

1 **What is a plant chemotype anyway?**

2

3 **Caroline Müller^{1,2*}, Thomas Dussarrat¹, Nicole M. van Dam^{3,4}**

4 ¹Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany

5 ²Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster
6 and Bielefeld University, Bielefeld, Germany

7 ³Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979
8 Großbeeren, Germany

9 ⁴Institute of Biodiversity, Ecology and Evolution (IBEE), Dornburgerstraße 159, 07743 Jena,
10 Germany

11

12 * Correspondence:

13 caroline.mueller@uni-bielefeld.de (C. Müller)

14 https://www.uni-bielefeld.de/fakultaeten/biologie/forschung/arbeitsgruppen/chem_eco/

15

16 Orcid-IDs:

17 Caroline Müller - <https://orcid.org/0000-0002-8447-534X>

18 Thomas Dussarrat - <https://orcid.org/0000-0001-6245-3652>

19 Nicole M. van Dam - <https://orcid.org/0000-0003-2622-5446>

20

21

22 **KEYWORDS**

23 Chemical family, chemodiversity, chemotype, intraspecific variation, organ-specificity,

24 metabolomics

25

26 **ABSTRACT**

27 Many plant species show chemical polymorphisms regarding the composition of specialized
28 metabolites belonging to certain chemical families. This led to the classification of

29 chemotypes, that is, groups of plants that can be distinguished by their chemical profiles of
30 metabolites within one chemical family. We present existing definitions and approaches for
31 classifying chemotypes, and describe factors determining them. We argue that it should
32 always be made explicit on which organ the chemotype specification is based, because
33 chemical profiles can differ among organs. Moreover, the chemical family needs to be
34 explicitly stated, as plants may be grouped differently when other metabolites are taken into
35 account. We argue that gaining more knowledge on chemotypes is of high relevance for
36 basic and applied science.

37

38 **MAIN TEXT**

39 **Chemotypes and their terminology**

40 Within various species, different chemotypes can be distinguished. These chemotypes are
41 based on distinct profiles expressed within certain biochemical pathways, or chemical
42 families. The term “chemotype” was first used for a *Drosophila* mutant lacking xanthine
43 dehydrogenase activity, leading to a maroon eye color [1]. The term has also been used for
44 bacteria, such as *Salmonella typhi* strains, that either can or cannot attack D(+)-xylose [2].
45 However, these early examples refer to the presence or absence of an enzyme, rather than
46 profiles of certain chemical families. In plants, the German term “*Chemische Rassen*”
47 (chemical races) was introduced to distinguish individuals of medicinal plants or crops with
48 different profiles of essential oils, for example, in *Tanacetum vulgare* [3] or *Daucus carota* [4],
49 or in phenylpropanoid derivatives, found in *Petroselinum* [5]. The German term “chemische
50 Sippen” (chemical clans) was applied to differentiate between chemotypes of *Solanum*
51 *dulcamara* differing in steroidal alkaloid and sapogenin profiles during fruit development [6].
52 Other famous examples of chemotypes are the distinct occurrence of steroidal lactones in
53 *Withania somnifera* [7], of pyrrolizidine alkaloids in *Senecio* species [8], of glucosinolates in
54 different Brassicaceae [9-11], and of essential oils in various spices, such as *Thymus* [12], in
55 which dominant monoterpenoids cause a distinct smell and taste. In other plant species, the
56 complex interplay between both substrates and enzymes determines the presence of toxic

57 metabolites, such as in *Trifolium* species that can be cyanogenic or not, giving rise to the
58 term “cyanotypes” [13]. Similar terms such as “chemovarieties” [14] or “chemical phenotypes”
59 [15] have been used as well. Chemical differences can also coincide with morphological
60 differences, which led to using the term “morphochemotypes”, such as in *Annona emarginata*
61 [16]. The term “metabotype” was coined to describe distinct metabolic phenotypes that refer
62 to numerous metabolites of different families, explored in untargeted metabolic fingerprinting
63 approaches [17]. The diversity of terms and meanings calls for a more unified terminology.

64

65 **Assignment of chemotypes**

66 Various approaches are used to assign chemotypes. Often, the percentage of a major
67 metabolite in relation to all metabolites of that chemical family is considered. For example, in
68 *T. vulgare*, “mono-chemotypes”, in which the main terpenoid accounts for 41-99 % of the
69 profile, are distinguished from “mixed chemotypes”, in which one to three additional (satellite)
70 terpenoids contribute to this amount [18]. Alternatively, different statistical methods taking all
71 metabolites within a chemical family into account can be applied. For example, using
72 hierarchical cluster analysis, 21 chemotypes of *T. vulgare* were detected across Europe and
73 North America [19]. Using a similar approach, 121 cultivars of *Piper methysticum* were
74 assigned to six chemotypes [20]. Using principal component analysis (PCA), steroidial
75 glycoside chemotypes were determined for *S. dulcamara* [21], cannabinoid chemotypes for
76 commercial *Cannabis* samples [15], and essential oil chemotypes in *Crithmum maritimum*
77 [22]. With non-metric multidimensional scaling (NMDS), glucosinolate chemotypes in
78 *Arabidopsis halleri* and *Bunias orientalis* were discriminated [10, 11]. Finally, heatmaps can
79 be used to depict differences among chemical families in chemotypes or metabotypes [17,
80 23]. The use of different classification methods may result in chemotypes being assigned
81 differently. Polatoğlu [14] proposed a nomenclature where the frequency of chemotype
82 occurrence in a given location is also considered. This requires the full sampling of all
83 individuals within this given population and limits comparisons with other populations.
84 Moreoever, the chemotype composition can also vary substantially among populations [24],

85 25]. In order to stringently assign chemotypes, ideally multiple populations should be
86 screened completely. Considering that this is not possible, splitting the available dataset into
87 training, testing and validation sets, can help to identify robust chemotypes [26]. This
88 procedure would also prevent overfitting by the models that are used. While all methods are
89 legitimate, it should always be clearly stated how chemotypes were determined.

