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Abstract

1. Ecological syntheses (meta-analysis) usually ask “what is the average effect?”, but many ecological

questions also depend on whether outcomes become more or less variable and whether effects are

predictable across contexts.

. We show how the same dataset can support a coherent workflow that separates: (i) within-population

variability (dispersion among individuals or sampling units inside studies) from (ii) between-population
heterogeneity (dispersion among effect sizes across studies), and targets both for mean effects and

variability effects.

. Using the organic versus conventional crop-yield dataset as an illustration, along with an online tutorial,

we analyse mean effects with the log response ratio (InRR; Model 1) and within-population variability
with the log variance ratio (InVR) and the log coefficient of variation ratio (InCVR; Model 2), noting
that these three effect sizes can be computed from the same summary statistics (means, SDs and

sample sizes).

. We then extend standard meta-regression to location-scale (mean-variance) modelling, allowing moder-

ators to explain not only how InRR (Model 3) and InVR/InCVR (Model 4) shift on average (“location”)
but also how their within-study/residual heterogeneity changes with context (“scale”), thereby distin-
guishing settings where effects are generalisable and transferable from those where they are strongly

context-dependent.

. The core message is that many ecological datasets already contain sufficient information to synthe-

sise performance (InRR), reliability /stability (InVR/InCVR), and predictability (context-dependent
heterogeneity; i.e., four models or meta-analyses) side by side. Doing so improves not only statistical
inference but also our understanding of the changing world, making meta-analytic outputs and insights

more directly decision-relevant.

Keywords: InRR; InVR; InCVR; yield stability; heterogeneity; location—scale models; meta-regression; orchard plots
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1 Introduction

Ecological effects vary. The same ecological process or intervention, for example, can produce different outcomes
across individuals, populations, species, and environments, and this variation is often large enough to alter statistical
inference and to limit generalisation across contexts (Levin, 1992; Lawton, 1999; Chamberlain et al., 2014). This
means that ecology may not be well served by questions that focus only on “the average effect”. Two further questions
are routinely important: “how variable are outcomes?” and “how consistent are effects across contexts?” (Duncan and
Kefford, 2021; Spake et al., 2023). These questions are related, but they operate at two different levels under a meta-
analytic context. Outcomes can vary more or less within a population (inter-individual variability; e.g., a treatment
may benefit some individuals but harm others, widening the spread even if the mean changes little), and effect
sizes can vary more or less across studies or populations (between-study heterogeneity; e.g., the same intervention
shows a strong effect in some studies but a weak effect elsewhere). Both levels matter for ecological inference and
practical application, where generalisation and predictability, whether a phenomenon or effect is observed consistently
across different conditions or only under specific conditions, often determine whether evidence is useful. Therefore,
meta-analysis should target both the mean effect (central tendency or “location”) and variation effect (dispersion or
“scale”), rather than treating variation as a nuisance to be averaged away (Nakagawa et al., 2015; Senior et al., 2020;

Viechtbauer and Lépez-Lépez, 2022; Nakagawa et al., 2025a).

Most ecological meta-analyses, however, are still mean-centric. A typical synthesis estimates an overall mean effect
(e.g., using the log-response ratio, InRR, or the standardised mean difference, d) (Hedges et al., 1999; Lajeunesse, 2011,
2015). Variation enters mainly in two limited ways. First, within-study variation (standard deviations) is usually
treated as input for sampling variances and weights, rather than as a biological outcome that might itself change with
treatments or environments (e.g., an intervention might stabilise outcomes by reducing among-individual differences,
or destabilise them by amplifying sensitivity). Second, variation among effect sizes is summarised as “heterogeneity”,
reported as I2 or as a random-effects variance component (often written as 7'2) (Higgins and Thompson, 2002; Higgins
et al., 2003), and commonly assumed to be constant across studies (i.e., “homoscedasticity”; in contrast, non-constant
variance across a continuous variable or among groups are called “heteroscedasticity”). Measuring heterogeneity in a
meta-analysis is informative, but simply reporting it does not show how predictable or generalisable the average effect
is across contexts. What is often more important is understanding when and why effect sizes vary between studies.
For example, if effect sizes are similar in some settings but highly variable in others, such as under different ecological
conditions or study designs, then relying on an overall average effect may be a poor way to predict outcomes in a

new context.

