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One-sentence summary 
Landscape structure affects pest suppression through two early-season predator mechanisms 
(immigration and energy accumulation), but pest traits determine how — and whether — these 
mechanisms translate into reduced pest load, producing three predictable suppression 
fingerprints. 
 
Abstract 
Landscape heterogeneity often increases natural enemy abundance, yet its effects on crop pest 
suppression are strikingly inconsistent across empirical studies. We developed a trait-based 
simulation framework to identify the general mechanisms linking landscape structure to realized 
pest load. Across >150 in silico experiments, we show that landscape attributes influence 
biological control by altering two early-season predator metrics: (i) the immigration rate from the 
surrounding landscape and (ii) the rate at which colonizing predators accumulate energy after 
arriving in the crop. These two conditions form universal causal pathways from landscape 
structure to pest suppression, but their relative importance depends on pest traits. Suppression 
of slow-growing, diffusely distributed pests requires high early-season energy accumulation by 
predators; rapidly growing and aggregated pests are controlled by high predator immigration 
alone; suppression of rapid but diffuse pests requires both, and is weak even under favorable 
conditions. These three suppression fingerprints explain why landscape heterogeneity reliably 
increases natural enemy arrival yet only sometimes reduces pest load. Our results reveal a 
general, trait-mediated architecture—the conditional ecology of pest suppression—that reconciles 
inconsistent field findings, predicts when landscape heterogeneity should enhance biological 
control, and provides a mechanistic framework for using landscape management to support 
sustainable agriculture. 
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1. Introduction 
Biological control of insect pests by natural enemies is a cornerstone of sustainable agriculture, 
yet the ecological processes that govern its effectiveness remain difficult to predict. Across crops 
and regions, landscape heterogeneity—typically measured as the amount, diversity, or spatial 
arrangement of non-crop habitat—is widely expected to enhance natural pest suppression by 
providing refuges and resources for predators (Dainese et al., 2019). Indeed, multiple syntheses 
report that predator abundance and activity increase with greater heterogeneity (Bianchi et al., 
2006; Martin et al., 2019; Priyadarshana et al., 2024). But pest suppression outcomes are far less 
consistent: in some studies heterogeneity reduces pest pressure, in others it increases it, and in 
many it has no detectable effect (Dainese et al., 2019; Karp et al., 2018; Poveda et al., 2025; 
Tamburini et al., 2020). This persistent mismatch between predator responses and pest outcomes 
limits our ability to design landscapes that reliably support natural pest control. 
 
Why does landscape structure produce such variable suppression outcomes? Several 
explanations have been proposed, including differences in natural enemy life histories, 
mismatches in resource timing, natural habitat acting as a refuge for pests as well as enemies, 
and context-dependent pest dynamics (Begg et al., 2017; Schellhorn et al., 2015; Tscharntke et 
al., 2016). Empirical studies increasingly recognize that heterogeneity affects predators and pests 
through multiple mechanisms—dispersal, resource access, overwintering success—but the 
causal pathways linking these mechanisms to realized pest load remain poorly resolved (Martin 
et al., 2019). The typical approach, correlating static abundance measures with landscape 
metrics, cannot capture the dynamic interactions among landscape structure, predator traits, and 
pest population trajectories. As a result, studies often detect positive effects of heterogeneity on 
natural enemy abundance without corresponding improvements in pest suppression. 
  
A key limitation of past work is that it treats “predator abundance” as the primary mediator between 
landscape features and pest suppression. Yet in many biological control systems, especially 
annual crops, the early season sets the trajectory of pest populations long before peak predator 
abundance is reached. Preparation for planting clears annual crop fields of many pest insects and 
natural enemies, requiring colonization from field margins or nearby natural or semi-natural 
habitat. Upon crop germination, pest insects need simply locate and colonize individual crop 
plants in order to establish populations. Natural enemies, on the other hand, have the steeper 
challenge of locating sufficient pest insects to survive and reproduce, or locating supplemental 
resources such as alternative prey, nectar or pollen. These considerations suggest that two early-
season processes should be especially influential: the number of colonizing predators arriving 
from the surrounding landscape, and the initial energy accumulation, and therefore the longevity, 
of these colonizers. These processes determine whether predators arrive in the crop in sufficient 
numbers and subsequently survive, reproduce, and engage prey quickly enough to influence pest 
trajectories. Crucially, the population growth rate and spatial distribution of the pest insect itself 
may strongly influence the latter.  
 
Here, we propose that these two early-season predator processes—immigration from 
overwintering refuges and initial energy accumulation—form universal causal pathways linking 
landscape structure and in-field resources to pest suppression (Fig. 1). Pest traits are expected 
to determine which pathway dominates, generating distinct ‘suppression fingerprints’ that resolve 
previously observed inconsistent effects of landscape heterogeneity on natural pest suppression. 
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Figure 1. Conceptual framework for the conditional ecology of pest suppression. (A) Landscape structure 
and in-field resources determine two orthogonal early-season predator processes: immigration and energy 
accumulation. These processes determine two early-season predator state variables—realized predator 
abundance in the crop and predator energetic state—which together shape pest suppression. (B) Pest 
species differ in reproduction rate and spatial aggregation: rapid-growing, aggregated (“aphid-type”); slow-
growing, diffuse (“lygus-type”); and rapid-growing, diffuse (“whitefly-type”). (C) Pest traits determine how 
early-season predator state translates into suppression, with suppression being conditioned by predator 
abundance (driven by immigration), energy (driven by energy accumulation), or both. (D) The interaction of 
these axes produces three characteristic pest suppression fingerprints. 
 
 
Computer simulation has long been used to investigate complex, multiscale systems where 
controlled experiments are infeasible, such as global climate prediction (Edwards, 2011). To 
isolate causal pathways across landscape scales that are experimentally inaccessible, we 
develop a mechanistic simulation framework for biological control in agricultural landscapes that 
integrates landscape structure, predator dispersal, predator energetics, and pest population 
dynamics at large spatial scales. Extending previous modeling approaches (Corbett et al., 2024), 
we simulated a generalist predator that relies on discrete non-crop habitat patches as 
overwintering refuges and three pest types that differ in growth rate and spatial aggregation—
traits that strongly shape predator–prey encounter rates and feedbacks. Across >150 in silico 
experiments, we varied landscape attributes, predator traits, and in-crop resource availability and 
modelled emergent effects on the resulting pest load at the center of a simulated landscape (Fig. 
2). 
 
Our results reveal a simple, generalizable architecture linking landscape structure to pest 
suppression. Landscape heterogeneity consistently increases early-season predator immigration, 
but only sometimes decreases pest load. Across pest types, cumulative pest suppression can be 
understood as a function of the two early-season predator processes of immigration and energy 
accumulation. These two processes form general causal pathways that link landscape structure 
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and predator traits to pest suppression. Pest traits determine which pathway matters, producing 
distinct and predictable signatures in how pest suppression responds to early-season predator 
processes. These three signatures — suppression fingerprints—resolve long-standing 
contradictions in empirical landscape studies and explain why predator abundance increases 
more often than pest suppression. 

 
We propose that these fingerprints constitute a 
general theoretical framework for understanding 
the conditional ecology of natural pest 
suppression. By revealing when landscape 
heterogeneity should and should not enhance 
biological control, our work provides a mechanistic 
foundation for designing landscapes that reliably 
support sustainable agriculture. More broadly, our 
results show how trait-mediated early-season 
bottlenecks can generate predictable yet highly 
variable ecosystem service outcomes across 
heterogeneous landscapes, thus advancing our 
understanding of how spatial heterogeneity 
shapes ecological processes and their outcomes 
at landscape scales. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Mechanistic analysis pipeline. We first develop 
(1) a neutral, mechanistic model and (2) use it to 
generate simulation outcomes across a broad range of 
landscape and trait combinations. We then (3) assess 
whether these simulations reproduce the inconsistent 
patterns observed in field studies, thereby establishing 
the empirical relevance of the model. From this 
foundation, we examine how (4) experimental variables 
shape calculated metrics for the early‑season predator 
processes of immigration and energy accumulation, and 
(5) evaluate how those metrics influence pest load. 
Finally, we (6) integrate these components into a 
coherent mechanistic architecture that explains when 
increased landscape heterogeneity does, and does not, 
lead to reduced pest loads in crops. 
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2. Results 

In silico experiments mirror inconsistent responses to landscape 
structure observed in field studies 
Across three contrasting pest types, our in silico experiments generated a spectrum of 
suppression outcomes that mirror the qualitative inconsistencies reported in field studies. For 
rapid-growing, aggregated pests (“aphid-type”), increasing non-crop habitat (hereafter NH) 
amount and proximity produced strong and consistent reductions in pest load (Fig. 3A, 3G). For 
slow-growing, diffusely distributed pests (“lygus-type”), pest load was largely unresponsive to 
landscape structure but was strongly suppressed by in-crop supplemental resources alone (Fig. 
3B, 3H). For rapid-growing but diffuse pests (“whitefly-type”), suppression required both high NH 
and supplemental resources and rarely exceeded intermediate levels (Fig. 3C, 3I). Effects of NH 
amount closely tracked predator overwintering density (Fig. 3D,E,F) and NH effects were 
strongest when NH patches were close to the focal field, consistent with predator dispersal 
constraints (Fig. 3G,H,I). Collectively, these results show that even with an identical predator 
system, contrasting pest traits generate three distinct “suppression fingerprints,” explaining why 
empirical landscape effects on pest control are so variable. 
 

 
Figure 3. Relative crop pest load vs. landscape attributes – percent non-crop habitat (NH) coverage (A, B, 
C), predator overwintering density (D, E, F), and distribution of NH patches at varying distances from the 
focal field (G, H, I) – and for three pest population types – rapid-growing, spatially aggregated (“aphid-type”; 
A, D, G), slow-growing and diffuse (“lygus-type”; B, E, H), and rapid-growing and diffuse (“whitefly-type”; C, 
F, I) – with and without crop-based supplemental resources (solid versus dashed lines, respectively). Crop 
pest load is shown relative to the control simulation without predators for each respective pest population 
type. 
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Predator traits moderate natural control outcomes 
Although the predator was identical across all simulations, variation in predator traits produced 
sharply different suppression responses depending on pest type and the presence of 
supplemental resources (Fig. 4). Synchrony of emergence with the pest and greater likelihood 
and distance of dispersal each strengthened suppression for aphid‑type pests, but had weaker 
or inconsistent effects for whitefly‑type and lygus‑ type pests. These trait effects were further 
modulated by crop‑based resources, particularly for  the lygus-type and whitefly-type pests. 
Together, these patterns show that predator traits do not act uniformly across systems; instead, 
their influence depends on how predator behavior interacts with pest traits and resource context. 
This result motivates the search for early‑season processes that translate predator traits into 
system‑specific suppression outcomes, which we address in the next section.  

