

1 **Growth–reproduction trade-offs are common but**
2 **changing in woody plants: a meta-analysis**

3 —

4 Maciej K. Barczyk^{*1}, Michał Bogdziewicz¹, Szymon M. Drobniak^{2,3}, Maria Bogdańska¹,
5 Urszula Eichert¹, Jessie J. Foest¹, Valentin Journé^{1,4}, Katarzyna Kondrat¹, Jakub Szymkowiak^{1,5},
6 Andrew Hacket-Pain⁶

7
8
9 ¹ Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz
10 University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland

11 ² Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland

12 ³ School of Biological, Environmental, and Earth Sciences, University of New South Wales, Sydney,
13 Australia

14 ⁴ Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan

15 ⁵ Population Ecology Research Unit, Institute of Environmental Biology, Faculty of Biology, Adam
16 Mickiewicz University, Poznań, Poland

17 ⁶ Department of Geography and Planning, School of Environmental Sciences, University of Liverpool,
18 Liverpool, UK

19
20 *Corresponding author: maciejkbarczyk@gmail.com;

21 Abstract

22 Growth and reproduction draw on a common resource pool, yet empirical studies of woody plants
23 report widely differing relationships between seed production and growth. Here we synthesize
24 685 estimates from 78 studies covering 79 woody species to test how growth–reproduction corre-
25 lations vary across time, species, and environments. Growth and reproduction measured within
26 the same year were negatively correlated, suggesting an immediate cost of reproduction. Lagged
27 growth–reproduction relationships further suggest that reproduction incurs delayed constraints
28 on growth beyond the year of investment. The strength and direction of growth–reproduction
29 correlations showed no detectable phylogenetic signal and were not systematically related to
30 functional traits and climate. Instead, trade-offs were strongest in species with high interannual
31 variability in seed production and weakened markedly over recent decades in these species.
32 Together, these results show that growth–reproduction trade-offs in woody plants are common
33 but not fixed, and that shifts in reproductive variability under environmental change can alter
34 how trees balance growth and reproduction, with consequences for long-term forest functioning.

35 *keywords:* growth–reproduction trade-off | cost of reproduction | life-history theory |resource
36 allocation | secondary growth | seed production | tree rings | masting | meta-analysis |

37

38 Introduction

39 Individual fitness depends on survival, growth, and reproduction. These functions are con-
40 strained by resource-based trade-offs, including the growth–mortality trade-off, growth–defense
41 trade-off, and the cost of reproduction (Williams, 1966; Obeso, 2002; Dorken *et al.*, 2025;
42 Russo *et al.*, 2020; Cople *et al.*, 2021). In long-lived organisms such as perennial plants,
43 growth-reproduction trade-offs are expected because the allocation of resources is a zero-sum
44 game; reproduction reduces resources available for other functions, such as growth and sur-
45 vival, thereby lowering future fitness returns (Williams, 1966; Dorken *et al.*, 2025). Although
46 the cost of reproduction in plants has been extensively discussed (Dorken *et al.*, 2025; Obeso,
47 2002; Thomas, 2011), meta-analytic evidence is lacking on the extent to which woody plants
48 face a compromise between seed production and somatic growth, and how this varies across
49 species, traits, and habitats (Dorken *et al.*, 2025; Thomas, 2011). Systematic reviews suggest that
50 growth–reproduction trade-offs are widespread (Obeso, 2002; Thomas, 2011), yet case studies
51 report diverse outcomes, including negative (Norton & Kelly, 1988; Woodward *et al.*, 1994;
52 Hadad *et al.*, 2021; Braun *et al.*, 2017), positive (Garcia-Barreda *et al.*, 2021; Alfaro-Sánchez
53 *et al.*, 2015), and absent (Knops *et al.*, 2007; Patterson *et al.*, 2023) correlations between growth
54 and reproduction.

55 Perennial plants vary widely in their annual allocation to reproduction, offering a test bed
56 for growth–reproduction trade-offs (Norton & Kelly, 1988). Numerous long-lived woody plants
57 show irregular seed production, with years of high, low or absent production, called masting
58 or mast seeding (Bogdziewicz *et al.*, 2024). These among-year shifts in allocation create
59 natural contrasts: years of heavy reproductive investment can be set against lean years to detect
60 growth costs (Norton & Kelly, 1988; Monks *et al.*, 2016). The magnitude of these contrasts
61 varies strongly among species, reflecting differences in interannual variability in reproductive
62 investment, commonly quantified by the coefficient of variation of seed production (CV_p)
63 (Pearse *et al.*, 2020; Journé *et al.*, 2023). Here, we synthesize multi-year measurements of
64 seed production and growth to test how prevalent such trade-offs are across woody plants, and
65 whether their strength depends on phylogeny, functional traits, climate, or temporal change
66 under anthropogenic warming.

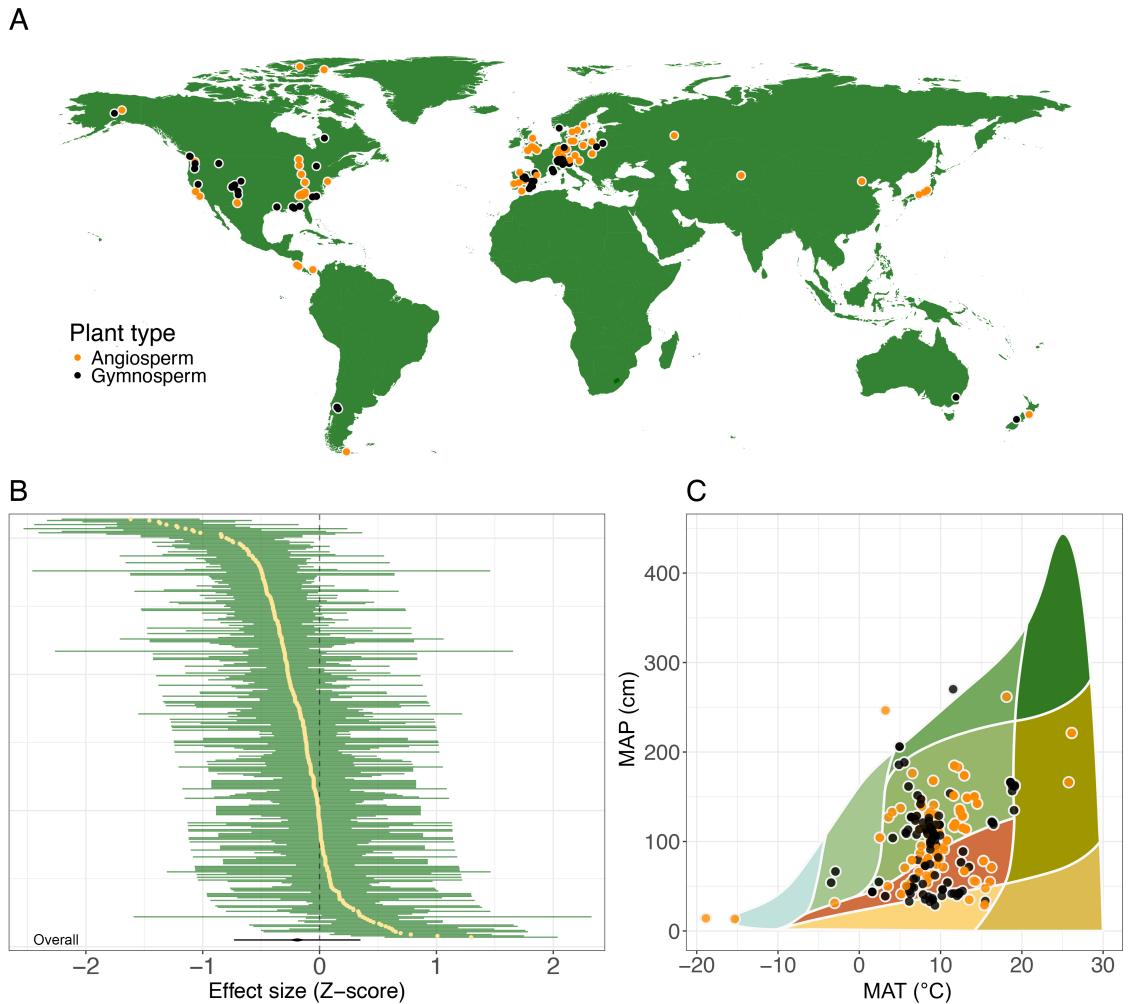
67 Reproductive strategies in plants are shaped by phylogenetic history. Fruit type, for instance,
68 shows strong conservatism: in a dataset of 9,370 species from China, phylogeny explained
69 nearly 80% of the variation in whether species produced fleshy or dry fruits, far exceeding the
70 influence of growth form or climate (Wang *et al.*, 2022). Seed size is also rooted in evolutionary
71 history. An analysis of nearly 13,000 species showed that the largest divergences in seed mass
72 were repeatedly associated with major phylogenetic splits (Moles *et al.*, 2005). Patterns of
73 interannual variation in reproduction also carry a phylogenetic signal (Pearse *et al.*, 2020; Qiu
74 *et al.*, 2023). In a synthesis of 517 species, the coefficient of variation of seed production, a
75 measure of masting intensity, exhibited significant coherence across the plant tree of life, with

76 lineages such as Fagales, Pinales, and Poales showing consistently high variability (Journé *et al.*,
77 2023). Together, these findings indicate that reproductive strategies are constrained by ancestry.
78 Consequently, woody plants are expected to be evolutionary constrained in the magnitude of seed
79 production and growth potential, resulting in weaker or stronger allocation trade-offs depending
80 on lineage (Pearse *et al.*, 2020; Journé *et al.*, 2023; Dorken *et al.*, 2025).

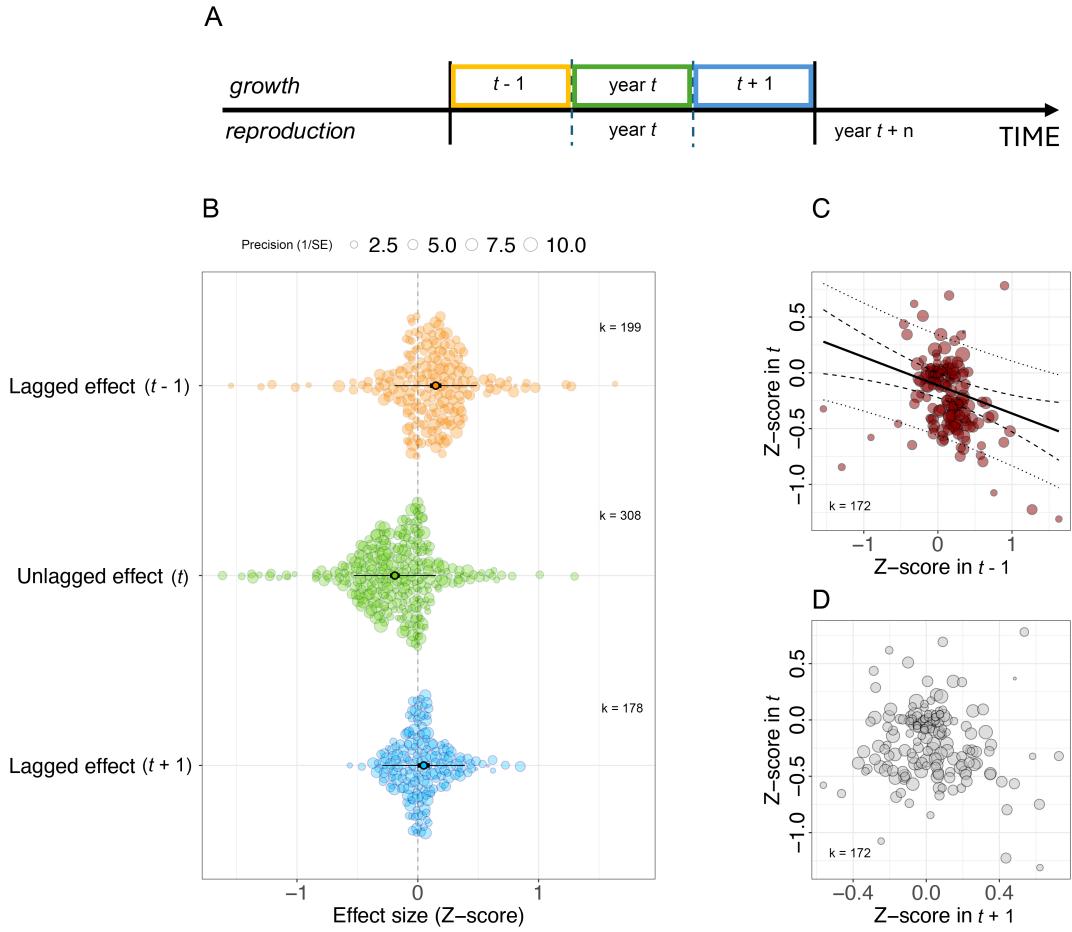
81 Functional traits capture physiological and morphological strategies that affect fitness indi-
82 rectly through their influence on growth, survival, and reproduction (Violle *et al.*, 2007; Adier
83 *et al.*, 2014). Because traits are relatively easily measurable and comparable between taxa, they
84 allow generalizations about life-history strategies across species and ecosystems (Díaz *et al.*,
85 2016; Maynard *et al.*, 2022). Analyses of tropical tree demography reveal that functional traits
86 align with two axes of life-history variation (Rüger *et al.*, 2018; Kambach *et al.*, 2022). The
87 fast–slow continuum, reflecting the growth–survival trade-off, and a stature–recruitment axis,
88 which distinguishes tall, long-lived pioneer species with large seeds and low recruitment from
89 short-lived breeders that produce numerous small seeds at the expense of growth and survival
90 (Rüger *et al.*, 2018; Kambach *et al.*, 2022). On the other hand, nutrient-demanding species
91 with high foliar nitrogen, high specific leaf area (SLA), and low wood density tend to produce
92 many small seeds, whereas conservative species with dense wood, low foliar nitrogen, and
93 low SLA produce fewer but larger seeds (Bogdziewicz *et al.*, 2023). In trees, the classic seed
94 size–number trade-off is not strict, and species with large seeds often produce a greater total
95 biomass of seeds (Qiu *et al.*, 2022). These results yield contrasting expectations: conservative,
96 dense-wooded species with large seeds may experience high reproductive allocation and thus
97 greater costs to growth (Qiu *et al.*, 2022; Bogdziewicz *et al.*, 2023). Alternatively, according
98 to the stature–recruitment axis, tall species with large seeds may incur lower reproductive costs
99 because they invest relatively little in recruitment while maintaining performance.

