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Abstract 11 

Benthic macroinvertebrates are key indicator groups within freshwater ecosystems, with their community being 12 

closely tied to ecosystem functioning. Environmental DNA (eDNA) technology, with its high sensitivity and non-13 

invasive nature, provides a promising tool for studying the spatiotemporal dynamics of benthic macroinvertebrate 14 

communities, their responses to anthropogenic disturbances, and the mechanisms governing community assembly. 15 

However, current eDNA-based research on freshwater benthic communities largely concentrates on optimizing 16 

sampling and detection methods, along with environmental monitoring applications. Broader ecological 17 

investigations using eDNA data remain fragmented and limited. In particular, it remains unresolved whether benthic 18 

community ecology theories derived from morphological classification can be reliably reconstructed from eDNA-19 

based molecular signals. We systematically summarize the application of eDNA technology in benthic 20 

macroinvertebrate ecology, encompassing diversity assessment, spatiotemporal community dynamics, cascading 21 

effects of human-induced disturbances, and multi-trophic interaction networks. Although significant empirical 22 

progress has been made, challenges persist, including limited spatiotemporal coverage and methodological 23 

constraints. Future developments should prioritize the establishment of long-term monitoring networks, integration 24 

of multidimensional data, and deeper engagement with community ecology theories. Such advances will help shift 25 

eDNA-based research from descriptive to mechanistic understanding, thereby offering scientific support for the 26 

precise management and restoration of river ecosystems. 27 
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1. Introduction 29 

Freshwater ecosystems are fundamental role to maintaining biodiversity and supporting human well-being 30 

(Lynch et al., 2023). However, their biological integrity is increasingly threatened by multiple stressors, including 31 

climate change, pollution, overexploitation of resources, and the spread of invasive species (Perry et al., 2024; Sayer 32 

et al., 2025). Benthic macroinvertebrates are integral components of these ecosystems, performing irreplaceable 33 

functions such as detritus decomposition (Tank et al., 2010; Yue et al., 2022). Their diversity is undergoing 34 

significant decline under intense anthropogenic disturbances, including urbanization, agricultural expansion, 35 

wastewater discharge, aquaculture, and forestry development (Li et al. 2015; Dudgeon and Strayer, 2025; Keck et 36 

al., 2025). Owing to their limited mobility and high sensitivity to environmental change, they are widely used as 37 

bioindicators across global monitoring programs (Dudgeon et al., 2006; Morse et al., 2007; Thomsen et al., 2011; 38 

Jin et al., 2025). Nevertheless, conventional assessments of benthic macroinvertebrate biodiversity which rely on 39 

field sampling, sorting, and morphological identification, are time-consuming, labor‑intensive, and requires 40 

considerable taxonomic expertise (Johnson et al., 1993; Sumudumali and Jayawardana, 2021). This approach often 41 

entails extensive specimen sorting and can yield inaccurate results due to difficulties in distinguishing 42 

morphologically similar taxa, juvenile stages, and rare species. Ntislidou et al. (2020) highlighted how human error 43 

during identification can affect water quality assessments, while Haase et al. (2010) reported that 29% of specimens 44 

were overlooked during sorting, identifications varied by more than 30% among analysts, and 16% of samples led 45 

to discrepant ecological evaluation. Such methodological limitations may seriously compromise the effectiveness 46 

of river management and restoration plans.  47 

In contrast, environmental DNA (eDNA) technology offers considerable technical advantages that are 48 

advancing the study of benthic macroinvertebrate biodiversity (Deiner et al., 2017; Múrria et al., 2024). Its non-49 

invasive nature minimizes disturbance to both target species and their habitats, while its cost-effectiveness across 50 

temporal and spatial scales facilitates large-scale monitoring of biodiversity dynamics. The high sensitivity of eDNA 51 



further allows for effective detection of rare and cryptic species, as well as early-stages biological invasions (Beng 52 

and Corlett, 2020; Takahashi et al., 2023; Altermatt et al., 2025; Sander et al., 2025; Yates et al., 2025). Consequently, 53 

eDNA is increasingly regarded as the most promising tools for efficient, large-scale species monitoring in aquatic 54 

ecosystems.  55 

Environmental DNA (eDNA) studies are conducted more frequently in aquatic ecosystems, such as rivers, 56 

lakes, and marine waters, than in terrestrial environments, largely due to the relative ease of sample collection. 57 

Among these, freshwater ecosystems dominate the eDNA literature, representing approximately 65% of published 58 

studies, whereas marine systems account for about 25% and the remaining 10% pertain to other or multiple habitat 59 

types (Takahashi et al., 2023; Altermatt et al., 2025). Notably, more than half of these studies (around 52%) focus 60 

on fish species, while benthic macroinvertebrate communities have received comparatively less attention.  61 

In this review, we summarize the application of eDNA technology to key ecological questions regarding 62 

benthic macroinvertebrate communities in freshwater ecosystems, including their spatiotemporal dynamics, 63 

resilience to anthropogenic disturbance, and multi-trophic interactions. We also synthesize recent technological and 64 

methodological advances, outline major international initiatives, and provide a comprehensive overview of 65 

published eDNA-based studies in benthic macroinvertebrate community ecology. Current challenges and promising 66 

future research directions are discussed. We anticipate that this work will help advance eDNA from a primarily 67 

descriptive tool toward a more mechanistic analytical framework, thereby providing actionable insights to support 68 

the monitoring and management of freshwater ecosystems under global change. 69 

2. Towards Optimized eDNA-based in Benthic Community Ecology: Sampling Strategies and 70 

Methodological Validation 71 

eDNA originates from a variety of biological sources, such as skin, saliva, mucus, secretions, urine, blood, 72 

feces, gametes, roots, leaves, pollen, and decomposing tissues (Bohmann et al., 2014). It exists both as extracellular 73 



molecules and within cellular debris. The technology enables non-invasive species detection and community 74 

assessment by capturing genetic material shed or released by organisms, followed by high-throughput sequencing 75 