90

91 **Determinants of an individual's chemotype**

92 The chemotype of each individual is determined by several internal and external factors (Fig.
93 1), with the (epi)genome being central. Only if the gene coding for a specific transcription
94 factor or an enzyme involved in the biosynthesis of a particular metabolite is present,
95 transcribed, and functional, the metabolite can be produced [27, 28]. Whereas there is
96 evidence for epigenetic regulation in specialized metabolism, for example, for terpenoid
97 biosynthesis in *Arabidopsis thaliana* and monoterpene indole alkaloid synthesis in
98 *Cantharanthus roseus* [28], little is known about how epigenetic regulation may contribute to
99 chemotype formation. The second internal layer determining chemotypes is the plant's
100 physiology. Genes involved in metabolite synthesis may show chemotype- [29] as well as
101 organ-specific expression patterns [30]. For example, in *Senecio vulgaris* pyrrolizidine
102 alkaloids are synthesized in the roots and transported to the shoots [31]. For glucosinolates,
103 the typical defenses of Brassicaceae, there are specific transporter proteins which are
104 responsible for the allocation of different classes of glucosinolates across the plant [32].
105 Other metabolites are emitted into the air or into the rhizosphere, which is likewise regulated
106 by (specific) transporter proteins [33, 34]. Next to transport, storage is important. Many
107 metabolites are stored in specific cells or structures, such as terpenoids in trichomes [35], or
108 glucosinolates or alkaloids in the vacuoles [31, 36].
109 These internal physiological processes are further modulated by external abiotic and biotic
110 factors. For example, temperature, water stress, and ultraviolet (UV) light are all known to
111 elicit the production of specific metabolites that should reduce damage to the plant, such as
112 proline after drought [37], and phenolics in response to UV exposure [38]. Similarly, attacks

113 by herbivores or pathogens can trigger induced defense responses that affect the plant's
114 metabolome [39]. Such environmental factors, alone or in combination, may promote the
115 biosynthesis of particular metabolites within a chemical family. For instance, drought and
116 herbivory induce indole glucosinolates in *Arabidopsis thaliana* [40]. When unnoticed,
117 differences in the intensity of such challenges may lead to chemotype assignments that are
118 not visible or robust under all environmental conditions.

119 Finally, plant metabolomes may be affected by temporal processes, such as time of day,
120 ontogeny, and the season. In particular, plant volatile emissions vary over the day, due to the
121 availability of sunlight, or due to the availability of mutualists, such as pollinators [41]. Across
122 ontogeny, the expression of genes and the resulting glycoalkaloid chemotype of *S.*
123 *dulcamara* plants differed between vegetative and flowering stages [42]. Shifts in
124 chemotypes have also been found between juvenile and mature leaves of *Musa* spp. [23]
125 and across the season in *Conyza bonariensis* [43]. Despite these various influences on plant
126 chemical profiles, individual chemotypes commonly remain distinguishable [3, 44, 45].

127

128 **Differences within chemical families among organs**

129 Chemotypes are usually determined based on the metabolite composition of one organ, most
130 often the leaves. However, more in-depth studies revealed that the metabolite profiles within
131 a chemical family can differ among organs. For example, *Barbarea vulgaris* has two
132 chemotypes based on leaf composition, one dominated by 2-phenylethylglucosinolate (NAS
133 type), the other by the hydroxylated form, (S)-2-hydroxy-2-phenylethylglucosinolate (BAR-
134 type) [9]. Within each chemotype, this respective glucosinolate also dominates in the seeds
135 and flowers. In contrast, both glucosinolates occur in comparable amounts in the roots of
136 BAR-type plants, meaning that chemotypes can no longer be distinguished there. In *T.*
137 *vulgare*, several chemotypes are distinguishable by their leaf monoterpenoid profiles, which
138 are mostly also reflected in the flower heads [46], while the profiles are very distinct in the
139 roots. In roots, fewer terpenoids, mostly sesquiterpenoids, and no separation into distinct
140 clusters are found [47, 48] (Fig. 2A). This may be due to the distinct localization of the

141 respective biosynthetic pathways: while monoterpenoid biosynthesis is mostly taking place in
142 the plastids, sesquiterpenoids are formed in the cytosol [49]. In addition to the biosynthetic
143 machinery, the eco-physiological function of different terpenoids may determine this
144 allocation pattern; monoterpenoids are more volatile than sesquiterpenoids, and therefore
145 better suited to mediate interactions with other organisms in the air than in the soil, and *vice*
146 *versa*. Differences in terpenoid profiles between organs were also found in other species,
147 such as *Smyrnium olusatrum* [50] and *Limoniastrum guyonianum* [51]. In these species, the
148 term chemotype was even used to distinguish between the profiles of these organs within
149 individuals. Different steroidal glycoside chemotypes could also be determined in *S.*
150 *dulcamara*, with striking differences among leaves [45], but less in roots [52] (Fig. 2B). Even
151 within an organ, the metabolite composition can differ, as revealed for terpenoid profiles
152 across different root sections in a metabolic atlas for *T. vulgare* [53]. Similarly, root parts of
153 *Brassica* species differed in their glucosinolate profiles, with 2-phenylethylglucosinolate
154 dominating the profile of tap roots, whereas indole glucosinolates were more prominent in the
155 fine roots [54]. These findings underscore the need to explicitly state on which organ or plant
156 part the chemotype assignment is based.

157

158 **Differences within organs between chemical families**

159 A largely neglected aspect is that even within organs potentially distinct chemotypes can be
160 found, depending on which chemical family is considered. Using an existing metabolomics
161 dataset from leaves of five terpenoid chemotypes of *T. vulgare* [55], we show that these
162 chemotypes could also be predicted from alkaloids and fatty acids with over 70% accuracy
163 (Fig. 3A). Moreover, fatty acids predicted alkaloid and flavonoid clusters, and *vice versa*,
164 revealing strong cross-family co-variation. Despite these high levels of co-variation, the same
165 chemical families can define additional and (partially) independent chemotypes in the same
166 organ. For example, cluster analyses revealed different numbers of chemotypes if alkaloids
167 (three), fatty acids (four) or flavonoids (four) were considered, compared to the five terpenoid
168 chemotype clusters (Fig. 3B-D).