 
Figure 4. Relative crop pest load vs predator traits – median dispersal distance (A, B, C), day of emergence 
from overwintering (D, E, F), percent of predators dispersing at emergence (G, H, I), and size of 
overwintering energy reserve in day’s worth of energy (J, K, L) – and for three pest population types – 
aphid-type (A, D, G, J), lygus-type (B, E, H, K), and whitefly-type (C, F, I, L) – with and without crop-based 
supplemental resources (solid versus dashed lines, respectively). Crop pest load is shown relative to the 
control simulation without predators for each respective pest population type. 
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Experimental variables predict two critical early-season predator 
metrics  
We hypothesized that the apparently inconsistent results of landscape heterogeneity on pest 
suppression can be understood mechanistically by focusing on two conceptually independent 
predator processes occurring in the focal field immediately following pest emergence: immigration 
and energy accumulation. To test this hypothesis we calculated two early‑season predator 
metrics that quantify these key ecological processes: 

1. The weekly predator immigration rate during the first 40 days post emergence of the pest; 
2. The average per capita energy reserve of predators during the same period. 

The first metric measures how many predators colonize the focal field; the second measures 
access to energy by those colonizers and, in turn, determines their longevity.  
 
We applied linear modeling to each of these two metrics against our experimental variables. We 
found a distinct separation in which experimental variables predicted which metric (see 
Supplemental Material for full linear model results). On one hand, predator immigration rate was 
predicted by predator overwintering density, % NH coverage, NH distribution, the percentage of 
predators that disperse at emergence, and predators’ median dispersal distance. In contrast, per 
capita energy accumulation by predators was predicted by the presence vs. absence of crop-
based supplemental resources, pest population type, predator emergence day,  overwintering 
sugar reserve, and the percentage of predators that disperse at emergence. To quantify the 
landscape and in-field drivers of these processes, we estimated effect sizes using partial η² from 
the linear models relating our experimental variables and their interaction to predator immigration 
and per capita early-season energy accumulation. The resulting analyses highlight consistent 
links between landscape and resource-based factors, and early-season immigration and energy 
accumulation mechanisms, respectively (Fig. 5):  

Landscape and dispersal control of predator immigration 
Experimental variables related to landscape structure and predator dispersal behavior explained 
82% of variation in predator immigration to the focal field (Fig. 5A). Predator immigration 
increased strongly with predator overwintering density and percent NH, which were the dominant 
predictors of predator immigration (partial η² = 0.73 and 0.63, respectively). Increasing NH 
distribution—bringing patches closer to the focal field—had a secondary positive effect (partial η² 
= 0.24). Predator dispersal traits modulated these relationships: a higher probability of dispersing 
at emergence slightly increased immigration to the focal field; higher dispersal distances 
enhanced immigration only when NH patches lay beyond the predator’s median dispersal 
distance (see for example Fig. 4B). Overall, landscapes with high NH coverage and nearby 
refuges consistently increased predator arrival into the focal field. 

Resource control of early-season predator energy accumulation 
Experimental variables related to resource availability in the focal field, or reserves carried by 
predators into the focal field, accounted for 91% of variability in early-season energy accumulation 
by predators (Fig. 5B). The presence of crop-based supplemental resources was the dominant 
variable determining early-season sugar accumulation (partial η² = 0.89). Pest population type 
was a secondary variable (partial η² = 0.56), with aphid-type pests providing 5.5 additional days’ 
worth of energy than lygus-type pests. The interaction between crop-based supplemental 
resource availability and pest type also had a dominant influence (partial η² = 0.59): the 
differences in energy accumulation between pest types were larger in the absence of crop-based 
supplemental resources. Predator emergence timing played a secondary role in energy 
accumulation: delayed emergence reduced cumulative energy by shortening the early foraging 
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window, while earlier emergence limited predator-prey overlap. Initial sugar reserves had weaker 
effects, enhancing energy accumulation only in the absence of crop-based resources. Finally, 
predators dispersing immediately upon emergence carried more of those reserves into the focal 
field than those dispersing later due to local resource scarcity. 
 
Together, these results show that immigration and energy flux are distinct mechanisms, each 
influenced by separate ecological variables. 
 

 

Figure 5. Relative importance (as partial η2) of experimental variables in explaining variation in immigration 
rate to the focal field (A) and average per capita energy reserves of predators (B) during the first 40 days 
following emergence of the pest. Blue arrows indicate positive effects; red arrows indicate negative effects; 
the weight of arrows is proportional to the size of effect. 
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Early-season predator metrics predict crop pest load 
The two early‑season predator metrics — immigration rate and energy accumulation — 
consistently mediated how landscape attributes translated into pest outcomes (Fig. 6). 
Differences among pest types reflected the relative dominance of landscape structure (via 
immigration) versus resource availability (via early‑season energy) as the primary driver of 
suppression. Although landscape structure reliably shaped predator immigration rate, 
suppression outcomes diverged sharply between pest types depending on how much energy 
colonizing predators could acquire through early predation. Linear models relating cumulative 
pest load to immigration and energy accumulation revealed three distinct, predictable 
“suppression fingerprints” across the three pest population types. Full results of these models are 
reported in the Supplemental Materials.  

Aphid-type pest: immigration-driven fingerprint 
For aphid‑type pests, suppression increased steeply with predator immigration and showed little 
sensitivity to early‑season energy (Fig. 6A). The linear model confirmed that rapid‑ growing, 
aggregated aphid populations were suppressed primarily through predator immigration, with 
immigration explaining most of the variance in cumulative pest load (partial η² = 0.79) and 
early‑season energy contributing only secondarily (partial η² = 0.32). High immigration generated 
intense early predation on aggregations, allowing predators to achieve high early‑season energy 
from pest‑der ived resources alone. As a result, landscapes with high NH consistently reduced 
aphid-type pest abundance, even when crop‑based resources were absent, lowering cumulative 
aphid-type load by more than 60% relative to low‑immigration scenarios (Fig. 3A).  

Lygus-type pest: energy-driven fingerprint 
Lygus‑type suppression followed an almost entirely different pathway, increasing strongly with 
early‑season energy while remaining largely insensitive to immigration (Fig. 6B). The linear 
model showed that slow‑growi ng, diffusely distributed lygus-type populations were controlled 
almost entirely through predator energy accumulation, with energy explaining the majority of 
variation in cumulative pest load (partial η² = 0.78) and immigration having negligible effect. 
Effective suppression occurred only when predators accumulated substantial early‑season 
energy, typically via crop‑based resources. Consequently, suppression was substantial only in 
landscapes that provided within‑field provisioning; landscapes lacking suppl emental resources 
produced minimal reductions in lygus-type abundance, whereas favorable energy conditions 
reduced cumulative load by approximately 35–50% (Fig. 3B). 

Whitefly-type pest: dual-pathway but weak fingerprint 
Whitefly‑type pests exhibited a hybr id pattern in which meaningful suppression occurred only 
when both immigration and early‑season energy were high (Fig. 6C). The linear model indicated 
that rapid‑growing but diffuse whitefly -type populations depended on both mechanisms, with 
immigration and energy each exerting strong effects on cumulative pest load (partial η² ≥ 0.60 for 
both). Predators needed to arrive early and maintain high energetic reserves to exert noticeable 
control. Even under these favorable conditions, suppression remained modest—typically around 
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20–30% (Fig. 3C)—reflecting limited predator efficiency when prey reproduce quickly yet are 
broadly dispersed. 

 
Figure 6. Cumulative pest load of aphid-type (A), lygus-type (B), and whitefly-type (C) pests versus 
immigration rate and average per capita energy during the first 40 days following pest emergence (left). 
The right side of figures shows the relative importance (as partial η2) of predator immigration rate and per 
capita energy in explaining variation in pest load for the respective pest population type. Blue arrows 
indicate positive effects; red arrows indicate negative effects; the weight of arrows is proportional to the 
size of effect. 
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Why landscape heterogeneity suppresses pests in some systems 
but not others: A general causal architecture for natural pest 
suppression 
Although NH consistently increased predator immigration, its effect on pest load depended on the 
alignment of pest traits with early-season processes of immigration and energy acquisition. As a 
result, landscape heterogeneity led to pest suppression in some systems but not others: biological 
control of fast-growing and aggregated, aphid-type pests was high whenever landscapes 
increased immigration. In contrast, biological control of slow-growing and diffuse, lygus-type pests 
required landscapes that also elevated early-season energy through supplemental resources. 
Control of fast-growing but diffuse, whitefly-type pests was limited, and was achieved only when 
both immigration and energy were simultaneously high (Fig. 1D). 
 
Across pest types, these results reveal a consistent causal structure linking landscape attributes 
to pest outcomes. Landscape structure and predator dispersal traits—including predator 
overwintering density, NH coverage, distance to NH, dispersal distance, and the proportion 
dispersing at emergence—determine early‑ season predator immigration into the focal field. In 
contrast, resource context (including crop‑based supplemental resources, predator emergence 
timing, initial sugar reserves) and pest population type jointly determine early‑season energy 
accumulation by colonizing predators. Pest population growth rate and degree of aggregation 
therefore become integral components of the energy axis itself, shaping how much energy 
predators can acquire early in the season and, in turn, which early‑season mechanism —
immigration or energy accumulation—dominates suppression in each system. 
 
These relationships produce three general suppression fingerprints for generalist predators 
across three contrasting pest types and explain why field studies often detect increased predator 
abundance without consistent pest reductions. 
 
This conditional ecology of pest suppression framework explained 77–88% of variation in 
cumulative pest load across over 150 landscape × trait × resource combinations. It demonstrates 
that landscape heterogeneity alone does not drive pest suppression; its effect is mediated by trait-
dependent interactions shaping whether increased predator arrival or resource availability 
translates into reduced pest populations. 

3. Discussion 
Our simulations reveal that the impact of landscape heterogeneity on biological  control is highly 
contingent on interactions among predator traits, pest population dynamics, and resource 
availability. While the intuitive expectation—that increasing non-crop habitat (NH) coverage and 
distribution enhances control—is supported for early-season predator immigration, its translation 
into reduced pest loads is far from straightforward. Across the three pest types studied, we 
observed distinct suppression fingerprints, illustrating that landscape heterogeneity alone is 
insufficient to guarantee effective control. 
 
For the aphid-type pest, suppression is predominantly driven by predator immigration. Rapid prey 
population growth and spatial aggregation align with predator foraging behavior, ensuring that 
incoming predators find sufficient resources to establish and reproduce. The fingerprint for this 
pest type is robust to the absence of crop-based supplemental resources, highlighting a scenario 
in which landscape heterogeneity directly facilitates biological control. Importantly, our results also 
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demonstrate sensitivity to predator emergence timing: early arrival risks insufficient prey density 
for predator establishment, whereas delayed arrival allows the pest population to escape 
suppression. These mechanistic insights resonate with empirical findings showing that predator 
arrival timing is critical for aphid suppression (Costamagna et al., 2015). In practice, these results 
suggest that enhancing NH near fields can reliably reduce aphid-type pressure, provided that 
natural enemy colonization is synchronized with pest emergence. 
 
