fatty acids, D: flavonoids) and link with terpene chemotypes (second column in
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each heatmap, five leaf-terpene chemotypes). Data from 181 plants, leaves collected in the
field, extracted in 90% methanol (v:v) and analyzed by UHPLC-QToF-MS/MS (data from [55]

reanalyzed). For details see Supplement 1.
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SUPPLEMENT 1

To investigate covariations among chemical families and to study the existence of other
chemotypes in Tanacetum vulgare (see main manuscript, Fig. 3), we used an existing LC-MS
dataset comprising leaf analysis from 181 plants belonging to five distinct terpenoid
chemotypes [1]. Raw data were re-processed on a newer version of the R-ReX 3D algorithm
of Metaboscape (v. 2021b, Bruker Daltonics) with the same parameters (intensity threshold
1000, minimum peak length 11, maxsum method). Raw intensities were normalized by the
area of the internal standard hydrocortisone and sample weight, and similar data cleaning was
performed (average quality control intensity higher than five times the blank average, features
in @ minimum of two samples). The pre-processed LC-MS dataset was then normalized using
median normalization, cube root transformation, and Pareto scaling using MetaboAnalyst (v.
6) [2], as previously described [1]. Metabolite structure and chemical class predictions were
obtained using CSI:FingerID and CANOPUS with the Natural Products Classifier (NPC)
ontology [3]. As previously recommended [4], classifications were excluded if the classification
approximate score was lower than 0.8. Chemical families including at least 5% of MSMS
chemical features (i.e., at least 46 features) were subjected to modelling and clustering
analyses. Generalized linear models (GLM) were performed to assess the capacity of different
chemical families (e.g., flavonoids) to predict distinct chemotypes (e.g., terpenoid or fatty acids
chemotypes). Models were developed using the gimnet package [5, 6] as previously described
[1, 7]. Briefly, the dataset was divided using stratified sampling into a training set (70%) and a
validation set (20%), while real predictions were performed on the testing set (10%). For each
modelling condition predicting terpenoid chemotypes (e.g., using fatty acids), 500 models were
created, and the average accuracy (real chemotype versus predicted chemotype) was
calculated. To limit the ecological impact of such models, 100 models were run to measure the
predictive accuracy for other clusters (e.g., predicting fatty acid cluster). In addition, 500
permuted datasets, in which chemotypes were randomly swapped between samples, were
used to test the likelihood of spurious predictions. To explore whether leaves contain additional
clusters based on chemical families other than terpenoids, we used the factoextra package on
R (v. 4.5.1) [8, 9]. The optimal number of clusters was defined using the ‘gap_stat’ method as
the first cluster preceding a stabilisation of the gap statistic (k). We proposed a visualisation of
the tree chemical families (fatty acids, alkaloids and flavonoids) that showed the clearest
clustering through heatmaps designed using the pheatmap package [10]. Figures were

designed with ggplot2 [11].
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