Two complementary method developments allow us to extract much more from the same dataset (i.e., evidence base).
First, “meta-analysis of variation” uses dispersion-based effect sizes such as the log variance ratio (InVR) and the log

coefficient of variation ratio (InCVR) to quantify changes in within-population dispersion (inter-individual variability)
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between comparison groups (e.g., heteroscedasticity between the control and treatment groups) (Nakagawa et al.,
2015; Senior et al., 2020) (Fig. 1A-C). A major advantage is practical: these effect sizes can usually be computed
from the same summary statistics already collected for mean-based synthesis (means, standard deviations, and sample
sizes). Second, “location-scale” meta-regression extends standard meta-regression models by allowing the amount
of among-effect-size variability to depend on moderators, thereby testing whether heterogeneity can differ between
different moderator groups or contexts (i.e., heteroscedasticity among moderator levels) (Viechtbauer and Lépez-
Lépez, 2022; Nakagawa et al., 2025a). Throughout this paper, we use “variability” to mean within-study/within-
population dispersion (targeted by InVR/InCVR), and “heterogeneity” to mean dispersion among effect sizes across
studies, which can be quantified for both mean effects (e.g., InRR or d) and variability effects (InVR/InCVR) via

variance components or moderators in meta-analyses and meta-regression analyses (Fig. 1E-H).

Here, we illustrate “one dataset, four meta-analyses” using the organic versus conventional crop-yield dataset com-
piled by Ponisio et al. (2015). We begin with the standard mean-effect synthesis (InRR) to summarise average yield
differences (Model 1). We then analyse InVR/InCVR to address a different but equally ecological question: namely
whether organic systems differ from conventional systems in within population yield variability (i.e., stability) (Model
2), a question highlighted in Knapp and van der Heijden (2018). Next, we move from description to explanation by
fitting two types of meta-regression models: (i) location (mean) meta-regression models to test which moderators
shift average effects, and (ii) location-scale (mean-variance) models to test whether the amount of between-study
heterogeneity changes systematically with those moderators (Models 3 & 4) (Viechtbauer and Lépez-Lépez, 2022;
Nakagawa et al., 2025a). Note that Model 3 applies the location-scale framework to mean effects (InRR), whereas
Model 4 applies the same framework to variability effects (InVR/InCVR). We conclude with practical guidance on
effect-size choice and reporting. We explain how to clearly distinguish changes in within-population stability from
variation in effect sizes among studies, and why it is important to retain and report the basic summary statistics
(means, standard deviations, and sample sizes) needed to synthesise both mean effects and variability effects. Im-
portantly, our illustrative examples are implemented in R using metafor (Viechtbauer, 2010), brms (Biirkner, 2017)

and glmmTMB (Brooks et al., 2017; Kristensen et al., 2026), accessible via an online tutorial.
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Figure 1: Conceptual overview of synthesising mean effects, variability effects, and location-scale mod-
elling of heterogeneity from empirical studies
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Figure 1 (continued). (A) Empirical two-group studies (control vs treatment) can be homoscedastic (similar within-
group dispersion; Studies 1-2) or heteroscedastic (different within-group dispersion; Studies 3—4). Each study yields a
study-level effect size that targets either a change in location (mean) and/or a change in scale (dispersion). (B) Mean
effects are summarised with a mean-based effect size such as the log response ratio, InRR. = In(Xr/X¢), and then
pooled across studies to estimate an overall mean effect (Model 2). (C) Within-population variability (dispersion)
effects are summarised with dispersion-based effect sizes such as the log variance ratio (InVR = In(sr/s¢)) and/or
the log coefficient of variation ratio (InCVR. = In[(s7/Xr)/(sc/Xc)]), and then pooled across studies to estimate
an overall variability effect (Model 2). In (B—-C), each point represents a study-level effect size; even when the
pooled mean is near zero (vertical dashed line), effect sizes can vary substantially across studies, producing between-
study heterogeneity (I* > 0). (E-H) Location-scale (mean-variance) meta-regression tests whether a categorical
moderator (levels A and B) shifts the expected effect (location) and/or the predictability/transferability of effects
(scale; heterogeneity) (Models 3 and 4). (E) Homoscedastic heterogeneity: mean effect and heterogeneity are the
same for A and B. (F) Heteroscedastic heterogeneity: mean effects are the same, but heterogeneity differs between
A and B. (G) Homoscedastic heterogeneity: mean effects differ between A and B, but heterogeneity is the same. (H)

Heteroscedastic heterogeneity: both mean effects and heterogeneity differ between A and B.

2 Meta-analysis of mean

2.1 Why InRR remains a useful starting point

Mean-effect meta-analysis is usually where ecological synthesis begins: “what is the average effect?” For two-group
comparisons, a common choice is the log response ratio (InRR), because it represents proportional change, is inter-
pretable on a multiplicative scale, and is widely used across ecological meta-analyses (Hedges et al., 1999; Lajeunesse,
2011, 2015). For each comparison (treatment 7' vs control C'), where 4 indexes the effect size for an individual treat-
ment—control comparison, let X, ; denote the sample mean, s, ; the sample standard deviation, and n,; the sample

size in group g € {7, C}. The InRR point estimate is:

YRR ln()fT,i)7 )

C,i

(InRR)

and its sampling variance is written as v, . Under the standard assumption of independent groups, a common

approximation is
2 2
InRR ST,i S0,
MR = ! (2)

2 2 v2
nr X7 ne,i Xé

so each effect size enters the meta-analysis with its own known (approximated) plug-in precision (Hedges et al., 1999;

Lajeunesse, 2010, 2015). We use v; throughout as shorthand for “the sampling variance of effect size ¢, with the
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superscript indicating which effect size is being analysed (see also Senior et al., 2020; Nakagawa et al., 2023b).

