

1 **Diversity comes at a cost: multifaceted diversity reduces plant community**
2 **stability in peatlands**

3

4 Balti Heikel¹

5 Buttler Alexandre^{2, 3}

6 Pinault Lise¹

7 Bertrand Guillaume⁴

8 Binet Philippe⁴

9 Gilbert Daniel⁴

10 Magnon Geneviève⁵

11 Agnola Pierre⁵

12 Mouly Arnaud^{1*}

13 Violette Cyrille^{6*}

14

15 *These authors contributed equally to this work (alphabetical order)

16

17 ¹Université Marie et Louis Pasteur, CNRS, Chrono-environnement (UMR 6249), F-25000
18 Besançon, France

19 ²Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and
20 Environmental Engineering (ENAC), Laboratory of Ecological Systems (ECOS), Lausanne,
21 Switzerland

22 ³Swiss Federal Institute for Forest Snow and Landscape Research (WSL), Lausanne,
23 Switzerland

24 ⁴Université Marie et Louis Pasteur, CNRS, Chrono-environnement (UMR 6249), F-25200
25 Montbéliard, France

26 ⁵EPAGE Haut-Doubs Haute-Loue, France

27 ⁶CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France

28

29 **Corresponding author:**

30 Balti Heikel

31 Email: heikel.balti.research@gmail.com

32

33 **Author contributions**

34 **Heikel Balti**: Conceptualization, Methodology, Formal analysis, Data curation, Writing - Original
35 Draft, Writing - Review & Editing, Visualization. **Alexandre Buttler**: Methodology, Investigation,
36 Data curation, Writing - Review & Editing. **Lise Pinault**: Visualization, Writing - Review & Editing.
37 **Guillaume Bertrand**: Resources, Writing - Review & Editing. **Philippe Binet**: Investigation,
38 Writing - Review & Editing. **Daniel Gilbert**: Methodology, Resources, Writing - Review & Editing.
39 **Geneviève Magnon**: Resources, Writing - Review & Editing. **Pierre Agnola**: Resources, Writing
40 - Review & Editing. **Arnaud Mouly**: Conceptualization, Methodology, Investigation, Data curation,
41 Supervision, Writing - Review & Editing. **Cyrille Violle**: Conceptualization, Methodology,
42 Validation, Supervision, Writing - Review & Editing. All authors contributed to the drafts and gave
43 final approval for publication.

44 **Acknowledgments**

45 This study used data from SNO-TOURBIERES (long-term French peatland observatory, CNRS
46 *Terre & Univers, INSU*). The continuity and long-term measurements are made possible by a
47 continuous CNRS funding since 2008 and the access to the reserve granted by the region
48 *Bourgogne Franche-Comté*. Financial support for recent field observations was provided by the
49 *Zone Atelier Arc Jurassien* (CNRS).

50 We thank Alicia Foxx (Negaunee Institute for Plant Conservation Science and Action, The
51 Chicago Botanic Garden, Glencoe, IL 60022, USA; Plant Biology and Conservation Program,
52 Northwestern University, Evanston, IL 60208, USA) for her valuable suggestions and comments

53 that improved the clarity and presentation of this manuscript. We thank Marie-Laure Toussaint
54 and Anne Boetsch from the PEA²t platform for data acquisition and for maintaining the SNO-
55 *TOURBIERES* instrumentation. We thank Grégoire Bernard for data acquisition.

56

57 **Conflict of interest statement**

58 The author(s) report no conflicts of interest in this work.

59

60 **Data availability statement**

61 Upon acceptance, the data and code supporting this study will be deposited in a public repository
62 providing a DOI.

63

64 **ORCID**

65 *Heikel Balti* <https://orcid.org/0009-0006-2283-6767>

66

67 **Abstract**

68 1. Understanding how ecological stability relates to diversity is of crucial importance under
69 global change. Greater biodiversity is expected to stabilize aggregate community
70 properties through compensatory dynamics, as species fluctuate asynchronously and
71 offset one another. Yet, diversity-stability relationships are not straightforward and can
72 vary across and within ecosystems, particularly in wetlands where strong abiotic filters
73 shape community assembly and temporal dynamics.

74 2. We examined how multiple facets of diversity (taxonomic, functional, and phylogenetic)
75 and functional trait identity relate to temporal stability (invariability) and species
76 asynchrony in peatland vegetation. We used a 17-year field experiment in a montane
77 peatland complex spanning a bog and a transitional poor fen, combining open-top
78 chamber (OTC) passive warming with natural hydrological contrasts.

79 3. Water table depth was the dominant environmental filter of plant communities, explaining
80 46 % of total compositional variance, whereas OTC-induced warming had no detectable
81 effect. Community temporal stability and species asynchrony were higher under drier
82 conditions (deeper water table), consistent with moisture-driven constraints on peatland
83 vegetation dynamics.

84 4. Contrary to insurance hypothesis predictions, temporal stability decreased with multiple
85 biodiversity facets, particularly phylogenetic diversity and species richness, but increased
86 with deeper-rooted plant strategies, after controlling for experimental conditions. Species
87 asynchrony was largely unrelated to biodiversity, except for functional redundancy, which
88 was associated with lower asynchrony but showed no association with temporal stability.
89 The stability-asynchrony association weakened substantially after controlling for
90 hydrology.

91 5. *Synthesis.* Our results reveal that in peatlands, hydrology simultaneously structures
92 biodiversity patterns, temporal stability and species asynchrony, yielding negative
93 diversity-stability relationships that contradict classical insurance hypothesis predictions.

94 These findings suggest that in peatlands, stability arises primarily from hydrological
95 constraints, with limited contribution from compensatory dynamics among plant species.
96 In strongly constrained, species-poor ecosystems, conservation may therefore prioritize
97 maintaining or restoring the key abiotic conditions that favor functionally adapted
98 communities over increasing diversity to sustain stable ecosystem functioning under
99 global change.

100

101 **Keywords:** community temporal stability, global change ecology, mires, peatland vegetation,
102 plant functional traits, plant population and community dynamics, species asynchrony, wetland
103 ecology

104

105 1. INTRODUCTION

106 The diversity-stability relationships remains one of the most debated topics in ecology (McCann,
107 2000; Polazzo et al., 2025). Empirical studies have revealed a range of associations between
108 different facets of diversity and ecological stability, including positive, neutral and negative
109 associations (Pennekamp et al., 2018). The diversity-stability relationships debate is even more
110 important in the context of global change, especially in sensitive ecosystems such as peatlands,
111 where community trajectories are tightly contingent on environmental conditions (Buttler et al.,
112 2023; Hautier et al., 2015). Long-term *in-situ* experimental approaches provide an ideal
113 framework for disentangling these dynamics and understanding how different facets of diversity
114 are associated with temporal stability (Zhang et al., 2026).

115 How ecological stability relates to diversity has been an ongoing debate in the field of
116 ecology since the 1950s (Elton, 1958; Ives & Carpenter, 2007; Loreau & de Mazancourt, 2013;
117 May, 1973; McCann, 2000; Pimm, 1984; Polazzo et al., 2025). Positive relationships were first
118 considered the rule, in which diverse ecosystems should be more stable than simpler ones (Elton,
119 1958). However, conflicting stability-diversity associations have been reported (Pennekamp et al.,
120 2018; Polazzo et al., 2025), with evidence of positive (Frank & McNaughton, 1991; Liang et al.,

121 2022; Rodrigues et al., 2025), neutral (Ives & Carpenter, 2007; Xu et al., 2015), or negative
122 relationships (Pan et al., 2025; Pfisterer & Schmid, 2002). Several mechanisms may explain
123 stability and its relationships to diversity. Under the insurance hypothesis, it is classically
124 expected that greater diversity promotes stability by increasing asynchrony among species (i.e.,
125 compensatory dynamics), which in turn produces portfolio effects that mitigate fluctuations and
126 reduce the total variance in the community (Hector et al., 2010; Lisner et al., 2024; Loreau et al.,
127 2021; Xu et al., 2021, p. 202; Yachi & Loreau, 1999). In this framework, species asynchrony is
128 considered to be the key mechanism through which diversity increases community stability
129 (Craven et al., 2018; Gross et al., 2014; Loreau & de Mazancourt, 2013; Valencia et al., 2020).
130 Despite decades of research, the relationships between community stability and the various
131 facets of diversity remain unpredictable, even though understanding the relationships is critically
132 important in vulnerable ecosystems subject to multiple pressures (Hautier et al., 2015).

133 The variability in the relationships between diversity and stability partly stems from taking
134 a one-dimensional approach to diversity, in which researchers often consider diversity solely
135 through the lens of species richness. However, species richness is a limited proxy for diversity
136 (Fletcher et al., 2025; Hillebrand et al., 2018). Diversity is inherently multifaceted, and ecological
137 stability itself encompasses multiple dimensions (Donohue et al., 2016; Kéfi et al., 2019); here,
138 we focus on temporal stability (invariability or constancy) of aggregate community properties.
139 Several indicators of composition, structure and functions might have different relationships with
140 stability (Ives & Carpenter, 2007), and can stabilize communities through different mechanisms
141 and respond differentially to environmental stress and constraints (Naeem et al., 2016). Among
142 these mechanisms, species richness acts through statistical averaging (i.e., portfolio effect),
143 functional diversity reflects differential trait responses to environmental variation and phylogenetic
144 diversity captures evolutionary constraints on responses to environmental variations (Cadotte et
145 al., 2012; Craven et al., 2018; De Bello et al., 2021; Flynn et al., 2011; Liu et al., 2025). From a
146 trait-based perspective (Violle et al., 2007), a community can be characterized by its mean trait
147 values (i.e., functional identity), which reflect the dominant strategy, as well as its dispersion of
148 trait values around this mean (i.e., functional diversity), which reflects the range of strategies

149 (Enquist et al., 2015). These two components of the functional structure of a community can show
150 distinct relationships with stability (Craven et al., 2018; Liu et al., 2025). Hence, examining both
151 multifaceted diversity and the functional composition of communities (Garnier et al., 2016) is
152 essential for disentangling the drivers of the diversity-stability relationships. However, empirical
153 tests integrating multiple facets of diversity remain scarce and studies have mainly focused on
154 taxonomic diversity effects on stability (Liang et al., 2022; Rodrigues et al., 2025; Wisnoski et al.,
155 2023). Despite growing interest in diversity-stability relationships across ecosystems (Craven et
156 al., 2018; Liu et al., 2025; Meng et al., 2025; Pennekamp et al., 2018; Polazzo et al., 2025), these
157 relationships remain understudied in peatlands, where strong environmental gradients
158 differentially filter multifaceted diversity (Robroek et al., 2017) and with potential consequences
159 for community temporal stability.

160 At the global scale, peatlands play a disproportionate role, notably as long-term carbon
161 stores, that hold around one third of the world's soil carbon (Austin et al., 2025; UNEP, 2022).
162 This results from peat accumulation under saturated water conditions, which limit organic matter
163 mineralization (Charman, 2002; Stivrins et al., 2017). Yet nearly half of European peatlands (48
164 %, excluding European Russia) have been degraded, usually throughout drainage (Tanneberger
165 et al., 2021), leading to substantial greenhouse gas emissions of 59–113 Mt CO₂eq annually in
166 the EU (van Giersbergen et al., 2025). Peatland functioning relies on low diversity and highly
167 specialized plant communities (Laine et al., 2021; Pinceloup et al., 2020; Rydin et al., 2013)
168 which makes these ecosystems particularly vulnerable to cumulative and interacting pressures
169 from local anthropogenic disturbance and climate change (Dieleman et al., 2015; Dise, 2009;
170 Loisel et al., 2021; Page & Baird, 2016). Environmental stressors act as differential filters on
171 multifaceted diversity, with cascading effects on stability (Davidson et al., 2025), and may also
172 play a decisive role in how stability is altered (Hautier et al., 2015). Under strong environmental
173 filters, low-diversity communities composed of specialist plants may display higher temporal
174 stability of community properties. Conversely, more diverse assemblages may amplify temporal
175 fluctuations leading to reduced stability, rather than the stabilizing effects predicted by the
176 insurance hypothesis (Pfisterer & Schmid, 2002). Studies have shown that the most significant

177 environmental stresses affecting the stability of peatlands are temperature, water table depth and
178 CO₂ atmospheric concentrations (Dieleman et al., 2015; Turetsky et al., 2012). In these saturated
179 ecosystems, hydrology is the primary environmental factor determining peatland vegetation
180 dynamics and overrides the effects of experimental warming (Buttler et al., 2015, 2023).
181 However, how multifaceted diversity modulates peatland community stability and species
182 asynchrony under environmental filters remains poorly understood.

183 In this study, we used a long-term *in-situ* experiment combining artificial passive warming
184 and contrasting hydrological conditions to test how these environmental filters shape both
185 multifaceted diversity and community temporal stability. This approach addresses a critical
186 knowledge gap: although long-term experimental studies in peatlands have examined multiple
187 taxonomic groups and ecosystem processes (Binet et al., 2017; Górecki et al., 2021; Jassey et
188 al., 2013; Obi & Lindo, 2026), their application to community stability remains scarce. First, we
189 examined how hydrological gradient and experimental warming shape community assembly and
190 multifaceted diversity. We hypothesized that hydrology would act as the dominant environmental
191 filter, overriding warming effects in structuring multifaceted diversity trajectories. Second, we
192 assessed how diversity trajectories are linked to community stability and species asynchrony, by
193 testing which facets modulate the response of peatland plant communities under combined
194 environmental stressors.

195

196 **2. MATERIALS AND METHODS**

197 **2.1 Study site**

198 The study was conducted at the Forbonnet peatland near Frasne in the Jura Mountains, located
199 in northeastern France (46°49'34.8"N, 6°10'20.6"E; 840 m above sea level; Supplementary S1).
200 The 7-ha experimental site is an active peatland where turfgenesis still occurs, belonging to a
201 larger peatland complex of more than 300 ha (Lhosmot et al., 2025), which falls within the "typical
202 raised bog region" according to the European mire typology (region IV; Tanneberger et al., 2021).
203 The site is listed as an EU Natura 2000 protected area since 2002 and designated as a Ramsar
204 site. It is part of the French national peatland observatory (SNO-TOURBIERES) and the
205 European Long-Term Ecosystem Research network (eLTER), equipped to monitor a range of
206 environmental parameters (Buttler et al., 2023; Gogo et al., 2021).

207 The experimental site, originally described as a *Sphagnum*-dominated ombrotrophic
208 peatland, encompasses two hydrologically distinct microhabitats (hereafter "WET" and "DRY",
209 Supplementary S2) differing in water table depth, microtopography, and vegetation composition
210 (Jassey et al., 2023). The WET microhabitat, a transitional poor fen area, is characterized by a
211 flat surface with a mixed plant community comprising *Sphagnum fallax* (occasionally with *S.*
212 *flexuosum*) and vascular plants (e.g., *Andromeda polifolia*, *Vaccinium oxycoccus*, *Scheuchzeria*
213 *palustris*). The DRY microhabitat exhibits typical ombrotrophic bog microtopography (i.e.,
214 hummock-hollow) with *Sphagnum magellanicum* s.l. (i.e., corresponding to either *S. medium* or *S.*
215 *divinum*, formerly reported as *Sphagnum magellanicum* s.s.; Hassel et al., 2018) and vascular
216 plants, including *Eriophorum vaginatum*, *Andromeda polifolia*, *Vaccinium oxycoccus*, *Calluna*
217 *vulgaris*). Within these contrasting hydrological conditions, WET and DRY, a long-term passive
218 experimental warming through Open Top Chambers (OTCs) manipulation was established in
219 2008.

220 In April 2008, twelve 3 × 3 m plots were established within the long-term monitoring
221 platform across the WET and DRY microhabitats, with six plots in each hydrological condition. In
222 each plot, a permanent 50 × 50 cm subplot was defined in homogeneous areas to ensure

223 consistency over time. Plots were randomly allocated to warming treatments, with three plots per
224 hydrological condition assigned to passive warming using Open Top Chambers (OTCs) and three
225 plots serving as controls. The OTCs followed the International Tundra Experiment (ITEX) protocol
226 (Hollister et al., 2023) and consisted of transparent hexagonal polycarbonate chambers (50 cm
227 high, 1.7 m top width, 2.4 m base width) raised 10 cm above the peat surface to allow air
228 circulation. In our site, OTCs produced modest but significant near-surface warming,
229 approximately 1 °C increase in average air temperature (Binet et al., 2017; Jassey et al., 2011).
230 This resulted in a factorial design (2 hydrological conditions × 2 warming treatments × 3 replicates
231 = 12 plots).

232 **2.2 Data collection**

233 **Vegetation survey**

234 Species abundances were measured as relative cover using the point-intercept method at peak
235 biomass in July for each survey year of 2008, 2009, 2010, 2012, 2024, 2025. A transparent
236 Plexiglas frame with adjustable legs was placed over each 50 × 50 cm subplot. A ruler with 20
237 holes was placed at 20 locations across the frame, generating a grid of 400 evenly-spaced
238 sampling points. At each point, a 1 mm diameter metal pin was lowered vertically, and all
239 vegetation contacts were recorded by taxon, from the top leaf layer down to the moss layer. The
240 2024 and 2025 surveys were conducted with a total of 200 points due to equipment constraints,
241 but this was accounted for in the calculation of relative frequencies to obtain comparable results
242 throughout the survey period. This survey method provided relative frequencies by taxon and
243 considers the stratification of plant communities. Because distinguishing *S. fallax* from *S.*
244 *rubellum* in the field is difficult, the two taxa were pooled under *S. fallax* for analyses, consistent
245 with earlier work showing *S. fallax* to be by far more frequent and *S. rubellum* being restricted to
246 limited patches (Buttler et al., 2015). To analyze plant community dynamics, we used relative
247 abundance (i.e., cover) of each species per year and per plot, following Buttler et al. (2015,
248 2023), to ensure comparability across studies. Species with mean relative abundance < 0.1 %

249 across the dataset (n = 2: *Carex limosa* 0.004 %, *Pinus sylvestris* 0.006 %) were excluded from
250 all following analyses. Before all subsequent analyses, species matrices were renormalized after
251 removing litter and excluded species, except for stability and asynchrony computation for which
252 they were not renormalized.