169 Overall, an organ's chemistry reflects the integrated interplay of multiple chemotypes whose
170 chemical building blocks co-vary to some extent. This may be explained by different gene
171 expression patterns and transcription factors regulating distinct biosynthetic pathways in
172 parallel [56]. Genes coding for different chemical families may also be located on different
173 chromosomes. In tomato, the GlycoAlkaloid MEtabolism (GAME) genes, involved in the
174 synthesis of steroidal glycoalkaloids, are clustered on two chromosomes [57], while the
175 genes coding for terpenoid synthases are clustered on five other chromosomes [58]. This
176 means that chemotypes in these two chemical families may evolve independently of each
177 other, and that alkaloid chemotypes may not predict terpenoid chemotypes very well. At the
178 same time, some chemical families are closely linked via shared biosynthetic pathways, for
179 example terpene indole-alkaloids in *Catharanthus roseus* [59]. Under such conditions, it may
180 be more likely that terpenoid chemotypes can be predicted by alkaloid chemotypes.
181 However, little is known on the underlying mechanisms of co-variation or coupling versus
182 decoupling of chemotype formation, highlighting the need for more research in this direction.
183

184 **The how and why of differences in chemotypes**

185 A central premise of evolutionary theory is that selection acts on the phenotype. Considering
186 that plant metabolites are important for interactions with the environment, these interactions
187 likely contribute to the emergence and maintenance of chemodiversity [60, 61] and diverse
188 chemotypes within plant species. Both abiotic and biotic factors vary over time and space,
189 which may also explain the above-mentioned differences among organs and life stages.
190 Roots grow in the dark and dense soil, where they are confronted with a large diversity of
191 beneficial and harmful micro- and macro-organisms in the rhizosphere [54]. The
192 physicochemical properties of soils may impact the types of metabolites that perform best.
193 For example, 2-phenylethylglucosinolate, which is particularly prominent in *Brassica* tap root
194 profiles [54], yields breakdown products that are less volatile and more toxic in solid medium
195 than those of other glucosinolates that are more prominent in leaves [62]. Thus, the distinct
196 root and shoot chemical profiles may well result from differential selection pressures exerted

197 by different organisms. Interactions also vary over ontogeny, in particular when plants start to
198 flower and pollinators must be attracted, again modulating plant chemistry [48].
199 Selection pressures also vary over larger spatial and temporal scales. This variation may
200 contribute to the maintenance of different chemotypes within a plant species. In particular
201 wind- or bird-dispersed seeds may germinate far away from their mother plant, where
202 environmental conditions may be completely different. If all plants were of the same
203 chemotype, the species may fail in establishing itself. For example, different herbivore
204 spectra were found on different chemotypes of *T. vulgare* and *S. dulcamara* within
205 populations, with some being more, some less resistant to certain herbivore species [21, 63].
206 Because the frequency of these species can vary in time and space, having multiple
207 chemotypes enhances the chances of survival of the species. Also, associational resistance
208 may reduce herbivore pressure if plants of different chemotypes grow in close proximity [63].
209

210 **Relevance of chemotypes in applied fields**

211 Distinguishing among chemotypes within a species depicts an important part of
212 chemodiversity. Next to its ecological consequences, chemotypic variation is also of high
213 relevance from an applied perspective. The exact chemical composition and chemotype of a
214 plant are, for example, important for their medicinal value. The different chemotypes for
215 cannabinoids and terpenoids of *Cannabis* determine their psycho-activity [15] while
216 chemotypes of *W. somnifera* differing in their composition of whitanolides and other
217 metabolites differ in their pharmacological activity [30]. Likewise, chemotypes need to be
218 considered for plants potentially used as pesticides. For example, in *Tephrosia vogelii* only
219 the chemotype containing rotenoids is bioactive against insects [64].
220 The chemical profiles of crop plants determine their value as human food or animal feed as
221 well as their level of resistance to herbivores and pathogens. Sometimes these aspects may
222 conflict. Metabolites acting as defenses against pests can also render the crop unpalatable
223 and even toxic. Therefore, crop breeders have selected certain chemotypes with low levels
224 of these metabolites. An example are the double zero canola (*Brassica napus*) varieties,

225 which were bred to have low erucic acid and glucosinolate levels, turning the oil safe for
226 human consumption and the meal for animal feed [65]. At the same time, these varieties are
227 more susceptible to slug herbivory than their wild relatives with higher levels of
228 glucosinolates [66]. Chemodiversity has also dropped inadvertently, leading to higher
229 susceptibility to antagonists. For example, most American maize varieties lost the ability to
230 produce *E*- β -caryophyllene in their roots, which reduced their ability to attract
231 entomopathogenic nematodes to herbivore-damaged roots [67]. In view of growing concerns
232 regarding pesticide toxicity and resistance development in pest organisms [68], older
233 chemotypes or landraces should be revisited to breed pest-resistant plants. This not only
234 requires knowledge of the efficacy of different chemical families [69], but also knowledge on
235 the genetic and regulatory mechanisms determining chemotypes, including temporal and
236 spatial allocation patterns of metabolites within crops.

237 Besides, exploring chemodiversity through chemotypes represents a step forward in efforts
238 to preserve chemical functions in ecosystems. In an ecosystem, the distribution of chemical
239 families, and therefore chemotypes, is linked to the identity and coverage of plant species
240 and to the environment [70]. Understanding and, ultimately, predicting loss or gain of
241 chemotypes under climate change is another dimension and objective for preserving
242 ecosystem services and protect biodiversity.

243

244 **Concluding remarks**

245 Overall, the chemotype concept is useful, as it helps us to analyze how chemotypes emerge
246 and are maintained in natural plant populations, what roles they play in wild and cultivated
247 plant species and how chemotype variation may enhance resilience of plant populations.
248 Explicit mentioning of the organ, the chemical family, and the (statistical) method on which
249 the chemotype is defined is needed. Otherwise, one is left with the question what a
250 chemotype is anyway.

251

252 **Acknowledgements:** We thank Dominik Ziaja, Valeria Mendoza, and Paula Bueno for
253 drawing parts of Fig. 2. We thank the Deutsche Forschungsgemeinschaft (DFG) for funding
254 the research unit FOR 3000, with funds for MU1829/28-2, MU 1829/29-2, and DA1201/10-2.