InRR is a practical starting point because the ingredients needed to compute it (means, SDs, and sample sizes) are
typically the same summary statistics required to compute InVR and InCVR. In other words, many existing datasets
already contain what is needed to analyse mean effects and within-population variability side-by-side (Nakagawa
et al., 2015; Senior et al., 2020). We do not focus on the standardised mean difference (d) in this article because
ratio-scale outcomes are common in ecology (making InRR a natural scale), and because the broader message of
this paper is about treating differences in variation as targets of synthesis rather than as background assumptions

(Nakagawa et al., 2015; Senior et al., 2020).

2.2 Multilevel meta-analysis as the default in ecology

A recurring issue in ecological meta-analysis is treating effect sizes as independent, recently highlighted by Peacor
et al. (2025). In practice, multiple effect sizes commonly come from the same paper (e.g., different species, sites,
years, outcomes, or treatment contrasts), and additional dependence can arise through shared controls or repeated
measurements (Lajeunesse, 2011; Nakagawa and Santos, 2012). For this reason, a multilevel (random-effects) model
is a sensible default, as it separates variation across different levels and avoids overstating precision (i.e., reducing

inflated Type I error rates).

Using the notation adopted in the past work Nakagawa and Santos (2012), a simple three-level model can be written

as:

yi = Bo + ujp) + ei +mi, (3)
uj ~ N (0,02), (4)
ei ~ N (0,02), (5)
mi ~ N (0,v:), (6)
(InRR)

where y; is the observed effect size (here, y ), Bo is the intercept (overall or meta-analytic mean), u;}; captures

i
between-study (or between-paper) differences, e; captures within-study differences among multiple effect sizes from
the same study, and m; represents sampling error with known sampling variance v; (Lajeunesse, 2011; Nakagawa
et al., 2025a). In practice, this model matches how ecological evidence is generated: individual studies (papers)
often contribute clusters of related comparisons, and this dependence should be modelled rather than ignored. When
sampling errors are correlated, for example, because multiple effect sizes share a control group, m; can be generalised

to allow covariances. However, for notational simplicity, we retain the scalar form v; (assuming independence among

sampling errors) rather than the full variance—covariance matrix representation (Williams et al., 2025).
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This model is a multilevel random-effects meta-analysis, in which true effect sizes are allowed to vary across studies
and comparisons rather than being assumed to share a single common value. This enables variance decomposition and
makes explicit what is meant by “heterogeneity” (variance not due to sampling error) and how it can be summarised.
In simple random-effects meta-analyses (with a single study-level random effect in addition to sampling error), the
total heterogeneity is often denoted by 72. In the multilevel model considered here, this total heterogeneity is
partitioned into a between-study component (¢2) and a within-study component (¢2), whose sum corresponds to
72. A common descriptive summary of heterogeneity is I, the proportion of the total variance in observed effect
sizes that is attributable to heterogeneity rather than sampling error (Lajeunesse, 2011). For the multilevel model
in Equation (3), a convenient definition of the total heterogeneity, equivalent to standard I 2 in the meta-analysis
literature (Higgins and Thompson, 2002; Higgins et al., 2003), is:
03 + ag

I =
total = 5 5 1 =
02 +02+7

(7)

where ¥ is a representative sampling variance (the mean or similar of v; across effect sizes) (Nakagawa and Santos,

2012). The same decomposition yields component-specific contributions,

2

o
129 ween — - 8
bet 024+02+0 (8)
2
Lithin = —— ()

—
02 +02+7

which indicate whether most heterogeneity sits between studies or among effect sizes within studies. These summaries
are useful diagnostics, but they remain descriptive: Because I? is context-dependent, large values (total or component-
specific) indicate that effects vary across contexts and motivate the next step, testing whether moderators explain

heterogeneity in a meta-regression (Yang et al., 2025) which we demonstrate in Section 4.

