

**Title:** *Creating opportunities for coexistence to overcome the food–biodiversity challenge*

**Authors:** Silvio J. Crespin<sup>1,2,3</sup>, Dario Moreira-Arce<sup>2,4</sup>

## **Affiliations**

<sup>1</sup>Escuela de Medicina Veterinaria, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile

<sup>2</sup>Departamento de Gestión Agraria, Universidad de Santiago de Chile (USACH), Santiago, Chile.

<sup>3</sup>Instituto de Investigaciones Tropicales de El Salvador (ITRES), San Salvador, El Salvador.

<sup>4</sup>Institute of Ecology and Biodiversity (IEB), Santiago, Chile.

## **Corresponding author**

Silvio J. Crespin.

e-mail: [screspin@itres.science](mailto:screspin@itres.science).

Phone number: +56 9 5337 1125

**Word count: 5765**

**Tables: 1**

**Figures: 1**

**References: 76**

## **Acknowledgements**

SJC was supported by the Vicerrectoría de Investigación, Innovación y Creación (USACH) through the Postdoctoral project grant 092475MA\_Postdoc. DM-A was supported by Fondecyt ANID 1231261 and Grant ANID PIA/BASAL FB210006. The authors declare no conflict of interest.

## Author biographies

**Silvio J. Crespin** is a postdoctoral researcher at the Universidad de Santiago de Chile and co-founder of the non-profit NGO Instituto de Investigaciones Tropicales de El Salvador (ITRES) in El Salvador. His research interests lie in conceptual innovations for biodiversity and conservation science through social-ecological systems lens focusing on inter- and transdisciplinary approaches to human-nature coexistence.

Address: Departamento de Gestión Agraria, Universidad de Santiago de Chile & Instituto de Investigaciones Tropicales de El Salvador.  
e-mail: [screspin@itres.science](mailto:screspin@itres.science)

**Dario Moreira-Arce** is a professor at the Universidad de Santiago de Chile and associate researcher of the Institute of Ecology and Biodiversity (IEB). His research is focused in wildlife conservation in heterogeneous landscapes using ecological and social tools, particularly in the human-carnivore interaction in production-oriented lands.

Address: Departamento de Gestión Agraria, Universidad de Santiago de Chile & Institute of Ecology and Biodiversity, Chile.  
e-mail: [dario.moreira@usach.cl](mailto:dario.moreira@usach.cl)

1    **Abstract**

2    Coexistence with biodiversity in agricultural landscapes is a global vision by 2050. However, the  
3    co-occurrence of wildlife and human food production often results in conflicts which require  
4    resolution. Therefore, agroecological landscapes that emerge when sharing land ultimately require  
5    achieving human-nature coexistence. We conceptualize human-nature coexistence as an n-  
6    dimensional space located in the intersection of multiple components of food security and  
7    biodiversity each acting as a dimensional axis and coalesce them into a single framework. Here,  
8    we expand upon the concept of coexistence parameters to introduce the concept of *opportunities*  
9    *for coexistence* to explain how different combinations of parameters can meet the needs of both  
10   food security and biodiversity conservation in different agroecological landscapes. Establishing  
11   this framework in an ‘Agroecological Systems Model of Coexistence’ provides further insight into  
12   understanding human-nature coexistence as a system state unique to every landscape and serves  
13   as a tool to conceptualize components as explanatory factors of such a state to inform policy and  
14   management when dealing with the food-biodiversity challenge at the local level.

15   **Keywords:** human–nature coexistence, conflict resolution, basin of coexistence, coexistence  
16   niche, social-ecological systems, coexistence parameters

17

18

19

20

21

22

23

24

25

26

27

28 **Introduction**

29 Ensuring coexistence with native biodiversity and achieving food security are both necessary for  
30 humanity to comply with the self-imposed agenda of reaching environmental sustainability in a  
31 post-2020 world (see 2050 Vision ‘Living in harmony with nature’, Convention on Biological  
32 Diversity 2020). The existence of a win-win scenario has been proposed for food security and  
33 biodiversity conservation, which focuses on landscapes with small-holder agroecology as a  
34 solution to meeting both food security and biodiversity goals (Fischer et al. 2017). In these  
35 landscapes, wildlife-friendly farming and land-sharing strategies may reduce agricultural yields  
36 per unit area with regards to fully exploited landscapes (but see Clough et al. 2011), however they  
37 also allow wildlife to survive within agricultural plots (Green et al. 2005; Fischer et al. 2008),  
38 expanding the amount of land available for wildlife conservation beyond the confines of natural  
39 areas. Crucial for nations with little remaining natural habitat, agroecological landscapes brought  
40 about by land-sharing strategies might be the only way to ensure sufficient habitat for species with  
41 large home ranges, barring the restoration of current farmland back into natural habitat (Crespin  
42 & Garcia-Villalta 2014). Herein lies the *food–biodiversity challenge* which reveals itself only once  
43 the scope is widened from aiming to accomplish only either food security or biodiversity  
44 conservation, towards a broader focus that includes meeting both goals in the same space.

45 Making efficient use of space to accomplish either food security or biodiversity conservation goals  
46 requires optimizing resources in such a way that land area is completely accounted for in a specific  
47 landscape (Fischer et al. 2014). Thus, in multiuse landscapes, resource optimization of distinct  
48 components of food security and biodiversity creates a trade-off that can be managed to allow for  
49 win-win scenarios (Fischer et al. 2017). However, optimizing one or the other results in the  
50 clashing of stakeholders vested in opposing interests, generating conflicts based around  
51 conservation and/or stock yielding issues (Young et al. 2010). Once these conflicts emerge, a  
52 landscape’s potential to meet both food security and conservation goals is impaired. It has been  
53 previously established that for landscapes to be truly shared they require for native biodiversity  
54 and food production to not only co-occur, but to also coexist (Crespin & Simonetti 2019).  
55 Coexistence in a social context refers to a state in which groups of people live together, respect  
56 their differences, and resolve their conflicts without violence (Weiner 1998). Coexistence in  
57 ecology entails the ability of species to persist in time and space along with the continuation of  
58 species interactions, including competition and predation, the Lotka-Volterra model being a

59 classical example. Thus, meeting the aims of biodiversity conservation and the production of  
60 human food and services on the same land by enabling the fulfillment of both interests, all the  
61 while avoiding the emergence of conflicts, requires approaching human-nature coexistence from  
62 a social-ecological perspective. This is done with the goal of reaching *social-ecological*  
63 *coexistence*, which has been defined first by Carter & Linnell (2016) and lastly by Pooley (2021)  
64 as “a sustainable though dynamic state, where humans and wildlife co-adapt to sharing landscapes  
65 and human interactions with wildlife are effectively governed to ensure wildlife populations persist  
66 in socially legitimate ways that ensure tolerable risk levels”. Such a definition of coexistence does  
67 not consider the presence of conflicts to be incompatible with coexistence (Pooley 2021), but it  
68 does establish the existence of tolerable risk levels that can be regulated by means of social rules  
69 such as norms, beliefs, deals and laws. Interpretations of coexistence that feature dynamic states  
70 allow for both negative and positive human responses at the behavioral and attitudinal level to  
71 exist and manifest tolerance as a positive (stewardship) or negative (manifested intolerance)  
72 response to wildlife (Bhatia et al. 2020). This coexistence must also be achieved at different  
73 ecological and sociological levels, ranging from individual (or personal) to ecosystem (or societal)  
74 level interactions between humans and nature (Lischka et al. 2018).

75 When viewing production-oriented landscapes as systems, interpreting coexistence as a dynamic  
76 state means that time can change the parameters of the system, that is, the social-ecological factors  
77 that affect human response to wildlife impacts, and yet still be considered to be in a state of  
78 coexistence (Crespin & Simonetti 2021). Adding to this interpretation of coexistence as a system  
79 state, it is then natural to conclude that the property of being dynamic would then allow for the  
80 existence of alternative states in the system other than coexistence, particularly states of conflict.  
81 Let us elaborate.

## 82 **Understanding why human-nature coexistence is integral for food-biodiversity compatibility**

83 When opposing interests manifest intolerance, they can create self-sustaining feedback loops  
84 resulting in states of conflict between social groups, such as people vying for food production  
85 versus those striving for biodiversity conservation (Crespin & Simonetti 2021). Some of these  
86 parameters, for instance, can be at the level of food demands or threats to biodiversity. *Conflict*  
87 *prevention* involves the progression of natural ecological dynamics (such as predator-prey  
88 interactions) and societal needs to be met without incurring damages to human wellbeing or native

89 biodiversity, or at the very least make whatever damage is done become an acceptable loss at a  
90 tolerable risk level. In general, the realization of land-sharing strategies requires the  
91 implementation of conflict prevention and resolution mechanisms to be successful.