255

256 **REFERENCES**

- 257 1. Hubby, J.L. and Forrest, H.S. (1960) Studies on the mutant maroon-like in *Drosophila*
258 *melanogaster*. *Genetics* 45, 211-224.
- 259 2. Nicolle, P. et al. (1961) Recherches sur le comportement fermentatif des bacilles
260 typhiques à regard du xylose naturel D(+) et de son inverse optique L(-). *Annales de*
261 *l'Institut Pasteur* 101, 211-+.
- 262 3. Stahl, E. and Schmitt, G. (1964) Chemische Rassen bei Arzneipflanzen. 2. Mitt.: über die
263 verschiedenartig zusammengesetzten ätherischen Öle des Rainfarns. *Archiv der*
264 *Pharmazie und Berichte der Deutschen Pharmazeutischen Gesellschaft* 297, 385-391.
- 265 4. Stahl, E. (1964) Chemische Rassen bei Arzneipflanzen. 3. Mitt.: Die unterschiedliche
266 Zusammensetzung des ätherischen Öls der Früchte von Kultur- und Wildmöhren (*Daucus*
267 *carota* L. s. l.). *Archiv der Pharmazie und Berichte der Deutschen Pharmazeutischen*
268 *Gesellschaft* 297, 500-511.
- 269 5. Stahl, E. and Jork, H. (1964) Chemische Rassen bei Arzneipflanzen. 1 Mitt.:
270 Untersuchung der Kulturvarietäten europäischer Petersilienherkülfte. *Archiv der*
271 *Pharmazie und Berichte der Deutschen Pharmazeutischen Gessellschaft* 297, 273-281.
- 272 6. Willuhn, G. (1967) Untersuchungen zur chemische Differenzierung bei *Solanum*
273 *dulcamara* L. 2. Der Steroidgehalt in Früchten verschiedener Entwicklungsstadien der
274 Tomatidenol- und Soladulcidin-Sippe. *Planta Medica* 15, 58-+.
- 275 7. Abraham, A. et al. (1968) A chemotaxonomic study of *Withania somnifera* (L) Dun.
276 *Phytochemistry* 7, 957-8.
- 277 8. Witte, L. et al. (1992) Chemotypes of 2 pyrrolizidine alkaloid-containing *Senecio* species.
278 *Phytochemistry* 31, 559-565.
- 279 9. van Leur, H. et al. (2006) A heritable glucosinolate polymorphism within natural
280 populations of *Barbarea vulgaris*. *Phytochemistry* 67, 1214-1223.
- 281 10. Tewes, L.J. et al. (2018) Intracontinental plant invader shows matching genetic and
282 chemical profiles and might benefit from high defence variation within populations. *Journal*
283 *of Ecology* 106, 714-726.
- 284 11. Kazemi-Dinan, A. et al. (2015) Is there a trade-off between glucosinolate-based organic
285 and inorganic defences in a metal-hyperaccumulator in the field? *Oecologia* 178, 369-378.
- 286 12. Linhart, Y.B. and Thompson, J.D. (1999) Thyme is of the essence: Biochemical
287 polymorphism and multi-species deterrence. *Evolutionary Ecology Research* 1, 151-171.

288 13. Tillbotraud, I. et al. (1988) Variable phenotypes and stable distribution of the cyanotypes
289 of *Trifolium repens* L in Southern France. *Acta Oecologica-Oecologia Plantarum* 9, 393-
290 404.

291 14. Polatoğlu, K. (2013) "Chemotypes"— a fact that should not be ignored in natural product
292 studies. *The Natural Products Journal* 3, 10-14.

293 15. Smith, C.J. et al. (2022) The phytochemical diversity of commercial *Cannabis* in the
294 United States. *Plos One* 17, 33.

295 16. Mimi, C.O. et al. (2021) Chemophenetics as a tool for distinguishing morphotypes of
296 *Annona emarginata* (Schltdl.) H. Rainer. *Chemistry & Biodiversity* 18, e202100544.

297 17. Clancy, M.V. et al. (2018) Metabotype variation in a field population of tansy plants
298 influences aphid host selection. *Plant Cell and Environment* 41, 2791-2805.

299 18. Holopainen, M. et al. (1987) A study on tansy chemotypes. *Planta Medica* 53, 284-287.

300 19. Wolf, V.C. et al. (2011) High chemical diversity of a plant species is accompanied by
301 increased chemical defence in invasive populations. *Biological Invasions* 13, 2091–2102.

302 20. Lebot, V. and Levesque, J. (1996) Genetic control of kavalactone chemotypes in *Piper*
303 *methysticum* cultivars. *Phytochemistry* 43, 397-403.

304 21. Calf, O.W. et al. (2019) Gastropods and insects prefer different *Solanum dulcamara*
305 chemotypes. *Journal of Chemical Ecology* 45, 146-161.

306 22. Jallali, I. et al. (2023) *Critchmum maritimum* L. Volatile compound's diversity through
307 Tunisian populations: use of a plant organ-based statistical approach for chemotype
308 identification. *Chemistry & Biodiversity* 20, 10.

309 23. Drapal, M. et al. (2019) Metabolite profiling characterises chemotypes of *Musa* diploids
310 and triploids at juvenile and pre-flowering growth stages. *Scientific Reports* 9, 4657.

311 24. Wolf, V.C. et al. (2012) Genetic and chemical variation of *Tanacetum vulgare* in plants of
312 native and invasive origin. *Biological Control* 61, 240–245.

313 25. Pormetter, L. et al. (2025) Glucosinolate diversity in seven field-collected Brassicaceae
314 species. *PloS ONE* 20 (11), e0336172.

315 26. Dussarrat, T. et al. (2022) Predictive metabolomics of multiple Atacama plant species
316 unveils a core set of generic metabolites for extreme climate resilience. *New Phytologist*
317 234 (5), 1614-1628.

318 27. Beekwilder, J. et al. (2008) The impact of the absence of aliphatic glucosinolates on
319 insect herbivory in *Arabidopsis*. *Plos One* 3, e2068.

320 28. Méteignier, L.V. et al. (2023) Emerging mechanistic insights into the regulation of
321 specialized metabolism in plants. *Nature Plants* 9, 22-30.

322 29. Padovan, A. et al. (2013) Differences in gene expression within a striking phenotypic
323 mosaic *Eucalyptus* tree that varies in susceptibility to herbivory. *BMC Plant Biology* 13,
324 29.

325 30. Gupta, P. et al. (2011) Differential expression of farnesyl diphosphate synthase gene
326 from *Withania somnifera* in different chemotypes and in response to elicitors. *Plant*
327 *Growth Regulation* 65, 93-100.

328 31. Hartmann, T. and Dierich, B. (1998) Chemical diversity and variation of pyrrolizidine
329 alkaloids of the senecionine type: biological need or coincidence? *Planta* 206, 443-451.

330 32. Nour-Eldin, H.H. et al. (2012) NRT/PTR transporters are essential for translocation of
331 glucosinolate defence compounds to seeds. *Nature* 488, 531–534.