100 Spatial variation in temperature and precipitation often mediates reproductive allocation and
101 growth, thereby potentially influencing the apparent strength of trade-offs between them (Hulshof
102 *et al.*, 2012; Shestakova *et al.*, 2021; Hacket-Pain *et al.*, 2018). Across biomes, reproductive
103 allocation tends to increase from cold to warm regions (Journé *et al.*, 2022; Ward *et al.*, 2025).
104 Within species, seed production is also often higher in warmer parts of species' ranges. For
105 example, North American tree fecundity peaks in the warm and moist southeastern United States
106 (Sharma *et al.*, 2022). Parallel patterns emerge for growth. Trees in the tropics grow twice as
107 fast as in temperate and boreal biomes (Locosselli *et al.*, 2020), and within species growth
108 is generally faster at warmer sites (Perret *et al.*, 2024), except where water limitation prevails
109 (Klesse *et al.*, 2024). Similarly, low precipitation and high evaporative demand are associated
110 with stronger negative correlations between growth and reproduction (Hulshof *et al.*, 2012;
111 Hacket-Pain *et al.*, 2017). Together, these findings suggest that accounting for local climate is
112 needed to understand growth–reproduction trade-offs: warm and moist conditions may produce
113 apparent positive associations between growth and reproduction, whereas hot and dry climates
114 are expected to strengthen trade-offs through resource limitation.

115 Climate change affects resource allocation to reproduction and growth (Etzold *et al.*, 2020;
116 Hacket-Pain & Bogdziewicz, 2021; Clark *et al.*, 2021). Direct effects of warming and moisture
117 limitation often reduce both seed production and growth (Sharma *et al.*, 2022; Klesse *et al.*,
118 2024; Perret *et al.*, 2024), yet plant responses in many systems appear to maintain reproduction
119 at the expense of growth (Dohrenbusch *et al.*, 2002; Rowland *et al.*, 2018; Bogdziewicz *et al.*,
120 2020; Hacket-Pain *et al.*, 2025). In European beech, warming has shifted reproduction towards
121 more frequent seed crops, depleting stored reserves and causing a 28% decline in mean radial
122 growth (Hacket-Pain *et al.*, 2025). That change was associated with a weakening of the nega-
123 tive growth–reproduction correlation because, in poor seed years, trees with depleted reserves
124 cannot mount strong growth responses (Hacket-Pain *et al.*, 2025). Experimental evidence sup-
125 ports this mechanism, for example, *Picea abies* maintained allocation to reproduction at the
126 expense of growth under experimental drought in Germany (Hesse *et al.*, 2021). Alternative
127 mechanisms can also relax trade-offs when resource inputs increase through nitrogen and CO₂
128 fertilization. Rising atmospheric CO₂ enhances photosynthetic productivity and increases both
129 wood production and reproductive output (e.g., FACE experiments on oaks) (Norby *et al.*, 2024;
130 Esquivel-Muelbert *et al.*, 2025; Jablonski *et al.*, 2002). Long-term nitrogen addition often
131 increases aboveground wood biomass and seed production (Magill *et al.*, 2004; Bogdziewicz
132 *et al.*, 2017). Anthropogenic change can alter not only the magnitude of demographic rates but
133 also the relationships among them, with particularly strong indirect effects expected in masting
134 species where interactions among resource reserves, growth, and intermittent large seed crops
135 are pronounced (Sala *et al.*, 2012; Han *et al.*, 2017; Hacket-Pain *et al.*, 2017).


136 Interannual variation in reproductive allocation raises the question of whether growth–reproduction
137 trade-offs operate within years or emerge across years (Knops *et al.*, 2007; Pearse *et al.*, 2016).
138 Resource-budget models of masting predict that reproduction draws on reserves accumulated in
139 previous years, while reserve replenishment after mast events can compete with other carbon
140 sinks such as growth (Isagi *et al.*, 1997; Kabeya *et al.*, 2017, 2021; Kelly *et al.*, 2025). Because
141 reproduction is temporally autocorrelated (Koenig *et al.*, 2003; Foest *et al.*, 2025), high repro-
142 ductive output in a given year generates a null expectation of reduced reproduction—and thus
143 relatively higher growth—both in the preceding and the following year. Under this expectation,
144 elevated growth in the year preceding and following mast events simply reflects low reproduc-
145 tive investment and associated growth release. Failure to observe elevated growth in the year
146 following mast events represents a deviation from that null expectation and is consistent with
147 delayed costs of reproduction expressed after reproductive investment. Empirical support for
148 such lagged costs is mixed: some studies report reduced subsequent growth or storage following
149 reproduction (Obeso, 2002; Sala *et al.*, 2012), whereas others find that trade-offs are largely
150 confined within the same year (Hadad *et al.*, 2021; Hacket-Pain *et al.*, 2017). Explicitly ac-
151 counting for null expectations imposed by reproductive autocorrelation is therefore important
152 for correctly interpreting temporal growth–reproduction relationships and for linking allocation
153 dynamics with demographic performance (Hacket-Pain *et al.*, 2018).

154 To disentangle these mechanisms, we compiled evidence from studies that jointly measured
155 interannual seed production and aboveground, somatic growth across woody plants. We tested
156 five hypotheses related to a broad context of factors that can influence trait trade-offs, including
157 phylogenetic history, functional trait syndromes, spatial variation, and climate-driven effects. (1)
158 Carry-over effects: growth-reproduction trade-offs are strongest within years, but negative effects
159 on growth are expected in the year following high reproductive investment. (2) Phylogeny: trade-
160 off strength is phylogenetically structured, with some lineages showing consistently stronger
161 allocation conflicts. (3) Traits: functional traits mediate allocation patterns; species with
162 conservative syndromes (dense wood, low SLA) exhibit higher reproductive allocation (Qiu
163 *et al.*, 2022; Bogdziewicz *et al.*, 2023), so they should pay larger growth costs reflected in
164 stronger negative growth-reproduction correlations. Alternatively, tall species with large seeds
165 should display weaker trade-off correlations under the stature-recruitment axis of life history
166 variation (Rüger *et al.*, 2018; Kambach *et al.*, 2022). (4) Climate: the trade-off depends on
167 local climate, weakening under warm-moist conditions that promote resource accumulation
168 and strengthening under hot-dry conditions that increase carbon and water limitation. (5)
169 Reproductive variability and time: growth-reproduction trade-offs are stronger in species with
170 high interannual variability in seed production (high CV_p), reflecting large, episodic reproductive
171 investments that impose greater demands on resources (Norton & Kelly, 1988), but weaken
172 over time under anthropogenic change as more frequent seed years and rising resource inputs
173 (elevated CO_2 , nitrogen deposition) decouple annual reproductive effort from short-term growth
174 responses.


175 Results

176 Our meta-analysis of 78 studies, 79 species (Fig. 1), and 685 effect sizes across time lags
177 shows that the strength and sign of growth-reproduction correlations depend on their temporal
178 alignment (Fig. 2A,B, Supplementary Table S3). When growth and reproduction were corre-
179 lated in the same year, the pooled effect size was negative (effect size = -0.194 , 95% CI =
180 $[-0.239, -0.148]$, $N = 308$), consistent with the within-year trade-offs between growth and
181 reproduction. Hereafter, we refer to negative growth-reproduction correlations as trade-offs,
182 following their common interpretation as signatures of allocation constraints, while acknowl-
183 edging that the underlying evidence is correlational (see Discussion).

184 Higher growth in year $t - 1$ was associated with greater reproduction in year t (effect
185 size = 0.143 , 95% CI = $[0.090, 0.197]$, $N = 199$), consistent with the expectation that years
186 preceding high reproductive output tend to be characterized by low reproductive investment
187 and, thus, relatively higher growth (Fig. 2B). This association was strongest in populations with
188 stronger within-year trade-offs (Fig. 2C, Supplementary Table S4), consistent with reproductive
189 autocorrelation generating strong growth contrasts between years of reproductive suppression
190 and preceding low-investment years; particularly in populations with strong growth-reproduction

Figure 1: Data distribution and effect size. (A) The location of population-level observations of growth-reproduction correlations. (B) Population-level effect sizes (Z-scores, see Methods) for the relationship between reproduction and growth in the same year (t) with associated 95% confidence intervals (for lagged effects and their framework see Fig. 2A,B). The yellow points indicate the mean of each effect size. The estimated effect size of the null model with the confidence and prediction intervals is shown below ($k = 308$ observations and $n_{\text{species}} = 79$). (C) Whittaker biome plot with observations distributed along mean annual temperature [$^{\circ}\text{C}$] and mean annual precipitation [cm]. Orange points indicate species belonging to angiosperms, while black points indicate species belonging to gymnosperms. Background colors refer to the Whittaker Biome classification ranging from tundra (pale blue) through temperate forests in the middle to tropical seasonal and tropical rain forest (olive and dark green).

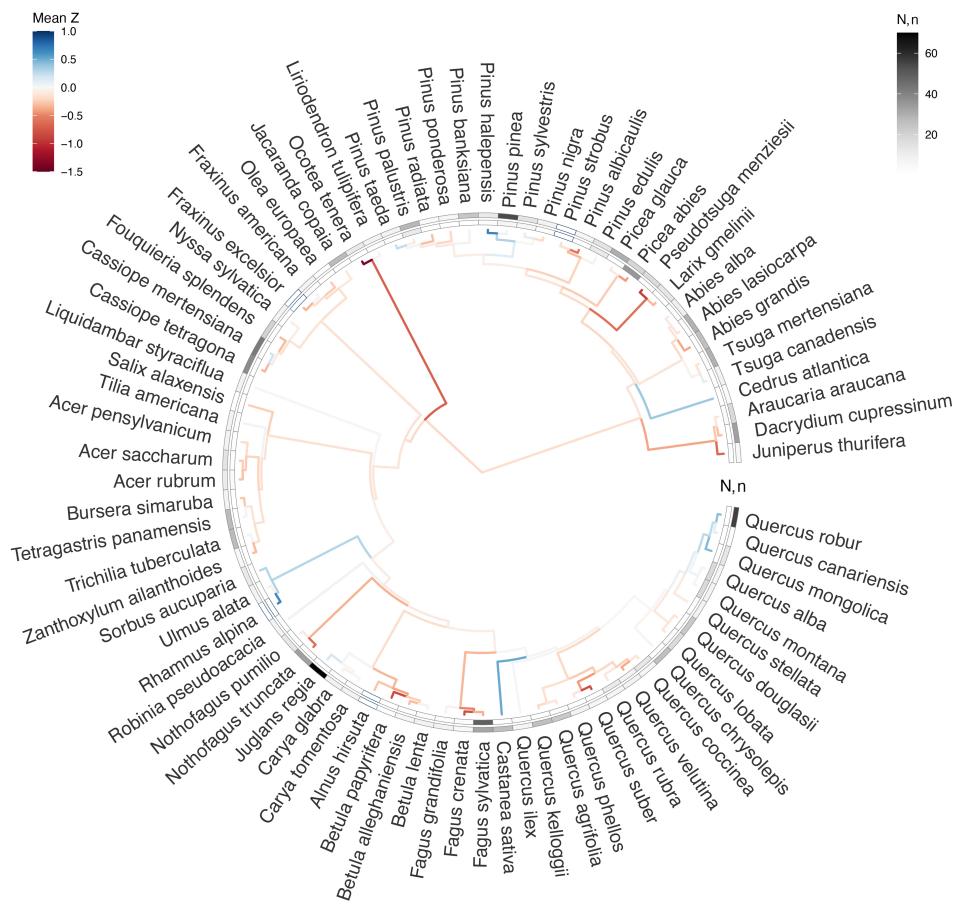
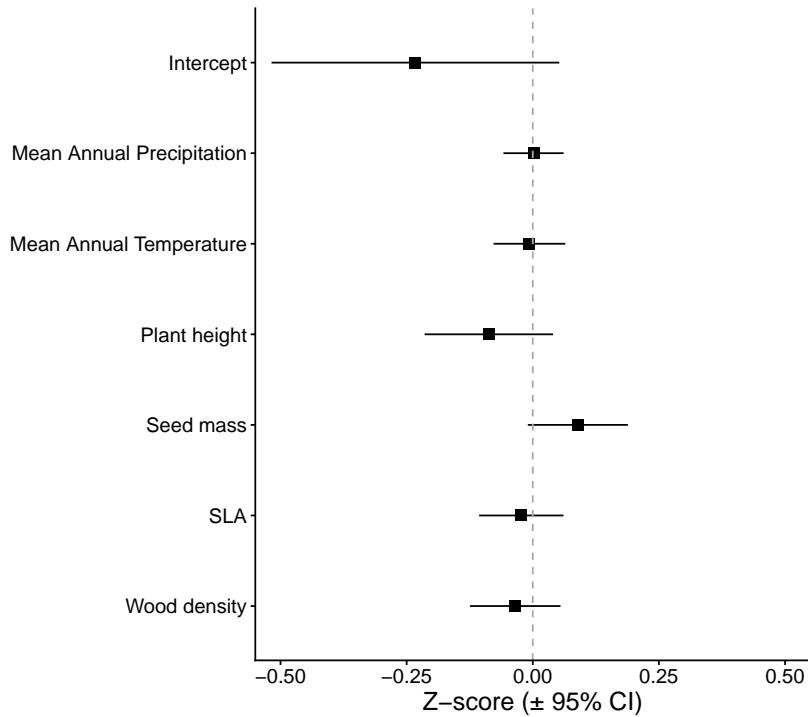


Figure 2: Growth is reduced in years of high seed production. (A) The temporal framework to study growth-reproduction correlations across multiple years, accounting for the within-year and lagged effect of growth ($t-1$, t , and $t+1$ in relation to reproduction in year t). (B) Relationships between reproduction and growth in the preceding year ($t-1$), same year (t), and the subsequent year ($t+1$). Black points show estimated effect sizes with 95% confidence intervals (CI; thicker bars) and 95% prediction intervals (PI; thinner bars). The relationship between the growth-reproduction correlation (Z-score) in the same year (t) and C) reproduction and growth in the preceding year ($t-1$), and D) reproduction and growth in the following year ($t+1$). Line at C) shows the relationship as estimated with phylogenetically informed multilevel meta-analytic model, associated 95% confidence intervals (dashed line), and 95% prediction intervals (dotted line). Points represent population-level effect sizes (k), with point size proportional to their precision (inverse SE). Model summary provided in Supplementary Table S3.