253 **Functional trait data**

254 Functional traits were used to describe ecological strategies and functions of species in their
255 ecosystems (Garnier et al., 2016; Lavorel & Garnier, 2002; Violle et al., 2007). A subset of four
256 functional traits were selected: (1) root depth, related to belowground resource acquisition and
257 hydrological niche, previously identified as a potential key driver of species responses in this
258 peatland (Buttler et al., 2015); (2) specific leaf area (SLA), a proxy of leaf economics and
259 resource acquisition efficiency (Wright et al., 2004); (3) plant height, reflecting the competitive
260 ability for light and vertical stratification (Violle et al., 2009); and (4) seed mass, representing
261 dispersal and colonization/establishment trade-offs (Westoby et al., 2002). Trait data were
262 obtained from the TRY database (v.6.0, downloaded 24 June 2025, Kattge et al., 2020). These
263 traits were selected only for vascular plants; bryophytes were excluded due to fundamental
264 differences in trait expression and lack of comparable traits.

265 A complete trait matrix (i.e., with no missing values) was required for subsequent
266 analyses. Root depth had missing values for two of the ten vascular species (*Carex pauciflora*
267 and *Scheuchzeria palustris*). These values were imputed using the median of remaining vascular
268 species (0.22 m), which provided similar values to the random forest approach (0.23 m for both
269 species, Johnson et al., 2021) and more ecologically realistic estimates than using all values in
270 the TRY dataset (0.305 m). For *Vaccinium oxycoccus*, only qualitative information was available
271 (i.e., “shallow”); this value was converted into a quantitative value (0.10 m) based on its shallow
272 root systems in peatlands. Next, the collinearity among traits was examined on the trait matrix to
273 ensure trait independence (all Spearman $|\rho| < 0.7$), and all traits were log-transformed prior to
274 functional metrics calculation.

275 **Phylogenetic tree**

276 To compute phylogenetic diversity metrics, a phylogenetic tree was constructed from rbcL
277 chloroplast sequences (1428 bp) obtained from NCBI GenBank. Sequences were aligned using
278 MAFFT and analyzed with PhyML via ngphylogeny.fr. The resulting tree was ultrametricized
279 using penalized likelihood. Details on sequences, alignment, and tree calibration are provided in
280 Supplementary S3.

281 **2.3 Diversity metrics**

282 Diversity metrics were calculated on vascular species matrix (i.e., excluding bryophytes).
283 Taxonomic diversity was characterized using species richness (N_0) and Hill numbers (Hill,
284 1973; Jost, 2006): Shannon diversity (N_1 , Eq. 1) and Shannon evenness (E_{10} , Eq. 2). Shannon
285 diversity (N_1) is the exponential of the Shannon's entropy index, with the order $q = 1$ in the
286 framework of Hill numbers (Chao, Gotelli, et al., 2014):

$$N_1 = \exp \left(- \sum_{i=1}^s p_i \ln(p_i) \right) \quad (1)$$

287 where S is the number of species and p_i the relative abundance of species i .

$$E_{10} = N_1 / N_0 \quad (2)$$

288 Community-weighted mean (CWM, Eq. 3) matrix was calculated to analyze the dominant
289 trait strategy in every community. CWM was calculated as the mean raw trait value weighted by
290 each species' relative abundance within plots:

$$CWM = \sum_{i=1}^s p_i x_i \quad (3)$$

291 where p_i is the relative abundance of species i and x_i its trait value.

292 Functional diversity was also quantified using Hill numbers (Chao et al., 2019), with
293 functional diversity and functional redundancy. These metrics were computed on a Euclidean
294 distance matrix of standardized traits (z-scores), and with the order $q = 1$ and r set to the mean

295 pairwise distance (Chao et al., 2019). Functional diversity (FD1) represents the effective number
296 of functionally distinct species:

$$FD_1 = \exp \left(- \sum_{i=1}^s p_i \log \left(\sum_{j=1}^s [1 - f(d_{ij}(\tau))] p_j \right) \right) \quad (4)$$

297 where d_{ij} represents the Euclidean distance between each pairwise species i and j in the
298 functional space.

299 Functional redundancy (FR₁) represents the proportion of species that could theoretically
300 be removed without affecting functional diversity (Dick, 2023; Mahaut et al., 2025):

$$FR_1 = 1 - FD_1 / N_1 \quad (5)$$

301 Phylogenetic diversity was estimated using Hill numbers (q defined as above):

302 phylogenetic diversity of order q = 1 (PD₁, Eq. 6), which represents the effective number of
303 phylogenetically distinct species (Chao, Chiu, et al., 2014; Chao et al., 2010):

$$PD_1(T) = T \exp \left(- \sum_{i \in B_T} \frac{L_i}{T} a_i \ln a_i \right) \quad (6)$$

304 where B_T is the set of all branches in the tree, L_i is the length of branch i , a_i is the total relative
305 abundance of all descendant species on branch i , and T is the abundance-weighted total branch
306 length.

307 Faith's PD (Faith, 1992), which extends the concept of species richness to the
308 phylogenetic dimension by capturing the evolutionary history of the community (Chao et al.,
309 2010), which is equivalent to PD for q = 0 in Hill numbers framework (Eq. 7):

$$Faith's PD = \sum_{i \in B_T} L_i \quad (7)$$

310 **2.4 Stability and asynchrony**

311 Stability and asynchrony were also quantified using the vascular plant relative abundance matrix
312 to ensure comparability with the other metrics calculated on the same dataset, and across the
313 entire time series. Community-wide temporal stability (S_c, Eq. 8), also referred to as invariability

314 or constancy (Kéfi et al., 2019), was quantified for each plot as the inverse of the coefficient of
315 variation of total vascular abundance across the six survey years (i.e., the ratio between the
316 mean and its temporal standard deviation of vascular fraction in the full matrix, Tilman (1996)):

$$S_c = \frac{1}{CV_c} = \frac{\mu_c}{\sigma_c} \quad (8)$$

317 where μ_c is the mean total vascular abundance and σ_c its temporal standard deviation across the
318 six survey years. Higher values indicate greater temporal stability. Since all our time series were
319 of equal length (6 years), no length correction was necessary.

320 Community synchrony (φ , Eq. 9), reflecting temporal compensation mechanisms
321 between species, was estimated using the Loreau & de Mazancourt (2008) framework:

$$\varphi = \frac{\sigma_c^2}{(\sum_{i=1}^S \sigma_i)^2} \quad (9)$$

322 where σ_c^2 is the temporal variance of total vascular community abundance, σ_i is the temporal
323 standard deviation of species i , and S is the number of vascular species in the plot. By
324 construction, $0 \leq \varphi \leq 1$. Asynchrony was then calculated as $1-\varphi$, 1 indicating perfect asynchrony.

325

326 **2.5 Statistical analyses**

327 Compositional gradients were explored through a principal component analysis (PCA), which was
328 done on a Hellinger-transformed species abundance matrix to address the double-zero problem
329 (Borcard et al., 2018; Legendre & Gallagher, 2001). Next, relationships between community
330 composition and experimental factors (i.e., year, hydrological condition, warming treatment) were
331 analyzed using redundancy analysis (RDA), with Hellinger-transformed data. This method
332 selection was validated through detrended correspondence analysis (DCA; gradient length < 1.6).
333 To control for collinearity among predictors, variance inflation factors (VIF) were checked: VIF
334 values were < 1.7 for all predictors. The relative importance of the different explanatory variables
335 was quantified through hierarchical partitioning (Lai et al., 2022).

336 Taxonomic, functional and phylogenetic diversity metrics were tested for responses to
337 experimental factors using linear mixed models (LMMs). We used a fixed model structure defined

338 *a priori* based on our experimental design, rather than data-driven model selection, as our goal
339 was to test specific effects of experimental warming and hydrology rather than to maximize
340 explanatory power. The following fixed and random effect's structure was used for each metric:
341 $metric \sim year \times hydrology + year \times treatment + hydrology \times treatment + (1/plot)$. This model
342 includes all 2-way interactions while avoiding the 3-way interactions in order to maintain adequate
343 degrees of freedom given the limited sample size (3-way interactions was also tested and was
344 non-significant). Final models and significant effects are detailed in Table 1, along with marginal
345 and conditional R^2 values, R^2_m and R^2_c , respectively giving the proportion of variance explained
346 by fixed effects alone and by the full model (both fixed and random effects) (Nakagawa &
347 Schielzeth, 2013).

348 We compared community temporal stability and species asynchrony (computed for each
349 of the 12 plots across the six survey years) across hydrological and warming treatment using
350 permutation-based ANOVAs with 9,999 permutations, to account for the limited sample size
351 (Anderson & Braak, 2003). Effect sizes were quantified using partial eta-squared (η^2_p).

352 We assessed the relationships between stability, asynchrony, and diversity metrics using
353 Spearman partial correlations. Since diversity indices were calculated for each plot and year ($n =$
354 72 values for each metric), whereas stability and asynchrony were calculated over the entire time
355 series ($n = 12$ for each), we averaged diversity indices per plot. We computed Spearman partial
356 correlations following a three-step procedure: (1) rank-transforming all variables, (2) extracting
357 residuals from linear models fit to the ranked variables to adjust for hydrological conditions \times
358 warming treatment effects, and (3) calculating Pearson correlations on these residuals. Given the
359 small sample size of 12 plots, we focused on effect sizes (ρ) rather than significance testing, as
360 effect sizes have greater ecological relevance (Popovic et al., 2024; Wasserstein et al., 2019).

361 We investigated residual-value correlations between diversity metrics using Spearman
362 correlations on LMM residuals (controlling for year, hydrology, and warming effects; model
363 structure as above) and visualized these relationships using Principal Component Analysis (PCA)
364 on standardized residuals.

365 **2.6 Reproducibility and transparency**

366 We performed the analyses using R v4.4.1 (R Core Team, 2024), in RStudio v2025.9.1.401
367 (Posit team, 2025). For details on package names and versions, see Supplementary S4. We
368 checked validity conditions and model assumptions when necessary (e.g., for correlation
369 coefficients and LMMs); where these conditions were not met, non-parametric tests were used.
370 We assessed the risk of bias following the ROBITT framework (Boyd et al., 2022), a standardized
371 tool for evaluating internal validity and potential bias in ecological studies (Culina et al., 2025); full
372 details are provided in Supplementary S5.

373 **3. RESULTS**

374 **3.1 Community composition along the hydrological gradient**

375 Redundancy analysis explained 57.8 % of total variance ($R^2_{adj} = 0.53$; $P = 0.001$; Fig. 1A). RDA1
376 explained 47.8 % of total variance ($P = 0.001$) and represented the hydrological gradient, with
377 DRY and WET communities occupying very distinct positions in the ordination space throughout
378 the study period (2008-2025). RDA2 explained 7.5 % ($P = 0.001$) and captured temporal
379 trajectories, with DRY and WET plots showing similar directional shifts over time. While hydrology
380 ($F = 64.8$, $P = 0.001$) and year ($F = 4.1$, $P = 0.001$) effects were both significant, warming
381 treatment showed a weak relationship ($F = 2.1$, $P = 0.085$). Hydrological separation persisted in
382 unconstrained ordination, where control and heated plots overlapped within each hydrological
383 condition, while overall DRY and WET communities remained distinct (PCA; Supplementary S6).
384 Hierarchical partitioning (Fig. 1B) revealed that hydrology alone explained 46 % of total
385 community variance (86.5 % of the explained variance), year explained 10.7 % (20.1 %), and
386 warming treatment explained only 0.77 % (1.45 %). Shared fractions were all small and close to
387 zero.

388 Relative abundance trajectories for the three major plant functional groups (Fig. 1C) were
389 consistent with these compositional gradients (see Table 1 for LMM results). Graminoid
390 abundances increased over time ($P = 0.031$). Ericoid abundances also increased over time ($P <$
391 0.001) and differed between hydrological conditions ($P = 0.027$), with their temporal trajectories
392 varying across hydrological conditions ($P < 0.001$): the increase was more pronounced in WET,
393 but both groups converged in later years. By contrast, bryophyte abundances declined strongly
394 over time ($P < 0.001$) and significantly differed between DRY and WET ($P < 0.001$). This decline
395 was stronger in WET conditions, consistent with the significant year \times hydrology interaction ($P <$
396 0.001). Artificial warming had no significant effect on any functional group (all $P > 0.22$). Overall,
397 hydrology explained the largest independent fraction of variance, whereas warming explained a
398 negligible fraction.

399 **3.2 Metrics variation between hydrological conditions**

400 We next examined how multifaceted diversity metrics responded to experimental conditions over
401 time in the vascular plant community (Fig. 2; Table 1). At the taxonomic level (Fig. 2A-C),
402 vascular species richness (N_0) varied with year ($P = 0.03$) but showed no evidence of hydrological
403 or warming effects, with similar mean richness between DRY and WET plots across the study
404 period. Effective diversity (N_1) and evenness (E_{10}) tended to be higher in WET than DRY ($P =$
405 0.12 and $P = 0.053$, respectively), and showed limited temporal dynamics (all year \times
406 hydrology/warming, $P > 0.07$). Functional diversity and redundancy (FD_1 and FR_1 , Fig. 2D-E)
407 showed no clear responses to hydrology, warming, or their interaction, although functional
408 redundancy showed a tendency toward divergence in recent years (year: $P = 0.099$; year \times
409 hydrology: $P = 0.071$). Conversely, phylogenetic diversity (PD_1 , Fig. 2F) exhibited a strong and
410 consistent hydrological separation with a higher diversity in WET than DRY communities
411 (hydrology: $p < 0.001$).

412 CWM showed contrasting patterns across traits (Fig. 2 G-J). CWM root depth and CWM
413 seed mass both showed strong hydrological differentiation (both $p < 0.001$) and significant year \times
414 hydrology interactions ($P = 0.013$ and $P = 0.006$, respectively), with root depth being higher in
415 DRY and seed mass being higher in WET. CWM height decreased over time across all conditions
416 ($P = 0.006$), with no significant hydrological or warming effect. CWM specific leaf area showed no
417 detectable response to either factor (all $p > 0.28$). Given these contrasting responses across
418 diversity facets, we next examined whether these metrics covaried independently of experimental
419 structure.

420 **3.3 Diversity facets covariation along a shared axis**

421 Residual correlations (Fig. 3A) revealed that effective diversity (N_1) correlated strongly with
422 functional diversity (FD_1 ; $\rho = 0.94$), and both were positively associated with phylogenetic
423 diversity (PD_1 ; $\rho = 0.76$). By contrast, CWM root depth showed negative correlations with nearly
424 all diversity metrics, most strongly with PD_1 ($\rho = -0.71$) and FD_1 ($\rho = -0.58$). The only exception

425 was FR_1 ($\rho = 0.28$), which showed weak correlations with most other metrics (all $|\rho| \leq 0.33$).
426 Consistent with these patterns, PCA (Fig. 3B) showed that PC1 (51.0 %) contrasted CWM root
427 depth with the mainly N_1 – FD_1 – PD_1 covariation axis, while PC2 (16.7 %) captured additional
428 variation associated with FR_1 , CWM seed mass, and E_{10} .

429 **3.4 Temporal stability linkage to diversity facets**

430 Community temporal stability differed between hydrological conditions, with higher values in DRY
431 than in WET plots (permutation ANOVA: $F = 6.54$, $P = 0.035$, $\eta^2p = 0.45$; Fig. 4A), while warming
432 had no effect alone ($F = 0.22$, $P = 0.7$, $\eta^2p = 0.03$) or in interaction with hydrology ($F = 0.39$, $P =$
433 0.59 , $\eta^2p = 0.05$). Similarly, species asynchrony was significantly higher in DRY than in WET
434 plots ($F = 11.86$, $P = 0.015$, $\eta^2p = 0.60$; Fig. 4B), and warming had no effect either by itself ($F =$
435 0.1 , $P = 0.75$, $\eta^2p = 0.01$) or in interaction with hydrology ($F = 2.48$, $P = 0.15$, $\eta^2p = 0.24$). Stability
436 was positively correlated with asynchrony (Spearman's correlation $\rho = 0.72$, $P = 0.011$).

437 To examine the relationships between diversity, stability and asynchrony while
438 accounting for experimental effects, we used partial correlations (Fig. 4C; see Supplementary S7
439 for full uncorrected and FDR-corrected p-values and Supplementary S8-S9 for individual
440 scatterplots). This revealed a weaker stability-asynchrony relationship ($\rho = 0.40$) than the raw
441 correlation. Stability showed strong ($|\rho| \geq 0.60$) negative correlations with phylogenetic diversity
442 (PD_1 , $\rho = -0.79$) as well as taxonomic richness (N_0 , $\rho = -0.66$). Moderate negative correlations
443 ($0.40 \leq |\rho| < 0.60$) were observed with effective diversity (N_1 , $\rho = -0.41$), functional diversity (FD_1 ,
444 $\rho = -0.43$) and CWM seed mass and SLA ($\rho = -0.50$ and -0.41 , respectively). In contrast, stability
445 showed a strong positive correlation with root depth ($\rho = 0.61$). All other correlations between
446 stability and the different facets of diversity were weak (ρ ranging from 0.09 to 0.29). Species
447 asynchrony showed contrasting patterns: only one strong negative correlation with functional
448 redundancy (FR_1 , $\rho = -0.61$), and one moderate positive correlation with CWM height ($\rho = 0.40$).
449 All other correlations between asynchrony and diversity indices were weak (ρ ranging from -0.3 to
450 0.27).