The lygus-type pest presents a contrasting scenario. Slow population growth and even spatial 
distribution render colonizing predators unable to maintain themselves on the pest alone. Here, 
supplemental crop-based resources—floral resources and alternate prey—become essential for 
predator persistence and effective pest control. Only under favorable combinations of NH 
proximity and resource availability does suppression reach high levels, illustrating a strong 
interaction between landscape structure and within-field conditions. This fingerprint aligns with 
prior simulations showing that the effectiveness of overwintering refuges is contingent on local 
resource provisioning (Corbett et al., 2024), and with both field and theoretical studies 
demonstrating the importance of alternate prey and apparent competition for effective pest 
suppression (Emery and Mills, 2020; Rosero et al., 2024; Settle et al., 1996). For applied 
management, this finding underscores the need for integrated habitat and crop-based 
interventions: simply adding natural habitat outside crops may not suffice to control slow-growing, 
evenly distributed pests and supplementation with in-field resources may be required. 
 
Whitefly-type pests combine features of both extremes: rapid growth, like aphids, but diffuse 
distribution, like lygus. Suppression requires both early-season immigration and supplemental 
resources, yet even under optimal conditions, reductions in pest load are modest relative to the 
other two types. This fingerprint explains why field studies of whitefly suppression by generalist 
predators frequently report variable outcomes (e.g., Naranjo et al. 1998). Only landscapes that 
simultaneously optimize NH coverage, patch proximity, and in-crop resources achieve meaningful 
control. This highlights the limits of generalized expectations for landscape-mediated biological 
control and reinforces the importance of trait-based, pest-type-specific understanding. 
 
In line with these mechanistic predictions, empirical studies suggest that aphid–coccinellid 
systems consistently translate landscape heterogeneity into measurable biological‑control 
responses (Gardiner et al., 2009; Woltz and Landis, 2014), whereas many other pest–predator 
pairings show increased enemy abundance but inconsistent pest suppression. This contrast is 
robust across reviews and field studies but is strongly conditioned by pesticide use, refuges, 
phenology, and spatial scale (Bianchi et al., 2006; Chaplin-Kramer et al., 2011; Rusch et al., 2016; 
Tscharntke et al., 2005). Across field experiments and syntheses, two consistent patterns 
emerge. First, aphid control often scales positively with landscape heterogeneity: replicated 
exclusion and enemy‑manipulation ex periments, together with syntheses drawing heavily on 
aphid–coccinellid systems, show that biological control of aphids can increase markedly from 
simple to complex landscapes, driven by complementary contributions of flying and ground-
dwelling enemies and by predator aggregation to aphid patches (Bianchi et al., 2006; Chaplin-
Kramer et al., 2011; Rusch et al., 2016). By contrast, studies of other pest–predator pairings (e.g., 
specialist parasitoid–host systems, non-aggregating pests such as lygus and whitefly with 
generalist predators, bird-predator systems, or multi-enemy webs) often show scale-dependent 
or taxon-specific responses: parasitoids and specialist enemies respond at different scales than 
generalists, and pest suppression is frequently context dependent (Chaplin-Kramer et al., 2011; 
Gurr et al., 2017; Karp et al., 2018; Letourneau et al., 2009; Martin et al., 2019; Poveda et al., 
2025; Rand et al., 2006). Mechanistic reviews and recent models of habitat management and 
conservation biological control emphasize the same moderators our simulations identified—
overwintering/refuge availability, alternate prey, phenology, and spatial scale—as the key factors 
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determining whether increased enemy abundance translates into effective suppression (Begg et 
al., 2017; Landis et al., 2000; Rosero et al., 2024; Rusch et al., 2016). In short, our findings help 
explain both why aphid–coccinellid systems show stronger landscape-driven suppression and 
why those effects are conditional on management and ecological context. 
 
Our results also provide a mechanistic lens for interpreting pattern-based hypotheses such as the 
intermediate landscape hypothesis (ILH), which predicts the strongest responses of biodiversity 
and ecosystem services to management in landscapes of intermediate complexity (Jonsson et 
al., 2014; Sánchez et al., 2022; Tscharntke et al., 2012). In our simulations, ILH-like behavior 
emerges most clearly for the whitefly-type pest, where meaningful suppression through increases 
in in-field resources is contingent on sufficient early-season immigration. More broadly, our 
framework suggests that whether intermediate landscapes show the strongest management 
effects depends on the energetic context of colonizing predators, introducing an additional, largely 
unrecognized axis conditioning ILH patterns. We note that our simulations focus on landscapes 
ranging from cleared to moderately complex, and extending this framework to highly complex 
landscapes may further reveal how strong immigration alone could compensate for limiting in-
field resources in some systems. 
 
A key insight from our study is the separation between early-season immigration and per capita 
energy accumulation as drivers of suppression. Across pest types, NH coverage and predator 
density in refuges consistently drive immigration, while crop-based resources–including both 
supplemental resources and the pest itself–govern energy accumulation. For aphids, immigration 
dominates; for lygus, energy accumulation dominates; for whitefly, both interact synergistically. 
These patterns provide a mechanistic explanation for the mixed empirical results reported in 
meta-analyses: landscape heterogeneity consistently boosts initial predator abundance, but this 
only reduces pest loads when pest traits and resource availability align to support establishment 
of predator populations. Our simulations thus offer a framework for interpreting and predicting 
variable field outcomes, moving beyond static abundance metrics toward a dynamic, trait-
mediated perspective. 
 
The conditional ecology framework emerging from these results has several implications for 
agroecosystem management. First, identifying the “fingerprint” of a given pest–predator system 
can inform the design of habitat interventions: managers can tailor NH placement and 
supplemental resources based on the traits of both pests and natural enemies. Second, 
understanding the relative importance of immigration versus energy accumulation enables 
predictions about the temporal window in which interventions are likely to be effective, guiding 
planting schedules, floral resource provisioning, and timing of natural enemy introductions. Third, 
by explicitly modeling dispersal distances, our approach highlights spatial constraints on natural 
control. Landscapes where NH fragments exceed typical dispersal ranges of predators may fail 
to confer suppression benefits, regardless of overall habitat amount—a consideration often 
overlooked in field studies. 
 
Beyond applied implications, these findings advance ecological theory. They illustrate how trait-
mediated interactions can generate emergent, non-linear outcomes at landscape scales, 
emphasizing the need for mechanistic, rather than purely correlative, approaches to 
understanding ecosystem services. Our use of in silico experiments allows systematic 
manipulation of multiple factors—landscape structure, predator traits, pest dynamics—
highlighting pathways that would be difficult to disentangle in field studies. The suppression 
fingerprints we identify suggest that variability in ecological outcomes is not noise, but a 
predictable consequence of underlying trait and landscape interactions. This insight may extend 
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beyond agroecosystems to other consumer–resource systems where spatial heterogeneity, 
dispersal, and resource alignment mediate ecological outcomes. 
 
Several limitations of our study warrant discussion. First, our model assumes a single predator 
species and three simplified pest types. Real agricultural landscapes contain multiple natural 
enemies, complex pest assemblages, and additional interactions and behaviours (e.g., 
hyperpredation, competition, overwintering location) that may modulate outcomes. Second, our 
simulation represents idealized landscapes with uniform patch shapes and sizes; real landscapes 
may present more complex configurations that influence dispersal and resource accessibility. 
Third, we focused on overwintering refuges and in‑crop resources, whereas additional ecological 
drivers—such as non‑crop food resources, climatic variation, pesticide  use, or interannual shifts 
in pest phenology—are also likely to shape pest suppression fingerprints. Despite these 
simplifications, the trait-based framework we propose is generalizable: it can be applied to 
additional pest–predator systems and extended to explore broader ecological scenarios. Finally, 
while our simulation results mirror the conflicting patterns reported in field studies, we do not claim 
that our proposed architecture is the only explanation for these empirical inconsistencies; rather, 
we show that our proposed architecture is sufficient to generate a broad spectrum of contradictory 
outcomes observed in the literature, demonstrating that a single mechanistic structure can 
account for this diversity. Further field studies and expanded simulation experiments will help test, 
refine, and extend this mechanistic framework.  
 
In conclusion, our work demonstrates that natural pest suppression is a conditional process 
governed by interactions among landscape structure, predator traits, and pest dynamics. 
Landscape heterogeneity alone is not sufficient to guarantee effective control; rather, outcomes 
depend on the alignment of predator and pest traits with habitat configuration and resource 
availability. By identifying distinct pest suppression fingerprints, we provide a predictive framework 
linking landscape ecology to ecosystem service outcomes. These results reconcile apparent 
contradictions in field studies and offer both theoretical and practical guidance for managing 
landscapes to enhance natural pest control. The conditional ecology perspective emphasizes that 
in agroecosystems—as in broader ecological systems—context matters: ecological processes 
interact in ways that are systematic, interpretable, and ultimately manageable when trait- and 
landscape-specific mechanisms are considered. 

4. Methods 
Simulation Framework 
We implement a two-dimensional reaction-diffusion model combined with a stochastic dispersal 
model for adult insects. Each cell contains a classical predator-prey model including age stages 
for both predator and pest insect and a Type II functional response for the predator. An alternate 
prey population is also represented in each cell via simple logistic population growth. Crop 
vegetation is represented as a growing leaf area which achieves its maximum leaf area index 
(LAI) near mid-season. Predation rate is based on prey density on this growing leaf area. In 
addition to numbers of adult predators, total energy and egg reserve of adult predators is also 
represented in each cell. Energy reserves are added to by floral feeding and by prey consumption 
and deducted based on a daily maintenance cost. Adult predator life span is tied to this energy 
reserve. Egg reserves are added to by prey consumption and are deducted at a constant rate of 
oviposition. Adult pests and predators move between cells according to a 2-dimensional diffusion 
model. Adults also engage in dispersal flights at a rate that is correlated to the current mortality 
rate in the cell. Dispersal is in a random direction and to random distances; distances are 
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described by a Weibull probability distribution. Egg and energy reserves move between cells 
along with adult predators at a per capita rate. Each cell has its own vegetation properties (e.g., 
maximum LAI and presence/absence of floral resources) and is initialized with its own starting 
number of overwintering adult predator and prey. The simulated landscape consists of a crop 
monoculture that is intersected by a grid of field margins (e.g., county road edges) spaced at 1 
km intervals, and has patches of NH with varying overall percent coverage and distribution. The 
pest insect and alternate prey overwinter only in margins; predators overwinter only in NH 
patches; crops have no resident populations at germination. Full mathematical and 
implementation details are available in the Supplemental Materials. 

Simulation Experiments 
We conducted factorial simulations manipulating landscape attributes, pest population dynamics, 
and predator traits. 
  
Landscape Attributes. We manipulated the following landscape attributes: 

1. Percent NH coverage (%NH): Varied from 1.25% to 20% of the landscape tile. 
2. NH distribution: Measured as distance from the focal field center to the nearest NH patch, 

with shorter distances representing higher patch density. 
3. Predator overwintering density: Number of predators per m² in NH patches at the start of 

the simulation. 
4. Crop-based supplemental resources: Presence or absence of floral resources and 

alternate prey within the crop. 
Landscape tiles are squares with diagonal length of 16 km (11.3 km × 11.3 km). Patch proximity 
and distribution were systematically varied to evaluate the interaction between habitat 
configuration and predator traits. 
 
