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Abstract:

Despite repeated calls for ‘adaptive monitoring’, monitoring programs typically rely on fixed
protocols that fail to capture the complex and dynamic natural world. New technologies offer this
long sought flexibility, yet paradoxically risk our ability to detect trends by generating
fragmented, high frequency data untethered to broader monitoring objectives. Here, we introduce
ROAM (Routine-Opportunistic Adaptive Monitoring)--a hybrid framework that pairs
goal-oriented baseline sampling with the ability to capture critical, transient events and
experiment with optimized sampling protocols. We demonstrate ROAM with case studies of
spring phenology shifts, biogeochemical pulses, wildlife demography and early warning
detection. Needed developments include: 1) infrastructure for real-time communication and rapid
sensor deployment, 2) integrated statistical methods for event detection, sampling optimization,
and, importantly, merging high-frequency bursts with long-term collection, and 3) equitable
technology transfer, training and funding models. This type of monitoring could finally deliver
the adaptive, integrated systems both science and policy demand.

Keywords: adaptive management, biodiversity monitoring, ecosystem dynamics, edge Al,
machine learning, trend detection and attribution



Introduction:

Ecological monitoring is essential for documenting the decline and recovery of nature. The
general aim of monitoring is straightforward—to enable the comparison of a biological state or
trend relative to a baseline or reference conditions. In practice, however, monitoring complex and
dynamic ecosystems with limited resources is extremely challenging.

One question is what to monitor. Monitoring programs range from broad, multi-taxon
(surveillance monitoring) to focused field-based monitoring of target species, typically
addressing a particular management question (fargeted monitoring) (Eyre et al. 2011,
Lindenmayer ef al. 2022). Because surveillance monitoring is meant to detect broad trends
across populations, species, or ecosystemes, it is especially valuable for identifying unexpected
ecological shifts. Important findings—such as widespread declines in insect biomass (Lister and
Garcia 2018; Wagner et al. 2021), aerial insectivores (Spiller and Dettmers 2019; Bowler et al.
2019), and common North American bird species (Johnston ef al. 2025) were only possible
because of long-term, multi-taxon surveys. Yet surveillance monitoring has been criticised for
unclear objectives and risks producing “lots of data but little understanding” (Lindenmayer and
Likens 2009; Lindenmayer et al. 2022). In contrast, targeted monitoring is designed around
specific questions and typically yields more actionable insights while remaining cost-effective
for smaller budgets (Wintle et al. 2010), but targeted designs might overlook broader
ecosystem-level change.

Another question is when to monitor. Ecological change arises from both gradual pressures and
sudden events (Bender ef al. 1984; McClain et al. 2003). Long-term, gradual shifts alter
ecological baselines, but extreme events—such as fires, droughts, and heatwaves—can
disproportionately impact sensitive species (McClain et al. 2003) often exceeding the negative
impacts of long term increases in temperature (Harris ef al. 2018). Fixed-interval monitoring is
generally too slow to detect or react to short-term ecological events and to inform management
on relevant timescales (Lindenmayer et al. 2010; Baho et al. 2017).

While long-term monitoring is essential for detecting trends through time, it is no small task.
Populations and sub-populations tend to fluctuate strongly on a short-term basis and vary across
spatial scales (Dornelas et al. 2023). Sufficient statistical power to detect a trend often requires
many repeated samples over time and across populations to avoid concluding a population is not
declining when it actually is (Fairweather 1991). We lack the power to robustly detect trends for
most population time series around the world and need hundreds or thousands more sampled
populations to confidently say a population is recovering from a management action even if that
action immediately halted decline (Leung et al. 2019). Even easier-to-measure metrics, such as
species richness, require much more sampling than currently exists (Valdez et al. 2023) for
lengths of time vastly exceeding most funding cycles (e.g. 30 years). Most data-driven indicators
used for standardized, multi-taxon reporting for global assessments, such as IPBES, the
Taskforce on Nature-related Financial Disclosures (TNFD 2025) and reporting to evaluate targets
of the Kunming-Montréal Global Biodiversity Framework (GBF) lack the ability to detect
change by 2030 in their current form (Affinito et al. 2024; Hébert et al. 2025).



The sheer volume of data coming from new technologies (Box 2) is rapidly expanding capacity
to detect short-term dynamics (e.g. post-fire change or invasion fronts) or for mobile species
missed by traditional monitoring (Abrahms et al. 2019; Welch et al. 2019). For example, daily
estimates of breeding season abundance for the nocturnal whip-poor-will (Antrostomus
vociferus) are possible with airborne LIDAR and ARUs (Larkin et al. 2024a, 2025) and daily
estimates of habitat suitability for the blue whale (Balaenoptera musculus) by pairing long-term
tracking with a daily ocean model (Abrahms et al. 2019). These estimates, combined with near
real-time whale sightings, are used to report the risk of ship strike in shipping lanes in southern
California (https://whalesafe.com/). Several technological applications, such as EarthRanger,
have been instrumental in reducing wildlife poaching (reviewed in Lynam et al. 2025) already,
and there are endless new possibilities for monitoring nature, such as robotic and autonomous
systems (see Pringle et al. 2025). But, without the attention to goal-setting of the adaptive
monitoring framework (Lindenmayer and Likens 2009) and integration into the long-term
records, we risk these being isolated efforts.

Adaptive sampling and monitoring

A last major question is how to monitor efficiently given limited resources. One of the best ways
to increase efficiency is to update the study design (Lindenmayer and Likens 2009) or the
sampling protocol specifically (Henrys et al. 2024) to improve trend detection in models
(Callaghan et al. 2019) or the ability to discriminate between management options (Holling 1978).
Adaptive sampling works in theory. Optimizations have shown that redirecting even a modest
amount of effort can increase the amount of information available for making conservation
decisions (Moore and McCarthy 2016; Hauser et al. 2019; Hanson et al. 2023; Veylit et al.
2025), and efficiency can be gained with small strategic changes in how people record nature
(Callaghan et al. 2023; Lange ef al. 2023; Mondain-Monval et al. 2024).

However, adaptive sampling has been very rarely done in practice (Henrys et al. 2024) due to
both philosophical and logistical (Box 3) barriers including: a general resistance to change,
reluctance to change well thought-out sampling designs or biasing results by shifting or
narrowing focus too much. Several barriers are based on the assumption that tradeoffs would
need to be made, but we argue below that in some cases now, technology can be a net gain,
where we do not need to trade-off the overarching study goals. In fact, in many cases, we agree
that the overarching design should not be changed as monitoring is difficult under any
circumstances and changing protocols mid-monitoring requires extra resources, potentially new
permits, and a dedicated and extensive communication effort (Box 3).

Similar to how technology is improving responsive conservation described above, technology
can directly address the hurdles to adaptive sampling (Box 2). The most active area of adaptive
data collection is not traditional fixed monitoring programs, but through crowd-sourced science.
One emerging example is citizen/participatory science, where highly engaged naturalist
communities can be redirected toward priority gaps through dynamic maps and behavioral
nudges (Callaghan ef al. 2023; Thompson et al. 2023) and active alerts (Sullivan et al. 2014),
which change as new information is collected. There are more applied examples where
conservation tools and platforms have demonstrable outcomes from risk assessment to
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anti-poaching efforts that iterate through time (reviewed in Lynam et al. 2025). However, much of
this effort lacks the rigor of long-term systematic monitoring (Balantic and Donovan 2019;
Hanson et al. 2023; Veylit et al. 2025), so how do we pair these efforts?

