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One-sentence summary

Landscape structure affects pest suppression through two early-season predator mechanisms
(immigration and energy accumulation), but pest traits determine how — and whether — these
mechanisms translate into reduced pest load, producing three predictable suppression
fingerprints.

Abstract

Landscape heterogeneity often increases natural enemy abundance, yet its effects on crop pest
suppression are strikingly inconsistent across empirical studies. We developed a trait-based
simulation framework to identify the general mechanisms linking landscape structure to realized
pest load. Across >150 in silico experiments, we show that landscape attributes influence
biological control by altering two early-season predator metrics: (i) the immigration rate from the
surrounding landscape and (ii) the rate at which colonizing predators accumulate energy after
arriving in the crop. These two conditions form universal causal pathways from landscape
structure to pest suppression, but their relative importance depends on pest traits. Suppression
of slow-growing, diffusely distributed pests requires high early-season energy accumulation by
predators; rapidly growing and aggregated pests are controlled by high predator immigration
alone; suppression of rapid but diffuse pests requires both, and is weak even under favorable
conditions. These three suppression fingerprints explain why landscape heterogeneity reliably
increases natural enemy arrival yet only sometimes reduces pest load. Our results reveal a
general, trait-mediated architecture—the conditional ecology of pest suppression—that reconciles
inconsistent field findings, predicts when landscape heterogeneity should enhance biological
control, and provides a mechanistic framework for using landscape management to support
sustainable agriculture.
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1. Introduction

Biological control of insect pests by natural enemies is a cornerstone of sustainable agriculture,
yet the ecological processes that govern its effectiveness remain difficult to predict. Across crops
and regions, landscape heterogeneity—typically measured as the amount, diversity, or spatial
arrangement of non-crop habitat—is widely expected to enhance natural pest suppression by
providing refuges and resources for predators (Dainese et al., 2019). Indeed, multiple syntheses
report that predator abundance and activity increase with greater heterogeneity (Bianchi et al.,
2006; Martin et al., 2019; Priyadarshana et al., 2024). But pest suppression outcomes are far less
consistent: in some studies heterogeneity reduces pest pressure, in others it increases it, and in
many it has no detectable effect (Dainese et al., 2019; Karp et al., 2018; Poveda et al., 2025;
Tamburini et al., 2020). This persistent mismatch between predator responses and pest outcomes
limits our ability to design landscapes that reliably support natural pest control.

Why does landscape structure produce such variable suppression outcomes? Several
explanations have been proposed, including differences in natural enemy life histories,
mismatches in resource timing, natural habitat acting as a refuge for pests as well as enemies,
and context-dependent pest dynamics (Begg et al., 2017; Schellhorn et al., 2015; Tscharntke et
al., 2016). Empirical studies increasingly recognize that heterogeneity affects predators and pests
through multiple mechanisms—dispersal, resource access, overwintering success—but the
causal pathways linking these mechanisms to realized pest load remain poorly resolved (Martin
et al., 2019). The typical approach, correlating static abundance measures with landscape
metrics, cannot capture the dynamic interactions among landscape structure, predator traits, and
pest population trajectories. As a result, studies often detect positive effects of heterogeneity on
natural enemy abundance without corresponding improvements in pest suppression.

A key limitation of past work is that it treats “predator abundance” as the primary mediator between
landscape features and pest suppression. Yet in many biological control systems, especially
annual crops, the early season sets the trajectory of pest populations long before peak predator
abundance is reached. Preparation for planting clears annual crop fields of many pest insects and
natural enemies, requiring colonization from field margins or nearby natural or semi-natural
habitat. Upon crop germination, pest insects need simply locate and colonize individual crop
plants in order to establish populations. Natural enemies, on the other hand, have the steeper
challenge of locating sufficient pest insects to survive and reproduce, or locating supplemental
resources such as alternative prey, nectar or pollen. These considerations suggest that two early-
season processes should be especially influential: the number of colonizing predators arriving
from the surrounding landscape, and the initial energy accumulation, and therefore the longevity,
of these colonizers. These processes determine whether predators arrive in the crop in sufficient
numbers and subsequently survive, reproduce, and engage prey quickly enough to influence pest
trajectories. Crucially, the population growth rate and spatial distribution of the pest insect itself
may strongly influence the latter.

Here, we propose that these two early-season predator processes—immigration from
overwintering refuges and initial energy accumulation—form universal causal pathways linking
landscape structure and in-field resources to pest suppression (Fig. 1). Pest traits are expected
to determine which pathway dominates, generating distinct ‘suppression fingerprints’ that resolve
previously observed inconsistent effects of landscape heterogeneity on natural pest suppression.
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Figure 1. Conceptual framework for the conditional ecology of pest suppression. (A) Landscape structure
and in-field resources determine two orthogonal early-season predator processes: immigration and energy
accumulation. These processes determine two early-season predator state variables—realized predator
abundance in the crop and predator energetic state—which together shape pest suppression. (B) Pest
species differ in reproduction rate and spatial aggregation: rapid-growing, aggregated (“aphid-type”); slow-
growing, diffuse (“lygus-type”); and rapid-growing, diffuse (“whitefly-type”). (C) Pest traits determine how
early-season predator state translates into suppression, with suppression being conditioned by predator
abundance (driven by immigration), energy (driven by energy accumulation), or both. (D) The interaction of
these axes produces three characteristic pest suppression fingerprints.

Computer simulation has long been used to investigate complex, multiscale systems where
controlled experiments are infeasible, such as global climate prediction (Edwards, 2011). To
isolate causal pathways across landscape scales that are experimentally inaccessible, we
develop a mechanistic simulation framework for biological control in agricultural landscapes that
integrates landscape structure, predator dispersal, predator energetics, and pest population
dynamics at large spatial scales. Extending previous modeling approaches (Corbett et al., 2024),
we simulated a generalist predator that relies on discrete non-crop habitat patches as
overwintering refuges and three pest types that differ in growth rate and spatial aggregation—
traits that strongly shape predator—prey encounter rates and feedbacks. Across >150 in silico
experiments, we varied landscape attributes, predator traits, and in-crop resource availability and

modelled emergent effects on the resulting pest load at the center of a simulated landscape (Fig.
2).

Our results reveal a simple, generalizable architecture linking landscape structure to pest
suppression. Landscape heterogeneity consistently increases early-season predator immigration,
but only sometimes decreases pest load. Across pest types, cumulative pest suppression can be
understood as a function of the two early-season predator processes of immigration and energy
accumulation. These two processes form general causal pathways that link landscape structure
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and predator traits to pest suppression. Pest traits determine which pathway matters, producing
distinct and predictable signatures in how pest suppression responds to early-season predator
processes. These three signatures — suppression fingerprints—resolve long-standing
contradictions in empirical landscape studies and explain why predator abundance increases

more often than pest suppression.
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We propose that these fingerprints constitute a
general theoretical framework for understanding
the conditional ecology of natural pest
suppression. By revealing when landscape
heterogeneity should and should not enhance
biological control, our work provides a mechanistic
foundation for designing landscapes that reliably
support sustainable agriculture. More broadly, our
results show how trait-mediated early-season
bottlenecks can generate predictable yet highly
variable ecosystem service outcomes across
heterogeneous landscapes, thus advancing our
understanding of how spatial heterogeneity
shapes ecological processes and their outcomes
at landscape scales.

Figure 2. Mechanistic analysis pipeline. We first develop
(1) a neutral, mechanistic model and (2) use it to
generate simulation outcomes across a broad range of
landscape and trait combinations. We then (3) assess
whether these simulations reproduce the inconsistent
patterns observed in field studies, thereby establishing
the empirical relevance of the model. From this
foundation, we examine how (4) experimental variables
shape calculated metrics for the early-season predator
processes of immigration and energy accumulation, and
(5) evaluate how those metrics influence pest load.
Finally, we (6) integrate these components into a
coherent mechanistic architecture that explains when
increased landscape heterogeneity does, and does not,
lead to reduced pest loads in crops.



2. Results

In silico experiments mirror inconsistent responses to landscape
structure observed in field studies

Across three contrasting pest types, our in silico experiments generated a spectrum of
suppression outcomes that mirror the qualitative inconsistencies reported in field studies. For
rapid-growing, aggregated pests (“aphid-type”), increasing non-crop habitat (hereafter NH)
amount and proximity produced strong and consistent reductions in pest load (Fig. 3A, 3G). For
slow-growing, diffusely distributed pests (“lygus-type”), pest load was largely unresponsive to
landscape structure but was strongly suppressed by in-crop supplemental resources alone (Fig.
3B, 3H). For rapid-growing but diffuse pests (“whitefly-type”), suppression required both high NH
and supplemental resources and rarely exceeded intermediate levels (Fig. 3C, 3I). Effects of NH
amount closely tracked predator overwintering density (Fig. 3D,E,F) and NH effects were
strongest when NH patches were close to the focal field, consistent with predator dispersal
constraints (Fig. 3G,H,l). Collectively, these results show that even with an identical predator
system, contrasting pest traits generate three distinct “suppression fingerprints,” explaining why
empirical landscape effects on pest control are so variable.
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Figure 3. Relative crop pest load vs. landscape attributes — percent non-crop habitat (NH) coverage (A, B,
C), predator overwintering density (D, E, F), and distribution of NH patches at varying distances from the
focal field (G, H, 1) — and for three pest population types — rapid-growing, spatially aggregated (“aphid-type”;
A, D, G), slow-growing and diffuse (“lygus-type”; B, E, H), and rapid-growing and diffuse (“whitefly-type”; C,
F, 1) — with and without crop-based supplemental resources (solid versus dashed lines, respectively). Crop
pest load is shown relative to the control simulation without predators for each respective pest population
type.



Predator traits moderate natural control outcomes

Although the predator was identical across all simulations, variation in predator traits produced
sharply different suppression responses depending on pest type and the presence of
supplemental resources (Fig.4). Synchrony of emergence with the pest and greater likelihood
and distance of dispersal each strengthened suppression for aphid-type pests, but had weaker

or inconsistent effects for whitefly-type and lygus- type pests. These trait effects were further

modulated by crop-based resources, particularly for the lygus-type and whitefly-type pests.
Together, these patterns show that predator traits do not act uniformly across systems; instead,
their influence depends on how predator behavior interacts with pest traits and resource context.
This result motivates the search for early-season processes that translate predator traits into

system-specific suppression outcomes, which we address in the next section.
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Figure 4. Relative crop pest load vs predator traits — median dispersal distance (A, B, C), day of emergence
from overwintering (D, E, F), percent of predators dispersing at emergence (G, H, I), and size of
overwintering energy reserve in day’s worth of energy (J, K, L) — and for three pest population types —
aphid-type (A, D, G, J), lygus-type (B, E, H, K), and whitefly-type (C, F, I, L) — with and without crop-based
supplemental resources (solid versus dashed lines, respectively). Crop pest load is shown relative to the
control simulation without predators for each respective pest population type.



Experimental variables predict two critical early-season predator
metrics

We hypothesized that the apparently inconsistent results of landscape heterogeneity on pest
suppression can be understood mechanistically by focusing on two conceptually independent
predator processes occurring in the focal field immediately following pest emergence: immigration
and energy accumulation. To test this hypothesis we calculated two early-season predator
metrics that quantify these key ecological processes:
1. The weekly predator immigration rate during the first 40 days post emergence of the pest;
2. The average per capita energy reserve of predators during the same period.
The first metric measures how many predators colonize the focal field; the second measures
access to energy by those colonizers and, in turn, determines their longevity.