Pest Population Dynamics. We simulated three pest types reflecting distinct growth and spatial 
patterns: 

1. Aphid-type: Rapid growth, aggregated distribution. 
2. Lygus-type: Slow growth, evenly distributed across leaves. 
3. Whitefly-type: Rapid growth, diffuse distribution. 

Pest life-history parameters, including intrinsic growth rates, dispersal, and aggregation 
tendencies, were derived from empirical literature and field studies. Pest populations emerged 
from field margins at the start of the season and grew according to type-specific growth functions. 
 
Predator Traits. Predators were modeled as generalist natural enemies requiring NH patches for 
overwintering. We manipulated the following traits: 

1. Emergence timing: Day of emergence relative to pest appearance, varied across a four-
week window. 

2. Dispersal distance: Median dispersal distances, ranging from 400 m to 6.4 km. 
3. Proportion dispersing at emergence: 0–100% of individuals initiating immediate dispersal. 
4. Initial sugar reserve: Energy reserve at emergence, scaled in days of maintenance energy. 

Predators consumed pests and supplemental resources according to functional responses, and 
accumulated energy for reproduction and survival. Predators are assumed to aggregate to prey 
if prey are aggregated. Early-season energy accumulation was tracked over the first 40 days post-
pest emergence. 
 
We calculated metrics for the 1 km2 crop field at the center of the simulated landscape. The 
primary response variable was cumulative pest load per cm2 of leaf surface up to the day of peak 
population. We also calculated two predator metrics: 



16 
 

1. Predator immigration: Average rate of immigration to the focal field during the first 40 days 
following pest emergence. 

2. Per capita energy accumulation: Average energy reserve per predator over the first 40 
days following pest emergence. 

 
We applied linear models to quantify relationships between landscape attributes, predator traits, 
and focal-field metrics. Partial η² was used to estimate effect sizes and rank drivers as dominant 
(≥0.50), secondary (0.20–0.49), minor (0.05–0.19), or negligible (<0.05). Interaction terms were 
included to capture synergistic effects between immigration and energy accumulation, as well as 
between landscape configuration and predator traits. All continuous variables were centered prior 
to analysis.  
 
Full details on simulation experiments, output processing, and analysis are provided in the 
Supplemental Materials. 

Software 
The model was implemented in C++ using the openmp parallel processing library and simulations 
were run in Windows System for Linux on a desktop computer with a high-end, multi-core CPU. 
Statistical analyses were conducted in R, using packages lm and lm.beta for linear models and 
effect size calculations. Figures were generated using Excel for 2D plots and  Maple for 3D plots. 

5. Data availability 
The original code as well as the simulation output used in analyses are available on request from 
the primary author. 
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Supplementary Text 

Mathematical Model and Implementation 
The model is a reaction-diffusion system for three stages of a pest insect, three stages of a 
predator, egg and sugar reserves for adult predators, and a single alternate prey stage. 
Only adult insects undergo diffusion, which represents trivial movement. A dispersal 
kernel for adult insects is layered on top of this reaction-diffusion model. Egg and sugar 
reserves move with adult predators diffusing or dispersing on a per capita basis. For clarity 
and simplicity, we present the local population dynamics as a set of ordinary differential 
equations. Diffusion and dispersal only applies to adults and are described separately. 

Population Dynamics 
Pest Population. The pest population is represented by three differential equations for 
eggs, NE , juveniles, NJ , and adults N, plus an equation for cumulative pest density, C, plus 
an equation for overwintering adults, NO, as follows: 
 

 

where 
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Oviposition and adult mortality are linear functions of cumulative pest density with fixed 
maximums and minimums, C, given by: 

 

where: 

 

Overwintering adult pests emerge at a fixed rate following the day on which emergence 
commences according to: 
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where: 

 

Leaf area index is a fixed function of t and asymptotically approaches a maximum 
according to: 

 

where: 

 
 
Alternate Prey Population. The alternate prey population grows logistically and has no age 
structure. It's carrying capacity is based on number per unit leaf surface area. Alternate 
prey are represent by the differential equations 

 

 

where: 

 

Overwintering alternate prey emerge at a fixed rate following the day on which emergence 
commences according to: 

 

where: 

 



24 
 

Predator Population & Nutrient Reserves. The predator population is represented by three 
differential equations for eggs, PE , juveniles, PJ , adults P, and one for overwintering adults, 
PO, as follows: 

 

 

 

Additionally, adult predator egg reserves, PC, and adult predator sugar reserves, PS, are 

represented by the differential equations 

 

where: 
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Mortality of juveniles is a function of predation rate and the presence or absence of floral 
resources and is given by 

 

where: 

 

Mortality of adults is a function of sugar reserves, PS, and is given by 

 

where: 
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Overwintering adult predators emerge at a fixed rate following the day on which 
emergence commences according to: 

 

where: 

 

Floral consumption by adult predators is a function of predation rate and the availability of 
floral resources and is given by 

 

where: 

 

Proportion of prey consumption going to the sugar reserve is a step function given by 

 

where: 
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Predation Rate. Predation by adult predators follows a Type II Holling functional response 
given by 

        

 

Predation by juvenile predators is a simple proportion, jpr, of predation by adults and is 
given by 

 

Total predation is then given by 
  

 

which appears in differential equations (2), (4), and (7) in the respective losses to predation 
terms -- modified by the proportion of total prey represented by that type -- for example, 

      

Diffusion 
Adult pest insects, alternate prey, and adult predators engage in trivial movement that is 
represented via diffusion as 

 

where: 
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For adult pest insects, diffusion varies with cumulative density, C (DEq. 5), according to the 
equation 

 

 

 

 

For alternate prey, the diffusion rate is a constant. 

Adult predator egg reserves,  (DEq. 12), and sugar reserves,  (DEq 13), diffuse along 
with individual adult predators based on their per capita values. For example, for the egg 
reserve, if directional flux of adult predators is given by 

 

then 

 

where: 

For adult predators, diffusion varies with the predation rate,  ( ) t , according to the equation 

where: 
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The analogous equation for flux of the sugar reserve, , is obtained by substituting  
Adult pest insects and alternate prey undergo proportional reflection at the boundaries 
between host and non-host vegetation according to the equation 
 

 

where: 

 

Predators do not reflect at vegetation boundaries. 

Dispersal 
Adult pest insects, alternate prey, and adult predators engage in long range dispersal at 
emergence from overwintering and in response to local conditions. The number dispersing 
from (x,y) at t is represented by the equation 
 

 

where: 

 

For adult pest insects, the dispersal rate is directly proportional to adult mortality, d(t) (See 
DEq 4). So, their dispersal rate is given by 

 
Likewise, the dispersal rate of adult predators is directly proportional to adult mortality, 
(t) (See DEq 11), and is given by 
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, 

 

and is calculated in like manner with the analogous parameters for emerging predators 
(See DEq 6) and emerging alternate prey (See DEq 10). 

Assignment of dispersers to new locations in the landscape is handled stochastically as 
whole numbers. First, the integer number dispersing is obtained via stochastic rounding by 

 

For each individual disperser, a flight distance is randomly drawn from a Weibull 
distribution given by the function 

 

where: 

 

A flight direction for each disperser is obtained by 

The destination ( ) is then obtained from  and v via trigonometry relative to (x,y) 
using the sampled flight distance and direction. 
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The flux of predator egg reserves is given in similar manner as for diffusion by 

 

where 

 

Implementation 
The above model is numerically solved for a grid of 1130 x 1130 cells, each 10 x 10 m, 
representing a square landscape tile 16km on the diagonal. Each cell advances its own 
system of differential equations as described under Population Dynamics via the Euler 
method. Diffusion of adults is solved using a forward-difference scheme. Dispersal is 
calculated at each time step after the within cell system has been advanced and adults 
have been redistributed via diffusion. A time step of 0.05 is used for both within cell and 
diffusion updates. 

The model was implemented in C++ on Windows System for Linux using the Linux g++ 
compiler. We employed the openmp library (http://www.openmp.org) to enable parallel 
processing – calculations for individual cells were distributed to multiple processors 
whenever there was no dependence between cells. Stochastic algorithms were 
implemented using a Mersenne Twister random number generator seeded via a call to the 
C++ library function random_device as implemented for the Windows System for Linux. All 
scenarios were run on a AMD Ryzen 9  7850X processor.  
 
The C++ implementation was validated by ensuring it met the following criteria: 
1. Output of the within-cell model implemented in C++ closely approximates that 

generated by the same system of differential equations implemented in Maple 2021. 
2. When adults and energy reserves originate from a point source (large values in a single 

cell, zero elsewhere), diffusion calculations generate distributions over time that closely 
approximate a normal distribution with a standard deviation of 2Dt. 

3. Adults and energy reserves diffuse independently. I.e., if an area with low numbers of 
adults but high energy reserves is next to an area with high numbers of adults but low 
energy reserves, the net movement of adults and energy are in opposite directions. 

4. Simulated flight distances closely approximate the corresponding Weibull distribution. 
 
Parameterization 
Tables S1-S4 list all parameters used in the model with explanations and references where 
applicable. Rationale for selected parameters are explained below. 
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Rationale for parameter value for the energy consumed per day by a predatory bug feeding 
on floral resources.  
We perform a crude calculation, based on various information available in the literature, to 
provide a realistic starting point for estimating the amount of energy consumed per day by 
a predatory bug feeding on floral resources. Our approach is as follows: 
1) Find an experimentally measured rate of floral energy consumption: 

May (S1) estimates that Agraulis, a nectarivorous butterfly, consumes 0.6 J of 
energy per second via floral feeding. 

2) Scale that value based on the mass of Geocoris relative to Agraulis:  
Cardoso & Gilbert (S2) calculate a dry weight of 50 mg for Agraulis. Cohen & Staten 
(S3) calculate a dry weight of 1.8 mg for Geocoris. This yields an estimate for energy 
consumed by Geocoris per minute of 

(0.6 J/s) x (1.8 mg/50 mg) x 60 s = 1.3 J/m 
3) Determine how many days of maintenance this represents for Geocoris: 

Cohen & Byrne (S4) estimates a daily expenditure for maintenance of 3.6 J for 
Geocoris. This yields an estimate for days-of-maintenance consumed per minute by 
Geocoris of 

1.3 J/3.6 J = 0.36 days/minute 
Which is equal to roughly 21 days of maintenance every hour, or 518 days per day. 
 

We divide this value by 10, yielding our parameter of value 50 days of maintenance energy 
consumed per day by a predatory bug feeding on floral resources. Our reasoning is as 
follows: (a) There will be a search and handling time associated with consumption of floral 
resources, decreasing the actual amount of energy they can consume per unit time; (b) 
floral resources are a supplementary resource for Geocoris and they are likely much less 
efficient than Agraulis at feeding on floral resources; and, (c) we have not accounted for 
allometric effects, therefore the actual consumption rate by Geocoris is likely to be less 
than that estimated via a simple linear scaling. Since we assume a maximum energy 
reserve of 10 days’-worth of maintenance energy, our generalist predator obtains this 
maximum reserve in roughly 5 hours of feeding exclusively on floral resources. We 
consider this to be a generous estimate of the potential value of floral resources to a 
predatory bug. 
 
