

One dataset, four meta-analyses: synthesising mean effects, within-population variability, and between-population heterogeneity in ecology

Haley Lacza¹, Ayumi Mizuno^{1*}, Coralie Williams^{2,3}, Małgorzata Lagisz^{1,2}, and Shinichi Nakagawa^{1,2*}

¹Collaboration for Open Science and Synthesis in Ecology and Evolution (COSSEE), Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Canada

²Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia

³School of Mathematics and Statistics, The University of New South Wales, Sydney, New South Wales, Australia

*amizuno@ualberta.ca and snakagaw@ualberta.ca

January 29, 2026

Author Statement

Conceptualisation: SN, AM. Formal analysis: HL, AM, SN. Funding Acquisition: SN. Investigation: HL, AM, SN, Methodology: HL, AM, SN, Project administration: HL. Supervision: AM, SN. Validation: AM, SN. Visualisation: AM, SN. Writing - Original Draft: HL, AM, SN. Writing - Review & Editing: All authors.

Conflict of Interest

The authors declare no conflict of interest

Data Availability Statement

All data, scripts and relevant files used for this study can be found at the GitHub repository (<https://anonymous.4open.science/dataset-four-meta-analyses-3B43/>) and a version of it will be archived at Zenodo ([link](#)).

Acknowledgement

SN and AM were supported by the Canada Excellence Research Chair (CERC-2022-00074) and NSERC Discovery Grant (RGPIN-2025-04813). SN thank Elena Gazzea for the initial discussion.

6 Abstract

- 7 1. Ecological syntheses (meta-analysis) usually ask “what is the average effect?”, but many ecological
8 questions also depend on whether outcomes become more or less variable and whether effects are
9 predictable across contexts.
- 10 2. We show how the same dataset can support a coherent workflow that separates: (i) within-population
11 variability (dispersion among individuals or sampling units inside studies) from (ii) between-population
12 heterogeneity (dispersion among effect sizes across studies), and targets both for mean effects and
13 variability effects.
- 14 3. Using the organic versus conventional crop-yield dataset as an illustration, along with an online tutorial,
15 we analyse mean effects with the log response ratio (lnRR; Model 1) and within-population variability
16 with the log variance ratio (lnVR) and the log coefficient of variation ratio (lnCVR; Model 2), noting
17 that these three effect sizes can be computed from the same summary statistics (means, SDs and
18 sample sizes).
- 19 4. We then extend standard meta-regression to location-scale (mean-variance) modelling, allowing moderators
20 to explain not only how lnRR (Model 3) and lnVR/lnCVR (Model 4) shift on average (“location”)
21 but also how their within-study/residual heterogeneity changes with context (“scale”), thereby distinguishing
22 settings where effects are generalisable and transferable from those where they are strongly
23 context-dependent.
- 24 5. The core message is that many ecological datasets already contain sufficient information to synthesise
25 performance (lnRR), reliability/stability (lnVR/lnCVR), and predictability (context-dependent
26 heterogeneity; i.e., four models or meta-analyses) side by side. Doing so improves not only statistical
27 inference but also our understanding of the changing world, making meta-analytic outputs and insights
28 more directly decision-relevant.

29 **Keywords:** lnRR; lnVR; lnCVR; yield stability; heterogeneity; location-scale models; meta-regression; orchard plots

30

1 Introduction

31 Ecological effects vary. The same ecological process or intervention, for example, can produce different outcomes
32 across individuals, populations, species, and environments, and this variation is often large enough to alter statistical
33 inference and to limit generalisation across contexts (Levin, 1992; Lawton, 1999; Chamberlain et al., 2014). This
34 means that ecology may not be well served by questions that focus only on “the average effect”. Two further questions
35 are routinely important: “how variable are outcomes?” and “how consistent are effects across contexts?” (Duncan and
36 Kefford, 2021; Spake et al., 2023). These questions are related, but they operate at two different levels under a meta-
37 analytic context. Outcomes can vary more or less within a population (inter-individual variability; e.g., a treatment
38 may benefit some individuals but harm others, widening the spread even if the mean changes little), and effect
39 sizes can vary more or less across studies or populations (between-study heterogeneity; e.g., the same intervention
40 shows a strong effect in some studies but a weak effect elsewhere). Both levels matter for ecological inference and
41 practical application, where generalisation and predictability, whether a phenomenon or effect is observed consistently
42 across different conditions or only under specific conditions, often determine whether evidence is useful. Therefore,
43 meta-analysis should target both the mean effect (central tendency or “location”) and variation effect (dispersion or
44 “scale”), rather than treating variation as a nuisance to be averaged away (Nakagawa et al., 2015; Senior et al., 2020;
45 Viechtbauer and López-López, 2022; Nakagawa et al., 2025a).

46 Most ecological meta-analyses, however, are still mean-centric. A typical synthesis estimates an overall mean effect
47 (e.g., using the log-response ratio, lnRR, or the standardised mean difference, d) (Hedges et al., 1999; Lajeunesse, 2011,
48 2015). Variation enters mainly in two limited ways. First, within-study variation (standard deviations) is usually
49 treated as input for sampling variances and weights, rather than as a biological outcome that might itself change with
50 treatments or environments (e.g., an intervention might stabilise outcomes by reducing among-individual differences,
51 or destabilise them by amplifying sensitivity). Second, variation among effect sizes is summarised as “heterogeneity”,
52 reported as I^2 or as a random-effects variance component (often written as τ^2) (Higgins and Thompson, 2002; Higgins
53 et al., 2003), and commonly assumed to be constant across studies (i.e., “homoscedasticity”; in contrast, non-constant
54 variance across a continuous variable or among groups are called “heteroscedasticity”). Measuring heterogeneity in a
55 meta-analysis is informative, but simply reporting it does not show how predictable or generalisable the average effect
56 is across contexts. What is often more important is understanding when and why effect sizes vary between studies.
57 For example, if effect sizes are similar in some settings but highly variable in others, such as under different ecological
58 conditions or study designs, then relying on an overall average effect may be a poor way to predict outcomes in a
59 new context.

60 Two complementary method developments allow us to extract much more from the same dataset (i.e., evidence base).
61 First, “meta-analysis of variation” uses dispersion-based effect sizes such as the log variance ratio (lnVR) and the log
62 coefficient of variation ratio (lnCVR) to quantify changes in within-population dispersion (inter-individual variability)

63 between comparison groups (e.g., heteroscedasticity between the control and treatment groups) (Nakagawa et al.,
64 2015; Senior et al., 2020) (Fig. 1A–C). A major advantage is practical: these effect sizes can usually be computed
65 from the same summary statistics already collected for mean-based synthesis (means, standard deviations, and sample
66 sizes). Second, “location-scale” meta-regression extends standard meta-regression models by allowing the amount
67 of among-effect-size variability to depend on moderators, thereby testing whether heterogeneity can differ between
68 different moderator groups or contexts (i.e., heteroscedasticity among moderator levels) (Viechtbauer and López-
69 López, 2022; Nakagawa et al., 2025a). Throughout this paper, we use “variability” to mean within-study/within-
70 population dispersion (targeted by $\ln\text{VR}/\ln\text{CVR}$), and “heterogeneity” to mean dispersion among effect sizes across
71 studies, which can be quantified for both mean effects (e.g., $\ln\text{RR}$ or d) and variability effects ($\ln\text{VR}/\ln\text{CVR}$) via
72 variance components or moderators in meta-analyses and meta-regression analyses (Fig. 1E–H).

73 Here, we illustrate “one dataset, four meta-analyses” using the organic versus conventional crop-yield dataset com-
74 piled by Ponisio et al. (2015). We begin with the standard mean-effect synthesis ($\ln\text{RR}$) to summarise average yield
75 differences (Model 1). We then analyse $\ln\text{VR}/\ln\text{CVR}$ to address a different but equally ecological question: namely
76 whether organic systems differ from conventional systems in within population yield variability (i.e., stability) (Model
77 2), a question highlighted in Knapp and van der Heijden (2018). Next, we move from description to explanation by
78 fitting two types of meta-regression models: (i) location (mean) meta-regression models to test which moderators
79 shift average effects, and (ii) location-scale (mean-variance) models to test whether the amount of between-study
80 heterogeneity changes systematically with those moderators (Models 3 & 4) (Viechtbauer and López-López, 2022;
81 Nakagawa et al., 2025a). Note that Model 3 applies the location-scale framework to mean effects ($\ln\text{RR}$), whereas
82 Model 4 applies the same framework to variability effects ($\ln\text{VR}/\ln\text{CVR}$). We conclude with practical guidance on
83 effect-size choice and reporting. We explain how to clearly distinguish changes in within-population stability from
84 variation in effect sizes among studies, and why it is important to retain and report the basic summary statistics
85 (means, standard deviations, and sample sizes) needed to synthesise both mean effects and variability effects. Im-
86 portantly, our illustrative examples are implemented in R using `metafor` (Viechtbauer, 2010), `brms` (Bürkner, 2017)
87 and `glmmTMB` (Brooks et al., 2017; Kristensen et al., 2026), accessible via an [online tutorial](#).

