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Abstract6

1. Ecological syntheses (meta-analysis) usually ask “what is the average effect?”, but many ecological7

questions also depend on whether outcomes become more or less variable and whether effects are8

predictable across contexts.9

2. We show how the same dataset can support a coherent workflow that separates: (i) within-population10

variability (dispersion among individuals or sampling units inside studies) from (ii) between-population11

heterogeneity (dispersion among effect sizes across studies), and targets both for mean effects and12

variability effects.13

3. Using the organic versus conventional crop-yield dataset as an illustration, along with an online tutorial,14

we analyse mean effects with the log response ratio (lnRR; Model 1) and within-population variability15

with the log variance ratio (lnVR) and the log coefficient of variation ratio (lnCVR; Model 2), noting16

that these three effect sizes can be computed from the same summary statistics (means, SDs and17

sample sizes).18

4. We then extend standard meta-regression to location-scale (mean-variance) modelling, allowing moder-19

ators to explain not only how lnRR (Model 3) and lnVR/lnCVR (Model 4) shift on average (“location”)20

but also how their within-study/residual heterogeneity changes with context (“scale”), thereby distin-21

guishing settings where effects are generalisable and transferable from those where they are strongly22

context-dependent.23

5. The core message is that many ecological datasets already contain sufficient information to synthe-24

sise performance (lnRR), reliability/stability (lnVR/lnCVR), and predictability (context-dependent25

heterogeneity; i.e., four models or meta-analyses) side by side. Doing so improves not only statistical26

inference but also our understanding of the changing world, making meta-analytic outputs and insights27

more directly decision-relevant.28

Keywords: lnRR; lnVR; lnCVR; yield stability; heterogeneity; location–scale models; meta-regression; orchard plots29
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1 Introduction30

Ecological effects vary. The same ecological process or intervention, for example, can produce different outcomes31

across individuals, populations, species, and environments, and this variation is often large enough to alter statistical32

inference and to limit generalisation across contexts (Levin, 1992; Lawton, 1999; Chamberlain et al., 2014). This33

means that ecology may not be well served by questions that focus only on “the average effect”. Two further questions34

are routinely important: “how variable are outcomes?” and “how consistent are effects across contexts?” (Duncan and35

Kefford, 2021; Spake et al., 2023). These questions are related, but they operate at two different levels under a meta-36

analytic context. Outcomes can vary more or less within a population (inter-individual variability; e.g., a treatment37

may benefit some individuals but harm others, widening the spread even if the mean changes little), and effect38

sizes can vary more or less across studies or populations (between-study heterogeneity; e.g., the same intervention39

shows a strong effect in some studies but a weak effect elsewhere). Both levels matter for ecological inference and40

practical application, where generalisation and predictability, whether a phenomenon or effect is observed consistently41

across different conditions or only under specific conditions, often determine whether evidence is useful. Therefore,42

meta-analysis should target both the mean effect (central tendency or “location”) and variation effect (dispersion or43

“scale”), rather than treating variation as a nuisance to be averaged away (Nakagawa et al., 2015; Senior et al., 2020;44

Viechtbauer and López-López, 2022; Nakagawa et al., 2025a).45

Most ecological meta-analyses, however, are still mean-centric. A typical synthesis estimates an overall mean effect46

(e.g., using the log-response ratio, lnRR, or the standardised mean difference, d) (Hedges et al., 1999; Lajeunesse, 2011,47

2015). Variation enters mainly in two limited ways. First, within-study variation (standard deviations) is usually48

treated as input for sampling variances and weights, rather than as a biological outcome that might itself change with49

treatments or environments (e.g., an intervention might stabilise outcomes by reducing among-individual differences,50

or destabilise them by amplifying sensitivity). Second, variation among effect sizes is summarised as “heterogeneity”,51

reported as I2 or as a random-effects variance component (often written as τ2) (Higgins and Thompson, 2002; Higgins52

et al., 2003), and commonly assumed to be constant across studies (i.e., “homoscedasticity”; in contrast, non-constant53

variance across a continuous variable or among groups are called “heteroscedasticity”). Measuring heterogeneity in a54

meta-analysis is informative, but simply reporting it does not show how predictable or generalisable the average effect55

is across contexts. What is often more important is understanding when and why effect sizes vary between studies.56

For example, if effect sizes are similar in some settings but highly variable in others, such as under different ecological57

conditions or study designs, then relying on an overall average effect may be a poor way to predict outcomes in a58

new context.59

Two complementary method developments allow us to extract much more from the same dataset (i.e., evidence base).60

First, “meta-analysis of variation” uses dispersion-based effect sizes such as the log variance ratio (lnVR) and the log61

coefficient of variation ratio (lnCVR) to quantify changes in within-population dispersion (inter-individual variability)62
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between comparison groups (e.g., heteroscedasticity between the control and treatment groups) (Nakagawa et al.,63