451

452 **4. DISCUSSION**

453 Understanding how multifaceted diversity relates to stability remains a central challenge in
454 ecology, especially in strongly constrained ecosystems such as peatlands. We assessed these
455 relationships using a 17-year field experiment combining a hydrological gradient and
456 experimental warming (open-top chambers, OTCs). Across the study period, hydrology
457 dominated community assembly and trajectories, while OTC-induced warming had only a very
458 weak community-scale effect within this system and time window. Community temporal stability
459 and species asynchrony were structured by this same hydrological gradient. Multiple diversity
460 facets (notably phylogenetic and taxonomic metrics) were negatively associated with stability.
461 These negative associations persisted after accounting for experimental effects (i.e., hydrology
462 and warming) using partial correlations. These patterns contradict classical expectations of
463 positive diversity-stability relationships and raise questions when higher diversity does not
464 translate into higher temporal stability in plant communities. This discrepancy is increasingly
465 recognized as reflecting the multidimensional and context-dependent nature of ecological stability
466 (Donohue et al., 2016; Kéfi et al., 2019). We interpret these patterns below.

467 Hydrology, contrasting two conditions in water table depth (WTD; Supplementary S2),
468 explained most of the compositional variance, with a 60-fold stronger effect than experimental
469 warming, which had only a weak community-scale impact. In peatlands, WTD is a major
470 environmental filter (Wheeler & Proctor, 2000) which imposes direct physiological constraints on
471 plants (e.g., limiting oxygen availability, altering redox conditions, and controlling root-zone
472 saturation), and soil biota in the rooting zone (Buttler et al., 2023; Jassey et al., 2023), thereby
473 selecting for unique tolerance strategies (Rydin et al., 2013). Over long timescales, peatland
474 vegetation dynamics are primarily structured by hydrological conditions (Andrews et al., 2021),
475 and long-term WTD changes reshape functional composition and vegetation trajectories (Buttler
476 et al., 2023; Köster et al., 2023; Laine et al., 2021). Accordingly, CWM root depth and seed mass
477 reflected distinct trait trajectories under persistent hydrological constraints. Seed mass showed
478 strong hydrological differentiation (higher in WET), whereas root depth showed a weaker pattern

479 that was generally higher in DRY. Both traits also varied through time. This trait alignment
480 suggests that communities are constrained into differentiated strategies set by the hydrology.
481 Alongside these trajectories, ericoid shrubs and graminoids increased while bryophytes (i.e.,
482 living *Sphagnum* spp. layer) declined, shifts broadly consistent with shrub encroachment
483 documented across peatlands (Buttler et al., 2023; Dieleman et al., 2015). Consistent with recent
484 syntheses, peatland vegetation can shift over decadal timescales when hydrological and nutrient
485 constraints change (Pinceloup et al., 2020). More generally, peatland warming responses are
486 frequently context-dependent and can remain subordinate when WTD constraints dominate
487 (Buttler et al., 2015, 2023; Górecki et al., 2021); the weak OTC effect here at this timescale is
488 informative, not evidence that warming is ecologically irrelevant, as climate change can alter
489 water-table dynamics.

490 These hydrological constraints also structured how diversity facets covary. Multifaceted
491 diversity indices are often treated as complementary descriptors (Chao, Chiu, et al., 2014), yet
492 strong abiotic filtering may align them along dominant gradients. After accounting for
493 experimental structure, effective (N_1), functional (FD_1) and phylogenetic diversity (PD_1) covared
494 tightly and loaded opposite to CWM root depth, consistent with a single hydrology-linked strategy
495 axis. These results contrast with broader evidence that functional and phylogenetic diversity are
496 often decoupled and only weakly related, supporting the idea that strong abiotic constraints can
497 compress viable strategies and thereby couple multiple diversity facets along a dominant gradient
498 (Hähn et al., 2025). In contrast, functional redundancy showed weak correlations with N_1 - FD_1 - PD_1 ,
499 and loaded orthogonally, suggesting that redundancy varies independently from
500 richness/dispersion-based metrics and may capture a distinct facet of community structure.

501 Community temporal stability and species asynchrony were both higher in DRY (i.e., the
502 bog, deeper WTD) than WET (i.e., the transitional poor fen, shallower WTD) conditions, while
503 experimental warming had no detectable effect on either metric. This is consistent with studies
504 showing that moderate relative warming (ca. 1 °C) does not significantly alter plant community
505 stability in other constrained systems (Quan et al., 2021), and it has been previously shown that
506 the OTC on our experimental site produced only limited warming (ca. 1 °C, Binet et al., 2017).

507 The higher stability in DRY conditions likely reflects contrasting environmental constraints: deeper
508 WTD, lower pH and increased soil biological activity select for specialist, slow-growing and
509 persistent strategies whose dynamics are buffered against hydrological fluctuations; whereas
510 WET communities, despite experiencing less water limitation under average conditions,
511 experience greater exposure to root-zone WTD fluctuations. This matches long-term drawdown
512 evidence that bog functioning can be more predictable, whereas fen responses are more
513 stochastic and turnover-driven under water-table change (Laine et al., 2021). This pattern aligns
514 with recent continental-scale evidence from United States wetlands, where shallow WTD were
515 also associated with reduced stability (Liu et al., 2025). The strong positive correlation between
516 stability and asynchrony ($\rho = 0.72$) is consistent with the insurance hypothesis (Loreau & de
517 Mazancourt, 2008, 2013; Thibaut et al., 2013), although recent work shows that asynchrony can
518 arise predominantly from statistical averaging rather than true compensatory dynamics (Zhao et
519 al., 2022). Global syntheses further show that community stability is more strongly linked to
520 species synchrony than to species richness *per se* (Valencia et al., 2020). However, this
521 relationship weakened substantially after controlling for hydrology and warming (partial $\rho = 0.40$),
522 indicating that environmental constraints structure both stability and asynchrony beyond their
523 direct association (Donohue et al., 2013). This is consistent with recent evidence that
524 compensatory dynamics often contribute to community stability without being directly positively
525 linked with diversity, particularly when environmental filters dominate community dynamics (Zhao
526 et al., 2022). Together, the strong raw stability-asynchrony correlation and its attenuation after
527 controlling for hydrology suggest that their association reflects both shared hydrological forcing
528 and, potentially, compensatory dynamics.

529 After controlling for experimental effects, stability decreased with phylogenetic diversity
530 and species richness, and was also negatively associated with functional diversity and effective
531 diversity, while increasing with deeper-rooted community strategies (CWM root depth). Because
532 these diversity facets covaried tightly and opposed CWM root depth along the dominant residual
533 gradient, these associations likely reflect a shared strategy axis rather than independent effects of
534 each facet. The negative PD-stability association was robust to the phylogenetic metrics used:

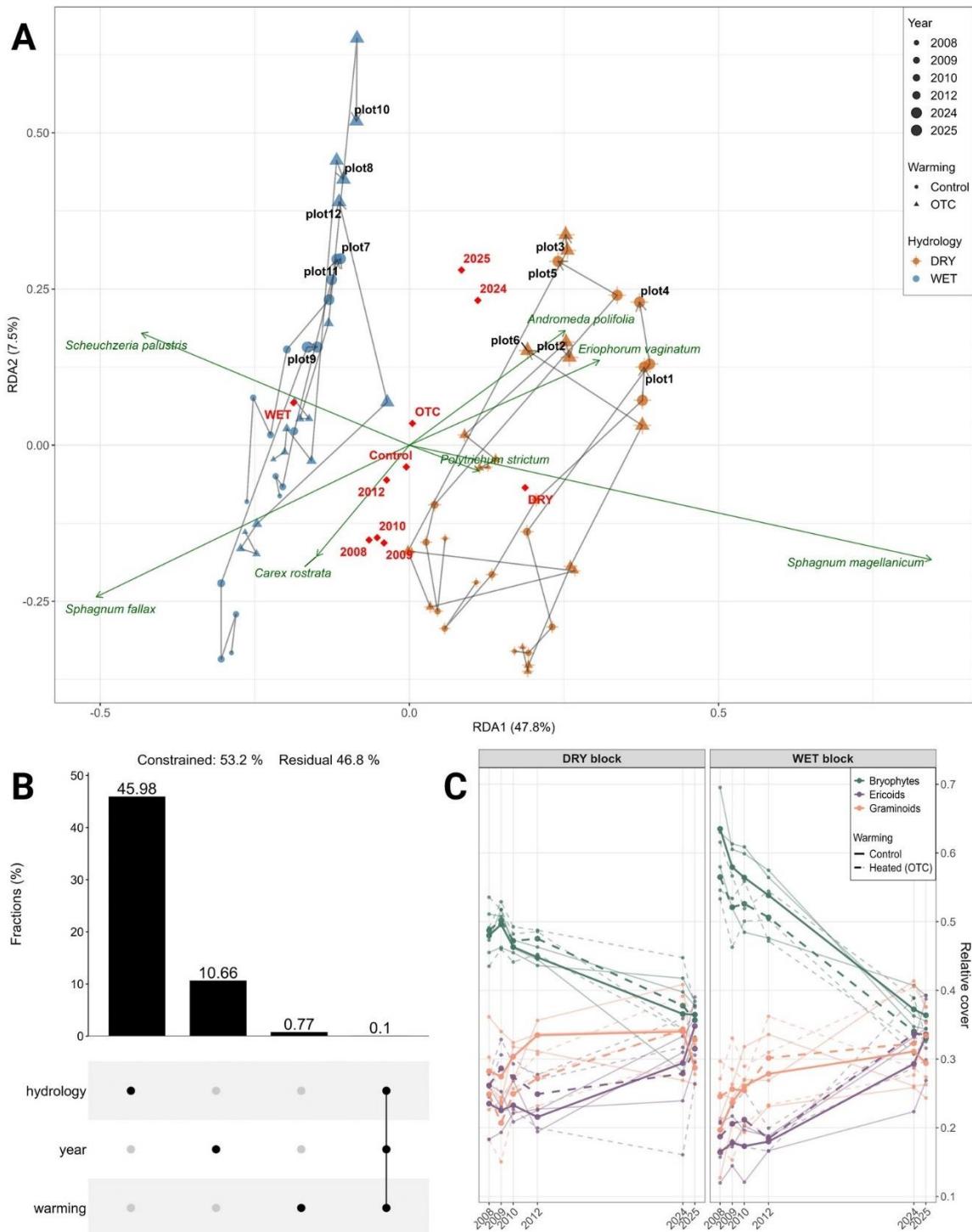
535 Faith's PD, which captures total branch length without abundance weighting, showed a similarly
536 strong negative correlation with stability ($\rho = -0.60$, Supplementary S6). This contrasts with
537 studies where higher phylogenetic diversity enhanced temporal stability (Cadotte et al., 2012;
538 Zhang et al., 2026), and suggests that PD-stability relationship may be contingent on ecosystem
539 context. Importantly, evenness (E_{10}) showed no clear association with stability, suggesting that
540 the pattern is not simply a dominance/evenness effect in abundance distribution. Rather, greater
541 diversity may coincide with higher temporal variance in aggregate cover, whereas lower-diversity
542 communities dominated by deeper-rooted species (whose belowground strategies match
543 persistent hydrological constraints of peatlands) show more buffered dynamics. In strongly
544 filtered, species-poor ecosystems like peatlands, increases in local diversity may therefore not
545 signal enhanced buffering capacity and may be a poor proxy for insurance-based expectations of
546 community stabilization.

547 Beyond root depth, seed mass and specific leaf area also showed moderate negative
548 correlations with stability. Seed mass, related to establishment-dispersal strategies, was the most
549 strongly differentiated trait between hydrological conditions (higher in WET), suggesting that it
550 may track the same hydrological gradient that structures stability. Similarly, higher specific leaf
551 area (i.e., associated with faster resource acquisition) may reflect more acquisitive strategies in
552 WET communities, as expected under less resource-limited fen-like conditions, although
553 responses were weaker than predicted (Laine, et al., 2021; Lin et al., 2020). This hydrology-
554 related strategy contrast is consistent with peatland drawdown results showing fen (WET)
555 communities become more productive, whereas bog (DRY) responses are more conservative (A.
556 Laine et al., 2021). In contrast, height showed no clear relationship with stability, despite being
557 identified as a key stabilizing trait in continental-scale wetland analyses (Liu et al., 2025).
558 Similarly, long-term drawdown experiments show that community-weighted mean height can
559 decline across peatland types (Laine et al., 2021). This difference may reflect the primacy of
560 belowground constraints in peatlands: whereas height captures competitive ability for light (a filter
561 that may be dominant in many wetlands), hydrological access and waterlogging tolerance may
562 override aboveground competition in our system. Because our trait set focuses on widely

563 available 'global' traits, it likely under-represents peatland-specific tolerance traits (e.g., tolerance
564 to waterlogging/anoxia and belowground aeration capacity), which could partly explain the
565 comparatively weak relationships observed for specific leaf area and height.

566 Diversity-asynchrony relationships were generally weak, except for functional redundancy
567 (FR_1), which was associated with lower asynchrony, consistent with the idea that functionally
568 similar species tend to respond more similarly through time. Interestingly, although FR_1 tracked
569 lower asynchrony, FR_1 was unrelated to stability, suggesting that the link between redundancy
570 and stability is not straightforward in this system. Because species asynchrony is often
571 interpreted as a proxy for compensatory dynamics, this pattern suggests that redundancy may
572 shape the temporal covariance structure of species without translating into higher community-
573 level stability. More broadly, these results align with recent work showing that diversity–stability
574 linkages depend on stability decomposition and covariation among community properties, and
575 that in strongly structured environments diversity metrics can track dominant strategy gradients,
576 complicating mechanistic inference from diversity–stability correlations alone (De Bello et al.,
577 2021; Zhao et al., 2022).

578 Several limitations warrant consideration. First, passive OTC warming captured moderate
579 mean temperature increases but does not reproduce key dimensions of climate change such as
580 extremes, altered seasonality, or the full range of warming-hydrology feedbacks. In our site
581 specifically, climate projections suggest substantial changes in water table depth and seasonality
582 through 2100 under warming scenarios (Bertrand et al., 2021), and such combined effects can
583 dominate vegetation responses (Andrews et al., 2021; Kokkonen et al., 2024). Moreover, the
584 warming intensity may be insufficient to trigger detectable community-level responses, or effects
585 may require longer timescales to manifest in slow-responding ecosystems such as peatlands.
586 Second, bryophytes exhibited a strong decline, yet stability metrics excluded them despite their
587 functional importance; future work should explicitly integrate bryophyte dynamics to test whether
588 diversity-stability patterns propagate across community compartments (Telgenkamp et al., 2025).
589 To assess generality, tests across multiple peatlands would be valuable. Finally, we treated
590 stability as a single facet (temporal stability/invariability of aggregate community cover), whereas

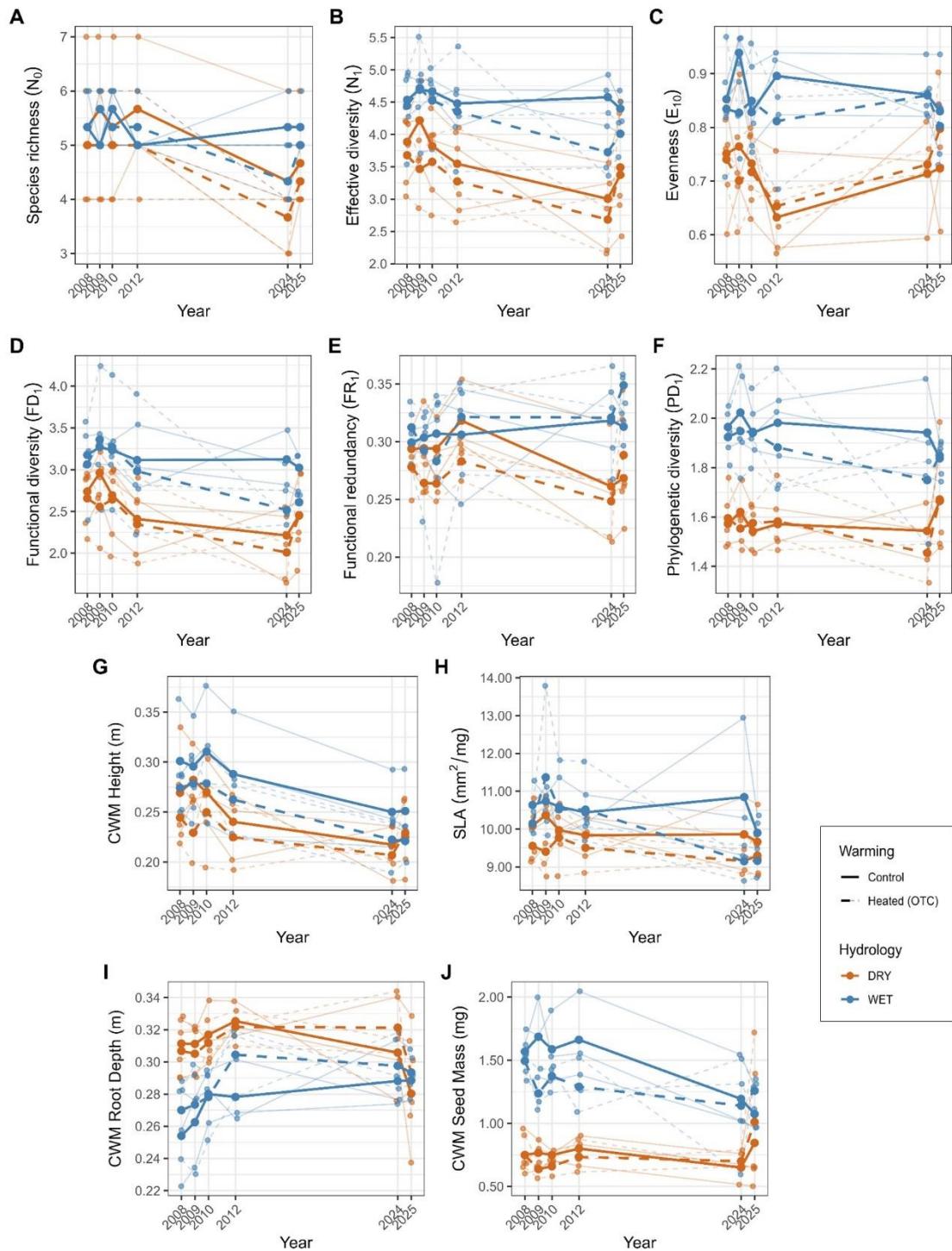

591 recent frameworks emphasize ecological stability as multidimensional, with potentially decoupled
592 components (Donohue et al., 2013, 2016; Kéfi et al., 2019), distinguishing, for instance, temporal
593 stability (invariability) from resistance and resilience (Yan et al., 2025). Disentangling these
594 components would refine our understanding of how filtering shapes different facets of temporal
595 dynamics.