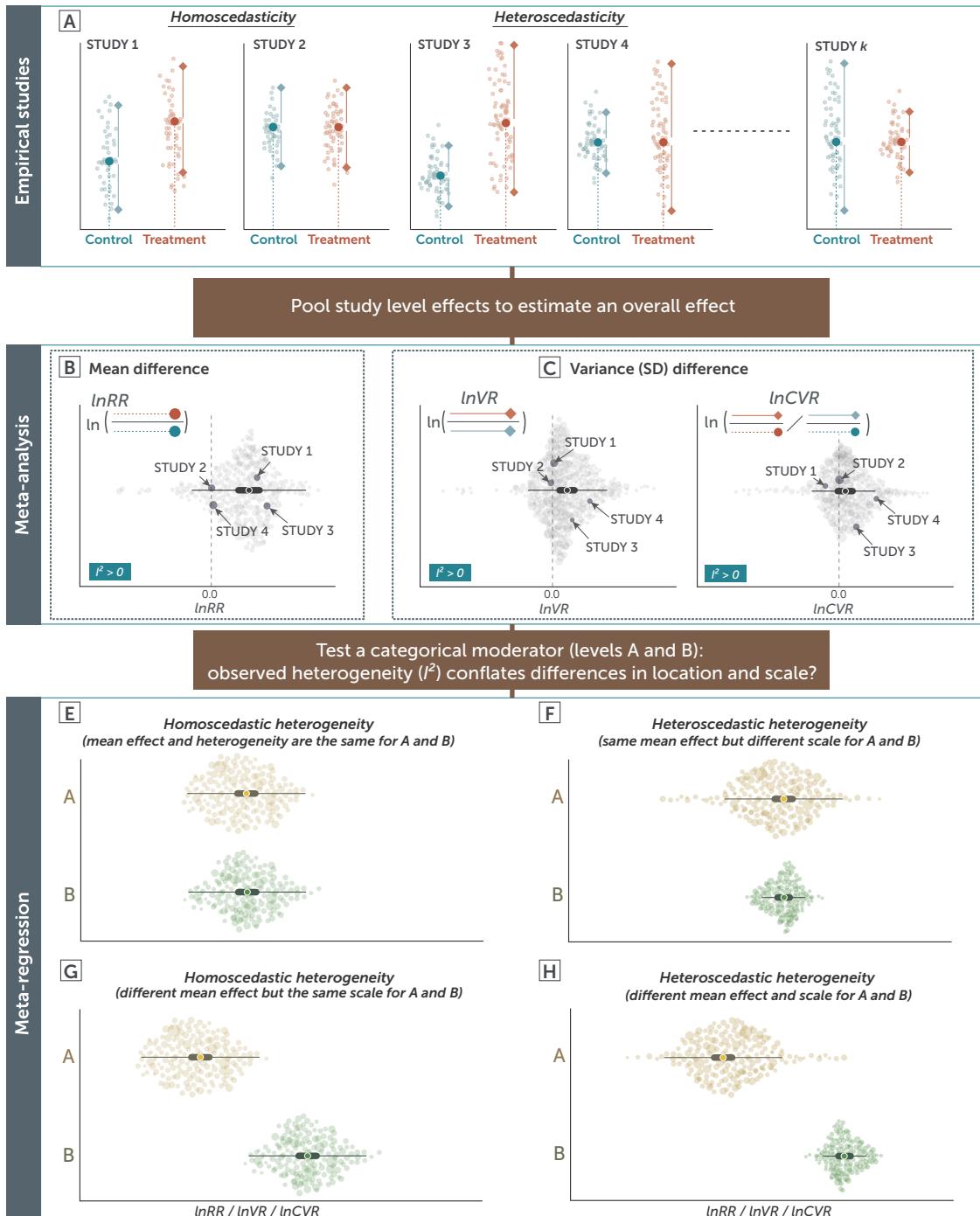


Figure 1: Conceptual overview of synthesising mean effects, variability effects, and location-scale modelling of heterogeneity from empirical studies

88 **Figure 1 (continued).** (A) Empirical two-group studies (control vs treatment) can be homoscedastic (similar within-
 89 group dispersion; Studies 1-2) or heteroscedastic (different within-group dispersion; Studies 3-4). Each study yields a
 90 study-level effect size that targets either a change in location (mean) and/or a change in scale (dispersion). (B) Mean
 91 effects are summarised with a mean-based effect size such as the log response ratio, $\ln\text{RR} = \ln(\bar{X}_T/\bar{X}_C)$, and then
 92 pooled across studies to estimate an overall mean effect (Model 2). (C) Within-population variability (dispersion)
 93 effects are summarised with dispersion-based effect sizes such as the log variance ratio ($\ln\text{VR} = \ln(s_T/s_C)$) and/or
 94 the log coefficient of variation ratio ($\ln\text{CVR} = \ln[(s_T/\bar{X}_T)/(s_C/\bar{X}_C)]$), and then pooled across studies to estimate
 95 an overall variability effect (Model 2). In (B-C), each point represents a study-level effect size; even when the
 96 pooled mean is near zero (vertical dashed line), effect sizes can vary substantially across studies, producing between-
 97 study heterogeneity ($I^2 > 0$). (E-H) Location-scale (mean-variance) meta-regression tests whether a categorical
 98 moderator (levels A and B) shifts the expected effect (location) and/or the predictability/transferability of effects
 99 (scale; heterogeneity) (Models 3 and 4). (E) Homoscedastic heterogeneity: mean effect and heterogeneity are the
 100 same for A and B. (F) Heteroscedastic heterogeneity: mean effects are the same, but heterogeneity differs between
 101 A and B. (G) Homoscedastic heterogeneity: mean effects differ between A and B, but heterogeneity is the same. (H)
 102 Heteroscedastic heterogeneity: both mean effects and heterogeneity differ between A and B.

103 2 Meta-analysis of mean

104 2.1 Why $\ln\text{RR}$ remains a useful starting point

105 Mean-effect meta-analysis is usually where ecological synthesis begins: “what is the average effect?” For two-group
 106 comparisons, a common choice is the log response ratio ($\ln\text{RR}$), because it represents proportional change, is inter-
 107 pretable on a multiplicative scale, and is widely used across ecological meta-analyses (Hedges et al., 1999; Lajeunesse,
 108 2011, 2015). For each comparison (treatment T vs control C), where i indexes the effect size for an individual treat-
 109 ment-control comparison, let $\bar{X}_{g,i}$ denote the sample mean, $s_{g,i}$ the sample standard deviation, and $n_{g,i}$ the sample
 110 size in group $g \in \{T, C\}$. The $\ln\text{RR}$ point estimate is:

$$y_i^{(\ln\text{RR})} = \ln\left(\frac{\bar{X}_{T,i}}{\bar{X}_{C,i}}\right), \quad (1)$$

111 and its sampling variance is written as $v_i^{(\ln\text{RR})}$. Under the standard assumption of independent groups, a common
 112 approximation is

$$v_i^{(\ln\text{RR})} \approx \frac{s_{T,i}^2}{n_{T,i} \bar{X}_{T,i}^2} + \frac{s_{C,i}^2}{n_{C,i} \bar{X}_{C,i}^2}, \quad (2)$$

113 so each effect size enters the meta-analysis with its own known (approximated) plug-in precision (Hedges et al., 1999;
 114 Lajeunesse, 2010, 2015). We use v_i throughout as shorthand for “the sampling variance of effect size i ”, with the

115 superscript indicating which effect size is being analysed (see also Senior et al., 2020; Nakagawa et al., 2023b).

116 lnRR is a practical starting point because the ingredients needed to compute it (means, SDs, and sample sizes) are
117 typically the same summary statistics required to compute lnVR and lnCVR. In other words, many existing datasets
118 already contain what is needed to analyse mean effects and within-population variability side-by-side (Nakagawa
119 et al., 2015; Senior et al., 2020). We do not focus on the standardised mean difference (d) in this article because
120 ratio-scale outcomes are common in ecology (making lnRR a natural scale), and because the broader message of
121 this paper is about treating differences in variation as targets of synthesis rather than as background assumptions
122 (Nakagawa et al., 2015; Senior et al., 2020).

123 2.2 Multilevel meta-analysis as the default in ecology

124 A recurring issue in ecological meta-analysis is treating effect sizes as independent, recently highlighted by Peacor
125 et al. (2025). In practice, multiple effect sizes commonly come from the same paper (e.g., different species, sites,
126 years, outcomes, or treatment contrasts), and additional dependence can arise through shared controls or repeated
127 measurements (Lajeunesse, 2011; Nakagawa and Santos, 2012). For this reason, a multilevel (random-effects) model
128 is a sensible default, as it separates variation across different levels and avoids overstating precision (i.e., reducing
129 inflated Type I error rates).