(HTS) and bioinformatics analysis (Thomsen and Willerslev, 2015; Harrison et al., 2019; Gu et al., 2024). Recently, 76 

Sahu et al. (2025) provided an updated overview of the standard eDNA workflow, which outlines the complete 77 

pipeline from field sampling and DNA extraction/purification through PCR amplification, HTS, bioinformatic 78 

processing, to final taxonomic assignment.  79 

The choice of environmental sample type is crucial in eDNA metabarcoding, as it directly influences taxon 80 

detection and the resulting community profile (Table1). Water samples are widely used for large-scale biodiversity 81 

assessment due to their ease of collection (Vourka et al., 2023); however, local benthic community composition may 82 

be underestimated because of signal dilution and hydrological transport (Wang et al., 2021). In contrast, ethanol-83 

preserved samples (e.g., from kick-net sampling) show higher sensitivity for sessile or sedentary taxa and better 84 

reflect local biodiversity (Erdozain et al., 2019; Martins et al., 2021), though they can underrepresent rare, small, or 85 

heavily sclerotized species (Zizka et al., 2019). Sediment samples accumulate DNA from benthic organisms and are 86 

less influenced by transport, making them particularly useful for detecting arthropods, annelids, and mollusks at 87 

local scale (Ji et al., 2022). Their high spatial heterogeneity, however, requires careful sampling design and adequate 88 

replication to ensure representativeness (Sakata et al., 2021). Biofilm samples also hold promise for monitoring 89 

species in complex or structured habitats due to their strong DNA retention capacity (Rivera et al., 2021). Recent 90 

evidence suggests that combining water and detritus samples currently represents the most effective strategy for 91 

assessing riverine macroinvertebrate diversity. This integrated approach leverages complementary taxonomic 92 

coverage and outperforms single-sample methods and other combinations in capturing species richness and 93 

community composition (Shi et al., 2025).  94 



Table1. Comparison of Common eDNA Sample Types in Freshwater Ecosystems 95 

Sample 
Type Advantages Limitations Recommended Applications 

Water  Captures broad-scale diversity 
patterns; easy to collect and process 

Prone to dilution; lower resolution for 
site-specific communities 

Regional-scale biodiversity 
assessment 

Ethanol  
Accurately reflects local community 
composition; effective for sessile 
taxa 

May underrepresent rare or small-
bodied taxa; potential sampling biases Local biotic integrity evaluation 

Sediment  High DNA concentration; suitable 
for detecting benthic organisms 

High spatial heterogeneity; requires 
intensive replication for 
representativeness 

Local community structure 
assessment and taxonomic 
screening 

Biofilm Long DNA retention time; effective 
in slow-flow or attached habitats 

Methodologically novel; 
standardization protocols still under 
development 

Monitoring in complex habitats 
or where conventional methods 
are limited 

Detritus  
Superior DNA retention; enhanced 
detection of key taxa (e.g., 
Oligochaeta, Diptera) 

High operational complexity; limited 
spatial representativeness Combined with water samples 

Although water sampling remains prevalent in eDNA studies due to its operational simplicity, conducting 96 

controlled comparisons with traditional morphological methods are still essential to validate the accuracy and 97 

reliability of eDNA-based assessments (Table 2). 98 

Table 2. Representative studies comparing benthic macroinvertebrate richness estimates with traditional sampling or historical 99 

