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Abstract:  
 
Despite repeated calls for ‘adaptive monitoring’, monitoring programs typically rely on fixed 
protocols that fail to capture the complex and dynamic natural world. New technologies offer this 
long sought flexibility, yet paradoxically risk our ability to detect trends by generating 
fragmented, high frequency data untethered to broader monitoring objectives. Here, we introduce 
ROAM (Routine-Opportunistic Adaptive Monitoring)--a hybrid framework that pairs  
goal-oriented baseline sampling with the ability to capture critical, transient events and 
experiment with optimized sampling protocols. We demonstrate ROAM with case studies of 
spring phenology shifts, biogeochemical pulses, wildlife demography and early warning 
detection. Needed developments include: 1) infrastructure for real-time communication and rapid 
sensor deployment, 2) integrated statistical methods for event detection, sampling optimization, 
and, importantly, merging high-frequency bursts with long-term collection, and 3) equitable 
technology transfer, training and funding models. This type of monitoring could finally deliver 
the adaptive, integrated systems both science and policy demand. 
 
Keywords: adaptive management, biodiversity monitoring, ecosystem dynamics, edge AI, 
machine learning, trend detection and attribution 
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Introduction: 

Ecological monitoring is essential for documenting the decline and recovery of nature. The 
general aim of monitoring is straightforward—to enable the comparison of a biological state or 
trend relative to a baseline or reference conditions. In practice, however, monitoring complex and 
dynamic ecosystems with limited resources is extremely challenging. 

One question is what to monitor. Monitoring programs range from broad, multi-taxon 
(surveillance monitoring) to focused field-based monitoring of target species, typically 
addressing a particular management question (targeted monitoring) (Eyre et al. 2011; 
Lindenmayer et al. 2022). Because surveillance monitoring is meant to detect broad trends 
across populations, species, or ecosystems, it is especially valuable for identifying unexpected 
ecological shifts. Important findings—such as widespread declines in insect biomass (Lister and 
Garcia 2018; Wagner et al. 2021), aerial insectivores (Spiller and Dettmers 2019; Bowler et al. 
2019), and common North American bird species (Johnston et al. 2025) were only possible 
because of long-term, multi-taxon surveys. Yet surveillance monitoring has been criticised for 
unclear objectives and risks producing “lots of data but little understanding” (Lindenmayer and 
Likens 2009; Lindenmayer et al. 2022). In contrast, targeted monitoring is designed around 
specific questions and typically yields more actionable insights while remaining cost-effective 
for smaller budgets (Wintle et al. 2010), but targeted designs might overlook broader 
ecosystem-level change. 

Another question is when to monitor. Ecological change arises from both gradual pressures and 
sudden events (Bender et al. 1984; McClain et al. 2003).  Long-term, gradual shifts alter 
ecological baselines, but extreme events—such as fires, droughts, and heatwaves—can 
disproportionately impact sensitive species (McClain et al. 2003) often exceeding the negative 
impacts of long term increases in temperature (Harris et al. 2018). Fixed-interval monitoring is 
generally too slow to detect or react to short-term ecological events and to inform management 
on relevant timescales (Lindenmayer et al. 2010; Baho et al. 2017).  
 
While long-term monitoring is essential for detecting trends through time, it is no small task. 
Populations and sub-populations tend to fluctuate strongly on a short-term basis and vary across 
spatial scales (Dornelas et al. 2023). Sufficient statistical power to detect a trend often requires 
many repeated samples over time and across populations to avoid concluding a population is not 
declining when it actually is (Fairweather 1991). We lack the power to robustly detect trends for 
most population time series around the world and need hundreds or thousands more sampled 
populations to confidently say a population is recovering from a management action even if that 
action immediately halted decline (Leung et al. 2019). Even easier-to-measure metrics, such as 
species richness, require much more sampling than currently exists (Valdez et al. 2023) for 
lengths of time vastly exceeding most funding cycles (e.g. 30 years). Most data-driven indicators 
used for standardized, multi-taxon reporting for global assessments, such as IPBES, the 
Taskforce on Nature-related Financial Disclosures (TNFD 2025) and reporting to evaluate targets 
of the Kunming-Montréal Global Biodiversity Framework (GBF) lack the ability to detect 
change by 2030 in their current form (Affinito et al. 2024; Hébert et al. 2025). 
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The sheer volume of data coming from new technologies (Box 2) is rapidly expanding capacity 
to detect short-term dynamics (e.g. post-fire change or invasion fronts) or for mobile species 
missed by traditional monitoring (Abrahms et al. 2019; Welch et al. 2019). For example, daily 
estimates of breeding season abundance for the nocturnal whip-poor-will (Antrostomus 
vociferus) are possible with airborne LiDAR and ARUs (Larkin et al. 2024a, 2025) and daily 
estimates of habitat suitability for the blue whale (Balaenoptera musculus) by pairing long-term 
tracking with a daily ocean model (Abrahms et al. 2019). These estimates, combined with near 
real-time whale sightings, are used to report the risk of ship strike in shipping lanes in southern 
California (https://whalesafe.com/). Several technological applications, such as EarthRanger, 
have been instrumental in reducing wildlife poaching (reviewed in Lynam et al. 2025) already, 
and there are endless new possibilities for monitoring nature, such as robotic and autonomous 
systems (see Pringle et al. 2025). But, without the attention to goal-setting of the adaptive 
monitoring framework (Lindenmayer and Likens 2009) and integration into the long-term 
records, we risk these being isolated efforts.  
 
 
Adaptive sampling and monitoring 
  
A last major question is how to monitor efficiently given limited resources. One of the best ways 
to increase efficiency is to update the study design (Lindenmayer and Likens 2009) or the 
sampling protocol specifically (Henrys et al. 2024) to improve trend detection in models 
(Callaghan et al. 2019) or the ability to discriminate between management options (Holling 1978).  
Adaptive sampling works in theory. Optimizations have shown that redirecting even a modest 
amount of effort can increase the amount of information available for making conservation 
decisions (Moore and McCarthy 2016; Hauser et al. 2019; Hanson et al. 2023; Veylit et al. 
2025), and efficiency can be gained with small strategic changes in how people record nature 
(Callaghan et al. 2023; Lange et al. 2023; Mondain-Monval et al. 2024). 
  