130 Using the notation adopted in the past work Nakagawa and Santos (2012), a simple three-level model can be written
131 as:

$$y_i = \beta_0 + u_{j[i]} + e_i + m_i, \quad (3)$$

$$u_j \sim \mathcal{N}(0, \sigma_u^2), \quad (4)$$

$$e_i \sim \mathcal{N}(0, \sigma_e^2), \quad (5)$$

$$m_i \sim \mathcal{N}(0, v_i), \quad (6)$$

132 where y_i is the observed effect size (here, $y_i^{(\text{lnRR})}$), β_0 is the intercept (overall or meta-analytic mean), $u_{j[i]}$ captures
133 between-study (or between-paper) differences, e_i captures within-study differences among multiple effect sizes from
134 the same study, and m_i represents sampling error with known sampling variance v_i (Lajeunesse, 2011; Nakagawa
135 et al., 2025a). In practice, this model matches how ecological evidence is generated: individual studies (papers)
136 often contribute clusters of related comparisons, and this dependence should be modelled rather than ignored. When
137 sampling errors are correlated, for example, because multiple effect sizes share a control group, m_i can be generalised
138 to allow covariances. However, for notational simplicity, we retain the scalar form v_i (assuming independence among
139 sampling errors) rather than the full variance-covariance matrix representation (Williams et al., 2025).

140 This model is a multilevel random-effects meta-analysis, in which true effect sizes are allowed to vary across studies
 141 and comparisons rather than being assumed to share a single common value. This enables variance decomposition and
 142 makes explicit what is meant by “heterogeneity” (variance not due to sampling error) and how it can be summarised.
 143 In simple random-effects meta-analyses (with a single study-level random effect in addition to sampling error), the
 144 total heterogeneity is often denoted by τ^2 . In the multilevel model considered here, this total heterogeneity is
 145 partitioned into a between-study component (σ_u^2) and a within-study component (σ_e^2), whose sum corresponds to
 146 τ^2 . A common descriptive summary of heterogeneity is I^2 , the proportion of the total variance in observed effect
 147 sizes that is attributable to heterogeneity rather than sampling error (Lajeunesse, 2011). For the multilevel model
 148 in Equation (3), a convenient definition of the total heterogeneity, equivalent to standard I^2 in the meta-analysis
 149 literature (Higgins and Thompson, 2002; Higgins et al., 2003), is:

$$I_{\text{total}}^2 = \frac{\sigma_u^2 + \sigma_e^2}{\sigma_u^2 + \sigma_e^2 + \bar{v}}, \quad (7)$$

150 where \bar{v} is a representative sampling variance (the mean or similar of v_i across effect sizes) (Nakagawa and Santos,
 151 2012). The same decomposition yields component-specific contributions,

$$I_{\text{between}}^2 = \frac{\sigma_u^2}{\sigma_u^2 + \sigma_e^2 + \bar{v}}, \quad (8)$$

$$I_{\text{within}}^2 = \frac{\sigma_e^2}{\sigma_u^2 + \sigma_e^2 + \bar{v}}, \quad (9)$$

152 which indicate whether most heterogeneity sits between studies or among effect sizes within studies. These summaries
 153 are useful diagnostics, but they remain descriptive: Because I^2 is context-dependent, large values (total or component-
 154 specific) indicate that effects vary across contexts and motivate the next step, testing whether moderators explain
 155 heterogeneity in a meta-regression (Yang et al., 2025) which we demonstrate in Section 4.

156 2.3 Example: organic versus conventional farming average yield

157 We used a part of the organic versus conventional crop-yield database compiled by Ponisio et al. (2015); the dataset
 158 included 318 comparisons (effect sizes) for cereal crops (e.g., maize, wheat, barley, and oats), where organic systems
 159 were compared against conventional farming systems using standard synthetic inputs (control). Importantly, the
 160 type of fertiliser (animal- vs plant-derived) varied only within organic systems. We used this fertiliser-type variable
 161 as a moderator of the organic–conventional contrast, testing whether the magnitude of the organic–conventional
 162 effect varied with organic management. We fitted the three level meta-analysis described above with study ID as a
 163 random effect (between-study effects) and effect (size) ID as another random effect (within-study effects); note that
 164 our model is for an illustrative purposes, and, therefore, we do not claim this is the best meta-analytic model (e.g., an
 165 alternative model could include another random effect for cereal types; for more detail, see the [online tutorial](#)). Our

166 mean-effect synthesis based on lnRR answers a clear question (Fig. 1B): on average, how do organic and conventional
167 yields compare? As with Ponisio et al. (2015), we found a clear decline in the average yield for organic farming by
168 approximately 27% (Model 1 using `metafor`: $\beta_0 = -0.32, 1 - \exp(-0.32) \approx 0.27$, 95% confidence interval, CI = [-0.43,
169 -0.22]; Fig. 2A,C). Yet, there was high heterogeneity ($I^2_{\text{total}} = 98.11$, $I^2_{\text{between}} = 46.09$, and, $I^2_{\text{within}} = 52.02$; Fig. 2E),
170 which warrants meta-regression analysis (see Section 4; for comparable models using `glmmTMB` and `brms`, see the [online](#)
171 [tutorial](#)).