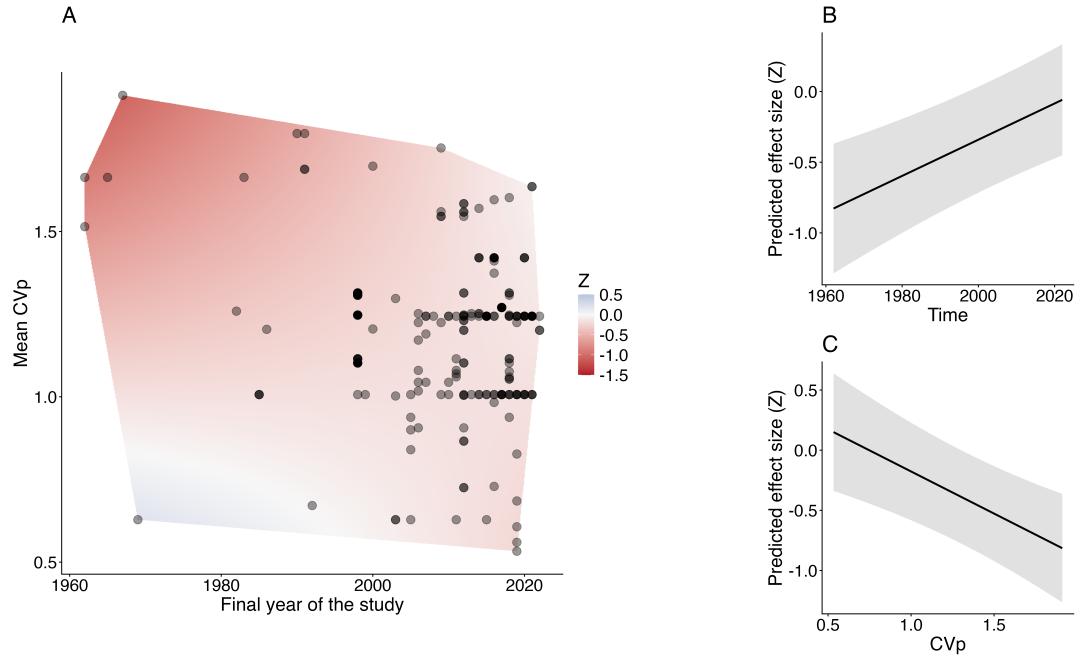
191 trade-offs. In contrast, reproduction in year t was not associated with growth in year $t+1$
 192 (effect size = 0.041, 95% CI = [-0.016, 0.099], $N = 178$) (Fig. 2B). The absence of a
 193 positive association contrasts with the expectation of elevated growth in years adjacent to high
 194 reproductive output, indicating an asymmetry around reproductive events. Such a pattern is
 195 consistent with delayed costs of reproduction expressed through constrained post-reproductive
 196 growth.


197 The growth-reproduction trade-off (within-year/unlagged effect) based on the effect sizes
 198 averaged for each of the 79 species was not significantly related to phylogeny (Pagel's $\lambda = 0.001$,
 199 $p = 0.99$, Fig. 3). Thus, closely related species do not have more similar effect sizes than
 200 expected by chance. This lack of signal reflects the heterogeneous distribution of effect size
 201 across the phylogeny: positive and negative effects occur intermixed within most major clades,

202 with no large clusters of uniformly positive or negative values. Even within genera for which
 203 a larger number of species were sampled, such as *Quercus*, *Pinus*, and *Fagus*, the direction
 204 and magnitude of effects vary widely among species. Some adjacent taxa differ sharply in
 205 effect size, indicating contrasting growth–reproduction correlations despite close evolutionary
 206 relatedness. Within oaks, for example, *Quercus robur* had a positive effect size on average,
 207 while *Q. suber* or *Q. velutina* negative. Similarly, the negative effect sizes in *Fagus sylvatica*
 208 and *F. crenata*, contrasted with near-zero correlation in *F. grandifolia*. Closely related *Pinus*
 209 *nigra* and *P. sylvestris* were characterized by negative and positive effect sizes, respectively. The
 210 weak phylogenetic structure arises from repeated, independent expression of both negative and
 211 positive correlations between growth and reproduction across the plant tree of life.

Figure 3: Growth–reproduction correlation does not exhibit phylogenetic coherence. Red indicate negative, and blue indicate positive correlations between reproduction and growth in the same year (t). Phylogenetic signal, estimated from species-level mean effect sizes, is negligible (Pagel’s $\lambda = 0.001$, $p = 0.99$, $n_{\text{species}} = 79$). The gray-scale circle indicates sampling intensity, with shade proportional to the number of populations sampled (inner ring, N) and mean number of years per species (outer ring, n) for each species.

212 While we expected the negative correlation between growth and reproduction to be weaker
 213 in warm-moist sites, the interaction between mean annual temperature (MAT) and mean annual
 214 precipitation (MAP) was not significant (estimate = 0.003, $p = 0.9$). The trade-off did not
 215 vary systematically across sites differing in MAT ($p = 0.62$) and MAP ($p = 0.63$) (Fig. 4,


Figure 4: Growth-reproduction correlation shows no associations with climate or functional traits. Effect sizes and their 95% confidence intervals are derived from a phylogenetically informed multilevel comparative model ($n_{\text{observations}} = 307$, $n_{\text{species}} = 79$), with sampling variance incorporated at the observation level. All predictors were centered and scaled to facilitate direct comparison of effect sizes. Model summary provided in Supplementary Table S6.

216 Supplementary Table S6).

217 Wood density ($p = 0.37$) and specific leaf area (SLA, $p = 0.85$), two key traits reflecting
 218 the fast-slow continuum, were not significantly related to the trade-off between growth and
 219 reproduction (Supplementary Table S6). Likewise, the maximum height, which is reflecting
 220 the stature-recruitment trade-off, was not associated with the trade-off between growth and
 221 reproduction ($p = 0.17$). Seed size, the key trait related to reproduction, exhibited only a weak
 222 positive tendency to moderate growth-reproduction trade-off ($p = 0.06$), such that larger seed
 223 sizes were associated with weaker trade-offs.

224 The correlations between growth and reproduction became weaker over time, especially for
 225 species with high interannual variation in reproduction (year \times CV_p interaction: $\beta = 0.021$,
 226 $p < 0.001$, $n = 261$) (Fig. 5, Supplementary Table S7). For example, in a species with an
 227 intermediate $\text{CV}_p = 1$, the estimated correlation between growth and reproduction was -0.16 in
 228 both 1980 and 2020. In contrast, in a species characterized by higher interannual variation in
 229 reproduction ($\text{CV}_p = 1.6$), the estimated correlation declined more than 8-fold over the 40 years,
 230 from -0.58 in 1980 to -0.07 in 2020 (Fig. 5B).

231 At the same time, in earlier decades of the dataset, species with high CV_p in seed produc-
 232 tion exhibited stronger negative growth-reproduction correlations than species with low CV_p
 233 (Fig. 5C). For example, in species with high reproductive variability ($\text{CV}_p = 1.6$), the esti-
 234 mated correlation was -0.8, whereas in species with relatively regular reproduction ($\text{CV}_p = 0.6$)

Figure 5: Negative growth-reproduction correlations weaken over time in strongly masturing species. The surface plot at A) shows the estimated (unlagged) growth-reproduction correlation across combinations of population-level interannual variation in seed production (CV_p) and the final monitoring year of the study from which each effect size was extracted. Black dots denote data points that define the convex hull of the prediction space ($n_{\text{populations}} = 261$, $n_{\text{species}} = 48$). B) Temporal weakening of negative correlation between growth and reproduction, as estimated for $CV_p = 1.6$. C) The negative correlation between growth and reproduction is stronger in species characterized by higher CV_p , as estimated for year 1980. All predictions are derived from phylogenetically informed multilevel meta-analytic model, summarized in Supplementary Table S7.

235 the corresponding estimate was 0.27. Over time, however, growth-reproduction correlations
 236 converged across levels of reproductive variability.

237 Discussion

238 Our meta analysis indicate a trade-off between growth and reproduction in woody plants: growth
 239 and seed production are negatively correlated within the same year. In addition, the temporal
 240 structure of these correlations reveals asymmetric carry-over effects across years, consistent
 241 with delayed costs of reproduction expressed as constrained growth following high reproductive
 242 investment. The trade-off exhibits no detectable phylogenetic signal. Although the absence of
 243 signal contrasts with our predictions, the result aligns with demographic syntheses indicating that
 244 allocation strategies are only weakly constrained by lineage (Salguero-Gómez *et al.*, 2016; Rüger
 245 *et al.*, 2018). Furthermore, neither spatial variation in climate nor functional traits systematically
 246 explained variation in effect sizes, suggesting that species resolve allocation conflicts in ways
 247 that are not tightly linked to biome, climatic regime, or ecological strategy. Notably, the trade-off
 248 was strongest in species with high interannual variability in reproduction but diminished over
 249 recent decades in these species, suggesting that changing resource dynamics under warming are
 250 reshaping the balance between growth and reproduction (Hacket-Pain *et al.*, 2025; Macias &

251 Redmond, 2025). Our results indicate that while growth–reproduction trade-offs are widespread,
252 their expression is flexible and responsive to contemporary environmental change (summarized
253 in Supplementary Table 1).

254 Within-year trade-offs dominated growth–reproduction dynamics, but lagged correlations
255 revealed a pronounced asymmetry around reproductive events. Growth and seed production
256 were negatively correlated in the same year. Growth in year $t - 1$ was positively associated with
257 reproduction in year t , a pattern that scaled with the strength of within-year growth suppression.
258 This scaling indicates that the pre-reproductive growth signal primarily reflects large contrasts
259 between years when growth is strongly suppressed by reproductive investment and preceding
260 years when reproduction is minimal (Koenig *et al.*, 2003; Foest *et al.*, 2025). In contrast,
261 reproduction in year t was not associated with growth in year $t + 1$. Given the temporal
262 autocorrelation of reproduction, the absence of elevated growth in the post-reproductive year
263 contrasts with the expectation of low reproductive investment and indicates constrained growth
264 following reproduction. These results support resource-budget models in which reproduction
265 draws on resources accumulated in previous years and replenishment after mast events competes
266 with growth, such that delayed costs are expressed as asymmetric temporal patterns around
267 reproductive events rather than as a consistent lagged reduction in growth (Satake & Iwasa,
268 2000; Han *et al.*, 2017; Kelly *et al.*, 2025). This interpretation, by adjusting the null expectation
269 to account for the autocorrelation in reproduction, contrasts with earlier interpretations of positive
270 growth anomalies at $t - 1$ indicating resource accumulation, or a lack of growth response at $t + 1$
271 as indicating an absence of delayed costs of reproduction (Hacket-Pain *et al.*, 2017; Drobyshev
272 *et al.*, 2010; Nussbaumer *et al.*, 2021).

273 The lack of phylogenetic signal in the growth–reproduction correlation contrasts with the
274 evolutionary conservatism reported for reproductive traits such as seed size, fruit type, and
275 interannual variability in seed production (Moles *et al.*, 2005; Wang *et al.*, 2022; Journé *et al.*,
276 2023). While lineages such as Fagales and Pinales show coherent patterns of masting intensity
277 (Journé *et al.*, 2023), or conserved seed size (Moles *et al.*, 2005), our results indicate that the
278 strength and even the sign of growth–reproduction correlations vary markedly among closely
279 related species. Positive and negative correlations occur side by side within genera including
280 *Quercus*, *Fagus*, *Pinus*, and *Tsuga*, implying repeated divergence in allocation strategies within
281 clades. This suggests that, although key reproductive traits are constrained by ancestry, the
282 balance between growth and reproduction remains evolutionarily labile.

283 We also found no evidence that spatial variation in climate modulates the trade-off. Neither
284 mean annual temperature, mean annual precipitation, nor their interaction predicted variation in
285 the growth–reproduction correlation. This result contrasts with the expectation that warm–moist
286 sites should weaken trade-offs by easing resource limitation, while hot–dry climates should
287 strengthen them. Several mechanisms may explain this mismatch. First, coarse annual climate
288 metrics may not capture the within-season water stress and extreme events that drive resource
289 limitation or sink activity (Espelta *et al.*, 2008; Körner *et al.*, 2023; Cabon, 2025). Second,

Table 1: Summary of results across hypotheses. Hypotheses are stated in shortened form; results summarize the direction and support in the meta-analysis.

Hypothesis	Result summary
Within-year allocation trade-off	Growth and reproduction are negatively correlated within the same year, indicating a widespread immediate cost of reproduction.
Lagged costs of reproduction	Growth is higher in the year before reproduction but not elevated after reproduction, consistent with delayed post-reproductive growth constraints.
Phylogenetic constraint	Growth–reproduction correlations show no phylogenetic signal; closely related species often differ strongly in trade-off strength and sign.
Trait mediation	Functional traits (wood density, SLA, height) do not explain variation in trade-off strength; seed mass shows at most a weak tendency toward weaker trade-offs.
Climatic modulation	Trade-off strength is not systematically related to mean annual temperature or precipitation across sites.
Reproductive variability (CV_p)	Species with high interannual reproductive variability exhibit stronger negative growth–reproduction correlations.
Temporal change	Negative growth–reproduction correlations weaken over recent decades, particularly in species with high reproductive variability.