Box 1. Glossary

Term

Adaptive sampling

Al Agent (also see
Agentic Al)

Agentic Al (also see Al
agent)

Autonomous
Recording Unit (ARU)

Burst sampling

Continuous
integration (ClI)

Cloud computing

Cyberinfrastructure

Edge computing

Edge Al

Event (in the ROAM
context)

Fog computing

Human-in-the-loop

UAV/UAS

Inference (Ecology)

Inference (Al/Machine
Learning)

Multimodal
monitoring

Telemetry

Trigger

Definition

An iterative sampling strategy in which observations collected up to a given point are used to update subsequent sampling decisions (e.g., where, when, and
how to sample next) to maximise the information gained for a predefined question of interest.

A software system that can perceive inputs, select actions, and execute multi-step tasks toward goals (e.g., scheduling sensors, requesting labels, generating
alerts).

A class of systems that exhibit goal-directed behaviour over time with varying degrees of autonomy. In ROAM, "agentic" behaviour should be bounded by
explicit safeguards, budgets, and human oversight.

A deployable acoustic sensor that records soundscapes for subsequent or on-device processing (often used for 'passive acoustic monitoring' of birds, bats,
frogs, insects).

A temporary, event-driven intensification of sampling (higher cadence, expanded spatial footprint, or additional modalities) that is bounded by explicit
termination criteria to protect long-term continuity and resource budgets.

A practice in which code changes are routinely tested and integrated through automated pipelines (e.g., unit tests, data validation checks, deployment builds).
In ecological cyberinfrastructure, Cl can improve reliability, reproducibility, and safe iteration of models and device software.

Centralised, remote computing and data storage.

The integrated hardware, software, and communications stack that enables distributed sensing, remote data collection, processing, and transmission in the
field (including power management scheduling, and device integration).

A distributed computing paradigm in which computation occurs closer to the data source (e.g., on the sensor or a nearby microcomputer), reducing latency
and bandwidth demands and enabling low-latency control actions (e.g., trigger based sampling).

The deployment of machine-learning models directly on edge devices for real-time inference locally (e.g., species detection, behavioural classification) and to
trigger or prioritise actions without cloud dependency.

A predefined departure from expected conditions requiring attention or response. Events may be rule-based or baseline-relatives thresholds (here,
"empirical"), or model-based (parameter shifts, forecast residuals, or changepoints).

A hardware that acts as an intermediary between the sensors and the cloud that provides additional compute, storage and coordination capabilities near the
field site (e.g., a field-station with computers aggregating multiple sensors, running heavier models, and managing the network). A fog node is the device
implementing this layer.

A design in which expert review and decision-making are explicitly integrated into automated workflows (e.g., validating detections, adjusting thresholds,
authorising escalation, labelling training data, and updating burst protocols).

Uncrewed Aerial Vehicle / Uncrewed Aerial System, commonly known as "drones": an aircraft (UAV) plus the supporting system (UAS) including sensors,
communications, and control software.

Drawing conclusions about ecological mechanisms or parameters (e.g., occupancy, abundance trends, treatment effects) from data (individuals in a statistical
population) using explicit models.

The generation of predictions from a trained model on new data (a forward pass). In deployment, inference cost is important, and typically integrates latency,
memory use, and consumption, which constrains what can run on-device.

A monitoring design that integrates multiple data types or sensors (e.g., acoustics, imagery, eDNA, microclimate, telemetry), often with different error
structures and temporal resolutions, to improve detection, attribution, and robustness.

The remote measurement and transmission of data from sensors or tags (e.g., GPS collars, acoustic modems), often under tight constraints on bandwidth,
latency, and power.

The operational criterion that initiates a response (e.g., increased sampling cadence, activation of a modality, or stakeholder alert). Triggers should be
specified with measurable thresholds, a required duration and persistence, and (where possible) corroboration rules to reduce false positives.



Box 2. Technology for adaptive monitoring

While much of the focus has been on monitoring data streams (e.g. camera traps, acoustic monitoring, environmental DNA), emerging
technologies such as edge computing, sensor automation, and Al-powered alert systems are particularly relevant for adaptive sampling. In
particular, Edge Al—which performs computations near the data source rather than in centralized cloud servers(Singh and Gill 2023)—is
promising because it enables new possibilities for coordination and re-allocating expert knowledge where it is needed most.

This fast-moving technology includes smart camera traps, such as those for insects (Roy et al. 2024; Bjerge et al. 2025) and ground-nesting
birds(Chalmers et al. 2025), on-board classification and remote data transfer of particular behaviors (e.g. running) using telemetry on individual
animals (Kerle-Malcharek et al. 2025), and smart inertial measurement unit (IMU) sensors to detect horse gaits using a neural network run on a
microcontroller (Dominguez-Morales et al. 2021). Al-enabled autonomous drones are inherently adaptive, capable of modifying their flight path
based on sensed data. Several cyberinfrastructure solutions now support autonomous operations, including WildWing (Kline et al.)WildLive
(Dat et al.) and proposed loT system to classify camera trap images onEdit with Zotero the edge using optimized ML models (Zualkernan et al.
2022). These could be expanded to support additional modalities, including drones, IMUs, and ARUs across different loT devices, including
Raspberry Pis and NVIDIA Jetson Nanos. Similarly, the 'acoupi' framework for bioacoustic Al models can be expanded or combined with other
approaches to support a generalizable cyberinfrastructure (Vuilliomenet et al. 2026). Along with continued improvements in sensors, mobile
hardware, power systems (e.g., AudioMoth and SongMeter can run for months in the field), and communication networks (e.g., 5G/6G and
distributed computing (Singh and Gill 2023), adaptive sampling is becoming possible at scale for the first time.

Industry projects such as Microsoft's SPARROW project that packages solar power, camera-trap and acoustic sensors, and a low-energy GPU
that runs PyTorch Wildlife models at the edge; only distilled results are beamed out via low-Earth-orbit (LEO) satellites, gives researchers
near-real-time biodiversity alerts (Ferres 2024). Edge Impulse auto-optimizes hardware agnostic tiny ML models for a variety of edge hardware
models, letting small teams drag-and-drop workflows and push them onto field devices, which has been used for poacher-detection and
animal-call classifiers ("Improving Camera Traps to Identify Unknown Species with GPT-40" 2024). The Conservation X Labs Sentinel platform
includes a plug-in module that replaces the memory card in existing camera traps or acoustic recorders, runs on-device Al to flag rare species
or poachers, and pushes SMS or email alerts over low-bandwidth links (https://sentinel.conservationxlabs.com/) Google Wildlife Insights closes
the loop on the cloud side: its SpeciesNet models label camera-trap uploads in minutes, turning bulk imagery into species-level datasets that
managers can act on quickly (Ahumada et al. 2020).

Hardware (sensors and compute):

Edge devices with low-cost processors (e.g., Raspberry Pi, Jetson Nano) now support field-ready Al, acting as intermediate processing nodes
between sensors and cloud infrastructure. Low-cost compute devices, such as Raspberry Pi and NVIDIA Jetson Nano, enable practitioners to
build smart sensors, custom designed for long-term outdoor deployment (Jolles 2021), while biologically-triggered sensor networks reduce
storage and energy demands (Besson et al. 2022).