2.3 Example: organic versus conventional farming average yield

We used a part of the organic versus conventional crop-yield database compiled by Ponisio et al. (2015); the dataset
included 318 comparisons (effect sizes) for cereal crops (e.g., maize, wheat, barley, and oats), where organic systems
were compared against conventional farming systems using standard synthetic inputs (control). Importantly, the
type of fertiliser (animal- vs plant-derived) varied only within organic systems. We used this fertiliser-type variable
as a moderator of the organic-conventional contrast, testing whether the magnitude of the organic-conventional
effect varied with organic management. We fitted the three level meta-analysis described above with study ID as a
random effect (between-study effects) and effect (size) ID as another random effect (within-study effects); note that
our model is for an illustrative purposes, and, therefore, we do not claim this is the best meta-analytic model (e.g., an

alternative model could include another random effect for cereal types; for more detail, see the online tutorial). Our
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mean-effect synthesis based on InRR answers a clear question (Fig. 1B): on average, how do organic and conventional
yields compare? As with Ponisio et al. (2015), we found a clear decline in the average yield for organic farming by
approximately 27% (Model 1 using metafor: Sy = -0.32,1 — exp(—0.32) ~ 0.27, 95% confidence interval, CI = [-0.43,
-0.22]; Fig. 2A,C). Yet, there was high heterogeneity (I, = 98.11, Ieiweon = 46.09, and, IZ;,;, = 52.02; Fig. 2E),
which warrants meta-regression analysis (see Section 4; for comparable models using glmmTMB and brms, see the online

tutorial).
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Figure 2: Meta-analyses of mean yield differences and yield stability from a single evidence base.
Panels (A,C,E) summarise the meta-analysis of mean effects using the log response ratio (InRR), and panels (B,D,F)
summarise the meta-analysis of within-population (mean-corrected) variability using the log coefficient of variation
ratio (InCVR), both comparing organic to conventional cereal yields (Ponisio dataset; k effect sizes with the number
of studies in parentheses). (A,B) Orchard plots show individual effect sizes (points; size proportional to precision,
1/SE) with horizontal jitter to reduce overplotting. The black square denotes the pooled estimate from a multilevel
random-effects model fitted using metafor; thick horizontal bars indicate the 95% interval for the pooled mean,
and thin whiskers indicate the 95% prediction interval. The vertical dashed line marks zero (no organic—conventional
difference). The reported I? gives the proportion of total variation attributable to heterogeneity rather than sampling
error. (C,D) Posterior distributions for the overall (intercept) effect in each model (bp = b_1_intercept), estimated
using Bayesian multilevel models fitted in brms, where negative InRR implies lower organic yield and positive InCVR
implies higher relative variability (lower stability) under organic management. (E,F) Posterior distributions for
random-effects standard deviations (study ID and effect-size ID). Points are posterior medians; thick and thin intervals
denote 66% and 95% credible intervals, respectively. The R packages: ggplot2 (Wickham, 2011), tidybayes (Kay,
2020) and orchaRd (Nakagawa et al., 2023a) were used to draw these plots.
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3 Meta-analysis of variability

3.1 Why variability deserves its own meta-analysis

Mean effects describe shifts in central tendency, but many ecological questions are also about “spread”: do outcomes
become more or less variable within populations when conditions change? Within-population variability is not simply
nuisance variation. It can reflect differential sensitivity among individuals, temporal or spatial environmental vari-
ability, changes in trait distributions, or shifting demographic and community composition. Importantly, variability

can change even when mean outcomes do not (Sédnchez-Téjar et al., 2020; Senior et al., 2016a).

Despite this, standard meta-analytic workflows usually treat within-study standard deviations mainly as inputs for
sampling variances and weights (as in Equation (2)). As a result, the same dataset can be used to make strong
statements about mean effects while leaving within-population stability unanalysed. Meta-analysis of variability
addresses this gap by analysing effect sizes that directly compare dispersion between groups, allowing the same
evidence base to synthesise both mean outcomes and within-population variability (Nakagawa et al., 2015; Senior

et al., 2020).

3.2 Effect sizes for within-population variability: InVR and InCVR

For two-group designs (treatment 7" vs control C'), within-population variability can be compared using two closely
related dispersion-based effect sizes (Nakagawa et al., 2015; Senior et al., 2020). The log variance ratio (InVR) targets
differences in absolute dispersion (on the SD scale):

y" = m(ﬂ> : (10)

SC,i

ZOHVR) > 0 indicates higher within-population variability under treatment. InVR is most natural when the

SO Y
scientific question is about absolute spread on the measurement scale (e.g., whether an intervention increases or
decreases variability regardless of any shift in the mean). For independent groups, a commonly used large-sample

approximation to the sampling variance is
nVR 1 1

vi 2nri—1) | 2(ney — 1)’

with small-sample bias corrections available and recommended when sample sizes are modest (Nakagawa et al., 2015;

Senior et al., 2020).
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The log coefficient of variation ratio (InCVR) targets dispersion relative to the mean:

n ) X i
ylgl CVR) _ ln(ST”/ 7T,z>7 (12)
scifXc,

and is often preferred in ecology because standard deviations frequently scale with means (including for yields,
abundances, and performance measures) (Nakagawa et al., 2015; Senior et al., 2020). Put simply, InVR asks whether
the SD changes, whereas InCVR asks whether the SD changes more (or less) than the mean. For independent groups,
a convenient approximation to the sampling variance combines the InVR component with the additional uncertainty

from the means:

2 2
HINCVR) 1 1 ST S0,

¢ + + . s
2(nri—1)  2(mci—1)  nri X7, nei Xg,

(13)
again with small-sample bias corrections and extensions for dependent designs (e.g., paired or pre-post data) given

by Senior et al. (2020).