92 Before continuing, we would like to address two points regarding conflicts and coexistence. First,  
93 it is important to separate conceptually distinct terms in conservation, *i.e.* impacts and conflicts.  
94 The situations where either people adversely affect biodiversity or biodiversity negatively impacts  
95 people, should be recognized as *biodiversity impacts* (Young et al. 2010). Once an affected party  
96 decides to eliminate a biodiversity impact, societal and conservation goals enter into opposition,  
97 generating *conservation conflicts* (Redpath et al. 2013), and sometimes referred to as biodiversity  
98 conflicts (White et al. 2009). Prior to the 2010s, the literature interpreted biodiversity impacts as  
99 conflicts (Young et al. 2010). Second, though the term “conflict” has permeated the scientific  
100 vernacular to describe opposing social interests, we support a phasing out of the term in favor of  
101 more productive interpretations of human-biodiversity relationships (Peterson et al. 2010).  
102 Therefore, when possible, from hereon instead of referring to conflict we shall refer to its  
103 counterpart, *human-nature coexistence*, as it is these states of coexistence that we as  
104 conservationists wish to achieve.

105 Planning for people and nature in production-oriented landscapes implies interpreting and  
106 recognizing these landscapes as *social-ecological systems* (SES) (Ban et al. 2013). This highlights  
107 the complexity that emerges due to their components being shaped from different levels and facets  
108 of both people and nature, and the fact that they are interlinked across scales, with people and  
109 nature affecting each other in one place but also elsewhere (Fischer et al. 2015, Ostrom 2009).  
110 Interpreting productive landscapes as systems allows for alternative states of conflict and  
111 coexistence to exist for a particular landscape (Crespin & Simonetti 2021). As dynamic systems,  
112 landscapes can have different attractors in their phase space (*i.e.* the space that represents all  
113 possible states in a system) for both states of conflict and coexistence, meaning that the overall  
114 goal of conservationists would be to nudge a landscape into a basin of attraction belonging to what  
115 we may consider to be coexistence. Such that, although biodiversity impacts may occur, these  
116 should hold only a small sway over the state of a landscape, whose state is governed by a multitude  
117 of other social-ecological factors.

118 Working through the lens of system theory and viewing landscapes as social-ecological systems

119 allows traversing the food-biodiversity nexus towards coexistence by treating social-ecological  
120 variables as system parameters. These can include ecological, economic, psychological, cultural  
121 and physiological aspects of people and nature in a given landscape. Subsequently, one can  
122 identify which variables explain the emergence, intensity and frequency of conflicts, *i.e.* which  
123 ones define states of conflict, thereby allowing one to manage them accordingly and nudge the  
124 system toward a state of coexistence. Proposals to manipulate these parameters should aim to shift  
125 the state of a landscape through its phase space away from its current basin of attraction towards a  
126 desired one (from conflict to coexistence). Thus, those parameters that determine system states  
127 devoid of major losses for both food security and biodiversity can be called *coexistence parameters*  
128 (Crespin & Simonetti 2021).

129 Here, we expand upon the concept of coexistence parameters to explain how different  
130 combinations of parameters can meet the needs of both food security and biodiversity conservation  
131 to create *opportunities for coexistence*. To explain how to generate these opportunities for  
132 coexistence we have developed a conceptual “Agroecological Systems Model of Coexistence” by  
133 modifying the original food-biodiversity nexus systems model proposed by Fisher et al. (2017) so  
134 as to include components of food security and biodiversity as coexistence parameters. Thus, we  
135 conceptualize human-nature coexistence as an n-dimensional subspace located in a phase space  
136 comprised of the intersection of multiple components of food security and biodiversity, each acting  
137 as a dimensional axis. We term the combinations of parameters inside the subspace of coexistence  
138 as ‘opportunities’ because they are conceptual in nature. Reaching any of these combinations is  
139 the challenge conservationists face when confronting conflicts. Coalescing food-biodiversity  
140 components into a single model may allow for easier detection of actions required to manipulate  
141 coexistence parameters and decrease biodiversity impacts or increase tolerance, thus identifying  
142 opportunities for reaching states of coexistence in a landscape.

143 As a corollary, a more precise analogy for coexistence and conflict would be to describe them as  
144 basins of attraction. This allows the landscape to remain a dynamic system, constantly shifting  
145 through phase space inside a basin according to different scenarios of biodiversity conservation  
146 and food security arrangements. Biodiversity impacts of sufficient intensity and frequency can  
147 push a system out of one basin and into another. As conservationists, to bring a landscape into a  
148 *basin of coexistence* and keep it there, we must be willing to identify all coexistence parameters

149 present in a landscape and engage with them, especially if they belong to unfamiliar disciplines  
150 (e.g., Saunders 2003). We would like to reiterate that our use of the term “basin of coexistence” is  
151 social-ecological in nature: we are aiming for a system state of human-nature coexistence after all,  
152 which differs from previous uses of the term that referred to coexistence in the sense of ecological  
153 population dynamics (e.g. Ni et al. 2010, Shi et al. 2010) or hard geographic limits (e.g. Lamb et  
154 al. 2000). It follows then, that reaching beyond our element and collaborating with professionals  
155 from distinct fields will inevitably be a part of finding opportunities for coexistence.

## 156 **Threats impeding human-nature coexistence**

157 Human-nature coexistence may be impeded by direct or indirect drivers of conflict. *Direct* or  
158 *proximate* drivers of conflict consist of impacts on biodiversity (such as persecution, exclusion,  
159 and extraction) and human wellbeing (such as loss of economic solvency, increased risk of injury  
160 or danger of disease transmission). Persecution of wildlife occurs in retaliation for ongoing  
161 resource competition (carnivore-livestock production conflicts, elephant, or primate crop raiding)  
162 (Sillero-Zubiri et al. 2004, Fleming et al. 2006, Macdonald et al. 2010) or when perceived as  
163 dangerous to humans either by causing human death and injury (Baker et al. 2008) or transmitting  
164 diseases (Löe & Röskart 2004). Spatial exclusion happens when critical resources are lost and  
165 coopted by human-dominated landscapes such as destruction of carnivore hunting grounds (or prey  
166 habitat) or herbivore feeding stock (Chapron & Lopez-Bao 2016). Extraction for use as resource  
167 with either commercial or cultural purposes refers to uses such as in the exotic pet trade industry  
168 and medicinal uses (Darinmont et al. 2015, Chapron & Lopez-Bao 2016). It is thus unsurprising  
169 that focusing on direct or proximate drivers of conflict, which rise from human-wildlife  
170 interactions and require ecological approaches, have left indirect or distal drivers by the wayside  
171 in lieu of more noticeable quantitative solutions.

172 *Indirect* or *distal* drivers of conflict emerge from behavioural, cultural, and identity needs that  
173 involve interactions with wildlife, and thus, require underlying social (legal, cultural,  
174 psychological, et al.) approaches to resolve (Young et al. 2010). In such cases, relying on strategies  
175 that only employ quantitative trade-offs (ecologic or economic) are insufficient to deal with the  
176 underlying conflicts that are at the root of the seemingly unending observable disputes surrounding  
177 quantifiable or perceived losses. Even strategies that overcompensate losses may not be enough to  
178 signal the end of an underlying conflict (Bautista et al. 2019). This complexity and depth

179 concerning the number of drivers that need to be addressed in conflicts is described by the Levels  
180 of Conflict model (Canadian Institute for Conflict Resolution 2000) that has served to better  
181 understand conservation conflicts (Madden & McQuinn 2014). In essence, disentangling conflicts  
182 often requires going beyond factors that enact quantitative effects and delving into the social  
183 sciences. Thus, we should look toward social-ecological interdisciplinary approaches when  
184 cultural and identity-based needs are affected by conservation targets or actions (Young et al  
185 2010).

186 **Complexity in managing human-nature conflicts: no silver bullet**

187 Biodiversity conservation is complex in that it requires navigating myriad interactions between  
188 cultural and biophysical systems, leading to their conceptual integration in social-ecological  
189 systems models in an attempt to mirror aspects of reality. Multiple advances in analyses regarding  
190 social-ecological systems (see Binder et al. 2013) have given way to frameworks that specifically  
191 center on human-wildlife interactions, which tend to describe system wide drivers of these  
192 interactions and even offer integration at multiple levels of social-ecological organization (e.g.,  
193 Morzillo et al. 2014, Carter et al. 2014, Lischka et al. 2018). However, for policy to acknowledge  
194 these different approaches, first academics must also acknowledge a lack of the transdisciplinary  
195 work needed to achieve coexistence (Hartel et al. 2019). The fact is that for a long time, approaches  
196 towards solutions have been sectorial in nature, limiting the integration of research and  
197 management needed to adequately address conflicts in human-dominated landscapes (Hartel et al.  
198 2019).