596 **5. CONCLUSION**

597 Our core result highlighting the inverse relationship between multifaceted diversity and
598 community temporal stability, suggests that diversity-stability relationships can be negative when
599 diversity covaries with dominant strategy gradients in strongly structured environments.
600 Multifaceted diversity is often expected to stabilize communities through buffering and
601 compensatory dynamics, yet this prediction remains context-dependent. Because much of the
602 evidence for diversity–stability relationships comes from grassland studies (Craven et al., 2018;
603 Mahaut et al., 2023; Zhao et al., 2022), it remains unclear how general these expectations are in
604 ecosystems where abiotic filtering is particularly strong and can align trait composition and
605 temporal covariance among species. By bringing multifaceted diversity-stability inference to
606 peatland communities, our study helps testing the boundary conditions of diversity-stability
607 expectations in a context that is common globally but comparatively less represented in the
608 stability literature. From a conservation perspective, this suggests that maintaining (or restoring)
609 key functional strategies aligned with prevailing constraints may be as important as maximizing
610 species richness for sustaining stability under intensifying global change pressures, consistent
611 with calls to move beyond species richness as a primary conservation metric (Fletcher et al.,
612 2025); and that increases in diversity alone, if decoupled from traits associated with higher
613 stability, may not enhance and can even reduce community temporal stability in strongly
614 constrained ecosystems.

615

616 **FIGURES**


617

618 **Figure 1. Redundancy Analysis (RDA), hierarchical partitioning, and relative cover**

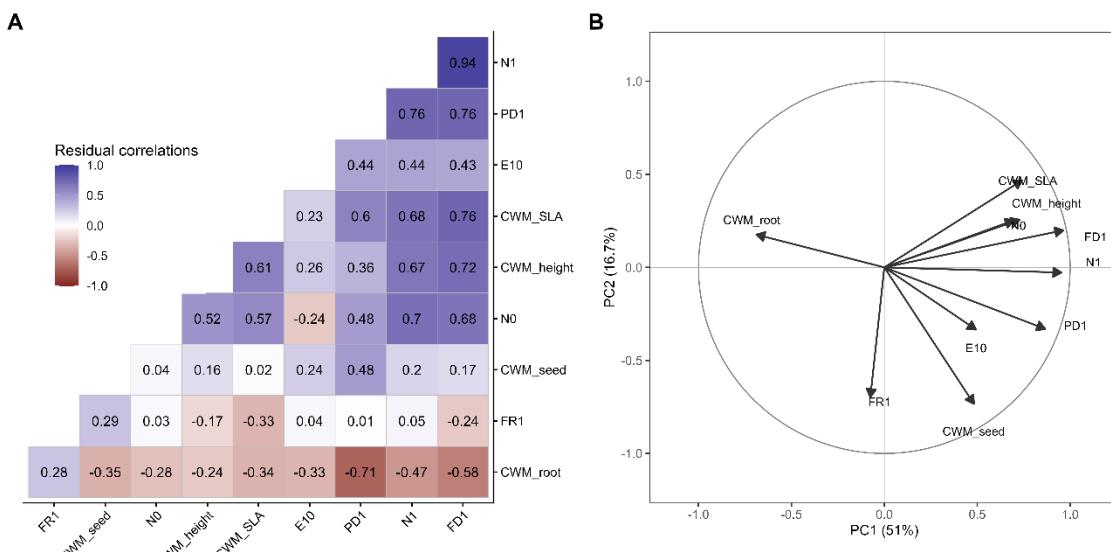
619 **temporal change of the three major plant functional groups. (A) RDA triplot showing the**

620 ordination of the twelve plots across hydrological conditions (DRY/WET) and warming treatment
621 (OTC-heated/Control) and survey years, in species ordination space. Red vectors represent
622 experimental variables, green vectors show species loadings. Axis percentages indicate the
623 proportion of total variance explained by each canonical axis (i.e., RDA1 and RDA2). (B)
624 Hierarchical partitioning of constrained variance showing the relative contribution of each
625 experimental factor. Values represent the percentage of explained variance attributable to each
626 factor after accounting for shared effects. (C) Relative cover dynamics of major plant functional
627 groups (bryophytes, ericoids, and graminoids). Thick lines represent mean trajectories by
628 experimental condition; thin lines show individual plot trajectories.

629

630

631 **Figure 2. Temporal dynamics of multifaceted diversity and community-weighted mean**

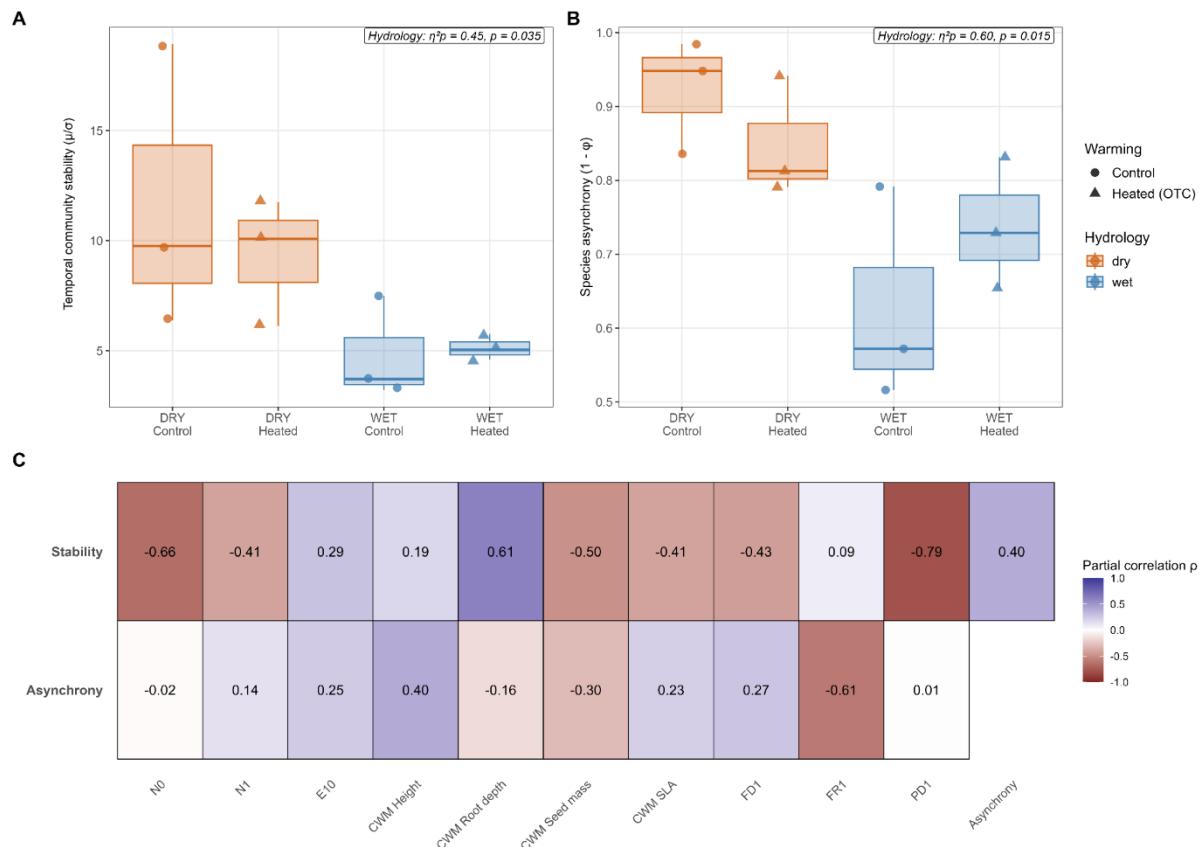

632 **(CWM) traits in the vascular plant community across experimental conditions. (A-F)**

633 **Diversity metrics:** (A) Species richness (N_0). (B) Effective diversity (N_1). (C) Evenness (E_{10}). (D)

634 Functional diversity (FD_1), representing the effective number of functionally distinct species. (E)
 635 Functional redundancy (FR_1), representing the proportion of species that could theoretically be
 636 removed without affecting functional diversity. (F) Phylogenetic diversity (PD_1), representing the
 637 effective number of phylogenetically distinct species. (G-J) **Community-weighted mean traits**:
 638 (G) Plant height. (H) Specific leaf area (SLA). (I) Root depth. (J) Seed mass. All traits were log-
 639 transformed prior to CWM calculation (see Methods). Thick lines represent mean trajectories per
 640 experimental condition; thin lines show individual plot trajectories.

641

642



643

644 **Figure 3. Relationships among diversity metrics after controlling for experimental effects.**

645 (A) Spearman correlation matrix computed on LMM residuals ($n = 72$ plot-year combinations). (B)
 646 PCA correlation circle based on LMM residuals, showing the first two principal components (67.7
 647 % of variance). Models followed the structure $metric \sim Y \times H + Y \times T + H \times T + (1/plot)$. See
 648 abbreviations of diversity metrics and traits in figure 2.

649

652 **Figure 4. Community temporal stability and species asynchrony of the vascular plant**
653 **community across experimental conditions, with partial Spearman correlations.** (A)
654 Community temporal stability across experimental conditions. (B) Species asynchrony across
655 experimental conditions. (C) Heatmap of partial Spearman correlations (ρ) among community
656 stability, species asynchrony, diversity facets, and trait metrics based on residuals after
657 accounting for experimental structure (see Methods section). Each cell reports ρ (see
658 Supplementary S7 for full uncorrected and FDR-corrected p-values). Boxplots show median,
659 quartiles, and individual data points ($n = 3$ plots per condition). Abbreviations: N_0 = species
660 richness; N_1 = effective diversity; E_{10} = evenness; FD_1 = functional diversity; FR_1 = functional
661 redundancy; PD_1 = phylogenetic diversity; CWM = community-weighted mean. See
662 Supplementary S8-S9 for individual scatterplots.

Metric	Community	Effects	R ² m	R ² c
Functional group cover				
Ericoid cover	All	Y ($P < 0.001$); H ($P = 0.027$); YxH ($p < 0.001$)	0.61	0.82
Graminoid cover	All	Y ($P = 0.031$)	0.33	0.66
Bryophyte cover	All	Y ($P < 0.001$); H ($P < 0.001$); YxH ($P < 0.001$); HxT ($P = 0.076$)	0.81	0.87
Taxonomic diversity				
Species richness (N ₀)	Vascular	Y ($P = 0.030$)	0.21	0.73
Effective diversity (N ₁ , q = 1)	Vascular	Y ($P = 0.095$)	0.45	0.69
Evenness (E ₁₀ , q = 1)	Vascular	H ($P = 0.053$); YxH ($P = 0.075$)	0.43	0.68
Functional diversity				
Functional diversity (FD ₁ , q = 1)	Vascular	-	0.38	0.66
Functional redundancy (FR ₁ , q = 1)	Vascular	Y ($P = 0.099$); YxH ($P = 0.071$)	0.28	0.63
Functional identity (CWM)				
Height	Vascular	Y ($P = 0.006$)	0.35	0.74
Specific leaf area	Vascular	-	0.29	0.50
Root depth	Vascular	Y ($P = 0.099$); H ($P < 0.001$); YxH ($P = 0.013$)	0.42	0.61
Seed mass	Vascular	H ($P < 0.001$); YxH ($P = 0.006$); YxT ($P = 0.093$)	0.67	0.76
Phylogenetic diversity				
Phylogenetic diversity (PD ₁ , q = 1)	Vascular	H ($P < 0.001$)	0.60	0.73

665 **Table 1.** Linear mixed-effects models testing effects of year (Y), hydrological condition (H:
666 DRY/WET), and warming treatment (T: OTC/control) on plant community metrics. Models
667 followed the structure $metric \sim Y \times H + Y \times T + H \times T + (1/plot)$. Significance of fixed effects was
668 assessed using Type III Wald χ^2 tests. All effects with $p \leq 0.10$ are reported. Marginal R^2 (R^2m ;
669 variance explained by fixed effects) and conditional R^2 (R^2c ; variance explained by fixed and
670 random effects) are shown. “–” indicates effects with $P > 0.10$.

671 **References**

672 Anderson, M., & Braak, C. T. (2003). Permutation tests for multi-factorial analysis of variance.
673 *Journal of Statistical Computation and Simulation*, 73(2), 85–113.
674 <https://doi.org/10.1080/00949650215733>

675 Andrews, L., Rowson, J., Caporn, S., Dise, N., Barton, E., Garrett, E., Gehrels, W. R., Gehrels,
676 M. J., Kay, M., & Payne, R. (2021). Plant community responses to experimental climate
677 manipulation in a Welsh ombrotrophic peatland and their palaeoenvironmental context.
678 *Global Change Biology*. <https://doi.org/10.1111/GCB.16003>

679 Austin, K., Elsen, P., Honorio Coronado, E., DeGemmis, A., Gallego-Sala, A., Harris, L., Kretser,
680 H., Melton, J., Murdiyarso, D., Sasmito, S., Swails, E., Wijaya, A., Winton, R., & Zarin, D.
681 (2025). Mismatch Between Global Importance of Peatlands and the Extent of Their
682 Protection. *Conservation Letters*, 18. <https://doi.org/10.1111/conl.13080>

683 Bertrand, G., Ponçot, A., Pohl, B., Lhosmot, A., Steinmann, M., Johannet, A., Pinel, S., Caldirak,
684 H., Artigue, G., Binet, P., Bertrand, C., Collin, L., Magnon, G., Gilbert, D., Laggoun-
685 Deffarge, F., & Toussaint, M.-L. (2021). Statistical hydrology for evaluating peatland
686 water table sensitivity to simple environmental variables and climate changes application
687 to the mid-latitude/altitude Frasne peatland (Jura Mountains, France). *Science of The
688 Total Environment*, 754, 141931. <https://doi.org/10.1016/j.scitotenv.2020.141931>

689 Binet, P., Rouifed, S., Jassey, V. E. J., Toussaint, M.-L., & Chiapusio, G. (2017). Experimental
690 climate warming alters the relationship between fungal root symbiosis and Sphagnum
691 litter phenolics in two peatland microhabitats. *Soil Biology & Biochemistry*.
692 <https://doi.org/10.1016/J.SOILBIO.2016.11.020>

693 Borcard, D., Gillet, F., & Legendre, P. (2018). *Numerical Ecology with R*. Second Edition.

694 Boyd, R. J., Powney, G. D., Burns, F., Danet, A., Duchenne, F., Grainger, M. J., Jarvis, S. G.,
695 Martin, G., Nilsen, E. B., Porcher, E., Stewart, G. B., Wilson, O. J., & Pescott, O. L.
696 (2022). ROBITT: A tool for assessing the risk-of-bias in studies of temporal trends in

697 ecology. *Methods in Ecology and Evolution*, 13(7), 1497–1507.

698 <https://doi.org/10.1111/2041-210X.13857>

699 Buttler, A., Bragazza, L., Laggoun-Défarge, F., Gogo, S., Toussaint, M.-L., Lamentowicz, M.,

700 Chojnicki, B. H., Słowiński, M., Słowińska, S., Zielińska, M., Reczuga, M., Barabach, J.,

701 Marcisz, K., Lamentowicz, Ł., Harenda, K., Lapshina, E., Gilbert, D., Schlaepfer, R., &

702 Jassey, V. E. J. (2023). Ericoid shrub encroachment shifts aboveground–belowground

703 linkages in three peatlands across Europe and Western Siberia. *Global Change Biology*,

704 29(23), 6772–6793. <https://doi.org/10.1111/gcb.16904>

705 Buttler, A., Robroek, B. J. M., Laggoun-Défarge, F., Jassey, V. E. J., Pochelon, C., Bernard, G.,

706 Delarue, F., Gogo, S., Mariotte, P., Mitchell, E. A. D., & Bragazza, L. (2015).

707 Experimental warming interacts with soil moisture to discriminate plant responses in an

708 ombrotrophic peatland. *Journal of Vegetation Science*, 26(5), 964–974.

709 <https://doi.org/10.1111/jvs.12296>

710 Cadotte, M. W., Dinnage, R., & Tilman, D. (2012). Phylogenetic diversity promotes ecosystem

711 stability. *Ecology*, 93(sp8), S223–S233. <https://doi.org/10.1890/11-0426.1>

712 Chao, A., Chiu, C.-H., & Jost, L. (2010). Phylogenetic diversity measures based on Hill numbers.

713 *Philosophical Transactions of the Royal Society B: Biological Sciences*, 365(1558),

714 3599–3609. <https://doi.org/10.1098/rstb.2010.0272>

715 Chao, A., Chiu, C.-H., & Jost, L. (2014). Unifying Species Diversity, Phylogenetic Diversity,

716 Functional Diversity, and Related Similarity and Differentiation Measures Through Hill

717 Numbers. *Annual Review of Ecology, Evolution, and Systematics*, 45, 297–324.

718 <https://doi.org/10.1146/annurev-ecolsys-120213-091540>

719 Chao, A., Chiu, C.-H., Villéger, S., Sun, I.-F., Thorn, S., Lin, Y.-C., Chiang, J.-M., & Sherwin, W.

720 B. (2019). An attribute-diversity approach to functional diversity, functional beta diversity,

721 and related (dis)similarity measures. *Ecological Monographs*, 89(2), e01343.

722 <https://doi.org/10.1002/ecm.1343>

723 Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M.

724 (2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and

725 estimation in species diversity studies. *Ecological Monographs*, 84(1), 45–67.

