

1 **Decoding Benthic Macroinvertebrate Communities in Freshwater Ecosystems**
2 **Leveraging Environmental DNA**

3 **Yajing Zhang^{a,b}, Hui Yang^{a,b}, Xiwen Liang^{a,b}, Min Zhang^{a,b}, Wenwen Zhu^{a,b}, Hongxu Yang^{a,b}, Wenze Fan^{a,b},**
4 **Kun Li^{a,b,*}**

5 ^a *Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region,*
6 *School of Life Science, Heilongjiang University, Harbin 150080, China*

7 ^b *Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang*
8 *University, Harbin 150500, China*

9 *** Corresponding author.**

10 *Email address: kun.li@hlju.edu.cn (K. Li)*

11 **Abstract**

12 Benthic macroinvertebrates are key indicator groups within freshwater ecosystems, with their community being
13 closely tied to ecosystem functioning. Environmental DNA (eDNA) technology, with its high sensitivity and non-
14 invasive nature, provides a promising tool for studying the spatiotemporal dynamics of benthic macroinvertebrate
15 communities, their responses to anthropogenic disturbances, and the mechanisms governing community assembly.
16 However, current eDNA-based research on freshwater benthic communities largely concentrates on optimizing
17 sampling and detection methods, along with environmental monitoring applications. Broader ecological
18 investigations using eDNA data remain fragmented and limited. In particular, it remains unresolved whether benthic
19 community ecology theories derived from morphological classification can be reliably reconstructed from eDNA-
20 based molecular signals. We systematically summarize the application of eDNA technology in benthic
21 macroinvertebrate ecology, encompassing diversity assessment, spatiotemporal community dynamics, cascading
22 effects of human-induced disturbances, and multi-trophic interaction networks. Although significant empirical
23 progress has been made, challenges persist, including limited spatiotemporal coverage and methodological
24 constraints. Future developments should prioritize the establishment of long-term monitoring networks, integration
25 of multidimensional data, and deeper engagement with community ecology theories. Such advances will help shift
26 eDNA-based research from descriptive to mechanistic understanding, thereby offering scientific support for the
27 precise management and restoration of river ecosystems.

28 **Keywords:** Macroinvertebrates; eDNA; Community ecology; Human disturbance; Multitrophic interactions

29 **1. Introduction**

30 Freshwater ecosystems are fundamental role to maintaining biodiversity and supporting human well-being
31 (Lynch et al., 2023). However, their biological integrity is increasingly threatened by multiple stressors, including
32 climate change, pollution, overexploitation of resources, and the spread of invasive species (Perry et al., 2024; Sayer
33 et al., 2025). Benthic macroinvertebrates are integral components of these ecosystems, performing irreplaceable
34 functions such as detritus decomposition (Tank et al., 2010; Yue et al., 2022). Their diversity is undergoing
35 significant decline under intense anthropogenic disturbances, including urbanization, agricultural expansion,
36 wastewater discharge, aquaculture, and forestry development (Li et al. 2015; Dudgeon and Strayer, 2025; Keck et
37 al., 2025). Owing to their limited mobility and high sensitivity to environmental change, they are widely used as
38 bioindicators across global monitoring programs (Dudgeon et al., 2006; Morse et al., 2007; Thomsen et al., 2011;
39 Jin et al., 2025). Nevertheless, conventional assessments of benthic macroinvertebrate biodiversity which rely on
40 field sampling, sorting, and morphological identification, are time-consuming, labor-intensive, and requires
41 considerable taxonomic expertise (Johnson et al., 1993; Sumudumali and Jayawardana, 2021). This approach often
42 entails extensive specimen sorting and can yield inaccurate results due to difficulties in distinguishing
43 morphologically similar taxa, juvenile stages, and rare species. Ntislidou et al. (2020) highlighted how human error
44 during identification can affect water quality assessments, while Haase et al. (2010) reported that 29% of specimens
45 were overlooked during sorting, identifications varied by more than 30% among analysts, and 16% of samples led
46 to discrepant ecological evaluation. Such methodological limitations may seriously compromise the effectiveness
47 of river management and restoration plans.

48 In contrast, environmental DNA (eDNA) technology offers considerable technical advantages that are
49 advancing the study of benthic macroinvertebrate biodiversity (Deiner et al., 2017; Múrria et al., 2024). Its non-
50 invasive nature minimizes disturbance to both target species and their habitats, while its cost-effectiveness across
51 temporal and spatial scales facilitates large-scale monitoring of biodiversity dynamics. The high sensitivity of eDNA

52 further allows for effective detection of rare and cryptic species, as well as early-stages biological invasions (Beng
53 and Corlett, 2020; Takahashi et al., 2023; Altermatt et al., 2025; Sander et al., 2025; Yates et al., 2025). Consequently,
54 eDNA is increasingly regarded as the most promising tools for efficient, large-scale species monitoring in aquatic
55 ecosystems.

56 Environmental DNA (eDNA) studies are conducted more frequently in aquatic ecosystems, such as rivers,
57 lakes, and marine waters, than in terrestrial environments, largely due to the relative ease of sample collection.
58 Among these, freshwater ecosystems dominate the eDNA literature, representing approximately 65% of published
59 studies, whereas marine systems account for about 25% and the remaining 10% pertain to other or multiple habitat
60 types (Takahashi et al., 2023; Altermatt et al., 2025). Notably, more than half of these studies (around 52%) focus
61 on fish species, while benthic macroinvertebrate communities have received comparatively less attention.

62 In this review, we summarize the application of eDNA technology to key ecological questions regarding
63 benthic macroinvertebrate communities in freshwater ecosystems, including their spatiotemporal dynamics,
64 resilience to anthropogenic disturbance, and multi-trophic interactions. We also synthesize recent technological and
65 methodological advances, outline major international initiatives, and provide a comprehensive overview of
66 published eDNA-based studies in benthic macroinvertebrate community ecology. Current challenges and promising
67 future research directions are discussed. We anticipate that this work will help advance eDNA from a primarily
68 descriptive tool toward a more mechanistic analytical framework, thereby providing actionable insights to support
69 the monitoring and management of freshwater ecosystems under global change.

70 **2. Towards Optimized eDNA-based in Benthic Community Ecology: Sampling Strategies and**
71 **Methodological Validation**

72 eDNA originates from a variety of biological sources, such as skin, saliva, mucus, secretions, urine, blood,
73 feces, gametes, roots, leaves, pollen, and decomposing tissues (Bohmann et al., 2014). It exists both as extracellular

74 molecules and within cellular debris. The technology enables non-invasive species detection and community
75 assessment by capturing genetic material shed or released by organisms, followed by high-throughput sequencing
76 (HTS) and bioinformatics analysis (Thomsen and Willerslev, 2015; Harrison et al., 2019; Gu et al., 2024). Recently,
77 Sahu et al. (2025) provided an updated overview of the standard eDNA workflow, which outlines the complete
78 pipeline from field sampling and DNA extraction/purification through PCR amplification, HTS, bioinformatic
79 processing, to final taxonomic assignment.

80 The choice of environmental sample type is crucial in eDNA metabarcoding, as it directly influences taxon
81 detection and the resulting community profile (**Table1**). Water samples are widely used for large-scale biodiversity
82 assessment due to their ease of collection (Vourka et al., 2023); however, local benthic community composition may
83 be underestimated because of signal dilution and hydrological transport (Wang et al., 2021). In contrast, ethanol-
84 preserved samples (e.g., from kick-net sampling) show higher sensitivity for sessile or sedentary taxa and better
85 reflect local biodiversity (Erdozain et al., 2019; Martins et al., 2021), though they can underrepresent rare, small, or
86 heavily sclerotized species (Zizka et al., 2019). Sediment samples accumulate DNA from benthic organisms and are
87 less influenced by transport, making them particularly useful for detecting arthropods, annelids, and mollusks at
88 local scale (Ji et al., 2022). Their high spatial heterogeneity, however, requires careful sampling design and adequate
89 replication to ensure representativeness (Sakata et al., 2021). Biofilm samples also hold promise for monitoring
90 species in complex or structured habitats due to their strong DNA retention capacity (Rivera et al., 2021). Recent
91 evidence suggests that combining water and detritus samples currently represents the most effective strategy for
92 assessing riverine macroinvertebrate diversity. This integrated approach leverages complementary taxonomic
93 coverage and outperforms single-sample methods and other combinations in capturing species richness and
94 community composition (Shi et al., 2025).

95 **Table1. Comparison of Common eDNA Sample Types in Freshwater Ecosystems**

Sample Type	Advantages	Limitations	Recommended Applications
Water	Captures broad-scale diversity patterns; easy to collect and process	Prone to dilution; lower resolution for site-specific communities	Regional-scale biodiversity assessment
Ethanol	Accurately reflects local community composition; effective for sessile taxa	May underrepresent rare or small-bodied taxa; potential sampling biases	Local biotic integrity evaluation
Sediment	High DNA concentration; suitable for detecting benthic organisms	High spatial heterogeneity; requires intensive replication for representativeness	Local community structure assessment and taxonomic screening
Biofilm	Long DNA retention time; effective in slow-flow or attached habitats	Methodologically novel; standardization protocols still under development	Monitoring in complex habitats or where conventional methods are limited
Detritus	Superior DNA retention; enhanced detection of key taxa (e.g., Oligochaeta, Diptera)	High operational complexity; limited spatial representativeness	Combined with water samples

96 Although water sampling remains prevalent in eDNA studies due to its operational simplicity, conducting
 97 controlled comparisons with traditional morphological methods are still essential to validate the accuracy and
 98 reliability of eDNA-based assessments (**Table 2**).