199 Negative interactions between humans and wildlife have historically taken place throughout the  
200 formation of human society. The Holocene saw the magnitude of these interactions increase and  
201 tip in favor of humans to the point that in the present, human interests in wildlife and ecosystem  
202 wellbeing have matured into structured areas of science, clashing in turn with interests in human  
203 productivity and wellbeing, creating conservation conflicts. Among conservation conflicts, none  
204 are more conspicuous than those involving specific species such as livestock predation by  
205 carnivores (Baker et al. 2008) with crop raiding by large herbivores and primates following close  
206 behind (Redpath et al. 2013), commonly labeled *human-wildlife conflicts*. Predation of livestock  
207 or raiding of crops results in the subsequent persecution of the presumed culprits, and in some  
208 cases, includes the targeting of other predator/herbivore species in the hope of preventing further

209 loss. Essentially, these interactions result in conflicts between stakeholders whose vested interests  
210 align with either conserving carnivores/herbivores or livestock production and human wellbeing.  
211 Therefore, human-wildlife conflicts are at the forefront of conservation conflicts, a pressing matter  
212 considering most species involved suffer from vulnerability to habitat loss and persecution due to  
213 usually low population densities (in the case of carnivores), long gestation and parental care  
214 periods (in the case of elephants or primates) and requiring large home ranges. However, we would  
215 like to remind the reader that human-wildlife conflicts are not limited to carnivore-livestock  
216 predation or large herbivore-crop raiding and can emerge in human-dominated landscapes from  
217 interactions involving multiple taxa, including small mammals, birds, insects, and other ruminants,  
218 both native and exotic (Anderson et al. 2021).

219 As we discussed above, resolving conservation conflicts requires focusing on both the biological  
220 basis and meeting the underlying social identity needs unique to each landscape (Madden &  
221 McQuinn 2014). It is during these context-dependent processes of reconciliation that distinct  
222 combinations of biodiversity components can be managed to meet the needs of local landholders  
223 and conservationists (Redpath et al. 2013). Contextualizing the benefits of distinct ecological  
224 functions related to the conflicting biodiversity aspect to land holders and transforming the us-  
225 against-them mentality of the affected people into one of belonging and comradery with nature  
226 may open previously unnegotiable issues up for discussion. For example, once all measures  
227 available for mitigation and compensation of livestock predation by carnivores can be accounted  
228 for, success of carnivore conservation might also require for the local perception to shift toward  
229 perceiving carnivores as a benefit for local landholders. Specifically, determining how the removal  
230 of carnivores affects supporting ecosystem services in the long run may grant communities a sense  
231 of cooperation with carnivores on the same land (Ripple et al. 2014, Williams et al. 2018). The  
232 same conditions might also apply to large herbivores and crop raiding.

233 When thinking back to the Levels of Conflict model to describe the complexity underlying  
234 conservation conflicts, we can see that it functions as a pyramidal classification of conflicts and  
235 their solution processes, beginning with *disputes* solved through *settlements* at the top, followed  
236 by *underlying conflicts* requiring more complex *resolutions* in the middle, and ending with  
237 identity-based or *deep-rooted conflicts* that demand greater degrees of discipline integration to  
238 counter their complexity through *reconciliations* at the bottom (Canadian Institute for Conflict

239 Resolution 2000, Madden & McQuinn 2014). Unsettled disputes can linger and accumulate  
240 negative emotions, generating underlying conflicts which when left unresolved, fester and seep  
241 into prejudices or identity-based beliefs, becoming deep-rooted conflicts in need of reconciliation  
242 processes. A plurality of inter- and transdisciplinary sciences, or biocultural approaches (Hanspach  
243 et al 2020), are needed to reach sustainability levels required for resolution and reconciliation  
244 processes. Fundamentally, as levels of conflict and their respective solution processes increase in  
245 complexity and intensity, so too do the number of coexistence parameters and the level of  
246 integration between inter- and transdisciplinary sciences needed to shift a landscape toward  
247 coexistence (Crespin & Simonetti 2021).

248 **Navigating the food security – biodiversity nexus**

249 The food security – biodiversity nexus systems model describes four archetypes of social-  
250 ecological systems wherein agroecological landscapes are recognized as the win-win scenario for  
251 conservation and human society (Fischer et al. 2017). These four archetypes of social-ecological  
252 system states are based on favorable scenarios either for food security or biodiversity, essentially  
253 describing degraded landscapes as being necessary to avoid at all costs, intensive agriculture and  
254 fortress conservation as capable of meeting their respective food security and biodiversity goals if  
255 less regard is taken for the other, and agroecological landscapes as ideal scenarios where both food  
256 security and biodiversity conservation goals can be equally met. The outcomes of these archetypes  
257 can be viewed as wins or losses for each axis based on optimal usage of resources. *Degraded*  
258 *landscapes* are lose-lose outcomes for biodiversity and food security where levels of social,  
259 manufactured and natural capital are low, resulting in poverty and degraded ecosystems with low  
260 capacity to provide ecosystem services. *Intensive agricultural landscapes* are win-lose outcomes,  
261 with high levels of food production and quality and allowing access to local communities, but low  
262 levels of local biodiversity because resources such as space are coopted for human use and impacts  
263 on nature are intense. *Fortress conservation* comprises lose-win outcomes because native  
264 biodiversity suffers minimal impacts, but local communities' livelihoods and wellbeing are not  
265 prioritized and remain low, such as preventing food production on the same land where  
266 biodiversity is protected. Finally, small-holder *agroecological landscapes* are win-win outcomes  
267 where optimally using resources in a landscape for both biodiversity and food production allows  
268 positive outcomes for both axes in the same space.

269 Identifying coexistence parameters is important when transitioning between system archetypes and  
270 seeking to shift from a lose-lose outcome to a more favorable one (Crespin & Simonetti 2021).  
271 When aiming for agroecological landscapes (envisioned as win-win outcomes consisting of shared  
272 spaces), the processes involved in achieving coexistence between human society and the biological  
273 community may function as navigational mechanisms between archetypes. Ultimately,  
274 transitioning towards agroecological landscapes requires understanding which social-ecological  
275 factors allow coexistence, and at what spatial scale and ecological level these factors interact. This  
276 added dimensionality allows establishing the multi-dimensional subspace where both food  
277 production and biodiversity conservation needs are met, which we interpret as human-nature  
278 coexistence and term as *coexistence niche*. Thus, one might employ such a niche to formulate  
279 hypotheses aimed at explaining transitions from alternative archetypes towards agroecological  
280 landscapes by identifying which dimensional factors make up the foundation of a systems' phase  
281 space. It is inside this coexistence niche where opportunities for coexistence might reside. That is  
282 to say, the coexistence niche of a system is the combined total of all the combinations of food  
283 production and biodiversity conservation components that meet the needs of both.

284 Agro-productive human-dominated landscapes may transition to agroecological shared lands if  
285 coexistence is reached. However, each landscape is a unique combination of food security and  
286 biodiversity components unto itself, meaning a one size fits all approach will not suffice.  
287 Therefore, an expanded food-biodiversity nexus (sensu Fisher et al. 2017) with added  
288 dimensionality, along with a more complete knowledge of how interactions between components  
289 play out, might allow for more specific approaches and management practices when dealing with  
290 transitioning to agroecological landscapes. On these premises, this text aims to propose a modified  
291 social-ecological systems model of the food-biodiversity nexus comprised by distinct components  
292 of biodiversity and food security, as a central mechanism for transitioning from intensive  
293 agriculture or fortress conservation towards agroecological systems. We offer a short glossary of  
294 terminology as an aid (see Table 1).

## 295 **Deconstructing the food security – biodiversity nexus**

296 Deconstructing food security and biodiversity into their respective components adds  
297 dimensionality to the archetypes of the social-ecological systems model. Food security is a  
298 multipart concept generally described as combining quantity, quality and access to food along with

299 temporal stability (FAO 2002, Sunderland 2011), and it is with each of these components that  
300 biodiversity interacts and must coexist. In turn, biodiversity also exists as a multipart concept, yet  
301 multilayered, encompassing composition, structure, and function as its components at distinct  
302 hierarchical levels (Noss 1990). Both concepts are temporally dynamic. We may now ask which  
303 biodiversity components at which levels interact with the components dictating food security, and  
304 how can they be managed to coexist, ultimately transitioning towards agroecological landscapes.  
305 Viewing Fisher et al.'s (2007) conceptual model, both axes are composite variables whereby  
306 possible solutions to traversing the plane will require addressing questions by approaching two  
307 multidimensional concepts. In agroecological landscapes, compositional and structural  
308 biodiversity components are intuitively linked to both quantity and quality components of food  
309 security by easily understood quantitative relations (e.g. more carnivores/herbivores may result in  
310 less food yield), yet biodiversity function and access to food are not so easily connected to each  
311 other and other components. However, viewing the food security – biodiversity nexus as a  
312 Hutchinsonian n-dimensional space may allow more specific questions to be answered, including  
313 where in this space coexistence might be found. In essence, abstracting coexistence into a  
314 conceptual model as the resulting overlap between needs met for food security and biodiversity  
315 can grant managers a theoretical goal to work towards.

