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Abstract

Understanding how ecological stability relates to diversity is of crucial importance under
global change. Greater biodiversity is expected to stabilize aggregate community
properties through compensatory dynamics, as species fluctuate asynchronously and
offset one another. Yet, diversity-stability relationships are not straightforward and can
vary across and within ecosystems, particularly in wetlands where strong abiotic filters
shape community assembly and temporal dynamics.

We examined how multiple facets of diversity (taxonomic, functional, and phylogenetic)
and functional trait identity relate to temporal stability (invariability) and species
asynchrony in peatland vegetation. We used a 17-year field experiment in a montane
peatland complex spanning a bog and a transitional poor fen, combining open-top
chamber (OTC) passive warming with natural hydrological contrasts.

Water table depth was the dominant environmental filter of plant communities, explaining
46 % of total compositional variance, whereas OTC-induced warming had no detectable
effect. Community temporal stability and species asynchrony were higher under drier
conditions (deeper water table), consistent with moisture-driven constraints on peatland
vegetation dynamics.

Contrary to insurance hypothesis predictions, temporal stability decreased with multiple
biodiversity facets, particularly phylogenetic diversity and species richness, but increased
with deeper-rooted plant strategies, after controlling for experimental conditions. Species
asynchrony was largely unrelated to biodiversity, except for functional redundancy, which
was associated with lower asynchrony but showed no association with temporal stability.
The stability-asynchrony association weakened substantially after controlling for
hydrology.

Synthesis. Our results reveal that in peatlands, hydrology simultaneously structures
biodiversity patterns, temporal stability and species asynchrony, yielding negative

diversity-stability relationships that contradict classical insurance hypothesis predictions.
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These findings suggest that in peatlands, stability arises primarily from hydrological
constraints, with limited contribution from compensatory dynamics among plant species.
In strongly constrained, species-poor ecosystems, conservation may therefore prioritize
maintaining or restoring the key abiotic conditions that favor functionally adapted
communities over increasing diversity to sustain stable ecosystem functioning under

global change.

Keywords: community temporal stability, global change ecology, mires, peatland vegetation,
plant functional traits, plant population and community dynamics, species asynchrony, wetland

ecology

1. INTRODUCTION

The diversity-stability relationships remains one of the most debated topics in ecology (McCann,
2000; Polazzo et al., 2025). Empirical studies have revealed a range of associations between
different facets of diversity and ecological stability, including positive, neutral and negative
associations (Pennekamp et al., 2018). The diversity-stability relationships debate is even more
important in the context of global change, especially in sensitive ecosystems such as peatlands,
where community trajectories are tightly contingent on environmental conditions (Buttler et al.,
2023; Hautier et al., 2015). Long-term in-situ experimental approaches provide an ideal
framework for disentangling these dynamics and understanding how different facets of diversity
are associated with temporal stability (Zhang et al., 2026).

How ecological stability relates to diversity has been an ongoing debate in the field of
ecology since the 1950s (Elton, 1958; Ives & Carpenter, 2007; Loreau & de Mazancourt, 2013;
May, 1973; McCann, 2000; Pimm, 1984; Polazzo et al., 2025). Positive relationships were first
considered the rule, in which diverse ecosystems should be more stable than simpler ones (Elton,
1958). However, conflicting stability-diversity associations have been reported (Pennekamp et al.,

2018; Polazzo et al., 2025), with evidence of positive (Frank & McNaughton, 1991; Liang et al.,
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2022; Rodrigues et al., 2025), neutral (Ilves & Carpenter, 2007; Xu et al., 2015), or negative
relationships (Pan et al., 2025; Pfisterer & Schmid, 2002). Several mechanisms may explain
stability and its relationships to diversity. Under the insurance hypothesis, it is classically
expected that greater diversity promotes stability by increasing asynchrony among species (i.e.,
compensatory dynamics), which in turn produces portfolio effects that mitigate fluctuations and
reduce the total variance in the community (Hector et al., 2010; Lisner et al., 2024; Loreau et al.,
2021; Xu et al., 2021, p. 202; Yachi & Loreau, 1999). In this framework, species asynchrony is
considered to be the key mechanism through which diversity increases community stability
(Craven et al., 2018; Gross et al., 2014; Loreau & de Mazancourt, 2013; Valencia et al., 2020).
Despite decades of research, the relationships between community stability and the various
facets of diversity remain unpredictable, even though understanding the relationships is critically
important in vulnerable ecosystems subject to multiple pressures (Hautier et al., 2015).

The variability in the relationships between diversity and stability partly stems from taking
a one-dimensional approach to diversity, in which researchers often consider diversity solely
through the lens of species richness. However, species richness is a limited proxy for diversity
(Fletcher et al., 2025; Hillebrand et al., 2018). Diversity is inherently multifaceted, and ecological
stability itself encompasses multiple dimensions (Donohue et al., 2016; Kéfi et al., 2019); here,
we focus on temporal stability (invariability or constancy) of aggregate community properties.
Several indicators of composition, structure and functions might have different relationships with
stability (Ives & Carpenter, 2007), and can stabilize communities through different mechanisms
and respond differentially to environmental stress and constraints (Naeem et al., 2016). Among
these mechanisms, species richness acts through statistical averaging (i.e., portfolio effect),
functional diversity reflects differential trait responses to environmental variation and phylogenetic
diversity captures evolutionary constraints on responses to environmental variations (Cadotte et
al., 2012; Craven et al., 2018; De Bello et al., 2021; Flynn et al., 2011; Liu et al., 2025). From a
trait-based perspective (Violle et al., 2007), a community can be characterized by its mean trait
values (i.e., functional identity), which reflect the dominant strategy, as well as its dispersion of

trait values around this mean (i.e., functional diversity), which reflects the range of strategies
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(Enquist et al., 2015). These two components of the functional structure of a community can show
distinct relationships with stability (Craven et al., 2018; Liu et al., 2025). Hence, examining both
multifaceted diversity and the functional composition of communities (Garnier et al., 2016) is
essential for disentangling the drivers of the diversity-stability relationships. However, empirical
tests integrating multiple facets of diversity remain scarce and studies have mainly focused on
taxonomic diversity effects on stability (Liang et al., 2022; Rodrigues et al., 2025; Wisnoski et al.,
2023). Despite growing interest in diversity-stability relationships across ecosystems (Craven et
al., 2018; Liu et al., 2025; Meng et al., 2025; Pennekamp et al., 2018; Polazzo et al., 2025), these
relationships remain understudied in peatlands, where strong environmental gradients
differentially filter multifaceted diversity (Robroek et al., 2017) and with potential consequences
for community temporal stability.