Al (models and edge deployment techniques):

Lightweight Al models deployed on the edge for animal detections (Beery et al. 2019), species classifiers (Stevens et al. 2024), and animal
behavior models (Kholiavchenko et al. 2024; Chan et al. 2025), can trigger sampling events and data storage. Techniques like model pruning
and quantization enable deployment on resource-constrained hardware (Eccles et al. 2024; Giovannesi et al. 2024), though field validation is
needed.



Box 3. Barriers to adaptive sampling

Sociological and philosophical barriers

Sociological barriers stem from a fundamental resistance or hesitation to change in science in general, but also from a deeper epistemological
problem linked to changing sampling designs specifically. How can we ensure valid inferences over time as measurement methods evolve?
Systems theory, dating back to Von Bertalanffy (Bertalanffy 2008) recognized that feedback-driven adjustment was central to systematic
inquiry. Early examples include Odum's (Odum 1969) energy-circuit diagrams for spotting feedback pivots and Tansley's ecosystem concept
(Tansley 1935). Both anchored routine measurements tightly enough that purposeful deviations could be decoded. As scientific claims are
made from within particular methodological frameworks, comparability requires some degree of protocol stability. When scientific frameworks
enter institutional practice, however, this epistemological rationale is often lost. Long-term monitoring typically calcifies into fixed designs and
plots—due, in part, to lacking frameworks for managing protocol change while preserving inferential validity—which prevents the flexibility and
efficiency needed to adapt to the dynamic of nature's changes and evolving conservation needs.

An intimately related barrier to these sociological and epistemological concerns is statistical: modifying carefully designed sampling schemes
risks violating random sampling principles (Henrys et al. 2024) or shifting baselines. Either can bias results, which could compound in
successive iterations in updated sampling designs.

While technology cannot solve resistance to change, it can generate data or efficiencies (Box 2) that preserve original study designs while
enabling flexibility, or it can improve communication of results/platforms that address statistical concerns. Emerging statistical methods address
variable effort and biases across heterogeneous datasets (reviewed in Henrys et al. 2024), though integrated methods are needed (see
remaining challenges).

Logistical barriers

Traditional ecological monitoring requires extensive field effort and offline processing. Protocol changes could require field trials that consume
critical resources and require coordination among managers, staff, and technicians—often extending to multiple agencies, stakeholders, and
policymakers. Permit revisions may introduce delays that undermine adaptive sampling objectives.

Technology, such as Edge Al (Box 2), could help ease the burden of communication in several ways. First, Edge Al could automate some of the
steps of adaptive sampling with pre-defined criteria avoiding permit changes and federated and continual learning could iteratively improve
deployed Al modes (Velasco-Montero et al. 2024). Second, Edge Al and networking technology could be linked to platforms that alert field
teams via real-time dashboards, improving coordination across distributed teams. Third, updated data streams could be linked to data
repositories, such as Movebank (www.movebank.org) (Kays et al. 2022) and GBIF (www.gbif.org) via application program interfaces (APIs) for
rapid integration into downstream analytics, such as the creation of essential biodiversity variables (EBVs) and indicators. This near real-time
feedback, if well designed, could streamline the process from detection to action, provide transparency for partners and regulators, support
timely responses to biodiversity threats, and assist in monitoring compliance with conservation policies (Silvestro et al. 2022; Reynolds et al.
2025).

Technology can also offset the burden and workload of resource managers and technicians and even inspire others to join the effort. While
adaptive sampling was traditionally the domain of professional scientists and managers, technology enables a wider breadth of engagement—
meaning more public interest, more scientific interest, potentially and more funding. Birders can rush to the scene of a newly arriving migrant
using eBird. Land managers can track predator behavior through collars and camera traps. At-risk species monitoring can use eDNA to detect
species rather than waiting for a human detection. Managers can now receive automated text alerts from animals equipped with telemetry
collars when potential birthing or mortality events are detected.



Introducing ROAM (Routine-Opportunistic Adaptive Monitoring): A tiered solution for
adaptive sampling

Here, we introduce a hybrid form of adaptive monitoring—'Routine Opportunistic Adaptive
Monitoring’ (ROAM)’---that combines routine, long-term monitoring (Fig. 1) with
opportunistic burst sampling (Fig. 2) using multimodal sensors and coordinated planning (e.g.
through edge AI). This design captures both long- and short-term trends by pairing routine data
collection with targeted inquiries, initiated either through automation or expert input, for either
surveillance or targeted monitoring.

ROAM is meant to be general and usable for any monitoring network that employs some form of
automated data collection (e.g. passive sensors) or has an active network of scientists and
community members that can collect data. The key requirement is the ability to align
systematically collected, long-term data streams with more flexible, targeted sampling. Networks
such as the National Ecological Observatory Network (NEON) already implement elements of
this hybrid strategy, and the expanding investment in this technology by agencies, NGOs,
universities, and governments suggests broad potential for adoption.

Our approach differs from traditional adaptive monitoring (Lindenmayer and Likens 2009) in
that it separates the data-decision loop into two parts—an outer loop, which maintains the
integrity of the long-term, routine data collection for the study goals (or larger regional
monitoring goals such as country-level reporting on indicators), and an inner loop, which allows
for opportunistic data collection to pursue early warning signals or targeted questions as they
arise.

The goals and data associated with the outer and inner loops would need to be defined on a
case-by-case basis but often will align with monitoring goals and ecological scales (Fig. 3). The
outer loop is more likely cross-taxa ‘surveillance monitoring’ that can detect
abundance/occurrence/ecosystem shifts over yearly or decadal timeframes typical of indicator
trends (Affinito et al. 2024; Hébert et al. 2025). The inner loop is typically more aligned with
shorter-term ecological phenomena, such as individual behavior or hydrological events that
could arise within one site, and with more ‘targeted’ inquiries. While these represent extremes,
many questions fall in the middle (e.g. how does a forest thinning trial impact birds). A useful
distinction is whether the data collected is an essential baseline for broad (typically long-term)
monitoring goals or whether it is a more specific inquiry or more difficult or riskier where
experimentation is needed. The real advances come from efficiently linking the scales (e.g.
finding behavioral changes across species and ecosystems that could lead to changes in
community-level abundance).



Routine - Opportunistic Adaptive Monitoring (ROAM)