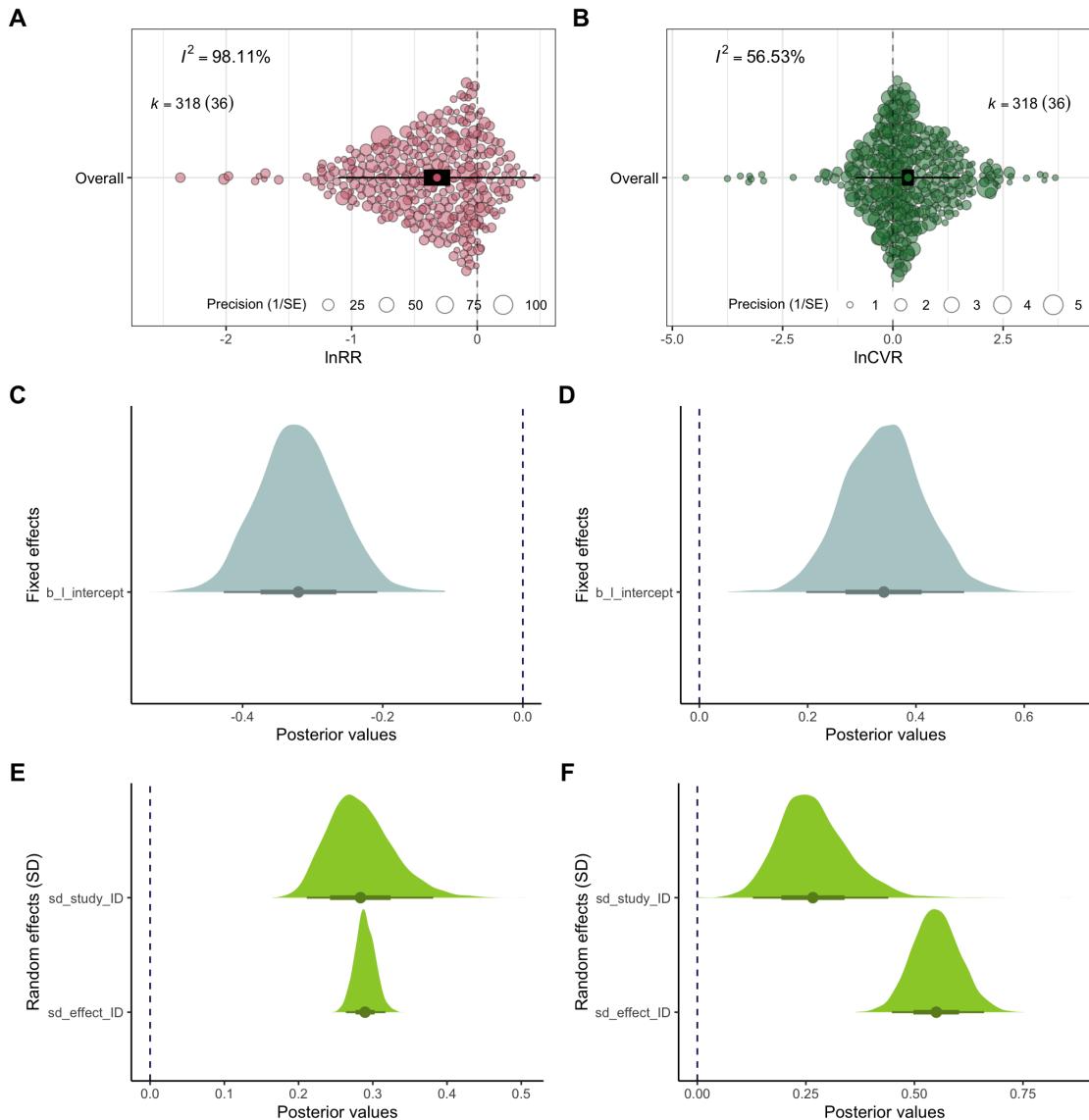


Figure 2: Meta-analyses of mean yield differences and yield stability from a single evidence base. Panels (A,C,E) summarise the meta-analysis of mean effects using the log response ratio (lnRR), and panels (B,D,F) summarise the meta-analysis of within-population (mean-corrected) variability using the log coefficient of variation ratio (lnCVR), both comparing organic to conventional cereal yields (Ponisio dataset; k effect sizes with the number of studies in parentheses). (A,B) Orchard plots show individual effect sizes (points; size proportional to precision, $1/SE$) with horizontal jitter to reduce overplotting. The black square denotes the pooled estimate from a multilevel random-effects model fitted using `metafor`; thick horizontal bars indicate the 95% interval for the pooled mean, and thin whiskers indicate the 95% prediction interval. The vertical dashed line marks zero (no organic-conventional difference). The reported I^2 gives the proportion of total variation attributable to heterogeneity rather than sampling error. (C,D) Posterior distributions for the overall (intercept) effect in each model ($b_0 = b_l_intercept$), estimated using Bayesian multilevel models fitted in `brms`, where negative lnRR implies lower organic yield and positive lnCVR implies higher relative variability (lower stability) under organic management. (E,F) Posterior distributions for random-effects standard deviations (study ID and effect-size ID). Points are posterior medians; thick and thin intervals denote 66% and 95% credible intervals, respectively. The R packages: `ggplot2` (Wickham, 2011), `tidybayes` (Kay, 2020) and `orchaRd` (Nakagawa et al., 2023a) were used to draw these plots.

172 **3 Meta-analysis of variability**

173 **3.1 Why variability deserves its own meta-analysis**

174 Mean effects describe shifts in central tendency, but many ecological questions are also about “spread”: do outcomes
175 become more or less variable within populations when conditions change? Within-population variability is not simply
176 nuisance variation. It can reflect differential sensitivity among individuals, temporal or spatial environmental vari-
177 ability, changes in trait distributions, or shifting demographic and community composition. Importantly, variability
178 can change even when mean outcomes do not (Sánchez-Tójar et al., 2020; Senior et al., 2016a).

179 Despite this, standard meta-analytic workflows usually treat within-study standard deviations mainly as inputs for
180 sampling variances and weights (as in Equation (2)). As a result, the same dataset can be used to make strong
181 statements about mean effects while leaving within-population stability unanalysed. Meta-analysis of variability
182 addresses this gap by analysing effect sizes that directly compare dispersion between groups, allowing the same
183 evidence base to synthesise both mean outcomes and within-population variability (Nakagawa et al., 2015; Senior
184 et al., 2020).

185 **3.2 Effect sizes for within-population variability: lnVR and lnCVR**

186 For two-group designs (treatment T vs control C), within-population variability can be compared using two closely
187 related dispersion-based effect sizes (Nakagawa et al., 2015; Senior et al., 2020). The log variance ratio (lnVR) targets
188 differences in absolute dispersion (on the SD scale):

$$y_i^{(\text{lnVR})} = \ln\left(\frac{s_{T,i}}{s_{C,i}}\right), \quad (10)$$

189 so $y_i^{(\text{lnVR})} > 0$ indicates higher within-population variability under treatment. lnVR is most natural when the
190 scientific question is about absolute spread on the measurement scale (e.g., whether an intervention increases or
191 decreases variability regardless of any shift in the mean). For independent groups, a commonly used large-sample
192 approximation to the sampling variance is

$$v_i^{(\text{lnVR})} \approx \frac{1}{2(n_{T,i} - 1)} + \frac{1}{2(n_{C,i} - 1)}, \quad (11)$$

193 with small-sample bias corrections available and recommended when sample sizes are modest (Nakagawa et al., 2015;
194 Senior et al., 2020).

195 The log coefficient of variation ratio (lnCVR) targets dispersion relative to the mean:

$$y_i^{(\text{lnCVR})} = \ln\left(\frac{s_{T,i}/\bar{X}_{T,i}}{s_{C,i}/\bar{X}_{C,i}}\right), \quad (12)$$

196 and is often preferred in ecology because standard deviations frequently scale with means (including for yields,
197 abundances, and performance measures) (Nakagawa et al., 2015; Senior et al., 2020). Put simply, lnVR asks whether
198 the SD changes, whereas lnCVR asks whether the SD changes more (or less) than the mean. For independent groups,
199 a convenient approximation to the sampling variance combines the lnVR component with the additional uncertainty
200 from the means:

$$v_i^{(\text{lnCVR})} \approx \frac{1}{2(n_{T,i} - 1)} + \frac{1}{2(n_{C,i} - 1)} + \frac{s_{T,i}^2}{n_{T,i} \bar{X}_{T,i}^2} + \frac{s_{C,i}^2}{n_{C,i} \bar{X}_{C,i}^2}, \quad (13)$$

201 again with small-sample bias corrections and extensions for dependent designs (e.g., paired or pre-post data) given
202 by Senior et al. (2020).

203 A major practical advantage is that both lnVR and lnCVR can usually be computed from the same summary
204 statistics already extracted for lnRR (means, SDs, and sample sizes) (Nakagawa et al., 2015; Senior et al., 2020).
205 Once calculated, they can be analysed using the same multilevel random-effects framework introduced for mean
206 effects (Equation 3), simply replacing $y_i^{(\text{lnRR})}$ with $y_i^{(\text{lnVR})}$ or $y_i^{(\text{lnCVR})}$ and using the corresponding known v_i . The
207 question changes focus from mean to focus on within-population variability, but the meta-analytic model stays the
208 same (see Box 1). It would be worth mentioning that you cannot calculate these dispersion-based effect sizes if the
209 within-group variability is not reported, such as when SDs are missing or zero. For lnCVR, you also cannot calculate
210 it if group means are zero or nearly zero.

Box 1 — Meta-analyses of variability across fields: what lnVR and lnCVR add

Meta-analyses usually synthesise differences in group means, but many applied and mechanistic questions hinge on whether an intervention (or condition) changes dispersion within groups, whether outcomes become more homogeneous or more heterogeneous. For example, the logic has been used to address questions that are naturally about heterogeneity among individuals. In nutrition/health, for example, variance-focused meta-analysis has been used to compare dietary interventions not only in terms of average weight-related outcomes, but also in whether they compress or spread the distribution of responses (i.e., whether benefits are broadly shared or concentrated in a subset) (Senior et al., 2016a).

In neuroscience/psychiatry, Brugger et al. (2020) used lnVR and lnCVR to test the hypothesis that schizophrenia is associated with increased inter-individual variability in striatal dopamine function, meta-analysing dozens of studies and finding greater variability in dopamine receptor/transporter availability in patients than in controls. More broadly, the same “variance as an outcome” framing has been applied to clinical efficacy questions, such as whether antipsychotic treatment effects differ in heterogeneity across patient groups, where the decision-relevant issue is not only the expected response but also how widely responses vary (Howes and Chapman, 2024).

In the social sciences, O’Dea et al. (2018) applied lnCVR at a very large scale (over 1.6 million students) to quantify differences in variability of academic grades between boys and girls, showing how dispersion meta-analysis can be used to test claims that are explicitly about variability rather than mean performance. Across these examples, the general idea is the same: synthesising lnVR/lnCVR alongside mean effects shifts the inferential target from “what happens on average?” to “how different do individuals respond?, and how generalisable is it?”

211 **3.3 Example: yield variability (stability) under organic versus conventional**
212 **farming**

213 A meta-analysis of variability addresses a different ecological question: do organic systems differ in yield variability
214 (i.e., stability) relative to conventional systems (Fig. 1C)? This question has been explicitly raised in the organic-
215 yield literature, where lnCVR, along with lnVR, has been used to quantify relative yield variability and to connect
216 synthesis to concerns about reliability and stability (Knapp and van der Heijden, 2018). Using lnCVR is particularly
217 natural here because yield variability often scales with mean yield; lnCVR therefore targets stability relative to
218 average performance (Knapp and van der Heijden, 2018). As with the previous meta-analysis, there was an increase
219 in (within-population) relative variability in crop yield for organic farming by approximately 41% (Model 2 using
220 **metafor**: $\beta_0 = 0.34$, $\exp(0.34) - 1 \approx 0.41$, 95% confidence interval, CI = [0.20, 0.48]; Fig. 2B,D). Also we found

221 moderate heterogeneity (`metafor`: $I^2_{\text{total}} = 56.53$, $I^2_{\text{between}} = 9.52$, and, $I^2_{\text{within}} = 47.01$; Fig. 2F); this result indicated
222 we require a further meta-regression analysis (see Section 4; for comparable models using `glmmTMB` and `brms`, see the
223 [online tutorial](#)).