However, adaptive sampling has been very rarely done in practice (Henrys et al. 2024) due to 
both philosophical and logistical (Box 3) barriers including: a general resistance to change, 
reluctance to change well thought-out sampling designs or biasing results by shifting or 
narrowing focus too much. Several barriers are based on the assumption that tradeoffs would 
need to be made, but we argue below that in some cases now, technology can be a net gain, 
where we do not need to trade-off the overarching study goals. In fact, in many cases, we agree 
that the overarching design should not be changed as monitoring is difficult under any 
circumstances and changing protocols mid-monitoring requires extra resources, potentially new 
permits, and a dedicated and extensive communication effort (Box 3). 
  
Similar to how technology is improving responsive conservation described above, technology 
can directly address the hurdles to adaptive sampling (Box 2). The most active area of adaptive 
data collection is not traditional fixed monitoring programs, but through crowd-sourced science. 
One emerging example is citizen/participatory science, where highly engaged naturalist 
communities can be redirected toward priority gaps through dynamic maps and behavioral 
nudges (Callaghan et al. 2023; Thompson et al. 2023) and active alerts (Sullivan et al. 2014), 
which change as new information is collected. There are more applied examples where 
conservation tools and platforms have demonstrable outcomes from risk assessment to 
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anti-poaching efforts that iterate through time (reviewed in Lynam et al. 2025). However, much of 
this effort lacks the rigor of long-term systematic monitoring (Balantic and Donovan 2019; 
Hanson et al. 2023; Veylit et al. 2025), so how do we pair these efforts? 
 

 

4 



 

 

 
 

5 



 

 

 

 

 
 
 
 
 
 

6 



 

 
 
Introducing ROAM (Routine-Opportunistic Adaptive Monitoring): A  tiered solution for 
adaptive sampling 
   
Here, we introduce a hybrid form of adaptive monitoring—'Routine Opportunistic Adaptive 
Monitoring’ (ROAM)’---that combines routine, long-term monitoring (Fig. 1) with 
opportunistic burst sampling (Fig. 2) using multimodal sensors and coordinated planning (e.g. 
through edge AI). This design captures both long- and short-term trends by pairing routine data 
collection with targeted inquiries, initiated either through automation or expert input, for either 
surveillance or targeted monitoring. 

ROAM is meant to be general and usable for any monitoring network that employs some form of 
automated data collection (e.g. passive sensors) or has an active network of scientists and 
community members that can collect data. The key requirement is the ability to align 
systematically collected, long-term data streams with more flexible, targeted sampling. Networks 
such as the National Ecological Observatory Network (NEON) already implement elements of 
this hybrid strategy, and the expanding investment in this technology by agencies, NGOs, 
universities, and governments suggests broad potential for adoption. 

Our approach differs from traditional adaptive monitoring (Lindenmayer and Likens 2009) in 
that it separates the data-decision loop into two parts—an outer loop, which maintains the 
integrity of the long-term, routine data collection for the study goals (or larger regional 
monitoring goals such as country-level reporting on indicators), and an inner loop, which allows 
for opportunistic data collection to pursue early warning signals or targeted questions as they 
arise. 

The goals and data associated with the outer and inner loops would need to be defined on a 
case-by-case basis but often will align with monitoring goals and ecological scales (Fig. 3). The 
outer loop is more likely cross-taxa ‘surveillance monitoring’ that can detect 
abundance/occurrence/ecosystem shifts over yearly or decadal timeframes typical of indicator 
trends (Affinito et al. 2024; Hébert et al. 2025). The inner loop is typically more aligned with 
shorter-term ecological phenomena, such as individual behavior or hydrological events that 
could arise within one site, and with more ‘targeted’ inquiries. While these represent extremes, 
many questions fall in the middle (e.g. how does a forest thinning trial impact birds). A useful 
distinction is whether the data collected is an essential baseline for broad (typically long-term) 
monitoring goals or whether it is a more specific inquiry or more difficult or riskier where 
experimentation is needed. The real advances come from efficiently linking the scales (e.g. 
finding behavioral changes across species and ecosystems that could lead to changes in 
community-level abundance). 
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Figure 1. Overview of ‘Routine - Opportunistic Adaptive Monitoring’ (ROAM), which pairs 
a routine, long-term monitoring backbone (outer loop) with shorter-term opportunistic sampling 
(inner loop) to investigate anomalies, rapid ecological change or address conservation concerns. 
The outer loop is the classic approach to adaptive sampling, which requires clearly articulated 
goals (e.g. monitoring multi-taxon that match data collection and analysis, but is limited by 
relatively long times needed to detect trends and the ability to change sampling designs. The 
inner loop (typically, but not always more tech-focused) overcomes this inflexibility by isolating 
rapid data collection for short-term inquiries and sample design optimization (Fig. 2).  
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Figure 2. Opportunistic burst sampling is initiated based on automated event detection from 
routine (long-term repeated or continuous) data collection or monitoring needs (Fig. 1). Events 
can be empirical or model-based are pre-defined with respect to monitoring goals. Empirical 
flags surface unknown unknowns, while model-based flags reveal theoretically unexpected 
events (e.g., a slope change from a statistical model of the biodiversity trend through time or as a 
response to an environmental variable such as model quality; See Figure 3 for examples). The 
new sampling module summarizes initial data and implements a sampling plan according to 
programmed criteria and/or alerts biologists, managers or other stakeholders. This 
human-in-the-loop step can validate key events and can override policies (e.g., experts can verify 
and label events, route actions to stakeholders, tune thresholds and refine burst playbooks, and 
retrain/publish models and datasets with provenance). Over time, these updates also guide 
careful and strategic revisions to long‑term sampling designs. 
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Figure 3. Linking monitoring to multi-scale signals of ecological change through the 
ROAM opportunistic burst sampling protocol. This example illustrates how this protocol 
could be applied to track environmental signals alongside changes at the level of individuals 
(e.g., displacement via movement tracking), species (e.g. abundance of focal species, via 
acoustic recorders), and communities (e.g. through a combination of species-level data into an 
average abundance metric). When events are detected, the opportunistic burst sampling protocol 
can trigger multi-modal sampling to link the levels of ecological organisation (i.e., going from 
individuals, to species, to communities) at “hot moments” and/or at “hot spots” of interest for the 
study system. This approach could provide a way forward towards de (sites to regional 
monitoring networks), and ecological organisation (individuals to communities). 