332 33. Liao, P. et al. (2023) Emission of floral volatiles is facilitated by cell-wall non-specific lipid
333 transfer proteins. *Nature Communications* 14, 330.

334 34. Ziegler, J. et al. (2017) *Arabidopsis* transporter ABCG37/PDR9 contributes primarily
335 highly oxygenated coumarins to root exudation. *Scientific Reports* 7, 3704.

336 35. Jakobs, R. and Müller, C. (2019) Volatile, stored and phloem exudate-located
337 compounds represent different appearance levels affecting aphid niche choice.
338 *Phytochemistry* 159, 1-10.

339 36. Kopriva, S. and Gigolashvili, T. (2016) Chapter Five - Glucosinolate synthesis in the
340 context of plant metabolism. *Advances in Botanical Research*, 80, 99-124.

341 37. Ahuja, I. et al. (2010) Plant molecular stress responses face climate change. *Trends in*
342 *Plant Science* 15, 664-674.

343 38. Kuhlmann, F. and Müller, C. (2011) Impact of ultraviolet radiation on interactions between
344 plants and herbivorous insects: a chemo-ecological perspective. *Progress in Botany* 72,
345 305-347.

346 39. Karban, R. and Myers, J.H. (1989) Induced plant responses to herbivory. *Annual Review*
347 *of Ecology and Systematics* 20, 331-348.

348 40. Pineda, A. et al. (2016) Negative impact of drought stress on a generalist leaf chewer
349 and a phloem feeder is associated with, but not explained by an increase in herbivore-
350 induced indole glucosinolates *Environmental and Experimental Botany* 123, 88-97.

351 41. Schuman, M.C. et al. (2016) Temporal dynamics of plant volatiles: mechanistic bases
352 and functional consequences. In *Deciphering Chemical Language of Plant*
353 *Communication* (Blande, J.D. and Glinwood, R. eds), pp. 3-34, Springer International
354 Publishing Ag.

355 42. Anaia, R.A. et al. (2025) Ontogeny and organ-specific steroidal glycoside diversity is
356 associated with differential expression of steroidal glycoside pathway genes in two
357 *Solanum dulcamara* leaf chemotypes. *Plant Biology* 27, 651-668.

358 43. Mabrouk, S. et al. (2011) Chemical composition of essential oils from leaves, stems,
359 flower heads and roots of *Conyza bonariensis* L. from Tunisia. *Natural Product Research*
360 25, 77-84.

361 44. Kleine, S. and Müller, C. (2011) Intraspecific plant chemical diversity and its relation to
362 herbivory. *Oecologia* 166, 175-186.

363 45. Calf, O.W. et al. (2020) Slug feeding triggers dynamic metabolomic and transcriptomic
364 responses leading to induced resistance in *Solanum dulcamara*. *Frontiers in Plant*
365 *Science* 11, 803.

366 46. Sasidharan, R. et al. (2024) Intraspecific plant chemodiversity at the individual and plot
367 levels influences flower visitor groups with consequences for germination success.
368 *Functional Ecology* 38, 2665-2678.

369 47. Kleine, S. and Müller, C. (2013) Differences in shoot and root terpenoid profiles and plant
370 responses to fertilisation in *Tanacetum vulgare*. *Phytochemistry* 96, 123-131.

371 48. Ziaja, D. and Müller, C. (2025) Intraspecific and intra-individual chemodiversity and
372 phenotypic integration of terpenes across plant parts and developmental stages in an
373 aromatic plant species. *Plant Biology* 27, 637-650.

374 49. Tholl, D. (2006) Terpene synthases and the regulation, diversity and biological roles of
375 terpene metabolism. *Current Opinion in Plant Biology* 9, 297-304.

376 50. Maggi, F. et al. (2015) Essential oil chemotypification and secretory structures of the
377 neglected vegetable *Smyrnium olusatrum* L. (Apiaceae) growing in central Italy. *Flavour*
378 and *Fragrance Journal* 30, 139-159.

379 51. Hammami, S. et al. (2011) Chemical analysis and antimicrobial effects of essential oil
380 from *Limoniastrum guyonianum* growing in Tunisia. *Journal of Medicinal Plants Research*
381 5, 2540-2545.

382 52. Chiocchio, I. et al. (2023) Steroidal glycoside profile differences among primary roots
383 system and adventitious roots in *Solanum dulcamara*. *Plants* 257, 37.

384 53. Rahimova, H. et al. (2025) Exogenous stimulation of *Tanacetum vulgare* roots with
385 pipecolic acid leads to tissue-specific responses in terpenoid composition. *Plant Biology*
386 27, 891-902.

387 54. Tsunoda, T. et al. (2017) Root and shoot glucosinolate allocation patterns follow optimal
388 defence allocation theory. *Journal of Ecology* 105, 1256-1266.

389 55. Dussarrat, T. et al. (2023) Influences of chemotype and parental genotype on metabolic
390 fingerprints of tansy plants uncovered by predictive metabolomics. *Scientific Reports* 13,
391 11645.

392 56. Shi, M. et al. (2024) Molecular regulation of the key specialized metabolism pathways in
393 medicinal plants. *Journal of Integrative Plant Biology* 66, 510-531.

394 57. Cárdenas, P.D. et al. (2015) The bitter side of the nightshades: Genomics drives
395 discovery in Solanaceae steroidal alkaloid metabolism. *Phytochemistry* 113, 24-32.

396 58. Falara, V. et al. (2011) The tomato terpene synthase gene family. *Plant Physiology* 157,
397 770-789.

398 59. O'Connor, S.E. and Maresh, J.J. (2006) Chemistry and biology of monoterpenoid indole
399 alkaloid biosynthesis. *Natural Product Reports* 23, 532-547.

400 60. Thon, F.M. et al. (2024) Evolution of chemodiversity – From verbal to quantitative
401 models. *Ecology Letters* 27, e14365.

402 61. Wittmann, M.J. and Bräutigam, A. (2024) How does plant chemodiversity evolve? Testing
403 five hypotheses in one population genetic model. *New Phytologist*.

404 62. Kirkegaard, J.A. and Sarwar, M. (1998) Biofumigation potential of brassicas - I. Variation
405 in glucosinolate profiles of diverse field-grown brassicas. *Plant and Soil* 201, 71-89.