At the global scale, peatlands play a disproportionate role, notably as long-term carbon
stores, that hold around one third of the world’s soil carbon (Austin et al., 2025; UNEP, 2022).
This results from peat accumulation under saturated water conditions, which limit organic matter
mineralization (Charman, 2002; Stivrins et al., 2017). Yet nearly half of European peatlands (48
%, excluding European Russia) have been degraded, usually throughout drainage (Tanneberger
et al., 2021), leading to substantial greenhouse gas emissions of 59—113 Mt CO2eq annually in
the EU (van Giersbergen et al., 2025). Peatland functioning relies on low diversity and highly
specialized plant communities (Laine et al., 2021; Pinceloup et al., 2020; Rydin et al., 2013)
which makes these ecosystems particularly vulnerable to cumulative and interacting pressures
from local anthropogenic disturbance and climate change (Dieleman et al., 2015; Dise, 2009;
Loisel et al., 2021; Page & Baird, 2016). Environmental stressors act as differential filters on
multifaceted diversity, with cascading effects on stability (Davidson et al., 2025), and may also
play a decisive role in how stability is altered (Hautier et al., 2015). Under strong environmental
filters, low-diversity communities composed of specialist plants may display higher temporal
stability of community properties. Conversely, more diverse assemblages may amplify temporal
fluctuations leading to reduced stability, rather than the stabilizing effects predicted by the

insurance hypothesis (Pfisterer & Schmid, 2002). Studies have shown that the most significant
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environmental stresses affecting the stability of peatlands are temperature, water table depth and
CO2z atmospheric concentrations (Dieleman et al., 2015; Turetsky et al., 2012). In these saturated
ecosystems, hydrology is the primary environmental factor determining peatland vegetation
dynamics and overrides the effects of experimental warming (Buttler et al., 2015, 2023).
However, how multifaceted diversity modulates peatland community stability and species
asynchrony under environmental filters remains poorly understood.

In this study, we used a long-term in-situ experiment combining artificial passive warming
and contrasting hydrological conditions to test how these environmental filters shape both
multifaceted diversity and community temporal stability. This approach addresses a critical
knowledge gap: although long-term experimental studies in peatlands have examined multiple
taxonomic groups and ecosystem processes (Binet et al., 2017; Gérecki et al., 2021; Jassey et
al., 2013; Obi & Lindo, 2026), their application to community stability remains scarce. First, we
examined how hydrological gradient and experimental warming shape community assembly and
multifaceted diversity. We hypothesized that hydrology would act as the dominant environmental
filter, overriding warming effects in structuring multifaceted diversity trajectories. Second, we
assessed how diversity trajectories are linked to community stability and species asynchrony, by
testing which facets modulate the response of peatland plant communities under combined

environmental stressors.
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2. MATERIALS AND METHODS

2.1 Study site

The study was conducted at the Forbonnet peatland near Frasne in the Jura Mountains, located
in northeastern France (46°49'34.8"N, 6°10'20.6"E; 840 m above sea level; Supplementary S1).
The 7-ha experimental site is an active peatland where turfigenesis still occurs, belonging to a
larger peatland complex of more than 300 ha (Lhosmot et al., 2025), which falls within the “typical
raised bog region” according to the European mire typology (region IV; Tanneberger et al., 2021).
The site is listed as an EU Natura 2000 protected area since 2002 and designated as a Ramsar
site. It is part of the French national peatland observatory (SNO-TOURBIERES) and the
European Long-Term Ecosystem Research network (eLTER), equipped to monitor a range of
environmental parameters (Buttler et al., 2023; Gogo et al., 2021).

The experimental site, originally described as a Sphagnum-dominated ombrotrophic
peatland, encompasses two hydrologically distinct microhabitats (hereafter “WET” and “DRY”,
Supplementary S2) differing in water table depth, microtopography, and vegetation composition
(Jassey et al., 2023). The WET microhabitat, a transitional poor fen area, is characterized by a
flat surface with a mixed plant community comprising Sphagnum fallax (occasionally with S.
flexuosum) and vascular plants (e.g., Andromeda polifolia, Vaccinium oxycoccos, Scheuchzeria
palustris). The DRY microhabitat exhibits typical ombrotrophic bog microtopography (i.e.,
hummock-hollow) with Sphagnum magellanicum s.I. (i.e., corresponding to either S. medium or S.
divinum, formerly reported as Sphagnum magellanicum s.s.; Hassel et al., 2018) and vascular
plants, including Eriophorum vaginatum, Andromeda polifolia, Vaccinium oxycoccos, Calluna
vulgaris). Within these contrasting hydrological conditions, WET and DRY, a long-term passive
experimental warming through Open Top Chambers (OTCs) manipulation was established in
2008.

In April 2008, twelve 3 x 3 m plots were established within the long-term monitoring
platform across the WET and DRY microhabitats, with six plots in each hydrological condition. In

each plot, a permanent 50 x 50 cm subplot was defined in homogeneous areas to ensure
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consistency over time. Plots were randomly allocated to warming treatments, with three plots per
hydrological condition assigned to passive warming using Open Top Chambers (OTCs) and three
plots serving as controls. The OTCs followed the International Tundra Experiment (ITEX) protocol
(Hollister et al., 2023) and consisted of transparent hexagonal polycarbonate chambers (50 cm
high, 1.7 m top width, 2.4 m base width) raised 10 cm above the peat surface to allow air
circulation. In our site, OTCs produced modest but significant near-surface warming,
approximately 1 °C increase in average air temperature (Binet et al., 2017; Jassey et al., 2011).
This resulted in a factorial design (2 hydrological conditions x 2 warming treatments x 3 replicates

=12 plots).

2.2 Data collection

Vegetation survey

Species abundances were measured as relative cover using the point-intercept method at peak
biomass in July for each survey year of 2008, 2009, 2010, 2012, 2024, 2025. A transparent
Plexiglas frame with adjustable legs was placed over each 50 x 50 cm subplot. A ruler with 20
holes was placed at 20 locations across the frame, generating a grid of 400 evenly-spaced
sampling points. At each point, a 1 mm diameter metal pin was lowered vertically, and all
vegetation contacts were recorded by taxon, from the top leaf layer down to the moss layer. The
2024 and 2025 surveys were conducted with a total of 200 points due to equipment constraints,
but this was accounted for in the calculation of relative frequencies to obtain comparable results
throughout the survey period. This survey method provided relative frequencies by taxon and
considers the stratification of plant communities. Because distinguishing S. fallax from S.
rubellum in the field is difficult, the two taxa were pooled under S. fallax for analyses, consistent
with earlier work showing S. fallax to be by far more frequent and S. rubellum being restricted to
limited patches (Buttler et al., 2015). To analyze plant community dynamics, we used relative
abundance (i.e., cover) of each species per year and per plot, following Buttler et al. (2015,

2023), to ensure comparability across studies. Species with mean relative abundance < 0.1 %
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across the dataset (n = 2: Carex limosa 0.004 %, Pinus sylvestris 0.006 %) were excluded from
all following analyses. Before all subsequent analyses, species matrices were renormalized after
removing litter and excluded species, except for stability and asynchrony computation for which

they were not renormalized.

Functional trait data

Functional traits were used to describe ecological strategies and functions of species in their
ecosystems (Garnier et al., 2016; Lavorel & Garnier, 2002; Violle et al., 2007). A subset of four
functional traits were selected: (1) root depth, related to belowground resource acquisition and
hydrological niche, previously identified as a potential key driver of species responses in this
peatland (Buttler et al., 2015); (2) specific leaf area (SLA), a proxy of leaf economics and
resource acquisition efficiency (Wright et al., 2004); (3) plant height, reflecting the competitive
ability for light and vertical stratification (Violle et al., 2009); and (4) seed mass, representing
dispersal and colonization/establishment trade-offs (Westoby et al., 2002). Trait data were
obtained from the TRY database (v.6.0, downloaded 24 June 2025, Kattge et al., 2020). These
traits were selected only for vascular plants; bryophytes were excluded due to fundamental
differences in trait expression and lack of comparable traits.