99 **Table 2. Representative studies comparing benthic macroinvertebrate richness estimates with traditional sampling or historical
 100 data for a geographic location to that of eDNA**

No.	eDNA Sample Types	Traditional sampling method	Habitat	eDNA efficacy finding	References
1	Water	Dip net	Pond water	●	(Thomsen et al., 2011)
2	Water	Dip net	Ditches	↑	(Beentjes et al., 2022)
3	Water	Dip net	Ditches	↑	(van der Plas et al., 2025b)
4	Water	Dip net	River	●	(Marshall and Stepien, 2020)
5	Water	Kick-sweep	Lake and river	●	(Mächler et al., 2014)
6	Water	Kick-sweep	Hypersaline lake	↑	(Campbell et al., 2023)
7	Water	Kick-sweep	Hypersaline lake	●	(Saccò et al., 2025)
8	Water	Kick-sweep	River	●	(Fernández et al., 2019)
9	Water	Kick-sweep	River	↑	(Mächler et al., 2019)
10	Water	Kick-sweep	River	●	(Brantschen et al., 2021)
11	Water	Kick-sweep	River	↑	(Pereira-da-Conceicao et al., 2021)

No.	eDNA Sample Types	Traditional sampling method	Habitat	eDNA efficacy finding	References
12	Water	Kick-sweep	River	↑	(Seymour et al., 2021)
13	Water	Kick-sweep	River	●	(Blackman et al., 2022a)
14	Water	Kick-sweep	River	●	(Keck et al., 2022b)
15	Water	Kick-sweep	Stream	●	(Reinholdt Jensen et al., 2021)
16	Water	Kick-sweep	Stream	●	(Gleason et al., 2021)
17	Water	D-net	River	●	(Múrria et al., 2024)
18	Water	D-net	River	●	(Huo et al., 2025)
19	Water	Hand net	Spring	●	(Blattner et al., 2021)
20	Water	Hand net	River	●	(Jeunen et al., 2022)
21	Water	Surber net	River	↑	(Uchida et al., 2020)
22	Water	Hess sampling	River	●	(Penaluna et al., 2026)
23	Water	Visual census, benthic trawling	River	↑	(Hata et al., 2022)
24	Water	Historical data	Lake	●	(Coghlan et al., 2021)
25	Water	Historical data	Lagoon	●	(Specchia et al., 2022)
26	Water	Historical data	River	●	(Wu et al., 2023)
27	Water	Historical data	River	●	(Qin et al., 2023)
28	Water	Historical data	River and stream	●	(Aunins et al., 2023)
29	Sediment	Surber net	River	↑	(Ji et al., 2022)
30	Sediment	Surber net	River	↑	(Zhou et al., 2022)
31	Sediment	D-net, Surber net	River	●	(Li et al., 2024)
32	Detritus	Kick-sweep	River	↑	(Ntislidou et al., 2023)
33	Detritus	D-net	River and stream	↓	(Jijón et al., 2025)
34	Ethanol, Water	D-net	Stream	↑	(Wang et al., 2021)
35	Ethanol, Water	Surber net, kick net	River	↑	(Chen et al., 2025)
36	Biofilm	Historical data	River	↑	(Rivera et al., 2021)

101 Notes: “●” indicates that the results are complementary; “↑” indicates that the eDNA method has obtained higher diversity
 102 data compared to the traditional sampling method; “↓” indicates that the eDNA method has obtained lower diversity data
 103 compared to the traditional sampling method.

104 In summary, future studies should prioritize multiple sample types, such as water, sediment, and ethanol-
 105 preserved materials, to capture complementary ecological niches and improve overall detection efficiency. Even when
 106 full integration of all sample types is not feasible, comparative analyses with traditional sampling methods can still
 107 offer a robust evaluation of eDNA’s strengths and limitations, thereby strengthening the credibility of the findings.

108 **3. Global Insights: eDNA in Setting Research Priorities and Response Indicators**

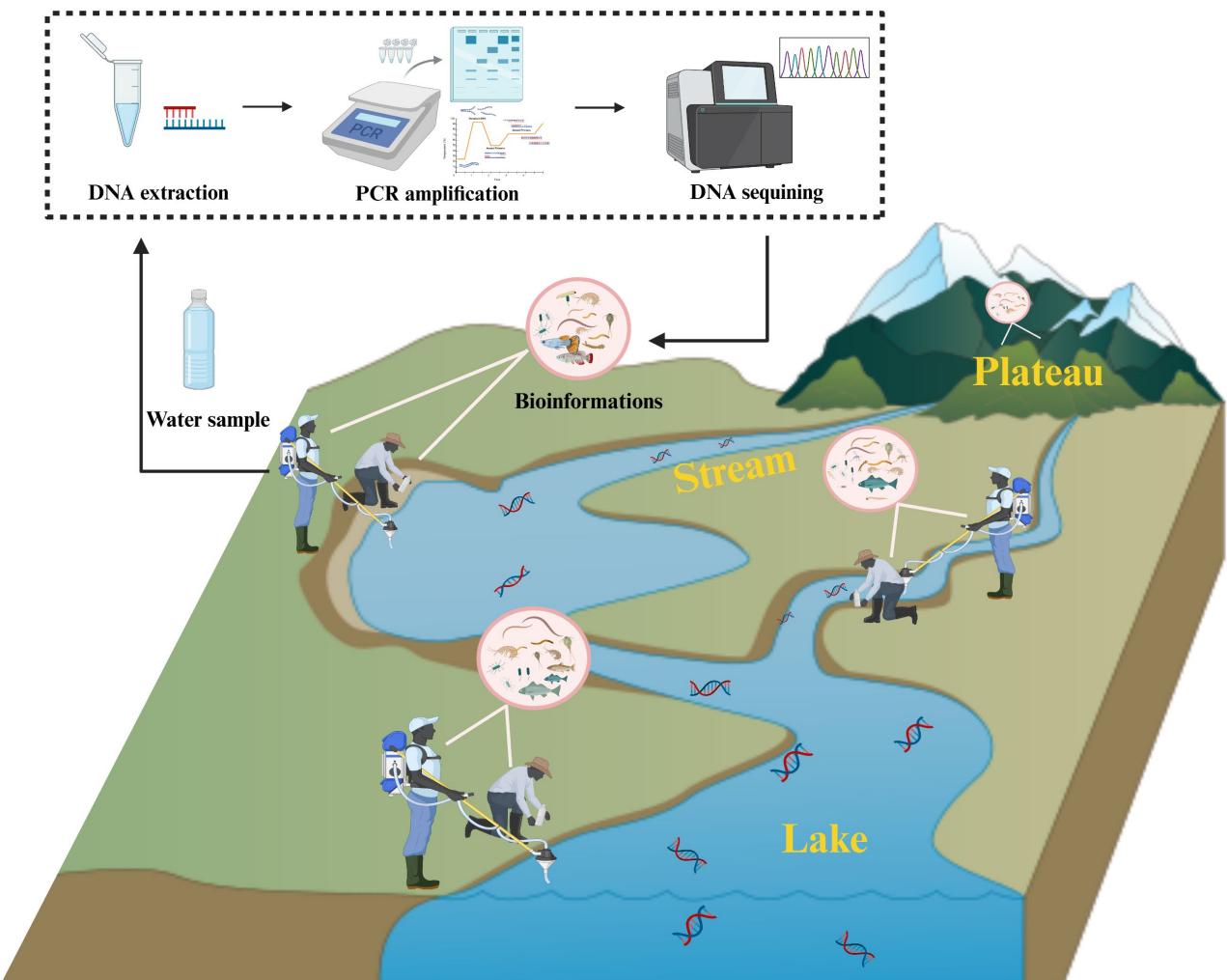
109 The assessment of ecosystem stress has long relied on diversity metrics, with α diversity (intra-community
 110 diversity) and β diversity (inter-community differences) serving as core indicators in ecological research for decades
 111 (Daly et al., 2018; van der Plas et al., 2025a). These metrics quantify biodiversity patterns and are essential for detecting
 112 shifts in community composition across spatial and temporal scales. Here, we synthesize benthic macroinvertebrate
 113 community indices obtained from eDNA data across different countries, illustrating how environmental drivers, such
 114 as land use, water quality, and climate factors, influence biodiversity patterns in distinct regions (Table 3). This
 115 synthesis offers a comprehensive overview of current research trends in this field internationally.

116 **Table 3. Summary of benthic macroinvertebrate community ecological metrics derived from eDNA data, their associated**
 117 **environmental drivers, and representative application studies.**

No.	Country	Environmental Variables	Response Variables	References
1	Australia	Salinity	α -diversity, β -diversity	(Campbell et al., 2023)
2	Belarus	Water temperature, Artificial canals	β -diversity, Keystone species screening, Phylogenetic diversity	(Jeunen et al., 2022)
3	Brazil	Land use change	α -diversity, β -diversity	(Faria et al., 2024)
4	Canada	Land use change	α -diversity, β -diversity	(Gleason et al., 2021)
5	Canada	Pollution gradient (herbicide)	α -diversity, β -diversity	(Loria et al., 2025)
6	China	Anthropogenic (pollution gradient)	α -diversity, β -diversity, Functional diversity	(Xu et al., 2023)
7	China	Dams, Nutrient enrichment	α -diversity, β -diversity	(Li et al., 2022)
8	China	Drought	α -diversity, β -diversity	(Feng et al., 2026)
9	China	Elevation	α -diversity, β -diversity	(Shen et al., 2024)
10	China	Flow	α -diversity, β -diversity, Functional diversity	(Li et al., 2024)
11	China	Heavy metal pollution	α -diversity, β -diversity, Phylogenetic diversity	(Zhou et al., 2022)
12	China	Heavy metal pollution (Cu)	α -diversity, β -diversity, Functional diversity, Phylogenetic diversity	(Yang et al., 2018)
13	China	Land use change	α -diversity, β -diversity, Functional diversity	(Li et al., 2020)
14	China	Land use change	α -diversity, β -diversity, Functional diversity, Phylogenetic diversity	(Wu et al., 2023)
15	China	Land use change	α -diversity, β -diversity	(Li et al., 2023a)
16	China	Land use change, Pollutant gradient	α -diversity, β -diversity	(Li et al., 2023b)
17	China	Land use change, Pollution gradient	α -diversity, β -diversity	(Qin et al., 2023)