 

Adaptive opportunistic sampling - the inner loop 

The inner opportunistic sampling loop works by strategically collecting new samples when a 
new ‘event’ is detected (Fig. 2, Fig. 3). Events can be defined empirically (e.g.,outliers in data), 
relative to process baselines (e.g., departures from ‘normal’ conditions), or deviations from 
model-based expectations. Each reflects theoretical commitments about what constitutes 
meaningful change. We seek events through such constructs; what we detect may reveal genuine 
ecological processes. An event could be as simple as a set of three unrecognized bird calls 
(empirical) or as complex as a change in a slope parameter in an occupancy model that is being 
updated automatically based on incoming data (model-based). New questions that arise can also 
trigger adaptive sampling protocols (Fig. 2). Sampling is then initiated based on triggers, rules 
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and dependencies and continues until a short-term trend (or lack thereof) is established (Fig. 3). 
For example, the detection of an invasive predator in a wide-lens camera could activate other 
cameras or ARUs to record any additional predators or prey and turn off when a pre-defined 
occupancy rate has elapsed. The inner loop is set up to be as efficient as possible to not exhaust 
or draw resources away from the outer loop long-term trend detection, but also to be the place to 
trial risky, expensive solutions. In some cases, efficiencies can be gained just from smart 
sampling for migratory or behaviors (e.g. dawn chorus birds or temperate bats), but in all cases 
efficiencies can be made from smart deployments of resources that are learned from sampling. 

Adapting frequency versus increasing spatial sampling 

Adaptive protocols can range from simple, automated changes to more complex multi modal 
responses across an entire region. Automated changes based on pre-defined rules will often be 
the easiest path to changing sample protocols, but even these automated changes will require 
work on how to best optimize for efficiency by balancing power use, data storage and probability 
of detection. The harder question is what to do if an interesting short-term trend is established, 
such as local occupancy of the invasive predator. Options would include more intensive, directed 
sampling, such as predator collars with acoustic and accelerometer capabilities to capture feeding 
events and prey selection (Studd et al. 2021) or issuing a ‘rare predator alert’ to community 
scientists in the area. This coordination could enable quick responses to emerging patterns by 
adjusting data collection across space and time–capturing “hot spots” (spatial variation) and “hot 
moments” (temporal spikes) (McClain et al. 2003). However, the protocols and optimization of 
new samples become much more complex and will require well-articulated goals and stakeholder 
input.  

When should the inner loop inform the outer loop? 

So far, adaptive sampling is restricted to the inner loop, but there are two ways that 
trends/findings from the inner loop could change the outer loop. First, data generated from the 
adaptive sampling protocols can be integrated with longer-term outer loop datastreams, but this 
integration is not trivial and risks swamping older data (see Challenges sections). Second, the 
overall long-term study design could, itself, be changed based on what is learned from the 
adaptive burst protocols. We recommend that this is only done in certain circumstances given the 
difficulties (Box 3) and the focus should be on the inner loop through automation, targeted field 
campaigns, and crowd-sourced initiatives. However, in some cases, inner loop sampling could 
strongly suggest changes in long-term monitoring protocols or even overall study goals (e.g. a 
new invasive species detected in the inner loop is causing a potential ecosystem state change). In 
other words, in some cases a deviation from expected conditions might represent a ‘new normal’ 
rather than an anomaly or stochastic event. In this case, expert and stakeholder input would be 
essential as the baseline layer maintains the critical ability to address long-term study goals (Fig. 
1).  
 

Adaptive monitoring for adaptive action 

By deploying “bursts” of extra effort when transient events arise, and economy when conditions 
are stable, this hybrid scheme can deliver more accurate, efficient answers to the ecological and 
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conservation questions we routinely ask (see Table 1 for case studies). The baseline layer 
maintains the ability to detect long-term trends while burst sampling aligns effort with urgent, 
shifting conservation priorities without sacrificing breadth. Practically, this design better 
connects monitoring to action and better matches institutional realities, such as funding cycles 
and reporting for 2030 targets without letting them wholly dictate epistemic priorities. This tiered 
approach also manages the conflict between discovery and diagnosis architecturally. The outer 
loop handles confirmatory trend detection while the inner loop enables exploratory inquiry (Box 
3). The result is monitoring that can be simultaneously exploratory and relevant to 
decision-making. 

 
Case studies  
 
The case studies below are hypothetical monitoring designs intended to make ROAM 
operationally specific (Fig. 4). They are grounded in published methods and existing components 
(e.g., PhenoCams and microclimate sensing, high-frequency stream sondes, ARUs with 
automated classifiers, and event-triggered bio-logging) and illustrate how ROAM’s inner and 
outer loops function across different monitoring systems. In each example, routine sampling 
baselines—such as vegetational greenness and degree-days, diel stream chemistry, regional 
acoustic surveys, or low-frequency bio-logging data—anchor the outer loop, providing 
continuity for trend detection and long-term inference. When anomalies or model departures 
occur, ROAM’s inner loop temporarily intensifies sampling by increasing frequency, adding 
complementary monitoring modalities, and/or mobilizing observers for targeted data collection. 
These short bursts capture transient processes, including rapid phenological shifts (Case 1), 
biogeochemical nutrient pulses (Case 2), localized breeding activity of a declining species (Case 
3), or early-warning signs of mortality and disease (Case 4), all of which could remain 
undetected under fixed-interval sampling designs. Together, these cases show how ROAM 
integrates discovery with diagnosis by allowing targeted, event-driven sampling without 
compromising consistent baselines required to quantify change through time. 
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Figure 4. Case study examples of ROAM burst sampling protocols. When routine monitoring 
detects a predefined event (denoted by triangles), the system activates additional monitoring 
through automated responses (e.g., increased sampling frequency, additional sensors) and 
potentially human-deployed measurements. Events can include: (1) surpassing a threshold of 
growing degree days that indicates an upcoming phenological transition, (2) unexpected stream 
chemical or physical properties indicating nutrient pulse or disturbance, (3) multimodal evidence 
of breeding activity in declining bird populations, and (4) biologging signals suggesting 
mortality events. Burst sampling continues until predefined or updated termination criteria are 
met. The events and burst sampling period is then refined as data from burst sampling 
accumulates and is eventually integrated back into routine collection (Fig. 2). 
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Case Study 1. Anticipating phenological shifts 

Phenology is critical for evaluating how climate change alters the timing of flowering, migration, 
and reproduction, with cascading effects on ecological interactions and ecosystems. Phenological 
transitions (e.g., leaf-out and flowering) can occur over days and vary strongly among 
microhabitats, making them easy to miss under fixed biweekly visits (Kudo and Ida 2013; 
Richardson et al. 2018). Even when paired with near-continuous imagery (e.g., PhenoCam; 
https://phenocam.nau.edu/webcam), anomalous early-season dynamics may remain 
undersampled, inflating uncertainty in climate-phenology attribution and limiting tests of 
microsite-driven mismatch hypotheses  (Kudo and Ida 2013; Richardson et al. 2018). 