A complete trait matrix (i.e., with no missing values) was required for subsequent
analyses. Root depth had missing values for two of the ten vascular species (Carex pauciflora
and Scheuchzeria palustris). These values were imputed using the median of remaining vascular
species (0.22 m), which provided similar values to the random forest approach (0.23 m for both
species, Johnson et al., 2021) and more ecologically realistic estimates than using all values in
the TRY dataset (0.305 m). For Vaccinium oxycoccos, only qualitative information was available
(i.e., “shallow”); this value was converted into a quantitative value (0.10 m) based on its shallow
root systems in peatlands. Next, the collinearity among traits was examined on the trait matrix to
ensure trait independence (all Spearman |p| < 0.7), and all traits were log-transformed prior to

functional metrics calculation.
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Phylogenetic tree

To compute phylogenetic diversity metrics, a phylogenetic tree was constructed from rbcL
chloroplast sequences (1428 bp) obtained from NCBI GenBank. Sequences were aligned using
MAFFT and analyzed with PhyML via ngphylogeny.fr. The resulting tree was ultrametricized
using penalized likelihood. Details on sequences, alignment, and tree calibration are provided in

Supplementary S3.

2.3 Diversity metrics

Diversity metrics were calculated on vascular species matrix (i.e., excluding bryophytes).
Taxonomic diversity was characterized using species richness (No) and Hill numbers (Hill,

1973; Jost, 2006): Shannon diversity (N1, Eq. 1) and Shannon evenness (E1o, EQ. 2). Shannon

diversity (N1) is the exponential of the Shannon’s entropy index, with the order g = 1 in the

framework of Hill numbers (Chao, Gotelli, et al., 2014):

S 1)
Ny=exp| - Z pi In(p;)
i=1
where S is the number of species and pi the relative abundance of species i.
E19=N,;/Ny (2

Community-weighted mean (CWM, Eq. 3) matrix was calculated to analyze the dominant
trait strategy in every community. CWM was calculated as the mean raw trait value weighted by

each species’ relative abundance within plots:

N
CWM= Z DiXx;
i=1

where pi is the relative abundance of species i and xi its trait value.

®)

Functional diversity was also quantified using Hill numbers (Chao et al., 2019), with
functional diversity and functional redundancy. These metrics were computed on a Euclidean

distance matrix of standardized traits (z-scores), and with the order q = 1 and 7 set to the mean
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pairwise distance (Chao et al., 2019). Functional diversity (FD1) represents the effective number

of functionally distinct species:

(4)

s s
FD,=exp -Z p; log Z [1'f (dij(f))] pj
=1 1

where dj; represents the Euclidean distance between each pairwise species i and j in the
functional space.
Functional redundancy (FR1) represents the proportion of species that could theoretically
be removed without affecting functional diversity (Dick, 2023; Mahaut et al., 2025):
FR,=1-FD,/N, (5)
Phylogenetic diversity was estimated using Hill numbers (q defined as above):
phylogenetic diversity of order g = 1 (PD1, Eq. 6), which represents the effective number of

phylogenetically distinct species (Chao, Chiu, et al., 2014; Chao et al., 2010):

. ®)
PD,(T)=T exp| - Z ?lailnai

i€EBT
where Br is the set of all branches in the tree, Li is the length of branch i, ai is the total relative
abundance of all descendant species on branch i, and T is the abundance-weighted total branch
length.
Faith’s PD (Faith, 1992), which extends the concept of species richness to the
phylogenetic dimension by capturing the evolutionary history of the community (Chao et al.,

2010), which is equivalent to PD for g = 0 in Hill numbers framework (Eq. 7):

Faith'sPD= z L 7

iEBT

2.4 Stability and asynchrony

Stability and asynchrony were also quantified using the vascular plant relative abundance matrix
to ensure comparability with the other metrics calculated on the same dataset, and across the

entire time series. Community-wide temporal stability (Sc, Eq. 8), also referred to as invariability
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or constancy (Kéfi et al., 2019), was quantified for each plot as the inverse of the coefficient of
variation of total vascular abundance across the six survey years (i.e., the ratio between the
mean and its temporal standard deviation of vascular fraction in the full matrix, Tilman (1996)):

1
Scz_:& (8)

CV. o,
where ¢ is the mean total vascular abundance and o its temporal standard deviation across the
six survey years. Higher values indicate greater temporal stability. Since all our time series were
of equal length (6 years), no length correction was necessary.
Community synchrony (¢, Eq. 9), reflecting temporal compensation mechanisms
between species, was estimated using the Loreau & de Mazancourt (2008) framework:

_ ©)
s, o)

where o¢? is the temporal variance of total vascular community abundance, oi is the temporal
standard deviation of species i, and S is the number of vascular species in the plot. By

construction, 0 < ¢ < 1. Asynchrony was then calculated as 1-¢@, 1 indicating perfect asynchrony.

2.5 Statistical analyses

Compositional gradients were explored through a principal component analysis (PCA), which was
done on a Hellinger-transformed species abundance matrix to address the double-zero problem
(Borcard et al., 2018; Legendre & Gallagher, 2001). Next, relationships between community
composition and experimental factors (i.e., year, hydrological condition, warming treatment) were
analyzed using redundancy analysis (RDA), with Hellinger-transformed data. This method
selection was validated through detrended correspondence analysis (DCA; gradient length < 1.6).
To control for collinearity among predictors, variance inflation factors (VIF) were checked: VIF
values were < 1.7 for all predictors. The relative importance of the different explanatory variables
was quantified through hierarchical partitioning (Lai et al., 2022).

Taxonomic, functional and phylogenetic diversity metrics were tested for responses to

experimental factors using linear mixed models (LMMs). We used a fixed model structure defined
14
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a priori based on our experimental design, rather than data-driven model selection, as our goal
was to test specific effects of experimental warming and hydrology rather than to maximize
explanatory power. The following fixed and random effect’s structure was used for each metric:
metric ~ year x hydrology + year x treatment + hydrology x treatment + (1|plot). This model
includes all 2-way interactions while avoiding the 3-way interactions in order to maintain adequate
degrees of freedom given the limited sample size (3-way interactions was also tested and was
non-significant). Final models and significant effects are detailed in Table 1, along with marginal
and conditional R2 values, Rzm and R%, respectively giving the proportion of variance explained
by fixed effects alone and by the full model (both fixed and random effects) (Nakagawa &
Schielzeth, 2013).

We compared community temporal stability and species asynchrony (computed for each
of the 12 plots across the six survey years) across hydrological and warming treatment using
permutation-based ANOVAs with 9,999 permutations, to account for the limited sample size
(Anderson & Braak, 2003). Effect sizes were quantified using partial eta-squared (n?p).

We assessed the relationships between stability, asynchrony, and diversity metrics using
Spearman partial correlations. Since diversity indices were calculated for each plot and year (n =
72 values for each metric), whereas stability and asynchrony were calculated over the entire time
series (n = 12 for each), we averaged diversity indices per plot. We computed Spearman partial
correlations following a three-step procedure: (1) rank-transforming all variables, (2) extracting
residuals from linear models fit to the ranked variables to adjust for hydrological conditions x
warming treatment effects, and (3) calculating Pearson correlations on these residuals. Given the
small sample size of 12 plots, we focused on effect sizes (p) rather than significance testing, as
effect sizes have greater ecological relevance (Popovic et al., 2024; Wasserstein et al., 2019).