726 <https://doi.org/10.1890/13-0133.1>

727 Charman, D. (2002). *Peatlands and environmental change*. John Wiley & Sons Ltd.

728 Craven, D., Eisenhauer, N., Pearse, W. D., Hautier, Y., Isbell, F., Roscher, C., Bahn, M.,
729 Beierkuhnlein, C., Bönisch, G., Buchmann, N., Byun, C., Catford, J. A., Cerabolini, B. E.
730 L., Cornelissen, J. H. C., Craine, J. M., De Luca, E., Ebeling, A., Griffin, J. N., Hector, A.,
731 ... Manning, P. (2018). Multiple facets of biodiversity drive the diversity–stability
732 relationship. *Nature Ecology & Evolution*, 2(10), 1579–1587.

733 <https://doi.org/10.1038/s41559-018-0647-7>

734 Culina, A., Foster, D., Grainger, M., O'Dea, R. E., Sánchez-Tójar, A., Pescott, O. L., Boyd, R. J.,
735 Koricheva, J., Nakagawa, S., & Stewart, G. (2025). *Elevating the importance of Risk of
736 Bias assessment for ecology and evolution*. EcoEvoRxiv.
737 <https://ecoevorxiv.org/repository/view/9431/>

738 Davidson, J. L., McKnight, K. R., Szojka, M., Gannon, D., Wisniski, N. I., Werner, C. M., Liang,
739 M., Seabloom, E. W., Ray, C. A., DeSiervo, M. H., & Shoemaker, L. G. (2025). Effects of
740 Disturbance and Fertilisation on Plant Community Synchrony, Biodiversity and Stability
741 Through Succession. *Ecology Letters*. <https://doi.org/10.1111/ELE.70052>

742 De Bello, F., Lavorel, S., Hallett, L. M., Valencia, E., Garnier, E., Roscher, C., Conti, L., Galland,
743 T., Goberna, M., Májeková, M., Montesinos-Navarro, A., Pausas, J. G., Verdú, M., E-
744 Vojtkó, A., Götzenberger, L., & Lepš, J. (2021). Functional trait effects on ecosystem
745 stability: Assembling the jigsaw puzzle. *Trends in Ecology & Evolution*, 36(9), 822–836.

746 <https://doi.org/10.1016/j.tree.2021.05.001>

747 Dick, D. G. (2023). Measuring functional redundancy using generalized Hill numbers. *Functional
748 Ecology*, 37(5), 1304–1314. <https://doi.org/10.1111/1365-2435.14316>

749 Dieleman, C. M., Branfireun, B. A., McLaughlin, J. W., & Lindo, Z. (2015). Climate change drives
750 a shift in peatland ecosystem plant community: Implications for ecosystem function and
751 stability. *Global Change Biology*, 21(1), 388–395. <https://doi.org/10.1111/gcb.12643>

752 Dise, N. B. (2009). Peatland Response to Global Change. *Science*, 326(5954), 810–811.
753 <https://doi.org/10.1126/science.1174268>

754 Donohue, I., Hillebrand, H., Montoya, J., Petchey, O., Pimm, S., Fowler, M. S., Healy, K.,
755 Jackson, A., Lurgi, M., McClean, D., O'Connor, N. E., O'Gorman, E. J., & Yang, Q.
756 (2016). Navigating the complexity of ecological stability. *Ecology Letters*.
757 <https://doi.org/10.1111/ELE.12648>

758 Donohue, I., Petchey, O. L., Montoya, J. M., Jackson, A. L., McNally, L., Viana, M., Healy, K.,
759 Lurgi, M., O'Connor, N. E., & Emmerson, M. C. (2013). On the dimensionality of
760 ecological stability. *Ecology Letters*, 16(4), 421–429. <https://doi.org/10.1111/ele.12086>

761 Elton, C. S. (1958). *The ecology of invasions by animals and plants*. Springer Nature.

762 Enquist, B., Norberg, J., Bonser, S., Violle, C., Webb, C., Henderson, A., Sloat, L., & Savage, V.
763 m. (2015). Scaling from Traits to Ecosystems: Developing a General Trait Driver Theory
764 via Integrating Trait-Based and Metabolic Scaling Theories. *Advances in Ecological
765 Research*, 52, 249–318. <https://doi.org/10.1016/bs.aecr.2015.02.001>

766 Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. *Biological Conservation*,
767 61(1), 1–10. [https://doi.org/10.1016/0006-3207\(92\)91201-3](https://doi.org/10.1016/0006-3207(92)91201-3)

768 Fletcher, R., Green, R., Bladon, E., Atkinson, P., Phalan, B., Williams, D., Visconti, P., &
769 Balmford, A. (2025). Beyond Species Richness for Biological Conservation. *Conservation
770 Letters*, 18. <https://doi.org/10.1111/conl.13124>

771 Flynn, D. F. B., Mirochnick, N., Jain, M., Palmer, M. I., & Naeem, S. (2011). Functional and
772 phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships.
773 *Ecology*, 92(8), 1573–1581. <https://doi.org/10.1890/10-1245.1>

774 Frank, D. A., & McNaughton, S. J. (1991). Stability Increases with Diversity in Plant Communities:
775 Empirical Evidence from the 1988 Yellowstone Drought. *Oikos*, 62(3), 360–362.
776 <https://doi.org/10.2307/3545501>

777 Garnier, E., Navas, M.-L., & Grigulis, K. (2016). *Plant Functional Diversity: Organism traits,
778 community structure, and ecosystem properties*. Oxford University Press.
779 <https://doi.org/10.1093/acprof:oso/9780198757368.001.0001>

780 Gogo, S., Paroissien, J.-B., Laggoun-Défarge, F., Antoine, J.-M., Bernard-Jannin, L., Bertrand,
781 G., Binet, P., Binet, S., Bouger, G., Brossard, Y., Cambouline, T., Caudal, J.-P., Chevrier,
782 S., Chiapiuso, G., D'Angelo, B., Durantez, P., Flechard, C., Francez, A.-J., Galop, D., ...
783 Toussaint, M.-L. (2021). The information system of the French Peatland Observation
784 Service: Service National d'Observation Tourbières – A valuable tool to assess the
785 impact of global changes on the hydrology and biogeochemistry of temperate peatlands
786 through long term monitoring. *Hydrological Processes*, 35(6), e14244.
787 <https://doi.org/10.1002/hyp.14244>

788 Górecki, K., Rastogi, A., Stróżecki, M., Gąbka, M., Lamentowicz, M., Łuców, D., Kayzer, D., &
789 Juszczak, R. (2021). Water table depth, experimental warming, and reduced precipitation
790 impact on litter decomposition in a temperate *Sphagnum*-peatland. *Science of The Total
791 Environment*, 771, 145452. <https://doi.org/10.1016/j.scitotenv.2021.145452>

792 Gross, K., Cardinale, B. J., Fox, J. W., Gonzalez, A., Loreau, M., Polley, H. W., Reich, P. B., &
793 Ruijven, J. van. (2014). Species Richness and the Temporal Stability of Biomass
794 Production: A New Analysis of Recent Biodiversity Experiments. *The American
795 Naturalist*. <https://doi.org/10.1086/673915>

796 Hähn, G. J. A., Damasceno, G., Alvarez-Davila, E., Aubin, I., Bauters, M., Bergmeier, E., Biurrun,
797 I., Bjorkman, A. D., Bonari, G., Botta-Dukát, Z., Campos, J. A., Čarni, A., Chytrý, M.,
798 Čuštěrevska, R., de Gasper, A. L., De Sanctis, M., Dengler, J., Dolezal, J., El-Sheikh, M.
799 A., ... Bruelheide, H. (2025). Global decoupling of functional and phylogenetic diversity in
800 plant communities. *Nature Ecology & Evolution*, 9(2), 237–248.
801 <https://doi.org/10.1038/s41559-024-02589-0>

802 Hassel, K., Kyrkjeeide, M., Yousefi, N., Prestø, T., Stenøien, H., Shaw, J., & Flatberg, K. (2018).
803 *Sphagnum divinum* (sp. Nov .) and *S. medium* Limpr. And their relationship to *S.*
804 *magellanicum* Brid. *Journal of Bryology*, 40, 1–26.
805 <https://doi.org/10.1080/03736687.2018.1474424>

806 Hautier, Y., Tilman, D., Isbell, F., Seabloom, E. W., Borer, E. T., & Reich, P. B. (2015).
807 Anthropogenic environmental changes affect ecosystem stability via biodiversity.
808 *Science*, 348(6232), 336–340. <https://doi.org/10.1126/science.aaa1788>

809 Hector, A., Hautier, Y., Saner, P., Wacker, L., Bagchi, R., Joshi, J., Scherer-Lorenzen, M., Spehn,
810 E. M., Bazeley-White, E., Weilenmann, M., Caldeira, M. C., Dimitrakopoulos, P. G., Finn,
811 J. A., Huss-Danell, K., Jumpponen, A., Mulder, C. P. H., Palmborg, C., Pereira, J. S.,
812 Siamantziouras, A. S. D., ... Loreau, M. (2010). General stabilizing effects of plant
813 diversity on grassland productivity through population asynchrony and overyielding.
814 *Ecology*, 91(8), 2213–2220. <https://doi.org/10.1890/09-1162.1>

815 Hill, M. O. (1973). Diversity and Evenness: A Unifying Notation and Its Consequences. *Ecology*,
816 54(2), 427–432. <https://doi.org/10.2307/1934352>

817 Hillebrand, H., Blasius, B., Borer, E. T., Chase, J. M., Downing, J. A., Eriksson, B. K., Filstrup, C.
818 T., Harpole, W. S., Hodapp, D., Larsen, S., Lewandowska, A. M., Seabloom, E. W., Van
819 de Waal, D. B., & Ryabov, A. B. (2018). Biodiversity change is uncoupled from species
820 richness trends: Consequences for conservation and monitoring. *Journal of Applied
Ecology*, 55(1), 169–184. <https://doi.org/10.1111/1365-2664.12959>

821 Hollister, R. D., Elphinstone, C., Henry, G. H. R., Bjorkman, A. D., Klanderud, K., Björk, R. G.,
822 Björkman, M. P., Bokhorst, S., Carbognani, M., Cooper, E. J., Dorrepaal, E., Elmendorf,
823 S. C., Fletcher, N., Gallois, E. C., Guðmundsson, J., Healey, N. C., Jónsdóttir, I. S.,
824 Klarenberg, I. J., Oberbauer, S. F., ... Wookey, P. A. (2023). A review of open top
825 chamber (OTC) performance across the ITEX Network. *Arctic Science*, 9(2), 331–344.
826 <https://doi.org/10.1139/as-2022-0030>

827 Ives, A. R., & Carpenter, S. R. (2007). Stability and diversity of ecosystems. *Science (New York,
828 N.Y.)*, 317(5834), 58–62. <https://doi.org/10.1126/science.1133258>

829 Jassey, V. E., Chiapusio, G., Binet, P., Buttler, A., Laggoun-Défarge, F., Delarue, F., Bernard, N.,
830 Mitchell, E. A., Toussaint, M.-L., Francez, A.-J., & Gilbert, D. (2013). Above- and
831 belowground linkages in Sphagnum peatland: Climate warming affects plant-microbial
832 interactions. *Global Change Biology*, 19(3), 811–823. <https://doi.org/10.1111/gcb.12075>

861 responsive to weather conditions. *Global Change Biology*, 29(19), 5691–5705.

862 <https://doi.org/10.1111/gcb.16907>

863 Lai, J., Zou, Y., Zhang, J., & Peres-Neto, P. R. (2022). Generalizing hierarchical and variation
864 partitioning in multiple regression and canonical analyses using the rdacca.hp R
865 package. *Methods in Ecology and Evolution*, 13(4), 782–788.

866 <https://doi.org/10.1111/2041-210X.13800>

867 Laine, A., Korrensalo, A., Kokkonen, N., & Tuittila, E.-S. (2021). Impact of long-term water level
868 drawdown on functional plant trait composition of northern peatlands. *Functional Ecology*,
869 35. <https://doi.org/10.1111/1365-2435.13883>

870 Laine, A. M., Lindholm, T., Nilsson, M., Kutznetsov, O., Jassey, V. E. J., & Tuittila, E.-S. (2021).
871 Functional diversity and trait composition of vascular plant and Sphagnum moss
872 communities during peatland succession across land uplift regions. *Journal of Ecology*,
873 109(4), 1774–1789. <https://doi.org/10.1111/1365-2745.13601>

874 Lavorel, S., & Garnier, E. (2002). Predicting changes in community composition and ecosystem
875 functioning from plant traits: Revisiting the Holy Grail. *Functional Ecology*, 16(5), 545–
876 556. <https://doi.org/10.1046/j.1365-2435.2002.00664.x>

877 Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of
878 species data. *Oecologia*, 129(2), 271–280. <https://doi.org/10.1007/s004420100716>

879 Lhosmot, A., Steinmann, M., Jacotot, A., Binet, P., Calisti, R., Mitchell, E., Toussaint, M.-L.,
880 Boetsch, A., Laggoun-Défarge, F., & Bertrand, G. (2025). Hydrological and temperature
881 controls on CO₂ and CH₄ exchange between a mid-altitude mountain peatland and the
882 atmosphere. *Mires and Peat*, 32, 23. <https://doi.org/10.19189/001c.143644>

883 Liang, M., Baiser, B., Hallett, L. M., Hautier, Y., Jiang, L., Loreau, M., Record, S., Sokol, E. R.,
884 Zarnetske, P. L., & Wang, S. (2022). Consistent stabilizing effects of plant diversity
885 across spatial scales and climatic gradients. *Nature Ecology & Evolution*, 6(11), 1669–
886 1675. <https://doi.org/10.1038/s41559-022-01868-y>

887 Lin, G., Zeng, D.-H., & Mao, R. (2020). Traits and their plasticity determine responses of plant
888 performance and community functional property to nitrogen enrichment in a boreal
889 peatland. *Plant and Soil*, 449(1), 151–167. <https://doi.org/10.1007/s11104-020-04478-4>

890 Lisner, A., Segrestin, J., Konečná, M., Blažek, P., Janíková, E., Applová, M., Švancárová, T., &
891 Lepš, J. (2024). Why are plant communities stable? Disentangling the role of dominance,
892 asynchrony and averaging effect following realistic species loss scenario. *Journal of
893 Ecology*, 112(8), 1832–1841. <https://doi.org/10.1111/1365-2745.14364>

894 Liu, H., Xu, J., Qi, X., Xu, X., Wu, J., Li, B., & Nie, M. (2025). Wetland productivity and stability
895 increase more with average plant size than with plant functional diversity. *Nature
896 Communications*, 16(1), 10778. <https://doi.org/10.1038/s41467-025-65822-9>

897 Loisel, J., Gallego-Sala, A. V., Amesbury, M. J., Magnan, G., Anshari, G., Beilman, D. W.,
898 Benavides, J. C., Blewett, J., Camill, P., Charman, D. J., Chawchai, S., Hedgpeth, A.,
899 Kleinen, T., Korhola, A., Large, D., Mansilla, C. A., Müller, J., van Bellen, S., West, J. B.,
900 ... Wu, J. (2021). Expert assessment of future vulnerability of the global peatland carbon
901 sink. *Nature Climate Change*, 11(1), 70–77. <https://doi.org/10.1038/s41558-020-00944-0>

902 Loreau, M., Barbier, M., Filotas, É., Gravel, D., Isbell, F., Miller, S. J., Montoya, J., Wang, S.,
903 Aussenac, R., Germain, R., Thompson, P. L., Gonzalez, A., & Dee, L. (2021).
904 Biodiversity as insurance: From concept to measurement and application. *Biological
905 Reviews of The Cambridge Philosophical Society*. <https://doi.org/10.1111/BRV.12756>

906 Loreau, M., & de Mazancourt, C. (2008). Species Synchrony and Its Drivers: Neutral and
907 Nonneutral Community Dynamics in Fluctuating Environments. *The American Naturalist*,
908 172(2), E48–E66. <https://doi.org/10.1086/589746>

909 Loreau, M., & de Mazancourt, C. (2013). Biodiversity and ecosystem stability: A synthesis of
910 underlying mechanisms. *Ecology Letters*, 16(s1), 106–115.
911 <https://doi.org/10.1111/ele.12073>

912 Mahaut, L., Choler, P., Denelle, P., Garnier, E., Thuiller, W., Kattge, J., Lemauvie-Lavenant, S.,
913 Lavorel, S., Munoz, F., Renard, D., Serra-Diaz, J. M., Viovy, N., & Violle, C. (2023).
914 Trade-offs and synergies between ecosystem productivity and stability in temperate

915 grasslands. *Global Ecology and Biogeography*, 32(4), 561–572.