Question and Design

Monitoring Design (Goals, Targets, Flags,

Opportunistic protocol Data

Integration
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Figure 1. Overview of ‘Routine - Opportunistic Adaptive Monitoring’ (ROAM), which pairs
a routine, long-term monitoring backbone (outer loop) with shorter-term opportunistic sampling
(inner loop) to investigate anomalies, rapid ecological change or address conservation concerns.
The outer loop is the classic approach to adaptive sampling, which requires clearly articulated
goals (e.g. monitoring multi-taxon that match data collection and analysis, but is limited by
relatively long times needed to detect trends and the ability to change sampling designs. The
inner loop (typically, but not always more tech-focused) overcomes this inflexibility by isolating
rapid data collection for short-term inquiries and sample design optimization (Fig. 2).
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Figure 2. Opportunistic burst sampling is initiated based on automated event detection from
routine (long-term repeated or continuous) data collection or monitoring needs (Fig. 1). Events
can be empirical or model-based are pre-defined with respect to monitoring goals. Empirical
flags surface unknown unknowns, while model-based flags reveal theoretically unexpected
events (e.g., a slope change from a statistical model of the biodiversity trend through time or as a
response to an environmental variable such as model quality; See Figure 3 for examples). The
new sampling module summarizes initial data and implements a sampling plan according to
programmed criteria and/or alerts biologists, managers or other stakeholders. This
human-in-the-loop step can validate key events and can override policies (e.g., experts can verify
and label events, route actions to stakeholders, tune thresholds and refine burst playbooks, and
retrain/publish models and datasets with provenance). Over time, these updates also guide
careful and strategic revisions to long-term sampling designs.
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Figure 3. Linking monitoring to multi-scale signals of ecological change through the
ROAM opportunistic burst sampling protocol. This example illustrates how this protocol
could be applied to track environmental signals alongside changes at the level of individuals
(e.g., displacement via movement tracking), species (e.g. abundance of focal species, via
acoustic recorders), and communities (e.g. through a combination of species-level data into an
average abundance metric). When events are detected, the opportunistic burst sampling protocol
can trigger multi-modal sampling to link the levels of ecological organisation (i.e., going from
individuals, to species, to communities) at “hot moments” and/or at “hot spots” of interest for the
study system. This approach could provide a way forward towards de (sites to regional
monitoring networks), and ecological organisation (individuals to communities).

Adaptive opportunistic sampling - the inner loop

The inner opportunistic sampling loop works by strategically collecting new samples when a
new ‘event’ is detected (Fig. 2, Fig. 3). Events can be defined empirically (e.g.,outliers in data),
relative to process baselines (e.g., departures from ‘normal’ conditions), or deviations from
model-based expectations. Each reflects theoretical commitments about what constitutes
meaningful change. We seek events through such constructs; what we detect may reveal genuine
ecological processes. An event could be as simple as a set of three unrecognized bird calls
(empirical) or as complex as a change in a slope parameter in an occupancy model that is being
updated automatically based on incoming data (model-based). New questions that arise can also
trigger adaptive sampling protocols (Fig. 2). Sampling is then initiated based on triggers, rules
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and dependencies and continues until a short-term trend (or lack thereof) is established (Fig. 3).
For example, the detection of an invasive predator in a wide-lens camera could activate other
cameras or ARUs to record any additional predators or prey and turn off when a pre-defined
occupancy rate has elapsed. The inner loop is set up to be as efficient as possible to not exhaust
or draw resources away from the outer loop long-term trend detection, but also to be the place to
trial risky, expensive solutions. In some cases, efficiencies can be gained just from smart
sampling for migratory or behaviors (e.g. dawn chorus birds or temperate bats), but in all cases
efficiencies can be made from smart deployments of resources that are learned from sampling.

Adapting frequency versus increasing spatial sampling

Adaptive protocols can range from simple, automated changes to more complex multi modal
responses across an entire region. Automated changes based on pre-defined rules will often be
the easiest path to changing sample protocols, but even these automated changes will require
work on how to best optimize for efficiency by balancing power use, data storage and probability
of detection. The harder question is what to do if an interesting short-term trend is established,
such as local occupancy of the invasive predator. Options would include more intensive, directed
sampling, such as predator collars with acoustic and accelerometer capabilities to capture feeding
events and prey selection (Studd ef al. 2021) or issuing a ‘rare predator alert’ to community
scientists in the area. This coordination could enable quick responses to emerging patterns by
adjusting data collection across space and time—capturing “hot spots” (spatial variation) and “hot
moments” (temporal spikes) (McClain et al. 2003). However, the protocols and optimization of
new samples become much more complex and will require well-articulated goals and stakeholder
input.

When should the inner loop inform the outer loop?

So far, adaptive sampling is restricted to the inner loop, but there are two ways that
trends/findings from the inner loop could change the outer loop. First, data generated from the
adaptive sampling protocols can be integrated with longer-term outer loop datastreams, but this
integration is not trivial and risks swamping older data (see Challenges sections). Second, the
overall long-term study design could, itself, be changed based on what is learned from the
adaptive burst protocols. We recommend that this is only done in certain circumstances given the
difficulties (Box 3) and the focus should be on the inner loop through automation, targeted field
campaigns, and crowd-sourced initiatives. However, in some cases, inner loop sampling could
strongly suggest changes in long-term monitoring protocols or even overall study goals (e.g. a
new invasive species detected in the inner loop is causing a potential ecosystem state change). In
other words, in some cases a deviation from expected conditions might represent a ‘new normal’
rather than an anomaly or stochastic event. In this case, expert and stakeholder input would be
essential as the baseline layer maintains the critical ability to address long-term study goals (Fig.

1.

Adaptive monitoring for adaptive action

By deploying “bursts” of extra effort when transient events arise, and economy when conditions
are stable, this hybrid scheme can deliver more accurate, efficient answers to the ecological and
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conservation questions we routinely ask (see Table 1 for case studies). The baseline layer
maintains the ability to detect long-term trends while burst sampling aligns effort with urgent,
shifting conservation priorities without sacrificing breadth. Practically, this design better
connects monitoring to action and better matches institutional realities, such as funding cycles
and reporting for 2030 targets without letting them wholly dictate epistemic priorities. This tiered
approach also manages the conflict between discovery and diagnosis architecturally. The outer
loop handles confirmatory trend detection while the inner loop enables exploratory inquiry (Box
3). The result is monitoring that can be simultaneously exploratory and relevant to
decision-making.

Case studies

The case studies below are hypothetical monitoring designs intended to make ROAM
operationally specific (Fig. 4). They are grounded in published methods and existing components
(e.g., PhenoCams and microclimate sensing, high-frequency stream sondes, ARUs with
automated classifiers, and event-triggered bio-logging) and illustrate how ROAM’s inner and
outer loops function across different monitoring systems. In each example, routine sampling
baselines—such as vegetational greenness and degree-days, diel stream chemistry, regional
acoustic surveys, or low-frequency bio-logging data—anchor the outer loop, providing
continuity for trend detection and long-term inference. When anomalies or model departures
occur, ROAM’s inner loop temporarily intensifies sampling by increasing frequency, adding
complementary monitoring modalities, and/or mobilizing observers for targeted data collection.
These short bursts capture transient processes, including rapid phenological shifts (Case 1),
biogeochemical nutrient pulses (Case 2), localized breeding activity of a declining species (Case
3), or early-warning signs of mortality and disease (Case 4), all of which could remain
undetected under fixed-interval sampling designs. Together, these cases show how ROAM
integrates discovery with diagnosis by allowing targeted, event-driven sampling without
compromising consistent baselines required to quantify change through time.
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Figure 4. Case study examples of ROAM burst sampling protocols. When routine monitoring
detects a predefined event (denoted by triangles), the system activates additional monitoring
through automated responses (e.g., increased sampling frequency, additional sensors) and
potentially human-deployed measurements. Events can include: (1) surpassing a threshold of
growing degree days that indicates an upcoming phenological transition, (2) unexpected stream
chemical or physical properties indicating nutrient pulse or disturbance, (3) multimodal evidence
of breeding activity in declining bird populations, and (4) biologging signals suggesting
mortality events. Burst sampling continues until predefined or updated termination criteria are
met. The events and burst sampling period is then refined as data from burst sampling
accumulates and is eventually integrated back into routine collection (Fig. 2).
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Case Study 1. Anticipating phenological shifts

Phenology is critical for evaluating how climate change alters the timing of flowering, migration,
and reproduction, with cascading effects on ecological interactions and ecosystems. Phenological
transitions (e.g., leaf-out and flowering) can occur over days and vary strongly among
microhabitats, making them easy to miss under fixed biweekly visits (Kudo and Ida 2013;
Richardson et al. 2018). Even when paired with near-continuous imagery (e.g., PhenoCam;
https://phenocam.nau.edu/webcam), anomalous early-season dynamics may remain
undersampled, inflating uncertainty in climate-phenology attribution and limiting tests of
microsite-driven mismatch hypotheses (Kudo and Ida 2013; Richardson et al. 2018).