We investigated residual-value correlations between diversity metrics using Spearman
correlations on LMM residuals (controlling for year, hydrology, and warming effects; model
structure as above) and visualized these relationships using Principal Component Analysis (PCA)

on standardized residuals.
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2.6 Reproducibility and transparency

We performed the analyses using R v4.4.1 (R Core Team, 2024), in RStudio v2025.9.1.401
(Posit team, 2025). For details on package names and versions, see Supplementary S4. We
checked validity conditions and model assumptions when necessary (e.g., for correlation
coefficients and LMMs); where these conditions were not met, non-parametric tests were used.
We assessed the risk of bias following the ROBITT framework (Boyd et al., 2022), a standardized
tool for evaluating internal validity and potential bias in ecological studies (Culina et al., 2025); full

details are provided in Supplementary S5.
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3. RESULTS

3.1 Community composition along the hydrological gradient

Redundancy analysis explained 57.8 % of total variance (R2adj = 0.53; P = 0.001; Fig. 1A). RDA1
explained 47.8 % of total variance (P = 0.001) and represented the hydrological gradient, with
DRY and WET communities occupying very distinct positions in the ordination space throughout
the study period (2008-2025). RDA2 explained 7.5 % (P = 0.001) and captured temporal
trajectories, with DRY and WET plots showing similar directional shifts over time. While hydrology
(F=64.8, P=0.001) and year (F = 4.1, P = 0.001) effects were both significant, warming
treatment showed a weak relationship (F = 2.1, P = 0.085). Hydrological separation persisted in
unconstrained ordination, where control and heated plots overlapped within each hydrological
condition, while overall DRY and WET communities remained distinct (PCA; Supplementary S6).
Hierarchical partitioning (Fig. 1B) revealed that hydrology alone explained 46 % of total
community variance (86.5 % of the explained variance), year explained 10.7 % (20.1 %), and
warming treatment explained only 0.77 % (1.45 %). Shared fractions were all small and close to
zero.

Relative abundance trajectories for the three major plant functional groups (Fig. 1C) were
consistent with these compositional gradients (see Table 1 for LMM results). Graminoid
abundances increased over time (P = 0.031). Ericoid abundances also increased over time (P <
0.001) and differed between hydrological conditions (P = 0.027), with their temporal trajectories
varying across hydrological conditions (P < 0.001): the increase was more pronounced in WET,
but both groups converged in later years. By contrast, bryophyte abundances declined strongly
over time (P < 0.001) and significantly differed between DRY and WET (P < 0.001). This decline
was stronger in WET conditions, consistent with the significant year x hydrology interaction (P <
0.001). Artificial warming had no significant effect on any functional group (all P > 0.22). Overall,
hydrology explained the largest independent fraction of variance, whereas warming explained a

negligible fraction.
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3.2 Metrics variation between hydrological conditions

We next examined how multifaceted diversity metrics responded to experimental conditions over
time in the vascular plant community (Fig. 2; Table 1). At the taxonomic level (Fig. 2A-C),
vascular species richness (No) varied with year (P = 0.03) but showed no evidence of hydrological
or warming effects, with similar mean richness between DRY and WET plots across the study
period. Effective diversity (N1) and evenness (Eio) tended to be higher in WET than DRY (P =
0.12 and P = 0.053, respectively), and showed limited temporal dynamics (all year x
hydrology/warming, P > 0.07). Functional diversity and redundancy (FD:1 and FR1, Fig. 2D-E)
showed no clear responses to hydrology, warming, or their interaction, although functional
redundancy showed a tendency toward divergence in recent years (year: P = 0.099; year x
hydrology: P = 0.071). Conversely, phylogenetic diversity (PD1, Fig. 2F) exhibited a strong and
consistent hydrological separation with a higher diversity in WET than DRY communities
(hydrology: p < 0.001).

CWM showed contrasting patterns across traits (Fig. 2 G-J). CWM root depth and CWM
seed mass both showed strong hydrological differentiation (both p < 0.001) and significant year x
hydrology interactions (P = 0.013 and P = 0.006, respectively), with root depth being higher in
DRY and seed mass being higher in WET. CWM height decreased over time across all conditions
(P = 0.006), with no significant hydrological or warming effect. CWM specific leaf area showed no
detectable response to either factor (all p > 0.28). Given these contrasting responses across
diversity facets, we next examined whether these metrics covaried independently of experimental

structure.

3.3 Diversity facets covariation along a shared axis

Residual correlations (Fig. 3A) revealed that effective diversity (N,) correlated strongly with
functional diversity (FD4; p = 0.94), and both were positively associated with phylogenetic
diversity (PDy; p = 0.76). By contrast, CWM root depth showed negative correlations with nearly

all diversity metrics, most strongly with PD, (o = -0.71) and FD, (p = —0.58). The only exception
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was FR; (o = 0.28), which showed weak correlations with most other metrics (all |p| < 0.33).
Consistent with these patterns, PCA (Fig. 3B) showed that PC1 (51.0 %) contrasted CWM root
depth with the mainly N;—FD;—PD; covariation axis, while PC2 (16.7 %) captured additional

variation associated with FR;, CWM seed mass, and E,.

3.4 Temporal stability linkage to diversity facets

Community temporal stability differed between hydrological conditions, with higher values in DRY
than in WET plots (permutation ANOVA: F = 6.54, P = 0.035, n? = 0.45; Fig. 4A), while warming
had no effect alone (F =0.22, P = 0.7, n? = 0.03) or in interaction with hydrology (F = 0.39, P =
0.59, n? = 0.05). Similarly, species asynchrony was significantly higher in DRY than in WET
plots (F = 11.86, P = 0.015, n?% = 0.60; Fig. 4B), and warming had no effect either by itself (F =
0.1, P =0.75, n% = 0.01) or in interaction with hydrology (F = 2.48, P = 0.15, n? = 0.24). Stability
was positively correlated with asynchrony (Spearman's correlation p = 0.72, P = 0.011).

To examine the relationships between diversity, stability and asynchrony while
accounting for experimental effects, we used partial correlations (Fig. 4C; see Supplementary S7
for full uncorrected and FDR-corrected p-values and Supplementary S8-S9 for individual
scatterplots). This revealed a weaker stability-asynchrony relationship (o = 0.40) than the raw
correlation. Stability showed strong (|p| = 0.60) negative correlations with phylogenetic diversity
(PD4, p =-0.79) as well as taxonomic richness (No, p = -0.66). Moderate negative correlations
(0.40 < |p| < 0.60) were observed with effective diversity (N1, p = -0.41), functional diversity (FD-,
p =-0.43) and CWM seed mass and SLA (p =-0.50 and -0.41, respectively). In contrast, stability
showed a strong positive correlation with root depth (o = 0.61). All other correlations between
stability and the different facets of diversity were weak (p ranging from 0.09 to 0.29). Species
asynchrony showed contrasting patterns: only one strong negative correlation with functional
redundancy (FR,, p = -0.61), and one moderate positive correlation with CWM height (o = 0.40).
All other correlations between asynchrony and diversity indices were weak (o ranging from -0.3 to

0.27).
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4. DISCUSSION

Understanding how multifaceted diversity relates to stability remains a central challenge in
ecology, especially in strongly constrained ecosystems such as peatlands. We assessed these
relationships using a 17-year field experiment combining a hydrological gradient and
experimental warming (open-top chambers, OTCs). Across the study period, hydrology
dominated community assembly and trajectories, while OTC-induced warming had only a very
weak community-scale effect within this system and time window. Community temporal stability
and species asynchrony were structured by this same hydrological gradient. Multiple diversity
facets (notably phylogenetic and taxonomic metrics) were negatively associated with stability.
These negative associations persisted after accounting for experimental effects (i.e., hydrology
and warming) using partial correlations. These patterns contradict classical expectations of
positive diversity-stability relationships and raise questions when higher diversity does not
translate into higher temporal stability in plant communities. This discrepancy is increasingly
recognized as reflecting the multidimensional and context-dependent nature of ecological stability
(Donohue et al., 2016; Kéfi et al., 2019). We interpret these patterns below.