We applied linear modeling to each of these two metrics against our experimental variables. We
found a distinct separation in which experimental variables predicted which metric (see
Supplemental Material for full linear model results). On one hand, predator immigration rate was
predicted by predator overwintering density, % NH coverage, NH distribution, the percentage of
predators that disperse at emergence, and predators’ median dispersal distance. In contrast, per
capita energy accumulation by predators was predicted by the presence vs. absence of crop-
based supplemental resources, pest population type, predator emergence day, overwintering
sugar reserve, and the percentage of predators that disperse at emergence. To quantify the
landscape and in-field drivers of these processes, we estimated effect sizes using partial n? from
the linear models relating our experimental variables and their interaction to predator immigration
and per capita early-season energy accumulation. The resulting analyses highlight consistent
links between landscape and resource-based factors, and early-season immigration and energy
accumulation mechanisms, respectively (Fig. 5):

Landscape and dispersal control of predator immigration

Experimental variables related to landscape structure and predator dispersal behavior explained
82% of variation in predator immigration to the focal field (Fig. 5A). Predator immigration
increased strongly with predator overwintering density and percent NH, which were the dominant
predictors of predator immigration (partial n? = 0.73 and 0.63, respectively). Increasing NH
distribution—bringing patches closer to the focal field—had a secondary positive effect (partial n?
= 0.24). Predator dispersal traits modulated these relationships: a higher probability of dispersing
at emergence slightly increased immigration to the focal field; higher dispersal distances
enhanced immigration only when NH patches lay beyond the predator's median dispersal
distance (see for example Fig. 4B). Overall, landscapes with high NH coverage and nearby
refuges consistently increased predator arrival into the focal field.

Resource control of early-season predator energy accumulation

Experimental variables related to resource availability in the focal field, or reserves carried by
predators into the focal field, accounted for 91% of variability in early-season energy accumulation
by predators (Fig. 5B). The presence of crop-based supplemental resources was the dominant
variable determining early-season sugar accumulation (partial n> = 0.89). Pest population type
was a secondary variable (partial n> = 0.56), with aphid-type pests providing 5.5 additional days’
worth of energy than lygus-type pests. The interaction between crop-based supplemental
resource availability and pest type also had a dominant influence (partial n*> = 0.59): the
differences in energy accumulation between pest types were larger in the absence of crop-based
supplemental resources. Predator emergence timing played a secondary role in energy
accumulation: delayed emergence reduced cumulative energy by shortening the early foraging
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window, while earlier emergence limited predator-prey overlap. Initial sugar reserves had weaker
effects, enhancing energy accumulation only in the absence of crop-based resources. Finally,
predators dispersing immediately upon emergence carried more of those reserves into the focal
field than those dispersing later due to local resource scarcity.

Together, these results show that immigration and energy flux are distinct mechanisms, each
influenced by separate ecological variables.
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Early-season predator metrics predict crop pest load

The two early-season predator metrics — immigration rate and energy accumulation —
consistently mediated how landscape attributes translated into pest outcomes (Fig. 6).
Differences among pest types reflected the relative dominance of landscape structure (via
immigration) versus resource availability (via early-season energy) as the primary driver of
suppression. Although landscape structure reliably shaped predator immigration rate,
suppression outcomes diverged sharply between pest types depending on how much energy
colonizing predators could acquire through early predation. Linear models relating cumulative
pest load to immigration and energy accumulation revealed three distinct, predictable
“suppression fingerprints” across the three pest population types. Full results of these models are
reported in the Supplemental Materials.

Aphid-type pest: immigration-driven fingerprint

For aphid-type pests, suppression increased steeply with predator immigration and showed little
sensitivity to early-season energy (Fig. 6A). The linear model confirmed that rapid- growing,

aggregated aphid populations were suppressed primarily through predator immigration, with
immigration explaining most of the variance in cumulative pest load (partial n?=0.79) and
early-season energy contributing only secondarily (partial n2=0.32). High immigration generated
intense early predation on aggregations, allowing predators to achieve high early-season energy

from pest-der ived resources alone. As a result, landscapes with high NH consistently reduced
aphid-type pest abundance, even when crop-based resources were absent, lowering cumulative

aphid-type load by more than 60% relative to low-immigration scenarios (Fig. 3A).

Lygus-type pest: energy-driven fingerprint

Lygus-type suppression followed an almost entirely different pathway, increasing strongly with
early-season energy while remaining largely insensitive to immigration (Fig. 6B). The linear
model showed that slow-growi ng, diffusely distributed lygus-type populations were controlled
almost entirely through predator energy accumulation, with energy explaining the majority of
variation in cumulative pest load (partial n>=0.78) and immigration having negligible effect.
Effective suppression occurred only when predators accumulated substantial early-season
energy, typically via crop-based resources. Consequently, suppression was substantial only in
landscapes that provided within-field provisioning; landscapes lacking suppl emental resources
produced minimal reductions in lygus-type abundance, whereas favorable energy conditions
reduced cumulative load by approximately 35-50% (Fig. 3B).

Whitefly-type pest: dual-pathway but weak fingerprint

Whitefly-type pests exhibited a hybr id pattern in which meaningful suppression occurred only
when both immigration and early-season energy were high (Fig. 6C). The linear model indicated

that rapid-growing but diffuse whitefly -type populations depended on both mechanisms, with
immigration and energy each exerting strong effects on cumulative pest load (partial n>= 0.60 for
both). Predators needed to arrive early and maintain high energetic reserves to exert noticeable
control. Even under these favorable conditions, suppression remained modest—typically around



20-30% (Fig. 3C)—reflecting limited predator efficiency when prey reproduce quickly yet are

broadly dispersed.
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Why landscape heterogeneity suppresses pests in some systems
but not others: A general causal architecture for natural pest
suppression

Although NH consistently increased predator immigration, its effect on pest load depended on the
alignment of pest traits with early-season processes of immigration and energy acquisition. As a
result, landscape heterogeneity led to pest suppression in some systems but not others: biological
control of fast-growing and aggregated, aphid-type pests was high whenever landscapes
increased immigration. In contrast, biological control of slow-growing and diffuse, lygus-type pests
required landscapes that also elevated early-season energy through supplemental resources.
Control of fast-growing but diffuse, whitefly-type pests was limited, and was achieved only when
both immigration and energy were simultaneously high (Fig. 1D).

Across pest types, these results reveal a consistent causal structure linking landscape attributes
to pest outcomes. Landscape structure and predator dispersal traits—including predator
overwintering density, NH coverage, distance to NH, dispersal distance, and the proportion
dispersing at emergence—determine early- season predator immigration into the focal field. In
contrast, resource context (including crop-based supplemental resources, predator emergence
timing, initial sugar reserves) and pest population type jointly determine early-season energy
accumulation by colonizing predators. Pest population growth rate and degree of aggregation
therefore become integral components of the energy axis itself, shaping how much energy
predators can acquire early in the season and, in turn, which early-season mechanism —
immigration or energy accumulation—dominates suppression in each system.

These relationships produce three general suppression fingerprints for generalist predators
across three contrasting pest types and explain why field studies often detect increased predator
abundance without consistent pest reductions.

This conditional ecology of pest suppression framework explained 77-88% of variation in
cumulative pest load across over 150 landscape x trait x resource combinations. It demonstrates
that landscape heterogeneity alone does not drive pest suppression; its effect is mediated by trait-
dependent interactions shaping whether increased predator arrival or resource availability
translates into reduced pest populations.

3. Discussion

Our simulations reveal that the impact of landscape heterogeneity on biological control is highly
contingent on interactions among predator traits, pest population dynamics, and resource
availability. While the intuitive expectation—that increasing non-crop habitat (NH) coverage and
distribution enhances control—is supported for early-season predator immigration, its translation
into reduced pest loads is far from straightforward. Across the three pest types studied, we
observed distinct suppression fingerprints, illustrating that landscape heterogeneity alone is
insufficient to guarantee effective control.

For the aphid-type pest, suppression is predominantly driven by predator immigration. Rapid prey
population growth and spatial aggregation align with predator foraging behavior, ensuring that
incoming predators find sufficient resources to establish and reproduce. The fingerprint for this
pest type is robust to the absence of crop-based supplemental resources, highlighting a scenario
in which landscape heterogeneity directly facilitates biological control. Importantly, our results also
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demonstrate sensitivity to predator emergence timing: early arrival risks insufficient prey density
for predator establishment, whereas delayed arrival allows the pest population to escape
suppression. These mechanistic insights resonate with empirical findings showing that predator
arrival timing is critical for aphid suppression (Costamagna et al., 2015). In practice, these results
suggest that enhancing NH near fields can reliably reduce aphid-type pressure, provided that
natural enemy colonization is synchronized with pest emergence.

The lygus-type pest presents a contrasting scenario. Slow population growth and even spatial
distribution render colonizing predators unable to maintain themselves on the pest alone. Here,
supplemental crop-based resources—floral resources and alternate prey—become essential for
predator persistence and effective pest control. Only under favorable combinations of NH
proximity and resource availability does suppression reach high levels, illustrating a strong
interaction between landscape structure and within-field conditions. This fingerprint aligns with
prior simulations showing that the effectiveness of overwintering refuges is contingent on local
resource provisioning (Corbett et al.,, 2024), and with both field and theoretical studies
demonstrating the importance of alternate prey and apparent competition for effective pest
suppression (Emery and Mills, 2020; Rosero et al., 2024; Settle et al., 1996). For applied
management, this finding underscores the need for integrated habitat and crop-based
interventions: simply adding natural habitat outside crops may not suffice to control slow-growing,
evenly distributed pests and supplementation with in-field resources may be required.

Whitefly-type pests combine features of both extremes: rapid growth, like aphids, but diffuse
distribution, like lygus. Suppression requires both early-season immigration and supplemental
resources, yet even under optimal conditions, reductions in pest load are modest relative to the
other two types. This fingerprint explains why field studies of whitefly suppression by generalist
predators frequently report variable outcomes (e.g., Naranjo et al. 1998). Only landscapes that
simultaneously optimize NH coverage, patch proximity, and in-crop resources achieve meaningful
control. This highlights the limits of generalized expectations for landscape-mediated biological
control and reinforces the importance of trait-based, pest-type-specific understanding.