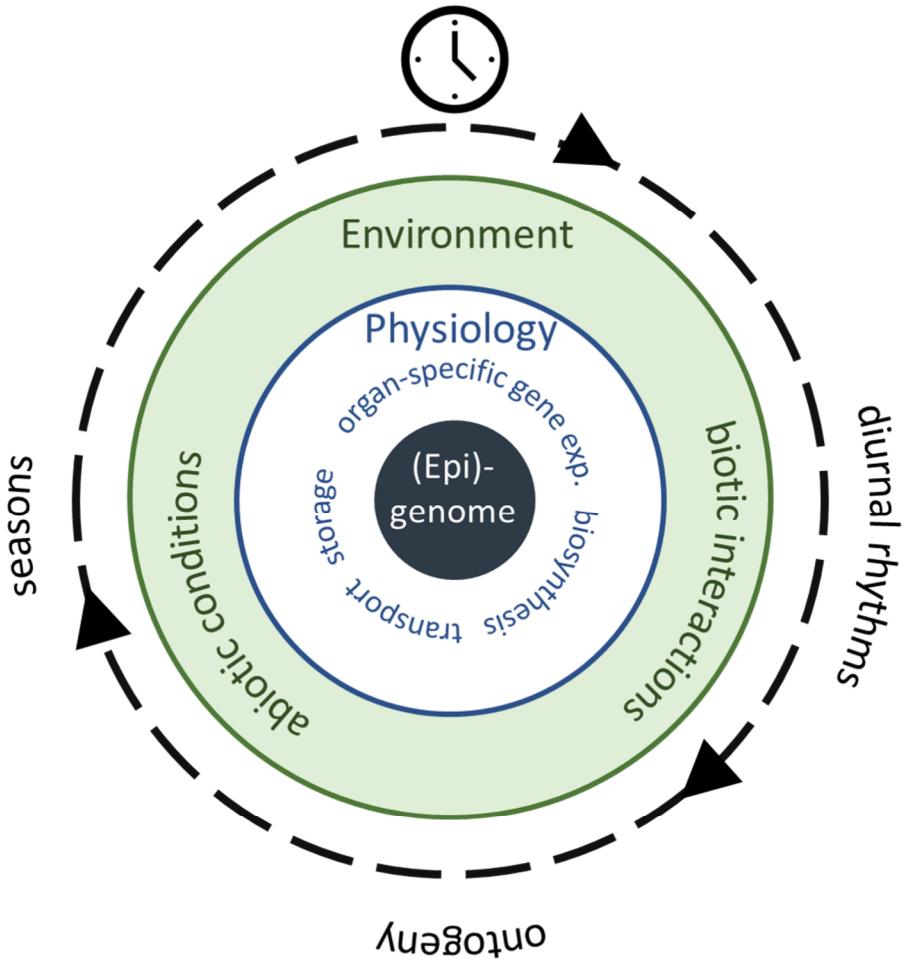
406 63. Ziaja, D. and Müller, C. (2023) Intraspecific chemodiversity provides plant individual- and
407 neighbourhood-mediated associational resistance towards aphids. *Frontiers in Plant
408 Science* 14, 1145918.

409 64. Mkindi, A.G. et al. (2019) Phytochemical analysis of *Tephrosia vogelii* across East Africa
410 reveals three chemotypes that influence its use as a pesticidal plant. *Plants* 8, 597.

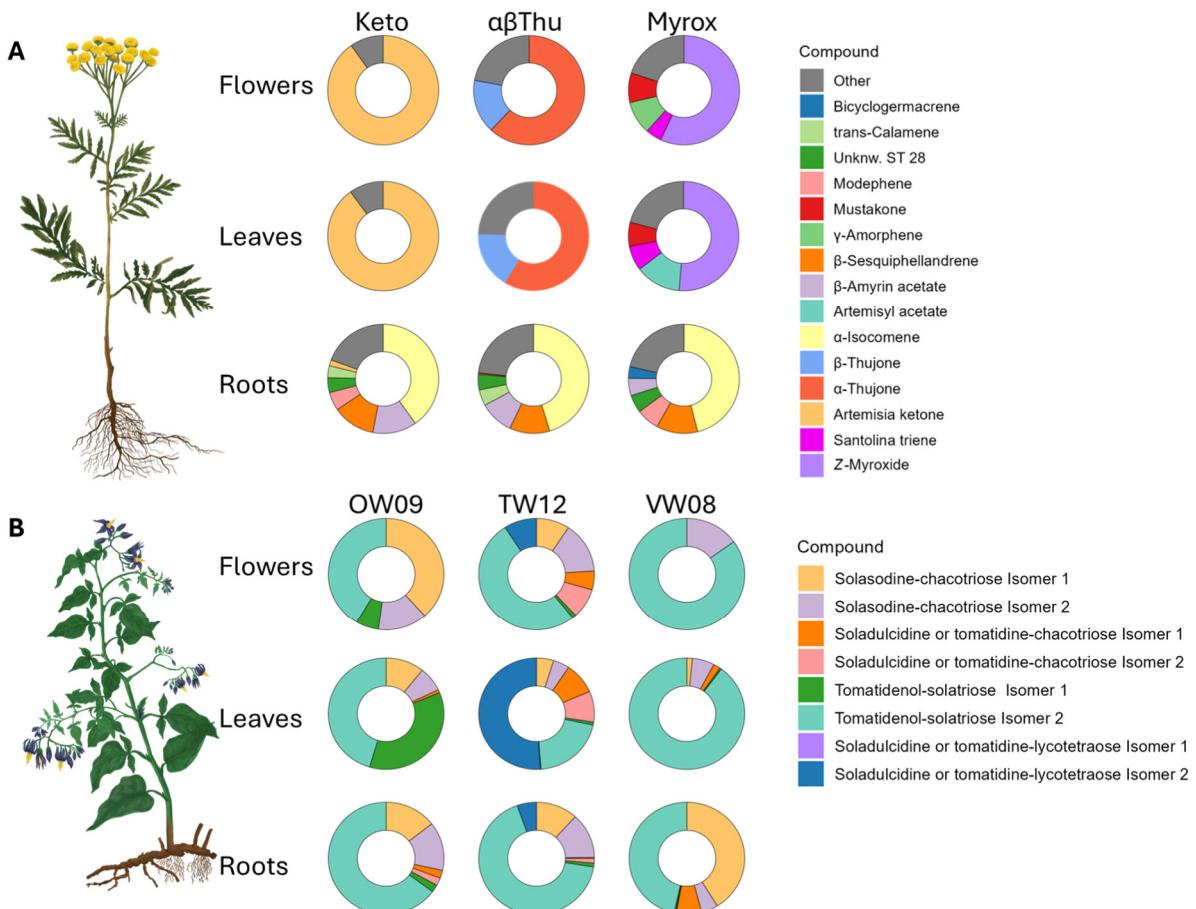
411 65. Azhar, M. et al. (2025) A brief history of canola genetic gains: from classical breeding to
412 genome editing. *Physiologia Plantarum* 177, e70644.