### 316 **Constructing an Agroecological Systems Model of Coexistence**

317 To construct a conceptual model of coexistence in agroecological landscapes we modified the  
318 social-ecological framework established by Fisher et al. (2017), *i.e.* the food-biodiversity nexus.  
319 This modification relies on increasing complexity to more accurately model real systems by adding  
320 dimensionality to the model while maintaining a semblance of simplicity, using the model  
321 advanced by Lischka et al. (2018) as a basis for how ecological and social systems interact. Lischka  
322 et al's (2018) 'social-ecological systems model of human-wildlife interaction' describes a  
323 bidirectional effect between social and ecological systems at all levels, and where individual  
324 interactions are affected by human and animal behavior in turn determined by extrinsic and  
325 intrinsic attributes.

326 An 'Agroecological Systems Model of Coexistence' should therefore first describe how distinct  
327 combinations of food security and biodiversity can allow meeting the needs of one without  
328 necessarily doing the same for the other (Figure 1a, b), while showing the multidimensionality of

329 food security and biodiversity given by their respective components (Figure 1c, d). This enables  
330 us to envision the combinations that do meet the needs of both food security and biodiversity  
331 conservation as ‘opportunities for coexistence’ (Figure 1e), and which when taking into  
332 consideration the multiple components of each axis can be thought of as an n-dimensional space  
333 of combinations of the multiple components comprising food security (quantity, quality and access  
334 to food) and biodiversity (composition, structure and function) (Figure 1f). This n-dimensional  
335 space is what we call the coexistence niche from which opportunities for coexistence arise.

### 336 **Using the proposed model**

337 Decomposing food security and biodiversity allows finding opportunities for coexistence, at least  
338 by meeting food security and conservation needs. To formulate testable hypotheses regarding  
339 human-environment relations and the resolution of conservation conflicts, we mean for the  
340 model’s increasing complexity to help visualize relations between biodiversity components and  
341 food security components in real agroecological systems. At first glance, when assessing a new  
342 landscape through the model, the main explanations for biodiversity impacts are the food security  
343 and biodiversity axes through their respective components, and more importantly how those  
344 components interact. Identifying the social-ecological factors that cause a biodiversity impact  
345 allows drawing a conceptual net or space around these combinations of factors and at which levels  
346 the impact can be alleviated or eliminated, thus identifying the coexistence niche. The different  
347 combinations of factors and their levels that can be managed are opportunities for coexistence that  
348 can be interpreted as any point confined to the n-dimensional space. Each of the factors taking part  
349 in an opportunity for coexistence is a coexistence parameter due to being capable of shifting the  
350 system away from conflict and towards coexistence. Operability can be achieved by engaging  
351 with the social-ecological factors identified as coexistence parameters by either scholars or  
352 practitioners in the field, as we show in the following two case studies.

#### 353 *Case study 1: Carnivore sentiment in El Salvador: preparing for coexistence with the puma*

354 Most wildlife is not well received in El Salvador, carnivores even less so. Evidence of the puma  
355 (*Puma concolor*) in El Salvador had not been found since 1942 (Burt and Stirton 1961) until two  
356 independent monitoring projects using camera traps in 2018 presented the first photographic  
357 evidence of puma in El Salvador (Morales-Rivas et al. 2020). This makes the killing of a puma in

358 2020 (MARN 2020) even more tragic as its front paws were taken in a presumed act of trophy  
359 collection (Amaya 2020).

360 Land in El Salvador is primarily used for agriculture (84% in 2011 *sensu* Crespin & Simonetti  
361 2016), so if the puma is to make a comeback, an expansion of its distribution and increase in  
362 abundance might lead to biodiversity impacts. Recently, camera trapping has even revealed pairs  
363 in courtship, pregnant females, females with cubs and juveniles making use of northeastern areas  
364 of the country throughout the year, indicating that reproduction might be taking place (Pineda et  
365 al. 2024). Sharing that land might result in more biodiversity impacts either on humans or pumas.  
366 Humans may be impacted in the form of livestock predation, as of yet unknown issues with food  
367 security, economic solvency or even direct attacks on humans, leading to cessation of daily  
368 activities. Pumas may suffer retaliation, and even their mere presence may lead to pre-emptive  
369 hunting or increased support of trophy hunting. These potential impacts can turn into conflicts  
370 between carnivore conservation and human interests, stemming from issues with food security or  
371 more general worries. Thus, successfully transitioning to agroecological landscapes in  
372 northeastern El Salvador presents a food-biodiversity challenge specifically when trying to meet  
373 the needs for both puma conservation and food security, along with background factors driving  
374 attitudes that steer toward unnecessary killing for trophy purposes.

375 Future impacts of the puma on Salvadoran food security might generate disputes and may be dealt  
376 through settlement processes such as monetary compensations or subsidization of strategies to  
377 protect against losses. However, unwarranted trophy hunting may be a deep-rooted conflict that  
378 will require a multigenerational strategy targeting cultural beliefs regarding value orientations all  
379 while respecting cultural history. From a systems perspective, social-ecological coexistence would  
380 be achieved by avoiding intolerable losses incurred through puma impacts and eliminating further  
381 unwarranted trophy hunting. Protection against losses of human lives and food security dimensions  
382 along with the elimination of cultural beliefs that lead to hunting might be the parameters that can  
383 lead this nascent agroecological landscape to a course of action. Coexistence parameters would be  
384 the direct and indirect drivers of beliefs implicating the puma as unwanted or overly dangerous. In  
385 such a case, opportunities for coexistence can be generated by instilling a sense of cultural pride  
386 and stake in puma conservation. Such positive beliefs can even form the basis of a basin of  
387 coexistence, leading communities themselves to seek conflict prevention. Multiple pathways to

388 such a reconciliation can exist, interlinked at various levels of societal and ecological systems,  
389 creating a coexistence niche.

390 *Case study 2: Wine production in central Chile: turning high-yield production lands into wildlife-  
391 friendly landscapes*

392 The burgeoning wine industry in central Chile, a Mediterranean-climate biodiversity hotspot,  
393 presents a compelling case study for understanding the dynamics between agricultural expansion  
394 and nature conservation. Driven by global demand for high-quality wine, vineyard coverage has  
395 dramatically increased, in some periods by as much as 10% annually (Viers et al. 2013), reaching  
396 approximately 124,000 hectares by 2023 (SAG 2023). While some of this expansion reflects crop  
397 switching, a significant portion has resulted from the loss of vital natural and semi-natural  
398 ecosystems (Armesto et al. 2010; Schulz et al. 2010), including stream floodplains and sensitive  
399 hillsides. This conversion, coupled with intensive conventional vineyard management, poses a  
400 direct threat to local wildlife by fragmenting habitats and simplifying ecological communities,  
401 leading to declines in insect abundance, bat diversity and activity (Rodriguez-San Pedro et al.  
402 2018), and bird richness (Muñoz-Saez 2024). Even meso-carnivores, particularly habitat  
403 specialists, are negatively impacted by the loss of native sclerophyllous forest-shrublands within  
404 these wine landscapes (Garcia et al. 2021).

405 However, multiple coexistence parameters can be found in vineyards throughout Chile that can  
406 lead to opportunities for coexistence. From a systems perspective, achieving socio-ecological  
407 coexistence between viticulture and local biodiversity will require a two-pronged approach  
408 regarding coexistence parameters. Firstly, the increasing environmental awareness within the  
409 Chilean wine industry, exemplified by initiatives like the voluntary program Wine, Climate  
410 Change and Biodiversity Programme (WCB), signals a shift towards more sustainable practices  
411 by encouraging wineries to adopt wildlife-friendly practices and engage in private land  
412 conservation (Marquez-Garcia et al. 2019). Thus, the robust monitoring and evaluation of  
413 management practices, supported by research and accessible to practitioners through ecological  
414 indicators and field observations (Diaz-Forester et al. 2021) allows for the identification of  
415 practices that minimize negative impacts and potentially enhance biodiversity, emerging as a first  
416 order of potential coexistence parameters.

417 Secondly, there is a growing realization of the positive outcomes associated with adopting

418 conservation practices, which are crucial for generating opportunities for coexistence due to their  
419 synergistic effects. These benefits extend beyond mere altruism, encompassing financial  
420 advantages, strategic gains, and the tangible benefits of ecosystem services for wine production  
421 itself (Duran et al. 2022). For instance, the preservation of native vegetation can support beneficial  
422 insects that aid in pest control, reducing the need for chemical interventions. Soil microbial  
423 communities present in the native surrounding vegetation may enhance soil properties and  
424 ecosystem functions in vineyards (Castañeda & Barbosa 2017). Furthermore, a positive corporate  
425 image, often linked to environmental stewardship and the protection of the unique 'terroir' that  
426 defines wine identity and quality, acts as a significant strategic social driver for WCB members.  
427 This understanding that protecting nature maintains a terroir, which gives identity to the wine and  
428 an image to sell, can be a powerful catalyst for change and thus emerge a second order of  
429 coexistence parameters.