In line with these mechanistic predictions, empirical studies suggest that aphid—coccinellid
systems consistently translate landscape heterogeneity into measurable biological-control
responses (Gardiner et al., 2009; Woltz and Landis, 2014), whereas many other pest—predator
pairings show increased enemy abundance but inconsistent pest suppression. This contrast is
robust across reviews and field studies but is strongly conditioned by pesticide use, refuges,
phenology, and spatial scale (Bianchi et al., 2006; Chaplin-Kramer et al., 2011; Rusch et al., 2016;
Tscharntke et al., 2005). Across field experiments and syntheses, two consistent patterns
emerge. First, aphid control often scales positively with landscape heterogeneity: replicated
exclusion and enemy-manipulation ex periments, together with syntheses drawing heavily on
aphid—coccinellid systems, show that biological control of aphids can increase markedly from
simple to complex landscapes, driven by complementary contributions of flying and ground-
dwelling enemies and by predator aggregation to aphid patches (Bianchi et al., 2006; Chaplin-
Kramer et al., 2011; Rusch et al., 2016). By contrast, studies of other pest—predator pairings (e.g.,
specialist parasitoid—host systems, non-aggregating pests such as lygus and whitefly with
generalist predators, bird-predator systems, or multi-enemy webs) often show scale-dependent
or taxon-specific responses: parasitoids and specialist enemies respond at different scales than
generalists, and pest suppression is frequently context dependent (Chaplin-Kramer et al., 2011;
Gurr et al., 2017; Karp et al., 2018; Letourneau et al., 2009; Martin et al., 2019; Poveda et al.,
2025; Rand et al., 2006). Mechanistic reviews and recent models of habitat management and
conservation biological control emphasize the same moderators our simulations identified—
overwintering/refuge availability, alternate prey, phenology, and spatial scale—as the key factors
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determining whether increased enemy abundance translates into effective suppression (Begg et
al., 2017; Landis et al., 2000; Rosero et al., 2024; Rusch et al., 2016). In short, our findings help
explain both why aphid—coccinellid systems show stronger landscape-driven suppression and
why those effects are conditional on management and ecological context.

Our results also provide a mechanistic lens for interpreting pattern-based hypotheses such as the
intermediate landscape hypothesis (ILH), which predicts the strongest responses of biodiversity
and ecosystem services to management in landscapes of intermediate complexity (Jonsson et
al., 2014; Sanchez et al., 2022; Tscharntke et al., 2012). In our simulations, ILH-like behavior
emerges most clearly for the whitefly-type pest, where meaningful suppression through increases
in in-field resources is contingent on sufficient early-season immigration. More broadly, our
framework suggests that whether intermediate landscapes show the strongest management
effects depends on the energetic context of colonizing predators, introducing an additional, largely
unrecognized axis conditioning ILH patterns. We note that our simulations focus on landscapes
ranging from cleared to moderately complex, and extending this framework to highly complex
landscapes may further reveal how strong immigration alone could compensate for limiting in-
field resources in some systems.

A key insight from our study is the separation between early-season immigration and per capita
energy accumulation as drivers of suppression. Across pest types, NH coverage and predator
density in refuges consistently drive immigration, while crop-based resources—including both
supplemental resources and the pest itself-govern energy accumulation. For aphids, immigration
dominates; for lygus, energy accumulation dominates; for whitefly, both interact synergistically.
These patterns provide a mechanistic explanation for the mixed empirical results reported in
meta-analyses: landscape heterogeneity consistently boosts initial predator abundance, but this
only reduces pest loads when pest traits and resource availability align to support establishment
of predator populations. Our simulations thus offer a framework for interpreting and predicting
variable field outcomes, moving beyond static abundance metrics toward a dynamic, trait-
mediated perspective.

The conditional ecology framework emerging from these results has several implications for
agroecosystem management. First, identifying the “fingerprint” of a given pest—predator system
can inform the design of habitat interventions: managers can tailor NH placement and
supplemental resources based on the traits of both pests and natural enemies. Second,
understanding the relative importance of immigration versus energy accumulation enables
predictions about the temporal window in which interventions are likely to be effective, guiding
planting schedules, floral resource provisioning, and timing of natural enemy introductions. Third,
by explicitly modeling dispersal distances, our approach highlights spatial constraints on natural
control. Landscapes where NH fragments exceed typical dispersal ranges of predators may fail
to confer suppression benefits, regardless of overall habitat amount—a consideration often
overlooked in field studies.

Beyond applied implications, these findings advance ecological theory. They illustrate how trait-
mediated interactions can generate emergent, non-linear outcomes at landscape scales,
emphasizing the need for mechanistic, rather than purely correlative, approaches to
understanding ecosystem services. Our use of in silico experiments allows systematic
manipulation of multiple factors—landscape structure, predator traits, pest dynamics—
highlighting pathways that would be difficult to disentangle in field studies. The suppression
fingerprints we identify suggest that variability in ecological outcomes is not noise, but a
predictable consequence of underlying trait and landscape interactions. This insight may extend
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beyond agroecosystems to other consumer—resource systems where spatial heterogeneity,
dispersal, and resource alignment mediate ecological outcomes.

Several limitations of our study warrant discussion. First, our model assumes a single predator
species and three simplified pest types. Real agricultural landscapes contain multiple natural
enemies, complex pest assemblages, and additional interactions and behaviours (e.g.,
hyperpredation, competition, overwintering location) that may modulate outcomes. Second, our
simulation represents idealized landscapes with uniform patch shapes and sizes; real landscapes
may present more complex configurations that influence dispersal and resource accessibility.
Third, we focused on overwintering refuges and in-crop resources, whereas additional ecological

drivers—such as non-crop food resources, climatic variation, pesticide use, or interannual shifts
in pest phenology—are also likely to shape pest suppression fingerprints. Despite these
simplifications, the trait-based framework we propose is generalizable: it can be applied to
additional pest—predator systems and extended to explore broader ecological scenarios. Finally,
while our simulation results mirror the conflicting patterns reported in field studies, we do not claim
that our proposed architecture is the only explanation for these empirical inconsistencies; rather,
we show that our proposed architecture is sufficient to generate a broad spectrum of contradictory
outcomes observed in the literature, demonstrating that a single mechanistic structure can
account for this diversity. Further field studies and expanded simulation experiments will help test,
refine, and extend this mechanistic framework.

In conclusion, our work demonstrates that natural pest suppression is a conditional process
governed by interactions among landscape structure, predator traits, and pest dynamics.
Landscape heterogeneity alone is not sufficient to guarantee effective control; rather, outcomes
depend on the alignment of predator and pest traits with habitat configuration and resource
availability. By identifying distinct pest suppression fingerprints, we provide a predictive framework
linking landscape ecology to ecosystem service outcomes. These results reconcile apparent
contradictions in field studies and offer both theoretical and practical guidance for managing
landscapes to enhance natural pest control. The conditional ecology perspective emphasizes that
in agroecosystems—as in broader ecological systems—context matters: ecological processes
interact in ways that are systematic, interpretable, and ultimately manageable when trait- and
landscape-specific mechanisms are considered.

4. Methods

Simulation Framework

We implement a two-dimensional reaction-diffusion model combined with a stochastic dispersal
model for adult insects. Each cell contains a classical predator-prey model including age stages
for both predator and pest insect and a Type Il functional response for the predator. An alternate
prey population is also represented in each cell via simple logistic population growth. Crop
vegetation is represented as a growing leaf area which achieves its maximum leaf area index
(LAI) near mid-season. Predation rate is based on prey density on this growing leaf area. In
addition to numbers of adult predators, total energy and egg reserve of adult predators is also
represented in each cell. Energy reserves are added to by floral feeding and by prey consumption
and deducted based on a daily maintenance cost. Adult predator life span is tied to this energy
reserve. Egg reserves are added to by prey consumption and are deducted at a constant rate of
oviposition. Adult pests and predators move between cells according to a 2-dimensional diffusion
model. Adults also engage in dispersal flights at a rate that is correlated to the current mortality
rate in the cell. Dispersal is in a random direction and to random distances; distances are
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described by a Weibull probability distribution. Egg and energy reserves move between cells
along with adult predators at a per capita rate. Each cell has its own vegetation properties (e.g.,
maximum LAl and presence/absence of floral resources) and is initialized with its own starting
number of overwintering adult predator and prey. The simulated landscape consists of a crop
monoculture that is intersected by a grid of field margins (e.g., county road edges) spaced at 1
km intervals, and has patches of NH with varying overall percent coverage and distribution. The
pest insect and alternate prey overwinter only in margins; predators overwinter only in NH
patches; crops have no resident populations at germination. Full mathematical and
implementation details are available in the Supplemental Materials.

Simulation Experiments

We conducted factorial simulations manipulating landscape attributes, pest population dynamics,
and predator traits.

Landscape Attributes. We manipulated the following landscape attributes:
1. Percent NH coverage (%NH): Varied from 1.25% to 20% of the landscape tile.
2. NH distribution: Measured as distance from the focal field center to the nearest NH patch,
with shorter distances representing higher patch density.
3. Predator overwintering density: Number of predators per m? in NH patches at the start of
the simulation.
4. Crop-based supplemental resources: Presence or absence of floral resources and
alternate prey within the crop.
Landscape tiles are squares with diagonal length of 16 km (11.3 km x 11.3 km). Patch proximity
and distribution were systematically varied to evaluate the interaction between habitat
configuration and predator traits.

Pest Population Dynamics. We simulated three pest types reflecting distinct growth and spatial
patterns:

1. Aphid-type: Rapid growth, aggregated distribution.

2. Lygus-type: Slow growth, evenly distributed across leaves.

3. Whitefly-type: Rapid growth, diffuse distribution.
Pest life-history parameters, including intrinsic growth rates, dispersal, and aggregation
tendencies, were derived from empirical literature and field studies. Pest populations emerged
from field margins at the start of the season and grew according to type-specific growth functions.

Predator Traits. Predators were modeled as generalist natural enemies requiring NH patches for
overwintering. We manipulated the following traits:

1. Emergence timing: Day of emergence relative to pest appearance, varied across a four-

week window.

2. Dispersal distance: Median dispersal distances, ranging from 400 m to 6.4 km.

3. Proportion dispersing at emergence: 0-100% of individuals initiating immediate dispersal.

4. Initial sugar reserve: Energy reserve at emergence, scaled in days of maintenance energy.
Predators consumed pests and supplemental resources according to functional responses, and
accumulated energy for reproduction and survival. Predators are assumed to aggregate to prey
if prey are aggregated. Early-season energy accumulation was tracked over the first 40 days post-
pest emergence.

We calculated metrics for the 1 km? crop field at the center of the simulated landscape. The

primary response variable was cumulative pest load per cm? of leaf surface up to the day of peak
population. We also calculated two predator metrics:
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1. Predator immigration: Average rate of immigration to the focal field during the first 40 days
following pest emergence.

2. Per capita energy accumulation: Average energy reserve per predator over the first 40
days following pest emergence.

We applied linear models to quantify relationships between landscape attributes, predator traits,
and focal-field metrics. Partial n? was used to estimate effect sizes and rank drivers as dominant
(=0.50), secondary (0.20-0.49), minor (0.05-0.19), or negligible (<0.05). Interaction terms were
included to capture synergistic effects between immigration and energy accumulation, as well as
between landscape configuration and predator traits. All continuous variables were centered prior
to analysis.

Full details on simulation experiments, output processing, and analysis are provided in the
Supplemental Materials.

Software

The model was implemented in C++ using the openmp parallel processing library and simulations
were run in Windows System for Linux on a desktop computer with a high-end, multi-core CPU.
Statistical analyses were conducted in R, using packages Im and Im.beta for linear models and
effect size calculations. Figures were generated using Excel for 2D plots and Maple for 3D plots.