2015; Senior et al., 2020) (Fig. 1A–C). A major advantage is practical: these effect sizes can usually be computed64

from the same summary statistics already collected for mean-based synthesis (means, standard deviations, and sample65

sizes). Second, “location-scale” meta-regression extends standard meta-regression models by allowing the amount66

of among-effect-size variability to depend on moderators, thereby testing whether heterogeneity can differ between67

different moderator groups or contexts (i.e., heteroscedasticity among moderator levels) (Viechtbauer and López-68

López, 2022; Nakagawa et al., 2025a). Throughout this paper, we use “variability” to mean within-study/within-69

population dispersion (targeted by lnVR/lnCVR), and “heterogeneity” to mean dispersion among effect sizes across70

studies, which can be quantified for both mean effects (e.g., lnRR or d) and variability effects (lnVR/lnCVR) via71

variance components or moderators in meta-analyses and meta-regression analyses (Fig. 1E–H).72

Here, we illustrate “one dataset, four meta-analyses” using the organic versus conventional crop-yield dataset com-73

piled by Ponisio et al. (2015). We begin with the standard mean-effect synthesis (lnRR) to summarise average yield74

differences (Model 1). We then analyse lnVR/lnCVR to address a different but equally ecological question: namely75

whether organic systems differ from conventional systems in within population yield variability (i.e., stability) (Model76

2), a question highlighted in Knapp and van der Heijden (2018). Next, we move from description to explanation by77

fitting two types of meta-regression models: (i) location (mean) meta-regression models to test which moderators78

shift average effects, and (ii) location-scale (mean-variance) models to test whether the amount of between-study79

heterogeneity changes systematically with those moderators (Models 3 & 4) (Viechtbauer and López-López, 2022;80

Nakagawa et al., 2025a). Note that Model 3 applies the location-scale framework to mean effects (lnRR), whereas81

Model 4 applies the same framework to variability effects (lnVR/lnCVR). We conclude with practical guidance on82

effect-size choice and reporting. We explain how to clearly distinguish changes in within-population stability from83

variation in effect sizes among studies, and why it is important to retain and report the basic summary statistics84

(means, standard deviations, and sample sizes) needed to synthesise both mean effects and variability effects. Im-85

portantly, our illustrative examples are implemented in R using metafor (Viechtbauer, 2010), brms (Bürkner, 2017)86

and glmmTMB (Brooks et al., 2017; Kristensen et al., 2026), accessible via an online tutorial.87
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elling of heterogeneity from empirical studies
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Figure 1 (continued). (A) Empirical two-group studies (control vs treatment) can be homoscedastic (similar within-88

group dispersion; Studies 1-2) or heteroscedastic (different within-group dispersion; Studies 3–4). Each study yields a89

study-level effect size that targets either a change in location (mean) and/or a change in scale (dispersion). (B) Mean90

effects are summarised with a mean-based effect size such as the log response ratio, lnRR = ln(X̄T /X̄C), and then91

pooled across studies to estimate an overall mean effect (Model 2). (C) Within-population variability (dispersion)92

effects are summarised with dispersion-based effect sizes such as the log variance ratio (lnVR = ln(sT /sC)) and/or93

the log coefficient of variation ratio (lnCVR = ln[(sT /X̄T )/(sC/X̄C)]), and then pooled across studies to estimate94

an overall variability effect (Model 2). In (B–C), each point represents a study-level effect size; even when the95

pooled mean is near zero (vertical dashed line), effect sizes can vary substantially across studies, producing between-96

study heterogeneity (I2 > 0). (E–H) Location–scale (mean–variance) meta-regression tests whether a categorical97

moderator (levels A and B) shifts the expected effect (location) and/or the predictability/transferability of effects98

(scale; heterogeneity) (Models 3 and 4). (E) Homoscedastic heterogeneity: mean effect and heterogeneity are the99

same for A and B. (F) Heteroscedastic heterogeneity: mean effects are the same, but heterogeneity differs between100

A and B. (G) Homoscedastic heterogeneity: mean effects differ between A and B, but heterogeneity is the same. (H)101

Heteroscedastic heterogeneity: both mean effects and heterogeneity differ between A and B.102

2 Meta-analysis of mean103

2.1 Why lnRR remains a useful starting point104

Mean-effect meta-analysis is usually where ecological synthesis begins: “what is the average effect?” For two-group105

comparisons, a common choice is the log response ratio (lnRR), because it represents proportional change, is inter-106

pretable on a multiplicative scale, and is widely used across ecological meta-analyses (Hedges et al., 1999; Lajeunesse,107

2011, 2015). For each comparison (treatment T vs control C), where i indexes the effect size for an individual treat-108

ment–control comparison, let X̄g,i denote the sample mean, sg,i the sample standard deviation, and ng,i the sample109

size in group g ∈ {T,C}. The lnRR point estimate is:110

y
(lnRR)
i = ln

(
X̄T,i

X̄C,i

)
, (1)

and its sampling variance is written as v
(lnRR)
i . Under the standard assumption of independent groups, a common111

approximation is112

v
(lnRR)
i ≈

s2T,i

nT,i X̄2
T,i

+
s2C,i

nC,i X̄2
C,i

, (2)

so each effect size enters the meta-analysis with its own known (approximated) plug-in precision (Hedges et al., 1999;113