290 growth and reproduction may respond in parallel to local climate, so that their correlation is
 291 conserved even when absolute rates change (Locosselli *et al.*, 2020; Ward *et al.*, 2025). Third,
 292 local edaphic variation and stand structure can buffer or amplify climatic effects (Barringer *et al.*,
 293 2013), reducing the signal of broad-scale climate drivers in meta-analytic models.

294 Similarly, functional traits associated with the fast–slow continuum and the stature–recruitment
 295 axis did not show associations with the growth–reproduction correlation. Wood density, spe-
 296 cific leaf area, and maximum height were all poor predictors of trade-off strength, and seed
 297 size showed only a weak, marginally significant tendency toward more positive correlations.
 298 This suggests that simple trait syndromes, while powerful for predicting demographic rates and
 299 fecundity (Rüger *et al.*, 2018; Qiu *et al.*, 2022; Bogdziewicz *et al.*, 2023), may not map directly
 300 to how plants partition resources between growth and reproduction from year to year, especially
 301 under variable environmental conditions (Augusto *et al.*, 2025). In fact, a recent global analysis
 302 failed to detect the expected links between acquisitive trait syndromes and high growth rates in
 303 natural forests, as environmental constraints override trait-based growth potential across species
 304 (Augusto *et al.*, 2025). Trade-offs may instead be governed by unmeasured axes of variation,
 305 such as non-structural carbohydrate storage dynamics (Trugman & Anderegg, 2025) or pheno-
 306 logical strategies (Journé *et al.*, 2021; Etzold *et al.*, 2021; Wolkovich *et al.*, 2025), which are
 307 rarely quantified across many species but may determine how plants buffer or transmit resource
 308 limitations into growth and seed output.

309 The temporal trend in our dataset reveals that in strongly masting species, the negative
310 growth–reproduction correlation has weakened over recent decades. First, the strong relationship
311 between the interannual variation in reproduction (CV_p) and growth-reproduction trade-off
312 supports an early, but so far untested, prediction that high variation in reproductive allocation in
313 strongly masting species should render the detection of costs of reproduction more likely in such
314 species (Norton & Kelly, 1988). The weakening of the trade-off over time aligns with the long-
315 term evidence from European beech and Japanese oak (*Quercus crispula*), in which warming
316 increased the frequency of weather cues that trigger reproduction, leading to more frequent seed
317 crops, and in the case of beech, reserve depletion, and an erosion of the growth–reproduction
318 trade-off (Foest *et al.*, 2024; Hacket-Pain *et al.*, 2025; Shibata *et al.*, 2020). Our results indicate
319 that this weakening of the growth–reproduction trade-off is not unique to beech, implying
320 a more general disruption of how trees balance competing demands on limited resources.
321 Such disruption matters because growth–reproduction correlations reflect underlying resource
322 allocation processes. Warming can push these processes out of balance, with consequences that
323 extend from growth and reproduction to survival, defense, and overall resilience (Lauder *et al.*,
324 2019; Macias & Redmond, 2025). A weakening trade-off therefore does not necessarily signal
325 relaxed resource limitation. Rather, it may indicate that trees are increasingly unable to convert
326 the opportunity for compensatory growth in years of reduced reproductive investment because
327 reserves are depleted or physiological stress constrains recovery (Hacket-Pain *et al.*, 2025). In
328 strongly masting species, this creates conditions where reproduction remains frequent while
329 growth declines — a combination shown to reduce carbon storage, diminish future reproductive
330 potential, and increase mortality (Qiu *et al.*, 2021; Hacket-Pain *et al.*, 2025; Bordin *et al.*, 2025).
331 These temporal shifts suggest that climate change is altering the resource dynamics that underpin
332 masting, weakening a fundamental component of demographic regulation in many forest trees.

333 Our findings come with several limitations. While the database include a large geographic
334 range, it is largely composed of temperate and boreal tree species, reflecting the current scarcity
335 of long-term seed production data for tropical systems (Hacket-Pain *et al.*, 2022). While alloca-
336 tion strategies and environmental constraints may differ under such conditions, community-level
337 studies suggest reduced growth during general flowering events in tropical Dipterocarp forests
338 (Nakagawa *et al.*, 2012). Similarly, a larger species sample with broader trait and climate cov-
339 erage could reveal patterns that were not detected here, despite the reasonable trait coverage
340 of our dataset (Supplementary Figure S5). Measures of growth and reproduction also vary
341 across studies—ranging from basal area increment and ring width to fruit counts and seed
342 traps—introducing methodological heterogeneity that our models only partly capture (Sup-
343 plementary Table S5). Potentially important sources of variation, such as ontogenetic stage
344 (Thomas, 2011), stand age (Genet *et al.*, 2009; Ward *et al.*, 2025), or competitive environment
345 (Clark *et al.*, 2014; Augusto *et al.*, 2025), were often unreported and could not be incorpo-
346 rated despite their possible influence on allocation patterns. Our analysis also largely focuses on
347 secondary growth of the main stem, whereas primary growth may be more directly affected by re-

348 productive investment, especially given the partial resource autonomy of branches (Hoch, 2005;
349 Han *et al.*, 2011). Negative growth–reproduction relationships may also arise not from direct
350 competition for shared resources but from independent sink limitation by external drivers—for
351 example, weather conditions that favor reproduction while suppressing growth (Knops *et al.*,
352 2007; Mund *et al.*, 2020). Growth can also be actively down-regulated in years with high
353 reproductive investment to maintain storage (Dietze *et al.*, 2014; Trugman & Anderegg, 2025).
354 While such mechanisms could contribute to the patterns we detect, the meta-analysis was not
355 designed to disentangle them. A further limitation is that most studies rely on among-year cor-
356 relations averaged across individuals, even though trade-offs evolve and operate at the level of
357 individual plants (Cople *et al.*, 2021). Many estimates of trade-offs therefore reflect aggregated
358 data on growth and reproduction from different trees; if resource allocation depends strongly
359 on individual-level resource acquisition, such aggregation could obscure or inflate underlying
360 relationships. Finally, the 'decline effect' in meta-analyses, caused by an increasing tendency
361 to publish null results (Nakagawa *et al.*, 2022), may overestimate temporal effects on trade-offs
362 caused by a changing climate. Together, these limitations highlight the need for long-term
363 datasets that jointly track individuals, multiple tissues, demographic stages, and environmental
364 covariates to fully resolve how growth–reproduction relationships operate across species and
365 biomes.

366 Taken together, our results show that growth–reproduction trade-offs in woody plants are
367 common and weakly constrained by lineage, climate, or functional traits, yet are changing over
368 time in strongly masting species. The consistent same-year cost of reproduction, combined
369 with asymmetric lagged effects in which high reproductive investment is followed by reduced
370 growth, supports a resource-budget view in which allocation conflicts are expressed within
371 years and lagged costs emerge following high reproductive investment (Satake & Iwasa, 2000;
372 Koenig *et al.*, 2003). The absence of strong phylogenetic, climatic, or trait controls indicates
373 that trade-off strength is not a fixed property of lineages or life-history syndromes, but emerges
374 from local conditions and species-specific resource dynamics (Hacket-Pain *et al.*, 2017). The
375 temporal weakening of the trade-off in high- CV_p species links these dynamics to climate change,
376 suggesting that more frequent cueing and altered reserve trajectories can decouple growth
377 responses from annual reproductive effort (Hacket-Pain *et al.*, 2025). Our meta-analysis calls for
378 further research on resource-based individual-level quality of phenotypic correlations between
379 growth and reproduction in woody plants in relation to the changing climate.

380 Materials and Methods

381 **Meta-analysis** To identify relevant studies, we conducted keyword searches in Web of Science
382 and Scopus following the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews
383 and Meta-Analyses); (O'Dea *et al.*, 2021). We evaluated three different combinations of terms
384 related to growth and reproduction (Supplementary Table S1) inspired by two systematic reviews
385 on the cost of reproduction in plants (Obeso, 2002; Thomas, 2011) and the referenced studies
386 incorporated in our meta-analysis. We applied the final search string on 30 March 2024 including:

387 (reproduction OR seed OR seeds OR fruit* OR cone* OR acorn*) AND ("tree
388 growth" OR ring*) AND (tree* OR shrub*)

389 Given the large number of studies reporting growth (>10,000, Supplementary Table S1) in
390 non-woody plants, we restricted the search to woody species by using "tree growth" instead of
391 "growth". We also limited the search to trees and shrubs by including these terms directly in the
392 string.

393 The search yielded 3,449 and 3,111 documents from Web of Science and Scopus, re-
394 spectively. To streamline the process of literature screening we used Rayyan QCRI (<https://rayyan.ai/>). After removing duplicates (2,015), we screened abstracts of 4,545 articles,
395 and classified 110 papers for full-text evaluation. That classification was based on a previ-
396 ously constructed decision tree inspired by studies from two systematic reviews (Supplementary
397 Figure S1). We also included data from before-mentioned systematic reviews (Obeso, 2002;
398 Thomas, 2011) and studies cited in recent publications, resulting in a total of 146 publications
399 eligible for data extraction (Supplementary Figure S2). Studies on orchard trees and cultivated
400 species were excluded due to the possible bias caused by horticultural selection (Supplementary
401 Figure S1).

403 Out of the 146 articles reporting both annual reproduction and annual growth in woody
404 plants, we positively classified 78 studies based on assessment of the full text. Sixty eight
405 studies that did not contain reliable data on either growth or reproduction, or did not report
406 appropriate statistical tests between them were excluded (68 articles in total). In case of studies
407 lacking formal statistical analyses or raw data suitable for our analysis, we contacted 14 authors
408 asking for the missing data. As five research groups shared their data on six species, we were
409 able to include additional data representing over 60 tree populations. We extracted all lagged
410 effects of reproduction on growth when reported.

411 We extracted data combining somatic growth and reproduction over multiple years, with a
412 few exceptions for studies based on one year of measurements. Most studies used secondary
413 growth and seed production, but in the final analysis, we also included 13 studies on primary
414 growth and physiological measurements, and 6 studies that measured flower production instead
415 of seed production (Supplementary Figure S3). Excluding these studies (based on less frequent
416 categories of growth or reproduction measurement) did not change the qualitative outcome of the

417 analyses despite statistically significant differences in effect sizes among growth measurement
418 methods (Supplementary Figure S4, Supplementary Table S5).

419 In total, we compiled a dataset of 685 observations (species \times population \times time-lag effect)
420 from 78 studies containing data on reproduction and growth of trees and other woody plants.
421 We also extracted available effect sizes that were reported in the studies, but were not included
422 in the final analysis, e.g. time lags exceeding one year, correlations based on flower numbers or
423 female individuals only (70 extra effect sizes). Given that seed production in some species (e.g.
424 *Pinus pinea* (Garcia-Barreda *et al.*, 2021)) extends over multiple years we classified correlations
425 between time lags in respect to the species' natural history. For example, for *Pinus pinea*, *Pinus*
426 *palustris* and *Cedrus atlantica* we chose the year of seed filling as the ecologically relevant year
427 to be correlated with growth.

428 To standardize data for the meta-analysis, we first transformed all reported effect sizes to
429 Pearson's correlation coefficient (r) using test-specific formulas (Supplementary Table S2). We
430 then converted r to Fisher's Z-scores (Z_r) using

$$Z_r = \frac{1}{2} \ln\left(\frac{1+r}{1-r}\right).$$

431 The sampling variance of each effect size was calculated as

$$V_{Z_r} = \frac{1}{n-3}.$$

432 For most observations (97%), the sample size (n) was equivalent to the number of years for
433 which reproduction and growth were correlated. In case of growth-reproduction comparisons
434 that used different statistical tests from correlations, we used the number of years or the number
435 of individuals as the respective sample size. If the sample size was less than four, the observation
436 was excluded from the analysis.

437 **Climate data** We extracted mean annual temperature (MAT [$^{\circ}$ C]) and mean annual precip-
438 itation (MAP [cm]) for each unique study location, based on monthly values of temperature
439 and precipitation (1970 to 2000) from the corresponding 2.5 minute grid cell in the WorldClim
440 2 dataset (Fick & Hijmans, 2017). The extracted values of MAT and MAP were plotted in a
441 Whittaker biome diagram using the *plotbiomes* package (Stefan & Levin, 2025).

442 **Functional traits and masting metrics** We compiled functional trait data from publicly
443 available datasets (Kattge *et al.*, 2020; Chave *et al.*, 2009). We filtered the list of species
444 according to the World Checklist of Vascular Plants (WCVP) (Brown *et al.*, 2023). Then
445 we compiled data on species-specific functional traits related to the fast-slow continuum and
446 defined by the global trait analysis (Díaz *et al.*, 2016; Reich, 2014). We selected specific leaf
447 area (SLA), wood density, seed mass, and plant height as potential predictors of the growth-

448 reproduction trade-off. We obtained complete set of functional traits for 61 species. For each
449 trait x species combination that was absent from the databases, we averaged the trait value at
450 the genus level. Such a trait imputation allowed us to cover all 79 species with the relevant trait
451 information. We log-transformed all trait values to approximate a normal distribution, and to
452 facilitate comparisons, we scaled and centered these values prior to the analysis.

453 To obtain the coefficient of variation of seed production (CV_p), we filtered MASTREE+,
454 a global database of annual records of population-level reproductive effort (Hacket-Pain *et al.*,
455 2022; Foest *et al.*, 2024). We estimated the species-level CV_p by taking at least 5-year time series
456 from at least 5 distinct populations for each species. We were able to extract the mean CV_p of
457 seed production for 48 species. If information on population-specific seed production variability
458 (CV_p) was reported in the study (11 species), we gave it priority over the MASTREE-derived
459 value.