Aim: Improve detection and dating of plant phenological transitions (e.g., budbreak, flowering,
senescence) using opportunistic sampling.

Event detection: Long-term field visit records define median growing degree-day onset
thresholds (Klosterman et al. 2014). Two complementary phenophase signals are monitored: (1)
greenness chromatic coordinate (GCC) from PhenoCam time-series and (2) cumulative growing
degree-days (GDD) from co-located microclimate sensors (McMaster and Wilhelm 1997;
Schwartz et al. 2006). A burst is triggered when either the rolling z-score of daily GCC increase
exceeds 2.0 for three or more consecutive days, or when cumulative GDD reaches the 10th
percentile of the historical onset distribution earlier than the median year (Schwartz et al. 2006).

Opportunistic sampling: Triggers increase image frequency (e.g., hourly to 10-minute intervals)
(Richardson et al. 2018) and activate edge-deployed, on-device phenophase classifiers for
budbreak and first flower. To minimize false positives, the system requires corroboration via soil
temperature increases above baseline (Li ef al. 2022) and budbreak confirmations across multiple
camera viewpoints (Klosterman et al. 2014). A subset of events can be verified through targeted
field visits and trained observers (e.g., Nature's Notebook volunteers; (Fuccillo ef al. 2015).
Bursts terminate when GCC change rates decrease (Klosterman et al. 2014) or after the expected
spring greening duration (5-15 days).

Expected outcomes: Targeted bursts can increase precision of onset dating by 1-2 days
(Richardson et al. 2009), compared to 5-7 days under baseline-only sampling, decreasing
residual mean squared-error and improving model fit for temperature and soil-moisture pulses
and enabling mid-season calibration of degree-day models (De Pauw et al. 2000). Importantly,
ROAM treats burst-derived onset estimates as high-information observations that are integrated
into the long-term record with bias control, improving interannual comparability while reducing
uncertainty where and when phenological change is most rapid. This same design generalises to
leaf senescence, insect emergence, and other phenophases where optical and microclimate cues
support classification.
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Case Study 2. Biogeochemical disturbance in streams

Transient biogeochemical events (e.g., nutrient pulses, oxygen depletion or algal blooms) are can
dominate downstream water quality and food-web dynamics, yet their timing and location are
difficult to predict (McClain et al. 2003; Sprenger et al. 2019; Wilkinson et al. 2022).
Fixed-interval grab sampling provides low-resolution snapshots and often misses “hot moments”
such as diel oxygen excursions, hydrologic exchange events, or dissolved organic carbon pulses
from leaf-fall or photodegradation (Bernhardt et al. 2018; Bi et al. 2021). Storm-centric
monitoring programs can also lack the spatial resolution needed to localise hot spots across
nested tributary networks.

Aim: Detect rare, high-impact stream disturbance events and localise their sensors using a nested
ROAM sensor framework.

Event detection: Hourly nitrate (NO;) and dissolved oxygen (DO) concentrations from
multiparameter sondes established diel baselines at fixed-monitoring nodes (Bi er al. 2021),
analysed using 24-hour rolling baselines and 7-day comparison windows (Fig. 4). To reduce
bandwidth and power costs, on-logger (edge) processing evaluates two trigger logics. First, an
acute disturbance triggers fires when NO;™ declines exceed 40% along network distance with
concurrent DO suppression beyond the diel envelope for two or more hours. These magnitude
and duration thresholds reduce sensitivity to electrode drift and transient bubbles or debris
(Damala et al. 2022). Second, a model-based trigger uses edge, on-chip harmonic regression to
predict diel DO, firing when departures from predicted patterns exceed ~2.5 standard deviations
for at least three consecutive timesteps (Rode ef al. 2016; Heathwaite and Bieroza 2021). False
positives (e.g., sensor biofouling mimicking DO depletion) are reduced by requiring multi-sensor
corroboration (e.g., turbidity, conductivity, dissolved organic carbon proxies), consistency with
expected propagation given flow and network structure, and exclusion of normal nocturnal DO
minima (Bolick et al. 2023).

Opportunistic sampling: After validation, the opportunistic inner loop activates and sampling
frequency increases from hourly to 15-minute intervals at the trigger node and adjacent stations
to capture event dynamics. Spatial activation follows network topology, expanding to upstream
or downstream nodes and sibling tributaries to bracket the anomaly source (targeting localisation
within ~50 meters where feasible). Higher-cost modalities can be activated selectively, including
UV-vis spectrometers for dissolved organic matter, eDNA autosampling for microbial shifts, and
isotope-ready nitrate autosampling for process attribution. Bursts terminate when NO3™ and DO
return within ~1 SD of baseline predictions for 12 consecutive hours, or the the source is
triangulated and the multimodal sample suite is completed. Where feasible, geofenced
notifications can recruit trained volunteers for rapid field verification at predicted locations,
scouting for iron-stained sediments, shimmering puddles, redox odours, or visible surface foams
at confluences.

Expected outcomes: ROAM converts reactive monitoring into near-real-time surveillance,
enabling capture and localisation of hot-moment events within hours that would be effectively
undetected under weekly sampling. By concentrating analytical and field effort only when
systems deviate from baseline, this approach can reduce uncertainty in annual nutrient flux
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estimates by observing short pulses that disproportionally contribute to mass export. Long-term
value arises because burst-confirmed events are incorporated into flux and process models as
explicitly detected episodic components, improving cross-year comparability of watershed
function while clarifying when and where mechanisms shift. This framework can be applied to
post-fire ash pulses (elevated conductivity and metals), disease-driven canopy losses (altered
light and temperature regimes), or other event landscapes with characteristic multi-sensor
fingerprints.

Case Study 3. Avian demographic response to management

Widespread avian declines in North America have motivated substantial investment in habitat
creation and restoration, but monitoring effectiveness across large regions remains challenging
within narrow breeding windows (Corace et al. 2010; Rosenberg ef al. 2019). Autonomous
recording units (ARUs) and automated bioacoustic classifiers can estimate presence, occupancy,
and abundance and related these to habitat covariates (Czarnecki et al. 2024; Fiss et al. 2024;
Larkin et al. 2024b; Chronister et al. 2025). However, occupancy-habitat relationships alone are
often insufficient to evaluate management effectiveness, such as whether interventions increase
reproduction and population growth.

Aim: Improve management interventions of declining songbirds by moving beyond simple
occupancy toward fitness and population growth.

Event detection: For challenging cases where vocalisations overlap with heterospecifics and
hybridisation occurs, such as the declining Golden-Winged Warbler (GWWA) that hybridises
with the Blue-Winged Warbler, standard detection protocols are prone to false positives. ROAM
uses edge-capable Al classifiers on ARUs to process daily 2-hour dawn-chorus recordings
(Ralph et al. 1995) during phenology-informed windows across the breeding season (mid-May to
late July in eastern North America). Acoustic detections serve as a conservative primary trigger
(high-precision, potentially low-recall), but escalation requires corroboration by secondary
modalities, such as camera traps positioned at focal perches near playback sources.