No.	Country	Environmental Variables	Response Variables	References
18	China	Salinity	α -diversity, Functional diversity, Phylogenetic diversity	(Zhang et al., 2024)
19	China	Seasonal hydrological variation (Water temp., Flow)	α -diversity, β -diversity, Functional diversity	(Liang et al., 2022)
20	China	Trophic status	α -diversity, β -diversity, Functional diversity	(Xiong et al., 2025)
21	China	Urbanization gradient	α -diversity, β -diversity, Functional diversity	(Ji et al., 2022)
22	China	Water temperature, Elevation	α -diversity, β -diversity, Functional diversity, Phylogenetic diversity	(Lu et al., 2023)
23	China	Water temperature, Elevation	α -diversity, β -diversity, Phylogenetic diversity	(Lu et al., 2024)
24	China	Water temperature, Salinity	α -diversity, β -diversity, Functional diversity	(Huo et al., 2025)
25	Denmark	Seasonal hydrological variation (Water temp., Flow)	α -diversity, β -diversity, Functional diversity	(Reinholdt Jensen et al., 2021)
26	Ecuador	Elevation	α -diversity	(Jijón et al., 2025)
27	Germany	Seasonal hydrological variation (Water temp., Flow)	α -diversity, β -diversity	(Hupalo et al., 2022)
28	Greece	Hydrological barriers	α -diversity, β -diversity, Functional diversity, Phylogenetic diversity	(Ntislidou et al., 2023)
29	Indonesia	Flow	α -diversity, β -diversity	(Effendi et al., 2023)
30	Italy	Salinity, Anthropogenic pressure	α -diversity, β -diversity, Functional diversity, Keystone species screening	(Specchia et al., 2022)
31	Italy	Salinity, Substrate	α -diversity, β -diversity, Functional diversity	(Pinna et al., 2024)
32	Japan	Water temperature, Flow	α -diversity, β -diversity	(Uchida et al., 2020)
33	Netherlands	Agricultural source (Pesticides)	α -diversity, β -diversity	(Beentjes et al., 2022)
34	Netherlands	Pollution gradient (microplastic)	α -diversity, β -diversity	(van der Plas et al., 2025b)
35	Spain	Anthropogenic (pollution gradient)	α -diversity, β -diversity	(Múrria et al., 2024)
36	Switzerland	Anthropogenic pressure (Non-native species detection)	α -diversity, keystone species screening	(Blackman et al., 2022a)
37	Switzerland	Seasonal hydrological variation (Water temp., Flow)	α -diversity, β -diversity	(Blackman et al., 2022b)
38	Switzerland	Urbanization gradient	α -diversity, β -diversity	(Perrelet et al., 2025)
39	UK	Land use change	α -diversity, β -diversity, Functional diversity	(Seymour et al., 2021)
40	USA	Habitat quality	α -diversity, β -diversity	(Marshall and Stepien, 2020)
41	USA	Land use change	α -diversity, β -diversity, Functional diversity	(Penaluna et al., 2026)
42	USA	Seasonal hydrological variation (Water temp., Flow)	α -diversity, β -diversity	(Aunins et al., 2023)

120 such as water temperature and nutrient concentrations affect species diversity and community structure, often using
121 classical response indices like α - and β -diversity. In contrast, research in Australia and Brazil tends to focus on
122 functional diversity, species composition, and related ecological processes, commonly applying functional diversity
123 indices to track ecosystem changes. In Germany and Spain, greater attention has been given to pollutant gradients
124 and their interactions with aquatic biota, with species richness and community structure regularly used as response
125 metrics. Notably, as eDNA methods become more accessible and their resolution improves, an increasing number
126 of studies are extending beyond purely taxonomic metrics to quantify ecological function. A significant advance in
127 this direction is the “Fun-eDNA” framework recently proposed by Cantera et al. (2024). This method systematically
128 extracts functional trait information, such as feeding group, body size, and dispersal capacity, from eDNA
129 metabarcoding data, allowing the calculation of functional diversity indices (e.g., functional richness, evenness, and
130 redundancy). By transcending the previous limitation of eDNA to taxonomic identification, this framework supports
131 functional inference at a molecular level, offering considerable potential for both theoretical and applied ecology.


132 In summary, eDNA technology offers a holistic perspective for assessing aquatic biodiversity. The indices
133 derived from eDNA data provide essential insights into ecosystem health, stability, and resilience, informing
134 targeted conservation and restoration measures (Rowland et al., 2020). Ecosystem health can also be evaluated using
135 biological indices, which are often based on the sensitivity or tolerance of certain taxa to environmental conditions
136 and rely heavily on macroinvertebrate community composition (Sumudumali and Jayawardana, 2021). Moving
137 forward, integrating eDNA with complementary monitoring tools and ecological models will be vital to effectively
138 manage and mitigate the impacts of environmental degradation and climate change.

139 **4. Unraveling Spatiotemporal Dynamics: eDNA Reveals Benthic Community Patterns**

140 The spatiotemporal dynamics of benthic macroinvertebrate communities in freshwater ecosystems are
141 increasingly elucidated through eDNA approaches, capturing their nuanced responses to environmental gradients
142 and seasonal fluctuations.

143 In the study of temporal dynamics, eDNA technology can elucidate how benthic macroinvertebrate
144 communities respond across multiple timescales. Research on seasonal variation has revealed, for instance, that in
145 temperate rivers, communities undergo functional group restructuring driven by winter low temperatures and summer
146 nutrient inputs (Reinholdt Jensen et al., 2021). Similarly, in Mediterranean regions, high flows during the rainy season
147 alter substrate stability and spatial heterogeneity, promoting a shift toward disturbances-adapted functional groups
148 (Hupało et al., 2022). Over longer timescales, eDNA-based monitoring can track interannual trends in community
149 dynamics. For example, Bista et al. (2017) performed annual eDNA analyses in a lake ecosystem, revealing dynamic
150 biodiversity changes and significant interannual variations in the eDNA abundance of certain benthic
151 macroinvertebrates, which were likely influenced by climate change and anthropogenic activities. Overall, eDNA
152 metabarcoding effectively captures temporal restructuring of benthic communities in response to environmental
153 drivers such as water temperature, nutrient availability, flow regimes, and substrate dynamics. The technique thus
154 provides a sensitive means to trace how these factors shape community composition over time.

155 Spatial heterogeneity, alongside temporal dynamics, plays a pivotal role in structuring benthic
156 macroinvertebrate communities (**Fig. 1**). Studies employing eDNA have demonstrated that community composition
157 responds strongly to environmental gradients across multiple spatial scales, ranging from broad catchments to
158 microhabitats. At larger (e.g., catchment) scales, complex river networks with high tributary density promote
159 ecological niche diversification and enhance hydrological connectivity, thereby increasing both taxonomic and
160 phylogenetic richness (Chang et al., 2025a). At intermediate (e.g., reach) scales, gradients in temperature and salinity
161 shape distinct distribution patterns, with gradual turnover observed from freshwater inflows to coastal zones (Pinna
162 et al., 2024). In high-altitude systems such as glacier-fed river-lake continua, eDNA has detected continuous
163 transitions in biological assemblages for example from cold-adapted upstream specialists to widely distributed
164 downstream taxa, which are primarily driven by thermal and turbidity gradients (Lu et al., 2023). Notably, such
165 fine-scale community transitions can be detected across distances as short as a few hundred meters (Lu et al., 2024).

166

167 **Fig. 1. Representative illustration of spatially explicit eDNA applications for assessing benthic macroinvertebrate communities**

168

across freshwater ecosystems.

169

The observed spatial patterns are driven by a combination of natural environmental gradients and

170

anthropogenic pressures. Land-use changes, for example, indirectly alters community structure through increased

171

nutrient loading and pollutant influx (Li et al., 2020, 2023b; Qin et al., 2023). Agricultural and urbanized areas are

172

frequently dominated by pollution-tolerant taxa, while sensitive groups are diminished, leading to predictable spatial

173

shifts in community composition (Li et al., 2020; Seymour et al., 2021). Overall, eDNA offers a powerful approach

174

for mapping spatial biodiversity patterns and disentangling the complex interplay between natural heterogeneity

175

and human impacts. Its fine spatial resolution also shows strong potential for improving predictive models of benthic

176

community dynamics across multiple scales.

177 eDNA technology serves as a crucial tool for elucidating spatiotemporal interactions within benthic
178 macroinvertebrate communities. For example, multi-season monitoring in the Weihe River basin demonstrated that
179 hydrological isolation during dry periods and runoff dispersal during wet seasons drive both local adaptation and
180 regional restructuring of these communities (Liang et al., 2022). This indicates that hydrological rhythms regulate
181 community dynamics through coordinated spatiotemporal processes. Collectively, such findings show that eDNA,
182 by integrating data across space and time, provides a reliable foundation for uncovering the assembly mechanisms
183 of benthic macroinvertebrate communities.

184 Despite its considerable promise for revealing spatiotemporal dynamics, several limitations of eDNA
185 approaches must be addressed in future applications. First, long-term time-series monitoring is often hampered by
186 funding constraints and a lack of methodological standardization, making it difficult to systematically track
187 community changes associated with species phenology. Second, false-negative detections require careful ecological
188 interpretation; a taxon may go undetected due to low abundance (e.g., rare species) or low metabolic activity,
189 resulting in an ecologically meaningful "relative absence". Furthermore, accurately describing spatiotemporal
190 interactions in these communities necessitates the integration of multidimensional datasets (Reinholdt Jensen et al.,
191 2021). Most current studies rely primarily on eDNA data alone and would benefit from deeper integration with
192 hydrological models or machine learning algorithms.

193 **5. Unraveling Cascading Effects: Tracing Anthropogenic Stress in freshwater Ecosystems
194 through eDNA**

195 **5.1 Pollution cascades and multi-trophic effects**

196 Freshwater ecosystems face growing pressure from point-source pollutants, including mining runoff,
197 agricultural inputs, and urban drainage. Such stressors can reduce biodiversity through direct toxicity or broader
198 habitat degradation (Reid et al., 2019). eDNA approaches are proving effective in diagnosing the cascading effects

199 of pollutants (such as heavy metals, mining effluents, agrochemicals, and insecticides) on benthic communities
200 across multiple trophic levels.

201 Pollutants drive systemic reorganization of benthic communities through direct toxicity or indirect alteration
202 habitat, demonstrating characteristic ecological filtering and cascading response patterns. For instance, microcosm
203 experiments and field monitoring show that when specific pollutants (e.g., copper and certain ions) exceed ecological
204 thresholds, they can trigger synchronous collapse across multiple trophic levels, from bacteria and algae to benthic
205 macroinvertebrate communities (Yang et al., 2018; Simonin et al., 2021). In contrast, the effects of agricultural non-
206 point source pollution (e.g., nitrogen, phosphorus nutrients and pesticides) are more complex and cumulative.
207 Evaluations of treated wastewater effluent further reveal that point-source pollution can reorganize multi-trophic
208 communities mainly by altering trophic interactions and control pathways, rather than simply reducing overall diversity
209 (Xiong et al., 2025). eDNA-based analyses indicate that combined stress from agricultural nutrients (e.g., NH_4^+ -N and
210 TN) and neonicotinoid insecticides suppresses sensitive groups such as EPT taxa, thereby increasing the dominance
211 of pollution-tolerant groups (e.g., oligochaetes). This shift alters community functional structure and simplifies food-
212 web architecture (Beentjes et al., 2022; Xu et al., 2023). Additionally, pharmaceutical active compounds (PhACs), as
213 emerging contaminants, can significantly disrupt the behavior and reproduction of microbial communities, benthic
214 macroinvertebrates, and fish through chronic low-level exposure, initiating cascading effects across trophic levels
215 (Papaioannou et al., 2023). This process may be accompanied by the spread of resistant bacteria and antibiotic
216 resistance genes, further exacerbating the functional degradation of aquatic communities.