Rationale for the parameter value for overwintering densities of pest insects and predators.  
We generated rough estimates of overwintering density of Lygus, Geocoris, Orius in non-
crop vegetation from two different sources as follows: 
1) Horton & Lewis (S5) estimate the average number of overwintering Lygus, Geocoris, 

and Orius per 5 common mullein plants at 10, 15, and 0.6 respectively. Data presented 
Reinartz (S6) estimates the density of a stand of mullein at up to 5 plants per m2. 
Therefore, the per-5-plants estimates by Horton & Lewis (S5) is also a rough estimate 
for m2 density. 



33 
 

2) Fye (S7) estimated late-summer density in pigweed – which we take as a rough 
equivalent to overwintering density – to be 1.2, 1.1, and 2.1 per m2 for Lygus, Geocoris, 
and Orius respectively. 

We use overwintering densities that are at the higher end of these two estimates. 
 
Rationale for Weibull distribution parameters 
The Weibull function defines a family of probability distributions and is expressed as 

𝑘

𝜆
ቀ
𝑥

𝜆
ቁ
௞ିଵ

𝑒
ିቀ

௫
ఒ
ቁ
ೖ

 

where k is the shape parameter and λ is the distance (or scale) parameter. Different values 
of the shape parameter determine the shape of the distribution; for example, a negative 
exponential distribution, a normal distribution, or a fat-tail distribution. The distance 
parameter determines the central tendency of the distribution.  
 
Sivakoff et al. (S8) reports a field study in which insects in a field of alfalfa were sprayed 
with animal-based proteins, the field was subsequently cut, and insects collected in 
adjacent cotton were analyzed via ELISA to identify those that originated in the alfalfa field. 
We used data from this study to choose the value of the Weibull shape parameter as 
follows: 
1. We adapted the simulation model presented in this paper to simulate only diffusion 

and dispersal by the pest insect and predator without any mortality or reproduction. 
2. We used the mean squared displacements reported in Sivakoff et al. (S8) to calculate a 

distance parameter of 1600. 
3. We ran the adapted simulation for multiple values of the shape parameter, k, using this 

distance parameter value (λ=1600). The distribution of adults at day 5 was taken as the 
model’s prediction of the expected distribution of individuals under the respective 
Weibull parameters. The simulated distributions are shown in Fig. S1, together with the 
actual distribution of Lygus and Geocoris. 

4. A visual examination suggests that the recaptures for both Lygus and Geocoris are 
consistent with a shape parameter value of k=1.5.  A Goodness-of-fit test comparing 
simulated distributions to the recapture distributions (averaged across the 5 days) 
supports this conclusion. Simulated transects for values other than 1.5 were a poor fit 
to the recapture data, all of them having p<0.001 of being from the same distribution; 
for a value of k=1.5, p>0.25 that simulated and actual recaptures were from the same 
distribution. 

Accordingly, for our simulation study we use shape parameter of k=1.5 for both the 
generalist predator and the pest insect and a distance parameter in our simulations, 
λ=1600.  
 
In silico experiments 
Landscape structure 
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Experiments are conducted on a square landscape tile that is 11.3 km on a side – this is 
equivalent to a diagonal length of approximately 16 km. Boundary conditions are reflective 
to movement: diffusion uses reflective (mirror) boundaries, whereas long‑distance 
dispersal uses toroidal wrap‑around. Because the landscape structure is symmetric and 
the focal field is centered, these two boundary behaviors produce effectively equivalent 
edge dynamics. As a result, the simulation predicts the dynamics that occur on a 
hypothetical “infinite” landscape composed of repeating tiles of the same size and 
structure. Spatial resolution is 10 × 10 meters, so the grid dimensions are 1130 × 1130 
cells. 
 
Each cell has one of three possible vegetation types: crop, natural habitat (NH), or 
uncultivated margins. By default, all cells represent crop vegetation; thus, the landscape is 
a pure crop monoculture interrupted by margins and NH patches. Uncultivated margins 
occur on the landscape grid every 100 rows and every 100 columns, beginning at row and 
column 50; thus, they are 1km apart and 10 m wide. The pest insect and alternate prey 
overwinter as adults in these margins, which can be thought of as “county roads” 
crisscrossing the agricultural landscape; the generalist predator only overwinters in NH 
patches. 
 
For ease of implementation, whether a cell is crop or NH is specified at the resolution of 
hectares, which corresponds to a grid of 113 x 113 hectares. The configuration of NH in the 
landscape varies between experiments based on (1) the percentage of the landscape 
occupied by NH and (2) the distribution of NH across the landscape. NH is always evenly 
distributed across the landscape but is broken into different numbers of patches for 
different experiments. The generalist predator overwinters in and disperses from these NH 
patches at the beginning of the simulated season. A simple CSV file containing a matrix of 
113 x 113 codes specifies the configuration of NH patches in the landscape for any single 
experiment. Further details are provided below under Landscape variables. 
 
Pest types 
We define three pest population types based on population growth rate and spatial 
aggregation (see Table S5): 
 The lygus-type pest has slow population growth relative to the predator and is evenly 

dispersed across the crop leaf surface (e.g., Lygus spp. on California cotton). 
 The whitefly-type pest exhibits rapid population growth but remains evenly dispersed 

(e.g., Bemisia tabaci on California tomato). 
 The aphid-type pest exhibits rapid population growth and strong spatial aggregation 

(e.g., aphids in Midwest US corn systems). For the aphid-type, we simulate predator 
aggregation by restricting interaction to a fixed proportion of crop leaf surface area, 
reflecting localized foraging in prey-dense canopy zones. This operationalizes spatial 
concentration without requiring explicit spatial modeling. 
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Pest population types also vary in the peak density achieved. For comparative purposes, 
Table S5 shows the peak number of nymphs and adults present on a 100 cm2 leaf. These 
peak numbers approximate the treatment thresholds for aphids, Lygus, and whitefly in 
cotton in California. Since pest populations in the field can greatly exceed these 
thresholds, we performed a sensitivity test to ensure that our key results were unaffected 
by large increases in simulated pest density which is described below. 
 
All simulation experiments defined below were conducted separately for each of these 
pest population types by configuring the pest parameter values according to Table S5. 
 
 
Controls 
For comparison of the effects of parameter variation within pest population types, we 
require a simulation to use as a control. For this we use a landscape consisting of the crop 
with uncultivated margins as described above, but with no NH patches and therefore no 
generalist predator. We ran this control simulation for each pest population type giving us 
the crop pest load achieved by that pest type in the absence of any predation; all other 
simulation experiments include predators. 
 
Experimental variables 
We used a bracketing design to evaluate the effects of landscape and predator 
parameters. We used this approach because a full factorial across all landscape and 
predator parameters would be computationally prohibitive and unnecessary for isolating 
the causal influence of each parameter on predator dynamics and pest load. Baseline 
conditions were defined as 5% NH coverage distributed across 16 patches, no 
supplemental resources in the crop, and baseline values for all predator traits (Table S6). 
Each experiment varied a single landscape or predator parameter above or below its 
baseline value. All bracketing experiments were then run for each pest type both with 
alternate prey and floral resources available in the crop and without; the response variable 
is cumulative pest density, expressed relative to the control for that pest type. This 
resulted in 52 simulation experiments plus one control (see above) for each pest 
population type, for a total of 159 simulations. See Table S6 for the full list of parameter 
values used for landscape attributes and predator traits.  
 
Figure S2 shows the distribution of NH patches for the four different landscape 
configurations of natural habitat listed in Table 2 at 5% total NH coverage. Because crop 
and NH vegetation are specified at a one-hectare resolution (see Landscape structure, 
above), patch sizes in a given experiment are not always perfectly uniform in area or shape; 
the number of hectares required to achieve the desired percent NH coverage does not 
always divide evenly among the specified number of patches. However, the resulting 
variation among patches is small and does not affect interpretation. The exact landscape 
configurations used can be found in the configuration files provided with the code 
repository. 
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Figures S3-S5 show population trends in the central focal-field for the pest insect, 
alternate prey, and predator under baseline conditions for all three pest population types. 
 
Analysis of output 
Simulation output 
The simulation writes key state variables and metrics for individual cells to an output file 
every 5 days and for every fifth row and column of cells. For our analysis we use the 
following output variables: 

 Cumulative prey per cm2 leaf area up to time t 
 Number of predators immigrating to the cell during the Δt immediately preceding 

time t 
 Energy units per predator at time t 

We are interested in the effects of our experimental variables on pest load and predator 
dynamics in the 1km2 focal field at the center of the landscape tile, outlined in red on the 
illustrations in Fig. S2. This follows standard practice in landscape ecology: using a focal 
field preserves the effects of landscape gradients such as distance to the nearest NH 
patch, which would be obscured if metrics were averaged across the entire landscape.  
The focal filed corresponds to rows and columns 515 to 615 in our 1130 x 1130 grid. With 
every fifth cell (by row and column) being sampled, this results in 400 sample points 
across the focal field every 5 days. 
 
Cumulative pest load 
Cumulative pest density is a state variable in our model given by Eq. 5 under Mathematical 
Model; it captures the total pest pressure experienced by the crop up to time t. Because 
the three pest types followed different population trajectories in the control simulations—
reaching their peaks at different times and at different densities—we standardized 
comparisons by measuring cumulative pest density up to the peak day in the control 
simulation for each pest type. Using the control peak day as a fixed reference ensures that 
cumulative pest load is measured over a consistent developmental window across all 
experiments for each pest type. These peak days were day 60, day 120, and day 75 for the 
aphid-, lygus-, and whitefly-type pests, respectively.   
Analyses and plots of crop pest load versus predator metrics (Figs. 5 and 6 in main text) 
use average cumulative pest density to peak population day in the focal field. Plots of the 
effects of experimental variables (Figs. 3 and 4 in main text) use relative pest load 
calculated as the average cumulative pest load to peak day in a simulation experiment 
(See Table S5) divided by the average cumulative pest load to peak day in the control 
simulation for that pest type. 
 
Predator metrics 
Our objective is to measure the status of the predator population early in the season—the 
period over which predator colonization and subsequent population growth determine 
their influence on later pest dynamics. Although the exact length of the early-season 
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window is not biologically fixed, inspection of population trajectories across many 
simulations showed that predators consistently colonize and either establish or fail to 
establish within the first 40 days after pest emergence. We therefore use this 40-day period 
(days 15–55) as the ecologically relevant window for quantifying early-season predator 
status. Although this window represents different proportions of the time to peak between 
pest types (see above), this asymmetry reflects real differences in pest population 
trajectories during this early-season window and is essential for interpreting their effects 
on natural control. 
 