224 4 Location-scale meta-regression models

225 4.1 From explaining average effects to explaining predictability

226 Meta-regression is usually motivated by the desire to explain why mean effects differ among studies: which ecolog-
227 ical or methodological features shift the expected lnRR (yield gap) or lnCVR (reliability/stability gap)? However,
228 in (applied) ecology, the more consequential question is often whether an effect is predictable in a new setting.
229 Two management options can have similar mean effects yet differ sharply in how consistently those effects appear
230 across studies. Standard multilevel random-effects models acknowledge heterogeneity, but they typically assume that
231 heterogeneity is constant across studies and moderator levels (homoscedasticity). Location-scale models relax this
232 assumption by letting the “amount of heterogeneity” itself depend on context, turning “it depends” from a post-hoc
233 caveat into an estimable, testable component of the synthesis (Duncan and Kefford, 2021; Spake et al., 2023; Viecht-
234 bauer and López-López, 2022; Nakagawa et al., 2025a). This is the key step linking synthesis to generalisability and
235 transferability: it tells us not only what to expect on average, but also in which contexts that expectation is reliable
236 enough to apply to a new site or study (Spake et al., 2022, 2023).

237 4.2 Location-scale meta-regression: letting heterogeneity depend on context

238 A useful feature of location-scale modelling is that the same framework can be applied to different effect-size streams.
239 In what follows, y_i can represent a mean effect size (e.g., $y_i^{(\text{lnRR})}$) or a variability effect size (e.g., $y_i^{(\text{lnVR})}$ or $y_i^{(\text{lnCVR})}$).
240 The sampling term m_i is paired with the corresponding sampling variance v_i for that effect size (e.g., $v_i^{(\text{lnRR})}$, $v_i^{(\text{lnVR})}$,
241 or $v_i^{(\text{lnCVR})}$). “Location” therefore refers to the expected value of the chosen effect size, while “scale” refers to the
242 residual (within-study) heterogeneity in that effect size and how it changes with context. This allows moderators to
243 be evaluated for two distinct roles: shifting the expected effect and altering its predictability (uncertainty around the
244 average) across studies.

245 A multilevel location (mean) meta-regression can be written as

$$y_i = \beta_0 + \beta_1 x_{1i} + \cdots + \beta_p x_{pi} + u_{j[i]} + e_i + m_i, \quad (14)$$

246 where x_{1i}, \dots, x_{pi} are the values of p moderator variables for effect size i and β_p are their corresponding regression
 247 coefficients; the β 's describe how moderators shift the average effect (whether the outcome is lnRR, lnVR, or lnCVR).
 248 This meta-regression model improves interpretation because it turns an overall average into a context-conditional
 249 average when a meta-analytic model (Equation (3)) finds non-zero heterogeneity, which is almost always the case for
 250 ecological datasets (Senior et al., 2016b).

251 Location-scale meta-regression extends Equation (14) by allowing the residual (within-study) heterogeneity to vary
 252 with moderators. One convenient formulation is a double-hierarchical model in which the effect-size-level variance is
 253 modelled on the log scale:

$$y_i = \beta_0^{(l)} + \beta_1^{(l)} x_{1i} + \dots + \beta_p^{(l)} x_{pi} + u_{j[i]}^{(l)} + e_i^{(l)} + m_i, \quad (\text{location sub-model}) \quad (15)$$

$$e_i^{(l)} \sim \mathcal{N}(0, \sigma_{e,i}^2), \quad (16)$$

$$\ln(\sigma_{e,i}) = \beta_0^{(s)} + \beta_1^{(s)} x_{1i} + \dots + \beta_p^{(s)} x_{pi}. \quad (\text{scale sub-model}) \quad (17)$$

254 Here, the superscripts (l) and (s) denote the location (mean) and scale (variance, or more precisely, the natural loga-
 255 rithm of standard deviation) components; note that **metafor** models $\ln(\sigma^2)$ whereas **brms** and **glmmTMB** model $\ln(\sigma)$.
 256 A non-zero scale coefficient ($\beta_p^{(s)} \neq 0$) implies that the amount of heterogeneity depends on the moderator: effects
 257 are more variable in some contexts than others, so generalisation is correspondingly easier or harder (Viechtbauer
 258 and López-López, 2022; Nakagawa et al., 2025a). It is noted that Nakagawa et al. (2025a) introduces more complex
 259 location-scale models with the between-study effect on the scale part (i.e., $u_{j[i]}^{(l)}$), and an even more complex one with
 260 a correlation (ρ) modelled between $u_{j[i]}^{(s)}$ and $u_{j[i]}^{(l)}$; a positive correlation (ρ) indicates, for example, larger effect sizes
 261 tend to have larger deviations (for these models, see the [online tutorial](#)).

262 Importantly, a moderator in a location-scale model can matter in two qualitatively different ways. It can shift the
 263 average effect (captured in the location part), but it can also change the spread of effects across studies (captured in
 264 the scale part). The second case is often what readers mean by “context dependence”: the expected effect may not
 265 change much, but the evidence becomes more or less predictable (see Box 2). This very point is well illustrated in
 266 the following example.

Box 2 — Location-scale modelling as a general tool for discovering heteroscedasticity, not just meta-analysis

A recurring limitation of “mean-only” modelling is that it treats heteroscedasticity as an inconvenience: if residual variance differs among individuals, sites, years, taxa, or experimental settings, it is typically absorbed into a single error term and reported (at best) as overdispersion or “unexplained variability” (Nakagawa et al., 2025a,b,c). Location-scale modelling flips this perspective by treating variability as an outcome in its own right. The conceptual move is simple: fit a model for the mean (location) in the usual way, and then fit a second model for the dispersion (scale), often by modelling $\log(\sigma)$ or $\log(\sigma^2)$ as a linear predictor with its own covariates. This allows the same predictors to be assessed for two distinct roles: whether they shift the expected response, and whether they change predictability (the spread of responses around that expectation).

Because the scale component is interpretable, location-scale models directly address questions that are intrinsically about individual differences and context dependence. In behavioural ecology, for example, the “personality-predictability” framing asks whether individuals differ not only in average behaviour but also in within-individual variability, and whether those two components covary (Westneat et al., 2013; Cleasby et al., 2015; O’Dea et al., 2022). In quantitative genetics and comparative work, the same logic allows variance components (and their covariate dependence) to be treated as biologically meaningful traits, rather than as a single nuisance parameter (Mulder et al., 2008; Hill and Mulder, 2010; Mulder et al., 2016; Sae-Lim et al., 2015; Nakagawa et al., 2025b). In primary research, this is often exactly what we care about: whether environmental stressors amplify inter-individual differences; whether management interventions stabilise outcomes; whether phenotypes become more canalised in some contexts but more labile in others; or whether treatment effects are reliable enough to generalise.

Crucially, the location-scale idea is not limited to Gaussian-distributed data. Modern “distributional-regression” implementations extend the same two-part thinking to many common outcome types by allowing separate sub-models for multiple distributional parameters, such as “shape” sub-models (e.g., skewness and kurtosis) and zero- and one-inflated sub-models (Lee and Nelder, 1996, 2006; Rigby and Stasinopoulos, 2005; Stasinopoulos and Rigby, 2008). For proportions, dispersion (or overdispersion) can be modelled alongside the mean on binomial/beta-type scales; for counts, predictors can act on the mean rate while a separate component captures extra-Poisson variation (e.g., negative-binomial dispersion) and, where relevant, zero inflation (Nakagawa et al., 2025c). This matters in ecology because the empirical signature of “it depends” is frequently variance, not mean: an ecological driver may have only a modest effect on the expected proportion or expected count, yet strongly alter dispersion across sites, seasons, or taxa, signalling that the process is conditional on unmeasured context (cf. Duncan and Kefford, 2021; Spake et al., 2023).

267 4.3 Example: organic fertiliser type shapes both the yield gap and stability

268 In the organic-conventional crop-yield dataset (Ponisio et al., 2015), organic fertiliser type (animal- vs plant-derived)
269 is agronomically meaningful and plausibly linked to context-dependence; this single moderator is used in both the
270 location and scale components of the model to test shifts in the expected effect size and in residual heterogeneity (see
271 Fig. 1E–H).

272 Specifically, we fitted multilevel location-scale meta-regression models with fertiliser type as the sole moderator, and
273 with random effects for study identity and effect-size identity to account for non-independence among comparisons.
274 In these models, the reference level is animal-based fertiliser, so the intercept represents the expected effect (and
275 heterogeneity) for animal-based systems, and the **contrast** coefficient represents the shift for plant-based systems
276 (Fig. 3C–D).

277 Before turning to the results, we briefly remind the reader that Model 3 refers to a location-scale meta-regression of
278 mean effects (lnRR), whereas Model 4 refers to an analogous location-scale meta-regression of variability (lnCVR).