916 <https://doi.org/10.1111/geb.13645>

917 Mahaut, L., Loiseau, N., Villéger, S., Auber, A., Hautecoeur, C., Maire, A., Mellin, C., Mouquet,
918 N., Stuart-Smith, R., Violle, C., & Mouillot, D. (2025). Functional diversity shapes the
919 stability of reef fish biomass under global change. *Proceedings of the Royal Society B:
920 Biological Sciences*, 292(2046), 20250252. <https://doi.org/10.1098/rspb.2025.0252>

921 May, R. M. (1973). *Stability and complexity in model ecosystems*. Princeton University Press.

922 McCann, K. S. (2000). The diversity–stability debate. *Nature*, 405(6783), 228–233.
923 <https://doi.org/10.1038/35012234>

924 Meng, B., Luo, M., Loreau, M., Hong, P., Craven, D., Eisenhauer, N., Isbell, F., Liang, M.,
925 Reuman, D. C., Wilsey, B. J., Ruijven, J. van, Zhao, L., & Wang, S. (2025). Stabilizing
926 effects of biodiversity arise from species-specific dynamics rather than interspecific
927 interactions in grasslands. *Nature Ecology & Evolution*. <https://doi.org/10.1038/S41559-025-02787-4>

929 Naeem, S., Prager, C., Weeks, B., Varga, A., Flynn, D., Griffin, K., Muscarella, R., Palmer, M.,
930 Wood, S., & Schuster, W. (2016). Biodiversity as a multidimensional construct: A review,
931 framework and case study of herbivory's impact on plant biodiversity. *Proceedings of the
932 Royal Society B: Biological Sciences*, 283. <https://doi.org/10.1098/rspb.2015.3005>

933 Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R^2 from
934 generalized linear mixed-effects models. *Methods in Ecology and Evolution*, 4(2), 133–
935 142. <https://doi.org/10.1111/j.2041-210x.2012.00261.x>

936 Obi, E., & Lindo, Z. (2026). Experimental warming in boreal peatlands alters oribatid mite
937 community composition and body size through peat drying. *Applied Soil Ecology*, 217,
938 106623. <https://doi.org/10.1016/j.apsoil.2025.106623>

939 Page, S. E., & Baird, A. J. (2016). Peatlands and Global Change: Response and Resilience.
940 *Annual Review of Environment and Resources*, 41(Volume 41, 2016), 35–57.
941 <https://doi.org/10.1146/annurev-environ-110615-085520>

942 Pan, X., Hautier, Y., Leps, J., Wang, S., Barry, K., Bazzichetto, M., Chelli, S., Dolezal, J.,
943 Eisenhauer, N., Essl, F., Fischer, F., Godoy, O., Gómez, D., Gracia Mas, C., Guido, A.,
944 Hallett, L., Harrison, S., He, M., Hector, A., & Bello, F. (2025). *Reconciling links between*
945 *diversity and population stability across global plant communities*. *Authorea Preprints*.
946 <https://doi.org/10.22541/au.174766347.70526064/v1>

947 Pennekamp, F., Pontarp, M., Tabi, A., Altermatt, F., Alther, R., Choffat, Y., Fronhofer, E. A.,
948 Ganesanandamoorthy, P., Garnier, A., Griffiths, J. I., Greene, S., Horgan, K., Massie, T.
949 Mächler, E., Palamara, G. M., Seymour, M., & Petchey, O. L. (2018). Biodiversity
950 increases and decreases ecosystem stability. *Nature*, 563(7729), 109–112.
951 <https://doi.org/10.1038/s41586-018-0627-8>

952 Pfisterer, A. B., & Schmid, B. (2002). Diversity-dependent production can decrease the stability of
953 ecosystem functioning. *Nature*, 416(6876), 84–86. <https://doi.org/10.1038/416084a>

954 Pimm, S. L. (1984). The complexity and stability of ecosystems. *Nature*, 307(5949), 321–326.
955 <https://doi.org/10.1038/307321a0>

956 Pinceloup, N., Poulin, M., Brice, M.-H., & Pellerin, S. (2020). Vegetation changes in temperate
957 ombrotrophic peatlands over a 35 year period. *PLOS ONE*, 15(2), e0229146.
958 <https://doi.org/10.1371/journal.pone.0229146>

959 Polazzo, F., Hämmig, T., Petchey, O. L., & Pennekamp, F. (2025). The Imbalance of Nature: The
960 Role of Species Environmental Responses for Community Stability. *Ecology Letters*.
961 <https://doi.org/10.1111/ELE.70224>

962 Popovic, G., Mason, T. J., Drobniak, S. M., Marques, T. A., Potts, J., Joo, R., Altweig, R., Burns,
963 C. C. I., McCarthy, M. A., Johnston, A., Nakagawa, S., McMillan, L., Devarajan, K.,
964 Taggart, P. L., Wunderlich, A., Mair, M. M., Martínez-Lanfranco, J. A., Lagisz, M., &
965 Pottier, P. (2024). Four principles for improved statistical ecology. *Methods in Ecology*
966 and *Evolution*, 15(2), 266–281. <https://doi.org/10.1111/2041-210X.14270>

967 Posit team. (2025). *RStudio: Integrated Development Environment for R* [Computer software].
968 Posit Software, PBC. <http://www.posit.co/>

969 Quan, Q., Zhang, F., Jiang, L., Chen, H. Y. H., Wang, J., Ma, F., Song, B., & Niu, S. (2021). High-
970 level rather than low-level warming destabilizes plant community biomass production.
971 *Journal of Ecology*. <https://doi.org/10.1111/1365-2745.13583>

972 R Core Team. (2024). *R: A Language and Environment for Statistical Computing* [Computer
973 software]. R Foundation for Statistical Computing. <https://www.R-project.org/>

974 Robroek, B. J. M., Jassey, V. E. J., Payne, R. J., Martí, M., Bragazza, L., Bleeker, A., Buttler, A.,
975 Caporn, S. J. M., Dise, N. B., Kattge, J., Zajac, K., Svensson, B. H., van Ruijven, J., &
976 Verhoeven, J. T. A. (2017). Taxonomic and functional turnover are decoupled in
977 European peat bogs. *Nature Communications*, 8(1), 1161.
978 <https://doi.org/10.1038/s41467-017-01350-5>

979 Rodrigues, A. V., Rissanen, T., Jones, M. M., Huikonen, I., Huitu, O., Korpimäki, E., Kuussaari,
980 Lehikoinen, A., Lindén, A., Pietiäinen, H., Pöyry, J., Sihvonen, P., Suuronen, A.,
981 Vuorio, K., Saastamoinen, M., Vanhatalo, J., & Laine, A. (2025). Cross-Taxa Analysis of
982 Long-Term Data Reveals a Positive Biodiversity-Stability Relationship With Taxon-
983 Specific Mechanistic Underpinning. *Ecology Letters*. <https://doi.org/10.1111/ELE.70003>

984 Rydin, H., Jeglum, J. K., & Bennett, K. D. (2013). *The Biology of Peatlands*, 2e. OUP Oxford.

985 Stivrins, N., Ozoloa, I., Galka, M., Kuske, E., Alliksaar, T., Andersen, T. J., Lamentowicz, M.,
986 Wulf, S., & Reitalu, T. (2017). Drivers of peat accumulation rate in a raised bog: Impact of
987 drainage, climate, and local vegetation composition. *Mires and Peat*, 19(8).
988 <https://doi.org/10.19189/MaP.2016.OMB.262>

989 Tanneberger, F., Moen, A., Barthelmes, A., Lewis, E., Miles, L., Sirin, A., Tegetmeyer, C., &
990 Joosten, H. (2021). Mires in Europe—Regional Diversity, Condition and Protection.
991 *Diversity*, 13(8), 381. <https://doi.org/10.3390/d13080381>

992 Telgenkamp, Y., Robroek, B. J. M., Rochefort, L., Shepherd, H. E. R., Boone, R. W. C., &
993 Thomas, C. L. (2025). Standing tall together: Peatland vascular plants facilitate
994 *Sphagnum* moss microtopography. *Basic and Applied Ecology*, 87, 144–152.
995 <https://doi.org/10.1016/j.baae.2025.06.006>

996 Thibaut, L. M., Connolly, S. R., & He, F. (2013). Understanding diversity–stability relationships:
997 Towards a unified model of portfolio effects. *Ecology Letters*, 16(2), 140–150.
998 <https://doi.org/10.1111/ele.12019>

999 Tilman, D. (1996). Biodiversity: Population Versus Ecosystem Stability. *Ecology*, 77(2), 350–363.
1000 <https://doi.org/10.2307/2265614>

1001 Turetsky, M., Bond-Lamberty, B., Euskirchen, E., Talbot, J., Frolking, S., McGuire, A., & Tuittila,
1002 E. (2012). The resilience and functional role of moss in boreal and arctic ecosystems.
1003 *The New Phytologist*. <https://doi.org/10.1111/J.1469-8137.2012.04254.X>

1004 UNEP. (2022). *Global Peatlands Assessment – The State of the World’s Peatlands: Evidence for
1005 action toward the conservation, restoration, and sustainable management of peatlands*.
1006 United Nations Environment Programme (UNEP).
1007 <https://doi.org/10.59117/20.500.11822/41222>

1008 Valencia, E., de Bello, F., Galland, T., Adler, P. B., Lepš, J., E-Vojtkó, A., van Klink, R., Carmona,
1009 C. P., Danihelka, J., Dengler, J., Eldridge, D. J., Estiarte, M., García-González, R.,
1010 Garnier, E., Gómez-García, D., Harrison, S. P., Herben, T., Ibáñez, R., Jentsch, A., ...
1011 Götzenberger, L. (2020). Synchrony matters more than species richness in plant
1012 community stability at a global scale. *Proceedings of the National Academy of Sciences*,
1013 117(39), 24345–24351. <https://doi.org/10.1073/pnas.1920405117>

1014 van Giersbergen, Q., Barthelmes, A., Couwenberg, J., Lång, K., Martin, N., Tegetmeyer, C., Fritz,
1015 C., & Tanneberger, F. (2025). Identifying hotspots of greenhouse gas emissions from
1016 drained peatlands in the European Union. *Nature Communications*, 16(1), 10825.
1017 <https://doi.org/10.1038/s41467-025-65841-6>

1018 Violle, C., Garnier, E., Lecoeur, J., Roumet, C., Podeur, C., Blanchard, A., & Navas, M.-L. (2009).
1019 Competition, traits and resource depletion in plant communities. *Oecologia*, 160(4), 747–
1020 755. <https://doi.org/10.1007/s00442-009-1333-x>

1021 Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let
1022 the concept of trait be functional! *Oikos*, 116(5), 882–892. [https://doi.org/10.1111/j.0030-1299.2007.15559.x](https://doi.org/10.1111/j.0030-
1023 1299.2007.15559.x)

1024 Wasserstein, R., Schirm, A., & Lazar, N. (2019). Moving to a World Beyond “ $p < 0.05$.” *American
1025 Statistician*, 73, 1–19. <https://doi.org/10.1080/00031305.2019.1583913>

1026 Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., & Wright, I. J. (2002). Plant Ecological
1027 Strategies: Some Leading Dimensions of Variation Between Species. *Annual Review of
1028 Ecology, Evolution, and Systematics*, 33(Volume 33, 2002), 125–159.
1029 <https://doi.org/10.1146/annurev.ecolsys.33.010802.150452>

1030 Wheeler, B. D., & Proctor, M. C. F. (2000). Ecological gradients, subdivisions and terminology of
1031 north-west European mires. *Journal of Ecology*, 88(2), 187–203.
1032 <https://doi.org/10.1046/j.1365-2745.2000.00455.x>

1033 Wisnoski, N. I., Andrade, R., Castorani, M. C. N., Catano, C. P., Compagnoni, A., Lamy, T., Lamy,
1034 N. K., Marazzi, L., Record, S., Smith, A. C., Swan, C. M., Tonkin, J. D., Voelker, N. M.,
1035 Zarnetske, P. L., & Sokol, E. R. (2023). Diversity–stability relationships across organism
1036 groups and ecosystem types become decoupled across spatial scales. *Ecology*, 104(9),
1037 e4136. <https://doi.org/10.1002/ecy.4136>

1038 Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares,
1039 J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K.,
1040 Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., ... Villar, R. (2004).
1041 The worldwide leaf economics spectrum. *Nature*, 428(6985), 821–827.
1042 <https://doi.org/10.1038/nature02403>

1043 Xu, Q., Yang, X., Yan, Y., Wang, S., Loreau, M., & Jiang, L. (2021). Consistently positive effect of
1044 species diversity on ecosystem, but not population, temporal stability. *Ecology Letters*.
1045 <https://doi.org/10.1111/ELE.13777>

1046 Xu, Z., Ren, H., Li, M.-H., van Ruijven, J., Han, X., Wan, S., Li, H., Yu, Q., Jiang, Y., & Jiang, L.
1047 (2015). Environmental changes drive the temporal stability of semi-arid natural
1048 grasslands through altering species asynchrony. *Journal of Ecology*, 103(5), 1308–1316.

1049 Yachi, S., & Loreau, M. (1999). Biodiversity and ecosystem productivity in a fluctuating
1050 environment: The insurance hypothesis. *Proceedings of the National Academy of
1051 Sciences*, 96(4), 1463–1468. <https://doi.org/10.1073/pnas.96.4.1463>

1052 Yan, P., He, N., Fernández-Martínez, M., Yang, X., Zuo, Y., Zhang, H., Wang, J., Chen, S., Song,
1053 J., Li, G., Valencia, E., Wan, S., & Jiang, L. (2025). Plant Acquisitive Strategies Promote
1054 Resistance and Temporal Stability of Semiarid Grasslands. *Ecology Letters*.
1055 <https://doi.org/10.1111/ELE.70110>

1056 Zhang, R., Su, C., Wang, Y., Wang, S., Tian, D., Wang, J., Jiang, L., Chen, X., Zhu, J., Pan, J.,
1057 Zhao, G., Quan, Q., Yan, P., He, Yunlong, Li, Y., Song, L., Peng, J., Yan, Y., He,
1058 Yicheng, ... Niu, S. (2026). Decadal-scale observations are key to detecting the
1059 stabilizing effects of plant diversity in natural ecosystems. *Nature Plants*, 1–12.
1060 <https://doi.org/10.1038/s41477-025-02189-1>

1061 Zhao, L., Wang, S., Shen, R., Gong, Y., Wang, C., Hong, P., & Reuman, D. C. (2022).
1062 Biodiversity stabilizes plant communities through statistical-averaging effects rather than
1063 compensatory dynamics. *Nature Communications*, 13(1), 7804.
1064 <https://doi.org/10.1038/s41467-022-35514-9>

1065

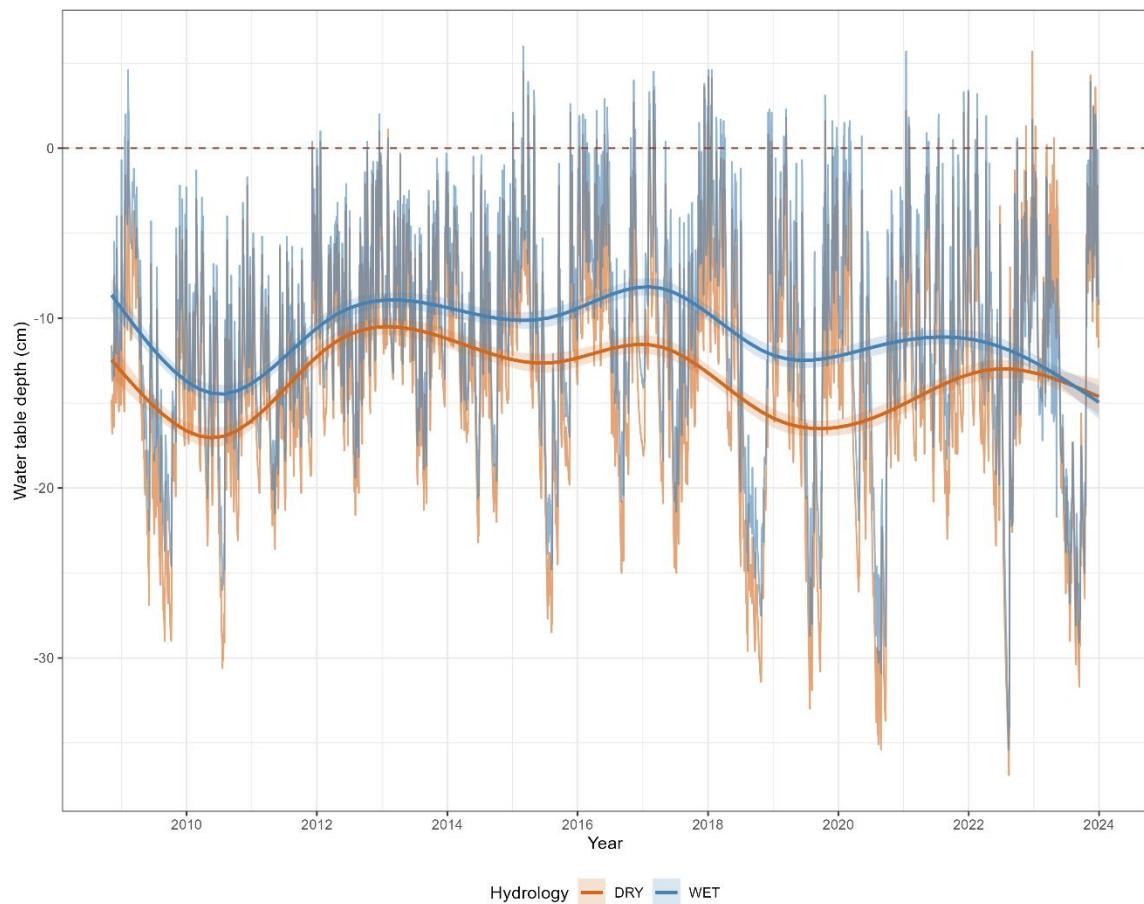
1066

1067	Supplementary materials for
1068	
1069	Diversity comes at a cost: multifaceted diversity reduces plant community
1070	stability in peatlands
1071	
1072	
1073	Table of contents
1074	Supplementary S1. Forbonnet peatland location and experimental platform..... 49
1075	Supplementary S2. Long-term water table depth dynamics at Forbonnet peatland. 50
1076	Supplementary S3. Phylogenetic tree reconstruction..... 51
1077	Supplementary S4. Packages name and version..... 53
1078	Supplementary S5. Risk of Bias assessment 54
1079	Supplementary S6. Principal Component Analysis (PCA) of plant community composition.... 57
1080	Supplementary S7. Size effects (ρ) and significance (p-values) of the residual correlations
1081	between the various facets of diversity, community temporal stability, and species asynchrony
1082 58
1083	Supplementary S8. Partial residual relationships between community stability and diversity
1084	metrics..... 60
1085	Supplementary S9. Partial residual relationships between species asynchrony and diversity
1086	metrics..... 62
1087	Supplementary references..... 64
1088	
1089	

1090 **Supplementary S1. Forbonnet peatland location and experimental platform.**

1091 (A) Geographic location of the site with aerial orthophotograph (coordinates in WGS84, decimal
1092 degrees, IGN 2021 BD Ortho raster and Natural Earth vector); (B) Photograph of the
1093 experimental platform (photo credit: OPEN-Lab DREAM); (C) Photograph of an Open Top
1094 Chamber (OTC) at the site (photo credit: Noémie Poteaux).