A major practical advantage is that both InVR and InCVR can usually be computed from the same summary
statistics already extracted for InRR (means, SDs, and sample sizes) (Nakagawa et al., 2015; Senior et al., 2020).
Once calculated, they can be analysed using the same multilevel random-effects framework introduced for mean
(InRR)

effects (Equation 3), simply replacing y,

(InVR) y(lnCVR)

with y, and using the corresponding known v;. The
question changes focus from mean to focus on within-population variability, but the meta-analytic model stays the
same (see Box 1). It would be worth mentioning that you cannot calculate these dispersion-based effect sizes if the
within-group variability is not reported, such as when SDs are missing or zero. For InCVR, you also cannot calculate

it if group means are zero or nearly zero.
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Box 1 — Meta-analyses of variability across fields: what InVR and InCVR add

Meta-analyses usually synthesise differences in group means, but many applied and mechanistic questions hinge
on whether an intervention (or condition) changes dispersion within groups, whether outcomes become more
homogeneous or more heterogeneous. For example, the logic has been used to address questions that are naturally
about heterogeneity among individuals. In nutrition/health, for example, variance-focused meta-analysis has
been used to compare dietary interventions not only in terms of average weight-related outcomes, but also in
whether they compress or spread the distribution of responses (i.e., whether benefits are broadly shared or

concentrated in a subset) (Senior et al., 2016a).

In neuroscience/psychiatry, Brugger et al. (2020) used InVR and InCVR to test the hypothesis that schizophrenia
is associated with increased inter-individual variability in striatal dopamine function, meta-analysing dozens of
studies and finding greater variability in dopamine receptor/transporter availability in patients than in controls.
More broadly, the same “variance as an outcome” framing has been applied to clinical efficacy questions, such as
whether antipsychotic treatment effects differ in heterogeneity across patient groups, where the decision-relevant

issue is not only the expected response but also how widely responses vary (Howes and Chapman, 2024).

In the social sciences, O’Dea et al. (2018) applied InNCVR at a very large scale (over 1.6 million students) to quan-
tify differences in variability of academic grades between boys and girls, showing how dispersion meta-analysis
can be used to test claims that are explicitly about variability rather than mean performance. Across these
examples, the general idea is the same: synthesising InVR/InCVR alongside mean effects shifts the inferential

«

target from “what happens on average?” to “how different do individuals respond?, and how generalisable is

it?”

3.3 Example: yield variability (stability) under organic versus conventional

farming

A meta-analysis of variability addresses a different ecological question: do organic systems differ in yield variability
(i.e., stability) relative to conventional systems (Fig. 1C)? This question has been explicitly raised in the organic-
yield literature, where InCVR, along with InVR, has been used to quantify relative yield variability and to connect
synthesis to concerns about reliability and stability (Knapp and van der Heijden, 2018). Using InCVR is particularly
natural here because yield variability often scales with mean yield; InCVR therefore targets stability relative to
average performance (Knapp and van der Heijden, 2018). As with the previous meta-analysis, there was an increase
in (within-population) relative variability in crop yield for organic farming by approximately 41% (Model 2 using

metafor: By = 0.34, exp(0.34) — 1 &~ 0.41, 95% confidence interval, CI = [0.20, 0.48]; Fig. 2B,D). Also we found
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moderate heterogeneity (metafor: IZ o = 56.53, Ietween = 9.52, and, 12, = 47.01; Fig. 2F); this result indicated
we require a further meta-regression analysis (see Section 4; for comparable models using glmmTMB and brms, see the

online tutorial).

4 Location-scale meta-regression models

4.1 From explaining average effects to explaining predictability

Meta-regression is usually motivated by the desire to explain why mean effects differ among studies: which ecolog-
ical or methodological features shift the expected InRR (yield gap) or InCVR (reliability /stability gap)? However,
in (applied) ecology, the more consequential question is often whether an effect is predictable in a new setting.
Two management options can have similar mean effects yet differ sharply in how consistently those effects appear
across studies. Standard multilevel random-effects models acknowledge heterogeneity, but they typically assume that
heterogeneity is constant across studies and moderator levels (homoscedasticity). Location-scale models relax this
assumption by letting the “amount of heterogeneity” itself depend on context, turning “it depends” from a post-hoc
caveat into an estimable, testable component of the synthesis (Duncan and Kefford, 2021; Spake et al., 2023; Viecht-
bauer and Lépez-Lépez, 2022; Nakagawa et al., 2025a). This is the key step linking synthesis to generalisability and
transferability: it tells us not only what to expect on average, but also in which contexts that expectation is reliable

enough to apply to a new site or study (Spake et al., 2022, 2023).

4.2 Location-scale meta-regression: letting heterogeneity depend on context

A useful feature of location-scale modelling is that the same framework can be applied to different effect-size streams.