217 Recent studies show that eDNA metabarcoding effectively captures shifts in community composition and losses
218 of genetic diversity under both acute stressors such as glyphosate exposure (Loria et al., 2025) and diffuse, low-intensity
219 stressors like micro- and nanoplastics, whose impacts are often subtle and transient at the community level (van Der Plas
220 et al., 2025b). Notably, glyphosate-induced effects are strongly amplified under eutrophic conditions, driving rapid decline
221 of sensitive taxa (e.g., crustaceans and rotifers) and resulting in marked structural reorganization of the community.

222 Together, these findings highlight the need to incorporate both nutrient status and intra-community genetic responses into
223 ecological risk assessments to adequately resolve pollution-driven cascades across trophic levels.

224 Despite considerable research using eDNA metabarcoding to assess pollutants impacts on benthic
225 macroinvertebrate, several limitations persist. For example, Zhou et al. (2022), combining morphological and
226 eDNA approaches, found that shale-gas wastewater discharge did not significantly alter benthic macroinvertebrate
227 community structure within two years, suggesting that longer-term monitoring may be necessary to detect ecological
228 effects of slow-release pollutants. Furthermore, emerging pollutants such as microplastics and antibiotics remain
229 understudied. More broadly, the current lack of methodological standardization in eDNA research calls for the
230 development of harmonized frameworks to enable large-scale, comparable ecological risk assessments.

231 **5.2 Hydrological alteration and community reorganization**

232 Nearly half of global river volume is affected by flow regulation and/or fragmentation (Grill et al., 2015).
233 Hydraulic infrastructure such as dams alters hydrological regimes and connectivity, driving adaptive restructuring
234 in benthic macroinvertebrate communities (Chan et al., 2025). Reservoirs and cascading dams dampen downstream
235 hydrological pulse; for example, eDNA monitoring in the Wujiang River has shown a shift from fast-flow-adapted
236 taxa (e.g., EPT groups) to standing water-adapted Chironomidae (Shen et al., 2024). In drought-prone regions,
237 prolonged high water levels in reservoirs can exacerbate intermittent streamflow, increasing the risk of habitat
238 desiccation and prompting a transition from seasonal dynamic to stagnant-water, steady-state benthic communities
239 (Li et al., 2020). Furthermore, dams can impede the dispersal of benthic larvae (Ntislidou et al., 2023). Moving
240 beyond single-stressor studies, Li et al. (2022) used eDNA metabarcoding to reveal the synergistic effects of dams
241 and nutrient enrichment on multitrophic community cascades. eDNA-based evidence also indicates that
242 hydrological connectivity buffers multitrophic biodiversity loss during hydrological extremes (e.g., drought),
243 constraining community reorganization beyond the influence of flow regulation alone (Feng et al., 2026).

244 In summary, future research should integrate hydrological models with eDNA dynamic monitoring and
245 quantify threshold effects of water infrastructure on the resilience of benthic macroinvertebrate communities.
246 Moreover, applying eDNA to decipher complex stressor interactions (such as synergistic, antagonistic, or
247 cumulative effects) will be essential for informing science-based management decisions.

248 **5.3 Effects of land-use change and habitat homogenization**

249 Land-use change is a major driver of biodiversity loss in freshwater ecosystems (Foley et al., 2005). Human
250 activities such as urbanization, agricultural expansion, and deforestation cascade to alter the structure and function
251 of benthic macroinvertebrate communities, largely by increasing nutrient loading (Faria et al., 2024) and reducing
252 habitat heterogeneity (Birk et al., 2020). eDNA offers an effective means of tracking these changes, providing
253 insights into how biodiversity and ecosystem function shift across land-use types changes that ultimately affect
254 human well-being (Fig. 2).

255
256 **Fig. 2. Responses of benthic macroinvertebrate eDNA to land-use change across river basins.**

257 Accumulating eDNA evidence reveals a consistent pattern: along gradients from forested to agricultural
258 and urban landscapes, benthic macroinvertebrate communities are reshaped by nutrient enrichment, contaminant
259 inputs, and habitat fragmentation, which in turn alter multidimensional biodiversity and interaction network
260 architecture. Forest cover is generally associated with greater community stability, whereas intensive agriculture
261 tends to reduce sensitive EPT taxa and increase the relative dominance of Oligochaeta and Chironomidae (Li et al.,
262 2018; Marshall and Stepien, 2020; Li et al., 2023a; Faria et al., 2024; Zhu et al., 2024). Urbanization and habitat
263 homogenization further reduce β -diversity and functional evenness, leading to compositional convergence and
264 lower functional redundancy (Li et al., 2020; Seymour et al., 2021). These trends are observed across climatic zones
265 and spatial scales—from headwater streams to mainstems and large catchments—and extend to the simplification
266 of multitrophic network, reflected in weakened link density and connectance (Li et al., 2023b; Qin et al., 2023).
267 Beyond broad land-use categories, recent watershed-scale studies also indicate that forest age structure and internal
268 heterogeneity can mediate freshwater community responses independently of overall land-use type (Penaluna et al.,
269 2026).

270 Importantly, these findings derived from eDNA align with robust morphology-based evidence confirming
271 land use change as a widespread driver of benthic community homogenization and functional erosion (Pratiwi et
272 al., 2024; Vidal-Abarca Gutiérrez, 2024; Xie et al., 2024), while offering greater sensitivity and taxonomic breadth.
273 By resolving finer-scale community across land-use types and detecting cascading effects across trophic levels (Ji
274 et al., 2022), eDNA provides a quantitative means to trace the causal pathway from land-use change, through altered
275 habitat conditions and community structure, to changes in ecosystem functioning and services delivery.

276 Emerging evidence further suggests that multitrophic network structure exhibits a stronger response to land
277 use than do conventional diversity metrics. Therefore, research on riverine ecosystem responses to anthropogenic
278 pressures should prioritize the analysis of these interaction networks, which can offer a more accurate reflection of
279 a river's ecological condition.

280 **6. Navigating Multitrophic Networks with Environmental DNA**

281 Understanding the structure and dynamics of multitrophic interaction networks, particularly food webs, is
282 essential for assessing ecosystem stability, function, and resilience to disturbances (Delmas et al., 2019; Thompson
283 et al., 2012). Benthic macroinvertebrates occupy pivotal positions within these networks, linking basal resources
284 (e.g., detritus, algae, microbes) to higher trophic levels (e.g., fish).

285 In the Shaying River and other subtropical river systems, eDNA-based multitrophic monitoring has shown
286 that land-use change reduces the functional evenness of benthic macroinvertebrates and alters their associations
287 with microbial and algal groups (Li et al., 2020, 2023b; Qin et al., 2023). These shifts decrease organic-matter
288 decomposition efficiency and simplify food web architecture. Similarly, Wu et al. (2025) used eDNA in eutrophic
289 lakes to clarify the functional roles of benthic communities and explore regulatory pathways such as bottom-up or
290 top-down control. In extreme habitats like hypersaline lakes, pronounced salinity gradients support unique
291 assemblages of salt-tolerant taxa and markedly reduced network modularity (Zhang et al., 2024). Notably, the
292 spatiotemporal dynamics of food-web structure do not always align with patterns of species diversity (Blackman et
293 al., 2022b), suggesting that understanding ecological networks assembly requires moving beyond taxonomic
294 richness to examine the dynamic configuration of functional groups and their interactions.

295 By providing high-resolution, multitrophic data, eDNA metabarcoding deepens our understanding of
296 freshwater food webs, revealing changes in connectivity and stability often missed by conventional methods. As a
297 holistic assessment tool, eDNA technology offers the empirical foundation needed to diagnose ecosystem health
298 under global change and to guide effective conservation strategies.

299 **7. Enhanced Detection of Species via eDNA: From Rarity to Invasion**

300 Accurate species detection is fundamental to effective ecological monitoring and biodiversity conservation.
301 In freshwater ecosystems, both rare native species and invasive alien species (IAS) pose critical yet distinct

302 management challenges, with the former often requiring protection and the latter demanding early control (Yates et
303 al., 2025). Conventional survey methods frequently fail to reliably detect these taxa due to their low abundance,
304 cryptic behavior, or early stages of colonization. eDNA technology offers distinct advantages for detecting rare or
305 endangered species (Sigsgaard et al., 2015; Coutts et al., 2022) as well as for tracking biological invasions (Ficetola
306 et al., 2008; Hartle-Mougiou et al., 2023).