413 66. Baaij, B.M. et al. (2018) Slug herbivory on hybrids of the crop *Brassica napus* and its wild
414 relative *B. rapa*. *Basic and Applied Ecology* 31, 52-60.

415 67. Köllner, T.G. et al. (2008) A maize (E)- β -caryophyllene synthase implicated in indirect
416 defense responses against herbivores is not expressed in most American maize varieties.
417 *Plant Cell* 20, 482-494.

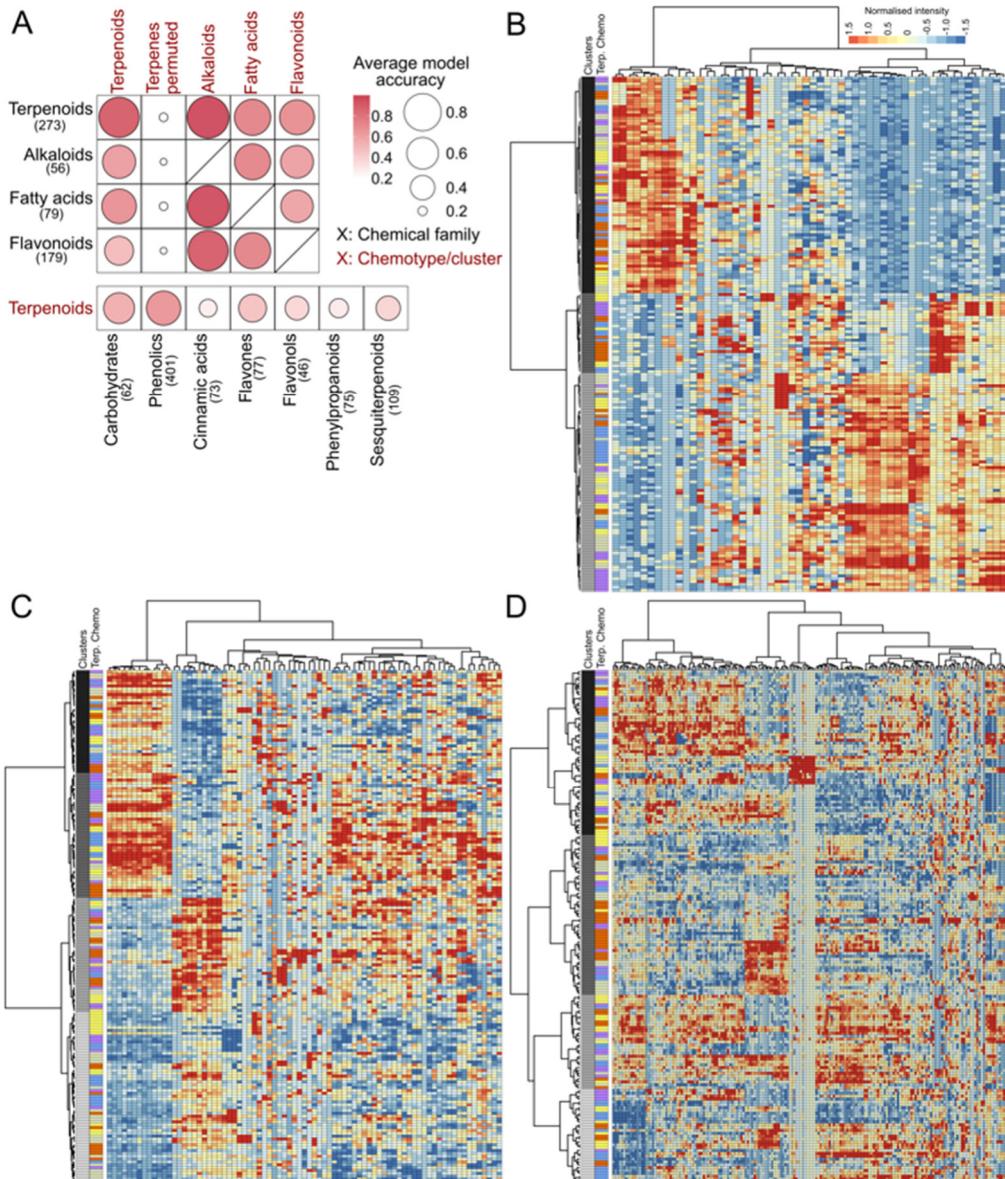

418 68. Gensch, L. et al. (2024) Pesticide risk assessment in European agriculture: Distribution
419 patterns, ban-substitution effects and regulatory implications. *Environmental Pollution* 348,
420 123836.

421 69. Whitehead, S.R. and Poveda, K. (2019) Resource allocation trade-offs and the loss of
422 chemical defences during apple domestication. *Annals of Botany* 123, 1029-1041.


423 70. Defossez, E. et al. (2021) Spatial and evolutionary predictability of phytochemical
424 diversity. *Proceedings of the National Academy of Sciences of the United States of
425 America* 118, e2013344118.

426

427


431 **Figure 1:** Intrinsic and external factors together determine the observed chemotype of an
 432 individual plant. From the inside out: 1) the (epi)genome determines whether a functional
 433 gene or transcription factor is coded for and can be transcribed; 2) the plant's internal
 434 physiological program determines organ-specific metabolite biosynthesis, transport, and
 435 storage; 3) the abiotic and biotic environment determine whether specific genes and
 436 metabolites are upregulated in response to stressors, and 4) time causes diurnal,
 437 ontogenetic, and seasonal variation in the metabolic profiles of plants. This means that
 438 chemotypes must be chosen such that they can be consistently identified accounting for
 439 additional levels of variation. Exp.: expression.