Aim: Improve detection and dating of plant phenological transitions (e.g., budbreak, flowering, 
senescence) using opportunistic sampling. 

Event detection: Long-term field visit records define median growing degree-day onset 
thresholds (Klosterman et al. 2014). Two complementary phenophase signals are monitored: (1) 
greenness chromatic coordinate (GCC) from PhenoCam time-series and (2) cumulative growing 
degree-days (GDD) from co-located microclimate sensors (McMaster and Wilhelm 1997; 
Schwartz et al. 2006). A burst is triggered when either the rolling z-score of daily GCC increase 
exceeds 2.0 for three or more consecutive days, or when cumulative GDD reaches the 10th 
percentile of the historical onset distribution earlier than the median year (Schwartz et al. 2006). 

Opportunistic sampling: Triggers increase image frequency (e.g., hourly to 10-minute intervals) 
(Richardson et al. 2018) and activate edge-deployed, on-device phenophase classifiers for 
budbreak and first flower. To minimize false positives, the system requires corroboration via soil 
temperature increases above baseline (Li et al. 2022) and budbreak confirmations across multiple 
camera viewpoints (Klosterman et al. 2014). A subset of events can be verified through targeted 
field visits and trained observers (e.g., Nature's Notebook volunteers; (Fuccillo et al. 2015). 
Bursts terminate when GCC change rates decrease (Klosterman et al. 2014) or after the expected 
spring greening duration (5–15 days). 

Expected outcomes: Targeted bursts can increase precision of onset dating by 1-2 days 
(Richardson et al. 2009), compared to 5-7 days under baseline-only sampling, decreasing 
residual mean squared-error and improving model fit for temperature and soil-moisture pulses 
and enabling mid-season calibration of degree-day models (De Pauw et al. 2000). Importantly, 
ROAM treats burst-derived onset estimates as high-information observations that are integrated 
into the long-term record with bias control, improving interannual comparability while reducing 
uncertainty where and when phenological change is most rapid. This same design generalises to 
leaf senescence, insect emergence, and other phenophases where optical and microclimate cues 
support classification. 
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Case Study 2. Biogeochemical disturbance in streams 

Transient biogeochemical events (e.g., nutrient pulses, oxygen depletion or algal blooms) are can 
dominate downstream water quality and food-web dynamics, yet their timing and location are 
difficult to predict (McClain et al. 2003; Sprenger et al. 2019; Wilkinson et al. 2022). 
Fixed-interval grab sampling provides low-resolution snapshots and often misses “hot moments” 
such as diel oxygen excursions, hydrologic exchange events, or dissolved organic carbon pulses 
from leaf-fall or photodegradation (Bernhardt et al. 2018; Bi et al. 2021). Storm-centric 
monitoring programs can also lack the spatial resolution needed to localise hot spots across 
nested tributary networks. 
 
Aim: Detect rare, high-impact stream disturbance events and localise their sensors using a nested 
ROAM sensor framework. 
 
Event detection: Hourly nitrate (NO3

-) and dissolved oxygen (DO) concentrations from 
multiparameter sondes established diel baselines at fixed-monitoring nodes (Bi et al. 2021), 
analysed using 24-hour rolling baselines and 7-day comparison windows (Fig. 4). To reduce 
bandwidth and power costs, on-logger (edge) processing evaluates two trigger logics. First, an 
acute disturbance triggers fires when NO3

- declines exceed 40% along network distance with 
concurrent DO suppression beyond the diel envelope for two or more hours. These magnitude 
and duration thresholds reduce sensitivity to electrode drift and transient bubbles or debris 
(Damala et al. 2022). Second, a model-based trigger uses edge, on-chip harmonic regression to 
predict diel DO, firing when departures from predicted patterns exceed ~2.5 standard deviations 
for at least three consecutive timesteps (Rode et al. 2016; Heathwaite and Bieroza 2021). False 
positives (e.g., sensor biofouling mimicking DO depletion) are reduced by requiring multi-sensor 
corroboration (e.g., turbidity, conductivity, dissolved organic carbon proxies), consistency with 
expected propagation given flow and network structure, and exclusion of normal nocturnal DO 
minima (Bolick et al. 2023). 
 
Opportunistic sampling: After validation, the opportunistic inner loop activates and sampling 
frequency increases from hourly to 15-minute intervals at the trigger node and adjacent stations 
to capture event dynamics. Spatial activation follows network topology, expanding to upstream 
or downstream nodes and sibling tributaries to bracket the anomaly source (targeting localisation 
within ~50 meters where feasible). Higher-cost modalities can be activated selectively, including 
UV-vis spectrometers for dissolved organic matter, eDNA autosampling for microbial shifts, and 
isotope-ready nitrate autosampling for process attribution. Bursts terminate when NO3⁻ and DO 
return within ~1 SD of baseline predictions for 12 consecutive hours, or the the source is 
triangulated and the multimodal sample suite is completed. Where feasible, geofenced 
notifications can recruit trained volunteers for rapid field verification at predicted locations, 
scouting for iron-stained sediments, shimmering puddles, redox odours, or visible surface foams 
at confluences. 
 
Expected outcomes: ROAM converts reactive monitoring into near-real-time surveillance, 
enabling capture and localisation of hot-moment events within hours that would be effectively 
undetected under weekly sampling. By concentrating analytical and field effort only when 
systems deviate from baseline, this approach can reduce uncertainty in annual nutrient flux 
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estimates by observing short pulses that disproportionally contribute to mass export. Long-term 
value arises because burst-confirmed events are incorporated into flux and process models as 
explicitly detected episodic components, improving cross-year comparability of watershed 
function while clarifying when and where mechanisms shift. This framework can be applied to 
post-fire ash pulses (elevated conductivity and metals), disease-driven canopy losses (altered 
light and temperature regimes), or other event landscapes with characteristic multi-sensor 
fingerprints.  