data for a geographic location to that of eDNA 100 

No. eDNA Sample 
Types 

Traditional 
sampling method Habitat eDNA efficacy 

finding References 

1 Water Dip net Pond water ◑ (Thomsen et al., 2011) 

2 Water Dip net Ditches ↑ (Beentjes et al., 2022) 

3 Water Dip net Ditches ↑ (van der Plas et al.,2025b) 

4 Water Dip net River ◑ (Marshall and Stepien, 2020) 

5 Water Kick-sweep Lake and river ◑ (Mächler et al., 2014)  

6 Water Kick-sweep Hypersaline lake ↑ (Campbell et al., 2023) 

7 Water Kick-sweep Hypersaline lake ◑ (Saccò et al., 2025) 

8 Water Kick-sweep River ◑ (Fernández et al., 2019) 

9 Water Kick-sweep River ↑ (Mächler et al., 2019) 

10 Water Kick-sweep River ◑ (Brantschen et al., 2021) 

11 Water Kick-sweep River ↑ (Pereira-da-Conceicoa et al., 2021) 



No. eDNA Sample 
Types 

Traditional 
sampling method Habitat eDNA efficacy 

finding References 

12 Water Kick-sweep River ↑ (Seymour et al., 2021) 

13 Water Kick-sweep River ◑ (Blackman et al., 2022a) 

14 Water Kick-sweep River ◑ (Keck et al., 2022b) 

15 Water Kick-sweep Stream ◑ (Reinholdt Jensen et al., 2021) 

16 Water Kick-sweep Stream ◑ (Gleason et al., 2021) 

17 Water D-net River ◑ (Múrria et al., 2024) 

18 Water D-net River ◑ (Huo et al., 2025) 

19 Water Hand net Spring ◑ (Blattner et al., 2021) 

20 Water Hand net River ◑ (Jeunen et al., 2022) 

21 Water Surber net River ↑ (Uchida et al., 2020) 

22 Water Hess sampling River ◑ (Penaluna et al., 2026) 

23 Water Visual census, 
benthic trawling River ↑ (Hata et al., 2022) 

24 Water Historical data Lake ◑ (Coghlan et al., 2021) 

25 Water Historical data Lagoon ◑ (Specchia et al., 2022) 

26 Water Historical data River ◑ (Wu et al., 2023) 

27 Water Historical data River ◑ (Qin et al., 2023) 

28 Water Historical data River and stream ◑ (Aunins et al., 2023) 

29 Sediment Surber net River ↑ (Ji et al., 2022) 

30 Sediment Surber net River ↑ (Zhou et al., 2022) 

31 Sediment D-net, Surber net River ◑ (Li et al., 2024) 

32 Detritus Kick-sweep River ↑ (Ntislidou et al., 2023) 

33 Detritus D-net River and stream ↓ (Jijón et al., 2025) 

34 Ethanol, Water D-net Stream ↑ (Wang et al., 2021) 

35 Ethanol, Water Surber net, kick net River ↑ (Chen et al.,2025) 

36 Biofilm Historical data River ↑ (Rivera et al., 2021) 

 Notes: “ ◑ ” indicates that the results are complementary; “ ↑ ” indicates that the eDNA method has obtained higher diversity 101 
data compared to the traditional sampling method; “ ↓ ” indicates that the eDNA method has obtained lower diversity data 102 
compared to the traditional sampling method. 103 

In summary, future studies should prioritize multiple sample types, such as water, sediment, and ethanol-104 

preserved materials, to capture complementary ecological niches and improve overall detection efficiency. Even when 105 

full integration of all sample types is not feasible, comparative analyses with traditional sampling methods can still 106 

offer a robust evaluation of eDNA’s strengths and limitations, thereby strengthening the credibility of the findings. 107 



3. Global Insights: eDNA in Setting Research Priorities and Response Indicators  108 

The assessment of ecosystem stress has long relied on diversity metrics, with α diversity (intra-community 109 

diversity) and β diversity (inter-community differences) serving as core indicators in ecological research for decades 110 

(Daly et al., 2018; van der Plas et al., 2025a). These metrics quantify biodiversity patterns and are essential for detecting 111 

shifts in community composition across spatial and temporal scales. Here, we synthesize benthic macroinvertebrate 112 

community indices obtained from eDNA data across different countries, illustrating how environmental drivers, such 113 

as land use, water quality, and climate factors, influence biodiversity patterns in distinct regions (Table 3). This 114 

synthesis offers a comprehensive overview of current research trends in this field internationally. 115 

Table 3. Summary of benthic macroinvertebrate community ecological metrics derived from eDNA data, their associated 116 

environmental drivers, and representative application studies. 117 

No. Country Environmental Variables Response Variables References 

1 Australia Salinity α-diversity, β-diversity (Campbell et al., 2023) 

2 Belarus Water temperature, Artificial canals 
β-diversity, Keystone species 
screening, Phylogenetic 
diversity 

(Jeunen et al., 2022) 

3 Brazil Land use change α-diversity, β-diversity (Faria et al., 2024) 

4 Canada Land use change α-diversity, β-diversity (Gleason et al., 2021) 

5 Canada Pollution gradient (herbicide) α-diversity, β-diversity (Loria et al., 2025) 

6 China Anthropogenic (pollution gradient) α-diversity, β-diversity, 
Functional diversity (Xu et al., 2023) 

7 China Dams, Nutrient enrichment α-diversity, β-diversity (Li et al., 2022) 

8 China Drought α-diversity, β-diversity (Feng et al., 2026) 

9 China Elevation α-diversity, β-diversity (Shen et al., 2024) 

10 China Flow α-diversity, β-diversity, 
Functional diversity (Li et al., 2024) 

11 China Heavy metal pollution α-diversity, β-diversity, 
Phylogenetic diversity (Zhou et al., 2022) 

12 China Heavy metal pollution (Cu) 
α-diversity, β-diversity, 
Functional diversity, 
Phylogenetic diversity 

(Yang et al., 2018) 

13 China Land use change α-diversity, β-diversity, 
Functional diversity (Li et al., 2020) 

14 China Land use change 
α-diversity, β-diversity, 
Functional diversity, 
Phylogenetic diversity 

(Wu et al., 2023) 

15 China Land use change α-diversity, β-diversity (Li et al., 2023a) 

16 China Land use change, Pollutant gradient α-diversity, β-diversity (Li et al., 2023b) 

17 China Land use change, Pollution gradient α-diversity, β-diversity (Qin et al., 2023) 



No. Country Environmental Variables Response Variables References 

18 China Salinity 
α-diversity, Functional 
diversity, Phylogenetic 
diversity 

(Zhang et al., 2024) 

19 China Seasonal hydrological variation 
(Water temp., Flow) 

α-diversity, β-diversity, 
Functional diversity (Liang et al., 2022) 

20 China Trophic status α-diversity, β-diversity, 
Functional diversity (Xiong et al., 2025) 

21 China Urbanization gradient α-diversity, β-diversity, 
Functional diversity (Ji et al., 2022) 

22 China Water temperature, Elevation 
α-diversity, β-diversity, 
Functional diversity, 
Phylogenetic diversity 

(Lu et al., 2023) 

23 China Water temperature, Elevation α-diversity, β-diversity, 
Phylogenetic diversity (Lu et al., 2024) 

24 China Water temperature, Salinity α-diversity, β-diversity, 
Functional diversity (Huo et al., 2025) 

25 Denmark Seasonal hydrological variation 
(Water temp., Flow) 

α-diversity, β-diversity, 
Functional diversity (Reinholdt Jensen et al., 2021) 

26 Ecuador Elevation α-diversity (Jijón et al., 2025) 

27 Germany Seasonal hydrological variation 
(Water temp., Flow) α-diversity, β-diversity (Hupało et al., 2022) 

28 Greece Hydrological barriers 
α-diversity, β-diversity, 
Functional diversity, 
Phylogenetic diversity 

(Ntislidou et al., 2023) 

29 Indonesia Flow α-diversity, β-diversity (Effendi et al., 2023) 

30 Italy Salinity, Anthropogenic pressure 
α-diversity, β-diversity, 
Functional diversity, Keystone 
species screening 

(Specchia et al., 2022) 