(InRR)

i

(InVR) (lnCVR))

In what follows, y; can represent a mean effect size (e.g., y ) or a variability effect size (e.g., y, ory,

(InRR) (InVR)
v; )

7 )

The sampling term m; is paired with the corresponding sampling variance v; for that effect size (e.g., v

. U(lnCVR) ) )

i “Location” therefore refers to the expected value of the chosen effect size, while “scale” refers to the

residual (within-study) heterogeneity in that effect size and how it changes with context. This allows moderators to
be evaluated for two distinct roles: shifting the expected effect and altering its predictability (uncertainty around the

average) across studies.

A multilevel location (mean) meta-regression can be written as

yi = Po + Bizii + -+ BpTpi + ujp) + e +my, (14)
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where x14,...,%p; are the values of p moderator variables for effect size i and 3, are their corresponding regression
coeflicients; the ’s describe how moderators shift the average effect (whether the outcome is InRR, InVR, or InCVR).
This meta-regression model improves interpretation because it turns an overall average into a context-conditional
average when a meta-analytic model (Equation (3)) finds non-zero heterogeneity, which is almost always the case for

ecological datasets (Senior et al., 2016b).

Location—scale meta-regression extends Equation (14) by allowing the residual (within-study) heterogeneity to vary
with moderators. One convenient formulation is a double-hierarchical model in which the effect-size-level variance is

modelled on the log scale:

Yi = ﬂé“ + Bil)xu + -4 ﬂz(,l)a:pi + ug.l[zl + el(-l) + m;, (location sub-model) (15)
e ~ N (0,02,) (16)
In(oe,i) = ﬁés) + ﬂf)mu + -4 ﬁ;,s)xpi. (scale sub-model) 7)

Here, the superscripts (1) and (s) denote the location (mean) and scale (variance, or more precisely, the natural loga-
rithm of standard deviation) components; note that metafor models In (¢) whereas brms and glmmTMB model In (o).
A non-zero scale coefficient ( ;3) # 0) implies that the amount of heterogeneity depends on the moderator: effects
are more variable in some contexts than others, so generalisation is correspondingly easier or harder (Viechtbauer
and Loépez-Loépez, 2022; Nakagawa et al., 2025a). It is noted that Nakagawa et al. (2025a) introduces more complex

location-scale models with the between-study effect on the scale part (i.e., ug.l[)]), and an even more complex one with

(s)

a correlation (p) modelled between (O and ugllz], a positive correlation (p) indicates, for example, larger effect sizes

tend to have larger deviations (for these models, see the online tutorial).

Importantly, a moderator in a location-scale model can matter in two qualitatively different ways. It can shift the
average effect (captured in the location part), but it can also change the spread of effects across studies (captured in
the scale part). The second case is often what readers mean by “context dependence”: the expected effect may not
change much, but the evidence becomes more or less predictable (see Box 2). This very point is well illustrated in

the following example.
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Box 2 — Location—scale modelling as a general tool for discovering heteroscedasticity, not just

meta-analysis

A recurring limitation of “mean-only” modelling is that it treats heteroscedasticity as an inconvenience: if
residual variance differs among individuals, sites, years, taxa, or experimental settings, it is typically absorbed
into a single error term and reported (at best) as overdispersion or “unexplained variability” (Nakagawa et al.,
2025a,b,c). Location-scale modelling flips this perspective by treating variability as an outcome in its own right.
The conceptual move is simple: fit a model for the mean (location) in the usual way, and then fit a second model
for the dispersion (scale), often by modelling log(c) or log(c?) as a linear predictor with its own covariates.
This allows the same predictors to be assessed for two distinct roles: whether they shift the expected response,

and whether they change predictability (the spread of responses around that expectation).

Because the scale component is interpretable, location-scale models directly address questions that are intrinsi-
cally about individual differences and context dependence. In behavioural ecology, for example, the “personality-
predictability” framing asks whether individuals differ not only in average behaviour but also in within-individual
variability, and whether those two components covary (Westneat et al., 2013; Cleasby et al., 2015; O’Dea et al.,
2022). In quantitative genetics and comparative work, the same logic allows variance components (and their
covariate dependence) to be treated as biologically meaningful traits, rather than as a single nuisance param-
eter (Mulder et al., 2008; Hill and Mulder, 2010; Mulder et al., 2016; Sae-Lim et al., 2015; Nakagawa et al.,
2025b). In primary research, this is often exactly what we care about: whether environmental stressors amplify
inter-individual differences; whether management interventions stabilise outcomes; whether phenotypes become
more canalised in some contexts but more labile in others; or whether treatment effects are reliable enough to

generalise.