5. Data availability

The original code as well as the simulation output used in analyses are available on request from
the primary author.
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Supplementary Text

Mathematical Model and Implementation

The model is a reaction-diffusion system for three stages of a pestinsect, three stages of a
predator, egg and sugar reserves for adult predators, and a single alternate prey stage.
Only adult insects undergo diffusion, which represents trivial movement. A dispersal
kernel for adult insects is layered on top of this reaction-diffusion model. Egg and sugar
reserves move with adult predators diffusing or dispersing on a per capita basis. For clarity
and simplicity, we present the local population dynamics as a set of ordinary differential
equations. Diffusion and dispersal only applies to adults and are described separately.

Population Dynamics

Pest Population. The pest population is represented by three differential equations for
eggs, Ng, juveniles, Ny, and adults N, plus an equation for cumulative pest density, C, plus
an equation for overwintering adults, No, as follows:

E _ N o wo-a.
(1) - =b(1) o - g Ny~ d;N,
dv,
(2) a9 g~ PN, pr(f) - ja-N;= doN,
dN,
(3) a4 —emr,, (1)"N,
dN ) .
(4) a7 = emrNo(t)-(l —pDzspNo)-NO + jaN,- pN-pr(t) - d(t)-N
dC N+NJ
(®) dt  L()-0 -4
(1)‘ L'
where

b(t) = Pest oviposition rate at t
ej = Egg maturation rate

d; = Mortality rate due to external sources other than predation
emr,, (t) = Emergence rate of overwintering adults at t
pDispNO = Proportion of overwintering adults dispersing at emergence

pN = Proportion of prey that are juvenile pests
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pr(t) =Total predation at t

Jja =Juvenile maturation rate

PN = Proportion of prey that are adult pests

d(t) = Adult pest mortality at t

L(t) =Leaf areaindex at t

0, = Proportion of leaf surface occupied by the pest population [ degree of aggregation]
A = Total ground surface area of cell ( cmz)

Oviposition and adult mortality are linear functions of cumulative pest density with fixed
maximums and minimums, C, given by:

crit
b, C<—5
b(t ) = Ccrit Ccrit
bo—l-bs'(C—T , CZTandC<Ccrit
- c>C .
min crit
< crit
dO, C 10
d(t ) = Ccrit Ccrit
do—i-ds-(C— TR C > 10 andC<Cm.t
; C>C_.
max crit
where:

b, = Intrinsic oviposition rate under ideal resource conditions
C..= Critical cumulative density

b .. =Minimum birth rate under poor resource conditions
d,, = Intrisic mortality rate under ideal resource conditions
d

nax — Maximum mortality rate under poor resource conditions

p = bmin N bO
s C— Ccrit
10
d _ dmax - d0
S— .
C _ crit
10

Overwintering adult pests emerge at a fixed rate following the day on which emergence
commences according to:
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erateNO t>T No
emr,, (t) =
0 otherwise

where:
erate, == Emergence rate of overwintering adult pests

T, = Day of emergence of overwintering adult pests

Leaf area index is a fixed function of t and asymptotically approaches a maximum
according to:

L(t)=o- (1 o7 Ti”"f))

where:

o= Maximum leaf area index

B = Rate of growth of vegetation

T .. =Daysof growth att=0
Alternate Prey Population. The alternate prey population grows logistically and has no age
structure. It's carrying capacity is based on number per unit leaf surface area. Alternate
prey are represent by the differential equations

dH,
(6) dr =-emr,, (1) -H,
[z
dH _ L(t)-A
(7) dr = emrHo(l‘)~(1 —lespHo) ‘Hy +rH|1- K—D - pH-pr(t)
where:
emr,, (t) = Emergence rate of overwintering alternate prey at t

pDisp,, = Proportion of emerging alternate prey that disperse

r = Rate of growth of alternate prey

Kp = Carrying capacity of alternate prey in numbers per cm2 leaf surface area

Overwintering alternate prey emerge at a fixed rate following the day on which emergence
commences according to:
erate, 1> T o
emr,, (t) =
0 otherwise

where:
emteHO = Emergence rate of overwintering alternate prey

T,,, = Day of emergence of overwintering alternate prey
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Predator Population & Nutrient Reserves. The predator population is represented by three

differential equations for eggs, Pe, juveniles, P;, adults P, and one for overwintering adults,
Po, as follows:

dP, .
(8) T = 0-PC - e]p'PE

dPJ ; :
(9) Fri e]p-PE -Jjap' P, - dpj(t) P

dP,
(10) Y —-emrpo(t)-PO

dpP ‘ _

(11) T Zemrpo(t)-(l —pDzspPO)PO + jap'P,- dpa(t)-P

where:

o = Rate of conversion of egg reserve to oviposited eggs
P =Total egg reserve of adult predator population (see Eq. 12)

ejp = Maturation rate of eggs to juvenile stage

Ja,=Maturation rate of juveniles to adults
dpj(z‘) = Mortality rate of juveniles

emr (t) =Emergence rate of overwintering adult predators at t
Po

pDisp, = Proportion of overwintering adult predators that disperse on emergence
dpa (t) = Mortality rate of adults

Additionally, adult predator egg reserves, Pc, and adult predator sugar reserves, Ps, are

represented by the differential equations
dpP

c P
(12) T: u-pn. 'pra(t)'7 -O'Pc—dpa(t)'PC
dPs . .
(13) Frane emry, (1) -(1 —pDzspPo) Py +s. . -ja,"P,+ upn(t)-pr(t)-P+ f(t)-P—mP
= dpa(t)-PS
where:
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u = The nutritional value of individual prey items

pn, = The proportion of consumed prey going to egg production
pr,(t) = Predation rate by adults at t

s ., = Sugar reserve of emerging overwintering adults

14
S..ip = Initial sugar reserve of new ecolosed adults

pns( t) = The proportion of consumed prey going to sugar reserves att
/.(t) = Rate of floral resource consumption at t

m = Daily maintenance costs

Mortality of juveniles is a function of predation rate and the presence or absence of floral

resources and is given by

pd_. prj(t) 2 pj. orflr=true

dpj(t) ={ pd_ —pdjs'prj(t) prj(t) <V andprj(t) > 0 and fIr = false
pd_ . prj(t) =0 and fIr = false

where:
pd_. = Minimum predator mortality rate

prj( t) = Predation rate by juveniles
Py = Minimum predation rate before juvenile mortality starts increasing
flIr = Boolean : Are floral resources present in this cell? [A static, configured feature of cell]
pd___=Maximum predator mortality rate
max
(pdmax o pdmin)

pdj = ;
: pjmin

Mortality of adults is a function of sugar reserves, Ps, and is given by
P

S
pdmin ? 2 Smin
P P P
d (=1 pd —pd — - <5 and— >0
pa P max ps P P min P
P
S —
Py 5 =0
where:
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PS ;
5 - Per capita adult energy reserve

S i = Minimum per capita energy before mortality starts increasing

(pdmax B pdmin)

S .
min

pd =

Overwintering adult predators emerge at a fixed rate following the day on which
emergence commences according to:
erate, 1> T Po
emr, (t) =
0 otherwise

where:
erate, =Emergence rate of overwintering adult predators

T,,,=Day of emergence of overwintering adult predators

Floral consumption by adult predators is a function of predation rate and the availability of
floral resources and is given by

2
_ 5
0 Sflr=false or pr (¢) > pr_. or P 28
ALY fr - (1 — p: . flr=true and pr (¢) < pr_.
crit
S Jlr=true and pr (1) =0

where:
pr,,,, = Predation rate at which predators start switching to floral resource consumption

S ax — Maximum per capita sugar reserve

Sr . =Maximum rate of floral resource consumption

Proportion of prey consumption going to the sugar reserve is a step function given by
P

0 _S - smax
pn (1) = F
pn_  otherwise
where:

pn = Proportion of prey nutrition going to energy reserves
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Predation Rate. Predation by adult predators follows a Type Il Holling functional response
given by
Hol - (6-0)

P =5 o) Hol,

where:
Hol, = Maximum consumption rate (Holling's K parameter)
&= Density of prey
G =Search area of predator
Hol, = Prey density at which consumption is half of maximum (Holling's D parameter)

Note that (8 . (5) gives the number of prey available to predators at t, where prey density is calculated as
N+ N, +H
8: —_— %
L(t) -9L~ A
where:

8, = Proportion of leaf surface occupied by the pest population [ degree of aggregation |

Predation by juvenile predators is a simple proportion, jor, of predation by adults and is
given by

pr(t)=j, - pr,(1)
Total predation is then given by
pr(t) = pr,(t)-P + pr(1)-P,

which appears in differential equations (2), (4), and (7) in the respective losses to predation

terms -- modified by the proportion of total prey represented by that type -- for example,
N

J
N=— "
Py N+N+H

Diffusion
Adult pest insects, alternate prey, and adult predators engage in trivial movement that is
represented via diffusion as

(14) g—i‘ =V-(D(x, y,1)-Vu) + R(x,y, {)

where:
u = Adult population at (x, y, t)
D(x, y, t) = Diffusion coefficient at-(x, y, t) based on current local conditions
R(x, y, t) = Reflection at boundaries between host and non-host
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For adult pest insects, diffusion varies with cumulative density, C (DEq. 5), according to the
equation

D Cx,»,t)=0
Dmax B Dmin

D(x,y,t)={ D ..+ | — ~— ['Clxnt) 0=C(xyt)<C_ .
crit
Dmax C()C, e t) > Ccril

where:
D . =Minimum diffusion rate of adult pest insects
D =Maximum diffusion rate of adult pest insects

C(x, y, t) = Cumulative pest density at- (x, y, t)

For adult predators, diffusion varies with the predation rat¥,(t), according to the equation

D_. pr(xy,1)=0
Dmin B Dmax

D(x,y,t)={ D___+ TIK pr(x,y,t) 0 < pr(xyt) < Hol,

D .. pr,(x,y,t) > Hol,
where:
D =Maximum diffusion rate of adult predators
D . = Minimum diffusion rate of adult predators
min

pr,(x, y, t) = Predation rate of adult predators at- (x, y, t)

For alternate prey, the diffusion rate is a constant.

Adult predator egg reserves, Pc(DEq. 12), and sugar reserves, Ps(DEq 13), diffuse along
with individual adult predators based on their per capita values. For example, for the egg
reserve, if directional flux of adult predators is given by

J(x,yﬁxd,yd,t> =-D(x,p. 1) (u(x, 5, 1) ~u(x3,1))

then
Po(x,p,1)

(I)C<x,y—>xd,yd,t>=W‘J(x,y—>xd,yd,t>
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Where
D(x, y, t) = Diffusion coefficient at origin
u(x,y, t) = Adult predators at origin
u (xd, Yy t) = Adult predators at destination

CDC(x,y =X,V t) = Flux of egg reserves

The analogous equation for flux of the sugar reserve, (Ds, is obtained by substituting Ps forPC.

Adult pestinsects and alternate prey undergo proportional reflection at the boundaries
between host and non-host vegetation according to the equation

R(x,y,t) = Z D(x, y, t) -u(x,y, t)'P'Xhost(x,y)'[l - Xhos,(X’,y’)]
neighbors(x', y")

where:
p = Proportion reflected back at boundary between host and non - host vegetation

Xposs (% V) = Indicator function : 1 if host, 0 if non~host

Predators do not reflect at vegetation boundaries.