441

442 **Figure 2:** Organ-specific relative composition of **A.** stored terpenoids (extracted with *n*-
443 heptane and analyzed with GC-MS) in three leaf-terpenoid-chemotypes of *Tanacetum*
444 dominated either by artemisia ketone (Keto), α - and β -thujone ($\alpha\beta$ Thu), or a mixture
445 of Z-myroxide, artemisyl acetate, and santolina triene (Myrox) (data redrawn from [48],
446 average of 10-11 replicates per chemotype), and **B.** of steroidal glycosides (extracted with
447 water:methanol 3:1 and analyzed with LC-QToF-MS) in three accessions of *Solanum*
448 *dulcamara* (samples of clones from accessions mentioned in [45], average of 3 replicates).
449 Unknw. ST – unknown sesquiterpene.

450

452 **Figure 3:** Predictability of different leaf chemotypes using various chemical families in
453 *Tanacetum vulgare*. **A.** Average capacity of different chemical families (in black) to predict
454 distinct chemotypes (in red). For instance, the first column of the matrix represents the
455 average accuracy of terpenoid chemotypes prediction using alkaloids, fatty acids and
456 flavonoids. The bottom line represents additional predictions of terpenoid chemotypes using
457 other chemical families. Average model accuracy was defined on 500 generalized linear
458 models to predict terpenoid chemotype and 100 models for the other chemical families, as
459 previously described [26]. To test the likelihood of spurious predictions, 500 permuted
460 datasets, where chemotypes were randomly swapped among samples, were created.
461 Numbers between parentheses represent the number of chemical features in the
462 corresponding chemical family. Terpenoid chemotypes, defined using GC-MS data, were
463 predicted from LC-MS data from [26]. **B-D.** Clusters defined by different chemical families (B:
464 alkaloids, C: fatty acids, D: flavonoids) and link with terpene chemotypes (second column in

465 each heatmap, five leaf-terpene chemotypes). Data from 181 plants, leaves collected in the
466 field, extracted in 90% methanol (v:v) and analyzed by UHPLC-QToF-MS/MS (data from [55]
467 reanalyzed). For details see Supplement 1.

468

469 **SUPPLEMENT 1**

470 To investigate covariations among chemical families and to study the existence of other
471 chemotypes in *Tanacetum vulgare* (see main manuscript, Fig. 3), we used an existing LC-MS
472 dataset comprising leaf analysis from 181 plants belonging to five distinct terpenoid
473 chemotypes [1]. Raw data were re-processed on a newer version of the R-ReX 3D algorithm
474 of Metaboscape (v. 2021b, Bruker Daltonics) with the same parameters (intensity threshold
475 1000, minimum peak length 11, maxsum method). Raw intensities were normalized by the
476 area of the internal standard hydrocortisone and sample weight, and similar data cleaning was
477 performed (average quality control intensity higher than five times the blank average, features
478 in a minimum of two samples). The pre-processed LC-MS dataset was then normalized using
479 median normalization, cube root transformation, and Pareto scaling using MetaboAnalyst (v.
480 6) [2], as previously described [1]. Metabolite structure and chemical class predictions were
481 obtained using CSI:FingerID and CANOPUS with the Natural Products Classifier (NPC)
482 ontology [3]. As previously recommended [4], classifications were excluded if the classification
483 approximate score was lower than 0.8. Chemical families including at least 5% of MSMS
484 chemical features (i.e., at least 46 features) were subjected to modelling and clustering
485 analyses. Generalized linear models (GLM) were performed to assess the capacity of different
486 chemical families (e.g., flavonoids) to predict distinct chemotypes (e.g., terpenoid or fatty acids
487 chemotypes). Models were developed using the *glmnet* package [5, 6] as previously described
488 [1, 7]. Briefly, the dataset was divided using stratified sampling into a training set (70%) and a
489 validation set (20%), while real predictions were performed on the testing set (10%). For each
490 modelling condition predicting terpenoid chemotypes (e.g., using fatty acids), 500 models were
491 created, and the average accuracy (real chemotype *versus* predicted chemotype) was
492 calculated. To limit the ecological impact of such models, 100 models were run to measure the
493 predictive accuracy for other clusters (e.g., predicting fatty acid cluster). In addition, 500
494 permuted datasets, in which chemotypes were randomly swapped between samples, were
495 used to test the likelihood of spurious predictions. To explore whether leaves contain additional
496 clusters based on chemical families other than terpenoids, we used the *factoextra* package on
497 R (v. 4.5.1) [8, 9]. The optimal number of clusters was defined using the 'gap_stat' method as
498 the first cluster preceding a stabilisation of the gap statistic (k). We proposed a visualisation of
499 the tree chemical families (fatty acids, alkaloids and flavonoids) that showed the clearest
500 clustering through heatmaps designed using the *pheatmap* package [10]. Figures were
501 designed with *ggplot2* [11].

502

503 **References**

504 1. Dussarrat, T. et al. (2023) Influences of chemotype and parental genotype on metabolic
505 fingerprints of tansy plants uncovered by predictive metabolomics. *Sci. Rep.* 13, 11645.

506 2. Pang, Z.Q. et al. (2024) MetaboAnalyst 6.0: towards a unified platform for metabolomics
507 data processing, analysis and interpretation. *Nucl. Acids Res.* 52, W398-W406.

508 3. Kim, H.W. et al. (2021) NPClassifier: A deep neural network-based structural classification
509 tool for natural products. *J. Nat. Prod.* 84, 2795-2807.

510 4. Hoffmann, M.A. et al. (2022) High-confidence structural annotation of metabolites absent
511 from spectral libraries. *Nat. Biotech.* 40, 411-+.

512 5. Friedman, J. et al. (2010) Regularization paths for generalized linear models via
513 coordinate descent. *J. Stats. Softw.* 33, 1-22.

514 6. Tay, J.K. et al. (2023) Elastic net regularization paths for all generalized linear models. *J.*
515 *Stats. Softw.* 106 (1).

516 7. Dussarrat, T. et al. (2022) Predictive metabolomics of multiple Atacama plant species
517 unveils a core set of generic metabolites for extreme climate resilience. *New Phytol.* 234,
518 1614-1628.

519 8. Kassambara, A. and Mundt, F. (2020) factoextra: Extract and Visualize the Results of
520 Multivariate Data Analyses.

521 9. R Developmental Core Team (2025) R: A Language and Environment for Statistical
522 Computing. R Foundation for Statistical Computing, Vielnna, austria. URL Available at:
523 <https://www.R-project.org/>.

524 10. Kolde, R. (2025) pheatmap: Pretty Heatmaps.

525 11. Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag.

526

527