Crucially, the location-scale idea is not limited to Gaussian-distributed data. Modern “distributional-regression”
implementations extend the same two-part thinking to many common outcome types by allowing separate sub-
models for multiple distributional parameters, such as “shape” sub-models (e.g., skewness and kurtosis) and
zero- and one-inflated sub-models (Lee and Nelder, 1996, 2006; Rigby and Stasinopoulos, 2005; Stasinopoulos
and Rigby, 2008). For proportions, dispersion (or overdispersion) can be modelled alongside the mean on
binomial/beta-type scales; for counts, predictors can act on the mean rate while a separate component captures
extra-Poisson variation (e.g., negative-binomial dispersion) and, where relevant, zero inflation (Nakagawa et al.,
2025¢). This matters in ecology because the empirical signature of “it depends” is frequently variance, not
mean: an ecological driver may have only a modest effect on the expected proportion or expected count, yet
strongly alter dispersion across sites, seasons, or taxa, signalling that the process is conditional on unmeasured

context (cf. Duncan and Kefford, 2021; Spake et al., 2023).
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4.3 Example: organic fertiliser type shapes both the yield gap and stability

In the organic-conventional crop-yield dataset (Ponisio et al., 2015), organic fertiliser type (animal- vs plant-derived)
is agronomically meaningful and plausibly linked to context-dependence; this single moderator is used in both the
location and scale components of the model to test shifts in the expected effect size and in residual heterogeneity (see

Fig. 1E-H).

Specifically, we fitted multilevel location-scale meta-regression models with fertiliser type as the sole moderator, and
with random effects for study identity and effect-size identity to account for non-independence among comparisons.
In these models, the reference level is animal-based fertiliser, so the intercept represents the expected effect (and
heterogeneity) for animal-based systems, and the contrast coefficient represents the shift for plant-based systems

(Fig. 3C-D).

Before turning to the results, we briefly remind the reader that Model 3 refers to a location-scale meta-regression of

mean effects (InRR), whereas Model 4 refers to an analogous location-scale meta-regression of variability (InCVR).

For InRR, the location part showed a negative average effect under animal-based fertilisers (Model 3 using brms:
ﬂ(()l) = -0.27, 95% credible interval, CrI = [-0.38, -0.16]), implying lower organic yields on average. The contrast

coefficient (animal-plant) is also negative (B(l) =-0.14, 95% CrlI [-0.26, -0.03]), indicating an additional yield

animal-plant
penalty under plant-based fertilisers relative to animal-based fertilisers. On the response-ratio scale, these correspond
approximately to organic yields of exp(—0.27) ~ 0.76 (about 24% lower than conventional) under animal-based
fertilisers, versus exp(—0.27 —0.14) =~ 0.66 (about 34% lower) under plant-based fertilisers. The scale part (modelled
(s)

animal-plant

on the log-o scale) indicated that the plant-based system tended to be more variable (less predictable) (s
= 0.17, 95% Crl = [-0.02, 0.37]), corresponding to about a 19% increase in residual heterogeneity for plant-based

fertilisers (multiplicative factor exp(0.17) ~ 1.19), with credible overlap around no difference (Fig. 3A,C,E).

For InCVR, the location part indicated that organic systems tended to have higher mean-corrected variability (lower
stability) under animal-based fertilisers (Model 4 using brms: 8" = 0.30, 95% CrI = [0.14, 0.47]; roughly exp(0.30) ~
1.35, i.e. about 35% higher CV in organic than conventional). The contrast (animal-plant) coefficient is small and
highly uncertain (ﬁiffmal_plm =0.08, 95% CrlI = [-0.16,0.32]), suggesting that fertiliser type did not strongly shift the
average stability difference. In contrast, the scale part shows clear evidence that fertiliser type governs predictability
(context dependence) of InCVR effects (ﬁ;ﬂ)mal_plm =0.52, 95% Crl = [0.18, 0.86]), implying a much wider spread
of InCVR effects across studies for the plant-based fertilisers (exp(0.52) ~ 1.68; o ~ exp(—0.83 4+ 0.52) ~ 0.73). In
other words, while the expected stability gap (InCVR) is broadly similar between fertiliser categories, the evidence

is far less transferable under plant-based fertilisers: some studies show near parity in stability, whereas others show

much larger organic-conventional differences (Fig. 3B,D,F).

17



298

299

300

301

302

303

These paired results illustrate the useful extra insights which location-scale modelling could provide and such insights
are potentially decision-relevant. Fertiliser type matters for InRR largely through the expected yield gap (location),
whereas for InCVR it matters mainly through the consistency of the stability comparison (scale). Thus, a moderator
can be important even when it barely shifts the mean effect: it can determine whether an estimated effect is robust
and transferable, or whether it is strongly contingent on unmeasured ecological and methodological details within