Hydrology, contrasting two conditions in water table depth (WTD; Supplementary S2),
explained most of the compositional variance, with a 60-fold stronger effect than experimental
warming, which had only a weak community-scale impact. In peatlands, WTD is a major
environmental filter (Wheeler & Proctor, 2000) which imposes direct physiological constraints on
plants (e.g., limiting oxygen availability, altering redox conditions, and controlling root-zone
saturation), and soil biota in the rooting zone (Buttler et al., 2023; Jassey et al., 2023), thereby
selecting for unique tolerance strategies (Rydin et al., 2013). Over long timescales, peatland
vegetation dynamics are primarily structured by hydrological conditions (Andrews et al., 2021),
and long-term WTD changes reshape functional composition and vegetation trajectories (Buttler
et al., 2023; Koster et al., 2023; Laine et al., 2021). Accordingly, CWM root depth and seed mass
reflected distinct trait trajectories under persistent hydrological constraints. Seed mass showed

strong hydrological differentiation (higher in WET), whereas root depth showed a weaker pattern
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that was generally higher in DRY. Both traits also varied through time. This trait alignment
suggests that communities are constrained into differentiated strategies set by the hydrology.
Alongside these trajectories, ericoid shrubs and graminoids increased while bryophytes (i.e.,
living Sphagnum spp. layer) declined, shifts broadly consistent with shrub encroachment
documented across peatlands (Buttler et al., 2023; Dieleman et al., 2015). Consistent with recent
syntheses, peatland vegetation can shift over decadal timescales when hydrological and nutrient
constraints change (Pinceloup et al., 2020). More generally, peatland warming responses are
frequently context-dependent and can remain subordinate when WTD constraints dominate
(Buttler et al., 2015, 2023; Gérecki et al., 2021); the weak OTC effect here at this timescale is
informative, not evidence that warming is ecologically irrelevant, as climate change can alter
water-table dynamics.

These hydrological constraints also structured how diversity facets covary. Multifaceted
diversity indices are often treated as complementary descriptors (Chao, Chiu, et al., 2014), yet
strong abiotic filtering may align them along dominant gradients. After accounting for
experimental structure, effective (N,), functional (FD,) and phylogenetic diversity (PD) covaried
tightly and loaded opposite to CWM root depth, consistent with a single hydrology-linked strategy
axis. These results contrast with broader evidence that functional and phylogenetic diversity are
often decoupled and only weakly related, supporting the idea that strong abiotic constraints can
compress viable strategies and thereby couple multiple diversity facets along a dominant gradient
(Hahn et al., 2025). In contrast, functional redundancy showed weak correlations with N;-FD;-PD,
and loaded orthogonally, suggesting that redundancy varies independently from
richness/dispersion-based metrics and may capture a distinct facet of community structure.

Community temporal stability and species asynchrony were both higher in DRY (i.e., the
bog, deeper WTD) than WET (i.e., the transitional poor fen, shallower WTD) conditions, while
experimental warming had no detectable effect on either metric. This is consistent with studies
showing that moderate relative warming (ca. 1 °C) does not significantly alter plant community
stability in other constrained systems (Quan et al., 2021), and it has been previously shown that

the OTC on our experimental site produced only limited warming (ca. 1 °C, Binet et al., 2017).
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The higher stability in DRY conditions likely reflects contrasting environmental constraints: deeper
WTD, lower pH and increased soil biological activity select for specialist, slow-growing and
persistent strategies whose dynamics are buffered against hydrological fluctuations; whereas
WET communities, despite experiencing less water limitation under average conditions,
experience greater exposure to root-zone WTD fluctuations. This matches long-term drawdown
evidence that bog functioning can be more predictable, whereas fen responses are more
stochastic and turnover-driven under water-table change (Laine et al., 2021). This pattern aligns
with recent continental-scale evidence from United States wetlands, where shallow WTD were
also associated with reduced stability (Liu et al., 2025). The strong positive correlation between
stability and asynchrony (o = 0.72) is consistent with the insurance hypothesis (Loreau & de
Mazancourt, 2008, 2013; Thibaut et al., 2013), although recent work shows that asynchrony can
arise predominantly from statistical averaging rather than true compensatory dynamics (Zhao et
al., 2022). Global syntheses further show that community stability is more strongly linked to
species synchrony than to species richness per se (Valencia et al., 2020). However, this
relationship weakened substantially after controlling for hydrology and warming (partial o = 0.40),
indicating that environmental constraints structure both stability and asynchrony beyond their
direct association (Donohue et al., 2013). This is consistent with recent evidence that
compensatory dynamics often contribute to community stability without being directly positively
linked with diversity, particularly when environmental filters dominate community dynamics (Zhao
et al., 2022). Together, the strong raw stability-asynchrony correlation and its attenuation after
controlling for hydrology suggest that their association reflects both shared hydrological forcing
and, potentially, compensatory dynamics.

After controlling for experimental effects, stability decreased with phylogenetic diversity
and species richness, and was also negatively associated with functional diversity and effective
diversity, while increasing with deeper-rooted community strategies (CWM root depth). Because
these diversity facets covaried tightly and opposed CWM root depth along the dominant residual
gradient, these associations likely reflect a shared strategy axis rather than independent effects of

each facet. The negative PD-stability association was robust to the phylogenetic metrics used:
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Faith's PD, which captures total branch length without abundance weighting, showed a similarly
strong negative correlation with stability (o = -0.60, Supplementary S6). This contrasts with
studies where higher phylogenetic diversity enhanced temporal stability (Cadotte et al., 2012;
Zhang et al., 2026), and suggests that PD-stability relationship may be contingent on ecosystem
context. Importantly, evenness (E;o) showed no clear association with stability, suggesting that
the pattern is not simply a dominance/evenness effect in abundance distribution. Rather, greater
diversity may coincide with higher temporal variance in aggregate cover, whereas lower-diversity
communities dominated by deeper-rooted species (whose belowground strategies match
persistent hydrological constraints of peatlands) show more buffered dynamics. In strongly
filtered, species-poor ecosystems like peatlands, increases in local diversity may therefore not
signal enhanced buffering capacity and may be a poor proxy for insurance-based expectations of
community stabilization.

Beyond root depth, seed mass and specific leaf area also showed moderate negative
correlations with stability. Seed mass, related to establishment-dispersal strategies, was the most
strongly differentiated trait between hydrological conditions (higher in WET), suggesting that it
may track the same hydrological gradient that structures stability. Similarly, higher specific leaf
area (i.e., associated with faster resource acquisition) may reflect more acquisitive strategies in
WET communities, as expected under less resource-limited fen-like conditions, although
responses were weaker than predicted (Laine, et al., 2021; Lin et al., 2020). This hydrology-
related strategy contrast is consistent with peatland drawdown results showing fen (WET)
communities become more productive, whereas bog (DRY) responses are more conservative (A.
Laine et al., 2021). In contrast, height showed no clear relationship with stability, despite being
identified as a key stabilizing trait in continental-scale wetland analyses (Liu et al., 2025).
Similarly, long-term drawdown experiments show that community-weighted mean height can
decline across peatland types (Laine et al., 2021). This difference may reflect the primacy of
belowground constraints in peatlands: whereas height captures competitive ability for light (a filter
that may be dominant in many wetlands), hydrological access and waterlogging tolerance may

override aboveground competition in our system. Because our trait set focuses on widely
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available ‘global’ traits, it likely under-represents peatland-specific tolerance traits (e.g., tolerance
to waterlogging/anoxia and belowground aeration capacity), which could partly explain the
comparatively weak relationships observed for specific leaf area and height.