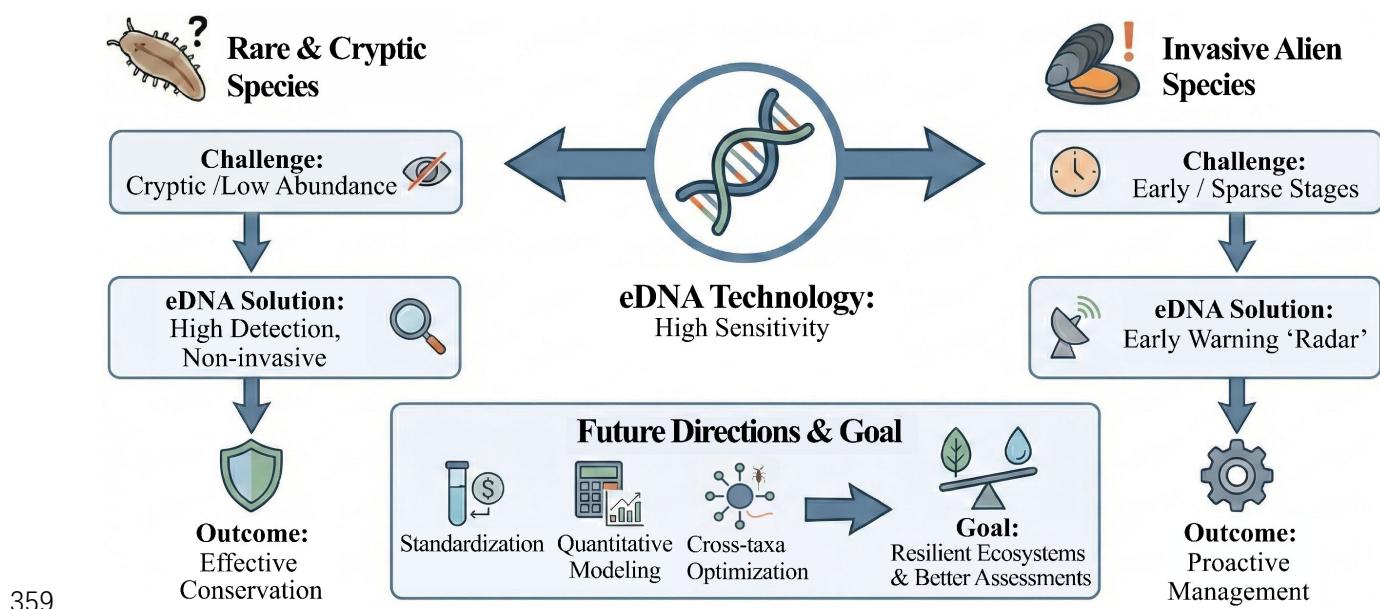
307 **7.1 Monitoring Rare and Cryptic Species with eDNA**

308 Monitoring rare and elusive taxa remains a persistent challenge in ecological assessments due to their low
309 abundance, cryptic behaviors, and often benthic or burrowing life histories —traits that frequently lead to under-
310 detection by traditional methods such as visual surveys, benthic trawling, and morphological identification. Owing
311 to its high sensitivity, eDNA has emerged as a transformative tool capable of detecting trace genetic material shed
312 by organisms into the surroundings (Keck et al., 2022; Çevik and Çevik, 2025; Chang et al., 2025b).

313 For taxa that are difficult to detect, whether due to low abundance, cryptic habits, or morphological
314 ambiguity, eDNA significantly increases detection probability and reduces false-negative rates (Johnsen et al., 2020;
315 Giribet et al., 2023; McCulloch et al., 2025; Zieritz et al., 2025). Its non-invasive nature also supports repeated and
316 ethical sound monitoring of threatened species, aiding in tracking of population declines (Hata et al., 2022) and
317 refining estimates of contemporary distributions (Lor et al., 2020; Preece et al., 2021). Together, these applications
318 deliver timely, actionable data to guide conservation efforts.

319 However, several limitations affect the detection of rare taxa. Detectability can be influenced by low rates
320 of DNA shedding, constrained environmental dispersion, or PCR primer bias (Coghlan et al., 2021; Schmidt et al.,
321 2021). These issues are particularly evident in complex substrates or lotic (flowing) environments, where DNA
322 undergoes rapid dilution and degradation. Such constraints represent the current sensitivity boundaries of eDNA
323 methods under specific conditions, rather than an inherent flaw of the approach.

324 **7.2 Early Detection and Surveillance of Invasive Species with eDNA**


325 Invasive alien species represent a major threat to freshwater biodiversity, disrupting native communities
326 through competitive exclusion, habitat modification, and resource monopolization (Rahel and Olden, 2008; Pyšek
327 et al., 2020). Early detection and ongoing surveillance are therefore critical for effective management. eDNA has
328 become a widely adopted molecular tool for this purpose, offering particular utility during the initial stages of
329 invasion when traditional surveys often fail.

330 Often described as a "molecular radar," eDNA can detect target DNA during the earliest stages of invasive,
331 when populations are sparse and not yet visible, or in frontline colonization zones such as ports and water intake
332 points, offering a substantially earlier warning than traditional visual surveys (Thomsen et al., 2011; Goldberg et
333 al., 2013; Dougherty et al., 2016; Jeunen et al., 2022). It can also rapidly characterize macroinvertebrate
334 communities in poorly studied or inaccessible areas, providing initial evidence of invasive presence and securing a
335 critical time window for rapid response (Mauro et al., 2025). Moreover, eDNA enables simultaneous screening of
336 multiple potential invasion sites or extensive water bodies, covering locations that are logistically challenging for
337 conventional methods (Clusa et al., 2021). Notably, quantitative eDNA approaches have been successfully applied
338 to monitor invasive mussels in large-scale water diversion systems (Yang et al., 2025), further demonstrating the
339 practical utility of this technology in invasion surveillance.

340 Nevertheless, detecting invasive species at their earliest stages remains inherently challenging. There is
341 often a lag between initial colonization and population establishment, during which only a few individuals may be
342 present and shed DNA below current detection thresholds. A further temporal delay can occur between initial DNA
343 deposition and the accumulation of a quantifiable signal, reducing detectability during this critical window. Since
344 eradication efforts are most effective when undertaken early in the invasion process (Fonseca et al., 2023; Harper
345 et al., 2018), enhancing the sensitivity of eDNA detection methods is essential.

346 A further obstacle to routine implementation is the lack of standardized protocols across jurisdictions for
347 eDNA sampling, laboratory processing, primer selection, and data interpretation. This inconsistency hinders data
348 comparability and limits the regulatory adoption of eDNA evidence in policy-making (Rishan et al., 2023).
349 Addressing these standardization gaps is critical for integrating eDNA into operational invasive species surveillance
350 programs.

351 In summary, eDNA-based biomonitoring holds transformative potential for detecting both rare native
352 species and invasive taxa, thereby improving biodiversity assessments and enabling proactive ecosystem
353 management. Key challenges include detection limits in low-density populations, primer biases, and the absence of
354 methodological standardization. To fully integrate eDNA into conservation and regulatory practice, future work
355 should prioritize cross-taxa primer optimization, quantitative modeling of detection thresholds, and the international
356 harmonization of sampling and analytical protocols. By bridging the gap between molecular signals and ecological
357 insight, eDNA technology can play a pivotal role in safeguarding freshwater biodiversity amid accelerating global
358 change (Fig. 3).

360 Fig. 3. eDNA as a dual-purpose surveillance tool for benthic macroinvertebrates ecology.

361 **8. From Descriptive to Mechanistic: How eDNA is Unraveling Benthic macroinvertebrate Communities**

362 This review synthesizes current applications of eDNA technology in studying benthic macroinvertebrate
363 communities across global freshwater ecosystems. The continuous and scalable biodiversity monitoring enabled by
364 eDNA metabarcoding in diverse habitats (stream, rivers, lakes, etc.) highlights its transformative role. This approach
365 advances the field by:

366 (1) Enabling accurate, high-throughput detection of multi-taxa communities, with particularly effective for
367 low-abundance, cryptic, or taxonomically challenging organisms, thus supporting robust assessment of "cryptic
368 biodiversity" often missed by traditional methods;

369 (2) Capturing spatiotemporal ecosystem dynamics rapidly, including community succession and turnover
370 driven by seasonal/hydrological cycles or environmental gradients;

371 (3) Detecting early signals of anthropogenic disturbance and evaluating associated ecological impacts, such
372 as biodiversity loss from industrial/agricultural pollution, habitat homogenization due to dams, and functional
373 simplification of communities following land-use change;

374 (4) Resolving the structure and dynamics of multitrophic interaction networks, revealing how pollutants or
375 habitat alterations affect food-web stability through trophic cascades, or uncovering unique community assembly
376 patterns in extreme environments.

377 In recent years, eDNA research has progressively shifted from species identification and community
378 description toward a more mechanistic understanding of ecological processes. Breakthroughs have been emerged
379 on several key fronts. For instance, recent studies have parameterized particle-size distributions to simulate the
380 eDNA transport in aquatic systems, thereby improving estimates of its physical detectability (Jo, 2025). Others have
381 shown that data-preprocessing protocols and statistical modeling strategies substantially affect the ecological

382 interpretability of quantitative eDNA results (Bylemans et al., 2025). These advances reflect a broader paradigm
383 shift: eDNA is evolving from a detection tool into a probe for ecological mechanisms, opening new avenues to
384 unravel the assembly rules and functional dynamics of benthic macroinvertebrate communities.

385 Nevertheless, conceptual validation is required to bridge gaps between eDNA signals (e.g., detection rates,
386 relative read abundance) and the true presence, absence or biomass of source organisms in benthic habitats,
387 especially for rare species, juvenile stages, or metabolically inactive individuals. It is also important to recognize
388 that eDNA constitutes indirect, extracellular genetic material shed by macroinvertebrates. Consequently, any
389 eDNA-based estimates inherently involve uncertainties, including false negatives and false positives. These errors
390 can arise at any stage of the eDNA metabarcoding workflow, from sampling and molecular processing to
391 bioinformatic analysis, and should be systematically calibrated through co-located eDNA and morphological
392 sampling, as well as refined through future technical improvements (Çevik and Çevik, 2025).

393 Significant technical challenges remain. Integrating eDNA into routine biomonitoring requires further
394 validation of standardized protocols and adaptive modification of existing bioassessment indices (e.g., indices of
395 biological integrity). Detection accuracy can be enhanced through strategies such as seasonal sampling, automated
396 monitoring, and optimized primer design/reference databases design. The resulting large-scale quantitative datasets
397 are essential for capturing fluctuating interspecific interactions and seasonal dynamics in benthic communities.
398 Integrating these data with local hydrological models or machine-learning algorithms offers a promising path to
399 model complex interactions, predict community dynamics from time-series data, and ultimately establish scientific
400 baselines for ecosystem conservation.

401 Although further technical and methodological refinements are needed, recent national-level initiatives,
402 such as those in China, demonstrate how eDNA monitoring can be institutionalized through standardized protocols
403 and integrated databases (Wang et al., 2022; Chinese Society for Environmental Sciences (CSES), 2023a, 2023b,

404 2023c; Jiangsu Provincial Administration for Market Regulation (JPAMR), 2023). These efforts highlight the
405 potential for eDNA to become embedded within formal ecological assessment and policy systems.

406 In conclusion, eDNA is fundamentally reshaping how we understand and conserve freshwater ecosystems.
407 By addressing current methodological limitations and deepening research into ecological mechanisms, eDNA holds
408 strong promise as a core tool for routine monitoring of benthic macroinvertebrate communities. Especially under
409 intensifying global change, its efficiency and sensitivity provide crucial technical support for diagnosing river health
410 and guiding ecological restoration, thereby advancing science-informed decision-making “from DNA to ecosystem
411 management”.