460 **Analysis** All data analysis was performed in R v. 4.5.1 (R Core Team, 2024). We used
461 the multilevel comparative meta-analysis approach that involves phylogenetic, interspecific, and
462 intraspecific variance partitioning (Pottier *et al.*, 2024). We built our models using the *rma.mv*
463 function in the *metafor* package v. 4.8-0 (Viechtbauer, 2010). First, based on our species
464 list, we built the phylogenetic tree using the Open Tree of Life with the *rotl* package v. 3.1.0
465 (Michonneau *et al.*, 2016). We calculated the distance between branches using Grafen's method
466 and then built the correlation matrix of phylogenetic relatedness under Brownian motion with
467 the *ape* package v. 5.8-1 (Paradis & Schliep, 2019). All fitted models had the same random
468 effect structure that included effects of individual study, individual effect size, and phylogenetic
469 relatedness. In addition to this model structure, we built two parallel models for sensitivity
470 analyses, one using the phylogenetic relatedness adapted from Zanne *et al.* (Zanne *et al.*, 2014)
471 and one simplified model replacing the phylogenetic relatedness correlation matrix with just the
472 random effect of species. We used *orchaRd* package v. 2.0 to plot the results from the *rma*
473 models (Nakagawa *et al.*, 2023).

474 To test whether growth-reproduction trade-offs occur in woody plants worldwide, we ran a
475 multilevel comparative model with time lags included as the model predictors ($n = 685$). The
476 models tested whether effect sizes (Fisher's Z) differed from zero for correlations measured in
477 year t (a), one-year lags $t - 1$ (b), and one-year lags $t + 1$ (c) (Fig. 2A). We also quantified the
478 relationship between growth and reproduction correlation within-year with the lagged correla-
479 tions. To do so, we fitted an *rma* model using the within-year Z-scores as response, and the
480 lagged correlations ($t - 1$ and $t + 1$) as predictors.

481 In further analyses, we restricted the dataset to within-year correlations (t ; a; $n = 308$). We
482 then tested for a phylogenetic signal in the trade-off expression. To this end, we averaged the
483 Z-score at the species level and then calculated Pagel's λ (Paradis & Schliep, 2019).

484 To assess how climate and functional traits modulate growth-reproduction trade-offs, we
485 fitted a multilevel comparative model. Predictors included mean annual temperature (MAT) and

486 mean annual precipitation (MAP) as key climatic variables, and specific leaf area (SLA), seed
487 mass, plant height, and wood density as relevant functional traits.

488 Finally, we fitted a model to test how trade-offs in species characterized by variable CV_p
489 of seed production have changed over recent decades. To do so, we extracted the final year of
490 the study for each observation and fitted a model that included the final year of the study, the
491 average species-specific CV_p of seed production, and their interaction as predictors.

492 For each model, we estimated the total amount of heterogeneity (I^2) to quantify variation
493 that is not explained by sampling error. The information on heterogeneity was given in model
494 summaries together with the estimated variance components of random effects terms (See
495 Supplementary Material).

496 We assessed potential publication bias using two methods recommended by Nakagawa *et al.*
497 (2022). Specifically, we plotted a funnel plot with Z-scores and performed multilevel meta-
498 regressions with standard error and sampling variance as fixed predictors of effect size. Visual
499 inspection of the funnel plot suggests that there is no publication bias (Supplementary Figure S6).
500 Likewise, the meta-regressions revealed that there is no bias related to studies with small sample
501 sizes as both sampling variance and standard error were non-significant predictors of the effect
502 size (Fisher's Z).

503 **Acknowledgements**

504 We would like to acknowledge researchers who kindly shared their data: Sabine Braun, Simon
505 Tresch, Sven Hopf, Angelika Kölbl, Burkhard Beudert, Bruno Fady, Maxime Cailleret, Manuel
506 Esteban Lucas Borja, and Walt Koenig. This study was funded by Polish National Science Cen-
507 tre grant 2019/35/D/NZ8/00050 and the European Union (ERC, ForestFuture, 101039066; EC,
508 FECUND, 101244227). Views and opinions expressed are however those of the authors only
509 and do not necessarily reflect those of the European Union or the European Research Council.
510 Neither the European Union nor the granting authority can be held responsible for them. JJF
511 was also supported by the Foundation for Polish Science (FNP).

512

513 **Author Contributions Statement**

514 AHP, MB and MKB conceived the study idea and developed research questions. MKB, MB,
515 UE, MB, VJ, KK, JS and AHP performed the abstract screening. MKB extracted data from the
516 literature and curated data. MKB led the analysis with the input from SMD, MB, VJ, JJF and
517 JS. MKB wrote the first draft of the manuscript with substantial help from MB and AHP. All
518 authors contributed to the interpretation of the analysis, revised the draft, and gave their final
519 approval for publication.

520

521 **Declaration of interests**

522 Authors have no competing interests to declare.

523

524 **Data availability statement**

525 The data and code supporting the results are available at https://github.com/maciejkbarczyk/meta_trade-offs.

527 **References**

528 Adier, P.B., Salguero-Gómez, R., Compagnoni, A., Hsu, J.S., Ray-Mukherjee, J., Mbeau-Ache,
529 C. *et al.* (2014). Functional traits explain variation in plant lifehistory strategies. *Proceedings
530 of the National Academy of Sciences of the United States of America*, 111, 740–745.

531 Alfaro-Sánchez, R., Camarero, J.J., López-Serrano, F.R., Sánchez-Salguero, R., Moya, D. &
532 De Las Hera, J. (2015). Positive coupling between growth and reproduction in young post-fire
533 Aleppo pines depends on climate and site conditions. *International Journal of Wildland Fire*,
534 24, 507–517.

535 Augusto, L., Borelle, R., Boča, A., Bon, L., Charru, M. *et al.* (2025). Widespread slow growth
536 of acquisitive tree species. *Nature*, 640, 395–401.

537 Barringer, B.C., Koenig, W.D. & Knops, J.M. (2013). Interrelationships among life-history
538 traits in three California oaks. *Oecologia*, 171, 129–139.

539 Bogdziewicz, M., Acuña, M.C.A., Andrus, R., Ascoli, D., Bergeron, Y., Brveiller, D. *et al.*
540 (2023). Linking seed size and number to trait syndromes in trees. *Global Ecology and
541 Biogeography*, 32, 683–694.

542 Bogdziewicz, M., Crone, E., Steele, M. & Zwolak, R. (2017). Effects of nitrogen deposition on
543 reproduction in a masting tree: benefits of higher seed production are trumped by negative
544 biotic interactions. *Journal of Ecology*, 105, 310–320.

545 Bogdziewicz, M., Fernández-Martínez, M., Espelta, J.M., Ogaya, R. & Penuelas, J. (2020). Is
546 forest fecundity resistant to drought? Results from an 18-yr rainfall-reduction experiment.
547 *New Phytologist*, 227, 1073–1080.

548 Bogdziewicz, M., Kelly, D., Ascoli, D., Caignard, T., Chianucci, F., Crone, E.E. *et al.* (2024).
549 Evolutionary ecology of masting: mechanisms, models, and climate change. *Trends in
550 Ecology & Evolution*, 39, 851–862.

551 Bordin, K.M., Bauman, D., Pugh, T.A., Müller, S.C., Phillips, O.L., Fortunel, C. *et al.* (2025).
552 Growth–survival trade-off in temperate trees is weak and restricted to late-successional stages.
553 *Journal of Ecology*, 113, 3466–3477.

554 Braun, S., Schindler, C. & Rihm, B. (2017). Growth trends of beech and Norway spruce in
555 Switzerland: The role of nitrogen deposition, ozone, mineral nutrition and climate. *Science
556 of the Total Environment*, 599, 637–646.

557 Brown, M.J.M., Walker, B.E., Black, N., Govaerts, R.H.A., Ondo, I., Turner, R. *et al.* (2023).
558 rWCVP: a companion R package for the World Checklist of Vascular Plants. *New Phytologist*,
559 240, 1355–1365.

560 Cabon, A. (2025). Distal to proximal: a continuum of drivers shaping tree growth and carbon
561 partitioning. *New Phytologist*, 249, 729–735.

562 Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G. & Zanne, A.E. (2009). Towards
563 a worldwide wood economics spectrum. *Ecology Letters*, 12, 351–366.

564 Clark, J.S., Andrus, R., Aubry-Kientz, M., Bergeron, Y., Bogdziewicz, M., Bragg, D.C. *et al.*
565 (2021). Continent-wide tree fecundity driven by indirect climate effects. *Nature Communications*,
566 12, 1–11.

567 Clark, J.S., Bell, D.M., Kwit, M.C. & Zhu, K. (2014). Competition-interaction landscapes for
568 the joint response of forests to climate change. *Global Change Biology*, 20, 1979–1991.

569 Cople, O., Keefover-Ring, K., Kruger, E.L. & Lindroth, R.L. (2021). Growth–defense trade-
570 offs shape population genetic composition in an iconic forest tree species. *PNAS*, 118,
571 e2103162118.

572 Dietze, M.C., Sala, A., Carbone, M.S., Czimczik, C.I., Mantooth, J.A., Richardson, A.D. *et al.*
573 (2014). Nonstructural carbon in woody plants. *Annual Review of Plant Biology*, 65, 667–687.

574 Dohrenbusch, A., Jaehne, S., Bredemeier, M. & Lamersdorf, N. (2002). Growth and fructifica-
575 tion of a Norway spruce (*Picea abies* L. Karst) forest ecosystem under changed nutrient and
576 water input. *Annals of Forest Science*, 59, 359–368.

577 Dorken, M.E., van Kleunen, M. & Stift, M. (2025). Costs of reproduction in flowering plants.
578 *New Phytologist*, 147, 55–70.

579 Drobyshev, I., Övergaard, R., Saygin, I., Niklasson, M., Hickler, T., Karlsson, M. *et al.* (2010).
580 Masting behaviour and dendrochronology of European beech (*Fagus sylvatica* L.) in southern
581 sweden. *Forest Ecology and Management*, 259, 2160–2171.

582 Díaz, S., Kattge, J., Cornelissen, J.H., Wright, I.J., Lavorel, S., Dray, S. *et al.* (2016). The global
583 spectrum of plant form and function. *Nature*, 529, 167–171.

584 Espelta, J.M., Cortés, P., Molowny-Horas, R., Sánchez-Humanes, B. & Retana, J. (2008).
585 Masting mediated by summer drought reduces acorn predation in mediterranean oak forests.
586 *Ecology*, 89, 805–817.

587 Esquivel-Muelbert, A., Banbury Morgan, R., Brienen, R., Gloor, E., Lewis, S.L., Dexter, K.G.
588 *et al.* (2025). Increasing tree size across Amazonia. *Nature Plants*, 11, 2016–2025.

589 Etzold, S., Ferretti, M., Reinds, G.J., Solberg, S., Gessler, A., Waldner, P. *et al.* (2020). Nitrogen
590 deposition is the most important environmental driver of growth of pure, even-aged and
591 managed European forests. *Forest Ecology and Management*, 458, 117762.

592 Etzold, S., Sterck, F., Bose, A.K., Braun, S., Buchmann, N., Eugster, W. *et al.* (2021). Number of
593 growth days and not length of the growth period determines radial stem growth of temperate
594 trees. *Ecology Letters*, 25, 427–439.

595 Fick, S.E. & Hijmans, R.J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces
596 for global land areas. *International Journal of Climatology*, 37, 4302–4315.

597 Foest, J.J., Bogdziewicz, M., Pesendorfer, M.B., Ascoli, D., Cutini, A., Nussbaumer, A. *et al.*
598 (2024). Widespread breakdown in masting in European beech due to rising summer temper-
599 atures. *Global Change Biology*, 30, e17307.

600 Foest, J.J., Caignard, T., Pearse, I.S., Bogdziewicz, M. & Hacket-Pain, A. (2025). Intraspecific
601 variation in masting across climate gradients is inconsistent with the environmental stress
602 hypothesis. *Ecology*, 106, e70076.

603 Garcia-Barreda, S., Sangüesa-Barreda, G., Madrigal-González, J., Seijo, F., González de An-
604 drés, E. & Camarero, J.J. (2021). Reproductive phenology determines the linkages between
605 radial growth, fruit production and climate in four Mediterranean tree species. *Agricultural
606 and Forest Meteorology*, 307, 108493.

607 Genet, H., Bréda, N. & Dufrêne, E. (2009). Age-related variation in carbon allocation at tree
608 and stand scales in beech (*Fagus sylvatica* L.) and sessile oak sessile oak (*Quercus petraea*
609 (Matt.) Liebl.) using a chronosequence approach. *Tree Physiology*, 30, 177–192.

610 Hacket-Pain, A. & Bogdziewicz, M. (2021). Climate change and plant reproduction: trends
611 and drivers of mast seeding change. *Philosophical Transactions of the Royal Society B*, 376,
612 20200379.

613 Hacket-Pain, A., Foest, J.J., Pearse, I.S., LaMontagne, J.M., Koenig, W.D., Vacchiano, G. *et al.*
614 (2022). Mastree+: Time-series of plant reproductive effort from six continents. *Global
615 Change Biology*, 28, 3066–3082.

616 Hacket-Pain, A., Szymkowiak, J., Journé, V., Barczyk, M.K., Thomas, P.A., Lageard, J.G.A.
617 *et al.* (2025). Growth decline in European beech associated with temperature-driven increase in
618 reproductive allocation. *Proceedings of the National Academy of Sciences*, 122, e2423181122.

619 Hacket-Pain, A.J., Ascoli, D., Vacchiano, G., Biondi, F., Cavin, L., Conedera, M. *et al.* (2018).
620 Climatically controlled reproduction drives interannual growth variability in a temperate tree
621 species. *Ecology Letters*, 21, 1833–1844.

622 Hacket-Pain, A.J., Lageard, J.G. & Thomas, P.A. (2017). Drought and reproductive effort
623 interact to control growth of a temperate broadleaved tree species (*Fagus sylvatica*). *Tree
624 Physiology*, 37, 744–754.

625 Hadad, M.A., Roig, F.A., Molina, J.G.A. & Hacket-Pain, A. (2021). Growth of male and female
626 *Araucaria araucana* trees respond differently to regional mast events, creating sex-specific
627 patterns in their tree-ring chronologies. *Ecological Indicators*, 122, 107245.