31 Italy Salinity, Substrate α-diversity, β-diversity, 
Functional diversity (Pinna et al., 2024) 

32 Japan Water temperature, Flow α-diversity, β-diversity (Uchida et al., 2020) 

33 Netherlands Agricultural source (Pesticides) α-diversity, β-diversity (Beentjes et al., 2022) 

34 Netherlands Pollution gradient (microplastic) α-diversity, β-diversity (van der Plas et al.,2025b) 

35 Spain Anthropogenic (pollution gradient) α-diversity, β-diversity (Múrria et al., 2024)  

36 Switzerland Anthropogenic pressure (Non-native 
species detection) 

α-diversity, keystone species 
screening (Blackman et al., 2022a) 

37 Switzerland Seasonal hydrological variation 
(Water temp., Flow) α-diversity, β-diversity (Blackman et al., 2022b) 

38 Switzerland Urbanization gradient α-diversity, β-diversity (Perrelet et al., 2025) 

39 UK Land use change α-diversity, β-diversity, 
Functional diversity (Seymour et al., 2021) 

40 USA Habitat quality α-diversity, β-diversity (Marshall and Stepien, 2020) 

41 USA Land use change α-diversity, β-diversity, 
Functional diversity (Penaluna et al., 2026) 

42 USA Seasonal hydrological variation 
(Water temp., Flow) α-diversity, β-diversity (Aunins et al., 2023) 

International research on benthic macroinvertebrates using eDNA technology exhibits distinct regional 118 

emphases. For instance, studies in the United States and China frequently examine how environmental variables 119 



such as water temperature and nutrient concentrations affect species diversity and community structure, often using 120 

classical response indices like α- and β-diversity. In contrast, research in Australia and Brazil tends to focus on 121 

functional diversity, species composition, and related ecological processes, commonly applying functional diversity 122 

indices to track ecosystem changes. In Germany and Spain, greater attention has been given to pollutant gradients 123 

and their interactions with aquatic biota, with species richness and community structure regularly used as response 124 

metrics. Notably, as eDNA methods become more accessible and their resolution improves, an increasing number 125 

of studies are extending beyond purely taxonomic metrics to quantify ecological function. A significant advance in 126 

this direction is the “Fun-eDNA” framework recently proposed by Cantera et al. (2024). This method systematically 127 

extracts functional trait information, such as feeding group, body size, and dispersal capacity, from eDNA 128 

metabarcoding data, allowing the calculation of functional diversity indices (e.g., functional richness, evenness, and 129 

redundancy). By transcending the previous limitation of eDNA to taxonomic identification, this framework supports 130 

functional inference at a molecular level, offering considerable potential for both theoretical and applied ecology. 131 

In summary, eDNA technology offers a holistic perspective for assessing aquatic biodiversity. The indices 132 

derived from eDNA data provide essential insights into ecosystem health, stability, and resilience, informing 133 

targeted conservation and restoration measures (Rowland et al., 2020). Ecosystem health can also be evaluated using 134 

biological indices, which are often based on the sensitivity or tolerance of certain taxa to environmental conditions 135 

and rely heavily on macroinvertebrate community composition (Sumudumali and Jayawardana, 2021). Moving 136 

forward, integrating eDNA with complementary monitoring tools and ecological models will be vital to effectively 137 

manage and mitigate the impacts of environmental degradation and climate change. 138 

4. Unraveling Spatiotemporal Dynamics: eDNA Reveals Benthic Community Patterns 139 

The spatiotemporal dynamics of benthic macroinvertebrate communities in freshwater ecosystems are 140 

increasingly elucidated through eDNA approaches, capturing their nuanced responses to environmental gradients 141 

and seasonal fluctuations. 142 



In the study of temporal dynamics, eDNA technology can elucidate how benthic macroinvertebrate 143 

communities respond across multiple timescales. Research on seasonal variation has revealed, for instance, that in 144 

temperate rivers, communities undergo functional group restructuring driven by winter low temperatures and summer 145 

nutrient inputs (Reinholdt Jensen et al., 2021). Similarly, in Mediterranean regions, high flows during the rainy season 146 

alter substrate stability and spatial heterogeneity, promoting a shift toward disturbances-adapted functional groups 147 

(Hupało et al., 2022). Over longer timescales, eDNA-based monitoring can track interannual trends in community 148 

dynamics. For example, Bista et al. (2017) performed annual eDNA analyses in a lake ecosystem, revealing dynamic 149 

biodiversity changes and significant interannual variations in the eDNA abundance of certain benthic 150 

macroinvertebrates, which were likely influenced by climate change and anthropogenic activities. Overall, eDNA 151 

metabarcoding effectively captures temporal restructuring of benthic communities in response to environmental 152 

drivers such as water temperature, nutrient availability, flow regimes, and substrate dynamics. The technique thus 153 

provides a sensitive means to trace how these factors shape community composition over time. 154 

Spatial heterogeneity, alongside temporal dynamics, plays a pivotal role in structuring benthic 155 

macroinvertebrate communities (Fig. 1). Studies employing eDNA have demonstrated that community composition 156 

responds strongly to environmental gradients across multiple spatial scales, ranging from broad catchments to 157 

microhabitats. At larger (e.g., catchment) scales, complex river networks with high tributary density promote 158 

ecological niche diversification and enhance hydrological connectivity, thereby increasing both taxonomic and 159 

phylogenetic richness (Chang et al., 2025a). At intermediate (e.g., reach) scales, gradients in temperature and salinity 160 

shape distinct distribution patterns, with gradual turnover observed from freshwater inflows to coastal zones (Pinna 161 

et al., 2024). In high-altitude systems such as glacier-fed river-lake continua, eDNA has detected continuous 162 

transitions in biological assemblages for example from cold-adapted upstream specialists to widely distributed 163 

downstream taxa, which are primarily driven by thermal and turbidity gradients (Lu et al., 2023). Notably, such 164 

fine-scale community transitions can be detected across distances as short as a few hundred meters (Lu et al., 2024). 165 