Immigration.  We calculate the average number of predators immigrating to cells in the 
focal field across the 400 sample cells and the 8 sampling days (see Simulation output) 
spanning days 15 to 55. Since the simulation output is in numbers immigrating over the 
preceding time step, and Δt = 0.05, our metric becomes the average sampled immigration 
divided by 0.4 (8 x 0.05). Our metric then becomes a measure of the early-season 
immigration rate to the focal field – that is, the average number of predators immigrating 
per cell per day during the 40-day early-season window. Because immigration counts 
include arrivals from both outside and within the focal field, this metric may slightly 
overestimate true external colonization. However, examination of immigration and 
emigration events indicates that emigration from the focal field is rare, even when median 
dispersal distance is low, so any inflation is minor and does not materially affect 
interpretation. 
 
Energy accumulation.  For the energy accumulation metric, we calculate the average per 
capita energy content of predators in the focal field across the 400 sample cells and the 8 
sampling days (see Simulation output) spanning days 15 to 55. 
 
Table S7 shows full linear model results for predator immigration versus experimental 
variables; Table S8 shows linear model results for energy accumulation versus 
experimental variables. Tables S9 through S11 show linear model results for pest load 
versus predator metrics for aphid-type, lygus-type, and whitefly-type pests, respectively.  
 
Test of sensitivity to peak pest populations 
To evaluate the sensitivity of our primary results and conclusions to peak pest density, we 
ran simulation experiments at increased critical density of our three pest population types 
for baseline configurations: 1.0 vs 0.5 for aphid-type, 0.4 vs 0.25 for lygus-type, and 0.6 vs 
0.3 for whitefly-type. Simulations were run at baseline parameter values and default 
landscape configurations. The aphid-type pest reached a peak density of 12.0/leaf 
(assuming 100 cm2 per leaf) in the absence of predators, the lygus-type pest reached a 
peak density of 1.6/leaf, and the whitefly-type reached 5.3/leaf. These were each 2 times 
the peak pest densities in our main experiments (See Table S5).  
 
The relative effect of predator overwintering and crop-based supplemental resources was 
essentially the same for our sensitivity test and for our baseline pest population 
parameters for aphid-type and lygus-type pests (Fig. S6 A and B), and only slightly different 



38 
 

for the whitefly-type pest (Fig. S6C). The direction of the difference in pest load at higher 
peak densities of the whitefly-type pest tends to amplify, rather than attenuate, the 
patterns we discuss in the main text. We conclude that, although our simulated pest 
densities were lower than can be seen in the field during pest outbreaks, our primary 
results and conclusions are robust with respect to the pest densities reached in our in 
silico experiments.  
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Fig. S1. 

A) Simulated sampling transects for varying values of k 

 
B) Lygus recaptures with distance from source 

 
C) Geocoris recaptures with distance from source 

 
Simulated recaptures (A) versus actual recaptures for Lygus (B) and Geocoris (C) from 
Sivakoff et al. (S8). 
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Fig. S2. 

 
Schematics of configuration of natural habitat in the landscape at 5% total NH coverage for: (A) 
four NH patches at corners, 8km from center of landscape (note that, because boundaries are 
reflective, these represent 4 large NH patches centered on the corners of the landscape tile); (B) 
one patch in each landscape quadrant, each 4km from center of landscape; (C) four patches in 
each quadrant, closest patch 2 km from center of landscape; (D) 16 patches in each quadrant, 
closest patch 1 km from center of landscape. 
  



41 
 

Fig. S3. 

A) 

B)       

C)        

            
Numbers of aphid-type pest insects, alternate prey, and predators per 100 m2 for no-predator 
control (A), overwintering predators but no crop-based resources (B), predators with crop-based 
resources (C). All runs are with baseline parameters listed in Table S6.  
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Fig. S4. 

A) 

B)       

C)        

            
Numbers of lygus-type pest insects, alternate prey, and predators per 100 m2 for no-
predator control (A), overwintering predators but no crop-based resources (B), predators 
with crop-based resources (C). All runs are with baseline parameters listed in Table S6. 
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Fig. S5.  

A) 

B)       

C)        

            
Numbers of whitefly-type pest insects, alternate prey, and predators per 100 m2 for no-
predator control (A), overwintering predators but no crop-based resources (B), predators 
with crop-based resources (C). All runs are with baseline parameters listed in Table S6. 
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Fig. S6. 

A) 

B)  

C)  

      
Relative crop pest load with baseline population parameters (solid lines) and with peak 
populations increased two-fold (dashed lines) for aphid-type (A), lygus-type (B), and 
whitefly-type (C) pests.  
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Table S1. 

Pest Insect Parameters. NOTE: For parameters that vary between pest population types, 
values are shown separately for lygus-, aphid-, and whitefly-types. Support/Rationale 
apply to Lygus spp. Parameter values for aphid- and whitefly-types are adjusted relative to 
lygus value to achieve the desired pest population type attributes (see main text). Symbols 
match variables in Mathematical Model and Implementation. 

Parameter Symbol Value Interpretation Support/Rational
e 

Population 
Growth 

Egg hatch 
rate 

ej lygus 0.087/day 
aphid 0.173/day 
whitefly 0.173/day 

 

Median duration:  
lygus 8 

day
s 

aphid 4 
day
s 

whitefl
y 

4 
day
s 

 

Ugine (S9) 

Nymph 
maturation 
rate 

ja lygus 0.033/day 
aphid 0.069/day 
whitefly 0.069/day 

 

Median duration:  
lygus 21 

day
s 

aphid 10 
day
s 

whitefl
y 

10 
day
s 

 

Ugine (S9) 

External 
mortality 
rate 

di 0.0866/day Rate of loss of 
eggs and 
nymphs to 
external 
mortality 
sources other 
than predation 

Fleischer & 
Gaylor (S10) 

Adult 
minimum 
(intrinsic) 
mortality 
rate 

do 0.0495/day Median 
longevity: 14 
days (under ideal 
conditions) 

Ugine (S9) 

Max 
fecundity 

bo lygus 4 
eggs/day 

aphid 6 
eggs/day 

whitefly 4 
eggs/day 

 

Fecundity when 
cumulative 
density is low 

Ugine (S9) 

Density 
Dependence 

Adult 
maximum 
mortality 

dmax lygus 0.099/day 
aphid 0.1386/da

y 

Median longevity 
above critical 
threshold: 

Speculative 
Assumes slightly 
higher mortality 
for aphid and 
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whitefl
y 

0.1386/da
y 

 

lygus 7 
day
s 

aphid 5 
day
s 

whitefl
y 

5 
day
s 

 

whitefly types at 
peak densities. 

Min 
fecundity 

bmin lygus 1.25 
eggs/d 

aphid 0.80 
eggs/d 

whitefly 0.75 
eggs/d 

 

Fecundity when 
cumulative 
density is above 
critical 
threshold. 

Speculative 
Assumes slightly 
lower fecundity 
for aphid and 
whitefly types at 
peak densities. 

Critical 
cumulative 
density 

Ccrit lygus 0.25  
aphid 0.50 
whitefly 0.30 

Units: (/cm2) x days 

At critical 
cumulative 
density mortality 
is at maximum 
and fecundity is 
at minimum. 

Populations 
approach 
treatment 
thresholds at 
peak. See Table 1 
in main text. 

Proportion of 
leaf surface 
occupied by 
pest 
population 

ϴL lygus 1.00 
aphid 0.33 
whitefly 1.00 

 

Degree of 
aggregation of 
pest population. 
Note that 
foraging 
predators are 
assumed to 
restrict their 
search to the 
area occupied by 
the respective 
pest population. 

Lygus is highly 
mobile. Whitefly 
tend to disperse 
across the leaf 
surface. Aphids 
generally occur in 
distinct colonies. 

Movement Minimum 
diffusion 
rate 

𝐷ே೘೔೙
  50 m2/day Comparable to 

field 
measurements 
of lygus diffusion 
& other plant 
bugs. 

Fleischer et al. 
(S11) 
Bancroft (S12) 

Maximum 
diffusion 
rate 

𝐷ே೘ೌೣ
  200 m2/day Comparable to 

field 
measurements 
of lygus diffusion 
& other plant 
bugs. 

Fleischer et al. 
(S11) 
Bancroft (S12) 

Proportional 
reflection at 
host/non-
host 
boundaries 

ρ 0.8 80% of diffusing 
pest insects 
return to the 
original location 
on encountering 
a host -> non-
host boundary 

Speculative 
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Dispersal 
distance 
parameter 

λ 1600 Distance 
parameter for 
the Weibull 
distribution. 
Median flight 
distance.  

See Rationale for 
Weibull 
distribution 
parameters 

Dispersal 
shape 
parameter 

k 1.5 Shape 
parameter for 
the Weibull 
distribution. 
Results in 
classic Weibull 
fat-tail 
distribution.  

See Rationale for 
Weibull 
distribution 
parameters 

Proportional 
dispersal 
rate relative 
to mortality 

ѱPest 1.0 An equal number 
of adult pests 
disperse as 
would die at time 
t. 

Speculative 

Overwinterin
g  

Number of 
pest insects 
overwinterin
g  

𝑁ை೟సబ   8/m2 Adult pest 
insects 
overwinter in 
field margins 
only at a density 
of 8/m2 

Fye (S7) 
Horton & Lewis 
(S5) 
See Rationale for 
the parameter 
value for 
overwintering 
densities of pest 
insects and 
predators 

Rate of 
emergence 
from 
overwinterin
g  

erateNo 0.693/day Median time to 
emergence: 1 
day 

Speculative 

Day 
emergence 
from 
overwinterin
g 
commences 

TNo Day 14 Pest insects 
start emerging 
from 
overwintering 
roughly 2 weeks 
after crop 
germination 

Speculative 

Proportion 
dispersing at 
emergence 

pDispN

o 
0.5 50% of emerging 

predators 
immediately 
disperse. 

Speculative 

Table S2. 

Predator Parameters 
Parameter Symbol Value Interpretation Support/Rationale 
Population 
Growth 

Egg hatch rate ejP 0.1386/day Median duration: 5 
days 

Speculative. Set to 
half of nymph stage 
duration. 
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Nymph 
maturation 
rate 

jaP 0.0462/day Median duration: 
15 days 

Torres et al. (S13) 

Minimum 
(intrinsic) 
mortality rate 

pdmin 0.0347/day Median longevity: 
20 days 

Torres et al. (S13) 

Maximum 
mortality 

pdmax 0.345/day Median longevity: 2 
days (following 
exhaustion of sugar 
reserves) 

Speculative 

Predation 
Rate 

Max predation 
rate 

HolK 20 prey/day Maximum prey 
consumed per day. 
K parameter for 
Holling Type II 
functional 
response  

Torres et al. (S13) 

Rate of 
approach to 
max predation 

HolD 25 Prey availability at 
which consumption 
is ½ K. D parameter 
for Holling Type II 
functional 
response 

Speculative 

Predator 
Search area 

prsearch 2000 cm2 / 
day 

Multiplying by prey 
density gives 
number of prey 
currently available 
to predator, which 
is then used in 
Holling Type II 
function. 