Opportunistic sampling: Upon plausible detection, the inner loop activates short, bounded bursts:
playback devices broadcast GWWA song for brief windows (e.g., 10 minutes) while camera
traps capture imagery for rapid on-device classifying and review and subsequent
human-in-the-loop validation. Once adult presence is confirmed, playback and camera bursts are
suspended at that location to reduce habituation and disturbance, while denser ARU arrays can
be deployed by researchers to localise singing adult males and improve detection of fledgling
calls. If confirmation fails within the burst window, devices power down and the system returns
to baseline community monitoring.

Expected outcomes: This multimodal adaptive framework reduces false positives and ensures
intensified sampling is spent on true occurrences, improving the efficiency of limited field
capacity. Ensuring species presence through multiple data modalities before initiating intensified
data collection protocols helps ensure that high-resolution data from localisation arrays contain
signals of interest from focal species. By enabling localisation of territories and detection of
fledgling begging calls, ROAM supports inference on whether restored sites function as
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population sources versus sinks and identifies microhabitat correlates of reproductive activity.
Over the long term, these episodic confirmations can be integrated as validated breeding
indicators within the monitoring record, strengthening trend analyses of restoration outcomes
beyond presence-absence alone. This framework generalises to other taxa and systems where
acoustic ambiguity limits management inference and effectiveness.

Case Study 4. Adaptive bio-logging of early warnings for mortality, reproduction, and risky
crossings

Multi-sensor bio-logging supports fine-scale animal movement, habitat usage and behavioural
inference but must balance sampling frequency against battery life and transmission costs (Wild
et al. 2023; Ellis-Soto et al. 2025). Fixed GPS schedules and infrequent summary uploads can
delay detection of mortality, disease, or reproduction by hours to days, limiting conservation
response and obscuring behaviour during critical life-history stages (Yanco et al. 2024). As
biologging expands globally (Davidson et al. 2025), on-tag edge computing can filter, classify,
and selectively transmit high-resolution segments when triggered by behavioural or
environmental cues (Kays and Wikelski 2023; Ellis-Soto et al. 2025). Commercial systems
already support motion-based mortality alerts (e.g., VERTEX Plus collars), making event-driven
escalation increasingly feasible.

Event detection: On-tag algorithms monitor multiple sensor streams: GPS displacement, VeDBA
(vectorial dynamic body acceleration) tri-axial accelerometer variance, skin and ambient
temperature differentials, gyroscope data, and deviation from individual baselines. Detection
windows vary by application: sub-daily for rapid responses (e.g., snaring or poaching),
daily-to-weekly for behavioural classification and nesting-site identification (Donovan et al.
2024), and multi-day windows for disease signature or outbreak surveillance (e.g., Morelle ef al.
2023; Talmon et al. 2025). Triggers target (1) prolonged inactivity with no displacement
(suspected mortality), (2) localised activity with limited displacement (reproduction), (3)
sustained activity reductions relative to baselines (disease), and (4) projected trajectories
intersecting mapped risk zones. For group-living species, triggers can incorporate clustering of
synchronised anomalies within a shared area. False positives are reduced through dual-sensor
corroboration, species-specific rest patterns, seasonal baselines, laboratory experiments (e.g.,
accelerometry inferred from behavioral states or energy expenditure), and targeted field
validation.

Opportunistic sampling: When triggered, GPS fix rates increase from coarse to fine-scale
intervals (e.g., hours to minutes), and high-frequency accelerometer and gyroscope data are
stored on-board. Full-resolution data upload when high-bandwidth links (LTE or WiFi) become
available; otherwise, reduced-resolution features or behavioural summaries are transmitted via
GSM, Iridium, or Argos (see Noda et al. 2024). This adaptive strategy minimises battery and
bandwidth costs while retaining information on critical episodes. Nearby devices (e.g., cameras,
acoustic units, or other tags) can be activated to capture collective behavioural responses to
environmental events (e.g., natural disasters; Kays and Wikelski 2023). Bursts terminate when
movement resumes above threshold for a specified period, the individual safely clears a risk
buffer, or a maximum burst duration is reached.
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Expected outcomes: ROAM turns bio-logging into an early-warning layer for adaptive
management, enabling faster intervention for mortality, disease, and human-wildlife conflict
risks than fixed-monitoring schedules allow. Long-term value derives from selectively
preserving high-resolution critical episode data while maintaining deployment longevity,
improving inference on behaviour near risk zones, disease onset trajectories, and reproductive
timing. These burst-sampling resolved episodes can be incorporated into long-term demographic
and hazard models as explicitly observed event segments, strengthening trend estimation and
management evaluation. This approach is transferable to marine tags, avian migration stopover
assessment, and large-carnivore conflict mitigation, where early detection and targeted
classification can reduce both ecological and logistical costs.

Table 1. Examples of the ROAM framework in four case studies: phenology, disturbance
and water quality, wildlife bioacoustics, and movement ecology (see “Study cases” section).
For each case, we summarise the long-term monitoring objective, the baseline monitoring design

(outer loop; Fig. 1), the hot spots and/or hot moments targeted by the Opportunistic Burst
Sampling protocol (inner loop; Fig. 2), event-detection logic and trigger criteria, the Burst
protocol strategies (Fig. 2), and the role of humans in the loop(s).

1. Phenology

2. Disturbance &
water quality

3. Wildlife bioacoustics

4. Movement
ecology

Long-term Vegetation phenology ~ Water quality status,  Bird community surveys Real-time risk,

monitoring fluxes, and and management mortality, and

objective restoration outcomes  evaluation demography-releva

nt events

Baseline Near-continuous Fixed sondes with Daily dawn-chorus Low-frequency

monitoring imagery with routine  routine grab samples  recordings across a GPS summaries

design (outer field checks landscape grid with from with on-tag

loop) automated species storage of
classifiers (edge or high-resolution
near-edge processing) segments

Hot spots & Rapid phenophase Temporal (pulses, Focal species Mortality or illness

hot moments
targeted (inner
loop focus)

transitions and
microclimate-driven
asynchrony

diel excursions) and
spatial (source
localisation)
moments

occurrences, ambiguous
detections, and breeding
indicators

signals, risk
crossings,
parturition, or
denning-related
behavioural shifts

Event
detection and
trigger

Hybrid empirical
rules from slope,
z-score, and
thresholds relative to
historical onset

Model-based
departure from from
predicted diel and
seasonal envelopes
plus multi-sensor

Conservative
empirical trigger with
high-precision classifier
detection or
corroborated anecdotal

Hybrid empirical
and model-based
using inactivity and
mortality flags,
abrupt movement
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1. Phenology