Case Study 3. Avian demographic response to management  

Widespread avian declines in North America have motivated substantial investment in habitat 
creation and restoration, but monitoring effectiveness across large regions remains challenging 
within narrow breeding windows (Corace et al. 2010; Rosenberg et al. 2019). Autonomous 
recording units (ARUs) and automated bioacoustic classifiers can estimate presence, occupancy, 
and abundance and related these to habitat covariates (Czarnecki et al. 2024; Fiss et al. 2024; 
Larkin et al. 2024b; Chronister et al. 2025). However, occupancy-habitat relationships alone are 
often insufficient to evaluate management effectiveness, such as whether interventions increase 
reproduction and population growth. 

Aim: Improve management interventions of declining songbirds by moving beyond simple 
occupancy toward fitness and population growth.  
 
Event detection: For challenging cases where vocalisations overlap with heterospecifics and 
hybridisation occurs, such as the declining Golden-Winged Warbler (GWWA) that hybridises 
with the Blue-Winged Warbler, standard detection protocols are prone to false positives. ROAM 
uses edge-capable AI classifiers on ARUs to process daily 2-hour dawn-chorus recordings 
(Ralph et al. 1995) during phenology-informed windows across the breeding season (mid-May to 
late July in eastern North America). Acoustic detections serve as a conservative primary trigger 
(high-precision, potentially low-recall), but escalation requires corroboration by secondary 
modalities, such as camera traps positioned at focal perches near playback sources. 
 
Opportunistic sampling: Upon plausible detection, the inner loop activates short, bounded bursts: 
playback devices broadcast GWWA song for brief windows (e.g., 10 minutes) while camera 
traps capture imagery for rapid on-device classifying and review and subsequent 
human-in-the-loop validation. Once adult presence is confirmed, playback and camera bursts are 
suspended at that location to reduce habituation and disturbance, while denser ARU arrays can 
be deployed by researchers to localise singing adult males and improve detection of fledgling 
calls. If confirmation fails within the burst window, devices power down and the system returns 
to baseline community monitoring. 
 
Expected outcomes: This multimodal adaptive framework reduces false positives and ensures 
intensified sampling is spent on true occurrences, improving the efficiency of limited field 
capacity. Ensuring species presence through multiple data modalities before initiating intensified 
data collection protocols helps ensure that high-resolution data from localisation arrays contain 
signals of interest from focal species. By enabling localisation of territories and detection of 
fledgling begging calls, ROAM supports inference on whether restored sites function as 
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population sources versus sinks and identifies microhabitat correlates of reproductive activity. 
Over the long term, these episodic confirmations can be integrated as validated breeding 
indicators within the monitoring record, strengthening trend analyses of restoration outcomes 
beyond presence-absence alone. This framework generalises to other taxa and systems where 
acoustic ambiguity limits management inference and effectiveness. 
 

Case Study 4. Adaptive bio-logging of early warnings for mortality, reproduction, and risky 
crossings 

Multi-sensor bio-logging supports fine-scale animal movement, habitat usage and behavioural 
inference but must balance sampling frequency against battery life and transmission costs (Wild 
et al. 2023; Ellis-Soto et al. 2025). Fixed GPS schedules and infrequent summary uploads can 
delay detection of mortality, disease, or reproduction by hours to days, limiting conservation 
response and obscuring behaviour during critical life-history stages (Yanco et al. 2024). As 
biologging expands globally (Davidson et al. 2025), on-tag edge computing can filter, classify, 
and selectively transmit high-resolution segments when triggered by behavioural or 
environmental cues (Kays and Wikelski 2023; Ellis-Soto et al. 2025). Commercial systems 
already support motion-based mortality alerts (e.g., VERTEX Plus collars), making event-driven 
escalation increasingly feasible. 
 
Event detection: On-tag algorithms monitor multiple sensor streams: GPS displacement, VeDBA 
(vectorial dynamic body acceleration) tri-axial accelerometer variance, skin and ambient 
temperature differentials, gyroscope data, and deviation from individual baselines. Detection 
windows vary by application: sub-daily for rapid responses (e.g., snaring or poaching), 
daily-to-weekly for behavioural classification and nesting-site identification (Donovan et al. 
2024),  and multi-day windows for disease signature or outbreak surveillance (e.g., Morelle et al. 
2023; Talmon et al. 2025). Triggers target (1) prolonged inactivity with no displacement 
(suspected mortality), (2) localised activity with limited displacement (reproduction), (3) 
sustained activity reductions relative to baselines (disease), and (4) projected trajectories 
intersecting mapped risk zones. For group-living species, triggers can incorporate clustering of 
synchronised anomalies within a shared area. False positives are reduced through dual-sensor 
corroboration, species-specific rest patterns, seasonal baselines, laboratory experiments (e.g., 
accelerometry inferred from behavioral states or energy expenditure), and targeted field 
validation. 
 
Opportunistic sampling: When triggered, GPS fix rates increase from coarse to fine-scale 
intervals (e.g., hours to minutes), and high-frequency accelerometer and gyroscope data are 
stored on-board. Full-resolution data upload when high-bandwidth links (LTE or WiFi) become 
available; otherwise, reduced-resolution features or behavioural summaries are transmitted via 
GSM, Iridium, or Argos (see Noda et al. 2024). This adaptive strategy minimises battery and 
bandwidth costs while retaining information on critical episodes. Nearby devices (e.g., cameras, 
acoustic units, or other tags) can be activated to capture collective behavioural responses to 
environmental events (e.g., natural disasters; Kays and Wikelski 2023). Bursts terminate when 
movement resumes above threshold for a specified period, the individual safely clears a risk 
buffer, or a maximum burst duration is reached. 
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Expected outcomes: ROAM turns bio-logging into an early-warning layer for adaptive 
management, enabling faster intervention for mortality, disease, and human-wildlife conflict 
risks than fixed-monitoring schedules allow. Long-term value derives from selectively 
preserving high-resolution critical episode data while maintaining deployment longevity, 
improving inference on behaviour near risk zones, disease onset trajectories, and reproductive 
timing. These burst-sampling resolved episodes can be incorporated into long-term demographic 
and hazard models as explicitly observed event segments, strengthening trend estimation and 
management evaluation. This approach is transferable to marine tags, avian migration stopover 
assessment, and large-carnivore conflict mitigation, where early detection and targeted 
classification can reduce both ecological and logistical costs. 
 