279 For lnRR, the location part showed a negative average effect under animal-based fertilisers (Model 3 using **brms**:
280 $\beta_0^{(l)} = -0.27$, 95% credible interval, CrI = [-0.38, -0.16]), implying lower organic yields on average. The contrast
281 coefficient (animal-plant) is also negative ($\beta_{\text{animal-plant}}^{(l)} = -0.14$, 95% CrI [-0.26, -0.03]), indicating an additional yield
282 penalty under plant-based fertilisers relative to animal-based fertilisers. On the response-ratio scale, these correspond
283 approximately to organic yields of $\exp(-0.27) \approx 0.76$ (about 24% lower than conventional) under animal-based
284 fertilisers, versus $\exp(-0.27 - 0.14) \approx 0.66$ (about 34% lower) under plant-based fertilisers. The scale part (modelled
285 on the $\log-\sigma$ scale) indicated that the plant-based system tended to be more variable (less predictable) ($\beta_{\text{animal-plant}}^{(s)} = 0.17$, 95% CrI = [-0.02, 0.37]), corresponding to about a 19% increase in residual heterogeneity for plant-based
287 fertilisers (multiplicative factor $\exp(0.17) \approx 1.19$), with credible overlap around no difference (Fig. 3A,C,E).

288 For lnCVR, the location part indicated that organic systems tended to have higher mean-corrected variability (lower
289 stability) under animal-based fertilisers (Model 4 using **brms**: $\beta_0^{(l)} = 0.30$, 95% CrI = [0.14, 0.47]; roughly $\exp(0.30) \approx$
290 1.35, i.e. about 35% higher CV in organic than conventional). The contrast (animal-plant) coefficient is small and
291 highly uncertain ($\beta_{\text{animal-plant}}^{(l)} = 0.08$, 95% CrI = [-0.16, 0.32]), suggesting that fertiliser type did not strongly shift the
292 average stability difference. In contrast, the scale part shows clear evidence that fertiliser type governs predictability
293 (context dependence) of lnCVR effects ($\beta_{\text{animal-plant}}^{(l)} = 0.52$, 95% CrI = [0.18, 0.86]), implying a much wider spread
294 of lnCVR effects across studies for the plant-based fertilisers ($\exp(0.52) \approx 1.68$; $\sigma \approx \exp(-0.83 + 0.52) \approx 0.73$). In
295 other words, while the expected stability gap (lnCVR) is broadly similar between fertiliser categories, the evidence
296 is far less transferable under plant-based fertilisers: some studies show near parity in stability, whereas others show
297 much larger organic-conventional differences (Fig. 3B,D,F).

298 These paired results illustrate the useful extra insights which location-scale modelling could provide and such insights
299 are potentially decision-relevant. Fertiliser type matters for lnRR largely through the expected yield gap (location),
300 whereas for lnCVR it matters mainly through the consistency of the stability comparison (scale). Thus, a moderator
301 can be important even when it barely shifts the mean effect: it can determine whether an estimated effect is robust
302 and transferable, or whether it is strongly contingent on unmeasured ecological and methodological details within
303 that moderator category (for comparable models using `metafor` and `brms`, see the [online tutorial](#)).

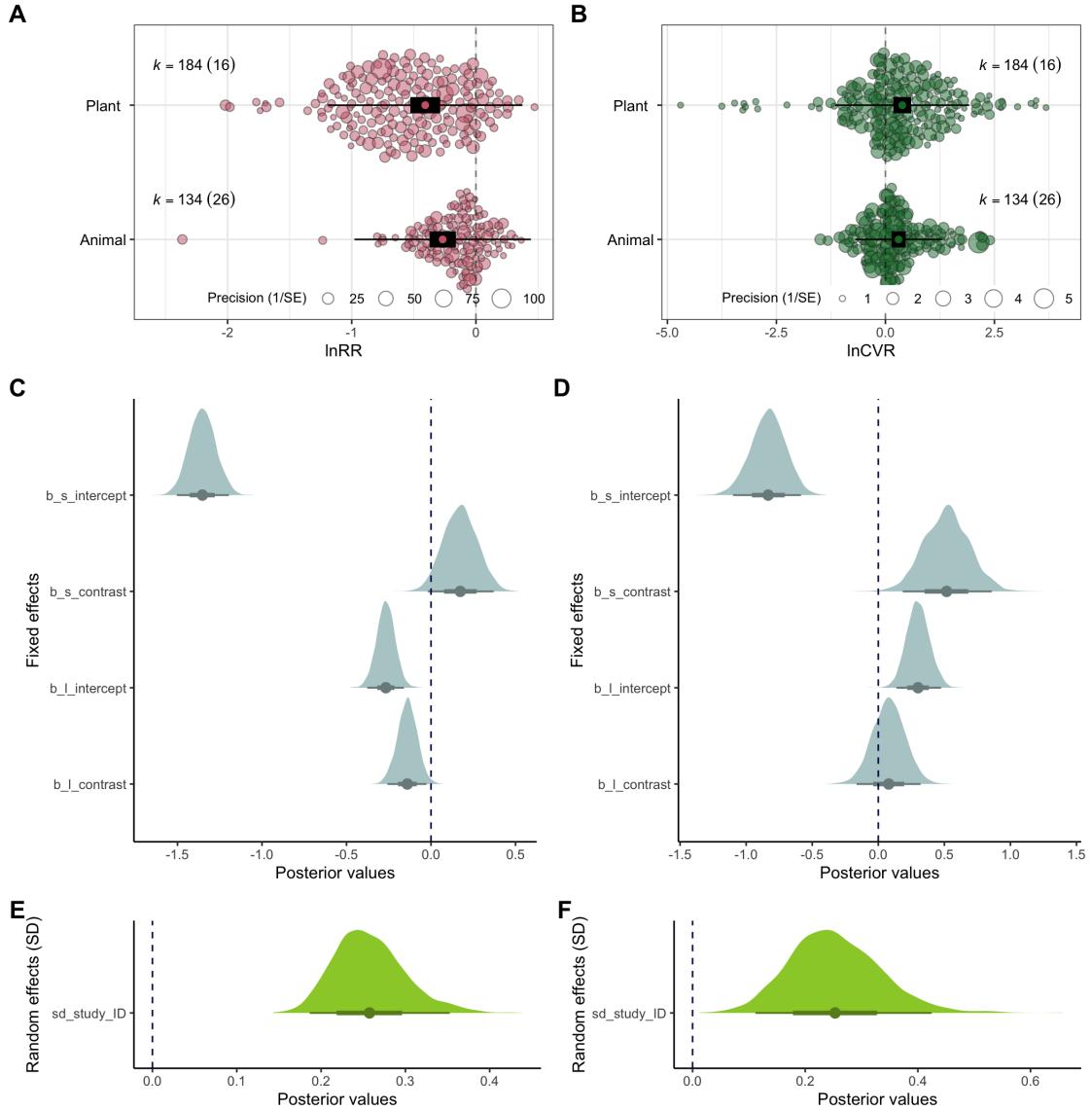


Figure 3: Location-scale meta-regression showing how a moderator shifts expected effects and their predictability. Results are shown for lnRR (A,C,E) and lnCVR (B,D,F) when organic fertiliser type (animal- vs plant-derived) is used as a categorical moderator. k denotes the number of effect sizes (number of studies in parentheses). (A,B) Orchard plots stratified by fertiliser type. Points are individual effect sizes (bubble size $\propto 1/SE$; horizontal jitter for visibility). Black squares and thick horizontal bars show the fitted subgroup mean and its 95% interval; thin whiskers show the 95% prediction interval. The vertical dashed line indicates no difference between organic and conventional farming. (C,D) Posterior distributions for fixed effects from a Bayesian location-scale model: location (mean) parameters ($b_0^{(l)}$ and $b_{\text{contrast}(\text{animal-plant})}^{(l)}$) and scale (heterogeneity) parameters ($b_0^{(s)}$ and $b_{\text{contrast}(\text{animal-plant})}^{(s)}$), where the scale coefficients act on $\log(\sigma)$ (positive values indicate greater residual heterogeneity). The intercept corresponds to animal-based fertiliser; the contrast gives the shift for plant-based fertiliser. (E,F) Posterior distributions for the between-study (random-effect) standard deviation. Points are posterior medians; thick and thin intervals denote 66% and 95% credible intervals, respectively. The R packages: `ggplot2` (Wickham, 2011), `tidybayes` (Kay, 2020) and `orchaRd` (Nakagawa et al., 2023a) were used to draw these plots.

304 **5 Conclusion and future directions**

305 In this article, we make a simple claim: many ecological syntheses under-use the information already present in
306 standard meta-analytic datasets. When primary studies report group means (\bar{X}), standard deviations (s) and sample
307 sizes (n), the same evidence base can usually support inference about (i) average outcomes (via lnRR), (ii) within-
308 population stability or reliability (via lnVR and lnCVR), and (iii) how both of these vary across contexts. The key is
309 to treat “variability” (dispersion within study groups or populations) and “heterogeneity” (dispersion among effect
310 sizes across studies) as distinct targets rather than a single catch-all notion of “variation” (Senior et al., 2016b; Yang
311 et al., 2025). Once that distinction is made, the analytical steps follow naturally: estimate mean effects, estimate
312 variability effects, explain both with moderators, and then test whether predictability itself changes with context
313 using location-scale models (Viechtbauer and López-López, 2022; Nakagawa et al., 2025a).