1095


1096

1097 **Supplementary S2. Long-term water table depth dynamics at Forbonnet**

1098 **peatland.**

1099 Daily water table depth (WTD) measurements (2008–2023) for the two hydrological blocks, with
1100 GAM smoothing trends \pm SE (shaded areas). WTD was measured using floating piezometers, so
1101 values are referenced to the local peat surface at the time of measurement (dashed line). Data
1102 from 2024 onwards were excluded due to sensor malfunction.

1103

1104

1105

1106 **Supplementary S3. Phylogenetic tree reconstruction**

1107 The phylogenetic tree was constructed from the sequences of the chloroplast gene *rbcL*
1108 (ribulose-1,5-bisphosphate carboxylase/oxygenase) extracted from the NCBI Genbank database
1109 for each of the species present in the base vegetation matrix (see Table S4 for the corresponding
1110 accession numbers).

1111 For species without available sequences or with sequences that were too short, the sequence of
1112 the closest species was used as a proxy (also detailed in Table S4). The longest *rbcL* sequence
1113 available for *Vaccinium oxycoccus* (longest available sequence = 552 bp) was substituted with *V.*
1114 *uliginosum* (longest available sequence = 1398), its closest extant sister lineage based on a
1115 recent phylogeny of the *Vaccinieae* (Becker et al., 2024). A substitution was also made for
1116 *Polytrichum strictum* (longest available sequence = 684 bp), which was substituted with *P.*
1117 *commune* (longest available sequence = 1428, see Table below), a close congeneric species
1118 with a complete *rbcL* sequence.

1119

1120 The sequences were aligned on the NGPhylogeny.fr platform (Lemoine et al., 2019) using the
1121 “PhyML/OneClick” tool. The workflow selection was as follows: multiple alignment with MAFFT
1122 (Katoh & Standley, 2013), alignment curation with BMGE (Criscuolo & Gribaldo, 2010), tree
1123 inference with PhyML (Guindon et al., 2010), bootstrap values were computed using TBE
1124 (Lemoine et al., 2018) and finally tree rendering with Newick display (Junier & Zdobnov, 2010).

1125 Next, on R Studio, we imported the resulting Newick tree and processed it as follows: (i) midpoint
1126 rooting, (ii) ultrametric transformation using the *chronos()* function from ape package (see S5),
1127 and (iii) matching of species labels with the vegetation matrix using *match.phylo.comm()* from
1128 picante package. The final tree, which was an ultrametric tree, was used for computing
1129 phylogenetic diversity metrics.

1130

1131 **Sequences accession numbers**

1132 GenBank accession numbers for rbcL sequences used in the phylogenetic analyses. Length
1133 indicates aligned sequence lengths. Notes column indicates proxy species used when target
1134 species sequences were inadequate.

1135

Species	Accession number	Length (bp)	Notes
<i>Andromeda polifolia</i>	AF124572.1	1355	
<i>Calluna vulgaris</i>	ON684482.1	1428	
<i>Carex limosa</i>	JX644630.1	1295	
<i>Carex pauciflora</i>	GQ469850.1	1408	
<i>Carex rostrata</i>	GQ469851.1	1408	
<i>Drosera rotundifolia</i>	KM360758.1	1352	
<i>Eriophorum vaginatum</i>	AB369971.1	1408	
<i>Pinus sylvestris</i>	OQ184488.1	1428	
<i>Scheuchzeria palustris</i>	HQ901572.1	1344	<i>Zannichellia palustris</i> used as proxy (the only acceptable sequence for <i>Scheuchzeria palustris</i> was not grouped with <i>Carex</i> species)
<i>Vaccinium oxycoccus</i>	AF421107.1	1398	<i>V. uliginosum</i> used as proxy
<i>Polytrichum strictum</i>	LC702108.1	1428	<i>P. commune</i> used as proxy
<i>Sphagnum fallax</i>	AB013673.1	1305	
<i>Sphagnum magellanicum</i>	MF362295.1	961	

1136

1137 **Supplementary S4. Packages name and version**

1138 The following table lists all R packages used in the analyses, with their version and citations.

Package	Version	Reference
ape	5.8.1	(Paradis & Schliep, 2019)
car	3.1.3	(Fox & Weisberg, 2019)
conflicted	1.2.0	(Wickham, 2023)
DHARMa	0.4.7	(Hartig, 2024)
effectsize	1.0.1	(Ben-Shachar et al., 2020)
factoextra	1.0.7	(Kassambara & Mundt, 2020)
FactoMineR	2.12	(Lê et al., 2008)
FD	1.0.12.3	(Laliberté & Legendre, 2010)
funrar	1.5.0	(Grenié et al., 2017)
fuzzySim	4.38	(Barbosa, 2015)
ggcorplot	0.1.4.1	(Kassambara, 2023)
ggrepel	0.9.6	(Slowikowski et al., 2024)
hillR	0.5.2	(Li, 2018)
janitor	2.2.1	(Firke et al., 2024)
lme4	1.1.37	(Bates et al., 2015)
mFD	1.0.7	(Magneville et al., 2022)
patchwork	1.3.2	(Pedersen, 2025)
performance	0.15.3	(Lüdecke et al., 2025)
permuco	1.1.3	(Frossard & Renaud, 2021)
phytools	2.5.2	(Revell, 2024)
picante	1.8.2	(Kembel et al., 2010)
randomForest	4.7.1.2	(Liaw & Wiener, 2002)
rdacca.hp	1.1.1	(Lai et al., 2022)
tidyverse	2.0.0	(Wickham et al., 2019)
UpSetVP	1.0.0	(Liu, 2022)
vegan	2.7.2	(Oksanen et al., 2025)

1139

1140 **Supplementary S5. Risk of Bias assessment**

1141 This Risk of Bias assessment is adapted from ROBITT framework (Boyd et al., 2022).

1142 **1. ROBITT iteration number: 1**

1143 **2. Statistical population of interest**

1144 **2.1 Define the statistical target population about which you intend to make inferences.**

1145 Detailed in the methods.

1146 **2.2 What are your inferential goals?**

1147 Detailed in the methods.

1148 **2.3 From where were your data acquired (please provide citations, including a DOI, wherever possible)? What are their key features in respect of the inferential aims of your study (see the guidance document for examples)?**

1151 Detailed in the methods and supplementary material (S3).

1152 **2.4 Provide details of, and the justification for, all of the steps that you have taken to clean the data described above prior to analyses.**

1154 Detailed in the methods.

1155 **3. Bias assessment and mitigation**

1156 **3.1 At what geographic, temporal and taxonomic resolutions (i.e. scales or grain sizes) will you conduct your bias assessment?**

1158 Geographic level: plot level (12 fixed plots). Temporal: annual surveys in July, and 6 years per plot. Taxonomic/organismal level: community (vascular + bryophytes, including litter for a part of first question) and vascular-only subsets (for remaining analyses).

1161 **3.2 Are the data sampled from a representative portion of geographical space in the domain of interest?**

1163 Yes, our site (111 ha) is a transitional peatland. Within our site, the 2 microhabitats (WET/DRY) cover the typical hydrological gradient of raised bog/poor fen mosaics in region IV (region IV; 1165 Tanneberger et al., 2021; see methods). However, this is a single-site study: inference is 1166 intended for peatlands with similar characteristics (bogs and fens similar to ours).

1167 **3.3 Are your data sampled from the same portions of geographic space across time**
1168 **periods?**

1169 Yes, plots are permanent, and were installed in 2008, as well as OTCs. Same plot locations
1170 sampled every year. See methods.

1171 **3.4 If the answers to the above questions revealed any potential geographic biases, or**
1172 **temporal variation in geographic coverage, please explain, in detail, how you plan to**
1173 **mitigate them.**

1174 No potential biases. Models we used include plot random intercepts (i.e., "(1|plot)") to account for
1175 within plot temporal dependencies. No major geographic coverage variation is expected because
1176 plots are permanent.

1177 **3.5 Are your data sampled from a representative portion of environmental space in the**
1178 **domain of interest?**

1179 Yes, **the WET/DRY contrast captures a water table depth (WTD) gradient central to our**
1180 **inferential aims.**

1181 **3.6 Are your data sampled from the same portion of environmental space across time**
1182 **periods?**

1183 Vegetation sampling occurred in July. Interannual coverage is not homogeneously distributed
1184 (2008, 2009, 2010, 2012, 2024, 2025). But intrannual coverage survey are (all done in July). See
1185 methods.

1186 **3.7 If the answers to the above questions revealed any potential environmental biases, or**
1187 **temporal variation in environmental coverage, please explain, in detail, how you plan to**
1188 **mitigate them.**

1189 Inferences cannot be made from 2013 to 2023, we will focus on large temporal scale evolutions
1190 (especially for community temporal stability and species asynchrony).

1191 **3.8 Is the sampled portion of the taxonomic (or phylogenetic, trait or other space if more**
1192 **relevant) space representative of the taxonomic (or other) domain of interest?**

1193 Yes, within the study design. The same protocol was applied across all plots, and replication is
1194 balanced (3 plots per WET/DRY x experimental warming treatment combination).

1195 **3.9 Do your data pertain to the same taxa/taxonomic domain across time periods?**

1196 Yes.

1197 **3.10 If the answers to the above questions revealed any potential taxonomic biases, or**

1198 **temporal variation in taxonomic coverage, please explain, in detail, how you plan to**

1199 **mitigate them.**

1200 No potential bias.

1201 **3.11 Are there other potential temporal biases in your data that relate to variables other**

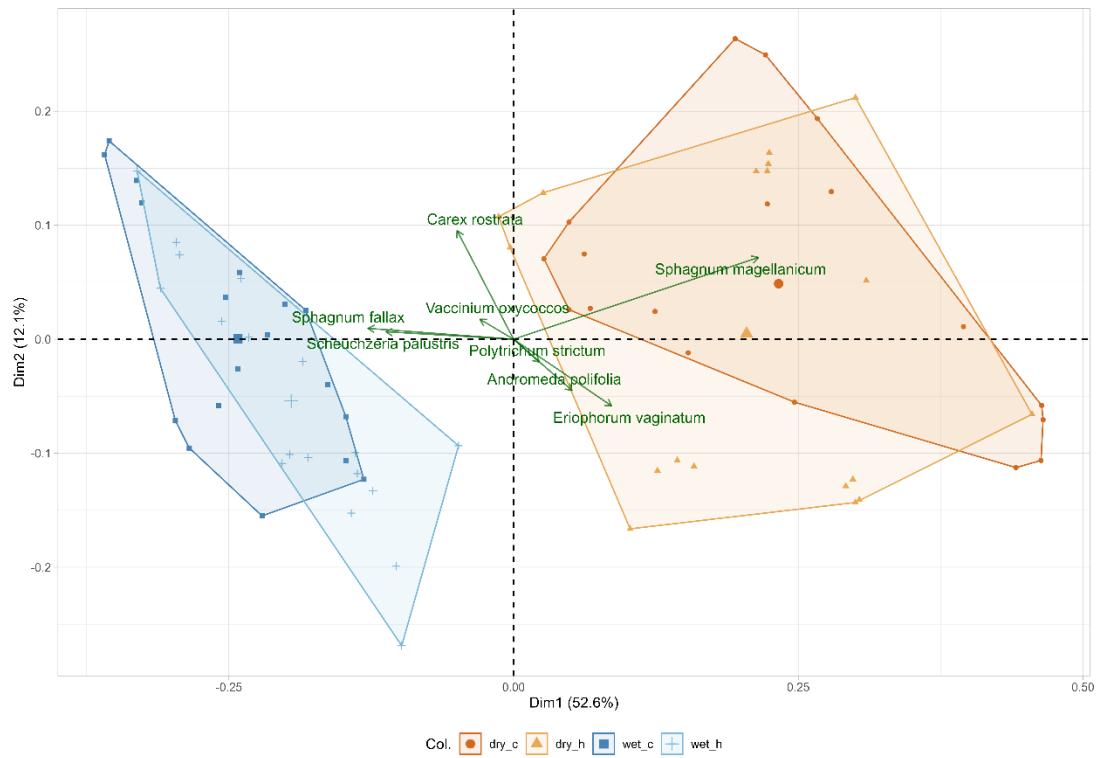
1202 **than ecological states?**

1203 Sampling intensity changed (400→200 points, see methods). Observer effect (one person did the
1204 vegetation survey from 2008 to 2012 and another from 2024 to 2025). Irregular time steps (gaps
1205 between 2012 and 2024).

1206 **3.12 Are you aware of any other potential biases not covered by the above questions that**
1207 **might cause problems for your inferences?**

1208 No.

1209 **3.13 If questions 3.11 or 3.12 revealed any important potential biases, please explain how**
1210 **you will mitigate them.**


1211 Sampling intensity changed (400→200 points, see methods): addressed by using relative cover.
1212 Observer effect (one person did the vegetation survey from 2008 to 2012 and another from 2024
1213 to 2025): minimized with fixed protocol and with the fact that both scientists are well trained
1214 botanists and know very well this specific vegetation. Irregular time steps (gaps between 2012
1215 and 2024): but time series lengths are the same across plots to compute community temporal
1216 stability and species asynchrony; the method that we choose are comparable given equal
1217 temporal cover.

1218

1219 **Supplementary S6. Principal Component Analysis (PCA) of plant**

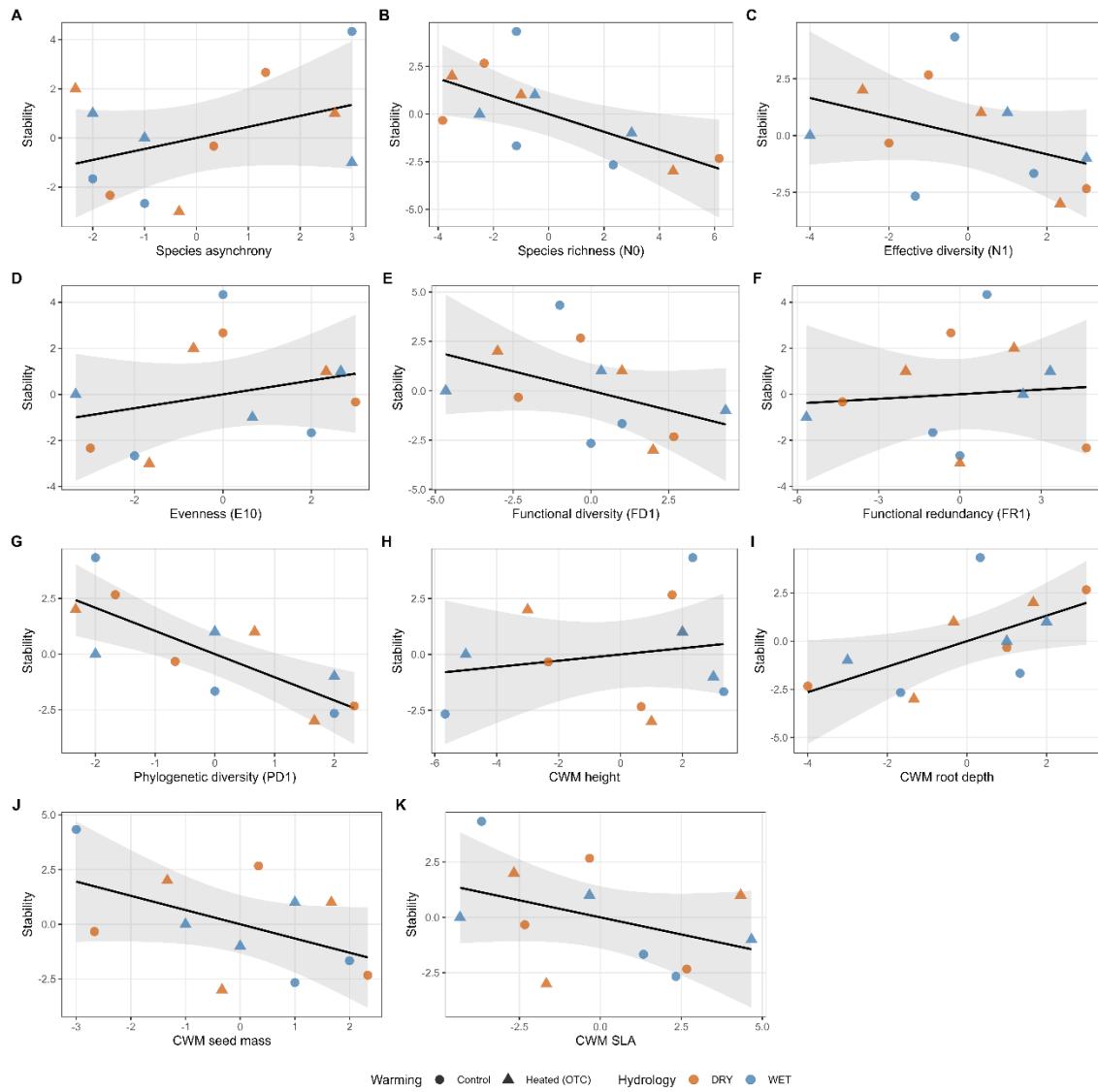
1220 **community composition**

1221 PCA biplot based on Hellinger-transformed species abundance data. Convex hulls delimit the
1222 four experimental conditions (hydrology \times warming). Control and heated plots largely overlap
1223 within each hydrological block, while DRY and WET communities remain clearly separated,
1224 consistent with the constrained ordination results (RDA; Fig. 1A).