Lajeunesse, 2010, 2015). We use vi throughout as shorthand for “the sampling variance of effect size i”, with the114
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superscript indicating which effect size is being analysed (see also Senior et al., 2020; Nakagawa et al., 2023b).115

lnRR is a practical starting point because the ingredients needed to compute it (means, SDs, and sample sizes) are116

typically the same summary statistics required to compute lnVR and lnCVR. In other words, many existing datasets117

already contain what is needed to analyse mean effects and within-population variability side-by-side (Nakagawa118

et al., 2015; Senior et al., 2020). We do not focus on the standardised mean difference (d) in this article because119

ratio-scale outcomes are common in ecology (making lnRR a natural scale), and because the broader message of120

this paper is about treating differences in variation as targets of synthesis rather than as background assumptions121

(Nakagawa et al., 2015; Senior et al., 2020).122

2.2 Multilevel meta-analysis as the default in ecology123

A recurring issue in ecological meta-analysis is treating effect sizes as independent, recently highlighted by Peacor124

et al. (2025). In practice, multiple effect sizes commonly come from the same paper (e.g., different species, sites,125

years, outcomes, or treatment contrasts), and additional dependence can arise through shared controls or repeated126

measurements (Lajeunesse, 2011; Nakagawa and Santos, 2012). For this reason, a multilevel (random-effects) model127

is a sensible default, as it separates variation across different levels and avoids overstating precision (i.e., reducing128

inflated Type I error rates).129

Using the notation adopted in the past work Nakagawa and Santos (2012), a simple three-level model can be written130

as:131

yi = β0 + uj[i] + ei +mi, (3)

uj ∼ N (0, σ2
u), (4)

ei ∼ N (0, σ2
e), (5)

mi ∼ N (0, vi), (6)

where yi is the observed effect size (here, y
(lnRR)
i ), β0 is the intercept (overall or meta-analytic mean), uj[i] captures132

between-study (or between-paper) differences, ei captures within-study differences among multiple effect sizes from133

the same study, and mi represents sampling error with known sampling variance vi (Lajeunesse, 2011; Nakagawa134

et al., 2025a). In practice, this model matches how ecological evidence is generated: individual studies (papers)135

often contribute clusters of related comparisons, and this dependence should be modelled rather than ignored. When136

sampling errors are correlated, for example, because multiple effect sizes share a control group, mi can be generalised137

to allow covariances. However, for notational simplicity, we retain the scalar form vi (assuming independence among138

sampling errors) rather than the full variance–covariance matrix representation (Williams et al., 2025).139
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This model is a multilevel random-effects meta-analysis, in which true effect sizes are allowed to vary across studies140

and comparisons rather than being assumed to share a single common value. This enables variance decomposition and141

makes explicit what is meant by “heterogeneity” (variance not due to sampling error) and how it can be summarised.142

In simple random-effects meta-analyses (with a single study-level random effect in addition to sampling error), the143

total heterogeneity is often denoted by τ2. In the multilevel model considered here, this total heterogeneity is144

partitioned into a between-study component (σ2
u) and a within-study component (σ2

e), whose sum corresponds to145

τ2. A common descriptive summary of heterogeneity is I2, the proportion of the total variance in observed effect146

sizes that is attributable to heterogeneity rather than sampling error (Lajeunesse, 2011). For the multilevel model147

in Equation (3), a convenient definition of the total heterogeneity, equivalent to standard I2 in the meta-analysis148

literature (Higgins and Thompson, 2002; Higgins et al., 2003), is:149

I2total =
σ2
u + σ2

e

σ2
u + σ2

e + v̄
, (7)

where v̄ is a representative sampling variance (the mean or similar of vi across effect sizes) (Nakagawa and Santos,150

2012). The same decomposition yields component-specific contributions,151

I2between =
σ2
u

σ2
u + σ2

e + v̄
, (8)

I2within =
σ2
e

σ2
u + σ2

e + v̄
, (9)

which indicate whether most heterogeneity sits between studies or among effect sizes within studies. These summaries152

are useful diagnostics, but they remain descriptive: Because I2 is context-dependent, large values (total or component-153

specific) indicate that effects vary across contexts and motivate the next step, testing whether moderators explain154

heterogeneity in a meta-regression (Yang et al., 2025) which we demonstrate in Section 4.155

2.3 Example: organic versus conventional farming average yield156

We used a part of the organic versus conventional crop-yield database compiled by Ponisio et al. (2015); the dataset157

included 318 comparisons (effect sizes) for cereal crops (e.g., maize, wheat, barley, and oats), where organic systems158

were compared against conventional farming systems using standard synthetic inputs (control). Importantly, the159

type of fertiliser (animal- vs plant-derived) varied only within organic systems. We used this fertiliser-type variable160

as a moderator of the organic–conventional contrast, testing whether the magnitude of the organic–conventional161

effect varied with organic management. We fitted the three level meta-analysis described above with study ID as a162

random effect (between-study effects) and effect (size) ID as another random effect (within-study effects); note that163

our model is for an illustrative purposes, and, therefore, we do not claim this is the best meta-analytic model (e.g., an164

alternative model could include another random effect for cereal types; for more detail, see the online tutorial). Our165
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mean-effect synthesis based on lnRR answers a clear question (Fig. 1B): on average, how do organic and conventional166

yields compare? As with Ponisio et al. (2015), we found a clear decline in the average yield for organic farming by167

approximately 27% (Model 1 using metafor: β0 = -0.32,1− exp(−0.32) ≈ 0.27, 95% confidence interval, CI = [-0.43,168