2. Disturbance &

3. Wildlife bioacoustics

4. Movement

water quality ecology

corroboration observations of focal shifts, and
species paired with proximity to
escalation requiring hazards

secondary confirmation

Burst protocol

- Cadence: increased

- Cadence: increased

- Modality: activate

- Cadence: increase

strategies: image capture sampling frequency playback, camera traps fix rate
cadence, - Modality: activate at and near - Footprint: deploy - Fidelity: increase
modality, and  on-device phenophase trigger-node denser ARU sensor fidelity
footprint classifier; add - Modality: briefly micro-arraws for - Footprint:
targeted human visits  activate selective localization and transmit high-value
for verification high-cost modalities  fledgling-call detection = segments only;
(UV-vis, eDNA trigger
autosampler, rapid-response
isotopes) verification
- Footprint: Expand
sampling in
neighbour sites,
along topology
Termination Until the GCC change Sustained return to Occurrence confirmed Distance from risk
criteria rate slows OR burst  baseline envelope OR  OR if repeated triggers ~ zones is reached

window elapsed

the disturbance
source localised and
multimodal samples
completed

fail within a spatial/time
burst window

OR event resolved
OR until the burst
window is elapsed

Human-in-the-
loop

Verify and label
events, adjust
thresholds, targeted
verification

Validate, adjust
model/envelope
parameters, alert
management

Confirm detections,
manage disturbance
constraints, decide
escalation to
reproduction inference
sampling

Respond to
mortality/risk
alerts, adjust
geofences/threshold
s, decide
intervention

How burst
outputs inform
the long-term
record

Burst-refined
transition dates
become
high-information
observations for trend
models; preserve
comparability via
explicit burst
flagging/weighting

Burst-captured pulses
enter flux/process
models as explicit
episodic components;
improves cross-year
comparability of
export estimates

Confirmed breeding
indicators augment
long-term management
evaluation beyond
occupancy alone

Validated events
become structured
endpoints for
demography/risk
trend analyses
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Remaining challenges and call to action

Our hybrid approach combines dynamic, actionable data collection with the goal-oriented
approach long advocated by traditional adaptive monitoring.

The breadth of rapid ecological responses of ROAM’s opportunistic inner loop are highlighted
by the case studies. Adaptive sampling can uncover links between anomalous climatic conditions
and phenological shifts, detect critical hydrological or nutrient pulses, pinpoint microhabitat
features that facilitate successful reproduction in declining species, and clarify how thermal
stress, energetic deficits, or landscape hazards give rise to mortality or diseases signatures in
bio-logging data. This ability to attribute observed trends to underlying causes is especially
valuable.

The ROAM framework also addresses a broader conceptual frontier: the opportunity to borrow
strength not only across space and long-term datasets, as is traditionally done, but across diverse
data streams operating at different, and increasingly fine temporal resolutions. Integrating such
heterogeneous, rapidly collected information is essential for making full use of burst sampling’s
diagnostic power—but it also exposes the system’s operational and analytical limits.

While the value of hybrid adaptive monitoring is evident, successful implementation depends on
coordinating sensing, computation, and decision-making in real time. Our case studies reveal
common challenges: defining reliable event triggers, synchronizing multimodal data streams,
maintaining rapid-response capacity, and balancing automated detection with human validation.
Persistent constraints—Ilimited budgets, permitting delays, staffing shortages, and equipment
maintenance—restrict how intensively burst sampling can be deployed. To fully realize ROAM's
potential, five coordinated advances are essential: (1) technological infrastructure for real-time
coordination across distributed networks (e.g., edge compute), (2) integrated statistical
frameworks with clear guidelines for trigger design, model selection, and sampling optimization,
(3) methods for incorporating high-frequency burst data into long-term records while addressing
sampling bias, (4) strategic design of short-term monitoring to address explicit ecological
questions, and (5) equitable technology transfer through open-source tools and funding models
that extend capabilities beyond well-resourced institutions.

1- Better technology and coordination

Advancements in sensors—camera traps, acoustic recorders, biologgers, drones, mobile
apps—enable adaptive protocols through programmable sampling schedules adjusted before or
during deployment (Box 2). For example, bioacoustic devices can target dawn and dusk choruses
rather than recording continuously, conserving memory and battery. Projects like Sentinel
(Conservation X Labs) and SPARROW use edge-deployed machine learning to detect and
classify species in real time, filtering blank images at the source. This Edge Al can trigger
adaptive responses, such as extending recording time when rare species are detected. While Edge
Al promises to revolutionize ecosystem monitoring by enabling scalable real-time adaptive
sampling, integrating heterogeneous data from multiple sensor types presents computational
challenges. High-quality training datasets, active learning, and few-shot fine-tuning are critical
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for building versatile detection models that generalize across ecological settings and can be
efficiently deployed on resource-constrained edge devices.

Realizing this vision requires user-friendly, scalable cyberinfrastructure that integrates diverse
sensors, species, and ecological contexts. We encourage multidisciplinary collaboration among
ecologists, biodiversity researchers, edge Al developers, and distributed systems engineers to
build next-generation infrastructure for adaptive ecological monitoring. These efforts should
leverage the application-driven machine-learning framework (Rolnick ef al. 2025), ensuring that
new systems are tailored to end-user needs and support expert human-in-the-loop control.
Federally-funded research organizations, such as NSF’s Sage (https://sagecontinuum.org/) and
ICICLE (https://icicle.osu.edu/), have made strides in this direction. Sage’s
continuous-integration (CI) workflows have supported autonomous acoustic monitoring
(Dematties et al. 2024), air-quality sensing (Balouek-Thomert et al. 2023), and wildfire
modelling (Altintas et al. 2022). ICICLE’s CI tooling, in turn, helps teams plan field-deployable
ML pipelines (Stubbs et al. 2025) and understand the unique systems requirements of Al-enabled
camera traps and drones for ecological studies (Kline et al. 2024).

Broader application will require better Al tools and wider accessibility across sectors. Imagine
NGOs, land managers, or wildlife biologists being able to trigger real-time sampling to answer
site-specific questions, rather than relying entirely on the sensors themselves. This co-adaptive
approach avoids pure techno-optimism—the idea that advanced sensors alone can resolve
longstanding knowledge gaps (see Buchanan 2024; Smits et al. 2025). We recognize that even
bleeding-edge instruments integrated with Al cannot, on their own, detect the subtle,
context-dependent signals of ecological change (Van Stan er al. 2023) or or fill global
biodiversity data gaps (Pollock et al. 2025). Progress instead lies in integrating cutting-edge
technology with targeted human engagement at key inflection points. This human-technology
partnership enables faster, more precise responses. Finally, hybrid adaptive monitoring is most
useful when embedded within the greater ecosystem of regional and national conservation
efforts. The use of technologies described above means that interoperability is built-in, greatly
facilitating coordination, data and model sharing with existing integration platforms, such as
GEO BON’s Bon-in-a-Box (Griffith et al. 2026)--turning adaptive monitoring into actionable
insights.

A practical ROAM cyberinfrastructure treats energy as a priority constraint: burst decisions must
be co-optimized with battery state, energy harvesting forecasts, and communication costs so that
opportunistic escalation does not compromise long-term continuity. Often the main constraint on
edge is power. This implies burst sampling protocols should include: (1) an explicit energy
budget (e.g., maximum burst duration given current charge); (2) whenever applicable, filtering
and summarization (at the sensor or at the edge) to reduce transmission costs when connectivity
is energy hungry or resource limited; and (3) opportunistic scheduling of energy-intensive
actions (such as drone activation or high-frequency, high-resolution data gathering) when
recharging or harvested energy is sufficient. Some of the infrastructure needed to enable an
effective power-aware sampling already exists, including solar-powered devices with edge
inference and low-bandwidth satellite uplink (e.g., SPARROW), autonomous drone recharging
(ElSayed et al. 2022), optimized routing and trajectory (Coutinho et al. 2018). Such
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systems-aware ROAM improve ecological responsiveness while remaining operationally
sustainable over seasons and funding cycles, provided maintenance costs could be funded.