1225

1226

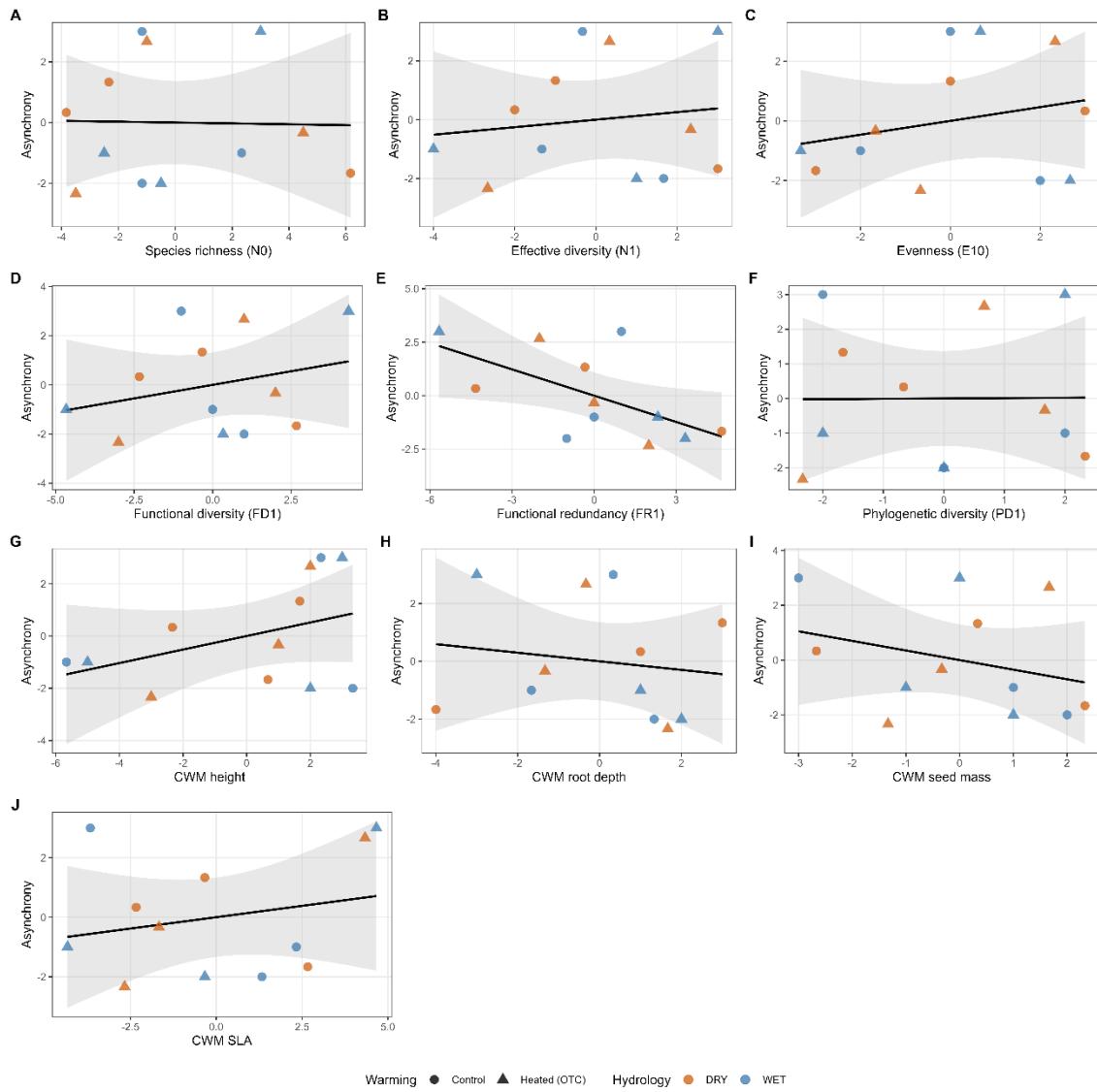
1227 **Supplementary S7. Size effects (ρ) and significance (p-values) of the**
 1228 **residual correlations between the various facets of diversity, community**
 1229 **temporal stability, and species asynchrony**


1230 Correlations were computed on rank-transformed variables after extracting residuals from linear
 1231 models controlling for experimental factors to control for experimental variables (see Methods
 1232 section of the main manuscript). P-values are reported for transparency, but interpretation
 1233 focuses on effect sizes (Popovic et al., 2024; Wasserstein et al., 2019). False discovery rate
 1234 (FDR) correction was applied using the Benjamini–Hochberg procedure across all correlations.
 1235 Abbreviations: N₀ = species richness; N₁ = Shannon diversity; N₂ = Simpson diversity; E₁₀ =
 1236 Shannon evenness; E₂₀ = Simpson evenness; FD₁ = functional diversity; FR₁ = functional
 1237 redundancy; PD₁ = phylogenetic diversity; Faith PD = Faith's phylogenetic diversity; CWM =
 1238 community-weighted mean (of different traits).

Response	Predictor	ρ	p_uncorrected	p_FDR
Asynchrony	N ₀	-0.02	0.943	0.979
Asynchrony	N ₁	0.14	0.656	0.770
Asynchrony	N ₂	0.23	0.477	0.678
Asynchrony	E ₁₀	0.25	0.432	0.678
Asynchrony	E ₂₀	0.24	0.457	0.678
Asynchrony	CWM Height	0.40	0.195	0.489
Asynchrony	CWM Root depth	-0.16	0.630	0.770
Asynchrony	CWM Seed mass	-0.30	0.343	0.678
Asynchrony	CWM SLA	0.23	0.473	0.678
Asynchrony	FD ₁	0.27	0.390	0.678
Asynchrony	FR ₁	-0.61	0.0367	0.198
Asynchrony	PD ₁	0.01	0.979	0.979
Asynchrony	Faith PD	-0.06	0.849	0.917
Stability	N ₀	-0.66	0.0195	0.198
Stability	N ₁	-0.41	0.182	0.489
Stability	N ₂	-0.17	0.595	0.765
Stability	E ₁₀	0.29	0.362	0.678
Stability	E ₂₀	0.33	0.298	0.671
Stability	CWM Height	0.19	0.546	0.738
Stability	CWM Root depth	0.61	0.0336	0.198

Stability	CWM Seed mass	-0.50	0.101	0.456
Stability	CWM SLA	-0.41	0.182	0.489
Stability	FD ₁	-0.43	0.159	0.489
Stability	FR ₁	0.09	0.785	0.883
Stability	PD ₁	-0.79	0.00209	0.0564
Stability	Faith PD	-0.63	0.0278	0.198
Stability	Asynchrony	0.40	0.199	0.489

1239


1240 **Supplementary S8. Partial residual relationships between community**
1241 **stability and diversity metrics.**
1242 Scatterplots showing relationships between stability and (A) species asynchrony, (B) species
1243 richness (N_0), (C) effective diversity (N_1), (D) evenness (E_{10}), (E) functional diversity (FD_1), (F)
1244 functional redundancy (FR_1), (G) phylogenetic diversity (PD_1), (H) CWM height, (I) CWM root
1245 depth, (J) CWM seed mass, and (K) CWM SLA. All values are partial residuals after controlling
1246 for experimental conditions (hydrological \times warming, $n = 12$ plots, see Methods section). Black
1247 lines show linear regression fits with 95% confidence intervals. Corresponding partial correlation
1248 coefficients are reported in Fig. 4C and Supplementary S6.

1250 **Supplementary S9. Partial residual relationships between species**

1251 **asynchrony and diversity metrics.**

1252 Scatterplots showing relationships between asynchrony and (A) species richness (N_0), (B)
1253 effective diversity (N_1), (C) evenness (E_{10}), (D) functional diversity (FD_1), (E) functional
1254 redundancy (FR_1), (F) phylogenetic diversity (PD_1), (G) CWM height, (H) CWM root depth, (I)
1255 CWM seed mass, and (J) CWM SLA. All values are partial residuals after controlling for
1256 experimental conditions (hydrological \times warming, $n = 12$ plots, see Methods section). Black lines
1257 show linear regression fits with 95% confidence intervals. Corresponding partial correlation
1258 coefficients are reported in Fig. 4C and Supplementary S6.

1260 **Supplementary references**

1261 Barbosa, A. M. (2015). fuzzySim: Applying fuzzy logic to binary similarity indices in ecology.
1262 *Methods in Ecology and Evolution*, 6(7), 853–858. <https://doi.org/10.1111/2041-210X.12372>

1263

1264 Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using
1265 *lme4*. *Journal of Statistical Software*, 67, 1–48. <https://doi.org/10.18637/jss.v067.i01>

1266 Becker, A. L., Crowl, A. A., Luteyn, J. L., Chanderbali, A. S., Judd, W. S., Manos, P. S., Soltis, D.
1267 E., Smith, S. A., Goncalves, D. J. P., Dick, C. W., Weaver, W. N., Soltis, P. S., Cellinese,
1268 N., & Fritsch, P. W. (2024). A global blueberry phylogeny: Evolution, diversification, and
1269 biogeography of Vaccinieae (Ericaceae). *Molecular Phylogenetics and Evolution*, 201,
1270 108202. <https://doi.org/10.1016/j.ympev.2024.108202>

1271 Ben-Shachar, M. S., Lüdecke, D., & Makowski, D. (2020). effectsize: Estimation of Effect Size
1272 Indices and Standardized Parameters. *Journal of Open Source Software*, 5(56), 2815.
1273 <https://doi.org/10.21105/joss.02815>

1274 Boyd, R. J., Powney, G. D., Burns, F., Danet, A., Duchenne, F., Grainger, M. J., Jarvis, S. G.,
1275 Martin, G., Nilsen, E. B., Porcher, E., Stewart, G. B., Wilson, O. J., & Pescott, O. L.
1276 (2022). ROBITT: A tool for assessing the risk-of-bias in studies of temporal trends in
1277 ecology. *Methods in Ecology and Evolution*, 13(7), 1497–1507.
1278 <https://doi.org/10.1111/2041-210X.13857>

1279 Criscuolo, A., & Gribaldo, S. (2010). BMGE (Block Mapping and Gathering with Entropy): A new
1280 software for selection of phylogenetic informative regions from multiple sequence
1281 alignments. *BMC Evolutionary Biology*, 10(1), 210. <https://doi.org/10.1186/1471-2148-10-210>

1283 Firke, S., Denney, B., Haid, C., Knight, R., Grosser, M., & Zadra, J. (2024). *janitor: Simple Tools*
1284 *for Examining and Cleaning Dirty Data* (Version 2.2.1) [Computer software]. <https://cran.r-project.org/web/packages/janitor/index.html>

1285

1286 Fox, J., & Weisberg, S. (2019). *An R Companion to Applied Regression* (Third). Sage.

1287 <https://www.john-fox.ca/Companion/>

1288 Frossard, J., & Renaud, O. (2021). Permutation Tests for Regression, ANOVA, and Comparison

1289 of Signals: The permuco Package. *Journal of Statistical Software*, 99, 1–32.

1290 <https://doi.org/10.18637/jss.v099.i15>

1291 Grenié, M., Denelle, P., Tucker, C. M., Munoz, F., & Violle, C. (2017). funrar: An R package to

1292 characterize functional rarity. *Diversity and Distributions*, 23(12), 1365–1371.

1293 <https://doi.org/10.1111/ddi.12629>

1294 Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New

1295 Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the

1296 Performance of PhyML 3.0. *Systematic Biology*, 59(3), 307–321.

1297 <https://doi.org/10.1093/sysbio/syq010>

1298 Hartig, F. (2024). *DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed)*

1299 *Regression Models*. <https://CRAN.R-project.org/package=DHARMa>

1300 Junier, T., & Zdobnov, E. M. (2010). The Newick utilities: High-throughput phylogenetic tree

1301 processing in the Unix shell. *Bioinformatics*, 26(13), 1669–1670.

1302 <https://doi.org/10.1093/bioinformatics/btq243>

1303 Kassambara, A. (2023). *ggcorrplot: Visualization of a Correlation Matrix using “ggplot2.”*

1304 <https://CRAN.R-project.org/package=ggcorrplot>

1305 Kassambara, A., & Mundt, F. (2020). *factoextra: Extract and Visualize the Results of Multivariate*

1306 *Data Analyses*. <https://CRAN.R-project.org/package=factoextra>

1307 Katoh, K., & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7:

1308 Improvements in Performance and Usability. *Molecular Biology and Evolution*, 30(4),

1309 772–780. <https://doi.org/10.1093/molbev/mst010>

1310 Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D.,

1311 Blomberg, S. P., & Webb, C. O. (2010). Picante: R tools for integrating phylogenies and

1312 ecology. *Bioinformatics*, 26(11), 1463–1464. <https://doi.org/10.1093/bioinformatics/btq166>

1313 Lai, J., Zou, Y., Zhang, J., & Peres-Neto, P. R. (2022). Generalizing hierarchical and variation
1314 partitioning in multiple regression and canonical analyses using the rdacca.hp R
1315 package. *Methods in Ecology and Evolution*, 13(4), 782–788.
1316 <https://doi.org/10.1111/2041-210X.13800>

1317 Laliberté, E., & Legendre, P. (2010). A distance-based framework for measuring functional
1318 diversity from multiple traits. *Ecology*, 91(1), 299–305. <https://doi.org/10.1890/08-2244.1>

1319 Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis.
1320 *Journal of Statistical Software*, 25, 1–18.

1321 Lemoine, F., Correia, D., Lefort, V., Doppelt-Azeroual, O., Mareuil, F., Cohen-Boulakia, S., &
1322 Gascuel, O. (2019). NGPhylogeny.fr: New generation phylogenetic services for non-
1323 specialists. *Nucleic Acids Research*, 47(W1), W260–W265.
1324 <https://doi.org/10.1093/nar/gkz303>

1325 Lemoine, F., Domelevo Entfellner, J.-B., Wilkinson, E., Correia, D., Dávila Felipe, M., De Oliveira,
1326 T., & Gascuel, O. (2018). Renewing Felsenstein's phylogenetic bootstrap in the era of big
1327 data. *Nature*, 556(7702), 452–456. <https://doi.org/10.1038/s41586-018-0043-0>

1328 Li, D. (2018). hillR: Taxonomic, functional, and phylogenetic diversity and similarity through Hill
1329 Numbers. *Journal of Open Source Software*, 3(31), 1041.
1330 <https://doi.org/10.21105/joss.01041>

1331 Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. *R News*, 2(3),
1332 18–22.

1333 Liu, Y. (2022). UpSetVP: An Alternative Visualization of VPA and HP in Canonical Analysis.
1334 <https://CRAN.R-project.org/package=UpSetVP>

1335 Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., & Makowski, D. (2025). performance:
1336 An R Package for Assessment, Comparison and Testing of Statistical Models. *Journal of
1337 Open Source Software*, 6(60), 3139. <https://doi.org/10.21105/joss.03139>

1338 Magneville, C., Loiseau, N., Albouy, C., Casajus, N., Claverie, T., Escalas, A., Leprieur, F., Maire,
1339 E., Mouillot, D., & Villéger, S. (2022). mFD: An R package to compute and illustrate the

1340 multiple facets of functional diversity. *Ecography*, 2022(1).

1341 <https://doi.org/10.1111/ecog.05904>

1342 Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R.

1343 B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M.,

1344 Bolker, B., Borcard, D., Carvalho, G., Chirico, M., Caceres, M. D., Durand, S., ...

1345 Borman, T. (2025). *vegan: Community Ecology Package* (Version 2.6-10) [Computer

1346 software]. <https://cran.r-project.org/web/packages/vegan/index.html>

1347 Paradis, E., & Schliep, K. (2019). ape 5.0: An environment for modern phylogenetics and

1348 evolutionary analyses in R. *Bioinformatics*, 35(3), 526–528.

1349 <https://doi.org/10.1093/bioinformatics/bty633>

1350 Pedersen, T. L. (2025). *patchwork: The Composer of Plots* (Version 1.3.2) [Computer software].

1351 <https://cran.r-project.org/web/packages/patchwork/index.html>

1352 Popovic, G., Mason, T. J., Drobniak, S. M., Marques, T. A., Potts, J., Joo, R., Altwegg, R., Burns,

1353 C. C. I., McCarthy, M. A., Johnston, A., Nakagawa, S., McMillan, L., Devarajan, K.,

1354 Taggart, P. L., Wunderlich, A., Mair, M. M., Martínez-Lanfranco, J. A., Lagisz, M., &

1355 Pottier, P. (2024). Four principles for improved statistical ecology. *Methods in Ecology*

1356 and Evolution

1357 and Evolution, 15(2), 266–281. <https://doi.org/10.1111/2041-210X.14270>

1358 Revell, L. J. (2024). phytools 2.0: An updated R ecosystem for phylogenetic comparative

1359 methods (and other things). *PeerJ*, 12, e16505. <https://doi.org/10.7717/peerj.16505>

1360 Slowikowski, K., Schep, A., Hughes, S., Dang, T. K., Lukauskas, S., Irisson, J.-O., Kamvar, Z. N.,

1361 Ryan, T., Dervieux, C., Yutani, H., Gramme, P., Abdol, A. M., Barrett, M., Cannoodt, R.,

1362 Krassowski, M., Chirico, M., Aphalo, P., & Barton, F. (2024). *ggrepel: Automatically*

1363 *Position Non-Overlapping Text Labels with “ggplot2.”* <https://CRAN.R-project.org/package=ggrepel>

1364 Tanneberger, F., Moen, A., Barthelmes, A., Lewis, E., Miles, L., Sirin, A., Tegetmeyer, C., &

1365 Joosten, H. (2021). Mires in Europe—Regional Diversity, Condition and Protection.

1366 *Diversity*, 13(8), 381. <https://doi.org/10.3390/d13080381>

1367 Wasserstein, R., Schirm, A., & Lazar, N. (2019). Moving to a World Beyond “ $p < 0.05$.” *American
1368 Statistician*, 73, 1–19. <https://doi.org/10.1080/00031305.2019.1583913>

1369 Wickham, H. (2023). *conflicted: An Alternative Conflict Resolution Strategy*. <https://CRAN.R-project.org/package=conflicted>

1370 Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G.,
1371 Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M.,
1372 Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., ... Yutani, H. (2019).
1373 Welcome to the Tidyverse. *Journal of Open Source Software*, 4(43), 1686.
1374 <https://doi.org/10.21105/joss.01686>

1375

1376

1377