-0.22]; Fig. 2A,C). Yet, there was high heterogeneity (I2total = 98.11, I2between = 46.09, and, I2within = 52.02; Fig. 2E),169

which warrants meta-regression analysis (see Section 4; for comparable models using glmmTMB and brms, see the online170

tutorial).171
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Figure 2: Meta-analyses of mean yield differences and yield stability from a single evidence base.
Panels (A,C,E) summarise the meta-analysis of mean effects using the log response ratio (lnRR), and panels (B,D,F)
summarise the meta-analysis of within-population (mean-corrected) variability using the log coefficient of variation
ratio (lnCVR), both comparing organic to conventional cereal yields (Ponisio dataset; k effect sizes with the number
of studies in parentheses). (A,B) Orchard plots show individual effect sizes (points; size proportional to precision,
1/SE) with horizontal jitter to reduce overplotting. The black square denotes the pooled estimate from a multilevel
random-effects model fitted using metafor; thick horizontal bars indicate the 95% interval for the pooled mean,
and thin whiskers indicate the 95% prediction interval. The vertical dashed line marks zero (no organic–conventional
difference). The reported I2 gives the proportion of total variation attributable to heterogeneity rather than sampling
error. (C,D) Posterior distributions for the overall (intercept) effect in each model (b0 = b l intercept), estimated
using Bayesian multilevel models fitted in brms, where negative lnRR implies lower organic yield and positive lnCVR
implies higher relative variability (lower stability) under organic management. (E,F) Posterior distributions for
random-effects standard deviations (study ID and effect-size ID). Points are posterior medians; thick and thin intervals
denote 66% and 95% credible intervals, respectively. The R packages: ggplot2 (Wickham, 2011), tidybayes (Kay,
2020) and orchaRd (Nakagawa et al., 2023a) were used to draw these plots.
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3 Meta-analysis of variability172

3.1 Why variability deserves its own meta-analysis173

Mean effects describe shifts in central tendency, but many ecological questions are also about “spread”: do outcomes174

become more or less variable within populations when conditions change? Within-population variability is not simply175

nuisance variation. It can reflect differential sensitivity among individuals, temporal or spatial environmental vari-176

ability, changes in trait distributions, or shifting demographic and community composition. Importantly, variability177

can change even when mean outcomes do not (Sánchez-Tójar et al., 2020; Senior et al., 2016a).178

Despite this, standard meta-analytic workflows usually treat within-study standard deviations mainly as inputs for179

sampling variances and weights (as in Equation (2)). As a result, the same dataset can be used to make strong180

statements about mean effects while leaving within-population stability unanalysed. Meta-analysis of variability181

addresses this gap by analysing effect sizes that directly compare dispersion between groups, allowing the same182

evidence base to synthesise both mean outcomes and within-population variability (Nakagawa et al., 2015; Senior183

et al., 2020).184

3.2 Effect sizes for within-population variability: lnVR and lnCVR185

For two-group designs (treatment T vs control C), within-population variability can be compared using two closely186

related dispersion-based effect sizes (Nakagawa et al., 2015; Senior et al., 2020). The log variance ratio (lnVR) targets187

differences in absolute dispersion (on the SD scale):188

y
(lnVR)
i = ln

(
sT,i

sC,i

)
, (10)

so y
(lnVR)
i > 0 indicates higher within-population variability under treatment. lnVR is most natural when the189

scientific question is about absolute spread on the measurement scale (e.g., whether an intervention increases or190

decreases variability regardless of any shift in the mean). For independent groups, a commonly used large-sample191

approximation to the sampling variance is192

v
(lnVR)
i ≈ 1

2 (nT,i − 1)
+

1

2 (nC,i − 1)
, (11)

with small-sample bias corrections available and recommended when sample sizes are modest (Nakagawa et al., 2015;193

Senior et al., 2020).194
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The log coefficient of variation ratio (lnCVR) targets dispersion relative to the mean:195

y
(lnCVR)
i = ln

(
sT,i/X̄T,i

sC,i/X̄C,i

)
, (12)

and is often preferred in ecology because standard deviations frequently scale with means (including for yields,196

abundances, and performance measures) (Nakagawa et al., 2015; Senior et al., 2020). Put simply, lnVR asks whether197

the SD changes, whereas lnCVR asks whether the SD changes more (or less) than the mean. For independent groups,198

a convenient approximation to the sampling variance combines the lnVR component with the additional uncertainty199

from the means:200

v
(lnCVR)
i ≈ 1

2 (nT,i − 1)
+

1

2 (nC,i − 1)
+

s2T,i

nT,i X̄2
T,i

+
s2C,i

nC,i X̄2
C,i

, (13)

again with small-sample bias corrections and extensions for dependent designs (e.g., paired or pre-post data) given201

by Senior et al. (2020).202

A major practical advantage is that both lnVR and lnCVR can usually be computed from the same summary203

statistics already extracted for lnRR (means, SDs, and sample sizes) (Nakagawa et al., 2015; Senior et al., 2020).204