430 Building upon these opportunities for coexistence, basins of coexistence can emerge. When  
431 wineries and surrounding communities recognize the intrinsic link between a healthy environment  
432 and the long-term sustainability and marketability of their wine, a shared value system begins to  
433 form. This shared value can drive collective action towards landscape-level conservation efforts,  
434 where vineyards are managed in a way that integrates with and supports native ecosystems. For  
435 example, maintaining or restoring native vegetation corridors between vineyards can facilitate  
436 wildlife movement, enhancing biodiversity and potentially reducing the need for intensive pest  
437 control. The positive feedback loop created by enhanced biodiversity (e.g., natural pest control,  
438 pollination) contributing to wine quality and brand image, which in turn incentivizes further  
439 conservation efforts, can solidify these basins of coexistence. Multiple pathways to this  
440 harmonious relationship can exist in what we interpret as a coexistence niche, one of which is the  
441 development of eco-tourism initiatives centered around the unique biodiversity of the wine region,  
442 further strengthening the economic and cultural value placed on conservation. By focusing on the  
443 mutual benefits of biodiversity conservation and high-quality wine production, the Chilean wine  
444 industry can transition from a potential driver of conflict to a key player in fostering human-nature  
445 coexistence within this vital biodiversity hotspot.

446

447

448 **Concluding Remarks**

449 Throughout this text we endeavored to plainly state why adding dimensionality into the food-  
450 biodiversity challenge is necessary. The inherent complexity in social-ecological systems, which  
451 makes each system unique, does not allow aggregate concepts to offer blanket solutions to multiple  
452 agroecological landscapes simultaneously at the local level. Increasing dimensionality offers more  
453 specific concepts for opportunities for coexistence to flourish by offering solution-finding  
454 operability. More specifically, general concepts, such as biodiversity and food security can ease  
455 understanding of issues and relations between variables in academic environments and at global  
456 or regional scales, but it is practicality and utility that are required to solve problems for  
457 practitioners and managers at the local level. Conceptual disaggregation is needed because more  
458 specific variables that can actually be measured and managed will allow for increased  
459 operability.

460 Our “Agroecological Systems Model of Coexistence” framework can be viewed as a method to  
461 identify system-level leverage points (Meadows 1999) in an agroecological system. Leverage  
462 points are places to intervene in a system and range from easiest (but less effective) to hardest (but  
463 state defining) to manipulate. Fischer and Riechers (2019) illustrate how the leverage points  
464 perspective can initiate causal cascades in different landscapes and establish their advantages as  
465 tools for sustainability science, key among them their value as methodological boundary objects  
466 due to their potential use by multiple groups of scholars and practitioners from diverse disciplinary  
467 backgrounds. Concepts used in this framework such as ‘coexistence parameters’ and now  
468 ‘opportunities for coexistence’ only build upon the need for boundary objects in sustainability  
469 science and aim towards identifying the most cost-effective leverage points in an agroecological  
470 landscape.

471 We have added dimensionality to a specific challenge society faces, but we believe this can be  
472 extrapolated and repurposed to multiple challenges across the human-nature coexistence narrative.  
473 We hope to continue using, improving and coalescing our own framework with others in the near  
474 future and most importantly to aid conservation practitioners when engaging with the food-  
475 biodiversity challenge.

477 **References**

478 Adhikari, B., M. Odden, B. Adhikari, S. Panthi, J.V. López-Bao, and M. Low. 2020. Livestock  
479 husbandry practices and herd composition influence leopard-human conflict in Pokhara Valley,  
480 Nepal. *Human Dimensions of Wildlife* 25:62-69. DOI:10.1080/10871209.2019.1695157

481 Amaya, C. 2020. Cazadores furtivos matan a un puma en Chalatenango. *Gato Encerrado* May  
482 13. Available at: <https://gatoencerrado.news/2020/05/13/cazadores-furtivos-matan-a-un-puma-en-chalatenango/>

484 Anderson, C.B., J.C. Pizarro, A.E.J. Valenzuela, N. Ader, S. Ballari, J.L. Cabello-Cabalín, V.  
485 Car, M. Dicenta, et al. 2021. Reconceiving the Biological Invasion of North American Beavers  
486 (*Castor canadensis*) in Southern Patagonia as a Socio-ecological Problem: Implications and  
487 Opportunities for Research and Management. In: *Biological Invasions in the South American*  
488 *Anthropocene*. Springer, Cham. DOI:10.1007/978-3-030-56379-0\_11

489 Armesto, J.J., D. Manuschevich, A. Mora, C. Smith-Ramirez, R. Rozzi, A.M. Abarzua, and P.A.  
490 Marquet. 2010. From the holocene to the anthropocene: a historical framework for land cover  
491 change in southwestern South America in the past 15,000 years. *Land Use Policy* 27:148-160.  
492 DOI:10.1016/j.landusepol.2009.07.006

493 Bahtia, S., S.M. Redpath, K. Suryawanshi, and C. Mishra. 2020. Beyond conflict: exploring the  
494 spectrum of human-wildlife interactions and their underlying mechanisms. *Oryx* 54: 621-628.  
495 DOI: 10.1017/S003060531800159X

496 Baker, P.J., L. Boitani, S. Harris, G. Saunders, and P.C.L. White. 2008. Terrestrial carnivores  
497 and human food production: impact and management. *Mammal Review* 38:123-166.  
498 DOI:10.1111/j.1365-2907.2008.00122.x

499 Ban, N.C., M. Mills, J. Tam, C.C. Hicks, S. Klain, N. Stoeckl, M.C. Bottrill, J. Levine, et al.  
500 2013. A social-ecological approach to conservation planning: embedding social considerations.  
501 *Frontiers in Ecology and the Environment* 11:194-202. DOI:10.1890/110205

502 Bautista, C., E. Revilla, J. Naves, J. Albrecht, N. Fernández, A. Olszańska, M. Adamec, T.  
503 Berezowska-Cnota, et al. 2019. Large carnivore damage in Europe: Analysis of compensation

504 and prevention programs. *Biological Conservation* 235:308-316.  
505 DOI:10.1016/j.biocon.2019.04.019

506 Binder, C.R., J. Hinkel, P.W.G. Bots, and C. Pahl-Wostl. 2013. Comparison of frameworks for  
507 analyzing social-ecological systems. *Ecology and Society* 18:26. DOI: 10.5751/ES-05551-180426

508 Burnham, K.P., and D.R. Anderson. 2002. Model selection and multimodel inference, 2nd ed.  
509 Springer, New York

510 Burt, W.H., R.A. Stirton. 1961. The mammals of El Salvador. Publications of the Museum of  
511 Zoology, University of Michigan 117:1–69

512 Canadian Institute for Conflict Resolution. 2000. Becoming a Third-Party Neutral: Resource  
513 Guide. Ridgewood Foundation for Community-Based Conflict Resolution (Int'l).

514 Carter, N.H., and J.D.C. Linnell. 2021. Co-adaptation is key to coexisting with large carnivores.  
515 *Trends in Ecology and Evolution* 31:575-578. DOI: 10.1016/j.tree.2016.05.006

516 Carter, N.H., A. Viña, V. Hull, W.J. McConnell, W. Axinn, D. Ghimire, and J. Liu. 2014. Coupled  
517 human and natural systems approach to wildlife research and conservation. *Ecology and Society*  
518 19:43–60.

519 Castañeda, L.E., and O. Barbosa. 2017. Metagenomic analysis exploring taxonomic and functional  
520 diversity of soil microbial communities in Chilean vineyards and surrounding native forests. *PeerJ*  
521 5:e3098. DOI:10.7717/peerj.3098

522 Chapron, G., and J.V. Lopez-Bao. 2016. Coexistence with large carnivores informed by  
523 community ecology. *Trends in Ecology and Evolution* 31:578-580.  
524 DOI:10.1016/j.tree.2016.06.003

525 Clough, Y., J. Barkmann, J. Juhrbandt, M. Kessler, T.C. Wanger, A. Anshary, D. Buchori, D.  
526 Cicuzza, et al. 2011. Combining high biodiversity with high yields in tropical  
527 agroforests. *Proceedings of the National Academy of Sciences* 108:8311-8316.  
528 DOI:10.1073/pnas.1016799108

529 Convention on Biological Diversity. 2020. Zero Draft of the Post-2020 Global Biodiversity  
530 Framework. Secretariat of the Convention on Biological Diversity (available at  
531 <https://www.cbd.int/article/2020-01-10-19-02-38>).