that moderator category (for comparable models using metafor and brms, see the online tutorial).
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Figure 3: Location-scale meta-regression showing how a moderator shifts expected effects and their
predictability. Results are shown for InRR (A,C,E) and InCVR (B,D,F) when organic fertiliser type (animal- vs
plant-derived) is used as a categorical moderator. k denotes the number of effect sizes (number of studies in paren-
theses). (A,B) Orchard plots stratified by fertiliser type. Points are individual effect sizes (bubble size < 1/SE;
horizontal jitter for visibility). Black squares and thick horizontal bars show the fitted subgroup mean and its 95%
interval; thin whiskers show the 95% prediction interval. The vertical dashed line indicates no difference between
organic and conventional farming. (C,D) Posterior distributions for fixed effects from a Bayesian location-scale

model: location (mean) parameters (b’ and bg?mtast(animal_plam)
()

contrast(animal —pl. ant)), where the scale coefficients act on log(o) (positive values indicate greater residual heterogene-
ity). The intercept corresponds to animal-based fertiliser; the contrast gives the shift for plant-based fertiliser. (E,F)
Posterior distributions for the between-study (random-effect) standard deviation. Points are posterior medians; thick
and thin intervals denote 66% and 95% credible intervals, respectively. The R packages: ggplot2 (Wickham, 2011),
tidybayes (Kay, 2020) and orchaRd (Nakagawa et al., 2023a) were used to draw these plots.

) and scale (heterogeneity) parameters (bés) and
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5 Conclusion and future directions

In this article, we make a simple claim: many ecological syntheses under-use the information already present in
standard meta-analytic datasets. When primary studies report group means (X), standard deviations (s) and sample
sizes (n), the same evidence base can usually support inference about (i) average outcomes (via InRR), (ii) within-
population stability or reliability (via InVR and InCVR), and (iii) how both of these vary across contexts. The key is
to treat “variability” (dispersion within study groups or populations) and “heterogeneity” (dispersion among effect
sizes across studies) as distinct targets rather than a single catch-all notion of “variation” (Senior et al., 2016b; Yang
et al., 2025). Once that distinction is made, the analytical steps follow naturally: estimate mean effects, estimate

variability effects, explain both with moderators, and then test whether predictability itself changes with context

using location-scale models (Viechtbauer and Lépez-Lépez, 2022; Nakagawa et al., 2025a).

The practical implication is that moderators can matter in two different ways. Some moderators primarily shift the
expected effect (the “location” component), changing what we should expect on average in a new setting. Other
moderators primarily shift the predictability of the evidence (the “scale” component), changing how transferable
(generalisable) that expectation is (cf., Spake et al., 2022). In the organic-conventional case study (Ponisio et al.,
2015), placing InRR and InCVR side-by-side highlights why this matters: stakeholders care not only about the
expected yield gap, but also about whether organic systems are comparably reliable and whether that reliability
comparison is consistent across agronomic contexts (Knapp and van der Heijden, 2018; Nakagawa et al., 2015; Senior
et al., 2020). Location—scale modelling formalises that second question, replacing a generic “it depends” with an
explicit, testable statement about when effects are more or less heterogeneous (Viechtbauer and Lépez-Lépez, 2022;

Nakagawa et al., 2025a).

Three straightforward shifts would make this “one dataset, four analyses” approach routine: one shift for all empiri-
cists and two for meta-analysts. First, primary studies should consistently report the minimal summary statistics
that enable both mean and variability synthesis (means, SDs, and sample sizes for each group), alongside design in-
formation that induces dependence (shared controls, repeated measures, multi-arm comparisons) (Lajeunesse, 2011;
Nakagawa and Santos, 2012). Second, meta-analysts should treat mean-variance relationships as a modelling choice
rather than a nuisance: InVR is informative about absolute spread, whereas InCVR targets stability relative to mean
performance, and reporting both can clarify whether apparent changes in variability are driven mainly by shifts in
the mean (Nakagawa et al., 2015; Senior et al., 2020). Third, applied syntheses should present results in prediction-
oriented terms: pooled means and pooled variability effects are useful, but decision-relevance often hinges on how
widely effects vary across studies and whether moderators identify contexts where results are more transferable (Senior

et al., 2016b; Nakagawa et al., 2021).

In short, the contribution here is not a new statistic but a suggested shift in a meta-analytic workflow in ecology:
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use the same dataset to estimate performance and stability, and then use the same moderators to explain both the
expected effects and their predictability (Nakagawa et al., 2015; Senior et al., 2020; Viechtbauer and Lépez-Lépez,
2022; Nakagawa et al., 2025a). That workflow better matches what ecologists and decision-makers typically want to
know, not only “what happens on average,” but “how consistent is it,” and “how generalisable is this result across
different contexts?” (Senior et al., 2016b; Yang et al., 2025; Spake et al., 2023). With this new workflow, let us make

full use of the four meta-analytic models to better understand our changing world.

Data Availability Statement

All data, scripts and relevant files used for this study can be found at the GitHub repository (https://anonymous.4open.science/r/one-

dataset-four-meta-analyses-3B43/) and a version of it will be archived at Zenodo (link).
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