Naranjo & Hagler 
(S14) 

Relative 
predation by 
nymphs 

jpr 0.25 Nymphs follow the 
same functional 
response but are 
assumed to have a 
predation rate 25% 
that of adults. 

Torres et al. (S13) 

Predation rate 
at which 
nymph 
mortality 
starts to rise 

pjmin 1 prey/day When nymphs are 
consuming less 
than 1 prey/day, 
mortality increases 
linearly to max. 

Speculative 

Egg Reserve & 
Oviposition 

Energy value 
of prey 

u 1.33 units Each prey provides 
1.33 total units of 
nutrition to the 
predator. A 
proportion is routed 
to the egg reserve; 
the rest to the sugar 
reserve. 

Nutrition units are in 
the number of eggs 
produced from 
consuming the units. 
For simplicity, sugar 
units are equated to 
egg units; the 
meaning of sugar 
units should be 
interpreted as relative 
to the daily 
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maintenance energy 
cost. 

Proportion of 
prey energy to 
eggs 

pnC 0.75 75% of prey energy 
goes to the egg 
reserve. Given 
u=1.33, one egg is 
produced for every 
prey item 
consumed. The 
remainder (25%) 
goes to sugar 
reserves. 

Morales-Ramos et al 
(S15) 
Finke (S16) 
(Carbohydrates are 
low proportion of 
macronutrient 
content of insects) 

Oviposition 
rate 

o 0.25/day Median time from 
prey consumption 
to oviposition: 2.77 
days. (Note that the 
egg reserve is in 
“egg equivalents”).  

Bueno et al. (S17) 
(Comparable to pre-
oviposition period at 
25 deg C) 

Sugar 
Reserve & 
Daily 
Maintenance 

Daily 
maintenance 
cost 

m 0.2 units Each predator uses 
0.2 units from the 
sugar reserve each 
day for 
maintenance. 

-- 

Initial sugar 
reserve 

sinit 2.0 units 10 days of 
maintenance 
energy 

Speculative.   

Amount of 
sugar in 
reserve at 
which 
mortality 
starts to 
increase 

smin 0.4 units 2 days of 
maintenance 
energy 

Speculative 

Consumption 
rate 

flrmax 50 days/day When floral 
resources are 
available, predators 
can consume them 
at a rate of 50 days’ 
worth of energy in a 
day. (But see Max 
sugar reserve 
below). 

See Rationale for 
parameter value for 
the energy consumed 
per day by a predatory 
bug feeding on floral 
resources 

Predation rate 
at switch to 
floral 
resources 

𝑝𝑟௖௥௜௧   10/day Predators start 
making use of floral 
resources when the 
predation rate falls 
below 10 prey/day. 
Floral consumption 
rate increases 
proportionally, and 
linearly as 
predation rate 

Speculative 
Limburg & Rosenheim 
(S18) report a similar 
prey-dependent 
switch by larval 
lacewings. 



50 
 

declines from 10 to 
0 prey/day. 

Max sugar 
reserve 

smax 10 days Predators can hold 
no more than 10 
days’ worth of 
energy in reserve. 

Speculative. We 
assume a limit to the 
amount of sugar 
energy a predator can 
hold in reserve at any 
one time. 

Movement Minimum 
diffusion rate 

𝐷௉೘೔೙
  25 m2/day On average, it is 

comparable to 
herbivore diffusion. 
Stronger response 
to changing 
resource 
conditions. 

See herbivore 

Maximum 
diffusion rate 

𝐷௉೘ೌೣ
  400 m2/day On average, it is 

comparable to 
herbivore diffusion. 
Stronger response 
to changing 
resource 
conditions. 

See herbivore 

Dispersal rate 
relative to 
mortality 

ѱPred 1.0 The proportion of 
adults dispersing 
per day is tied to 
mortality rate.  

Speculative 

Dispersal 
distance 
parameter 

λ 1600 This is the distance 
parameter for the 
Weibull 
distribution. 
Median flight 
distance. 

See Rationale for 
Weibull distribution 
parameters 

Dispersal 
shape 
parameter 

k 1.5 This is the shape 
parameter for the 
Weibull 
distribution. 
Results in classic 
Weibull fat-tail 
distribution. 

See Rationale for 
Weibull distribution 
parameters 

Overwintering Number 
overwintering 

𝑃ை೟సబ   4/m2 Adult predators 
overwinter in 
natural habitat only 
at a density of 4/m2. 
One half the density 
of overwintering 
pest insects. 

Fye (S7) 
Horton & Lewis (S5) 
See Rationale for the 
parameter value for 
overwintering 
densities of pest 
insects and predators 

Overwintering 
pred initial 
sugar reserve 

srsv 2 units 10 days’ worth. Speculative 

Rate of 
emergence 

𝑒𝑟𝑎𝑡𝑒௉௢  0.693/day Median time to 
emergence: 1 day 

Speculative 
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from 
overwintering  
Day 
emergence 
from 
overwintering 
commences 

TPo Day 14 Predators start 
emerging from 
overwintering 
roughly 2 weeks 
after crop 
germination. Same 
day as pest insect. 

Speculative 

Proportion 
dispersing at 
emergence 

pDispPo 0.5 50% of emerging 
predators 
immediately 
disperse. 

Speculative 

 

Table S3. 

Alternate Prey Parameters 
Parameter Symbol Value Interpretation Support/Rationale 
Population 
Growth 

Carrying 
capacity in 
crop 

KD 0.004/cm2 Logistic growth 
used for alt prey. K 
is per unit leaf area. 
Equivalent to 0.4 alt 
prey every 100cm2 
of leaf surface. 

Results in maximum 
number of alternate 
prey roughly half of 
peak numbers of pest 
insect without 
predation. 

Growth rate r 0.12/day r in logistic growth 
equation 

Alternate prey reach 
carrying capacity half-
way through season. 

Movement Diffusion Rate 
when cell 
supports 
alternate prey 

DH 100 m2/day Comparable to pest 
insect and predator 
at average 
conditions. 

--  

Proportional 
reflection at 
host/non-host 
boundaries 

ρ 0.8 80% of diffusing 
alternate prey 
return to the 
original location on 
encountering a host 
-> non-host 
boundary 

Speculative 

Dispersal 
distance 
parameter 

λ 1600 Distance parameter 
for the Weibull 
distribution. Same 
as pest insect.  

See Rationale for 
Weibull distribution 
parameters 

Dispersal 
shape 
parameter 

k 1.5 Shape parameter 
for the Weibull 
distribution. Same 
as pest insect.  

See Rationale for 
Weibull distribution 
parameters 

Dispersal rate 
relative to 
mortality 

ѱAlt-prey 0.05 Alternate prey 
disperse at a 5% 
rate if density is 
greater than KD /2  

Speculative 
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Overwintering Number 
overwintering 

𝐻ை೟సబ   8/m2 Alternate prey 
overwinter in field 
margins only at a 
density of 8/m2. 
Same density as 
pest insect. 

Fye (S7) 
Horton & Lewis (S5) 
See Rationale for the 
parameter value for 
overwintering 
densities of pest 
insects and predators 

Rate of 
emergence 
from 
overwintering  

erateHo 0.693/day Median time to 
emergence: 1 day 

Speculative 

Day 
emergence 
from 
overwintering 
commences 

THo Day 14 Alternate prey start 
emerging from 
overwintering 
roughly 2 weeks 
after crop 
germination. Same 
day as pest insect. 

Speculative 

Proportion 
dispersing at 
emergence 

pDispHo 0.5 50% of emerging 
alternate prey 
immediately 
disperse. 

Speculative 

 

Table S4. 

Vegetation parameters 
Parameter Symbol Value Interpretation Support/Rationale 
Crop Max LAI α 3.0 Maximum leaf area 

index. Comparable 
to cotton. 

Ko et al. (S19) 
Other estimates of 
cotton LAI in literature 
are both lower and 
higher than ~3. 

Growth rate β 0.025/day Rate at which LAI 
approaches max. 
LAI is 90% of max 
halfway through the 
season. 

Ko et al. (S19) 

Initial Days of 
Growth 

Tinit 2 Two days of growth 
at initialization 

-- 

Floral resources flr True/Fals
e 

Presence of floral 
resources in the 
crop varies by 
scenario 

 

Host Status: 
Pest 

-- Yes Crop is host plant 
for the pest insect. 
All parameters as in 
table above. 

 

Host Status:  
Alt Prey 

-- Yes/No Whether the crop 
supports an 
alternate prey 
population varies by 

Assumes minimal 
density and high rate of 
trivial movement on 
non-host. 
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scenario.  If not a 
host, alternate prey 
parameters 
become:  

 KD = 
0.00001 / 
cm2 

 DH = 200 
m2/day 

Natural 
Habitat 
Vegetation 

Max LAI α 5.0 Maximum LAI for 
semi-natural habitat 

Speculative. Actual 
max LAI will vary greatly 
depending on the 
make-up of the natural 
habitat. Asner et al. 
(S20) 

Initial Days of 
Growth 

Tinit 30 30 days of growth at 
initialization 

Speculative. Assume 
some growth of natural 
habitat vegetation has 
occurred prior to crop 
planting.  

Growth rate β 0.01 Rate at which LAI 
approaches max. 

Speculative. Assume 
growth rate roughly half 
that of a managed 
agricultural crop. 

Floral resources flr False There are no floral 
resources in the 
natural habitat. 

 

Host Status: 
Pest 

-- No Natural habitat is 
not a host plant for 
the pest insect. 
Parameters 
become: 

 Ccrit = 0 
(/cm2) x 
days 

 bmax = 0 
eggs/day 

 dmin = 
0.1386/day 

 Dmin = 200 
m2/day 

Assumes no egg laying, 
high morality, and high 
trivial movement in 
non-host vegetation. 

Host Status:  
Alt Prey 

-- No Natural habitat is 
not a host for 
alternate prey, 
parameters 
become:  

 KD = 
0.00001 / 
cm2 

 DH = 200 
m2/day 

Assumes minimal 
density and high rate of 
trivial movement on 
non-host. 
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Field Margins 
Vegetation 

Max LAI α 1.5 Maximum LAI for 
field margins 

Speculative. Actual 
max LAI will vary greatly 
depending on the 
make-up of the natural 
habitat. Asner et al. 
(S20) 

Initial Days of 
Growth 

Tinit 15 15 days of growth at 
initialization. 

Speculative. Assume 
some growth of field 
margin vegetation has 
occurred prior to crop 
planting.  

Growth rate β 0.01 Rate at which LAI 
approaches max. 

Speculative. Assume 
growth rate roughly half 
that of a managed 
agricultural crop. 

Floral resources flr False There are no floral 
resources in field 
margins. 

 

Host Status: 
Pest 

-- No Field margins are 
not a host plant for 
the pest insect. 
Parameters 
become: 

 Ccrit = 0 
(/cm2) x 
days 

 bmax = 0 
eggs/day 

 dmin = 
0.1386/day 

 Dmin = 200 
m2/day 

Assumes no egg laying, 
high morality, and high 
movement in non-host 
vegetation. 