532 Crespin, S.J., and J.E. Garcia-Villalta. 2014. Integration of land-sharing and land-sparing  
533 conservation strategies through regional networking: the Mesoamerican Biological Corridor as a  
534 lifeline for carnivores in El Salvador. *Ambio* 43:820-824. DOI:10.1007/s13280-013-0470-y

535 Crespin, S.J., and J.A. Simonetti. 2019. Reconciling farming and wild nature. *Ambio* 48:131-138.  
536 DOI:10.1007/s13280-018-1059-2

537 Crespin, S.J., and J.A. Simonetti. 2021. Traversing the food-biodiversity nexus toward  
538 coexistence by manipulating social-ecological system parameters. *Conservation Letters* e12779.  
539 DOI:10.1111/conl.12779

540 Darimont, C.T., C.H. Fox, H.M. Bryan, and T.E. Reimchen. 2015. The unique ecology of human  
541 predators. *Science* 349:858-860. DOI:10.1126/science.aac4249

542 Díaz-Forestier, J., S. Abades, N. Pohl, O. Barbosa, K. Godoy, G.L. Svensson, M.I. Undurraga, C.  
543 Bravo, et al. 2021. Assessing ecological indicators for remnant vegetation strips as functional  
544 biological corridors in Chilean vineyards. *Diversity* 13:447. DOI: 10.3390/d13090447

545 Dunning, J.B., B.J. Danielson, and H.R. Pulliam. 1992. Ecological processes that affect  
546 populations in complex landscapes. *Oikos* 65:169-175. DOI:10.2307/3544901

547 Durán, A.P., M. Smith, B. Trippier, K. Godoy, M. Parra, M. Lorca, I. Casali, G.R. Leal, et al. 2022.  
548 Implementing ecosystem service assessments within agribusiness: Challenges and proposed  
549 solutions. *Journal of Applied Ecology* 59:2468-2475. DOI:10.1111/1365-2664.14250

550 FAO. 2002. The State of Food Insecurity in the World 2001, Food and Agriculture Organization  
551 Fischer, J., D.J. Abson, A. Bergsten, N.F. Collier, I. Dorresteijn, J. Hanspach, K. Hylander, J.  
552 Schultner J, et al. 2017. Reframing the Food–Biodiversity Challenge. *Trends in Ecology &*  
553 *Evolution* 32:335-345. DOI:10.1016/j.tree.2017.02.009

554 Fischer, J., D.J. Abson, V. Butsic, M.J. Chappell, J. Ekroos, J. Hanspach, T. Kuemmerle, H.G.  
555 Smith, et al. 2014. Land sparing versus land sharing: moving forward. *Conservation Letters*  
556 7:149-157. DOI:10.1111/conl.12084

557 Fischer, J., B. Brosi, G.C. Daily, P.R. Ehrlich, R. Goldman, J. Goldstein, D.B Lindenmayer,  
558 A.D. Manning, et al. 2008. Should agricultural policies encourage land sparing or wildlife-  
559 friendly farming? *Frontiers in Ecology and the Environment* 6:380-385. DOI:10.1890/070019

560 Fischer, J., T.A. Gardner, E.M. Bennett, P. Balvanera, R. Biggs, S. Carpenter, T. Daw, C. Folke,  
561 et al. 2015. Advancing sustainability through mainstreaming a social-ecological systems  
562 perspective. *Current Opinion in Environmental Sustainability* 14:144-149.  
563 DOI:10.1016/j.cosust.2015.06.002

564 Fischer, J., and M. Riechers. 2019. A leverage points perspective on sustainability. *People and*  
565 *Nature*. DOI:10.1002/pan3.13.

566 Fleming, P.J.S., L.R. Allen, S.J. Lapidge, A. Robley, G.R. Saunders, and P.C. Thomson. 2006. A  
567 strategic approach to mitigating the impacts of wild canids: proposed activities of the Invasive  
568 Animals Cooperative Research Centre. *Australian Journal of Experimental Agriculture* 46:753–  
569 762. DOI:10.1071/EA06009

570 García, C.B., G.L. Svensson, C. Bravo, M.I. Undurraga, J. Díaz-Forestier, K. Godoy, A. Neaman,  
571 O. Barbosa, et al. 2021. Remnants of native forests support carnivore diversity in the vineyard  
572 landscapes of central Chile. *Oryx* 55:227-234. DOI:10.1017/S0030605319000152

573 Garibaldi, L., I. Bartomeus, R. Bommarco, A. Klein, S. Cunningham, M. Aizen, V. Boreux,  
574 M.P.D. Garratt, et al. 2015. REVIEW: trait matching of flower visitors and crops predicts fruit  
575 set better than trait diversity. *Journal of Applied Ecology* 52:1436–1444. DOI: 10.1111/1365-  
576 2664.12530

577 Green, R.E., S.J. Cornell, J.P.W. Scharleman, and A. Balmford. 2005. Farming and the fate of  
578 wild nature. *Science* 307:550-555. DOI:10.1126/science.1106049

579 Hanspach, J., L.J. Haider, E. Oteros-Rozas, A.S. Olafsson, N.M Gulsrud, C.M. Raymond, M.  
580 Toralba, B. Martin-Lopez, et al. 2020. Biocultural approaches to sustainability: A systematic  
581 review of the scientific literature. *People and Nature* 2:643–659. DOI:10.1002/pan3.10120

582 Hartel, T., B.C. Scheele, A.T. Vanak, L. Rozylowicz, J.D.C. Linnell, and E.G. Ritchie. 2019.  
583 Mainstreaming human and large carnivore coexistence through institutional collaboration.  
584 *Conservation Biology* 33:1256-1265. DOI:10.1111/cobi.13334

585 Lamb, C.T., A.T. Ford, B.N. McLellan, M.F. Proctor, G. Mowat, L. Ciarniello, S.E. Nielsen, and  
586 S. Boutin. 2020. The ecology of human–carnivore coexistence. *Proceedings of the National  
587 Academy of Sciences* 117:17876-17883. DOI:10.1073/pnas.1922097117

588 Lischka, S.A., T.L. Teel, H.E. Johnson, S.E. Reed, S. Breck, A.D. Carlos, and K.R. Crooks.  
589 2018. A conceptual model for the integration of social and ecological information to understand  
590 human-wildlife interactions. *Biological Conservation* 225:80-87.  
591 DOI:10.1016/j.biocon.2018.06.020

592 Löe, J., and E. Röskift. 2004. Large carnivores and human safety: a review. *Ambio* 33:283–288.  
593 DOI:10.1579/0044-7447-33.6.283

594 Macdonald, D.W., A.J. Loveridge, and A. Rabinowitz. 2010. Felid futures: crossing disciplines,  
595 borders, and generations. In: Biology and conservation of wild felids. Macdonald, D.W., A.J.  
596 Loveridge (eds). Oxford University Press, Oxford. Pages 599–650

597 Madden, F., and B. McQuinn. 2014. Conservation’s blind spot: the case for conflict  
598 transformation in wildlife conservation. *Biological Conservation* 178:97-106.  
599 DOI:10.1016/j.biocon.2014.07.015

600 MARN (Ministerio de Medio Ambiente y Recursos Naturales, Gobierno de El Salvador). 2020.  
601 Encuentran puma sin vida y mutilado de sus miembros en San Francisco Morazán. Available at:  
602 <https://www.ambiente.gob.sv/encuentran-puma-sin-vida-y-mutilado-de-sus-miembros-en-san-francisco-morazan/>

604 Márquez-García, M., S.K. Jacobson, and O. Barbosa. 2019. Wine with a bouquet of biodiversity:  
605 assessing agricultural adoption of conservation practices in Chile. *Environmental  
606 Conservation* 46:34-42. DOI:10.1017/S0376892918000206

607 Meadows, D. 1999. Leverage points: Places to intervene in a system. Hartland, WI: The  
608 Sustainability Institute

609 Morales-Rivas, A., F.S. Álvarez, X. Pocasangre-Orellana, L. Girón, G.N. Guerra, R. Martínez,  
610 J.P. Domínguez, F. Leibl, et al. 2020. Big cats are still walking in El Salvador: First  
611 photographic records of *Puma concolor* (Linnaeus, 1771) and an overview of historical records  
612 in the country. *Check List* 16:563-570. DOI:0.15560/16.3.563

613 Moreira-Arce, D., P.M. Vergara, S. Boutin, G. Carrasco, R. Briones, G.E. Soto, and J.E.  
614 Jimenez. 2016. Mesocarnivores respond to fine-grain habitat structure in a mosaic landscape  
615 comprised by commercial forest plantations in southern Chile. *Forest Ecology and Management*  
616 369:135-143. DOI:10.1016/j.foreco.2016.03.024

617 Morzillo, A.T., K.M. de Beurs, and C.J. Martin-Mikle. 2014. A conceptual framework to evaluate  
618 human-wildlife interactions within coupled human and natural systems. *Ecology and Society*  
619 19:44. DOI:10.5751/ES-06883-190344