 
 
 

Table 1. Examples of the ROAM framework in four case studies: phenology, disturbance 
and water quality, wildlife bioacoustics, and movement ecology (see “Study cases” section). 
For each case, we summarise the long-term monitoring objective, the baseline monitoring design 
(outer loop; Fig. 1), the hot spots and/or hot moments targeted by the Opportunistic Burst 
Sampling protocol (inner loop; Fig. 2), event-detection logic and trigger criteria, the Burst 
protocol strategies (Fig. 2), and the role of humans in the loop(s). 
 
 1. Phenology 2. Disturbance & 

water quality 
3. Wildlife bioacoustics 4. Movement 

ecology 

Long-term 
monitoring  
objective  

Vegetation phenology  Water quality status, 
fluxes, and 
restoration outcomes 

Bird community surveys 
and management 
evaluation 

Real-time risk, 
mortality, and 
demography-releva
nt events 

Baseline 
monitoring 
design (outer  
loop) 

Near-continuous 
imagery with routine 
field checks  

Fixed sondes  with 
routine grab samples  

Daily dawn-chorus 
recordings across a 
landscape grid with 
automated species 
classifiers (edge or 
near-edge processing) 

Low-frequency 
GPS summaries 
from with on-tag 
storage of 
high-resolution 
segments  

Hot spots & 
hot moments 
targeted (inner 
loop focus) 

Rapid phenophase  
transitions and 
microclimate-driven 
asynchrony  

Temporal (pulses, 
diel excursions) and 
spatial (source 
localisation) 
moments   

Focal species 
occurrences, ambiguous 
detections, and breeding 
indicators 

Mortality or illness 
signals, risk 
crossings, 
parturition, or 
denning-related 
behavioural shifts 

Event 
detection and 
trigger 

Hybrid empirical 
rules from slope, 
z-score, and 
thresholds relative to 
historical onset  

Model-based 
departure from from 
predicted diel and 
seasonal envelopes 
plus multi-sensor 

Conservative 
empirical trigger with 
high-precision classifier 
detection or 
corroborated anecdotal 

Hybrid empirical 
and model-based 
using inactivity and 
mortality flags, 
abrupt movement 
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 1. Phenology 2. Disturbance & 
water quality 

3. Wildlife bioacoustics 4. Movement 
ecology 

corroboration observations of focal 
species paired with 
escalation requiring 
secondary confirmation  

shifts, and 
proximity to 
hazards 

Burst protocol 
strategies: 
cadence, 
modality, and 
footprint 

- Cadence: increased 
image capture 
- Modality: activate 
on-device phenophase 
classifier; add 
targeted human visits 
for verification   

- Cadence: increased 
sampling frequency 
at and near 
trigger-node  
- Modality: briefly 
activate selective 
high-cost modalities 
(UV-vis, eDNA 
autosampler, 
isotopes) 
- Footprint: Expand 
sampling in 
neighbour sites, 
along topology  

- Modality: activate 
playback, camera traps 
- Footprint: deploy 
denser ARU 
micro-arraws for 
localization and 
fledgling-call detection 
 

- Cadence: increase 
fix rate 
- Fidelity: increase 
sensor fidelity 
- Footprint: 
transmit high-value 
segments only; 
trigger 
rapid-response 
verification 
 

Termination 
criteria 
 

Until the GCC change 
rate  slows OR burst 
window elapsed 

Sustained return to 
baseline envelope OR 
the disturbance 
source localised and 
multimodal samples 
completed 

Occurrence confirmed 
OR if repeated triggers 
fail within a spatial/time 
burst window 

Distance from risk 
zones is reached 
OR event resolved 
OR until the burst 
window is elapsed 

Human-in-the-
loop 

Verify and label 
events, adjust 
thresholds, targeted 
verification  

Validate, adjust 
model/envelope 
parameters, alert 
management 

Confirm detections, 
manage disturbance 
constraints, decide 
escalation to 
reproduction inference 
sampling  

Respond to 
mortality/risk 
alerts, adjust 
geofences/threshold
s, decide 
intervention 

How burst 
outputs inform 
the long-term 
record 

Burst-refined 
transition dates 
become 
high-information 
observations for trend 
models; preserve 
comparability via 
explicit burst 
flagging/weighting 

Burst-captured pulses 
enter flux/process 
models as explicit 
episodic components; 
improves cross-year 
comparability of 
export estimates 

Confirmed breeding 
indicators augment 
long-term management 
evaluation beyond 
occupancy alone 

Validated events 
become structured 
endpoints for 
demography/risk 
trend analyses 
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Remaining challenges and call to action 

Our hybrid approach combines dynamic, actionable data collection with the goal-oriented 
approach long advocated by traditional adaptive monitoring.  
 
The breadth of rapid ecological responses of ROAM’s opportunistic inner loop are highlighted 
by the case studies. Adaptive sampling can uncover links between anomalous climatic conditions 
and phenological shifts, detect critical hydrological or nutrient pulses, pinpoint microhabitat 
features that facilitate successful reproduction in declining species, and clarify how thermal 
stress, energetic deficits, or landscape hazards give rise to mortality or diseases signatures in 
bio-logging data. This ability to attribute observed trends to underlying causes is especially 
valuable.  
 
The ROAM framework also addresses a broader conceptual frontier: the opportunity to borrow 
strength not only across space and long-term datasets, as is traditionally done, but across diverse 
data streams operating at different, and increasingly fine temporal resolutions. Integrating such 
heterogeneous, rapidly collected information is essential for making full use of burst sampling’s 
diagnostic power—but it also exposes the system’s operational and analytical limits. 
 