Host Status:  
Alt Prey 

-- No Field margins are 
not a host for 
alternate prey, 
parameters 
become:  

 KD = 
0.00001 / 
cm2 

 DH = 200 
m2/day 

Assumes minimal 
density and high rate of 
movement on non-
host. 

 

Table S5. 

Parameters and peak density for three simulated pest population types 
Pest Population 
Type 

Egg+ Nymph 
Duration 

Max Oviposition 
Rate 

% Leaf Area 
Occupied 

Peak Density per 
Leaf (100 cm2/ 
leaf) 

Aphid-type 14 days 6/day 33% 5.9/leaf 
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Lygus-type 29 days 4/day 100% 0.8/leaf 

Whitefly-type 14 days 4/day 100% 2.6/leaf 

Table S6. 

Parameters used in simulation experiments. Only one experimental variable is 
manipulated at a time; other variables retain their baseline values, indicated in bold.  

Experimental Variable Parameter values 

%NH 1.25% 2.5% 5% 10% 20% 

NH Distribution (distance 
from center of landscape to 
nearest NH patch) 

 1 km 2 km 4 km 8 km 

Predator overwintering 
density 

1/m2 2/m2 4/m2 8/m2 16/m2 

Median dispersal distance 400 m 800 m 1600 m 3200 m 6400 m 

% Dispersal at emergence 0% 25% 50% 75% 100% 

Day of emergence  Day 0 Day 14 Day 28 Day 42 

Energy reserve at emergence 1 day 5 days 10 days 20 days  

 

  



56 
 

Table S7. 

Full linear model output for predator immigration rate versus experimental variables.  
                      Estimate Standardized Std. Error t value Pr(>|t|)     

(Intercept)           9.615e-03           NA  3.524e-02   0.273   0.7853     

NHDist               -6.123e-02   -1.740e-01  1.176e-02  -5.205 6.61e-07 *** 

PercentNH             7.373e-02    5.433e-01  4.532e-03  16.270  < 2e-16 *** 

CropResYes           -7.192e-02   -8.331e-02  4.983e-02  -1.443   0.1511     

DispersalDist         5.135e-05    1.211e-01  1.416e-05   3.626   0.0004 *** 

PctDispersal          5.247e-01    1.885e-01  9.278e-02   5.655 8.20e-08 *** 

PredDens              1.120e-01    6.601e-01  5.665e-03  19.764  < 2e-16 *** 

PredEmergence        -3.717e-03   -5.717e-02  2.171e-03  -1.712   0.0890 .   

SugarReserve         -1.004e-02   -6.539e-02  5.120e-03  -1.962   0.0518 .   

PestTypeL             1.058e-01    1.155e-01  4.983e-02   2.122   0.0355 *   

PestTypeW             7.346e-02    8.023e-02  4.983e-02   1.474   0.1426     

CropResYes:PestTypeL -1.115e-01   -9.630e-02  7.048e-02  -1.583   0.1157     

CropResYes:PestTypeW -8.885e-02   -7.671e-02  7.048e-02  -1.261   0.2095     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.1797 on 143 degrees of freedom 

Multiple R-squared:  0.8412,    Adjusted R-squared:  0.8278  

F-statistic: 63.11 on 12 and 143 DF,  p-value: < 2.2e-16 

 

Parameter        | Eta2 (partial) |       95% CI 

------------------------------------------------ 

NHDist           |           0.24 | [0.14, 1.00] 

PercentNH        |           0.63 | [0.56, 1.00] 

CropRes          |           0.14 | [0.06, 1.00] 

DispersalDist    |           0.06 | [0.01, 1.00] 

PctDispersal     |           0.18 | [0.10, 1.00] 

PredDens         |           0.73 | [0.68, 1.00] 

PredEmergence    |           0.02 | [0.00, 1.00] 

SugarReserve     |           0.03 | [0.00, 1.00] 

PestType         |           0.01 | [0.00, 1.00] 

CropRes:PestType |           0.02 | [0.00, 1.00] 

- One-sided CIs: upper bound fixed at [1.00]. 

Legend: 

NHDist=Distribution of NH; CropResYes=Supplemental resources present in crop 
vs absent; DispersalDist=Median Dispersal Distance; PctDispersal=Percent of 
predators dispersing on emergence; PredDens=Density of overwintering 
predators in NH; PredEmergence=Day of emergence; PestTypeL=Lygus-type vs 
Aphid-type; PestTypeW=Whitefly-type vs Aphid-type 
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Table S8. 

Full linear model output for predator energy accumulation versus experimental variables. 
                       Estimate Standardized Std. Error t value Pr(>|t|)     

(Intercept)           1.186e-02           NA  1.993e-01   0.060  0.95263     

NHDist               -1.449e-02   -5.172e-03  6.655e-02  -0.218  0.82797     

PercentNH            -7.425e-03   -6.873e-03  2.564e-02  -0.290  0.77254     

CropResYes            2.619e+00    3.811e-01  2.819e-01   9.289 2.35e-16 *** 

DispersalDist        -4.467e-05   -1.323e-02  8.012e-05  -0.558  0.57799     

PctDispersal          1.517e+00    6.846e-02  5.249e-01   2.891  0.00445 **  

PredDens             -1.202e-02   -8.899e-03  3.205e-02  -0.375  0.70824     

PredEmergence        -1.227e-01   -2.370e-01  1.228e-02  -9.988  < 2e-16 *** 

SugarReserve          1.683e-01    1.377e-01  2.896e-02   5.811 3.87e-08 *** 

PestTypeL            -5.525e+00   -7.581e-01  2.819e-01 -19.599  < 2e-16 *** 

PestTypeW            -2.660e+00   -3.649e-01  2.819e-01  -9.434  < 2e-16 *** 

CropResYes:PestTypeL  5.665e+00    6.145e-01  3.987e-01  14.210  < 2e-16 *** 

CropResYes:PestTypeW  2.778e+00    3.013e-01  3.987e-01   6.967 1.09e-10 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.016 on 143 degrees of freedom 

Multiple R-squared:  0.9198,    Adjusted R-squared:  0.913  

F-statistic: 136.6 on 12 and 143 DF,  p-value: < 2.2e-16 

 

Parameter        | Eta2 (partial) |       95% CI 

------------------------------------------------ 

NHDist           |       4.46e-04 | [0.00, 1.00] 

PercentNH        |       4.01e-05 | [0.00, 1.00] 

CropRes          |           0.89 | [0.86, 1.00] 

DispersalDist    |       2.75e-04 | [0.00, 1.00] 

PctDispersal     |           0.06 | [0.01, 1.00] 

PredDens         |       1.79e-06 | [0.00, 1.00] 

PredEmergence    |           0.41 | [0.31, 1.00] 

SugarReserve     |           0.19 | [0.10, 1.00] 

PestType         |           0.56 | [0.47, 1.00] 

CropRes:PestType |           0.59 | [0.50, 1.00] 

- One-sided CIs: upper bound fixed at [1.00]. 

Legend: 

NHDist=Distribution of NH; CropResYes=Supplemental resources present in crop 
vs absent; DispersalDist=Median Dispersal Distance; PctDispersal=Percent of 
predators dispersing on emergence; PredDens=Density of overwintering 
predators in NH; PredEmergence=Day of emergence; PestTypeL=Lygus-type vs 
Aphid-type; PestTypeW=Whitefly-type vs Aphid-type 
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Table S9. 

Full linear model output for aphid-type pest load versus predator population metrics. 
     Estimate Standardized Std. Error t value   Pr(>|t|) 

(Intercept)         0.387270           NA   0.008883  43.599   < 2e-16 *** 

Immigration        -0.335188    -0.885852   0.024702 -13.570   < 2e-16 *** 

Sugar              -0.023468    -0.326003   0.004604  -5.097   5.79e-06 *** 

Immigration:Sugar  -0.039965    -0.199790   0.013250  -3.016   0.00409 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.06405 on 48 degrees of freedom 

Multiple R-squared:   0.81,     Adjusted R-squared:  0.7981  

F-statistic:  68.2 on 3 and 48 DF,  p-value: < 2.2e-16 

 

Parameter            | Eta2 (partial) |       95% CI 

----------------------------------------------------------- 

Immigration          |           0.78 | [0.69, 1.00] 

Sugar                |           0.31 | [0.14, 1.00] 

Immigration:Sugar    |           0.16 | [0.03, 1.00] 

 

- One-sided CIs: upper bound fixed at [1.00]. 

Legend: 

Immigration=Immigrating predators per cell per day; Sugar=Average days’ 
worth of energy per predator 

 

Table S10. 

Full linear model output for lygus-type pest load versus predator population metrics. 
                   Estimate Standardized Std. Error t value Pr(>|t|) 

(Intercept)         0.133499           NA   0.004820  27.697 < 2e-16 *** 

Immigration        -0.039745    -0.258352   0.011914  -3.336 0.00165 ** 

Sugar              -0.014726    -0.897353   0.001110 -13.262 < 2e-16 *** 

Immigration:Sugar  -0.008695    -0.234526   0.002836  -3.066 0.00356 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.03415 on 48 degrees of freedom 

Multiple R-squared:  0.7881,    Adjusted R-squared:  0.7749  

F-statistic: 59.52 on 3 and 48 DF,  p-value: 3.351e-16 

 



59 
 

Parameter             | Eta2 (partial) |       95% CI 

------------------------------------------------------------------- 

Immigration           |       5.96e-05 | [0.00, 1.00] 

Sugar                 |           0.78 | [0.69, 1.00] 

Immigration:Sugar     |           0.16 | [0.04, 1.00] 

 

- One-sided CIs: upper bound fixed at [1.00]. 

Legend: 

Immigration=Immigrating predators per cell per day; Sugar=Average days’ 
worth of energy per predator 

 
 

Table S11. 

Full linear model output for whitefly-type pest load versus predator population metrics. 
                     Estimate Standardized Std. Error t value Pr(>|t|) 

(Intercept)         0.2770447           NA  0.0019156  144.63 < 2e-16 *** 

Immigration        -0.0789837   -0.8945637  0.0050489  -15.64 < 2e-16 *** 

Sugar              -0.0090000   -0.6801405  0.0006385  -14.10 < 2e-16 *** 

Immigration:Sugar  -0.0213954   -0.6935242  0.0017526  -12.21 2.5e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.01366 on 48 degrees of freedom 

Multiple R-squared:  0.8916,    Adjusted R-squared:  0.8848  

F-statistic: 131.6 on 3 and 48 DF,  p-value: < 2.2e-16 

 

Parameter               | Eta2 (partial) |       95% CI 

------------------------------------------------------------- 

Immigration             |           0.64 | [0.50, 1.00] 

Sugar                   |           0.77 | [0.67, 1.00] 

Immigration:Sugar  |           0.76 | [0.65, 1.00] 

 

- One-sided CIs: upper bound fixed at [1.00]. 

Legend: 

Immigration=Immigrating predators per cell per day; Sugar=Average days’ 
worth of energy per predator 
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