620 Muñoz-Sáez, A. 2024. Vineyard Edges Increase Bird Richness and Abundance and Conservation  
621 Opportunities in Central Chile. *Agriculture* 14:2098. DOI:10.3390/agriculture14122098

622 Ni, X., R. Yang, W.X. Wang, Y.C. Lai, and C. Grebogi. 2010. Basins of coexistence and extinction  
623 in spatially extended ecosystems of cyclically competing species. *Chaos: An Interdisciplinary*  
624 *Journal of Nonlinear Science* 20: 045116. DOI:10.1063/1.3526993

625 Noss, R.F. 1990. Indicators for monitoring biodiversity: A hierarchical approach. *Conservation*  
626 *Biology* 4:355-364. DOI: 10.1111/j.1523-1739.1990.tb00309.x

627 Ostrom, E. 2009. A general framework for analyzing sustainability of social-ecological systems.  
628 *Science* 325:419-422. DOI:10.1126/science.1172133

629 Peterson, M.N., J.L. Birkhead, K. Leong, M.J. Peterson, and T.R. Peterson. 2010. Rearticulating  
630 the myth of human–wildlife conflict. *Conservation Letters* 3:74-82. DOI:10.1111/j.1755-  
631 263X.2010.00099.x

632 Pineda, L., H. Contreras, S. Gómez-Luna, and G.N. Cruz-Guerra N. 2024. Evidencia de  
633 reproducción de puma (*Puma concolor* Linnaeus, 1771) en El Salvador. *Revista Minerva* 7:95-  
634 100. DOI:10.5377/revminerva.v7i2.18525

635 Pooley, S., S. Bhatia, and A. Vasava. 2021. Rethinking the study of human–wildlife coexistence.  
636 *Conservation Biology* 35:784-793. DOI:10.1111/cobi.13653

637 Pooley, S. 2021. Coexistence for whom? *Frontiers in Conservation Science* 2:726991.  
638 DOI:10.3389/fcosc.2021.726991

639 Redman, C.L., J.M. Grove, and L.H. Kuby. 2004. Integrating social science into the long-term  
640 ecological research (LTER) network: social dimensions of ecological change and ecological  
641 dimensions of social change. *Ecosystems* 7:161–171. DOI:10.1007/s10021-003-0215-z

642 Redpath, S.M., J. Young, A. Evely, W.M. Adams, W.J. Sutherland, A. Whitehouse, A. Amar,  
643 R.A. Lambert, et al. 2013. Understanding and managing conservation conflicts. *Trends in  
644 Ecology & Evolution* 28:100–109. DOI:10.1016/j.tree.2012.08.021

645 Ripple, W.J., J.A. Estes, R.L. Beschta, C.C. Wilmers, E.G. Ritchie, M. Hebblewhite, J. Berger,  
646 B. Elmhagen, et al. 2014. Status and ecological effects of the world's largest carnivores. *Science*  
647 343:1241484. DOI:10.1126/science.1241484

648 Rodríguez-San Pedro, A., P.N. Chaperon, C.A. Beltrán, J.L. Allendes, F.I. Ávila, and A.A. Grez.  
649 2018. Influence of agricultural management on bat activity and species richness in vineyards of  
650 central Chile. *Journal of Mammalogy* 99:1495-1502. DOI:10.1093/jmammal/gyy121

651 SAG. 2024. Catastro Vitícola Año 2023, Informe ejecutivo.  
652 <https://bibliotecadigital.odepa.gob.cl/bitstream/handle/20.500.12650/73540/InformeEjecutivoCatastro2023.pdf> Retrieved April 30, 2025.

654 Saunders, C.D. 2003. The emerging field of conservation psychology. *Human Ecology Review*  
655 10:137-149.

656 Sayer, J., T. Sunderland, J. Ghazoul, J.L. Pfund, D. Sheil, E. Meijaard, M. Venter, A.K.  
657 Boedhihartono, et al. 2013. Ten principles for a landscape approach to reconciling agriculture,  
658 conservation, and other competing land uses. *Proceedings of the National Academy of Sciences  
659 USA* 110:8349–8356. DOI: 10.1073/pnas.1210595110

660 Schulz, J.J., L. Cayuela, C. Echeverria, J. Salas, and J.M.R. Benayas. 2010. Monitoring land  
661 cover change of the dryland forest landscape of Central Chile (1975–2008). *Applied Geography*  
662 30:436-447. DOI:10.1016/j.apgeog.2009.12.003

663 Shi, H., W.X. Wang, R. Yang, and Y.C. Lai. 2010. Basins of attraction for species extinction and  
664 coexistence in spatial rock-paper-scissors games. *Physical Review E—Statistical, Nonlinear, and*

665 *Soft Matter Physics* 81:030901. DOI:10.1103/PhysRevE.81.030901

666 Sillero-Zubiri, C., J. Reynolds, and A. Novaro. 2004. Management and control of wild canids  
667 alongside people. In: *Biology and conservation of wild canids*. Macdonald, D.W., Sillero-Zubiri  
668 C. (eds). Oxford University Press, New York. Pages 107–122

669 Silva-Rodríguez, E., A. Farias, D. Moreira-Arce, J. Cabello, E. Hidalgo-Hermoso, M. Lucherini,  
670 and J. Jiménez. 2016. *Lycalopex fulvipes* (errata version published in 2016). The IUCN Red List  
671 of Threatened Species 2016: e.T41586A107263066. DOI: 10.2305/IUCN.UK.2016-  
672 1.RLTS.T41586A85370871.en.

673 Sunderland, T.C.H. 2011. Food security – why is biodiversity important? *International Forestry  
674 Review* 13:265-274. DOI:10.1505/146554811798293908

675 Viers, J.H., J.N. Williams, K.A. Nicholas, O. Barbosa, I. Kotzé, L. Spence, L.B. Webb, and A.  
676 Merenlender. 2013. Vinecology: pairing wine with nature. *Conservation Letters* 6:287-299.  
677 DOI:10.1111/conl.12011

678 Weiner, E. 1998. Coexistence Work: A New Profession. In: *The Handbook of Interethnic  
679 Coexistence*. Weiner, E. (ed). Continuum International Publishing Group, New York. Pages 13-  
680 24

681 Wiens, J.A. 1976. Population responses to patchy environments. *Annual review of ecology and  
682 systematics* 7:81-120. DOI:10.1146/annurev.es.07.110176.000501

683 Williams, S.T., N. Maree, P. Taylor, S.R. Belmain, M. Keith, and L.H. Swanepoel. 2018.  
684 Predation by small mammalian carnivores in rural agro-ecosystems: An undervalued ecosystem  
685 service? *Ecosystem Services* 30:362-371. DOI:10.1016/j.ecoser.2017.12.006

686 Woodroffe, R., S. Thirgood, and A. Rabinowitz. 2005. *People and Wildlife Conflict or  
687 Coexistence?* Cambridge University Press, Cambridge, UK.

688 Young, J.C., M. Marzano, R.M. White, D.I. McCracken, S.M. Redpath, D.N. Carss, C.P. Quine,  
689 and A.D. Watt. 2010. The emergence of biodiversity conflicts from biodiversity impacts:  
690 characteristics and management strategies. *Biodiversity and Conservation* 19:3973-3990.  
691 DOI:10.1007/s10531-010-9941-7

692 Zimmerman, A., B. McQuinn, and D.W. Macdonald. 2020. Levels of conflict over wildlife:  
693 understanding and addressing the right problem. *Conservation Science and Practice* 2:e259.  
694 DOI:10.1111/csp2.259

695 Zorondo-Rodríguez, F., D. Moreira-Arce, and S. Boutin. 2020. Underlying social attitudes  
696 towards conservation of threatened carnivores in human-dominated landscapes. *Oryx* 54:351-  
697 358. DOI:10.1017/S0030605318000832