Once calculated, they can be analysed using the same multilevel random-effects framework introduced for mean205

effects (Equation 3), simply replacing y
(lnRR)
i with y

(lnVR)
i or y

(lnCVR)
i and using the corresponding known vi. The206

question changes focus from mean to focus on within-population variability, but the meta-analytic model stays the207

same (see Box 1). It would be worth mentioning that you cannot calculate these dispersion-based effect sizes if the208

within-group variability is not reported, such as when SDs are missing or zero. For lnCVR, you also cannot calculate209

it if group means are zero or nearly zero.210
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Box 1 — Meta-analyses of variability across fields: what lnVR and lnCVR add

Meta-analyses usually synthesise differences in group means, but many applied and mechanistic questions hinge

on whether an intervention (or condition) changes dispersion within groups, whether outcomes become more

homogeneous or more heterogeneous. For example, the logic has been used to address questions that are naturally

about heterogeneity among individuals. In nutrition/health, for example, variance-focused meta-analysis has

been used to compare dietary interventions not only in terms of average weight-related outcomes, but also in

whether they compress or spread the distribution of responses (i.e., whether benefits are broadly shared or

concentrated in a subset) (Senior et al., 2016a).

In neuroscience/psychiatry, Brugger et al. (2020) used lnVR and lnCVR to test the hypothesis that schizophrenia

is associated with increased inter-individual variability in striatal dopamine function, meta-analysing dozens of

studies and finding greater variability in dopamine receptor/transporter availability in patients than in controls.

More broadly, the same “variance as an outcome” framing has been applied to clinical efficacy questions, such as

whether antipsychotic treatment effects differ in heterogeneity across patient groups, where the decision-relevant

issue is not only the expected response but also how widely responses vary (Howes and Chapman, 2024).

In the social sciences, O’Dea et al. (2018) applied lnCVR at a very large scale (over 1.6 million students) to quan-

tify differences in variability of academic grades between boys and girls, showing how dispersion meta-analysis

can be used to test claims that are explicitly about variability rather than mean performance. Across these

examples, the general idea is the same: synthesising lnVR/lnCVR alongside mean effects shifts the inferential

target from “what happens on average?” to “how different do individuals respond?, and how generalisable is

it?”

3.3 Example: yield variability (stability) under organic versus conventional211

farming212

A meta-analysis of variability addresses a different ecological question: do organic systems differ in yield variability213

(i.e., stability) relative to conventional systems (Fig. 1C)? This question has been explicitly raised in the organic-214

yield literature, where lnCVR, along with lnVR, has been used to quantify relative yield variability and to connect215

synthesis to concerns about reliability and stability (Knapp and van der Heijden, 2018). Using lnCVR is particularly216

natural here because yield variability often scales with mean yield; lnCVR therefore targets stability relative to217

average performance (Knapp and van der Heijden, 2018). As with the previous meta-analysis, there was an increase218

in (within-population) relative variability in crop yield for organic farming by approximately 41% (Model 2 using219

metafor: β0 = 0.34, exp(0.34) − 1 ≈ 0.41, 95% confidence interval, CI = [0.20, 0.48]; Fig. 2B,D). Also we found220

13



moderate heterogeneity (metafor: I2total = 56.53, I2between = 9.52, and, I2within = 47.01; Fig. 2F); this result indicated221

we require a further meta-regression analysis (see Section 4; for comparable models using glmmTMB and brms, see the222

online tutorial).223

4 Location-scale meta-regression models224

4.1 From explaining average effects to explaining predictability225

Meta-regression is usually motivated by the desire to explain why mean effects differ among studies: which ecolog-226

ical or methodological features shift the expected lnRR (yield gap) or lnCVR (reliability/stability gap)? However,227

in (applied) ecology, the more consequential question is often whether an effect is predictable in a new setting.228

Two management options can have similar mean effects yet differ sharply in how consistently those effects appear229

across studies. Standard multilevel random-effects models acknowledge heterogeneity, but they typically assume that230

heterogeneity is constant across studies and moderator levels (homoscedasticity). Location-scale models relax this231

assumption by letting the “amount of heterogeneity” itself depend on context, turning “it depends” from a post-hoc232

caveat into an estimable, testable component of the synthesis (Duncan and Kefford, 2021; Spake et al., 2023; Viecht-233

bauer and López-López, 2022; Nakagawa et al., 2025a). This is the key step linking synthesis to generalisability and234

transferability: it tells us not only what to expect on average, but also in which contexts that expectation is reliable235

enough to apply to a new site or study (Spake et al., 2022, 2023).236

4.2 Location-scale meta-regression: letting heterogeneity depend on context237

A useful feature of location-scale modelling is that the same framework can be applied to different effect-size streams.238