412 **Author Contributions**

413 **Yajing Zhang:** Conceptualization, Methodology, Investigation, Formal analysis, Visualization, Writing –
414 original draft, Writing – review and editing; **Hui Yang:** Investigation, Data curation; **Xiwen Liang:** Investigation,
415 Data curation; **Min Zhang:** Investigation, Data curation; **Wenwen Zhu:** Investigation, Data curation; **Hongxu Yang:**
416 Investigation, Data curation; **Wenze Fan:** Investigation, Data curation; **Kun Li:** Conceptualization, Methodology,
417 Writing – original draft, Writing – review and editing, Supervision, Resources, Funding acquisition.

418 **Declaration of Competing Interest**

419 The authors declare that they have no known competing financial interests or personal relationships that
420 could have appeared to influence the work reported in this paper.

421 **Acknowledgements**

422 This work was supported by the National Natural Science Foundation of China [grant number 32271621];
423 the Basal Research Fund for Undergraduate Universities of Heilongjiang Province [grant number 2024-KYYWF-
424 0126]; the Program for Young Talents of Basic Research in Universities of Heilongjiang Province [grant number
425 YQJH2025186]; and the Natural Science Foundation of Heilongjiang University for Distinguished Young Scholars
426 [grant number JCL202205].

427 **Data Availability**

428 Data will be made available on request.

429 **References**

430 Altermatt, F., Couton, M., Carraro, L., Keck, F., Lawson-Handley, L., Leese, F., Zhang, X., Zhang, Y., & Blackman,
431 R. C. (2025). Utilizing aquatic environmental DNA to address global biodiversity targets. *Nature Reviews
432 Biodiversity*, 1, 332-346. <https://doi.org/10.1038/s44358-025-00044-x>

433 Aunins, A. A., Mueller, S. J., Fike, J. A., & Cornman, R. S. (2023). Assessing arthropod diversity metrics derived
434 from stream environmental DNA: Spatiotemporal variation and paired comparisons with manual sampling.
435 *PeerJ*, 11, e15163. <https://doi.org/10.7717/peerj.15163>

436 Beentjes, K. K., Barmentlo, S. H., Cieraad, E., Schilthuizen, M., van der Hoorn, B. B., Speksnijder, A. G. C. L., &
437 Trimbos, K. B. (2022). Environmental DNA metabarcoding reveals comparable responses to agricultural
438 stressors on different trophic levels of a freshwater community. *Molecular Ecology*, 31(5), 1430-1443.
439 <https://doi.org/10.1111/mec.16184>

440 Beng, K. C., & Corlett, R. T. (2020). Applications of environmental DNA (eDNA) in ecology and conservation:
441 Opportunities, challenges and prospects. *Biodiversity and Conservation*, 29(7), 2089-2121.
442 <https://doi.org/10.1007/s10531-020-01989-8>

443 Birk, S., Chapman, D., Carvalho, L., Spears, B. M., Andersen, H. E., Argillier, C., Auer, S., Baattrup-Pedersen, A.,
444 Banin, L., Beklioğlu, M., et al. (2020). Impacts of multiple stressors on freshwater biota across spatial scales
445 and ecosystems. *Nature Ecology & Evolution*, 4(8), 1060-1068. <https://doi.org/10.1038/s41559-020-1247-3>

446 Bista, I., Carvalho, G. R., Walsh, K., Seymour, M., Hajibabaei, M., Lallias, D., Christmas, M., & Creer, S. (2017).
447 Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem
448 biodiversity. *Nature Communications*, 8(1), 14087. <https://doi.org/10.1038/s41467-017-01541-4>

449 Blackman, R., Couton, M., Keck, F., Kirschner, D., Carraro, L., Cereghetti, E., Perrelet, K., Bossart, R., Brantschen,
450 J., Zhang, Y., et al. (2024). Environmental DNA: The next chapter. *Molecular Ecology*, 33(11), e17355.
451 <https://doi.org/10.1111/mec.17355>

452 Blackman, R. C., Brantschen, J., Walser, J.C., Wüthrich, R., & Altermatt, F. (2022a). Monitoring invasive alien
453 macroinvertebrate species with environmental DNA. *River Research and Applications*, 38(8), 1400-1412.
454 <https://doi.org/10.1002/rra.3986>

455 Blackman, R. C., Ho, H.C., Walser, J.C., & Altermatt, F. (2022b). Spatio-temporal patterns of multi-trophic
456 biodiversity and food-web characteristics uncovered across a river catchment using environmental DNA.
457 *Communications Biology*, 5(1), 259. <https://doi.org/10.1038/s42003-022-03224-7>

458 Blattner, L., Ebner, J. N., Zopfi, J., & von Fumetti, S. (2021). Targeted non-invasive bioindicator species detection
459 in eDNA water samples to assess and monitor the integrity of vulnerable alpine freshwater environments.
460 *Ecological Indicators*, 129, 107916. <https://doi.org/10.1016/j.ecolind.2021.107916>

461 Bohmann, K., Evans, A., Gilbert, M. T. P., Carvalho, G. R., Creer, S., Knapp, M., Yu, D. W., & De Bruyn, M. (2014).
462 Environmental DNA for wildlife biology and biodiversity monitoring. *Trends in Ecology & Evolution*, 29(6),
463 358-367. <https://doi.org/10.1016/j.tree.2014.03.010>

464 Brantschen, J., Blackman, R. C., Walser, J.C., & Altermatt, F. (2021). Environmental DNA gives comparable results
465 to morphology-based indices of macroinvertebrates in a large-scale ecological assessment. *PLOS ONE*, 16(9),
466 e0257510. <https://doi.org/10.1371/journal.pone.0257510>

467 Bylemans, J., Everts, T., Brys, R., & Duncan, R. P. (2025). From anarchy to clarity, data pre-processing and
468 statistical choices influence quantitative environmental DNA (eDNA) analyses. *Methods in Ecology and
469 Evolution*, 16, 1322-1333. <https://doi.org/10.1111/2041-210X.70064>

470 Campbell, M. A., Laini, A., White, N. E., Allentoft, M. E., & Saccò, M. (2023). When nets meet environmental
471 DNA metabarcoding: Integrative approach to unveil invertebrate community patterns of hypersaline lakes.
472 *Journal of Oceanology and Limnology*, 41(4), 1331-1340. <https://doi.org/10.1007/s00343-023-04312-5>

473 Cantera, I., Giachello, S., Münkemüller, T., Caccianiga, M., Gobbi, M., Losapio, G., Marta, S., Valle, B., Zawierucha,

474 K., Thuiller, W., & Ficetola, G. F. (2025). Describing functional diversity of communities from environmental
475 DNA. *Trends in Ecology & Evolution*, 40(2), 170-179. <https://doi.org/10.1016/j.tree.2024.11.009>

476 Çevik, T., & Çevik, N. (2025). Environmental DNA (eDNA): A review of ecosystem biodiversity detection and
477 applications. *Biodiversity and Conservation*, 34, 2999-3035. <https://doi.org/10.1007/s10531-025-03112-y>

478 Chan, J. C. F., Lam, B. Y. K., Dudgeon, D., & Liew, J. H. (2025). Global consequences of dam-induced river
479 fragmentation on diadromous migrants: A systematic review and meta-analysis. *Biological Reviews*, 100, 2020-
480 2037. <https://doi.org/10.1111/brv.70032>

481 Chang, C., Ren, M., Wang, H., Ye, S., Tang, X., He, D., Hu, E., Li, M., & Pan, B. (2025a). Riverine network size
482 determined major driving factors of the composition and diversity of aquatic invertebrate communities in a
483 multi-tributary mountain river basin. *Water Research*, 276, 123257. <https://doi.org/10.1016/j.watres.2024.123257>

485 Chang, H., Ye, T., Xie, Z., & Liu, X. (2025b). Application of environmental DNA in aquatic ecosystem monitoring:
486 Opportunities, challenges and prospects. *Water*, 17(5). <https://doi.org/10.3390/w17050661>

487 Chinese Society for Environmental Sciences (CSES). (2023). Technical specification for DNA barcoding of
488 freshwater organisms (T/CSES 80-2023). <https://www.ttbz.org.cn/StandardManage/Detail/75839/>, (accessed
489 25 January 2026).

490 Chinese Society for Environmental Sciences (CSES). (2023). Environmental DNA metabarcoding for freshwater
491 organism monitoring (T/CSES 81-2023). <https://www.ttbz.org.cn/StandardManage/Detail/75840/> (accessed
492 25 January 2026).

493 Chinese Society for Environmental Sciences (CSES). (2023). Technical guidelines for freshwater biological
494 assessment based on environmental DNA (T/CSES 82-2023). <https://www.ttbz.org.cn/StandardManage/Detail/75841/> (accessed 25 January 2026).

496 Chen, J., Zang, H., Ning, Y., Han, L., Deng, Z., Xie, Y., & Wang, B. (2025). The eDNA methods outperforming the
497 traditional method in capturing the diversity of stream benthic macroinvertebrates. *Ecological Indicators*, 179,
498 114254. <https://doi.org/10.1016/j.ecolind.2024.114254>

499 Clusa, L., Garcia-Vazquez, E., Fernández, S., Meyer, A., & Machado-Schiaffino, G. (2021). Nuisance species in
500 Lake Constance revealed through eDNA. *Biological Invasions*, 23(5), 1619-1636.
501 <https://doi.org/10.1007/s10530-021-02534-4>

502 Coghlan, S. A., Currier, C. A., Freeland, J., Morris, T. J., & Wilson, C. C. (2021). Community eDNA metabarcoding
503 as a detection tool for documenting freshwater mussel (Unionidae) species assemblages. *Environmental DNA*,
504 3(6), 1172-1191. <https://doi.org/10.1002/edn3.264>

505 Coutts, A., O'Brien, A., Weeks, A. R., Swearer, S. E., van Rooyen, A., Branigan, S., & Morris, R. L. (2022). An
506 environmental DNA approach to informing restoration of the functionally extinct oyster, *Ostrea angasi*.
507 *Aquatic Conservation: Marine and Freshwater Ecosystems*, 32(11), 1732-1744.
508 <https://doi.org/10.1002/aqc.3715>

509 Daly, A. J., Baetens, J. M., & De Baets, B. (2018). Ecological diversity: Measuring the unmeasurable. *Mathematics*,
510 6(7), 119. <https://doi.org/10.3390/math6070119>

511 Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursière-Roussel, A., Altermatt, F., Creer, S., Bista, I., Lodge,
512 D. M., De Vere, N., & Bernatchez, L. (2017). Environmental DNA metabarcoding: Transforming how we
513 survey animal and plant communities. *Molecular Ecology*, 26(21), 5872-5895.
514 <https://doi.org/10.1111/mec.14228>

515 Delmas, E., Besson, M., Brice, M.H., Burkle, L. A., Dalla Riva, G. V., Fortin, M.J., Gravel, D., Guimarães Jr, P. R.,
516 Hembry, D. H., Newman, E. A., & Poisot, T. (2019). Analysing ecological networks of species interactions.
517 *Biological Reviews*, 94(1), 16-36. <https://doi.org/10.1111/brv.12442>

518 Dougherty, M. M., Larson, E. R., Renshaw, M. A., Gantz, C. A., Egan, S. P., Erickson, D. M., & Lodge, D. M.
519 (2016). Environmental DNA (eDNA) detects the invasive rusty crayfish *Orconectes rusticus* at low abundances.