While the value of hybrid adaptive monitoring is evident, successful implementation depends on 
coordinating sensing, computation, and decision-making in real time. Our case studies reveal 
common challenges: defining reliable event triggers, synchronizing multimodal data streams, 
maintaining rapid-response capacity, and balancing automated detection with human validation. 
Persistent constraints—limited budgets, permitting delays, staffing shortages, and equipment 
maintenance—restrict how intensively burst sampling can be deployed. To fully realize ROAM's 
potential, five coordinated advances are essential: (1) technological infrastructure for real-time 
coordination across distributed networks (e.g., edge compute), (2) integrated statistical 
frameworks with clear guidelines for trigger design, model selection, and sampling optimization, 
(3) methods for incorporating high-frequency burst data into long-term records while addressing 
sampling bias, (4) strategic design of short-term monitoring to address explicit ecological 
questions, and (5) equitable technology transfer through open-source tools and funding models 
that extend capabilities beyond well-resourced institutions. 
 
1-  Better technology and coordination 
 
Advancements in sensors—camera traps, acoustic recorders, biologgers, drones, mobile 
apps—enable adaptive protocols through programmable sampling schedules adjusted before or 
during deployment (Box 2). For example, bioacoustic devices can target dawn and dusk choruses 
rather than recording continuously, conserving memory and battery. Projects like Sentinel 
(Conservation X Labs) and SPARROW use edge-deployed machine learning to detect and 
classify species in real time, filtering blank images at the source. This Edge AI can trigger 
adaptive responses, such as extending recording time when rare species are detected. While Edge 
AI promises to revolutionize ecosystem monitoring by enabling scalable real-time adaptive 
sampling, integrating heterogeneous data from multiple sensor types presents computational 
challenges. High-quality training datasets, active learning, and few-shot fine-tuning are critical 

20 



 

 
for building versatile detection models that generalize across ecological settings and can be 
efficiently deployed on resource-constrained edge devices. 

Realizing this vision requires user-friendly, scalable cyberinfrastructure that integrates diverse 
sensors, species, and ecological contexts. We encourage multidisciplinary collaboration among 
ecologists, biodiversity researchers, edge AI developers, and distributed systems engineers to 
build next-generation infrastructure for adaptive ecological monitoring. These efforts should 
leverage the application-driven machine-learning framework (Rolnick et al. 2025), ensuring that 
new systems are tailored to end-user needs and support expert human-in-the-loop control. 
Federally-funded research organizations, such as NSF’s Sage (https://sagecontinuum.org/) and 
ICICLE (https://icicle.osu.edu/), have made strides in this direction. Sage’s 
continuous-integration (CI) workflows have supported autonomous acoustic monitoring 
(Dematties et al. 2024), air-quality sensing (Balouek-Thomert et al. 2023), and wildfire 
modelling (Altintas et al. 2022). ICICLE’s CI tooling, in turn, helps teams plan field-deployable 
ML pipelines (Stubbs et al. 2025) and understand the unique systems requirements of AI-enabled 
camera traps and drones for ecological studies (Kline et al. 2024). 

Broader application will require better AI tools and wider accessibility across sectors. Imagine 
NGOs, land managers, or wildlife biologists being able to trigger real-time sampling to answer 
site-specific questions, rather than relying entirely on the sensors themselves. This co-adaptive 
approach avoids pure techno-optimism—the idea that advanced sensors alone can resolve 
longstanding knowledge gaps (see Buchanan 2024; Smits et al. 2025). We recognize that even 
bleeding-edge instruments integrated with AI cannot, on their own, detect the subtle, 
context-dependent signals of ecological change (Van Stan et al. 2023) or or fill global 
biodiversity data gaps (Pollock et al. 2025). Progress instead lies in integrating cutting-edge 
technology with targeted human engagement at key inflection points. This human-technology 
partnership enables faster, more precise responses. Finally, hybrid adaptive monitoring is most 
useful when embedded within the greater ecosystem of regional and national conservation 
efforts. The use of technologies described above means that interoperability is built-in, greatly 
facilitating coordination, data and model sharing with existing integration platforms, such as 
GEO BON’s Bon-in-a-Box (Griffith et al. 2026)--turning adaptive monitoring into actionable 
insights. 

A practical ROAM cyberinfrastructure treats energy as a priority constraint: burst decisions must 
be co-optimized with battery state, energy harvesting forecasts, and communication costs so that 
opportunistic escalation does not compromise long-term continuity. Often the main constraint on 
edge is power. This implies burst sampling protocols should include: (1) an explicit energy 
budget (e.g., maximum burst duration given current charge); (2) whenever applicable, filtering 
and summarization (at the sensor or at the edge) to reduce transmission costs when connectivity 
is energy hungry or resource limited; and (3) opportunistic scheduling of energy-intensive 
actions (such as drone activation or high-frequency, high-resolution data gathering) when 
recharging or harvested energy is sufficient. Some of the infrastructure needed to enable an 
effective power-aware sampling already exists, including solar-powered devices with edge 
inference and low-bandwidth satellite uplink (e.g., SPARROW), autonomous drone recharging 
(ElSayed et al. 2022), optimized routing and trajectory (Coutinho et al. 2018). Such 
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systems-aware ROAM improve ecological responsiveness while remaining operationally 
sustainable over seasons and funding cycles, provided maintenance costs could be funded. 

 

2 – Developing and adapting methods and decision rules  

While hybrid monitoring may not require entirely new statistical foundations, applying existing 
methods in this context demands rigorous evaluation and sometimes novel approaches. 
Integrating diverse data streams and adaptive sampling raises challenges in event detection, 
counterfactual inference, and detecting trends across different timescales linked to distinct goals 
(surveillance versus targeted monitoring). These challenges are compounded by ecological data's 
inherent autocorrelation, bias, and sparsity, especially of multi-modal datastreams. 

New methods are needed to incorporate real-time feedback, quantify uncertainty under shifting 
sampling designs, and prevent high-frequency bursts from obscuring long-term patterns. 
Building these methods requires integrating statistical innovation, ecological knowledge, and 
stakeholder objectives to detect both short-term "pulse" events and sustained change. 

Event detection can use empirical threshold rules or model-based approaches that update as data 
arrive and flag parameter changes warranting response. Events can be defined relative to 
baselines (surveillance) or specific hypotheses (targeted monitoring). 

Trend detection methods are well-established for long-term ecological data, but must be adapted 
to identify when anomalies become trends, particularly across multimodal datasets. Traditional 
techniques—changepoint analysis, moving-window tests—need evaluation for autocorrelated 
data with time-varying sampling effort. Machine learning approaches for extreme events 
(Gonzalez-Calabuig et al. 2024; Camps-Valls et al. 2025) offer promising directions. 