In what follows, yi can represent a mean effect size (e.g., y
(lnRR)
i ) or a variability effect size (e.g., y

(lnVR)
i or y

(lnCVR)
i ).239

The sampling term mi is paired with the corresponding sampling variance vi for that effect size (e.g., v
(lnRR)
i , v

(lnVR)
i ,240

or v
(lnCVR)
i ). “Location” therefore refers to the expected value of the chosen effect size, while “scale” refers to the241

residual (within-study) heterogeneity in that effect size and how it changes with context. This allows moderators to242

be evaluated for two distinct roles: shifting the expected effect and altering its predictability (uncertainty around the243

average) across studies.244

A multilevel location (mean) meta-regression can be written as245

yi = β0 + β1x1i + · · ·+ βpxpi + uj[i] + ei +mi, (14)
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where x1i, . . . , xpi are the values of p moderator variables for effect size i and βp are their corresponding regression246

coefficients; the β’s describe how moderators shift the average effect (whether the outcome is lnRR, lnVR, or lnCVR).247

This meta-regression model improves interpretation because it turns an overall average into a context-conditional248

average when a meta-analytic model (Equation (3)) finds non-zero heterogeneity, which is almost always the case for249

ecological datasets (Senior et al., 2016b).250

Location–scale meta-regression extends Equation (14) by allowing the residual (within-study) heterogeneity to vary251

with moderators. One convenient formulation is a double-hierarchical model in which the effect-size-level variance is252

modelled on the log scale:253

yi = β
(l)
0 + β

(l)
1 x1i + · · ·+ β(l)

p xpi + u
(l)

j[i] + e
(l)
i +mi, (location sub-model) (15)

e
(l)
i ∼ N

(
0, σ2

e,i

)
, (16)

ln(σe,i) = β
(s)
0 + β

(s)
1 x1i + · · ·+ β(s)

p xpi. (scale sub-model) (17)

Here, the superscripts (l) and (s) denote the location (mean) and scale (variance, or more precisely, the natural loga-254

rithm of standard deviation) components; note that metafor models ln (σ2) whereas brms and glmmTMB model ln (σ).255

A non-zero scale coefficient (β
(s)
p ̸= 0) implies that the amount of heterogeneity depends on the moderator: effects256

are more variable in some contexts than others, so generalisation is correspondingly easier or harder (Viechtbauer257

and López-López, 2022; Nakagawa et al., 2025a). It is noted that Nakagawa et al. (2025a) introduces more complex258

location-scale models with the between-study effect on the scale part (i.e., u
(l)

j[i]), and an even more complex one with259

a correlation (ρ) modelled between u
(s)

j[i] and u
(l)

j[i]; a positive correlation (ρ) indicates, for example, larger effect sizes260

tend to have larger deviations (for these models, see the online tutorial).261

Importantly, a moderator in a location-scale model can matter in two qualitatively different ways. It can shift the262

average effect (captured in the location part), but it can also change the spread of effects across studies (captured in263

the scale part). The second case is often what readers mean by “context dependence”: the expected effect may not264

change much, but the evidence becomes more or less predictable (see Box 2). This very point is well illustrated in265

the following example.266
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Box 2 — Location–scale modelling as a general tool for discovering heteroscedasticity, not just

meta-analysis

A recurring limitation of “mean-only” modelling is that it treats heteroscedasticity as an inconvenience: if

residual variance differs among individuals, sites, years, taxa, or experimental settings, it is typically absorbed

into a single error term and reported (at best) as overdispersion or “unexplained variability” (Nakagawa et al.,

2025a,b,c). Location-scale modelling flips this perspective by treating variability as an outcome in its own right.

The conceptual move is simple: fit a model for the mean (location) in the usual way, and then fit a second model

for the dispersion (scale), often by modelling log(σ) or log(σ2) as a linear predictor with its own covariates.

This allows the same predictors to be assessed for two distinct roles: whether they shift the expected response,

and whether they change predictability (the spread of responses around that expectation).

Because the scale component is interpretable, location-scale models directly address questions that are intrinsi-

cally about individual differences and context dependence. In behavioural ecology, for example, the “personality-

predictability” framing asks whether individuals differ not only in average behaviour but also in within-individual

variability, and whether those two components covary (Westneat et al., 2013; Cleasby et al., 2015; O’Dea et al.,

2022). In quantitative genetics and comparative work, the same logic allows variance components (and their

covariate dependence) to be treated as biologically meaningful traits, rather than as a single nuisance param-

eter (Mulder et al., 2008; Hill and Mulder, 2010; Mulder et al., 2016; Sae-Lim et al., 2015; Nakagawa et al.,

2025b). In primary research, this is often exactly what we care about: whether environmental stressors amplify

inter-individual differences; whether management interventions stabilise outcomes; whether phenotypes become

more canalised in some contexts but more labile in others; or whether treatment effects are reliable enough to

generalise.