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

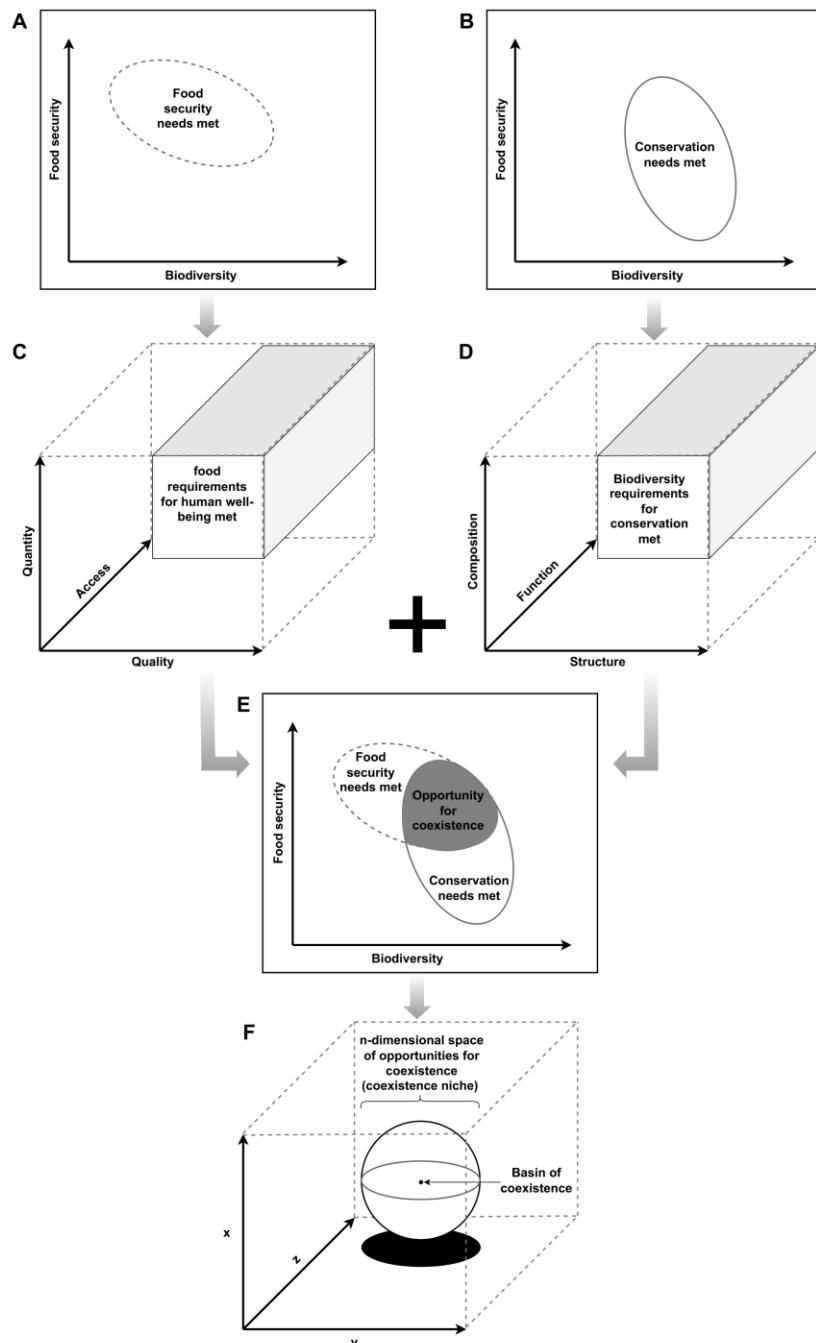
**Table 1. Glossary of concepts used to construct the proposed ‘Agroecological Systems Model of Coexistence’ framework.**

| Term                                    | Definition                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Food–biodiversity challenge             | The trade-off between food production and biodiversity conservation (Green et al. 2005).                                                                                                                                                                                                                                                                                                             |
| Social-ecological coexistence           | "A sustainable though dynamic state, where humans and wildlife coadapt to sharing landscapes and human interactions with wildlife are effectively governed to ensure wildlife populations persist in socially legitimate ways that ensure tolerable risk levels" (Pooley et al. 2021).                                                                                                               |
| Conflict prevention                     | The development of policy and management that allows the progression of natural ecological dynamics and societal needs to be met without incurring damages to human wellbeing or native biodiversity, or at the very least make whatever damage is done become an acceptable loss at a tolerable risk level.                                                                                         |
| Biodiversity impacts                    | The situations where either people adversely affect biodiversity or biodiversity negatively impacts people (Young et al. 2010).                                                                                                                                                                                                                                                                      |
| Conservation conflicts                  | "Situations that occur when two or more parties with strongly held opinions clash over conservation objectives and when one party is perceived to assert its interests at the expense of another" (Redpath et al. 2013)                                                                                                                                                                              |
| Human-nature coexistence                | Synonymous with social-ecological coexistence.                                                                                                                                                                                                                                                                                                                                                       |
| Social-ecological systems               | "Systems of biophysical and social factors that interact at multiple spatial, temporal, and organizational scales and whose flow is regulated in dynamic and complex ways" (Lischka et al. 2018, adapted from Redman et al. 2004).                                                                                                                                                                   |
| Coexistence parameters                  | "The tangible and perceived variables that dictate coexistence in a system and thus are subject to management." (Crespin & Simonetti 2021)                                                                                                                                                                                                                                                           |
| Opportunities for coexistence           | Combinations of parameters that can meet the needs of both food security and biodiversity conservation in a landscape.                                                                                                                                                                                                                                                                               |
| Basin of coexistence                    | All system states whose trajectories in phase space converge into the same attractor, <i>i.e.</i> a stable state representing human-nature coexistence.                                                                                                                                                                                                                                              |
| Direct or proximate driver of conflicts | Social and ecological pressures that directly or proximally influence the emergence and continuity of conflicts.                                                                                                                                                                                                                                                                                     |
| Indirect or distal driver of conflicts  | Social and ecological pressures that indirectly or distally influence the emergence and continuity of conflicts.                                                                                                                                                                                                                                                                                     |
| Human-wildlife conflicts                | Situations that arise because of biodiversity impacts, particularly from ecological and economic impacts: "the most widespread and serious conflicts involving people and threatened wildlife: crop raiding, livestock depredation, predation on managed wildlife (such as farmed or otherwise managed game species) and, least common but most emotive, killing of people" (Woodroffe et al. 2005). |
| Dispute                                 | "The first level of conflict—the dispute—is the obvious, tangible manifestation of a conflict" (Madden & McQuinn 2014).                                                                                                                                                                                                                                                                              |
| Underlying conflict                     | "The second level of conflict that may exist in a specific conflict context is underlying conflict. Underlying conflict is a history of unresolved disputes." (Madden & McQuinn 2014).                                                                                                                                                                                                               |

|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Deep-rooted conflict             | “The third level ...—identity conflict— involves values, beliefs, or social-psychological needs that are central to the identity of at least one of the parties involved in the conflict.” (Madden & McQuinn 2014).                                                                                                                                                                                                |
| Settlement                       | Approaches to disputes, or conflicts that can be addressed through practical solutions, such as management of ecological or economic factors leading to negotiation or compromise acceptable to all interests (Zimmerman et al. 2020).                                                                                                                                                                             |
| Resolution                       | Approaches to underlying conflicts that require relationship building “to address the history of disputes and search for common ground among the parties” (Zimmerman et al. 2020).                                                                                                                                                                                                                                 |
| Reconciliation                   | Approaches to deep-rooted conflicts that require reconciling conflicting identities “as the parties perceive its outcome to impinge on their values, identities, or way of life. This level requires reconciliation dialogues and conflict transformation approaches” (Zimmerman et al., 2020).                                                                                                                    |
| Degraded landscape               | Landscape archetype where “Both biodiversity and food security outcomes are poor.” “...characterized by low levels of human, technological, physical, natural, and sometimes even social capital.” (Fischer et al. 2017).                                                                                                                                                                                          |
| Intensive agricultural landscape | Landscape archetype where food security “‘wins’ as long as the benefits of agriculture flow to local people, but biodiversity ‘loses’ because intensive agriculture has negative on-site and offsite effects” (Fischer et al. 2017).                                                                                                                                                                               |
| Fortress conservation landscape  | Landscape archetype that “...provides benefits for biodiversity, but not food security.” “...less common, but can arise when the pursuit of narrowly defined green agendas (for example, through the top-down establishment of protected areas) impinges upon local people’s livelihoods or human rights.” (Fischer et al. 2017).                                                                                  |
| Agroecological landscape         | Landscape archetype that “...serves both conservation and food security goals.” (Fisher et al. 2017). Such land-sharing “requires abdicating complete human domination of a landscape and establishing a degree of syntropy between wildlife and domesticated plants or animals meant to be reared as food for human society. This scenario is primed for the emergence of conflicts.” (Crespin & Simonetti 2021). |
| Coexistence niche                | A multi-dimensional subspace where both food production and biodiversity conservation needs are met. Opportunities for coexistence can be found inside such subspaces.                                                                                                                                                                                                                                             |

718

719


720

721

722

723

724



725

726 Fig 1. Agroecological Systems Model of Coexistence. For any particular agroecological landscape,  
 727 when interpreted as a system relying on parameters of food security and biodiversity, we will find  
 728 combinations of food security and biodiversity parameters that allow meeting respective food and  
 729 conservation needs (A & B). Both food security and biodiversity are both multidimensional  
 730 concepts which can be decomposed into elemental components that can each act as parameters (C

731 & D). The overlap of the different combinations of food security and biodiversity that meet both  
732 needs offers *opportunities for coexistence* (E) which when accounting for multidimensionality can  
733 be assessed in an n-dimensional space, or *coexistence niche* for a given social-ecological system,  
734 leading to basins of coexistence and thus stable states of coexistence (F).