Dispersal

Adult pestinsects, alternate prey, and adult predators engage in long range dispersal at
emergence from overwintering and in response to local conditions. The number dispersing
from (x,y) at t is represented by the equation

(15) Alx,y, t)=@(x,», t) - u(x,y,t) + O(x,y,t)

where:
A(x, y, t) = The total number of adults dispersing

¢ (x, ¥, t) = The proportion dispersing in response to current local conditions
u(x,y, t) =Adult population at (x, y, t)
O(x, y, t) = The number of emerging overwintering adults dispersing

For adult pest insects, the dispersal rate is directly proportional to adult mortality, d(t) (See
DEq 4). So, their dispersal rate is given by
¢(xy 1) =0 d(1)

Likewise, the dispersal rate of adult predators is directly proportional to adult mortality, dpa
(t) (See DEq 11), and is given by

29



Py, 1) =0 d, (1)
For alternate prey, dispersal rate is a function of density (See DEqg 7) as follows

[zl

() (X, Y, t) = (pp KD
0 otherwise

In each of the above equations for @(x, y, t),

<pp€(<p

st Pored Patt—prey ), depending on the population

For pest insects, O(x, y, t), is calculated as follows (See DEq 3)
O(x, y, t) =emr,, (t)Ny pDisp,,

and is calculated in like manner with the analogous parameters for emerging predators
(See DEq 6) and emerging alternate prey (See DEq 10).

Assignment of dispersers to new locations in the landscape is handled stochastically as
whole numbers. First, the integer number dispersing is obtained via stochastic rounding by
floor(A(x,y,¢)) +1 U < frac(A(x, y,1))

A (x,y,t) =
actual floor(A(x, y, t)) otherwise

where:
U= A uniform random variate on U (0, 1)
floor(A(x, y, t) ) = Whole number part of A(x, y, t)
frac(A(x, y, t) ) = The fractional part of A(x, y, t)

For each individual disperser, a flight distance is randomly drawn from a Weibull
distribution given by the function

UL (%) RE

where:
k = Shape parameter, determining shape of the distribution

A= Scale paramter, determining median flight distance

A flight direction for each disperser is obtained by
v=360-U

The destination{4»’4 ) is then obtained from WD(d) and v via trigonometry relative to (x,y)

using the sampled flight distance and direction.
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The flux of predator egg reserves is given in similar manner as for diffusion by

P_(x,,1)
C
.Aactual<x’ y= xd’ yd’ t)

CI)C<X,)’ X Ve t) - u(x,y,t)

where
P.(x,y, t) =Adult predator sugar reserves [DEq 12]

Aactual(x, YoX, Y, t) = Flux of adult predators from origin to (xd, yd) via dispersal

with flow of the sugar reserve, @, being obtained by substituting PS forPC

Implementation

The above model is numerically solved for a grid of 1130 x 1130 cells, each 10 x 10 m,
representing a square landscape tile 16km on the diagonal. Each cell advances its own
system of differential equations as described under Population Dynamics via the Euler
method. Diffusion of adults is solved using a forward-difference scheme. Dispersal is
calculated at each time step after the within cell system has been advanced and adults
have been redistributed via diffusion. A time step of 0.05 is used for both within cell and
diffusion updates.

The model was implemented in C++ on Windows System for Linux using the Linux g++
compiler. We employed the openmp library (http://www.openmp.org) to enable parallel
processing — calculations for individual cells were distributed to multiple processors
whenever there was no dependence between cells. Stochastic algorithms were
implemented using a Mersenne Twister random number generator seeded via a call to the
C++ library function random_device as implemented for the Windows System for Linux. All
scenarios were run on a AMD Ryzen 9 7850X processor.

The C++ implementation was validated by ensuring it met the following criteria:

1. Output of the within-cell model implemented in C++ closely approximates that
generated by the same system of differential equations implemented in Maple 2021.

2. When adults and energy reserves originate from a point source (large values in a single
cell, zero elsewhere), diffusion calculations generate distributions over time that closely
approximate a normal distribution with a standard deviation of 2Dt.

3. Adults and energy reserves diffuse independently. l.e., if an area with low numbers of
adults but high energy reserves is next to an area with high numbers of adults but low
energy reserves, the net movement of adults and energy are in opposite directions.

4. Simulated flight distances closely approximate the corresponding Weibull distribution.

Parameterization
Tables S1-S4 list all parameters used in the model with explanations and references where
applicable. Rationale for selected parameters are explained below.
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Rationale for parameter value for the energy consumed per day by a predatory bug feeding
on floral resources.
We perform a crude calculation, based on various information available in the literature, to
provide a realistic starting point for estimating the amount of energy consumed per day by
a predatory bug feeding on floral resources. Our approach is as follows:
1) Find an experimentally measured rate of floral energy consumption:
May (S1) estimates that Agraulis, a nectarivorous butterfly, consumes 0.6 J of
energy per second via floral feeding.
2) Scale that value based on the mass of Geocoris relative to Agraulis:
Cardoso & Gilbert (S2) calculate a dry weight of 50 mg for Agraulis. Cohen & Staten
(S3) calculate a dry weight of 1.8 mg for Geocoris. This yields an estimate for energy
consumed by Geocoris per minute of
(0.6J/s)x (1.8 mg/50 mg)x60s=1.3J/m
3) Determine how many days of maintenance this represents for Geocoris:
Cohen & Byrne (S4) estimates a daily expenditure for maintenance of 3.6 J for
Geocoris. This yields an estimate for days-of-maintenance consumed per minute by
Geocoris of
1.3J/3.6 1 =0.36 days/minute
Which is equal to roughly 21 days of maintenance every hour, or 518 days per day.

We divide this value by 10, yielding our parameter of value 50 days of maintenance energy
consumed per day by a predatory bug feeding on floral resources. Our reasoning is as
follows: (a) There will be a search and handling time associated with consumption of floral
resources, decreasing the actual amount of energy they can consume per unit time; (b)
floral resources are a supplementary resource for Geocoris and they are likely much less
efficient than Agraulis at feeding on floral resources; and, (¢) we have not accounted for
allometric effects, therefore the actual consumption rate by Geocoris is likely to be less
than that estimated via a simple linear scaling. Since we assume a maximum energy
reserve of 10 days’-worth of maintenance energy, our generalist predator obtains this
maximum reserve in roughly 5 hours of feeding exclusively on floral resources. We
consider this to be a generous estimate of the potential value of floral resources to a
predatory bug.

Rationale for the parameter value for overwintering densities of pest insects and predators.
We generated rough estimates of overwintering density of Lygus, Geocoris, Orius in non-
crop vegetation from two different sources as follows:

1) Horton & Lewis (S5) estimate the average number of overwintering Lygus, Geocoris,
and Orius per 5 common mullein plants at 10, 15, and 0.6 respectively. Data presented
Reinartz (S6) estimates the density of a stand of mullein at up to 5 plants per m2.
Therefore, the per-5-plants estimates by Horton & Lewis (S5) is also a rough estimate
for m? density.
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2) Fye (S7) estimated late-summer density in pigweed —which we take as a rough
equivalent to overwintering density—to be 1.2, 1.1, and 2.1 per m2 for Lygus, Geocotis,
and Orius respectively.

We use overwintering densities that are at the higher end of these two estimates.

Rationale for Weibull distribution parameters
The Weibull function defines a family of probability distributions and is expressed as

k jx\k-1 _(1)"

7G) e
where k is the shape parameter and A is the distance (or scale) parameter. Different values
of the shape parameter determine the shape of the distribution; for example, a negative
exponential distribution, a normal distribution, or a fat-tail distribution. The distance
parameter determines the central tendency of the distribution.

Sivakoff et al. (S8) reports a field study in which insects in a field of alfalfa were sprayed
with animal-based proteins, the field was subsequently cut, and insects collected in
adjacent cotton were analyzed via ELISA to identify those that originated in the alfalfa field.
We used data from this study to choose the value of the Weibull shape parameter as
follows:

1. We adapted the simulation model presented in this paper to simulate only diffusion
and dispersal by the pest insect and predator without any mortality or reproduction.

2. We used the mean squared displacements reported in Sivakoff et al. (S8) to calculate a
distance parameter of 1600.

3. We ran the adapted simulation for multiple values of the shape parameter, k, using this
distance parameter value (A=1600). The distribution of adults at day 5 was taken as the
model’s prediction of the expected distribution of individuals under the respective
Weibull parameters. The simulated distributions are shown in Fig. S1, together with the
actual distribution of Lygus and Geocoris.

4. Avisual examination suggests that the recaptures for both Lygus and Geocoris are
consistent with a shape parameter value of k=1.5. A Goodness-of-fit test comparing
simulated distributions to the recapture distributions (averaged across the 5 days)
supports this conclusion. Simulated transects for values other than 1.5 were a poor fit
to the recapture data, all of them having p<0.001 of being from the same distribution;
for a value of k=1.5, p>0.25 that simulated and actual recaptures were from the same
distribution.

Accordingly, for our simulation study we use shape parameter of k=1.5 for both the
generalist predator and the pestinsect and a distance parameter in our simulations,
A=1600.

In silico experiments
Landscape structure

33



Experiments are conducted on a square landscape tile thatis 11.3 km on a side - this is
equivalent to a diagonal length of approximately 16 km. Boundary conditions are reflective
to movement: diffusion uses reflective (mirror) boundaries, whereas long-distance
dispersal uses toroidal wrap-around. Because the landscape structure is symmetric and
the focal field is centered, these two boundary behaviors produce effectively equivalent
edge dynamics. As a result, the simulation predicts the dynamics that occuron a
hypothetical “infinite” landscape composed of repeating tiles of the same size and
structure. Spatial resolution is 10 x 10 meters, so the grid dimensions are 1130 x 1130
cells.

Each cell has one of three possible vegetation types: crop, natural habitat (NH), or
uncultivated margins. By default, all cells represent crop vegetation; thus, the landscape is
a pure crop monoculture interrupted by margins and NH patches. Uncultivated margins
occur on the landscape grid every 100 rows and every 100 columns, beginning at row and
column 50; thus, they are 1km apart and 10 m wide. The pest insect and alternate prey
overwinter as adults in these margins, which can be thought of as “county roads”
crisscrossing the agricultural landscape; the generalist predator only overwinters in NH
patches.

For ease of implementation, whether a cellis crop or NH is specified at the resolution of
hectares, which corresponds to a grid of 113 x 113 hectares. The configuration of NH in the
landscape varies between experiments based on (1) the percentage of the landscape
occupied by NH and (2) the distribution of NH across the landscape. NH is always evenly
distributed across the landscape but is broken into different numbers of patches for
different experiments. The generalist predator overwinters in and disperses from these NH
patches at the beginning of the simulated season. A simple CSV file containing a matrix of
113 x 113 codes specifies the configuration of NH patches in the landscape for any single
experiment. Further details are provided below under Landscape variables.

Pest types

We define three pest population types based on population growth rate and spatial
aggregation (see Table S5):

e The lygus-type pest has slow population growth relative to the predator and is evenly

dispersed across the crop leaf surface (e.g., Lygus spp. on California cotton).

e The whitefly-type pest exhibits rapid population growth but remains evenly dispersed
(e.g., Bemisia tabaci on California tomato).

e The aphid-type pest exhibits rapid population growth and strong spatial aggregation
(e.g., aphids in Midwest US corn systems). For the aphid-type, we simulate predator
aggregation by restricting interaction to a fixed proportion of crop leaf surface area,
reflecting localized foraging in prey-dense canopy zones. This operationalizes spatial
concentration without requiring explicit spatial modeling.
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Pest population types also vary in the peak density achieved. For comparative purposes,
Table S5 shows the peak number of nymphs and adults present on a 100 cm? leaf. These
peak numbers approximate the treatment thresholds for aphids, Lygus, and whitefly in
cotton in California. Since pest populations in the field can greatly exceed these
thresholds, we performed a sensitivity test to ensure that our key results were unaffected
by large increases in simulated pest density which is described below.