 166 

Fig. 1. Representative illustration of spatially explicit eDNA applications for assessing benthic macroinvertebrate communities 167 

across freshwater ecosystems. 168 

The observed spatial patterns are driven by a combination of natural environmental gradients and 169 

anthropogenic pressures. Land-use changes, for example, indirectly alters community structure through increased 170 

nutrient loading and pollutant influx (Li et al., 2020, 2023b; Qin et al., 2023). Agricultural and urbanized areas are 171 

frequently dominated by pollution-tolerant taxa, while sensitive groups are diminished, leading to predictable spatial 172 

shifts in community composition (Li et al., 2020; Seymour et al., 2021). Overall, eDNA offers a powerful approach 173 

for mapping spatial biodiversity patterns and disentangling the complex interplay between natural heterogeneity 174 

and human impacts. Its fine spatial resolution also shows strong potential for improving predictive models of benthic 175 

community dynamics across multiple scales. 176 



eDNA technology serves as a crucial tool for elucidating spatiotemporal interactions within benthic 177 

macroinvertebrate communities. For example, multi-season monitoring in the Weihe River basin demonstrated that 178 

hydrological isolation during dry periods and runoff dispersal during wet seasons drive both local adaptation and 179 

regional restructuring of these communities (Liang et al., 2022). This indicates that hydrological rhythms regulate 180 

community dynamics through coordinated spatiotemporal processes.  Collectively, such findings show that eDNA, 181 

by integrating data across space and time, provides a reliable foundation for uncovering the assembly mechanisms 182 

of benthic macroinvertebrate communities. 183 

Despite its considerable promise for revealing spatiotemporal dynamics, several limitations of eDNA 184 

approaches must be addressed in future applications. First, long-term time-series monitoring is often hampered by 185 

funding constraints and a lack of methodological standardization, making it difficult to systematically track 186 

community changes associated with species phenology. Second, false-negative detections require careful ecological 187 

interpretation; a taxon may go undetected due to low abundance (e.g., rare species) or low metabolic activity, 188 

resulting in an ecologically meaningful "relative absence". Furthermore, accurately describing spatiotemporal 189 

interactions in these communities necessitates the integration of multidimensional datasets (Reinholdt Jensen et al., 190 

2021). Most current studies rely primarily on eDNA data alone and would benefit from deeper integration with 191 

hydrological models or machine learning algorithms. 192 

5. Unraveling Cascading Effects: Tracing Anthropogenic Stress in freshwater Ecosystems 193 

through eDNA   194 

5.1 Pollution cascades and multi-trophic effects 195 

Freshwater ecosystems face growing pressure from point-source pollutants, including mining runoff, 196 

agricultural inputs, and urban drainage. Such stressors can reduce biodiversity through direct toxicity or broader 197 

habitat degradation (Reid et al., 2019). eDNA approaches are proving effective in diagnosing the cascading effects 198 



of pollutants (such as heavy metals, mining effluents, agrochemicals, and insecticides) on benthic communities 199 

across multiple trophic levels. 200 

Pollutants drive systemic reorganization of benthic communities through direct toxicity or indirect alteration 201 

habitat, demonstrating characteristic ecological filtering and cascading response patterns. For instance, microcosm 202 

experiments and field monitoring show that when specific pollutants (e.g., copper and certain ions) exceed ecological 203 

thresholds, they can trigger synchronous collapse across multiple trophic levels, from bacteria and algae to benthic 204 

macroinvertebrate communities (Yang et al., 2018; Simonin et al., 2021). In contrast, the effects of agricultural non-205 

point source pollution (e.g., nitrogen, phosphorus nutrients and pesticides) are more complex and cumulative. 206 

Evaluations of treated wastewater effluent further reveal that point-source pollution can reorganize multi-trophic 207 

communities mainly by altering trophic interactions and control pathways, rather than simply reducing overall diversity 208 

(Xiong et al., 2025). eDNA-based analyses indicate that combined stress from agricultural nutrients (e.g., NH₄⁺-N and 209 

TN) and neonicotinoid insecticides suppresses sensitive groups such as EPT taxa, thereby increasing the dominance 210 

of pollution-tolerant groups (e.g., oligochaetes). This shift alters community functional structure and simplifies food-211 

web architecture (Beentjes et al., 2022; Xu et al., 2023). Additionally, pharmaceutical active compounds (PhACs), as 212 

emerging contaminants, can significantly disrupt the behavior and reproduction of microbial communities, benthic 213 

macroinvertebrates, and fish through chronic low-level exposure, initiating cascading effects across trophic levels 214 

(Papaioannou et al., 2023). This process may be accompanied by the spread of resistant bacteria and antibiotic 215 

resistance genes, further exacerbating the functional degradation of aquatic communities.  216 

Recent studies show that eDNA metabarcoding effectively captures shifts in community composition and losses 217 

of genetic diversity under both acute stressors such as glyphosate exposure (Loria et al., 2025) and diffuse, low-intensity 218 

stressors like micro- and nanoplastics, whose impacts are often subtle and transient at the community level (van Der Plas 219 

et al., 2025b). Notably, glyphosate-induced effects are strongly amplified under eutrophic conditions, driving rapid decline 220 

of sensitive taxa (e.g., crustaceans and rotifers) and resulting in marked structural reorganization of the community. 221 



Together, these findings highlight the need to incorporate both nutrient status and intra-community genetic responses into 222 

ecological risk assessments to adequately resolve pollution-driven cascades across trophic levels. 223 