628 Han, Q., Kabeya, D. & Hoch, G. (2011). Leaf traits, shoot growth and seed production in mature
629 *Fagus sylvatica* trees after 8 years of CO₂ enrichment. *Annals of Botany*, 107, 1405–1411.

630 Han, Q., Kabeya, D. & Inagaki, Y. (2017). Influence of reproduction on nitrogen uptake and
631 allocation to new organs in *Fagus crenata*. *Tree Physiology*, 37, 1436–1443.

632 Hesse, B.D., Hartmann, H., Rötzer, T., Landhäuser, S.M., Goisser, M., Weikl, F. *et al.* (2021).
633 Mature beech and spruce trees under drought – Higher C investment in reproduction at the
634 expense of whole-tree NSC stores. *Environmental and Experimental Botany*, 191, 104615.

635 Hoch, G. (2005). Fruit-bearing branchlets are carbon autonomous in mature broad-leaved
636 temperate forest trees. *Plant, Cell and Environment*, 28, 651–659.

637 Hulshof, C.M., Stegen, J.C., Swenson, N.G., Enquist, C.A.F. & Enquist, B.J. (2012). Interannual
638 variability of growth and reproduction in *Bursera simaruba*: the role of allometry and resource
639 variability. *Ecology*, 93, 180–190.

640 Isagi, Y., Sugimura, K., Ssumida, A. & Ito, H. (1997). How does masting happen and synchronize?
641 *Journal of Theoretical Biology*, 187, 231–239.

642 Jablonski, L.M., Wang, X. & Curtis, P.S. (2002). Plant reproduction under elevated CO₂
643 conditions: a meta-analysis of reports on 79 crop and wild species. 156, 9–26.

644 Journé, V., Andrus, R., Aravena, M.C., Ascoli, D., Berretti, R., Berveiller, D. *et al.* (2022).
645 Globally, tree fecundity exceeds productivity gradients. *Ecology Letters*, 25, 1471–1482.

646 Journé, V., Caignard, T., Hacket-Pain, A. & Bogdziewicz, M. (2021). Leaf phenology correlates
647 with fruit production in European beech (*Fagus sylvatica*) and in temperate oaks (*Quercus*
648 *robur* and *Quercus petraea*). *European Journal of Forest Research*, 140, 733–744.

649 Journé, V., Hacket-Pain, A. & Bogdziewicz, M. (2023). Evolution of masting in plants is linked
650 to investment in low tissue mortality. *Nature Communications*, 14, 7998.

651 Kabeya, D., Iio, A., Kakubari, Y. & Han, Q. (2021). Dynamics of non-structural carbohydrates
652 following a full masting event reveal a role for stored starch in relation to reproduction in
653 *Fagus crenata*. *Forestry Research*, 1, 18.

654 Kabeya, D., Inagaki, Y., Noguchi, K. & Han, Q. (2017). Growth rate reduction causes a decline
655 in the annual incremental trunk growth in masting *Fagus crenata* trees. *Tree Physiology*, 37,
656 1444–1452.

657 Kambach, S., Condit, R., Aguilar, S., Bruelheide, H., Bunyavejchewin, S., Chang-Yang, C.H.
658 *et al.* (2022). Consistency of demographic trade-offs across 13 (sub)tropical forests. *Journal*
659 *of Ecology*, 10, 35.

660 Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P. *et al.* (2020). Try plant
661 trait database – enhanced coverage and open access. *Global Change Biology*, 26, 119–188.

662 Kelly, D., Szymkowiak, J., Hacket-Pain, A. & Bogdziewicz, M. (2025). Fine-tuning mast
663 seeding: as resources accumulate, plants become more sensitive to weather cues. *New*
664 *Phytologist*, 246, 1975–1985.

665 Klesse, S., Peters, R., Alfaro-Sánchez, R., Badeau, V., Baittinger, C., Battipaglia, G. *et al.*
666 (2024). No future growth enhancement expected at the northern edge for European beech due
667 to continued water limitation. *Global Change Biology*, 30, e17546.

668 Knops, J.M.H., Koenig, W.D. & Carmen, W.J. (2007). Negative correlation does not imply a
669 tradeoff between growth and reproduction in California oaks. *Proceedings of the National*
670 *Academy of Sciences*, 104, 16982–16985.

671 Koenig, W.D., Kelly, D., Sork, V.L., Duncan, R.P., Elkinton, J.S., Peltonen, M.S. *et al.* (2003).
672 Dissecting components of population-level variation in seed production and the evolution of
673 masting behavior. *Oikos*, 102, 581–591.

674 Körner, C., Möhl, P. & Hiltbrunner, E. (2023). Four ways to define the growing season. *Ecology*
675 *Letters*, 26, 1277–1292.

676 Lauder, J.D., Moran, E.V. & Hart, S.C. (2019). Fight or flight? potential tradeoffs between
677 drought defense and reproduction in conifers. *Tree Physiology*, 39, 1071–1085.

678 Locosselli, G.M., Brienen, J.W., Leite, M.D.S., Gloor, M., Krottenthaler, S., Oliveira, A.A.D.
679 *et al.* (2020). Global tree-ring analysis reveals rapid decrease in tropical tree longevity with
680 temperature. *PNAS*, 117, 33358–33364.

681 Macias, D.S. & Redmond, M.D. (2025). Climate-warming alters resource allocation in unpre-
682 dictable ways. *Trends in Ecology and Evolution*, 40, 428–430.

683 Magill, A.H., Aber, J.D., Currie, W.S., Nadelhoffer, K.J., Martin, M.E., McDowell, W.H. *et al.*
684 (2004). Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest
685 LTER, Massachusetts, USA. *Forest Ecology and Management*, 196, 7–28.

686 Maynard, D.S., Bialic-Murphy, L., Zohner, C.M., Averill, C., van den Hoogen, J., Ma, H. *et al.*
687 (2022). Global relationships in tree functional traits. *Nature Communications*, 13, 3185.

688 Michonneau, F., Brown, J.W. & Winter, D.J. (2016). rotl: an R package to interact with the
689 Open Tree of Life data. *Methods in Ecology and Evolution*, 7, 1476–1481.

690 Moles, A., Ackerly, D., Webb, C., Tweddle, J., Dickie, J. & Westboy, M. (2005). A brief history
691 of seed size. *Science*, 307, 576–580.

692 Monks, A., Monks, J.M. & Tanentzap, A.J. (2016). Resource limitation underlying multiple
693 masting models makes mast seeding sensitive to future climate change. *New Phytologist*, 210,
694 419–430.

695 Mund, M., Herbst, M., Knohl, A., Matthäus, B., Schumacher, J., Schall, P. *et al.* (2020). It is not
696 just a ‘trade-off’: indications for sink- and source-limitation to vegetative and regenerative
697 growth in an old-growth beech forest. *New Phytologist*, 226, 111–125.

698 Nakagawa, M., Matsushita, M., Kurokawa, H., Samejima, H., Takeuchi, Y., Aiba, M. *et al.*
699 (2012). Possible negative effect of general flowering on tree growth and aboveground biomass
700 increment in a borean tropical rain forest. *Biotropica*, 44, 720–729.

701 Nakagawa, S., Lagisz, M., Jennions, M.D., Koricheva, J., Noble, D.W.A., Parker, T.H. *et al.*
702 (2022). Methods for testing publication bias in ecological and evolutionary meta-analyses.
703 *Methods in Ecology and Evolution*, 13, 4–21.

704 Nakagawa, S., Lagisz, M., O’Dea, R.E., Pottier, P., Rutkowska, J., Senior, A.M. *et al.* (2023).
705 orchard 2.0: An R package for visualising meta-analyses with orchard plots. *Methods in
706 Ecology and Evolution*, 14, 2003–2010.

707 Norby, R.J., Loader, N.J., Mayoral, C., Ullah, S., Curioni, G., Smith, A.R. *et al.* (2024). Enhanced
708 woody biomass production in a mature temperate forest under elevated CO₂. *Nature Climate
709 Change*, 14, 983–988.

710 Norton, D.A. & Kelly, D. (1988). Mast seeding over 33 years by *Dacrydium cupressinum* Lamb.
711 (rimu) (*Podocarpaceae*) in New Zealand: The importance of economies of scale. *Functional
712 Ecology*, 2, 399–408.

713 Nussbaumer, A., Gessler, A., Benham, S., de Cinti, B., Etzold, S., Ingerslev, M. *et al.* (2021).
714 Contrasting resource dynamics in mast years for European beech and oak—a continental scale
715 analysis. *Frontiers in Forests and Global Change*, 4, 89.

716 Obeso, J.R. (2002). The costs of reproduction in plants. *New Phytologist*, 155, 321–348.

717 O’Dea, R., Lagisz, M., Jennions, M., Koricheva J. and Noble, D., Parker, T., Gurevitch, J. *et al.*
718 (2021). Preferred reporting items for systematic reviews and meta-analyses in ecology and
719 evolutionary biology: a prisma extension. *Biological Reviews*, 96, 1695–1722.

720 Paradis, E. & Schliep, K. (2019). ape 5.0: an environment for modern phylogenetics and
721 evolutionary analyses in R. *Bioinformatics*, 35, 526–528.

722 Patterson, T.W., Greenberg, C.H. & Hacket-Pain, A. (2023). Acorn production, climate, and
723 tree-ring growth of five oak species in southern Appalachian forests. *Forest Ecology and
724 Management*, 546, 121310.

725 Pearse, I.S., Koenig, W.D. & Kelly, D. (2016). Mechanisms of mast seeding: resources, weather,
726 cues, and selection. *New Phytologist*, 212, 546–562.

727 Pearse, I.S., LaMontagne, J.M., Lordon, M., Hipp, A.L. & Koenig, W.D. (2020). Biogeography
728 and phylogeny of masting: do global patterns fit functional hypotheses? *New Phytologist*,
729 227, 1557–1567.

730 Perret, D.L., Evans, M.E. & Sax, D.F. (2024). A species' response to spatial climatic variation
731 does not predict its response to climate change. *Proceedings of the National Academy of
732 Sciences of the United States of America*, 121, e2304404120.

733 Pottier, P., Noble, D.W.A., Seebacher, F., Wu, N.C., Burke, S., Lagisz, M. *et al.* (2024). New
734 horizons for comparative studies and meta-analyses. *Trends in Ecology & Evolution*, 39,
735 435–445.

736 Qiu, T., Andrus, R., Aravena, M.C., Ascoli, D., Bergeron, Y., Berretti, R. *et al.* (2022). Limits to
737 reproduction and seed size-number trade-offs that shape forest dominance and future recovery.
738 *Nature Communications*, 13, 1–12.

739 Qiu, T., Aravena, M.C., Andrus, R., Ascoli, D., Bergeron, Y., Berretti, R. *et al.* (2021). Is there
740 tree senescence? The fecundity evidence. *Proceedings of the National Academy of Sciences
741 of the United States of America*, 118, e2106130118.

742 Qiu, T., Aravena, M.C., Ascoli, D., Bergeron, Y., Bogdziewicz, M., Boivin, T. *et al.* (2023).
743 Masting is uncommon in trees that depend on mutualist dispersers in the context of global
744 climate and fertility gradients. *Nature Plants*, 9, 1044–1056.

745 R Core Team (2024). *R: A Language and Environment for Statistical Computing*. R Foundation
746 for Statistical Computing, Vienna, Austria.

747 Reich, P.B. (2014). The world-wide 'fast-slow' plant economics spectrum: A traits manifesto.
748 *Journal of Ecology*, 102, 275–301.

749 Rowland, L., da Costa, A.C., Oliveira, A.A., Almeida, S.S., Ferreira, L.V., Malhi, Y. *et al.*
750 (2018). Shock and stabilisation following long-term drought in tropical forest from 15 years
751 of litterfall dynamics. *Journal of Ecology*, 106, 1673–1682.

752 Russo, S.E., McMahon, S.M., Dett, M., Ledder, G., Wright, S.J., Condit, R.S. *et al.* (2020).
753 The interspecific growth–mortality trade-off is not a general framework for tropical forest
754 community structure. *Nature Ecology & Evolution*, 5, 174–183.

755 Rüger, N., Comita, L.S., Condit, R., Purves, D., Rosenbaum, B., Visser, M.D. *et al.* (2018).
756 Beyond the fast–slow continuum: demographic dimensions structuring a tropical tree com-
757 munity. *Ecology Letters*, 21, 1075–1084.

758 Sala, A., Hopping, K., McIntire, E.J., Delzon, S. & Crone, E.E. (2012). Masting in whitebark
759 pine (*Pinus albicaulis*) depletes stored nutrients. *New Phytologist*, 196, 189–199.

760 Salguero-Gómez, R., Jones, O.R., Jongejans, E., Blomberg, S.P., Hodgson, D.J., Mbeau-Ache,
761 C. *et al.* (2016). Fast-slow continuum and reproductive strategies structure plant life-history
762 variation worldwide. *Proceedings of the National Academy of Sciences of the United States
763 of America*, 113, 230–235.

764 Satake, A. & Iwasa, Y. (2000). Pollen coupling of forest trees: Forming synchronized and
765 periodic reproduction out of chaos. *Journal of Theoretical Biology*, 203, 63–84.

766 Sharma, S., Andrus, R., Bergeron, Y., Bogdziewicz, M., Bragg, D.C., Brockway, D. *et al.* (2022).
767 North american tree migration paced by climate in the west, lagging in the east. *Proceedings
768 of the National Academy of Sciences*, 119, e2116691118.

769 Shestakova, T.A., Mutke, S., Gordo, J., Camarero, J.J., Sin, E., Pemán, J. *et al.* (2021). Weather
770 as main driver for masting and stem growth variation in stone pine supports compatible timber
771 and nut co-production. *Agricultural and Forest Meteorology*, 298–299, 108287.

772 Shibata, M., Masaki, T., Yagihashi, T., Shimada, T. & Saitoh, T. (2020). Decadal changes in
773 masting behaviour of oak trees with rising temperature. *Journal of Ecology*, 108, 1088–1100.