All simulation experiments defined below were conducted separately for each of these
pest population types by configuring the pest parameter values according to Table S5.

Controls

For comparison of the effects of parameter variation within pest population types, we
require a simulation to use as a control. For this we use a landscape consisting of the crop
with uncultivated margins as described above, but with no NH patches and therefore no
generalist predator. We ran this control simulation for each pest population type giving us
the crop pest load achieved by that pest type in the absence of any predation; all other
simulation experiments include predators.

Experimental variables

We used a bracketing design to evaluate the effects of landscape and predator
parameters. We used this approach because a full factorial across all landscape and
predator parameters would be computationally prohibitive and unnecessary for isolating
the causal influence of each parameter on predator dynamics and pest load. Baseline
conditions were defined as 5% NH coverage distributed across 16 patches, no
supplemental resources in the crop, and baseline values for all predator traits (Table S6).
Each experiment varied a single landscape or predator parameter above or below its
baseline value. All bracketing experiments were then run for each pest type both with
alternate prey and floral resources available in the crop and without; the response variable
is cumulative pest density, expressed relative to the control for that pest type. This
resulted in 52 simulation experiments plus one control (see above) for each pest
population type, for a total of 159 simulations. See Table S6 for the full list of parameter
values used for landscape attributes and predator traits.

Figure S2 shows the distribution of NH patches for the four different landscape
configurations of natural habitat listed in Table 2 at 5% total NH coverage. Because crop
and NH vegetation are specified at a one-hectare resolution (see Landscape structure,
above), patch sizes in a given experiment are not always perfectly uniform in area or shape;
the number of hectares required to achieve the desired percent NH coverage does not
always divide evenly among the specified number of patches. However, the resulting
variation among patches is small and does not affect interpretation. The exact landscape
configurations used can be found in the configuration files provided with the code
repository.
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Figures S3-S5 show population trends in the central focal-field for the pestinsect,
alternate prey, and predator under baseline conditions for all three pest population types.

Analysis of output
Simulation output
The simulation writes key state variables and metrics for individual cells to an output file
every 5 days and for every fifth row and column of cells. For our analysis we use the
following output variables:

e Cumulative prey per cm? leaf area up totime t

e Number of predators immigrating to the cell during the At immediately preceding
timet
e Energy units per predator attime t

We are interested in the effects of our experimental variables on pest load and predator
dynamics in the 1Tkm? focal field at the center of the landscape tile, outlined in red on the
illustrations in Fig. S2. This follows standard practice in landscape ecology: using a focal
field preserves the effects of landscape gradients such as distance to the nearest NH
patch, which would be obscured if metrics were averaged across the entire landscape.
The focal filed corresponds to rows and columns 515to 615 in our 1130 x 1130 grid. With
every fifth cell (by row and column) being sampled, this results in 400 sample points
across the focal field every 5 days.

Cumulative pest load

Cumulative pest density is a state variable in our model given by Eq. 5 under Mathematical
Model; it captures the total pest pressure experienced by the crop up to time t. Because
the three pest types followed different population trajectories in the control simulations—
reaching their peaks at different times and at different densities—we standardized
comparisons by measuring cumulative pest density up to the peak day in the control
simulation for each pest type. Using the control peak day as a fixed reference ensures that
cumulative pest load is measured over a consistent developmental window across all
experiments for each pest type. These peak days were day 60, day 120, and day 75 for the
aphid-, lygus-, and whitefly-type pests, respectively.

Analyses and plots of crop pest load versus predator metrics (Figs. 5 and 6 in main text)
use average cumulative pest density to peak population day in the focal field. Plots of the
effects of experimental variables (Figs. 3 and 4 in main text) use relative pest load
calculated as the average cumulative pest load to peak day in a simulation experiment
(See Table S5) divided by the average cumulative pest load to peak day in the control
simulation for that pest type.

Predator metrics

Our objective is to measure the status of the predator population early in the season—the
period over which predator colonization and subsequent population growth determine
their influence on later pest dynamics. Although the exact length of the early-season
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window is not biologically fixed, inspection of population trajectories across many
simulations showed that predators consistently colonize and either establish or fail to
establish within the first 40 days after pest emergence. We therefore use this 40-day period
(days 15-55) as the ecologically relevant window for quantifying early-season predator
status. Although this window represents different proportions of the time to peak between
pest types (see above), this asymmetry reflects real differences in pest population
trajectories during this early-season window and is essential for interpreting their effects
on natural control.

Immigration. We calculate the average number of predators immigrating to cells in the
focal field across the 400 sample cells and the 8 sampling days (see Simulation output)
spanning days 15 to 55. Since the simulation output is in numbers immigrating over the
preceding time step, and At = 0.05, our metric becomes the average sampled immigration
divided by 0.4 (8 x 0.05). Our metric then becomes a measure of the early-season
immigration rate to the focal field — that is, the average number of predators immigrating
per cell per day during the 40-day early-season window. Because immigration counts
include arrivals from both outside and within the focal field, this metric may slightly
overestimate true external colonization. However, examination of immigration and
emigration events indicates that emigration from the focal field is rare, even when median
dispersal distance is low, so any inflation is minor and does not materially affect
interpretation.

Energy accumulation. Forthe energy accumulation metric, we calculate the average per
capita energy content of predators in the focal field across the 400 sample cells and the 8
sampling days (see Simulation output) spanning days 15 to 55.

Table S7 shows full linear model results for predator immigration versus experimental
variables; Table S8 shows linear model results for energy accumulation versus
experimental variables. Tables S9 through S11 show linear model results for pest load
versus predator metrics for aphid-type, lygus-type, and whitefly-type pests, respectively.

Test of sensitivity to peak pest populations

To evaluate the sensitivity of our primary results and conclusions to peak pest density, we
ran simulation experiments at increased critical density of our three pest population types
for baseline configurations: 1.0 vs 0.5 for aphid-type, 0.4 vs 0.25 for lygus-type, and 0.6 vs
0.3 for whitefly-type. Simulations were run at baseline parameter values and default
landscape configurations. The aphid-type pest reached a peak density of 12.0/leaf
(assuming 100 cm? per leaf) in the absence of predators, the lygus-type pest reached a
peak density of 1.6/leaf, and the whitefly-type reached 5.3/leaf. These were each 2 times
the peak pest densities in our main experiments (See Table S5).

The relative effect of predator overwintering and crop-based supplemental resources was
essentially the same for our sensitivity test and for our baseline pest population
parameters for aphid-type and lygus-type pests (Fig. S6 A and B), and only slightly different
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for the whitefly-type pest (Fig. S6C). The direction of the difference in pest load at higher
peak densities of the whitefly-type pest tends to amplify, rather than attenuate, the
patterns we discuss in the main text. We conclude that, although our simulated pest
densities were lower than can be seen in the field during pest outbreaks, our primary

results and conclusions are robust with respect to the pest densities reached in our in
silico experiments.
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Fig. S1.
A) Simulated sampling transects for varying values of k
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Simulated recaptures (A) versus actual recaptures for Lygus (B) and Geocoris (C) from
Sivakoff et al. (S8).
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Fig. S2.

A B B O
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B) D)
Schematics of configuration of natural habitat in the landscape at 5% total NH coverage for: (A)
four NH patches at corners, 8km from center of landscape (note that, because boundaries are
reflective, these represent 4 large NH patches centered on the corners of the landscape tile); (B)
one patch in each landscape quadrant, each 4km from center of landscape; (C) four patches in

each quadrant, closest patch 2 km from center of landscape; (D) 16 patches in each quadrant,
closest patch 1 km from center of landscape.
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Fig. S3.
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9)

Numbers of aphid-type pest insects, alternate prey, and predators per 100 m? for no-predator
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control (A), overwintering predators but no crop-based resources (B), predators with crop-based
resources (C). All runs are with baseline parameters listed in Table S6.
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Fig. S4.
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Numbers of lygus-type pest insects, alternate prey, and predators per 100 m? for no-
predator control (A), overwintering predators but no crop-based resources (B), predators
with crop-based resources (C). All runs are with baseline parameters listed in Table S6.

42



Fig. S5.
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predator control (A), overwintering predators but no crop-based resources (B), predators
with crop-based resources (C). All runs are with baseline parameters listed in Table S6.



Fig. S6.
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Relative crop pest load with baseline population parameters (solid lines) and with peak
populations increased two-fold (dashed lines) for aphid-type (A), lygus-type (B), and
whitefly-type (C) pests.

44



Table S1.

Pest Insect Parameters. NOTE: For parameters that vary between pest population types,
values are shown separately for lygus-, aphid-, and whitefly-types. Support/Rationale
apply to Lygus spp. Parameter values for aphid- and whitefly-types are adjusted relative to
lygus value to achieve the desired pest population type attributes (see main text). Symbols
match variables in Mathematical Model and Implementation.

Parameter Symbol | Value Interpretation Support/Rational
e
Population Egg hatch ej lygus 0.087/day Median duration: | Ugine (S9)
Growth rate aphid 0.173/day lygus 8
whitefly | 0.173/day day
s
aphid 4
day
s
whitefl | 4
y day
s
Nymph ja lygus 0.033/day Median duration: | Ugine (S9)
maturation aphid 0.069/day lygus 21
rate whitefly | 0.069/day day
s
aphid 10
day
s
whitefl | 10
y day
s
External di 0.0866/day Rate of loss of Fleischer &
mortality eggs and Gaylor (S10)
rate nymphs to
external
mortality
sources other
than predation
Adult do 0.0495/day Median Ugine (S9)
minimum longevity: 14
(intrinsic) days (under ideal
mortality conditions)
rate
Max b, lygus 4 Fecundity when Ugine (S9)
fecundity eggs/day cumulative
aphid 6 density is low
eggs/day
whitefly | 4
eggs/day
Density Adult Amax lygus 0.099/day Median longevity | Speculative
Dependence | maximum aphid 0.1386/da above critical Assumes slightly
mortality y threshold: higher mortality
for aphid and
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whitefl | 0.1386/da lygus 7 whitefly types at
y y day peak densities.
s
aphid 5
day
s
whitefl | 5
y day
s
Min Bmin lygus 1.25 Fecundity when | Speculative
fecundity eggs/d cumulative Assumes slightly
aphid 0.80 density is above lower fecundity
eggs/d critical for aphid and
whitefly | 0.75 threshold. whitefly types at
eggs/d peak densities.
Critical Cerit lygus 0.25 At critical Populations
cumulative aphid 0.50 cumulative approach
density whitefly | 0.30 density mortality | treatment
Units: (/cm?) x days is at maximum thresholds at
and fecundity is peak. See Table 1
at minimum. in main text.
Proportion of | O, lygus 1.00 Degree of Lygus is highly
leaf surface aphid 0.33 aggregation of mobile. Whitefly
occupied by whitefly | 1.00 pest population. | tend to disperse
pest Note that across the leaf
population foraging surface. Aphids
predators are generally occur in
assumed to distinct colonies.
restrict their
search to the
area occupied by
the respective
pest population.
Movement Minimum Nomin 50 m?/day Comparable to Fleischer et al.
diffusion field (S11)
rate measurements Bancroft (S12)
of lygus diffusion
& other plant
bugs.
Maximum DNmax 200 m?/day Comparable to Fleischer et al.
diffusion field (S11)
rate measurements Bancroft (S12)
of lygus diffusion
& other plant
bugs.
Proportional p 0.8 80% of diffusing Speculative

reflection at
host/non-
host
boundaries

pestinsects
return to the
original location
on encountering
a host -> non-
host boundary
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Dispersal A 1600 Distance See Rationale for
distance parameter for Weibull
parameter the Weibull distribution
distribution. parameters
Median flight
distance.