520 *Journal of Applied Ecology*, 53(3), 722-732. <https://doi.org/10.1111/1365-2664.12620>

521 Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z.I., Knowler, D. J., Léveque, C., Naiman, R. J., Prieur-
522 Richard, A.H., Soto, D., Stiassny, M. L. J., & Sullivan, C. A. (2006). Freshwater biodiversity: Importance,
523 threats, status and conservation challenges. *Biological Reviews*, 81(2), 163-182.
524 <https://doi.org/10.1017/S1464793106007000>

525 Dudgeon, D., & Strayer, D. L. (2025). Bending the curve of global freshwater biodiversity loss: What are the
526 prospects? *Biological Reviews*, 100(1), 205-226. <https://doi.org/10.1111/brv.12895>

527 Effendi, H., Aprilia, M., Hariyadi, S., & Permatasari, P. A. (2023). Performance of environmental DNA
528 metabarcoding to identify and quantify benthic organisms in river ecosystems. In *IOP Conference Series: Earth*
529 and *Environmental Science*, 1266 (1), 012079. <https://doi.org/10.1088/1755-1315/1266/1/012079>

530 Erdozain, M., Thompson, D. G., Porter, T. M., Kidd, K. A., Kreutzweiser, D. P., Sibley, P. K., Swystun, T., Chartrand,
531 D., & Hajibabaei, M. (2019). Metabarcoding of storage ethanol vs. conventional morphometric identification
532 in relation to the use of stream macroinvertebrates as ecological indicators in forest management. *Ecological*
533 *Indicators*, 101, 173-184. <https://doi.org/10.1016/j.ecolind.2019.03.018>

534 Faria, A. P. J., Ligeiro, R., Calvao, L. B., Giam, X., Leibold, M. A., & Juen, L. (2024). Land use types determine
535 environmental heterogeneity and aquatic insect diversity in Amazonian streams. *Hydrobiologia*, 851(2), 281-
536 298. <https://doi.org/10.1007/s10750-023-05253-1>

537 Feng, C., Zhao, Z., Han, P., Yang, Y., Han, F., Wang, F., Li, P., Xue, A., & Li, Z. (2026). The biodiversity of aquatic
538 ecosystems reflected by eDNA in the middle reaches of the Yangtze River after drought. *Journal of*
539 *Environmental Sciences*, 161, 127-140. <https://doi.org/10.1016/j.jes.2025.05.063>

540 Fernández, S., Rodríguez-Martínez, S., Martínez, J. L., Garcia-Vazquez, E., & Ardura, A. (2019). How can eDNA
541 contribute in riverine macroinvertebrate assessment? A metabarcoding approach in the Nalón River (Asturias,
542 Northern Spain). *Environmental DNA*, 1(4), 385-401. <https://doi.org/10.1002/edn3.123>

543 Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008). Species detection using environmental DNA from
544 water samples. *Biology Letters*, 4(4), 423-425. <https://doi.org/10.1098/rsbl.2008.0290>

545 Fonseca, V. G., Davison, P. I., Creach, V., Stone, D., Bass, D., & Tidbury, H. J. (2023). The application of eDNA
546 for monitoring aquatic non-indigenous species: Practical and policy considerations. *Diversity*, 15(5), 631.
547 <https://doi.org/10.3390/d15050631>

548 Giribet, G., Wangensteen, O. S., Garcés-Pastor, S., Møller, P. R., & Worsaae, K. (2023). Using eDNA to find
549 Micrognathozoa. *Current Biology*, 33(14), R756-R757. <https://doi.org/10.1016/j.cub.2023.05.055>

550 Gleason, J. E., Elbrecht, V., Braukmann, T. W. A., Hanner, R. H., & Cottene, K. (2021). Assessment of stream
551 macroinvertebrate communities with eDNA is not congruent with tissue-based metabarcoding. *Molecular*
552 *Ecology*, 30(13), 3239-3251. <https://doi.org/10.1111/mec.16046>

553 Goldberg, C. S., Sepulveda, A., Ray, A., Baumgardt, J., & Waits, L. P. (2013). Environmental DNA as a new method
554 for early detection of New Zealand mudsnails (*Potamopyrgus antipodarum*). *Freshwater Science*, 32(3), 792-
555 800. <https://doi.org/10.1086/670807>

556 Grill, G., Lehner, B., Lumsdon, A. E., MacDonald, G. K., Zarfl, C., & Liermann, C. R. (2015). An index-based
557 framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at
558 multiple scales. *Environmental Research Letters*, 10(1), 015001. <https://doi.org/10.1088/1748-9326/10/1/015001>

560 Gu, S., Chen, K., Jin, X., Li, W., Chen, X., Xiong, J., Tang, M., Jiang, C., Xiong, J., Li, T., Zhang, Q., Cui, Y., Zeng,
561 H., He, S., Wang, Y., Miao, W. (2024). Development, application, and standardization of aquatic environmental
562 DNA monitoring techniques. *Acta Hydrobiologica Sinica*, 48, 1443-1458. (in Chinese)
563 <https://doi.org/10.7541/2024.2023.0409>

564 Haase, P., Pauls, S. U., Schinidehütte, K., & Sundermann, A. (2010). First audit of macroinvertebrate samples from
565 an EU Water Framework Directive monitoring program: Human error greatly lowers precision of assessment

566 results. *Journal of the North American Benthological Society*, 29(4), 1279-1291. <https://doi.org/10.1899/09-104.1>

567

568 Harper, K. J., Anucha, P., Turnbull, J. F., Bean, C. W., & Leaver, M. J. (2018). Searching for a signal: Environmental
569 DNA (eDNA) for the detection of invasive signal crayfish, *Pacifastacus leniusculus* (Dana, 1852).
570 *Management of Biological Invasions*, 9(2), 137-148. <https://doi.org/10.3391/mbi.2018.9.2.08>

571 Harrison, J. B., Sunday, J. M., & Rogers, S. M. (2019). Predicting the fate of eDNA in the environment and
572 implications for studying biodiversity. *Proceedings of the Royal Society B*, 286(1915), 20191409.
573 <https://doi.org/10.1098/rspb.2019.1409>

574 Hartle-Mougiou, K., Gubili, C., Xanthopoulou, P., Kasapidis, P., Valiadi, M., & Gizeli, E. (2024). Development of
575 a quantitative colorimetric LAMP assay for fast and targeted molecular detection of the invasive lionfish
576 *Pterois* miles from environmental DNA. *Frontiers in Marine Science*, 11, 1358793.
577 <https://doi.org/10.3389/fmars.2024.1358793>

578 Hata, H., Ogasawara, K., & Yamashita, N. (2022). Population decline of an endangered unionid, *Pronodularia*
579 *japanensis*, in streams is revealed by eDNA and conventional monitoring approaches. *Hydrobiologia*, 849(12),
580 2635-2646. <https://doi.org/10.1007/s10750-022-05053-7>

581 Huo, Q., Ma, Y., Hu, L., Liu, Q., Wang, C., Liu, J., Ren, D., Wang, Z., Wang, B., Zeng, H., & others. (2025). A study
582 on the community and ecological characteristics of benthic invertebrates in the Ulungu River, Xinjiang, via
583 eDNA metabarcoding and morphological methods. *Biology*, 14(4), 410.
584 <https://doi.org/10.3390/biology14040410>

585 Hupało, K., Schmidt, S., Macher, T.-H., Weiss, M., & Leese, F. (2022). Fresh insights into Mediterranean
586 biodiversity: Environmental DNA reveals spatio-temporal patterns of stream invertebrate communities on
587 Sicily. *Hydrobiologia*, 849(1), 155-173. <https://doi.org/10.1007/s10750-021-04842-7>

588 Iacaruso, N. J., Reves, O. P., Merkelz, S. J., Waldrep, C. L., & Davis, M. A. (2025). A systematic review evaluating
589 the performance of eDNA methods relative to conventional methods for biodiversity monitoring. *Ecography*,
590 e07952. <https://doi.org/10.1002/ecog.07952>

591 Jeunen, G.J., Lipinskaya, T., Gajduchenko, H., Golovchenik, V., Moroz, M., Rizevsky, V., Semenchenko, V., &
592 Gemmell, N. J. (2022). Environmental DNA (eDNA) metabarcoding surveys show evidence of non-indigenous
593 freshwater species invasion to new parts of Eastern Europe. *Metabarcoding and Metagenomics*, 6, e68575.
594 <https://doi.org/10.3897/mbmg.6.e68575>

595 Ji, F., Han, D., Yan, L., Yan, S., Zha, J., & Shen, J. (2022). Assessment of benthic invertebrate diversity and river
596 ecological status along an urbanized gradient using environmental DNA metabarcoding and a traditional survey
597 method. *Science of the Total Environment*, 806, 150587. <https://doi.org/10.1016/j.scitotenv.2021.150587>

598 Jiangsu Provincial Administration for Market Regulation (JPAMR). (2023). Technical methods for environmental
599 DNA monitoring of freshwater organisms (DB32/T 4539-2023). (in Chinese)