774 Stefan, V. & Levin, S. (2025). *plotbiomes: Plot Whittaker biomes with ggplot2*. R package
775 version 0.0.0.9001.

776 Thomas, S.C. (2011). Age-related changes in tree growth and functional biology: The role
777 of reproduction. In: *Size- and Age-Related Changes in Tree Structure and Function* (eds.
778 Meinzer, F.C., Lachenbruch, B. & Dawson, T.E.). Springer, Dordrecht, pp. 33–64.

779 Trugman, A.T. & Anderegg, L.D. (2025). Source vs sink limitations on tree growth: from phys-
780 iological mechanisms to evolutionary constraints and terrestrial carbon cycle implications.
781 *New Phytologist*, 245, 966–981.

782 Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. *Journal of
783 Statistical Software*, 36, 1–48.

784 Violette, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. *et al.* (2007). Let the
785 concept of trait be functional! *Oikos*, 116, 882–892.

786 Wang, G., Ives, A.R., Zhu, H., Tan, Y., Chen, S.C., Yang, J. *et al.* (2022). Phylogenetic
787 conservatism explains why plants are more likely to produce fleshy fruits in the tropics.
788 *Ecology*, 103, e03555.

789 Ward, R.E., Zhang-Zheng, H., Abernethy, K., Adu-Bredu, S., Arroyo, L., Bailey, A. *et al.* (2025).
790 Forest age rivals climate to explain reproductive allocation patterns in forest ecosystems
791 globally. *Ecology Letters*, 28, e70191.

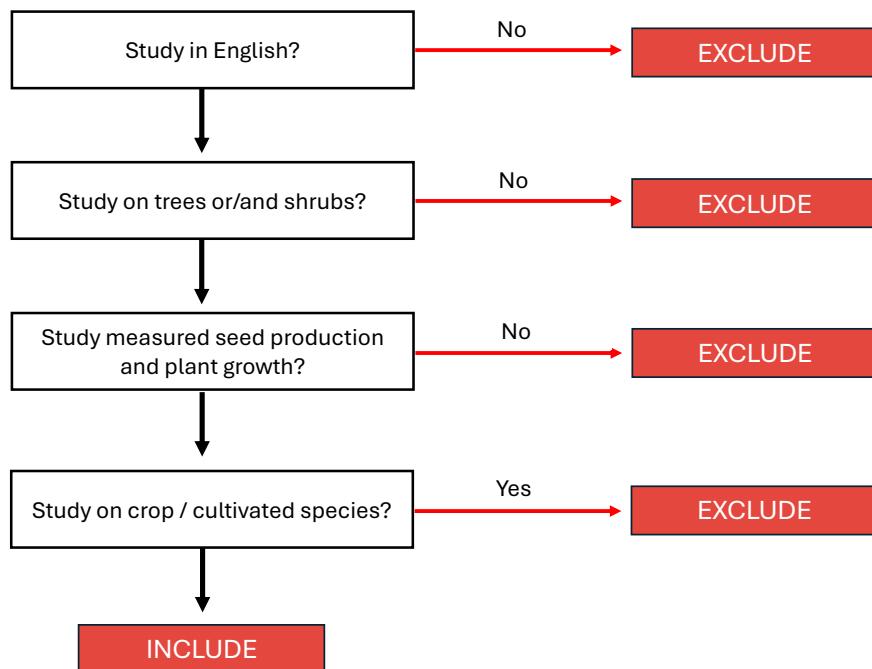
792 Williams, G.C. (1966). Natural selection, the costs of reproduction, and a refinement of lack's
793 principle. *The American Naturalist*, 100, 687–690.

794 Wolkovich, E.M., Ettinger, A.K., Chin, A.R., Chamberlain, C.J., Baumgarten, F., Pradhan, K.
795 *et al.* (2025). Why longer seasons with climate change may not increase tree growth. *Nature
796 Climate Change*, 15, 1283–1292.

797 Woodward, A., Silsbee David, G., Schreiner Edward, G. & Means Joseph, E. (1994). Influence of
798 climate on radial growth and cone production in subalpine fir (*Abies lasiocarpa*) and mountain
799 hemlock (*Tsuga mertensiana*). *Canadian Journal of Forest Research*, 24, 1283–1292.

800 Zanne, A.E., Tank, D.C., Cornwell, W.K., Eastman, J.M., Smith, S.A., FitzJohn, R.G. *et al.*
801 (2014). Three keys to the radiation of angiosperms into freezing environments. *Nature*, 506,
802 89–92.

803 **Supplementary Information**


804 **Title:** Growth–reproduction trade-offs are common but changing in woody plants: a meta-
805 analysis

806 **Authors:** Maciej K. Barczyk, Michał Bogdziewicz, Szymon M. Drobniak, Maria Bogdańska,
807 Urszula Eichert, Jessie J. Foest, Valentin Journé, Katarzyna Kondrat, Jakub Szymkowiak, An-
808 drew Hacket-Pain

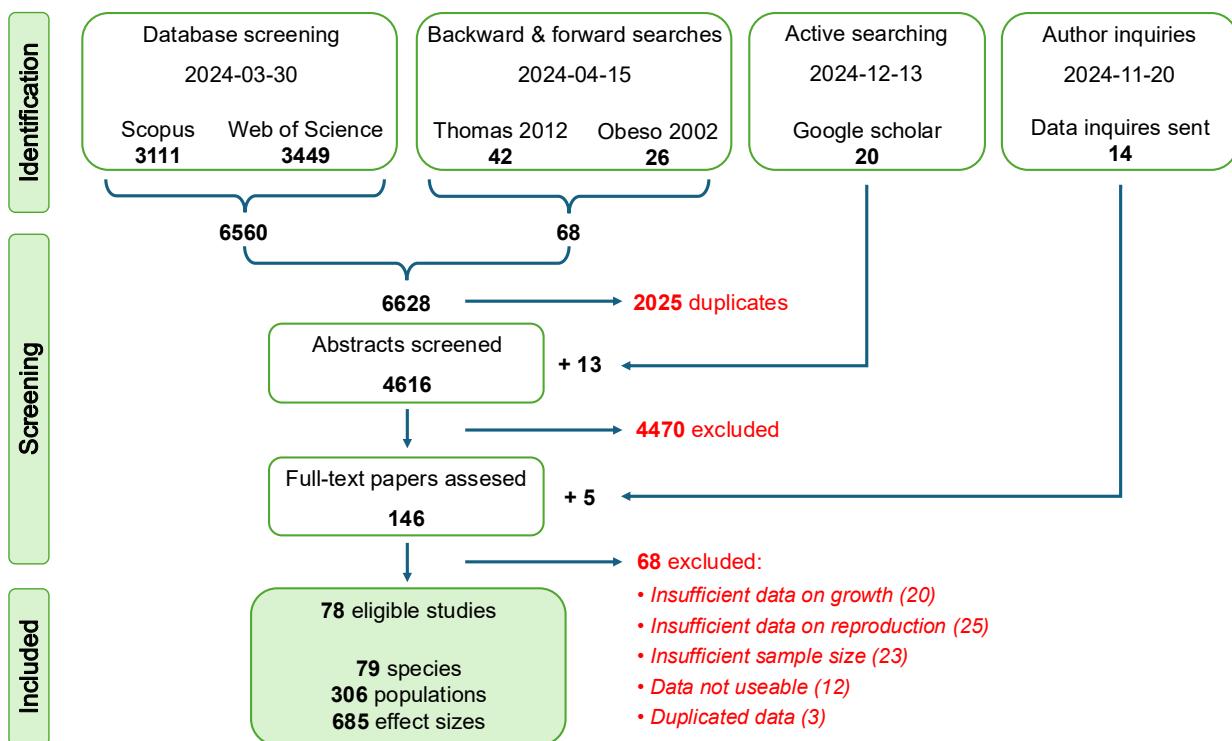

809

Table S1: Search summary. Each row contains set of keywords used for searching in the databases and the numbers of research items detected in the respective database. The trial search was performed at 22.03.2024. The final string was rerun at 30.03.2024 and supplied the meta-analysis (see Methods).

String	Scopus	Web of Science
(reproduction OR seed* OR cone* OR acorn*) AND (growth OR ring*) AND tree	23,244	22,733
(reproduction OR seed* OR cone* OR acorn* OR fruit*) AND (growth OR ring*) AND tree	33,863	32,367
(reproduction OR seed OR seeds OR fruit* OR cone* OR acorn*) AND ("tree growth" OR ring*) AND (tree* OR shrub*)	3,102	3,253

Figure S1: Decision tree. Decision tree with the inclusion criteria used in meta-analysis.

Figure S2: PRISMA flow chart. PRISMA graph summarizes the methods and data used in meta-analysis, including the search description, number of screened and excluded studies, the reasons for exclusion, and the final details on eligible studies.

Table S2: Effect size formulas. Statistical tests and equations used to calculate standardized Pearson's r correlation coefficient. Intermediate effect size (t-value) was calculated with the use of respective effect size (ES) and standard error (SE) prior to conversions to Pearson's r coefficients following $t = ES/SE$. The n refers to the sample size.

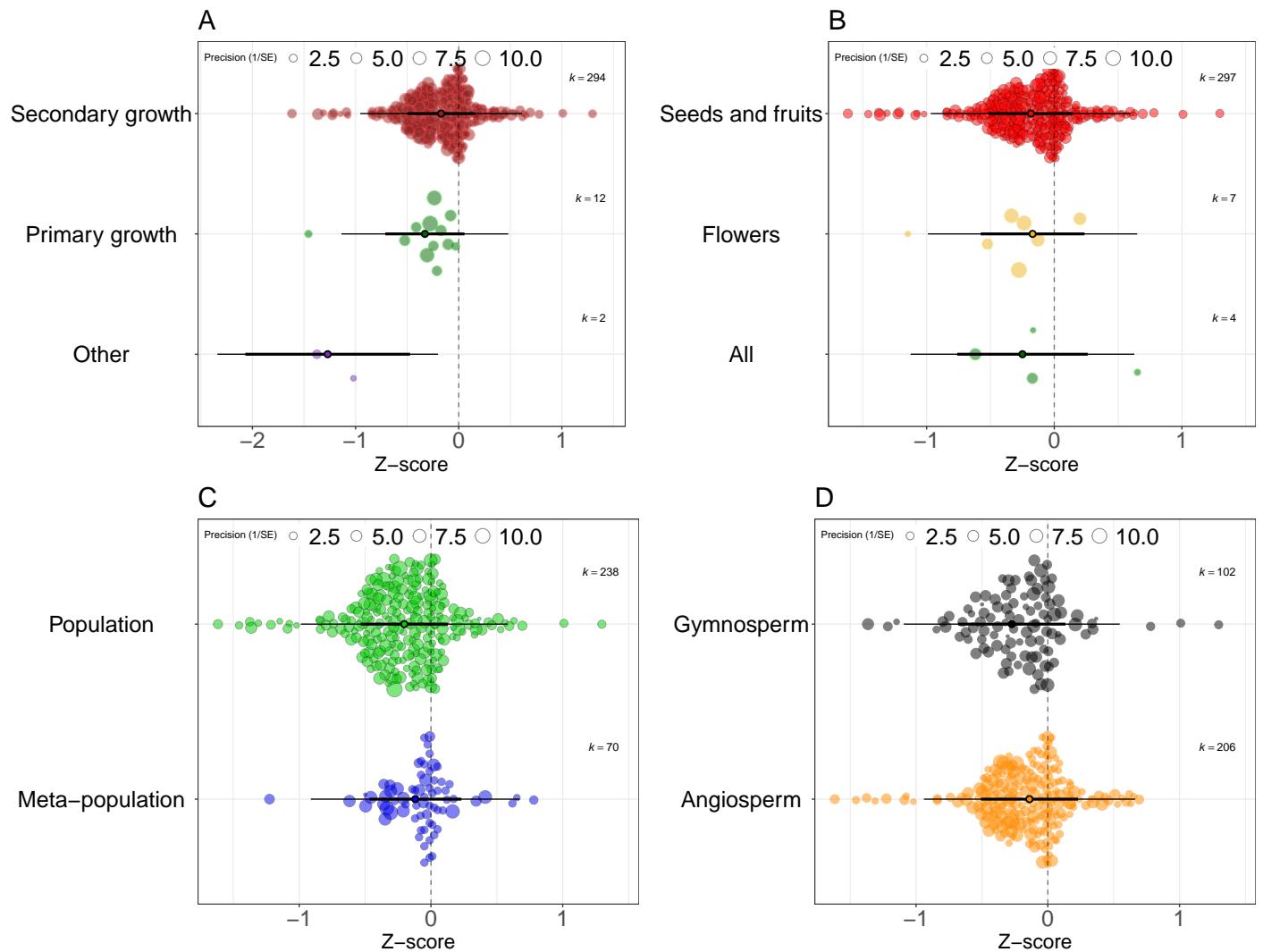

Statistical test	Formula
t-test	$r_P = \sqrt{t^2/(t^2 + n - 1)}$
Spearman correlations	$r_P = 2 \sin(\pi r_S/6)$
Linear models	$r_P = \sqrt{(t^2/(t^2 + n - 1))}$
Multiple regressions	$r_P = \sqrt{t^2/(t^2 + n - 2)}$

Table S3: Results of the rma model testing the relationships between reproduction and growth in the preceding year ($t-1$), same year (t), and the subsequent year ($t+1$). The effect sizes are based on phylogenetically informed multilevel meta-analytic model without an intercept accounting for random effects of phylogeny, effect size ID, and study. The results are based on 685 observations and 79 species [2](#). Asterisks indicate significant effects. AIC = 443.63; $I^2 = 47.11$. The estimated variance components of random effects equal <0.001 for phylogeny, 0.01 for study, and 0.03 for effect size ID.