Dispersal k 1.5 Shape See Rationale for

shape parameter for Weibull

parameter the Weibull distribution
distribution. parameters
Results in
classic Weibull
fat-tail
distribution.

Proportional | Wpest 1.0 An equal number | Speculative

dispersal of adult pests

rate relative disperse as

to mortality would die at time
t.

Overwinterin | Number of Not=0 8/m? Adult pest Fye (S7)
g pestinsects insects Horton & Lewis
overwinterin overwinterin (S5)

g field margins See Rationale for
only atadensity | the parameter
of 8/m? value for

overwintering
densities of pest
insects and
predators

Rate of erateno 0.693/day Median time to Speculative

emergence emergence: 1

from day

overwinterin

g

Day Tno Day 14 Pestinsects Speculative

emergence start emerging

from from

overwinterin overwintering

g roughly 2 weeks

commences after crop
germination

Proportion pDispy | 0.5 50% of emerging | Speculative

dispersing at o predators

emergence immediately
disperse.

Table S2.
Predator Parameters
Parameter Symbol Value Interpretation Support/Rationale
Population Egg hatchrate | ejp 0.1386/day Median duration: 5 Speculative. Set to
Growth days half of nymph stage
duration.
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Nymph jar 0.0462/day Median duration: Torres etal. (S13)
maturation 15 days
rate
Minimum PAmin 0.0347/day Median longevity: Torres etal. (S13)
(intrinsic) 20 days
mortality rate
Maximum PAmax 0.345/day Median longevity: 2 | Speculative
mortality days (following
exhaustion of sugar
reserves)
Predation Max predation | Holk 20 prey/day Maximum prey Torresetal. (S13)
Rate rate consumed per day.
K parameter for
Holling Type Il
functional
response
Rate of Holp 25 Prey availability at Speculative
approach to which consumption
max predation is 2 K. D parameter
for Holling Type Il
functional
response
Predator Prsearch 2000 cm?/ Multiplying by prey Naranjo & Hagler
Search area day density gives (S14)
number of prey
currently available
to predator, which
isthen used in
Holling Type Il
function.
Relative Jor 0.25 Nymphs follow the Torresetal. (S13)
predation by same functional
nymphs response but are
assumed to have a
predation rate 25%
that of adults.
Predation rate | pjmin 1 prey/day When nymphs are Speculative
at which consuming less
nymph than 1 prey/day,
mortality mortality increases
starts torise linearly to max.
Egg Reserve & | Energy value u 1.33 units Each prey provides | Nutrition units are in
Oviposition of prey 1.33 total units of the number of eggs

nutrition to the
predator. A
proportion is routed
to the egg reserve;
the rest to the sugar
reserve.

produced from

consuming the units.

For simplicity, sugar
units are equated to
egg units; the
meaning of sugar
units should be

interpreted as relative

to the daily
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maintenance energy
cost.

Proportion of pnc 0.75 75% of prey energy | Morales-Ramos et al
prey energy to goes to the egg (S15)
eggs reserve. Given Finke (S16)
u=1.33, one egg is (Carbohydrates are
produced for every low proportion of
prey item macronutrient
consumed. The content of insects)
remainder (25%)
goes to sugar
reserves.
Oviposition o 0.25/day Median time from Bueno etal. (S17)
rate prey consumption (Comparable to pre-
to oviposition: 2.77 | oviposition period at
days. (Note that the | 25 deg C)
eggreserveisin
“egg equivalents”).
Sugar Daily m 0.2 units Each predatoruses | --
Reserve & maintenance 0.2 units from the
Daily cost sugar reserve each
Maintenance day for
maintenance.
Initial sugar Sinit 2.0 units 10 days of Speculative.
reserve maintenance
energy
Amount of Smin 0.4 units 2 days of Speculative
sugarin maintenance
reserve at energy
which
mortality
starts to
increase
Consumption | flrmax 50 days/day | When floral See Rationale for
rate resources are parameter value for
available, predators | the energy consumed
can consumethem | perday by a predatory
at arate of 50 days’ | bug feeding on floral
worth of energyina | resources
day. (But see Max
sugar reserve
below).
Predation rate DT erit 10/day Predators start Speculative

at switch to
floral
resources

making use of floral
resources when the
predation rate falls
below 10 prey/day.
Floral consumption
rate increases
proportionally, and
linearly as
predation rate

Limburg & Rosenheim
(S18) report a similar
prey-dependent
switch by larval
lacewings.
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declines from 10 to
0 prey/day.

Max sugar Smax 10 days Predators can hold | Speculative. We
reserve no more than 10 assume a limit to the
days’ worth of amount of sugar
energy in reserve. energy a predator can
hold in reserve at any
one time.
Movement Minimum Pomin 25 m?/day On average, it is See herbivore
diffusion rate comparable to
herbivore diffusion.
Stronger response
to changing
resource
conditions.
Maximum meax 400 m?/day On average, it is See herbivore
diffusion rate comparable to
herbivore diffusion.
Stronger response
to changing
resource
conditions.
Dispersalrate | Wprea 1.0 The proportion of Speculative
relative to adults dispersing
mortality per day is tied to
mortality rate.
Dispersal A 1600 This is the distance | See Rationale for
distance parameter for the Weibull distribution
parameter Weibull parameters
distribution.
Median flight
distance.
Dispersal k 1.5 This is the shape See Rationale for
shape parameter for the Weibull distribution
parameter Weibull parameters
distribution.
Results in classic
Weibull fat-tail
distribution.
Overwintering | Number Pot=0 4/m? Adult predators Fye (S7)
overwintering overwinterin Horton & Lewis (S5)
natural habitat only | See Rationale for the
at a density of 4/m2. | parameter value for
One half the density | overwintering
of overwintering densities of pest
pestinsects. insects and predators
Overwintering | s, 2 units 10 days’ worth. Speculative
pred initial
sugar reserve
Rate of eratep, 0.693/day Median time to Speculative
emergence emergence: 1 day
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from
overwintering

Day Tro Day 14 Predators start Speculative
emergence emerging from
from overwintering
overwintering roughly 2 weeks
commences after crop
germination. Same
day as pest insect.
Proportion pDispp, | 0.5 50% of emerging Speculative
dispersing at predators
emergence immediately
disperse.
Table S3.
Alternate Prey Parameters
Parameter Symbol | Value Interpretation Support/Rationale
Population Carrying Kb 0.004/cm? Logistic growth Results in maximum
Growth capacityin used for alt prey. K number of alternate
crop is per unit leaf area. | prey roughly half of
Equivalentto 0.4 alt | peak numbers of pest
prey every 100cm? insect without
of leaf surface. predation.
Growth rate r 0.12/day rin logistic growth Alternate prey reach
equation carrying capacity half-
way through season.
Movement Diffusion Rate | Dy 100 m?/day | Comparable to pest | --
when cell insect and predator
supports at average
alternate prey conditions.
Proportional p 0.8 80% of diffusing Speculative
reflection at alternate prey
host/non-host return to the
boundaries original location on
encountering a host
->non-host
boundary
Dispersal A 1600 Distance parameter | See Rationale for
distance for the Weibull Weibull distribution
parameter distribution. Same parameters
as pestinsect.
Dispersal k 1.5 Shape parameter See Rationale for
shape for the Weibull Weibull distribution
parameter distribution. Same parameters
as pestinsect.
Dispersal rate Wait-prey 0.05 Alternate prey Speculative

relative to
mortality

disperse at a 5%
rate if density is
greater than Kp /2
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Overwintering | Number H0t=0 8/m? Alternate prey Fye (S7)
overwintering overwinter in field Horton & Lewis (S5)
margins only ata See Rationale for the
density of 8/m?2. parameter value for
Same density as overwintering
pestinsect. densities of pest
insects and predators
Rate of eratep, 0.693/day Median time to Speculative
emergence emergence: 1 day
from
overwintering
Day THo Day 14 Alternate prey start | Speculative
emergence emerging from
from overwintering
overwintering roughly 2 weeks
commences after crop
germination. Same
day as pest insect.
Proportion pDispyo | 0-5 50% of emerging Speculative
dispersing at alternate prey
emergence immediately
disperse.
Table S4.
Vegetation parameters
Parameter Symbol Value Interpretation Support/Rationale
Crop Max LAl a 3.0 Maximum leaf area Ko et al. (S19)
index. Comparable Other estimates of
to cotton. cotton LAl in literature
are both lower and
higher than ~3.
Growth rate B 0.025/day | Rate at which LAI Ko et al. (S19)
approaches max.
LAl is 90% of max
halfway through the
season.
Initial Days of Tinit 2 Two days of growth --
Growth at initialization
Floral resources | flr True/Fals | Presence of floral
e resources in the
crop varies by
scenario
Host Status: - Yes Crop is host plant
Pest for the pest insect.
All parameters asin
table above.
Host Status: -- Yes/No Whether the crop Assumes minimal
Alt Prey supports an density and high rate of
alternate prey trivial movement on
population varies by | non-host.
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scenario. If nota
host, alternate prey

Natural
Habitat
Vegetation

parameters
become:
° Kp =
0.00001/
cm?
e Dy=200
m?/day
Max LAl a 5.0 Maximum LAl for Speculative. Actual
semi-natural habitat | max LAl will vary greatly
depending on the
make-up of the natural
habitat. Asner et al.
(S20)
Initial Days of Tinit 30 30 days of growth at | Speculative. Assume
Growth initialization some growth of natural
habitat vegetation has
occurred prior to crop
planting.
Growth rate B 0.01 Rate at which LAI Speculative. Assume
approaches max. growth rate roughly half
that of a managed
agricultural crop.
Floral resources | flr False There are no floral
resources in the
natural habitat.
Host Status: - No Natural habitat is Assumes no egg laying,
Pest not a host plant for high morality, and high
the pestinsect. trivial movementin
Parameters non-host vegetation.
become:
L4 Ccrit= O
(/ecm?) x
days
L4 bmax=0
eggs/day
L4 dmin =
0.1386/day
e Dnin=200
m?/day
Host Status: -- No Natural habitat is Assumes minimal
Alt Prey not a host for density and high rate of

alternate prey,

parameters
become:

° Kp =
0.00001/
cm?

e Dy=200
m?/day

trivial movement on
non-host.
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Field Margins Max LAl a 1.5 Maximum LAl for Speculative. Actual
Vegetation field margins max LAl will vary greatly
depending on the
make-up of the natural
habitat. Asner et al.
(S20)
Initial Days of Tinit 15 15 days of growth at | Speculative. Assume
Growth initialization. some growth of field
margin vegetation has
occurred prior to crop
planting.
Growth rate B 0.01 Rate at which LAI Speculative. Assume
approaches max. growth rate roughly half
that of a managed
agricultural crop.
Floral resources | flr False There are no floral
resources in field
margins.
Host Status: - No Field margins are Assumes no egg laying,
Pest not a host plant for high morality, and high
the pestinsect. movement in non-host
Parameters vegetation.
become:
L4 Cerie=0
(/em?) x
days
L4 bmax=0
eggs/day
L4 dmin =
0.1386/day
e Dnin=200
m?/day
Host Status: - No Field margins are Assumes minimal
Alt Prey not a host for density and high rate of
alternate prey, movement on non-
parameters host.
become:
° Kp =
0.00001/
cm?
e Dy=200
m2/day
Table S5.