Crucially, the location-scale idea is not limited to Gaussian-distributed data. Modern “distributional-regression”

implementations extend the same two-part thinking to many common outcome types by allowing separate sub-

models for multiple distributional parameters, such as “shape” sub-models (e.g., skewness and kurtosis) and

zero- and one-inflated sub-models (Lee and Nelder, 1996, 2006; Rigby and Stasinopoulos, 2005; Stasinopoulos

and Rigby, 2008). For proportions, dispersion (or overdispersion) can be modelled alongside the mean on

binomial/beta-type scales; for counts, predictors can act on the mean rate while a separate component captures

extra-Poisson variation (e.g., negative-binomial dispersion) and, where relevant, zero inflation (Nakagawa et al.,

2025c). This matters in ecology because the empirical signature of “it depends” is frequently variance, not

mean: an ecological driver may have only a modest effect on the expected proportion or expected count, yet

strongly alter dispersion across sites, seasons, or taxa, signalling that the process is conditional on unmeasured

context (cf. Duncan and Kefford, 2021; Spake et al., 2023).
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4.3 Example: organic fertiliser type shapes both the yield gap and stability267

In the organic-conventional crop-yield dataset (Ponisio et al., 2015), organic fertiliser type (animal- vs plant-derived)268

is agronomically meaningful and plausibly linked to context-dependence; this single moderator is used in both the269

location and scale components of the model to test shifts in the expected effect size and in residual heterogeneity (see270

Fig. 1E–H).271

Specifically, we fitted multilevel location-scale meta-regression models with fertiliser type as the sole moderator, and272

with random effects for study identity and effect-size identity to account for non-independence among comparisons.273

In these models, the reference level is animal-based fertiliser, so the intercept represents the expected effect (and274

heterogeneity) for animal-based systems, and the contrast coefficient represents the shift for plant-based systems275

(Fig. 3C–D).276

Before turning to the results, we briefly remind the reader that Model 3 refers to a location-scale meta-regression of277

mean effects (lnRR), whereas Model 4 refers to an analogous location-scale meta-regression of variability (lnCVR).278

For lnRR, the location part showed a negative average effect under animal-based fertilisers (Model 3 using brms:279

β
(l)
0 = -0.27, 95% credible interval, CrI = [-0.38, -0.16]), implying lower organic yields on average. The contrast280

coefficient (animal-plant) is also negative (β
(l)
animal-plant = -0.14, 95% CrI [-0.26, -0.03]), indicating an additional yield281

penalty under plant-based fertilisers relative to animal-based fertilisers. On the response-ratio scale, these correspond282

approximately to organic yields of exp(−0.27) ≈ 0.76 (about 24% lower than conventional) under animal-based283

fertilisers, versus exp(−0.27− 0.14) ≈ 0.66 (about 34% lower) under plant-based fertilisers. The scale part (modelled284

on the log-σ scale) indicated that the plant-based system tended to be more variable (less predictable)(β
(s)
animal-plant285

= 0.17, 95% CrI = [-0.02, 0.37]), corresponding to about a 19% increase in residual heterogeneity for plant-based286

fertilisers (multiplicative factor exp(0.17) ≈ 1.19), with credible overlap around no difference (Fig. 3A,C,E).287

For lnCVR, the location part indicated that organic systems tended to have higher mean-corrected variability (lower288

stability) under animal-based fertilisers (Model 4 using brms: β
(l)
0 = 0.30, 95% CrI = [0.14, 0.47]; roughly exp(0.30) ≈289

1.35, i.e. about 35% higher CV in organic than conventional). The contrast (animal-plant) coefficient is small and290

highly uncertain (β
(l)
animal-plant =0.08, 95% CrI = [-0.16,0.32]), suggesting that fertiliser type did not strongly shift the291

average stability difference. In contrast, the scale part shows clear evidence that fertiliser type governs predictability292

(context dependence) of lnCVR effects (β
(l)
animal-plant =0.52, 95% CrI = [0.18, 0.86]), implying a much wider spread293

of lnCVR effects across studies for the plant-based fertilisers (exp(0.52) ≈ 1.68; σ ≈ exp(−0.83 + 0.52) ≈ 0.73). In294

other words, while the expected stability gap (lnCVR) is broadly similar between fertiliser categories, the evidence295

is far less transferable under plant-based fertilisers: some studies show near parity in stability, whereas others show296

much larger organic-conventional differences (Fig. 3B,D,F).297
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These paired results illustrate the useful extra insights which location-scale modelling could provide and such insights298

are potentially decision-relevant. Fertiliser type matters for lnRR largely through the expected yield gap (location),299

whereas for lnCVR it matters mainly through the consistency of the stability comparison (scale). Thus, a moderator300

can be important even when it barely shifts the mean effect: it can determine whether an estimated effect is robust301

and transferable, or whether it is strongly contingent on unmeasured ecological and methodological details within302