Diversity-asynchrony relationships were generally weak, except for functional redundancy
(FR41), which was associated with lower asynchrony, consistent with the idea that functionally
similar species tend to respond more similarly through time. Interestingly, although FR; tracked
lower asynchrony, FR; was unrelated to stability, suggesting that the link between redundancy
and stability is not straightforward in this system. Because species asynchrony is often
interpreted as a proxy for compensatory dynamics, this pattern suggests that redundancy may
shape the temporal covariance structure of species without translating into higher community-
level stability. More broadly, these results align with recent work showing that diversity—stability
linkages depend on stability decomposition and covariation among community properties, and
that in strongly structured environments diversity metrics can track dominant strategy gradients,
complicating mechanistic inference from diversity—stability correlations alone (De Bello et al.,
2021; Zhao et al., 2022).

Several limitations warrant consideration. First, passive OTC warming captured moderate
mean temperature increases but does not reproduce key dimensions of climate change such as
extremes, altered seasonality, or the full range of warming-hydrology feedbacks. In our site
specifically, climate projections suggest substantial changes in water table depth and seasonality
through 2100 under warming scenarios (Bertrand et al., 2021), and such combined effects can
dominate vegetation responses (Andrews et al., 2021; Kokkonen et al., 2024). Moreover, the
warming intensity may be insufficient to trigger detectable community-level responses, or effects
may require longer timescales to manifest in slow-responding ecosystems such as peatlands.
Second, bryophytes exhibited a strong decline, yet stability metrics excluded them despite their
functional importance; future work should explicitly integrate bryophyte dynamics to test whether
diversity-stability patterns propagate across community compartments (Telgenkamp et al., 2025).
To assess generality, tests across multiple peatlands would be valuable. Finally, we treated

stability as a single facet (temporal stability/invariability of aggregate community cover), whereas
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recent frameworks emphasize ecological stability as multidimensional, with potentially decoupled
components (Donohue et al., 2013, 2016; Kéfi et al., 2019), distinguishing, for instance, temporal
stability (invariability) from resistance and resilience (Yan et al., 2025). Disentangling these
components would refine our understanding of how filtering shapes different facets of temporal

dynamics.

5. CONCLUSION

Our core result highlighting the inverse relationship between multifaceted diversity and
community temporal stability, suggests that diversity-stability relationships can be negative when
diversity covaries with dominant strategy gradients in strongly structured environments.
Multifaceted diversity is often expected to stabilize communities through buffering and
compensatory dynamics, yet this prediction remains context-dependent. Because much of the
evidence for diversity—stability relationships comes from grassland studies (Craven et al., 2018;
Mahaut et al., 2023; Zhao et al., 2022), it remains unclear how general these expectations are in
ecosystems where abiotic filtering is particularly strong and can align trait composition and
temporal covariance among species. By bringing multifaceted diversity-stability inference to
peatland communities, our study helps testing the boundary conditions of diversity-stability
expectations in a context that is common globally but comparatively less represented in the
stability literature. From a conservation perspective, this suggests that maintaining (or restoring)
key functional strategies aligned with prevailing constraints may be as important as maximizing
species richness for sustaining stability under intensifying global change pressures, consistent
with calls to move beyond species richness as a primary conservation metric (Fletcher et al.,
2025); and that increases in diversity alone, if decoupled from traits associated with higher
stability, may not enhance and can even reduce community temporal stability in strongly

constrained ecosystems.
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Figure 1. Redundancy Analysis (RDA), hierarchical partitioning, and relative cover

temporal change of the three major plant functional groups. (A) RDA triplot showing the
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ordination of the twelve plots across hydrological conditions (DRY/WET) and warming treatment
(OTC-heated/Control) and survey years, in species ordination space. Red vectors represent
experimental variables, green vectors show species loadings. Axis percentages indicate the
proportion of total variance explained by each canonical axis (i.e., RDA1 and RDA2). (B)
Hierarchical partitioning of constrained variance showing the relative contribution of each
experimental factor. Values represent the percentage of explained variance attributable to each
factor after accounting for shared effects. (C) Relative cover dynamics of major plant functional
groups (bryophytes, ericoids, and graminoids). Thick lines represent mean trajectories by

experimental condition; thin lines show individual plot trajectories.
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Figure 2. Temporal dynamics of multifaceted diversity and community-weighted mean

(CWM) traits in the vascular plant community across experimental conditions. (A-F)

Diversity metrics: (A) Species richness (N,). (B) Effective diversity (N,). (C) Evenness (E4,). (D)
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Functional diversity (FD,), representing the effective number of functionally distinct species. (E)
Functional redundancy (FR,), representing the proportion of species that could theoretically be
removed without affecting functional diversity. (F) Phylogenetic diversity (PD,), representing the
effective number of phylogenetically distinct species. (G-J) Community-weighted mean traits:
(G) Plant height. (H) Specific leaf area (SLA). (I) Root depth. (J) Seed mass. All traits were log-
transformed prior to CWM calculation (see Methods). Thick lines represent mean trajectories per

experimental condition; thin lines show individual plot trajectories.

FN1

FPDA

Residual correlations

1 LET
N .
08 CWM_haight
00 0.23 FOWM_SLA CWM_root
' = FD1
g
05 :
. 0.26 FCWM_height £ 0.0 N1
1.0 o
o
052 0.24 Fno oD

004 016 002 024 048 02 017  CWM_seed 05

029 003 -017 -0.33 004 001 005 -0.24 rFR1

CWhi-seed

r CWM_root

0.0 0.5 1.0
PC1 (51%)

Figure 3. Relationships among diversity metrics after controlling for experimental effects.

(A) Spearman correlation matrix computed on LMM residuals (n = 72 plot-year combinations). (B)
PCA correlation circle based on LMM residuals, showing the first two principal components (67.7
% of variance). Models followed the structure metric~Y xH +Y x T + H x T + (1|plot). See

abbreviations of diversity metrics and traits in figure 2.
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Supplementary S7 for full uncorrected and FDR-corrected p-values). Boxplots show median,

guartiles, and individual data points (n = 3 plots per condition). Abbreviations: No = species

richness; N1 = effective diversity; Eio = evenness; FD1 = functional diversity; FR1 = functional
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Supplementary S8-S9 for individual scatterplots.
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TABLE

:]_)