Despite considerable research using eDNA metabarcoding to assess pollutants impacts on benthic 224 

macroinvertebrate, several limitations persist. For example, Zhou et al. (2022), combining morphological and 225 

eDNA approaches, found that shale-gas wastewater discharge did not significantly alter benthic macroinvertebrate 226 

community structure within two years, suggesting that longer-term monitoring may be necessary to detect ecological 227 

effects of slow-release pollutants. Furthermore, emerging pollutants such as microplastics and antibiotics remain 228 

understudied. More broadly, the current lack of methodological standardization in eDNA research calls for the 229 

development of harmonized frameworks to enable large-scale, comparable ecological risk assessments. 230 

5.2 Hydrological alteration and community reorganization 231 

Nearly half of global river volume is affected by flow regulation and/or fragmentation (Grill et al., 2015). 232 

Hydraulic infrastructure such as dams alters hydrological regimes and connectivity, driving adaptive restructuring 233 

in benthic macroinvertebrate communities (Chan et al., 2025). Reservoirs and cascading dams dampen downstream 234 

hydrological pulse; for example, eDNA monitoring in the Wujiang River has shown a shift from fast-flow-adapted 235 

taxa (e.g., EPT groups) to standing water-adapted Chironomidae (Shen et al., 2024). In drought-prone regions, 236 

prolonged high water levels in reservoirs can exacerbate intermittent streamflow, increasing the risk of habitat 237 

desiccation and prompting a transition from seasonal dynamic to stagnant-water, steady-state benthic communities 238 

(Li et al., 2020). Furthermore, dams can impede the dispersal of benthic larvae (Ntislidou et al., 2023). Moving 239 

beyond single-stressor studies, Li et al. (2022) used eDNA metabarcoding to reveal the synergistic effects of dams 240 

and nutrient enrichment on multitrophic community cascades. eDNA-based evidence also indicates that 241 

hydrological connectivity buffers multitrophic biodiversity loss during hydrological extremes (e.g., drought), 242 

constraining community reorganization beyond the influence of flow regulation alone (Feng et al., 2026). 243 



In summary, future research should integrate hydrological models with eDNA dynamic monitoring and 244 

quantify threshold effects of water infrastructure on the resilience of benthic macroinvertebrate communities. 245 

Moreover, applying eDNA to decipher complex stressor interactions (such as synergistic, antagonistic, or 246 

cumulative effects) will be essential for informing science-based management decisions. 247 

5.3 Effects of land-use change and habitat homogenization 248 

Land-use change is a major driver of biodiversity loss in freshwater ecosystems (Foley et al., 2005). Human 249 

activities such as urbanization, agricultural expansion, and deforestation cascade to alter the structure and function 250 

of benthic macroinvertebrate communities, largely by increasing nutrient loading (Faria et al., 2024) and reducing 251 

habitat heterogeneity (Birk et al., 2020). eDNA offers an effective means of tracking these changes, providing 252 

insights into how biodiversity and ecosystem function shift across land-use types changes that ultimately affect 253 

human well-being (Fig. 2). 254 

 255 

Fig. 2. Responses of benthic macroinvertebrate eDNA to land-use change across river basins. 256 



Accumulating eDNA evidence reveals a consistent pattern: along gradients from forested to agricultural 257 

and urban landscapes, benthic macroinvertebrate communities are reshaped by nutrient enrichment, contaminant 258 

inputs, and habitat fragmentation, which in turn alter multidimensional biodiversity and interaction network 259 

architecture. Forest cover is generally associated with greater community stability, whereas intensive agriculture 260 

tends to reduce sensitive EPT taxa and increase the relative dominance of Oligochaeta and Chironomidae (Li et al., 261 

2018; Marshall and Stepien, 2020; Li et al., 2023a; Faria et al., 2024; Zhu et al., 2024). Urbanization and habitat 262 

homogenization further reduce β-diversity and functional evenness, leading to compositional convergence and 263 

lower functional redundancy (Li et al., 2020; Seymour et al., 2021). These trends are observed across climatic zones 264 

and spatial scales—from headwater streams to mainstems and large catchments—and extend to the simplification 265 

of multitrophic network, reflected in weakened link density and connectance (Li et al., 2023b; Qin et al., 2023). 266 

Beyond broad land-use categories, recent watershed-scale studies also indicate that forest age structure and internal 267 

heterogeneity can mediate freshwater community responses independently of overall land-use type (Penaluna et al., 268 

2026). 269 

Importantly, these findings derived from eDNA align with robust morphology-based evidence confirming 270 

land use change as a widespread driver of benthic community homogenization and functional erosion (Pratiwi et 271 

al., 2024; Vidal-Abarca Gutiérrez, 2024; Xie et al., 2024), while offering greater sensitivity and taxonomic breadth. 272 

By resolving finer-scale community across land-use types and detecting cascading effects across trophic levels (Ji 273 

et al., 2022), eDNA provides a quantitative means to trace the causal pathway from land-use change, through altered 274 

habitat conditions and community structure, to changes in ecosystem functioning and services delivery. 275 

Emerging evidence further suggests that multitrophic network structure exhibits a stronger response to land 276 

use than do conventional diversity metrics. Therefore, research on riverine ecosystem responses to anthropogenic 277 

pressures should prioritize the analysis of these interaction networks, which can offer a more accurate reflection of 278 

a river's ecological condition. 279 



6. Navigating Multitrophic Networks with Environmental DNA 280 

Understanding the structure and dynamics of multitrophic interaction networks, particularly food webs, is 281 

essential for assessing ecosystem stability, function, and resilience to disturbances (Delmas et al., 2019; Thompson 282 

et al., 2012). Benthic macroinvertebrates occupy pivotal positions within these networks, linking basal resources 283 