that moderator category (for comparable models using metafor and brms, see the online tutorial).303
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Figure 3: Location-scale meta-regression showing how a moderator shifts expected effects and their
predictability. Results are shown for lnRR (A,C,E) and lnCVR (B,D,F) when organic fertiliser type (animal- vs
plant-derived) is used as a categorical moderator. k denotes the number of effect sizes (number of studies in paren-
theses). (A,B) Orchard plots stratified by fertiliser type. Points are individual effect sizes (bubble size ∝ 1/SE;
horizontal jitter for visibility). Black squares and thick horizontal bars show the fitted subgroup mean and its 95%
interval; thin whiskers show the 95% prediction interval. The vertical dashed line indicates no difference between
organic and conventional farming. (C,D) Posterior distributions for fixed effects from a Bayesian location-scale

model: location (mean) parameters (b
(l)
0 and b

(l)

contrast(animal−plant)) and scale (heterogeneity) parameters (b
(s)
0 and

b
(s)

contrast(animal−plant)), where the scale coefficients act on log(σ) (positive values indicate greater residual heterogene-

ity). The intercept corresponds to animal-based fertiliser; the contrast gives the shift for plant-based fertiliser. (E,F)
Posterior distributions for the between-study (random-effect) standard deviation. Points are posterior medians; thick
and thin intervals denote 66% and 95% credible intervals, respectively. The R packages: ggplot2 (Wickham, 2011),
tidybayes (Kay, 2020) and orchaRd (Nakagawa et al., 2023a) were used to draw these plots.
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5 Conclusion and future directions304

In this article, we make a simple claim: many ecological syntheses under-use the information already present in305

standard meta-analytic datasets. When primary studies report group means (X̄), standard deviations (s) and sample306

sizes (n), the same evidence base can usually support inference about (i) average outcomes (via lnRR), (ii) within-307

population stability or reliability (via lnVR and lnCVR), and (iii) how both of these vary across contexts. The key is308

to treat “variability” (dispersion within study groups or populations) and “heterogeneity” (dispersion among effect309

sizes across studies) as distinct targets rather than a single catch-all notion of “variation” (Senior et al., 2016b; Yang310

et al., 2025). Once that distinction is made, the analytical steps follow naturally: estimate mean effects, estimate311

variability effects, explain both with moderators, and then test whether predictability itself changes with context312

using location-scale models (Viechtbauer and López-López, 2022; Nakagawa et al., 2025a).313

The practical implication is that moderators can matter in two different ways. Some moderators primarily shift the314

expected effect (the “location” component), changing what we should expect on average in a new setting. Other315

moderators primarily shift the predictability of the evidence (the “scale” component), changing how transferable316

(generalisable) that expectation is (cf., Spake et al., 2022). In the organic-conventional case study (Ponisio et al.,317

2015), placing lnRR and lnCVR side-by-side highlights why this matters: stakeholders care not only about the318

expected yield gap, but also about whether organic systems are comparably reliable and whether that reliability319

comparison is consistent across agronomic contexts (Knapp and van der Heijden, 2018; Nakagawa et al., 2015; Senior320

et al., 2020). Location–scale modelling formalises that second question, replacing a generic “it depends” with an321

explicit, testable statement about when effects are more or less heterogeneous (Viechtbauer and López-López, 2022;322

Nakagawa et al., 2025a).323

Three straightforward shifts would make this “one dataset, four analyses” approach routine: one shift for all empiri-324

cists and two for meta-analysts. First, primary studies should consistently report the minimal summary statistics325

that enable both mean and variability synthesis (means, SDs, and sample sizes for each group), alongside design in-326

formation that induces dependence (shared controls, repeated measures, multi-arm comparisons) (Lajeunesse, 2011;327

Nakagawa and Santos, 2012). Second, meta-analysts should treat mean-variance relationships as a modelling choice328

rather than a nuisance: lnVR is informative about absolute spread, whereas lnCVR targets stability relative to mean329

performance, and reporting both can clarify whether apparent changes in variability are driven mainly by shifts in330

the mean (Nakagawa et al., 2015; Senior et al., 2020). Third, applied syntheses should present results in prediction-331

oriented terms: pooled means and pooled variability effects are useful, but decision-relevance often hinges on how332

widely effects vary across studies and whether moderators identify contexts where results are more transferable (Senior333

et al., 2016b; Nakagawa et al., 2021).334

In short, the contribution here is not a new statistic but a suggested shift in a meta-analytic workflow in ecology:335
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use the same dataset to estimate performance and stability, and then use the same moderators to explain both the336

expected effects and their predictability (Nakagawa et al., 2015; Senior et al., 2020; Viechtbauer and López-López,337

2022; Nakagawa et al., 2025a). That workflow better matches what ecologists and decision-makers typically want to338

know, not only “what happens on average,” but “how consistent is it,” and “how generalisable is this result across339

different contexts?” (Senior et al., 2016b; Yang et al., 2025; Spake et al., 2023). With this new workflow, let us make340

full use of the four meta-analytic models to better understand our changing world.341

Data Availability Statement342

All data, scripts and relevant files used for this study can be found at the GitHub repository (https://anonymous.4open.science/r/one-343

dataset-four-meta-analyses-3B43/) and a version of it will be archived at Zenodo (link).344
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