Metric Community Effects R2m R2c
Functional group cover
Y (P <0.001); H (P =0.027); YxH
Ericoid cover All 0.61 0.82
(p <0.001)
Graminoid cover All Y (P =0.031) 0.33 0.66
Y (P <0.001); H (P <0.001); YxH
Bryophyte cover All 0.81 0.87
(P < 0.001); HxT (P = 0.076)
Taxonomic diversity
Species richness (Ng) Vascular |Y (P =0.030) 0.21 0.73
Effective diversity (N;, g =1) Vascular |Y (P =0.095) 0.45 0.69
Evenness (E10, 0 =1) Vascular |H (P =0.053); YxH (P = 0.075) 0.43 0.68
Functional diversity
Functional diversity (FD4, g =
Vascular |- 0.38 0.66
1)
Functional redundancy (FR4,
) Vascular |Y (P =0.099); YxH (P =0.071) 0.28 0.63
q =
Functional identity (CWM)
Height Vascular |Y (P =0.006) 0.35 0.74
Specific leaf area Vascular |- 0.29 0.50
Y (P=0.099); H (P < 0.001); YxH
Root depth Vascular 0.42 0.61
(P =0.013)
H (P < 0.001); YxH (P = 0.006);
Seed mass Vascular 0.67 0.76
YxT (P =0.093)
Phylogenetic diversity
Phylogenetic diversity (PD,,
yied Y(PDL Al | scular |1 (P < 0.001) 0.60 | 0.73
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Table 1. Linear mixed-effects models testing effects of year (Y), hydrological condition (H:
DRY/WET), and warming treatment (T: OTC/control) on plant community metrics. Models
followed the structure metric~Y xH+Y x T + H x T + (1|plot). Significance of fixed effects was
assessed using Type Il Wald %2 tests. All effects with p < 0.10 are reported. Marginal R? (R?m;
variance explained by fixed effects) and conditional R2 (R2c; variance explained by fixed and

random effects) are shown. “-” indicates effects with P > 0.10.
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Supplementary S1. Forbonnet peatland location and experimental platform.

(A) Geographic location of the site with aerial orthophotograph (coordinates in WGS84, decimal
degrees, IGN 2021 BD Ortho raster and Natural Earth vector); (B) Photograph of the
experimental platform (photo credit: OPEN-Lab DREAM); (C) Photograph of an Open Top
Chamber (OTC) at the site (photo credit: Noémie Poteaux).
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Supplementary S2. Long-term water table depth dynamics at Forbonnet

peatland.

Daily water table depth (WTD) measurements (2008—2023) for the two hydrological blocks, with
GAM smoothing trends + SE (shaded areas). WTD was measured using floating piezometers, so
values are referenced to the local peat surface at the time of measurement (dashed line). Data

from 2024 onwards were excluded due to sensor malfunction.
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Supplementary S3. Phylogenetic tree reconstruction

The phylogenetic tree was constructed from the sequences of the chloroplast gene rbcL
(ribulose-1,5-bisphosphate carboxylase/oxygenase) extracted from the NCBI Genbank database
for each of the species present in the base vegetation matrix (see Table S4 for the corresponding
accession numbers).

For species without available sequences or with sequences that were too short, the sequence of
the closest species was used as a proxy (also detailed in Table S4). The longest rbcL sequence
available for Vaccinium oxycoccos (longest available sequence = 552 bp) was substituted with V.
uliginosum (longest available sequence = 1398), its closest extant sister lineage based on a
recent phylogeny of the Vaccinieae (Becker et al., 2024). A substitution was also made for
Polytrichum strictum (longest available sequence = 684 bp), which was substituted with P.
commune (longest available sequence = 1428, see Table below), a close congeneric species

with a complete rbcL sequence.

The sequences were aligned on the NGPhylogeny.fr platform (Lemoine et al., 2019) using the
“PhyML/OneClick” tool. The workflow selection was as follows: multiple alignment with MAFFT
(Katoh & Standley, 2013), alignment curation with BMGE (Criscuolo & Gribaldo, 2010), tree
inference with PhyML (Guindon et al., 2010), bootstrap values were computed using TBE
(Lemoine et al., 2018) and finally tree rendering with Newick display (Junier & Zdobnov, 2010).
Next, on R Studio, we imported the resulting Newick tree and processed it as follows: (i) midpoint
rooting, (ii) ultrametric transformation using the chronos() function from ape package (see S5),
and (iii) matching of species labels with the vegetation matrix using match.phylo.comm() from
picante package. The final tree, which was an ultrametric tree, was used for computing

phylogenetic diversity metrics.
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1131 Sequences accession humbers

1132 GenBank accession numbers for rbcL sequences used in the phylogenetic analyses. Length

1133 indicates aligned sequence lengths. Notes column indicates proxy species used when target

1134 species sequences were inadequate.

1135
Species  Accession number Length (bp) Notes
Andromeda polifolia AF124572.1 1355
Calluna vulgaris ON684482.1 1428
Carex limosa JX644630.1 1295
Carex pauciflora GQ469850.1 1408
Carex rostrata GQ469851.1 1408
Drosera rotundifolia KM360758.1 1352
Eriophorum vaginatum AB369971.1 1408
Pinus sylvestris 0Q184488.1 1428
Scheuchzeria palustris HQ901572.1 1344 Zannichellia palustris used as proxy (the only
acceptable sequence for Scheuchzeria palustris
was not grouped with Carex species
Vaccinium oxycoccos AF421107.1 1398 V. uliginosum used as proxy
Polytrichum strictum LC702108.1 1428 P. commune used as proxy
Sphagnum fallax AB013673.1 1305
Sphagnum magellanicum MF362295.1 961
1136
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Supplementary S4. Packages name and version

The following table lists all R packages used in the analyses, with their version and citations.

Package Version Reference

ape 5.8.1 (Paradis & Schliep, 2019)
car 3.1.3 (Fox & Weisberg, 2019)
conflicted 1.2.0 (Wickham, 2023)
DHARMa 0.4.7 (Hartig, 2024)

effectsize 101 (Ben-Shachar et al., 2020)
factoextra 1.0.7 (Kassambara & Mundt, 2020)
FactoMineR 2.12 (Lé et al., 2008)

FD 1.0.12.3 (Laliberté & Legendre, 2010)
funrar 15.0 (Grenié et al., 2017)
fuzzySim 4.38 (Barbosa, 2015)
ggcorrplot 0.14.1 (Kassambara, 2023)
ggrepel 0.9.6 (Slowikowski et al., 2024)
hillR 0.5.2 (Li, 2018)

janitor 221 (Firke et al., 2024)

Ime4 1.1.37 (Bates et al., 2015)

mFD 1.0.7 (Magneville et al., 2022)
patchwork 1.3.2 (Pedersen, 2025)
performance 0.15.3 (Ladecke et al., 2025)
permuco 1.1.3 (Frossard & Renaud, 2021)
phytools 25.2 (Revell, 2024)

picante 1.8.2 (Kembel et al., 2010)
randomForest 4.7.1.2 (Liaw & Wiener, 2002)
rdacca.hp 1.1.1 (Lai et al., 2022)

tidyverse 2.0.0 (Wickham et al., 2019)
UpSetVP 1.0.0 (Liu, 2022)

vegan 2.7.2 (Oksanen et al., 2025)
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Supplementary S5. Risk of Bias assessment

This Risk of Bias assessment is adapted from ROBITT framework (Boyd et al., 2022).

1. ROBITT iteration number: 1

2. Statistical population of interest

2.1 Define the statistical target population about which you intend to make inferences.
Detailed in the methods.

2.2 What are your inferential goals?

Detailed in the methods.

2.3 From where were your data acquired (please provide citations, including a DOI,
wherever possible)? What are their key features in respect of the inferential aims of your
study (see the guidance document for examples)?

Detailed in the methods and supplementary material (S3).

2.4 Provide details of, and the justification for, all of the steps that you have taken to clean
the data described above prior to analyses.

Detailed in the methods.

3. Bias assessment and mitigation

3.1 At what geographic, temporal and taxonomic resolutions (i.e. scales or grain sizes) will
you conduct your bias assessment?