(e.g., detritus, algae, microbes) to higher trophic levels (e.g., fish).  284 

In the Shaying River and other subtropical river systems, eDNA-based multitrophic monitoring has shown 285 

that land-use change reduces the functional evenness of benthic macroinvertebrates and alters their associations 286 

with microbial and algal groups (Li et al., 2020, 2023b; Qin et al., 2023). These shifts decrease  organic-matter 287 

decomposition efficiency and simplify food web architecture. Similarly, Wu et al. (2025) used eDNA in eutrophic 288 

lakes to clarify the functional roles of benthic communities and explore regulatory pathways such as bottom-up or 289 

top-down control. In extreme habitats like hypersaline lakes, pronounced salinity gradients support unique 290 

assemblages of salt-tolerant taxa and markedly reduced network modularity (Zhang et al., 2024). Notably, the 291 

spatiotemporal dynamics of food-web structure do not always align with patterns of species diversity (Blackman et 292 

al., 2022b), suggesting that understanding ecological networks assembly requires moving beyond taxonomic 293 

richness to examine the dynamic configuration of functional groups and their interactions. 294 

By providing high-resolution, multitrophic data, eDNA metabarcoding deepens our understanding of 295 

freshwater food webs, revealing changes in connectivity and stability often missed by conventional methods. As a 296 

holistic assessment tool, eDNA technology offers the empirical foundation needed to diagnose ecosystem health 297 

under global change and to guild effective conservation strategies.  298 

7. Enhanced Detection of Species via eDNA: From Rarity to Invasion 299 

Accurate species detection is fundamental to effective ecological monitoring and biodiversity conservation. 300 

In freshwater ecosystems, both rare native species and invasive alien species (IAS) pose critical yet distinct 301 



management challenges, with the former often requiring protection and the latter demanding early control (Yates et 302 

al., 2025). Conventional survey methods frequently fail to reliably detect these taxa due to their low abundance, 303 

cryptic behavior, or early stages of colonization. eDNA technology offers distinct advantages for detecting rare or 304 

endangered species (Sigsgaard et al., 2015; Coutts et al., 2022) as well as for tracking biological invasions (Ficetola 305 

et al., 2008; Hartle-Mougiou et al., 2023). 306 

7.1 Monitoring Rare and Cryptic Species with eDNA 307 

Monitoring rare and elusive taxa remains a persistent challenge in ecological assessments due to their low 308 

abundance, cryptic behaviors, and often benthic or burrowing life histories —traits that frequently lead to under-309 

detection by traditional methods such as visual surveys, benthic trawling, and morphological identification. Owing 310 

to its high sensitivity, eDNA has emerged as a transformative tool capable of detecting trace genetic material shed 311 

by organisms into the surroundings (Keck et al., 2022; Çevik and Çevik, 2025; Chang et al., 2025b).  312 

For taxa that are difficult to detect, whether due to low abundance, cryptic habits, or morphological 313 

ambiguity, eDNA significantly increases detection probability and reduces false-negative rates (Johnsen et al., 2020; 314 

Giribet et al., 2023; McCulloch et al., 2025; Zieritz et al., 2025). Its non-invasive nature also supports repeated and 315 

ethical sound monitoring of threatened species, aiding in tracking of population declines (Hata et al., 2022) and 316 

refining estimates of contemporary distributions (Lor et al., 2020; Preece et al., 2021). Together, these applications 317 

deliver timely, actionable data to guide conservation efforts. 318 

However, several limitations affect the detection of rare taxa. Detectability can be influenced by low rates 319 

of DNA shedding, constrained environmental dispersion, or PCR primer bias (Coghlan et al., 2021; Schmidt et al., 320 

2021). These issues are particularly evident in complex substrates or lotic (flowing) environments, where DNA 321 

undergoes rapid dilution and degradation. Such constraints represent the current sensitivity boundaries of eDNA 322 

methods under specific conditions, rather than an inherent flaw of the approach. 323 



7.2 Early Detection and Surveillance of Invasive Species with eDNA 324 

Invasive alien species represent a major threat to freshwater biodiversity, disrupting native communities 325 

through competitive exclusion, habitat modification, and resource monopolization (Rahel and Olden, 2008; Pyšek 326 

et al., 2020). Early detection and ongoing surveillance are therefore critical for effective management. eDNA has 327 

become a widely adopted molecular tool for this purpose, offering particular utility during the initial stages of 328 

invasion when traditional surveys often fail. 329 

Often described as a "molecular radar," eDNA can detect target DNA during the earliest stages of invasive, 330 

when populations are sparse and not yet visible, or in frontline colonization zones such as ports and water intake 331 

points, offering a substantially earlier warning than traditional visual surveys (Thomsen et al., 2011; Goldberg et 332 

al., 2013; Dougherty et al., 2016; Jeunen et al., 2022). It can also rapidly characterize macroinvertebrate 333 

communities in poorly studied or inaccessible areas, providing initial evidence of invasive presence and securing a 334 

critical time window for rapid response (Mauro et al., 2025). Moreover, eDNA enables simultaneous screening of 335 

multiple potential invasion sites or extensive water bodies, covering locations that are logistically challenging for 336 

conventional methods (Clusa et al., 2021). Notably, quantitative eDNA approaches have been successfully applied 337 

to monitor invasive mussels in large-scale water diversion systems (Yang et al., 2025), further demonstrating the 338 

practical utility of this technology in invasion surveillance. 339 

Nevertheless, detecting invasive species at their earliest stages remains inherently challenging. There is 340 

often a lag between initial colonization and population establishment, during which only a few individuals may be 341 

present and shed DNA below current detection thresholds. A further temporal delay can occur between initial DNA 342 

deposition and the accumulation of a quantifiable signal, reducing detectability during this critical window. Since 343 

eradication efforts are most effective when undertaken early in the invasion process (Fonseca et al., 2023; Harper 344 

et al., 2018), enhancing the sensitivity of eDNA detection methods is essential. 345 