Parameters and peak density for three simulated pest population types

Pest Population Egg+ Nymph Max Oviposition % Leaf Area Peak Density per

Type Duration Rate Occupied Leaf (100 cm?/
leaf)

Aphid-type 14 days 6/day 33% 5.9/leaf
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Lygus-type

29 days

4/day

100%

0.8/leaf

Whitefly-type

14 days

4/day

100%

2.6/leaf

Table S6.

Parameters used in simulation experiments. Only one experimental variable is
manipulated at a time; other variables retain their baseline values, indicated in bold.

Experimental Variable

Parameter values

%NH 1.25% 2.5% 5% 10% 20%
NH Distribution (distance 1 km 2 km 4 km 8 km
from center of landscape to

nearest NH patch)

Predator overwintering 1/m? 2/m? 4/m? 8/m? 16/m?
density

Median dispersal distance 400 m 800 m 1600 m 3200 m 6400 m
% Dispersal at emergence 0% 25% 50% 75% 100%
Day of emergence Day 0 Day 14 Day 28 Day 42
Energy reserve at emergence | 1 day 5 days 10 days 20 days
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Table S7.
Full linear model output for predator immigration rate versus experimental variables.

Estimate Standardized Std. Error t wvalue Pr(>|t])

(Intercept) 9.615e-03 NA 3.524e-02 0.273 0.7853
NHDist -6.123e-02 -1.740e-01 1.176e-02 -5.205 6.61e-07 ***
PercentNH 7.373e-02 5.433e-01 4.532e-03 16.270 < 2e-16 ***
CropResYes -7.192e-02 -8.331e-02 4.983e-02 -1.443 0.1511
DispersalDist 5.135e-05 1.211e-01 1.416e-05 3.626 0.0004 **~*
PctDispersal 5.247e-01 1.885e-01 9.278e-02 5.655 8.20e-08 ***
PredDens 1.120e-01 6.60le-01 5.665e-03 19.764 < 2e-16 ***
PredEmergence -3.717e-03 -5.717e-02 2.171e-03 -1.712 0.0890
SugarReserve -1.004e-02 -6.539%9e-02 5.120e-03 -1.962 0.0518
PestTypelL 1.058e-01 1.155e-01 4.983e-02 2.122 0.0355 *
PestTypeW 7.346e-02 8.023e-02 4.983e-02 1.474 0.1426
CropResYes:PestTypelL -1.115e-01 -9.630e-02 7.048e-02 -1.583 0.1157
CropResYes:PestTypeW -8.885e-02 -7.671e-02 7.048e-02 -1.261 0.2095

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 '*’ 0.05 ." 0.1 v’ 1

Residual standard error: 0.1797 on 143 degrees of freedom
Multiple R-squared: 0.8412, Adjusted R-squared: 0.8278
F-statistic: 63.11 on 12 and 143 DF, p-value: < 2.2e-16

Parameter | Eta2 (partial) | 95% CI
NHDist | 0.24 | [0.14, 1.00]
PercentNH | 0.63 | [0.56, 1.00]
CropRes | 0.14 | [0.06, 1.00]
DispersalDist | 0.06 | [0.01, 1.00]
PctDispersal | 0.18 | [0.10, 1.00]
PredDens | 0.73 | [0.68, 1.00]
PredEmergence | 0.02 | [0.00, 1.00]
SugarReserve | 0.03 | [0.00, 1.00]
PestType | 0.01 | [0.00, 1.00]
CropRes:PestType | 0.02 | [0.00, 1.00]

- One-sided CIs: upper bound fixed at [1.00].

Legend:

NHDist=Distribution of NH; CropResYes=Supplemental resources present in crop
vs absent; DispersalDist=Median Dispersal Distance; PctDispersal=Percent of
predators dispersing on emergence; PredDens=Density of overwintering
predators in NH; PredEmergence=Day of emergence; PestTypel=Lygus-type Vs
Aphid-type; PestTypeW=Whitefly-type vs Aphid-type
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Table S8.
Full linear model output for predator energy accumulation versus experimental variables.

Estimate Standardized Std. Error t wvalue Pr(>|t])

(Intercept) 1.186e-02 NA 1.993e-01 0.060 0.95263
NHDist -1.449%e-02 -5.172e-03 6.655e-02 -0.218 0.82797
PercentNH -7.425e-03 -6.873e-03 2.564e-02 -0.290 0.77254
CropResYes 2.619%9e+00 3.811e-01 2.819%e-01 9.289 2.35e-16 ***
DispersalDist -4.467e-05 -1.323e-02 8.012e-05 -0.558 0.57799
PctDispersal 1.517e+00 6.846e-02 5.249e-01 2.891 0.00445 **
PredDens -1.202e-02 -8.899%9e-03 3.205e-02 -0.375 0.70824
PredEmergence -1.227e-01 -2.370e-01 1.228e-02 -9.988 < 2e-16 ***
SugarReserve 1.683e-01 1.377e-01 2.896e-02 5.811 3.87e-08 ***
PestTypelL -5.525e+00 -7.581le-01 2.819e-01 -19.599 < 2e-16 ***
PestTypeW -2.660e+00 -3.649%9e-01 2.819e-01 -9.434 < 2e-16 **%*
CropResYes:PestTypel 5.665e+00 6.145e-01 3.987e-01 14.210 < 2e-16 ***
CropResYes:PestTypeW 2.778e+00 3.013e-01 3.987e-01 6.967 1.09e-10 ***

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 '*’ 0.05 ." 0.1 v’ 1

Residual standard error: 1.016 on 143 degrees of freedom
Multiple R-squared: 0.9198, Adjusted R-squared: 0.913
F-statistic: 136.6 on 12 and 143 DF, p-value: < 2.2e-16

Parameter | Eta2 (partial) | 95% CI
NHDist | 4.46e-04 | [0.00, 1.00]
PercentNH | 4.01le-05 | [0.00, 1.00]
CropRes | 0.89 | [0.86, 1.00]
DispersalDist | 2.75e-04 | [0.00, 1.00]
PctDispersal | 0.06 | [0.01, 1.00]
PredDens | 1.79e-06 | [0.00, 1.00]
PredEmergence | 0.41 | [0.31, 1.00]
SugarReserve | 0.19 | [0.10, 1.00]
PestType | 0.56 | [0.47, 1.00]
CropRes:PestType | 0.59 | [0.50, 1.00]

- One-sided CIs: upper bound fixed at [1.00].

Legend:

NHDist=Distribution of NH; CropResYes=Supplemental resources present in crop
vs absent; DispersalDist=Median Dispersal Distance; PctDispersal=Percent of
predators dispersing on emergence; PredDens=Density of overwintering
predators in NH; PredEmergence=Day of emergence; PestTypel=Lygus-type Vs
Aphid-type; PestTypeW=Whitefly-type vs Aphid-type
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Table S9.
Full linear model output for aphid-type pest load versus predator population metrics.

Residual standard error: 0.06405 on 48 degrees of freedom
Multiple R-squared: 0.81, Adjusted R-squared: 0.7981
68.2 on 3 and 48 DF, < 2.2e-16

F-statistic: p-value:

Parameter | Eta2 (partial) | 95% CI
Immigration | 0.78 | [0.69, 1.00]
Sugar | 0.31 | [0.14, 1.00]
Immigration:Sugar | 0.16 | [0.03, 1.00]

- One-sided CIs: upper bound fixed at [1.00].

Estimate Standardized Std. Error t wvalue Pr(>|t])
(Intercept) 0.387270 NA 0.008883 43.599 < 2e-16 ***
Immigration -0.335188 -0.885852 0.024702 -13.570 < 2e-16 ***
Sugar -0.023468 -0.326003 0.004604 -5.097 5.79e-06 ***
Immigration:Sugar -0.039965 -0.199790 0.013250 -3.016 0.00409 **
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 Y7 1

Legend:

Immigration=Immigrating predators per cell per day; Sugar=Average days’

worth of energy per predator

Table S10.
Full linear model output for lygus-type pest load versus predator population metrics.

Estimate Standardized Std. Error t wvalue Pr(>|t])

(Intercept) 0.133499 NA 0.004820 27.697 < 2e-16 ***
Immigration -0.039745 -0.258352 0.011914 -3.336 0.00165 **
Sugar -0.014726 -0.897353 0.001110 -13.262 < 2e-16 ***
Immigration:Sugar -0.008695 -0.234526 0.002836 -3.066 0.00356 **

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 '*’ 0.05 ." 0.1 v’ 1

Residual standard error: 0.03415 on 48 degrees of freedom
Multiple R-squared: 0.7881, Adjusted R-squared: 0.7749
59.52 on 3 and 48 DF, 3.351e-16

F-statistic: p-value:
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- One-sided CIs: upper bound fixed at [1.00].

Parameter | Eta2 (partial) | 95% CI
Immigration | 5.96e-05 | [0.00, 1.00]
Sugar | 0.78 | [0.69, 1.00]
Immigration:Sugar | 0.16 | [0.04, 1.00]

Legend:

worth of energy per predator

Immigration=Immigrating predators per cell per day;

Sugar=Average days’

Table S11.

Full linear model output for whitefly-type pest load versus predator population metrics.

(Intercept) 0.2770447 NA
Immigration -0.0789837 -0.8945637
Sugar -0.0090000 -0.6801405
Immigration:Sugar -0.0213954 -0.6935242

Signif. codes: 0 Y***’ 0.001 ‘**’ 0.01 ‘*’

0.0019156 144.
0.0050489 -15.

Estimate Standardized Std. Error t wvalue

63
64

0.0006385 -14.10
0.0017526 -12.21

0.05 . 0.1 "

Residual standard error: 0.01366 on 48 degrees of freedom
Multiple R-squared: 0.8916¢, Adjusted R-squared: 0.8848
F-statistic: 131.6 on 3 and 48 DF, p-value: < 2.2e-16

[0.50, 1.00]
[0.67, 1.00]
[0.65, 1.00]

- One-sided CIs: upper bound fixed at [1.00].

4

Parameter | Eta2 (partial) |
Immigration \ 0.64 |
Sugar \ 0.77 |
Immigration:Sugar | 0.76 |

1

Pr(>|t])

<
<
<
2

2e-16
2e-16
2e-16
.5e-16

* k%

* k%

* Kk x

Legend:

worth of energy per predator

Immigration=Immigrating predators per cell per day;

Sugar=Average days’
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