Sampling optimization following event detection remains underdeveloped. Simple 
pre-programmed rules can automatically activate sensors, but there is great potential in a truly 
iterative approach to collecting new samples. New sampling can be optimized based on 
information gain, minimizing costs, and reducing model-based uncertainty (Chadès et al. 2017; 
Callaghan et al. 2019; Henrys et al. 2024). The value of additional samples can be estimated 
using Bayesian or information-theoretic approaches, especially if the goal is to reduce model 
uncertainty. Reinforcement and active learning can also be used to select new samples (Chapman 
et al. 2023; Xu et al. 2025), especially for real-time dynamic updating, though these methods 
have limited capacity for addressing uncertainty. 

 

3 - Integrating recent high frequency data into the long-term record 

We urgently need cohesive long-term records of populations, species, and ecosystems, so a key 
question is when and how to update the long-term record with incoming data. This question 
extends beyond adaptive sampling to any case where recent, high-frequency data is combined 
with a sparser historic record (Fig 1). Here, machine learning methods might be less useful as 

22 

https://www.zotero.org/google-docs/?broken=Y1ce3o
https://www.zotero.org/google-docs/?broken=Y1ce3o
https://www.zotero.org/google-docs/?broken=UOokhB
https://www.zotero.org/google-docs/?broken=UOokhB


 

 
estimating uncertainty in long-term trends is critical, although they can be useful for detecting 
nonlinear patterns. Bayesian methods of model integration are likely the most helpful when data 
are tied to a particular management decision and methods from structured decision-making 
(Martin et al. 2009) can be followed. A growing field of model integration for multimodal data 
(Isaac et al. 2020; Herrera et al. 2025) offer promising strategies for effectively combining 
diverse data streams, but essentially these average data in different ways, and, in some cases, 
data might be too different or biased for these techniques. 
  
Hybrid monitoring could introduce new forms of bias that can arise specifically from targeted 
sampling. Burst sampling may also amplify existing biases because different modes of data 
collection can have different biases. For example, an easily detectable species could repeatedly 
flag new sampling, which over time could propagate into the overall trend record. 
Autocorrelation between populations, areas, and data types is also an important issue that is 
known to influence trend detection (Hébert and Gravel 2023; Johnson et al. 2024). These 
concerns are not trivial and could lead to systematic errors in long-term trends with the influx of 
high frequency data that is biased in different ways. 
  

4 - Anchoring technology in goal-oriented monitoring 

Rather than post-hoc model integration, a better way to orient new data streams better into the 
long-term record is to set clear goals for the inner loop that anticipate anomalies or stochastic 
fluctuation becoming trends. As we have argued here, the barriers for adaptive sampling are 
being addressed for the inner loop much more rapidly through technology than for long-term 
monitoring programs, which requires sustained government and other funding, sustained political 
will, and a long-term commitment by a variety of stakeholders (reviewed in Lindenmayer et al. 
2022). But given the rapid rate of technology changes, short funding cycles, we anticipate many 
situations in which new technologies are being deployed without an existing overarching design 
(i.e., no outer loop). This is because evidence can only accumulate against a stable ontology: we 
cannot learn whether X causes Y if the measurement of X keeps shifting. The outer loop 
stabilizes the ontology (i.e., defining what counts as events, units, and counterfactuals) while also 
specifying the baseline sampling rule so that deviations from it (and opportunistic burst data) 
remain interpretable as a signal rather than sampling artifact. We urge any deployment of new 
sampling to keep in mind clear study goals and link to the goals of relevant regional monitoring. 

 

5 - Technology Transfer 

Defining a hybrid network such as ROAM is only the first step. An important aspect of this work 
is to create a path to technology transfer that aligns with the needs of the ecology and 
conservation communities. Technology transfer involves many facets, such as coordination, 
accessibility by and training of operators, cost concerns (both deployment and 
operation/maintenance), adoption issues (target population, size of monitoring systems, and ease 
of system adaptation), intellectual property, organizational and cultural barriers, regulatory and 
legal concerns, and ethical issues. 
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The ecology community is well poised to enable such technology transfer, given that many of the 
tools are open source (both academia and industry). Nevertheless, there is a lack of 
standardization in data formats, not all projects follow FAIR principles or are AI-ready, many 
open source tools are not modular or industrial strength, and the acquisition and distribution of 
datasets is still lacking. These challenges make it difficult to train and develop new models. 
  
Some projects are already making inroads towards remote ecological monitoring such as the 
SPARROW, NEON, and SAGE.  These systems typically connect sensors to transmit data to 
centralized cloud servers through satellite or cell connections.  In some settings, the challenge 
becomes the cost of these sensor nodes when they are not subsidized by industry or 
governmental agencies. Cost does not necessarily mean financial resources but can also be 
deployment, installation, management, training, power source, connectivity, and sensor suite, 
among others.  In that sense, this technology is only available to well-funded institutions. 
  
Academic projects in science and engineering have proposed low-cost solutions, which need to 
be further developed in multidisciplinary teams and deployed in real world environments.  
Creating a path from such academic projects in laboratories to transferring the technology to 
actual large-scale deployments will benefit lower-income nations, institutions, and projects.  
Further, sometimes such lower-cost nodes are also more sustainable, given the fewer resources 
they consume. New technology does have the potential to address social progress and local 
communities needs, especially if a participatory approach is taken (Bondi et al. 2021). 
Ultimately, we need technology that works easily, intuitive interfaces, and training for managers 
and the community to leverage these advances. 
 
 
Conclusions 
 
Technology gives us the opportunity to finally monitor biodiversity and inform management and 
conservation flexibly, relatively and at scale, but the integration required to do this is not going to 
happen automatically. It requires intention. ROAM (Routine-Opportunistic Adaptive 
Monitoring) couples prolific data collection efforts with monitoring principles designed to detect 
long-term population and ecosystem trajectories that can disproportionately influence ecosystem 
function and species demographics. While there are big challenges in developing the technology 
itself (methods development, infrastructure, and data collection), accessibility to the technology 
and training are essential for widespread adoption, especially improved access to open-source 
platforms, training and equitable funding models for democratizing adaptive monitoring beyond 
well-funded institutions. With these advances, ROAM can improve early warning systems for 
ecological tipping points, optimize the timing of management interventions, and fundamentally 
increase the return on investment in monitoring networks. 
 
​
​
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