Geographic level: plot level (12 fixed plots). Temporal: annual surveys in July, and 6 years per
plot. Taxonomic/organismal level: community (vascular + bryophytes, including litter for a part of
first question) and vascular-only subsets (for remaining analyses).

3.2 Are the data sampled from a representative portion of geographical space in the
domain of interest?

Yes, our site (111 ha) is a transitional peatland. Within our site, the 2 microhabitats (WET/DRY)
cover the typical hydrological gradient of raised bog/poor fen mosaics in region 1V (region 1V,
Tanneberger et al., 2021; see methods). However, this is a single-site study: inference is

intended for peatlands with similar characteristics (bogs and fens similar to ours).
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3.3 Are your data sampled from the same portions of geographic space across time
periods?

Yes, plots are permanent, and were installed in 2008, as well as OTCs. Same plot locations
sampled every year. See methods.

3.4 If the answers to the above questions revealed any potential geographic biases, or
temporal variation in geographic coverage, please explain, in detail, how you plan to
mitigate them.

No potential biases. Models we used include plot random intercepts (i.e., “(1|plot)”) to account for
within plot temporal dependencies. No major geographic coverage variation is expected because
plots are permanent.

3.5 Are your data sampled from a representative portion of environmental space in the
domain of interest?

Yes, the WET/DRY contrast captures a water table depth (WTD) gradient central to our
inferential aims.

3.6 Are your data sampled from the same portion of environmental space across time
periods?

Vegetation sampling occurred in July. Interannual coverage is not homogeneously distributed
(2008, 2009, 2010, 2012, 2024, 2025). But intrannual coverage survey are (all done in July). See
methods.

3.7 If the answers to the above questions revealed any potential environmental biases, or
temporal variation in environmental coverage, please explain, in detail, how you plan to
mitigate them.

Inferences cannot be made from 2013 to 2023, we will focus on large temporal scale evolutions
(especially for community temporal stability and species asynchrony).

3.8 Is the sampled portion of the taxonomic (or phylogenetic, trait or other space if more
relevant) space representative of the taxonomic (or other) domain of interest?

Yes, within the study design. The same protocol was applied across all plots, and replication is

balanced (3 plots per WET/DRY x experimental warming treatment combination).
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3.9 Do your data pertain to the same taxa/taxonomic domain across time periods?

Yes.

3.10 If the answers to the above questions revealed any potential taxonomic biases, or
temporal variation in taxonomic coverage, please explain, in detail, how you plan to
mitigate them.

No potential bias.

3.11 Are there other potential temporal biases in your data that relate to variables other
than ecological states?

Sampling intensity changed (400—200 points, see methods). Observer effect (one person did the
vegetation survey from 2008 to 2012 and another from 2024 to 2025). Irregular time steps (gaps
between 2012 and 2024).

3.12 Are you aware of any other potential biases not covered by the above questions that
might cause problems for your inferences?

No.

3.13 If questions 3.11 or 3.12 revealed any important potential biases, please explain how
you will mitigate them.

Sampling intensity changed (400—200 points, see methods): addressed by using relative cover.
Observer effect (one person did the vegetation survey from 2008 to 2012 and another from 2024
to 2025): minimized with fixed protocol and with the fact that both scientists are well trained
botanists and know very well this specific vegetation. Irregular time steps (gaps between 2012
and 2024): but time series lengths are the same across plots to compute community temporal
stability and species asynchrony; the method that we choose are comparable given equal

temporal cover.
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Supplementary S6. Principal Component Analysis (PCA) of plant
community composition

PCA biplot based on Hellinger-transformed species abundance data. Convex hulls delimit the
four experimental conditions (hydrology x warming). Control and heated plots largely overlap
within each hydrological block, while DRY and WET communities remain clearly separated,

consistent with the constrained ordination results (RDA, Fig. 1A).
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Supplementary S7. Size effects (p) and significance (p-values) of the
residual correlations between the various facets of diversity, community

temporal stability, and species asynchrony

Correlations were computed on rank-transformed variables after extracting residuals from linear

models controlling for experimental factors to control for experimental variables (see Methods
section of the main manuscript). P-values are reported for transparency, but interpretation
focuses on effect sizes (Popovic et al., 2024; Wasserstein et al., 2019). False discovery rate

(FDR) correction was applied using the Benjamini—Hochberg procedure across all correlations.

Shannon evenness; E20 = Simpson evenness; FD1 = functional diversity; FR1 = functional
redundancy; PD1 = phylogenetic diversity; Faith PD = Faith’s phylogenetic diversity; CWM =

community-weighted mean (of different traits).

Abbreviations: NO = species richness; N1 = Shannon diversity; N2 = Simpson diversity; E10 =

Response Predictor P p_uncorrected p_FDR
Asynchrony No -0.02 0.943 0.979
Asynchrony N1 0.14 0.656 0.770
Asynchrony N2 0.23 0.477 0.678
Asynchrony Eio 0.25 0.432 0.678
Asynchrony E20 0.24 0.457 0.678
Asynchrony CWM Height 0.40 0.195 0.489
Asynchrony CWM Root -0.16 0.630 0.770
depth
Asynchrony CWM Seed -0.30 0.343 0.678
mass
Asynchrony CWM SLA 0.23 0.473 0.678
Asynchrony FD1 0.27 0.390 0.678
Asynchrony FR1 -0.61 0.0367 0.198
Asynchrony PD1 0.01 0.979 0.979
Asynchrony Faith PD -0.06 0.849 0.917
Stability No -0.66 0.0195 0.198
Stability N1 -0.41 0.182 0.489
Stability N2 -0.17 0.595 0.765
Stability Eio 0.29 0.362 0.678
Stability E2o 0.33 0.298 0.671
Stability CWM Height 0.19 0.546 0.738
Stability CWM Root 0.61 0.0336 0.198
depth
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Stability

Stability
Stability
Stability
Stability
Stability
Stability

CWM Seed
mass

CWM SLA
FD1

FR1

PD1

Faith PD
Asynchrony

-0.50

-0.41
-0.43
0.09
-0.79
-0.63
0.40

0.101

0.182
0.159
0.785
0.00209
0.0278
0.199

0.456

0.489
0.489
0.883
0.0564
0.198
0.489
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Supplementary S8. Partial residual relationships between community
stability and diversity metrics.

Scatterplots showing relationships between stability and (A) species asynchrony, (B) species
richness (N,), (C) effective diversity (N,), (D) evenness (E1o), (E) functional diversity (FD,), (F)
functional redundancy (FR,), (G) phylogenetic diversity (PD,), (H) CWM height, (I) CWM root
depth, (J) CWM seed mass, and (K) CWM SLA. All values are partial residuals after controlling
for experimental conditions (hydrological x warming, n = 12 plots, see Methods section). Black
lines show linear regression fits with 95% confidence intervals. Corresponding partial correlation

coefficients are reported in Fig. 4C and Supplementary S6.
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Supplementary S9. Partial residual relationships between species
asynchrony and diversity metrics.

Scatterplots showing relationships between asynchrony and (A) species richness (Ny), (B)
effective diversity (N;), (C) evenness (E;), (D) functional diversity (FD,), (E) functional
redundancy (FR,), (F) phylogenetic diversity (PD,), (G) CWM height, (H) CWM root depth, (1)
CWM seed mass, and (J) CWM SLA. All values are partial residuals after controlling for
experimental conditions (hydrological x warming, n = 12 plots, see Methods section). Black lines
show linear regression fits with 95% confidence intervals. Corresponding partial correlation

coefficients are reported in Fig. 4C and Supplementary S6.
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