314 The practical implication is that moderators can matter in two different ways. Some moderators primarily shift the
315 expected effect (the “location” component), changing what we should expect on average in a new setting. Other
316 moderators primarily shift the predictability of the evidence (the “scale” component), changing how transferable
317 (generalisable) that expectation is (cf., Spake et al., 2022). In the organic-conventional case study (Ponisio et al.,
318 2015), placing lnRR and lnCVR side-by-side highlights why this matters: stakeholders care not only about the
319 expected yield gap, but also about whether organic systems are comparably reliable and whether that reliability
320 comparison is consistent across agronomic contexts (Knapp and van der Heijden, 2018; Nakagawa et al., 2015; Senior
321 et al., 2020). Location-scale modelling formalises that second question, replacing a generic “it depends” with an
322 explicit, testable statement about when effects are more or less heterogeneous (Viechtbauer and López-López, 2022;
323 Nakagawa et al., 2025a).

324 Three straightforward shifts would make this “one dataset, four analyses” approach routine: one shift for all empiri-
325 cists and two for meta-analysts. First, primary studies should consistently report the minimal summary statistics
326 that enable both mean and variability synthesis (means, SDs, and sample sizes for each group), alongside design in-
327 formation that induces dependence (shared controls, repeated measures, multi-arm comparisons) (Lajeunesse, 2011;
328 Nakagawa and Santos, 2012). Second, meta-analysts should treat mean-variance relationships as a modelling choice
329 rather than a nuisance: lnVR is informative about absolute spread, whereas lnCVR targets stability relative to mean
330 performance, and reporting both can clarify whether apparent changes in variability are driven mainly by shifts in
331 the mean (Nakagawa et al., 2015; Senior et al., 2020). Third, applied syntheses should present results in prediction-
332 oriented terms: pooled means and pooled variability effects are useful, but decision-relevance often hinges on how
333 widely effects vary across studies and whether moderators identify contexts where results are more transferable (Senior
334 et al., 2016b; Nakagawa et al., 2021).

335 In short, the contribution here is not a new statistic but a suggested shift in a meta-analytic workflow in ecology:

336 use the same dataset to estimate performance and stability, and then use the same moderators to explain both the
337 expected effects and their predictability (Nakagawa et al., 2015; Senior et al., 2020; Viechtbauer and López-López,
338 2022; Nakagawa et al., 2025a). That workflow better matches what ecologists and decision-makers typically want to
339 know, not only “what happens on average,” but “how consistent is it,” and “how generalisable is this result across
340 different contexts?” (Senior et al., 2016b; Yang et al., 2025; Spake et al., 2023). With this new workflow, let us make
341 full use of the four meta-analytic models to better understand our changing world.

342 Data Availability Statement

343 All data, scripts and relevant files used for this study can be found at the GitHub repository (<https://anonymous.4open.science/r/one->
344 [dataset-four-meta-analyses-3B43/](#)) and a version of it will be archived at Zenodo ([link](#)).

345 References

346 M. E. Brooks, K. Kristensen, K. J. van Benthem, A. Magnusson, C. W. Berg, A. Nielsen, H. J. Skaug, M. Maechler,
347 and B. M. Bolker. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear
348 mixed modeling. *The R Journal*, 9(2):378–400, 2017. doi: 10.32614/RJ-2017-066.

349 S. P. Brugger, I. Angelescu, A. Abi-Dargham, R. Mizrahi, V. Shahrezaei, and O. D. Howes. Heterogeneity of striatal
350 dopamine function in schizophrenia: meta-analysis of variance. *Biological psychiatry*, 87(3):215–224, 2020.

351 P.-C. Bürkner. brms: An r package for bayesian multilevel models using stan. *Journal of statistical software*, 80:1–28,
352 2017.

353 S. A. Chamberlain, J. L. Bronstein, and J. A. Rudgers. How context dependent are species interactions? *Ecology*
354 *letters*, 17(7):881–890, 2014.

355 I. R. Cleasby, S. Nakagawa, and H. Schielzeth. Quantifying the predictability of behaviour: statistical approaches for
356 the study of between-individual variation in the within-individual variance. *Methods in Ecology and Evolution*, 6
357 (1):27–37, 2015.

358 R. P. Duncan and B. J. Kefford. Interactions in statistical models: three things to know. *Methods in Ecology and*
359 *Evolution*, 12(12):2287–2297, 2021.

360 L. V. Hedges, J. Gurevitch, and P. S. Curtis. The Meta-Analysis of Response Ratios in Experimen-
361 tal Ecology. *Ecology*, 80(4):1150–1156, 1999. ISSN 1939-9170. doi: 10.1890/0012-9658(1999)080[1150:
362 TMAORR]2.0.CO;2. URL <https://onlinelibrary.wiley.com/doi/abs/10.1890/0012-9658%281999%29080%5B1150%3ATMAORR%5D2.0.CO%3B2>.
363 .eprint: <https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/0012-9658%281999%29080%5B1150%3ATMAORR%5D2.0.CO%3B2>.

364

365 J. P. Higgins and S. G. Thompson. Quantifying heterogeneity in a meta-analysis. *Statistics in medicine*, 21(11):
366 1539–1558, 2002.

367 J. P. Higgins, S. G. Thompson, J. J. Deeks, and D. G. Altman. Measuring inconsistency in meta-analyses. *bmj*, 327
368 (7414):557–560, 2003.

369 W. G. Hill and H. A. Mulder. Genetic analysis of environmental variation. *Genetics Research*, 92(5-6):381–395, 2010.

370 O. D. Howes and G. E. Chapman. Understanding variability: the role of meta-analysis of variance.
371 *Psychological Medicine*, 54(12):3233–3236, Sept. 2024. ISSN 0033-2917, 1469-8978. doi: 10.1017/
372 S0033291724001971. URL <https://www.cambridge.org/core/journals/psychological-medicine/article/understanding-variability-the-role-of-metaanalysis-of-variance/3628110CD02FAFB7ECBF5C77AC6B21E5>.

373

374 M. Kay. tidybayes: Tidy data and geoms for bayesian models. *R package version*, 2(1):1, 2020.

375 S. Knapp and M. G. A. van der Heijden. A global meta-analysis of yield stability in organic and conservation
376 agriculture. *Nature Communications*, 9(1):3632, Sept. 2018. ISSN 2041-1723. doi: 10.1038/s41467-018-05956-1.
377 URL <https://www.nature.com/articles/s41467-018-05956-1>. Publisher: Nature Publishing Group.

378 K. Kristensen, M. McGillicuddy, and C. Williams. Covariance structures with glmmTMB. Vignette for the R package
379 `glmmTMB` on the Comprehensive R Archive Network (CRAN), Jan. 2026. URL <https://cran.r-project.org/web/packages/glmmTMB/vignettes/covstruct.html%7D>. Accessed: 2026-01-28.

381 M. J. Lajeunesse. Achieving synthesis with meta-analysis by combining and comparing all available studies. *Ecology*,
382 91(9):2561–2564, Sept. 2010. ISSN 0012-9658, 1939-9170. doi: 10.1890/09-1530.1. URL <https://esajournals.onlinelibrary.wiley.com/doi/10.1890/09-1530.1>.

384 M. J. Lajeunesse. On the meta-analysis of response ratios for studies with correlated and multi-group designs. *Ecology*,
385 92(11):2049–2055, 2011. ISSN 1939-9170. doi: 10.1890/11-0423.1. URL <https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/11-0423.1>. eprint: <https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/11-0423.1>.

387 M. J. Lajeunesse. Bias and correction for the log response ratio in ecological meta-analysis. *Ecology*, 96(8):2056–2063,
388 2015.

389 J. H. Lawton. Are there general laws in ecology? *Oikos*, pages 177–192, 1999.

390 Y. Lee and J. A. Nelder. Hierarchical generalized linear models. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 58(4):619–656, 1996.

392 Y. Lee and J. A. Nelder. Double hierarchical generalized linear models (with discussion). *Journal of the Royal Statistical Society Series C: Applied Statistics*, 55(2):139–185, 2006.

394 S. A. Levin. The problem of pattern and scale in ecology: the robert h. macarthur award lecture. *Ecology*, 73(6):
395 1943–1967, 1992.

396 H. A. Mulder, P. Bijma, and W. G. Hill. Selection for uniformity in livestock by exploiting genetic heterogeneity of
397 residual variance. *Genetics Selection Evolution*, 40:1–23, 2008.

398 H. A. Mulder, P. Gienapp, and M. E. Visser. Genetic variation in variability: Phenotypic variability of fledgling
399 weight and its evolution in a songbird population. *Evolution*, 70(9):2004–2016, 2016.