Predictor	estimate	se	z-value	p-value	ci.lb	ci.ub
Lagged effect ($t+1$)	0.039	0.03	1.304	0.192	-0.02	0.097
Unlagged effect (t)	-0.199	0.024	-8.388	<.0001	-0.245	-0.152 ***
Lagged effect ($t-1$)	0.143	0.028	5.120	<.0001	0.088	0.198 ***

Table S4: Summary of the rma model testing the relationship between the growth-reproduction correlation (Z-score) in the same year (t), and reproduction and growth in the preceding year ($t - 1$), and reproduction and growth in the following year ($t + 1$) (Fig. 2). The effect sizes are based on phylogenetically informed multilevel meta-analytic model accounting for random effects of phylogeny, effect size ID, and study. The results are based on 172 observations and 51 species for which information on population-level correlation was available. Asterisks indicate significant effects. AIC = 26.02; $I^2 = 48.82$. The estimated variance components of random effects equal <0.001 for phylogeny, 0.05 for study, and <0.001 for effect size ID.

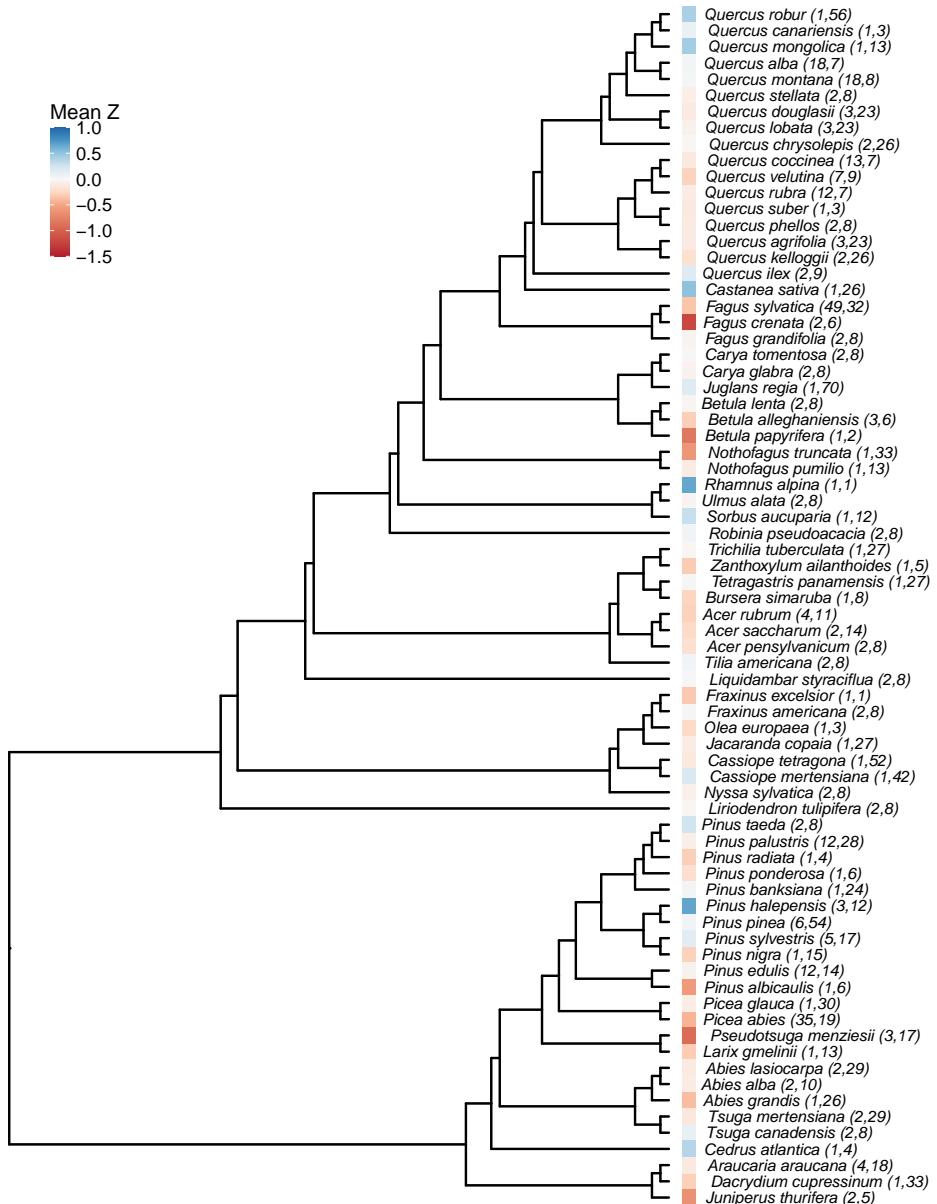

Predictor	estimate	se	z-value	p-value	ci.lb	ci.ub
Intercept	-0.107	0.056	-1.924	0.054	-0.2161	0.002
Lagged effect ($t - 1$) Z	-0.253	0.079	-3.219	0.001	-0.407	-0.099
Lagged effect ($t + 1$) Z	-0.166	0.098	-1.702	0.089	-0.357	0.025

Figure S3: Category-dependent differences in population-level, within-year growth-reproduction correlations. A) Comparison of the effect sizes (Z-score) between different growth measurements. Secondary growth measurements derive mostly from tree ring data and basal area increments. Primary growth refers to measurements of buds, twigs, organs or plant height increments. Other methods ("others") refer to two studies using photosynthetic capacity [O evolution/leaf area] and root collar non-structural carbohydrate (NSC) levels as growth proxy. B) Comparison of the effect sizes (Z-score) between different reproduction measurements. C) Comparison of the effect sizes (Z-score) between populations and meta-populations. D) Comparison of the effect sizes (Z-score) between gymnosperms and angiosperms. Model summary provided in Supplementary Table S5.

Table S5: Summary of the rma model testing the growth-reproduction relationships in relation to the different data categories. The effect sizes are based on the phylogenetically informed multilevel meta-analytic model accounting for random effects of phylogeny, effect size ID, and study. Primary and secondary growth were compared with other growth measurements (three-level factor); flowers, seeds and fruits were compared with all reproductive organs (three-level factor); populations were contrasted with meta-populations (two-leveled factor) and gymnosperms were compared with angiosperms (two-leveled factor) in a joint rma model, as visualized in the Supplementary Fig. S3. The results are based on 308 observations derived from 78 studies on 79 species. Asterisks indicate significant effects. AIC = 194.11; $I^2 = 69.08$. The estimated variance components of random effects equal 0.08 for phylogeny, 0.05 for study, and <0.001 for effect size ID.

Predictor	estimate	se	z-value	p-value	ci.lb	ci.ub	
Intercept	-1.226	0.46	-2.667	0.008	-2.127	-0.325	**
Primary growth	0.942	0.402	2.343	0.019	0.154	1.73	*
Secondary growth	1.1	0.39	2.82	0.005	0.335	1.864	**
Population	-0.084	0.084	-1.005	0.315	-0.248	0.08	
Flowers	0.079	0.243	0.326	0.744	-0.397	0.556	
Seeds and fruits	0.066	0.204	0.323	0.747	-0.335	0.467	
Gymnosperms	-0.134	0.212	-0.633	0.527	-0.549	0.281	

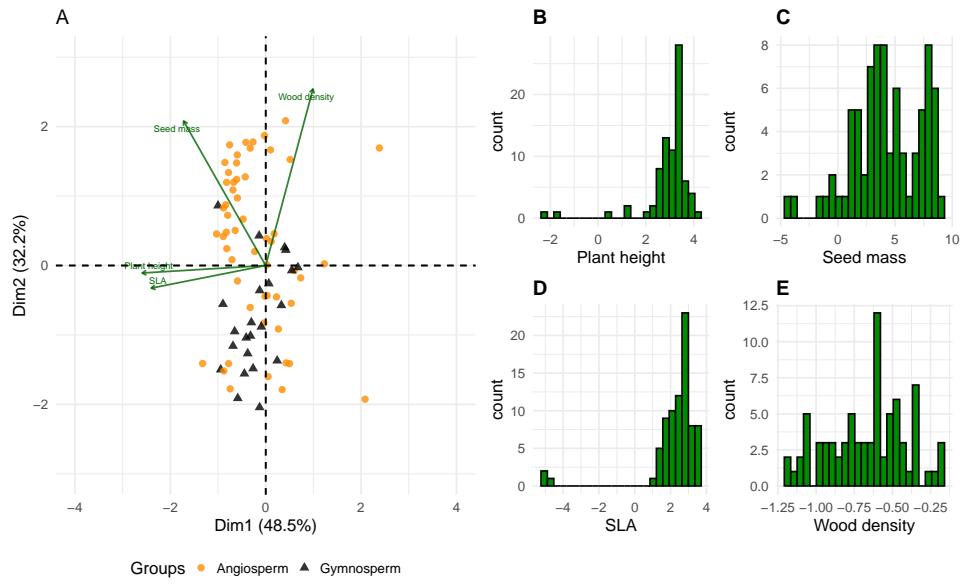

Figure S4: Correlation between secondary growth and reproduction does not exhibit phylogenetic coherence. Warmer colours (reds) indicate negative, and cooler colours (blues) indicate positive correlations between reproduction and growth in the same year (t). In brackets given are: the number of populations in which trade-offs were studied and the mean number of years for each species. Phylogenetic signal, estimated from species-level mean effect sizes, is negligible (Pagel's $\lambda < 0.001$, $p = 0.99$, $n = 74$ species). The data is restricted to observations based only on studies measuring secondary growth (see Supplementary Fig. S3).

Table S6: Summary of the rma model testing the effects of climate and functional traits on growth-reproduction relationships (Fig. 4). The effect sizes are based on phylogenetically informed multilevel meta-analytic model accounting for random effects of phylogeny, effect size ID, and study. MAT - Mean Annual Temperature, MAP - Mean Annual Precipitation, SLA - Specific Leaf Area. The results are based on 308 observations and 79 species. AIC = 202.09; $I^2 = 65.76$. The estimated variance components of random effects equal 0.06 for phylogeny, 0.05 for study, and <0.001 for effect size id.

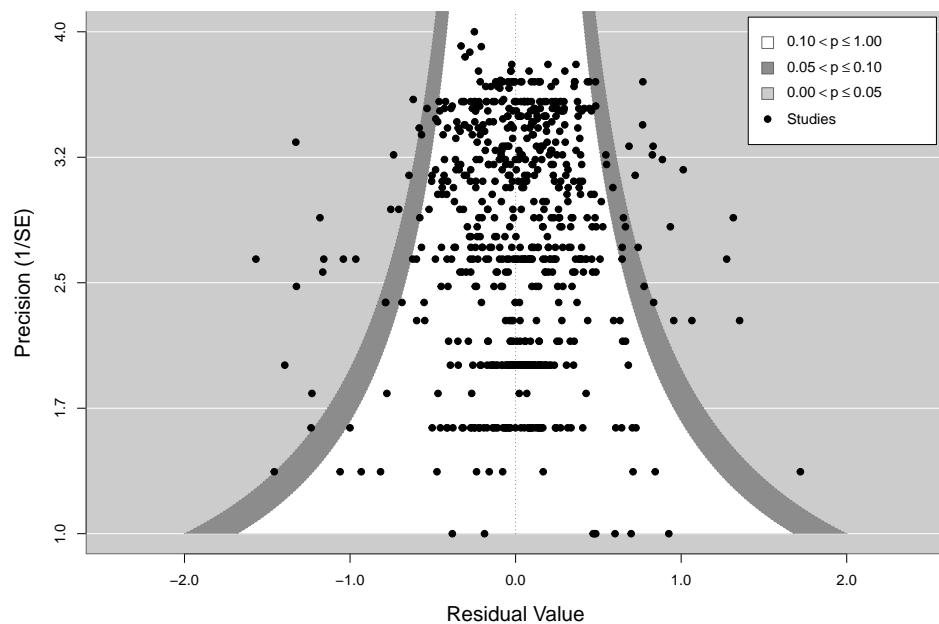

Predictor	estimate	se	z-value	p-value	ci.lb	ci.ub
Intercept	-0.233	0.146	-1.599	0.11	-0.518	0.053
MAT	-0.007	0.036	-0.183	0.855	-0.078	0.064
MAP	0.002	0.03	0.048	0.962	-0.058	0.061
SLA	-0.023	0.043	-0.534	0.594	-0.106	0.061
Wood density	-0.035	0.046	-0.758	0.446	-0.124	0.055
Plant height	-0.087	0.065	-1.342	0.18	-0.214	0.04
Seed mass	0.089	0.051	1.765	0.077	-0.01	0.189

Table S7: Summary of the rma model testing the effect of interaction between mean CV_p of seed production and the final year of the study. The effect sizes are based on phylogenetically informed multilevel meta-analytic model accounting for random effects of phylogeny, effect size ID, and study. Asterisks indicate significant effects. The results are based on 261 observations and 48 species for which CV_p values were available (Fig 5). Asterisks indicate significant effects. $AIC = 142.61$; $I^2 = 64.02$. The estimated variance components of random effects equal 0.09 for phylogeny, 0.02 for study, and <0.001 for effect size id.

Predictor	estimate	se	z-value	p-value	ci.lb	ci.ub	
Intercept	42.64	15.9	2.682	0.007	11.477	73.803	**
Mean CV_p	-42.778	12.148	-3.522	0.0004	-66.587	-18.969	***
Final year of the study	-0.021	0.008	-2.687	0.007	-0.037	-0.006	**
Mean CV_p : Final year	0.021	0.006	3.512	0.0004	0.009	0.033	***

Figure S5: Coverage of species-level functional traits investigated in the meta-analysis. A) Principal Component Analysis. Arrow length indicate relationships between four functional traits tested in the meta-analysis (i.e. SLA, plant height, wood density, seed mass) (Fig. 4) averaged at the species level ($n = 79$). Each point represents single species (yellow - angiosperms, black triangles - gymnosperms). B) Histogram of log-transformed plant height. C) Histogram of log-transformed seed mass. D) Histogram of log-transformed SLA (specific leaf area). E) Histogram of log-transformed wood density (including genus-level average values).

Figure S6: Funnel plot. Residual values from the rma model are plotted in relation to their precision (inverse standard error). Each point refers to population-level growth-reproduction correlation (based on all time lags, $n = 685$). Shades highlight different levels of statistical significance described in the legend.