2 — Developing and adapting methods and decision rules

While hybrid monitoring may not require entirely new statistical foundations, applying existing
methods in this context demands rigorous evaluation and sometimes novel approaches.
Integrating diverse data streams and adaptive sampling raises challenges in event detection,
counterfactual inference, and detecting trends across different timescales linked to distinct goals
(surveillance versus targeted monitoring). These challenges are compounded by ecological data's
inherent autocorrelation, bias, and sparsity, especially of multi-modal datastreams.

New methods are needed to incorporate real-time feedback, quantify uncertainty under shifting
sampling designs, and prevent high-frequency bursts from obscuring long-term patterns.
Building these methods requires integrating statistical innovation, ecological knowledge, and
stakeholder objectives to detect both short-term "pulse" events and sustained change.

Event detection can use empirical threshold rules or model-based approaches that update as data
arrive and flag parameter changes warranting response. Events can be defined relative to
baselines (surveillance) or specific hypotheses (targeted monitoring).

Trend detection methods are well-established for long-term ecological data, but must be adapted
to identify when anomalies become trends, particularly across multimodal datasets. Traditional
techniques—changepoint analysis, moving-window tests—need evaluation for autocorrelated
data with time-varying sampling effort. Machine learning approaches for extreme events
(Gonzalez-Calabuig et al. 2024; Camps-Valls et al. 2025) offer promising directions.

Sampling optimization following event detection remains underdeveloped. Simple
pre-programmed rules can automatically activate sensors, but there is great potential in a truly
iterative approach to collecting new samples. New sampling can be optimized based on
information gain, minimizing costs, and reducing model-based uncertainty (Chadeés et al. 2017;
Callaghan et al. 2019; Henrys et al. 2024). The value of additional samples can be estimated
using Bayesian or information-theoretic approaches, especially if the goal is to reduce model
uncertainty. Reinforcement and active learning can also be used to select new samples (Chapman
et al. 2023; Xu et al. 2025), especially for real-time dynamic updating, though these methods
have limited capacity for addressing uncertainty.

3 - Integrating recent high frequency data into the long-term record

We urgently need cohesive long-term records of populations, species, and ecosystems, so a key
question is when and how to update the long-term record with incoming data. This question
extends beyond adaptive sampling to any case where recent, high-frequency data is combined
with a sparser historic record (Fig 1). Here, machine learning methods might be less useful as

22


https://www.zotero.org/google-docs/?broken=Y1ce3o
https://www.zotero.org/google-docs/?broken=Y1ce3o
https://www.zotero.org/google-docs/?broken=UOokhB
https://www.zotero.org/google-docs/?broken=UOokhB

estimating uncertainty in long-term trends is critical, although they can be useful for detecting
nonlinear patterns. Bayesian methods of model integration are likely the most helpful when data
are tied to a particular management decision and methods from structured decision-making
(Martin et al. 2009) can be followed. A growing field of model integration for multimodal data
(Isaac et al. 2020; Herrera et al. 2025) offer promising strategies for effectively combining
diverse data streams, but essentially these average data in different ways, and, in some cases,
data might be too different or biased for these techniques.

Hybrid monitoring could introduce new forms of bias that can arise specifically from targeted
sampling. Burst sampling may also amplify existing biases because different modes of data
collection can have different biases. For example, an easily detectable species could repeatedly
flag new sampling, which over time could propagate into the overall trend record.
Autocorrelation between populations, areas, and data types is also an important issue that is
known to influence trend detection (Hébert and Gravel 2023; Johnson et al. 2024). These
concerns are not trivial and could lead to systematic errors in long-term trends with the influx of
high frequency data that is biased in different ways.

4 - Anchoring technology in goal-oriented monitoring

Rather than post-hoc model integration, a better way to orient new data streams better into the
long-term record is to set clear goals for the inner loop that anticipate anomalies or stochastic
fluctuation becoming trends. As we have argued here, the barriers for adaptive sampling are
being addressed for the inner loop much more rapidly through technology than for long-term
monitoring programs, which requires sustained government and other funding, sustained political
will, and a long-term commitment by a variety of stakeholders (reviewed in Lindenmayer et al.
2022). But given the rapid rate of technology changes, short funding cycles, we anticipate many
situations in which new technologies are being deployed without an existing overarching design
(i.e., no outer loop). This is because evidence can only accumulate against a stable ontology: we
cannot learn whether X causes Y if the measurement of X keeps shifting. The outer loop
stabilizes the ontology (i.e., defining what counts as events, units, and counterfactuals) while also
specifying the baseline sampling rule so that deviations from it (and opportunistic burst data)
remain interpretable as a signal rather than sampling artifact. We urge any deployment of new
sampling to keep in mind clear study goals and link to the goals of relevant regional monitoring.

5 - Technology Transfer

Defining a hybrid network such as ROAM is only the first step. An important aspect of this work
is to create a path to technology transfer that aligns with the needs of the ecology and
conservation communities. Technology transfer involves many facets, such as coordination,
accessibility by and training of operators, cost concerns (both deployment and
operation/maintenance), adoption issues (target population, size of monitoring systems, and ease
of system adaptation), intellectual property, organizational and cultural barriers, regulatory and
legal concerns, and ethical issues.
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The ecology community is well poised to enable such technology transfer, given that many of the
tools are open source (both academia and industry). Nevertheless, there is a lack of
standardization in data formats, not all projects follow FAIR principles or are Al-ready, many
open source tools are not modular or industrial strength, and the acquisition and distribution of
datasets is still lacking. These challenges make it difficult to train and develop new models.

Some projects are already making inroads towards remote ecological monitoring such as the
SPARROW, NEON, and SAGE. These systems typically connect sensors to transmit data to
centralized cloud servers through satellite or cell connections. In some settings, the challenge
becomes the cost of these sensor nodes when they are not subsidized by industry or
governmental agencies. Cost does not necessarily mean financial resources but can also be
deployment, installation, management, training, power source, connectivity, and sensor suite,
among others. In that sense, this technology is only available to well-funded institutions.

Academic projects in science and engineering have proposed low-cost solutions, which need to
be further developed in multidisciplinary teams and deployed in real world environments.
Creating a path from such academic projects in laboratories to transferring the technology to
actual large-scale deployments will benefit lower-income nations, institutions, and projects.
Further, sometimes such lower-cost nodes are also more sustainable, given the fewer resources
they consume. New technology does have the potential to address social progress and local
communities needs, especially if a participatory approach is taken (Bondi et al 2021).
Ultimately, we need technology that works easily, intuitive interfaces, and training for managers
and the community to leverage these advances.

Conclusions

Technology gives us the opportunity to finally monitor biodiversity and inform management and
conservation flexibly, relatively and at scale, but the integration required to do this is not going to
happen automatically. It requires intention. ROAM (Routine-Opportunistic Adaptive
Monitoring) couples prolific data collection efforts with monitoring principles designed to detect
long-term population and ecosystem trajectories that can disproportionately influence ecosystem
function and species demographics. While there are big challenges in developing the technology
itself (methods development, infrastructure, and data collection), accessibility to the technology
and training are essential for widespread adoption, especially improved access to open-source
platforms, training and equitable funding models for democratizing adaptive monitoring beyond
well-funded institutions. With these advances, ROAM can improve early warning systems for
ecological tipping points, optimize the timing of management interventions, and fundamentally
increase the return on investment in monitoring networks.
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