400 S. Nakagawa and E. S. A. Santos. Methodological issues and advances in biological meta-analysis. *Evolutionary Ecology*, 26(5):1253–1274, Sept. 2012. ISSN 1573-8477. doi: 10.1007/s10682-012-9555-5. URL <https://doi.org/10.1007/s10682-012-9555-5>.

403 S. Nakagawa, R. Poulin, K. Mengersen, K. Reinhold, L. Engqvist, M. Lagisz, and A. M. Senior. Meta-analysis of
404 variation: ecological and evolutionary applications and beyond. *Methods in Ecology and Evolution*, 6(2):143–152,

405 2015. ISSN 2041-210X. doi: 10.1111/2041-210X.12309. URL <https://onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12309>. *eprint*: <https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.12309>.

406

407 S. Nakagawa, M. Lagisz, R. E. O'Dea, J. Rutkowska, Y. Yang, D. W. A. Noble, and A. M. Senior. The orchard plot:
408 Cultivating a forest plot for use in ecology, evolution, and beyond. *Research Synthesis Methods*, 12(1):4–12, 2021.
409 ISSN 1759-2887. doi: 10.1002/jrsm.1424. URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/jrsm.1424>.
410 *eprint*: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/jrsm.1424>.

411 S. Nakagawa, M. Lagisz, R. E. O'Dea, P. Pottier, J. Rutkowska, A. M. Senior, Y. Yang, and D. W. A. Noble.
412 *orchardR* 2.0: An R package for visualising meta-analyses with orchard plots. *Methods in Ecology and Evolution*, 14
413 (8):2003–2010, 2023a. ISSN 2041-210X. doi: 10.1111/2041-210X.14152. URL <https://onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.14152>. *eprint*: <https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.14152>.

414

415

416 S. Nakagawa, D. W. Noble, M. Lagisz, R. Spake, W. Viechtbauer, and A. M. Senior. A robust and readily imple-
417 mentable method for the meta-analysis of response ratios with and without missing standard deviations. *Ecology*
418 *Letters*, 26(2):232–244, 2023b.

419 S. Nakagawa, A. Mizuno, K. Morrison, L. Ricolfi, C. Williams, S. M. Drobniak, M. Lagisz, and Y. Yang. Location-
420 Scale Meta-Analysis and Meta-Regression as a Tool to Capture Large-Scale Changes in Biological and Method-
421 ological Heterogeneity: A Spotlight on Heteroscedasticity. *Global Change Biology*, 31(5):e70204, 2025a. ISSN 1365-
422 2486. doi: 10.1111/gcb.70204. URL <https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.70204>. *eprint*:
423 <https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.70204>.

424 S. Nakagawa, A. Mizuno, C. Williams, M. Lagisz, Y. Yang, and S. M. Drobniak. Quantifying macro-evolutionary
425 patterns of trait mean and variance with phylogenetic location-scale models. *Methods in Ecology and Evolution*,
426 16(11):2585–2602, 2025b.

427 S. Nakagawa, S. Ortega, E. Gazzea, M. Lagisz, A. Lenz, E. Lundgren, and A. Mizuno. Location-scale models in
428 ecology and evolution: Heteroscedasticity in continuous, count and proportion data. *Methods in Ecology and*
429 *Evolution*, 2025c.

430 R. E. O'Dea, D. W. Noble, and S. Nakagawa. Unifying individual differences in personality, predictability and
431 plasticity: a practical guide. *Methods in Ecology and Evolution*, 13(2):278–293, 2022.

432 R. E. O'Dea, M. Lagisz, M. D. Jennions, and S. Nakagawa. Gender differences in individual variation in academic
433 grades fail to fit expected patterns for stem. *Nature communications*, 9(1):3777, 2018.

434 S. D. Peacor, C. Song, J. R. Bence, A. A. Briggs, E. A. Hamman, and C. W. Osenberg. Ecological meta-analyses
435 often produce unwarranted results. *Ecology*, 106(12):e70269, 2025.

436 L. C. Ponisio, L. K. M'Gonigle, K. C. Mace, J. Palomino, P. de Valpine, and C. Kremen. Diversification practices
437 reduce organic to conventional yield gap. *Proceedings. Biological Sciences*, 282(1799):20141396, Jan. 2015. ISSN
438 1471-2954. doi: 10.1098/rspb.2014.1396.

439 R. A. Rigby and D. M. Stasinopoulos. Generalized additive models for location, scale and shape. *Journal of the*
440 *Royal Statistical Society Series C: Applied Statistics*, 54(3):507–554, 2005.

441 P. Sae-Lim, A. Kause, M. Janhunen, H. Vehviläinen, H. Koskinen, B. Gjerde, M. Lillehammer, and H. A. Mulder.
442 Genetic (co) variance of rainbow trout (*oncorhynchus mykiss*) body weight and its uniformity across production
443 environments. *Genetics Selection Evolution*, 47:1–10, 2015.

444 A. M. Senior, A. K. Gosby, J. Lu, S. J. Simpson, and D. Raubenheimer. Meta-analysis of variance: an illustration
445 comparing the effects of two dietary interventions on variability in weight. *Evolution, Medicine, and Public Health*,
446 2016(1):244–255, Jan. 2016a. ISSN 2050-6201. doi: 10.1093/emph/eow020. URL <https://doi.org/10.1093/emph/eow020>.

448 A. M. Senior, C. E. Grueber, T. Kamiya, M. Lagisz, K. O'Dwyer, E. S. A. Santos, and S. Nakagawa. Heterogeneity
449 in ecological and evolutionary meta-analyses: its magnitude and implications. *Ecology*, 97(12):3293–3299, 2016b.
450 ISSN 1939-9170. doi: 10.1002/ecy.1591. URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/ecy.1591>.
451 _eprint: <https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/ecy.1591>.

452 A. M. Senior, W. Viechtbauer, and S. Nakagawa. Revisiting and expanding the meta-analysis of variation:
453 The log coefficient of variation ratio. *Research Synthesis Methods*, 11(4):553–567, 2020. ISSN 1759-
454 2887. doi: 10.1002/jrsm.1423. URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/jrsm.1423>. _eprint:
455 <https://onlinelibrary.wiley.com/doi/pdf/10.1002/jrsm.1423>.

456 R. Spake, R. E. O'dea, S. Nakagawa, C. P. Doncaster, M. Ryo, C. T. Callaghan, and J. M. Bullock. Improving
457 quantitative synthesis to achieve generality in ecology. *Nature Ecology & Evolution*, 6(12):1818–1828, 2022.

458 R. Spake, D. E. Bowler, C. T. Callaghan, S. A. Blowes, C. P. Doncaster, L. H. Antao, S. Nakagawa, R. McElreath,
459 and J. M. Chase. Understanding 'it depends' in ecology: a guide to hypothesising, visualising and interpreting
460 statistical interactions. *Biological Reviews*, 98(4):983–1002, 2023.

461 D. M. Stasinopoulos and R. A. Rigby. Generalized additive models for location scale and shape (gamlss) in r. *Journal*
462 *of Statistical Software*, 23:1–46, 2008.

463 A. Sánchez-Tójar, N. P. Moran, R. E. O'Dea, K. Reinhold, and S. Nakagawa. Illustrating the importance of meta-
464 analysing variances alongside means in ecology and evolution. *Journal of Evolutionary Biology*, 33(9):1216–1223,
465 Sept. 2020. ISSN 1010-061X. doi: 10.1111/jeb.13661. URL <https://doi.org/10.1111/jeb.13661>.

466 W. Viechtbauer. Conducting meta-analyses in r with the metafor package. *Journal of statistical software*, 36(3):1–48,
467 2010.

468 W. Viechtbauer and J. A. López-López. Location-scale models for meta-analysis. *Research Synthesis Methods*, 13(6):
469 697–715, 2022. ISSN 1759-2887. doi: 10.1002/jrsm.1562. URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/jrsm.1562>. eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/jrsm.1562>.

471 D. F. Westneat, M. Schofield, and J. Wright. Parental behavior exhibits among-individual variance, plasticity, and
472 heterogeneous residual variance. *Behavioral Ecology*, 24(3):598–604, 2013.

473 H. Wickham. ggplot2. *Wiley interdisciplinary reviews: computational statistics*, 3(2):180–185, 2011.

474 C. Williams, Y. Yang, D. I. Warton, and S. Nakagawa. Modelling approaches for meta-analyses with dependent effect
475 sizes in ecology and evolution: A simulation study. *Methods in Ecology and Evolution*, 16(10):2362–2379, 2025.

476 Y. Yang, D. W. Noble, R. Spake, A. M. Senior, M. Lagisz, and S. Nakagawa. A pluralistic framework for measuring,
477 interpreting and decomposing heterogeneity in meta-analysis. *Methods in Ecology and Evolution*, 16(11):2710–2725,
478 2025.