A further obstacle to routine implementation is the lack of standardized protocols across jurisdictions for 346 

eDNA sampling, laboratory processing, primer selection, and data interpretation. This inconsistency hinders data 347 

comparability and limits the regulatory adoption of eDNA evidence in policy-making (Rishan et al., 2023). 348 

Addressing these standardization gaps is critical for integrating eDNA into operational invasive species surveillance 349 

programs. 350 

In summary, eDNA-based biomonitoring holds transformative potential for detecting both rare native 351 

species and invasive taxa, thereby improving biodiversity assessments and enabling proactive ecosystem 352 

management. Key challenges include detection limits in low-density populations, primer biases, and the absence of 353 

methodological standardization. To fully integrate eDNA into conservation and regulatory practice, future work 354 

should prioritize cross-taxa primer optimization, quantitative modeling of detection thresholds, and the international 355 

harmonization of sampling and analytical protocols. By bridging the gap between molecular signals and ecological 356 

insight, eDNA technology can play a pivotal role in safeguarding freshwater biodiversity amid accelerating global 357 

change (Fig. 3). 358 

 359 

Fig. 3. eDNA as a dual-purpose surveillance tool for benthic macroinvertebrates ecology. 360 



8. From Descriptive to Mechanistic:  How eDNA is Unraveling Benthic macroinvertebrate Communities   361 

This review synthesizes current applications of eDNA technology in studying benthic macroinvertebrate 362 

communities across global freshwater ecosystems. The continuous and scalable biodiversity monitoring enabled by 363 

eDNA metabarcoding in diverse habitats (stream, rivers, lakes, etc.) highlights its transformative role. This approach 364 

advances the field by:  365 

(1) Enabling accurate, high-throughput detection of multi-taxa communities, with particularly effective for 366 

low-abundance, cryptic, or taxonomically challenging organisms, thus supporting robust assessment of "cryptic 367 

biodiversity" often missed by traditional methods; 368 

(2) Capturing spatiotemporal ecosystem dynamics rapidly, including community succession and turnover 369 

driven by seasonal/hydrological cycles or environmental gradients;  370 

(3) Detecting early signals of anthropogenic disturbance and evaluating associated ecological impacts, such 371 

as biodiversity loss from industrial/agricultural pollution, habitat homogenization due to dams, and functional 372 

simplification of communities following land-use change;  373 

(4) Resolving the structure and dynamics of multitrophic interaction networks, revealing how pollutants or 374 

habitat alterations affect food-web stability through trophic cascades, or uncovering unique community assembly 375 

patterns in extreme environments.  376 

In recent years, eDNA research has progressively shifted from species identification and community 377 

description toward a more mechanistic understanding of ecological processes. Breakthroughs have been emerged 378 

on several key fronts. For instance, recent studies have parameterized particle-size distributions to simulate the 379 

eDNA transport in aquatic systems, thereby improving estimates of its physical detectability (Jo, 2025). Others have 380 

shown that data-preprocessing protocols and statistical modeling strategies substantially affect the ecological 381 



interpretability of quantitative eDNA results (Bylemans et al., 2025). These advances reflect a broader paradigm 382 

shift: eDNA is evolving from a detection tool into a probe for ecological mechanisms, opening new avenues to 383 

unravel the assembly rules and functional dynamics of benthic macroinvertebrate communities. 384 

Nevertheless, conceptual validation is required to bridge gaps between eDNA signals (e.g., detection rates, 385 

relative read abundance) and the true presence, absence or biomass of source organisms in benthic habitats, 386 

especially for rare species, juvenile stages, or metabolically inactive individuals. It is also important to recognize 387 

that eDNA constitutes indirect, extracellular genetic material shed by macroinvertebrates. Consequently, any 388 

eDNA-based estimates inherently involve uncertainties, including false negatives and false positives. These errors 389 

can arise at any stage of the eDNA metabarcoding workflow, from sampling and molecular processing to 390 

bioinformatic analysis, and should be systematically calibrated through co-located eDNA and morphological 391 

sampling, as well as refined through future technical improvements (Çevik and Çevik, 2025). 392 

Significant technical challenges remain. Integrating eDNA into routine biomonitoring requires further 393 

validation of standardized protocols and adaptive modification of existing bioassessment indices (e.g., indices of 394 

biological integrity). Detection accuracy can be enhanced through strategies such as seasonal sampling, automated 395 

monitoring, and optimized primer design/reference databases design. The resulting large-scale quantitative datasets 396 

are essential for capturing fluctuating interspecific interactions and seasonal dynamics in benthic communities. 397 

Integrating these data with local hydrological models or machine-learning algorithms offers a promising path to 398 

model complex interactions, predict community dynamics from time-series data, and ultimately establish scientific 399 

baselines for ecosystem conservation. 400 

Although further technical and methodological refinements are needed, recent national-level initiatives, 401 

such as those in China, demonstrate how eDNA monitoring can be institutionalized through standardized protocols 402 

and integrated databases (Wang et al., 2022; Chinese Society for Environmental Sciences (CSES), 2023a, 2023b, 403 



2023c; Jiangsu Provincial Administration for Market Regulation (JPAMR), 2023). These efforts highlight the 404 

potential for eDNA to become embedded within formal ecological assessment and policy systems. 405 

In conclusion, eDNA is fundamentally reshaping how we understand and conserve freshwater ecosystems. 406 

By addressing current methodological limitations and deepening research into ecological mechanisms, eDNA holds 407 

strong promise as a core tool for routine monitoring of benthic macroinvertebrate communities. Especially under 408 

intensifying global change, its efficiency and sensitivity provide crucial technical support for diagnosing river health 409 

and guiding ecological restoration, thereby advancing science-informed decision-making “from DNA to ecosystem 410 

management”. 411 
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