600 Jijón, G., Errigo, I. M., Wicks, J., Goldston, N. N., Davis, L., Davis, D., Standring, S., Chaston, J. M., Frandsen, P.
601 B., & Rios-Touma, B. (2025). Comparing morphological and DNA-based bioassessment methodologies for
602 macroinvertebrates in Neotropical streams: A case study from Ecuador. *Metabarcoding and Metagenomics*, 9,
603 e138172. <https://doi.org/10.3897/mbmg.9.e138172>

604 Jin, X., Xie, H., Zhao, X., He, D., Zhan, A., Cai, Y., Wu, N., Zhang, X., Yang, J., Wang, Y., & others. (2025). Aquatic
605 ecosystem health assessment in China based on metacommunity theory: From theory to practice. *Carbon*
606 *Research*, 4(1), 16. <https://doi.org/10.1186/s43211-024-00418-8>

607 Jo, T. S. (2025). Parameterizing the particle size distribution of environmental DNA provides insights into its
608 improved availability from the water. *Environmental Monitoring and Assessment*, 197(5), 1-15.
609 <https://doi.org/10.1007/s10661-025-11893-5>

610 Johnsen, S. I., Strand, D. A., Rusch, J. C., & Vrålstad, T. (2020). Environmental DNA (eDNA) monitoring of noble
611 crayfish *Astacus astacus* in lentic environments offers reliable presence-absence surveillance—but fails to

612 predict population density. *Frontiers in Environmental Science*, 8, 612253.
613 <https://doi.org/10.3389/fenvs.2020.612253>

614 Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G.
615 C., Gibbs, H. K., & others. (2005). Global consequences of land use. *Science*, 309(5734), 570-574.
616 <https://doi.org/10.1126/science.1111772>

617 Keck, F., Peller, T., Alther, R., Barouillet, C., Blackman, R., Capo, E., Chonova, T., Couton, M., Fehlinger, L.,
618 Kirschner, D., & others. (2025). The global human impact on biodiversity. *Nature*, 641, 395-400.
619 <https://doi.org/10.1038/s41586-025-08752-2>

620 Keck, F., Blackman, R. C., Bossart, R., Brantschen, J., Couton, M., Hürlemann, S., Kirschner, D., Locher, N., Zhang,
621 H., & Altermatt, F. (2022a). Meta-analysis shows both congruence and complementarity of DNA and eDNA
622 metabarcoding to traditional methods for biological community assessment. *Molecular Ecology*, 31(6), 1820-
623 1835. <https://doi.org/10.1111/mec.16407>

624 Keck, F., Hürlemann, S., Locher, N., Stamm, C., Deiner, K., & Altermatt, F. (2022b). A triad of kicknet sampling,
625 eDNA metabarcoding, and predictive modeling to assess richness of mayflies, stoneflies and caddisflies in
626 rivers. *Metabarcoding and Metagenomics*, 6, 117-131. <https://doi.org/10.3897/mbmg.6.79351>

627 Li, F., Altermatt, F., Yang, J., An, S., Li, A., & Zhang, X. (2020). Human activities' fingerprint on multitrophic
628 biodiversity and ecosystem functions across a major river catchment in China. *Global Change Biology*, 26(12),
629 6867-6879. <https://doi.org/10.1111/gcb.15342>

630 Li, F., Guo, F., Gao, W., Cai, Y., Zhang, Y., & Yang, Z. (2022). Environmental DNA biomonitoring reveals the
631 interactive effects of dams and nutrient enrichment on aquatic multitrophic communities. *Environmental
632 Science & Technology*, 56(23), 16952-16963. <https://doi.org/10.1021/acs.est.2c06415>

633 Li, F., Qin, S., Wang, Z., Zhang, Y., & Yang, Z. (2023a). Environmental DNA metabarcoding reveals the impact of
634 different land use on multitrophic biodiversity in riverine systems. *Science of the Total Environment*, 855,
635 158958. <https://doi.org/10.1016/j.scitotenv.2022.158958>

636 Li, F., Zhang, Y., Altermatt, F., Yang, J., & Zhang, X. (2023b). Destabilizing effects of environmental stressors on
637 aquatic communities and interaction networks across a major river basin. *Environmental Science & Technology*,
638 57(20), 7828-7839. <https://doi.org/10.1021/acs.est.3c02345>

639 Li, K., He, C., Zhuang, J., Zhang, Z., Xiang, H., Wang, Z., Yang, H., Sheng, L. (2015). Long-term changes in the
640 water quality and macroinvertebrate communities of a subtropical river in South China. *Water*, 7, 63-80.
641 <https://doi.org/10.3390/w7010063>

642 Li, K., Zhang, Z., Yang, H., Bian, H., Jiang, H., Sheng, L., He, C. (2018). Effects of instream restoration measures
643 on the physical habitats and benthic macroinvertebrates in an agricultural headwater stream. *Ecological
644 Engineering*, 122, 252-262. <https://doi.org/10.1016/j.ecoleng.2018.08.007>

645 Li, W., Xu, J., Huang, Q., & Wang, M. (2024). Study on the biodiversity of macroinvertebrate in the Dayang River
646 Basin during summer based on environmental DNA and morphological analysis. *Journal of Freshwater
647 Ecology*, 39(1), 2358071. <https://doi.org/10.1080/02705060.2024.2358071>

648 Liang, D., Xia, J., Song, J., Sun, H., & Xu, W. (2022). Using eDNA to identify the dynamic evolution of multi-
649 trophic communities under the eco-hydrological changes in river. *Frontiers in Environmental Science*, 10,
650 929541. <https://doi.org/10.3389/fenvs.2022.929541>

651 Lor, Y., Schreier, T. M., Waller, D. L., & Merkes, C. M. (2020). Using environmental DNA (eDNA) to detect the
652 endangered Spectaclecase Mussel (*Margaritifera monodonta*). *Freshwater Science*, 39(4), 837-847.
653 <https://doi.org/10.1086/711895>

654 Loria, A., Tournayre, O., Hébert, M.-P., da Costa, N. B., Fugère, V., Barrett, R. D. H., Beisner, B. E., Gonzalez, A.,
655 & Cristescu, M. E. (2025). Estimating rapid diversity changes during acute herbicide contamination using
656 environmental DNA. *Environmental DNA*, 7(1), e70029. <https://doi.org/10.1002/edn3.70029>

657 Lu, Q., Liu, Y., Zhao, J., & Yao, M. (2024). Successive accumulation of biotic assemblages at a fine spatial scale

658 along glacier-fed waters. *iScience*, 27(4), 109476. <https://doi.org/10.1016/j.isci.2024.109476>

659 Lu, Q., Zhang, S.-Y., Du, J., Liu, Q., Dong, C., Zhao, J., Wang, Y., & Yao, M. (2023). Multi-group biodiversity
660 distributions and drivers of metacommunity organization along a glacial-fluvial-limnic pathway on the Tibetan
661 plateau. *Environmental Research*, 220, 115236. <https://doi.org/10.1016/j.envres.2022.115236>

662 Lynch, A. J., Cooke, S. J., Arthington, A. H., Baigun, C., Bossenbroek, L., Dickens, C., Harrison, I., Kimirei, I.,
663 Langhans, S. D., Murchie, K. J., & others. (2023). People need freshwater biodiversity. *Wiley Interdisciplinary
664 Reviews: Water*, 10(3), e1633. <https://doi.org/10.1002/wat2.1633>

665 Mächler, E., Deiner, K., Steinmann, P., & Altermatt, F. (2014). Utility of environmental DNA for monitoring rare and
666 indicator macroinvertebrate species. *Freshwater Science*, 33(4), 1174-1183. <https://doi.org/10.1086/678998>

667 Mächler, E., Little, C. J., Wüthrich, R., Alther, R., Fronhofer, E. A., Gounand, I., Harvey, E., Hürlemann, S., Walser,
668 J.-C., & Altermatt, F. (2019). Assessing different components of diversity across a river network using eDNA.
669 *Environmental DNA*, 1(3), 290-301. <https://doi.org/10.1002/edn3.53>

670 Marshall, N. T., & Stepien, C. A. (2020). Macroinvertebrate community diversity and habitat quality relationships
671 along a large river from targeted eDNA metabarcode assays. *Environmental DNA*, 2(4), 572-586.
672 <https://doi.org/10.1002/edn3.166>

673 Martins, F. M. S., Porto, M., Feio, M. J., Egster, B., Bonin, A., Serra, S. R. Q., Taberlet, P., & Beja, P. (2021). Modelling
674 technical and biological biases in macroinvertebrate community assessment from bulk preservative using multiple
675 metabarcoding markers. *Molecular Ecology*, 30(13), 3221-3238. <https://doi.org/10.1111/mec.16045>

676 Mauro, M., Longo, F., Lo Valvo, M., Vizzini, A., Di Grigoli, A., Radovic, S., Arizza, V., Vecchioni, L., La Paglia,
677 L., Queiroz, V., & others. (2025). The use of environmental DNA as preliminary description of invertebrate
678 diversity in three Sicilian lakes. *Animals*, 15(3), 355. <https://doi.org/10.3390/animals15030355>

679 McCulloch, G. A., Pohe, S. R., Wilkinson, S. P., Drinan, T. J., & Waters, J. M. (2025). Targeted eDNA
680 metabarcoding reveals new populations of a range-limited stonefly. *Ecology and Evolution*, 15(4), e71244.
681 <https://doi.org/10.1002/ece3.71244>

682 Morse, J. C., Bae, Y. J., Munkhjargal, G., Sangpradub, N., Tanida, K., Vshivkova, T. S., Wang, B., Yang, L., & Yule,
683 C. M. (2007). Freshwater biomonitoring with macroinvertebrates in East Asia. *Frontiers in Ecology and the
684 Environment*, 5(1), 33-42. [https://doi.org/10.1890/1540-9295\(2007\)5\[33:fwmwmi\]2.0.co;2](https://doi.org/10.1890/1540-9295(2007)5[33:fwmwmi]2.0.co;2)

685 Múrria, C., Wangensteen, O. S., Somma, S., Väistönen, L., Fortuño, P., Arnedo, M. A., & Prat, N. (2024). Taxonomic
686 accuracy and complementarity between bulk and eDNA metabarcoding provides an alternative to morphology
687 for biological assessment of freshwater macroinvertebrates. *Science of the Total Environment*, 935, 173243.
688 <https://doi.org/10.1016/j.scitotenv.2023.173243>

689 Ntislidou, C., Bozatzidou, M., Argyriou, A.-K., Karaouzas, I., Skoulidakis, N., & Lazaridou, M. (2020). Minimizing
690 human error in macroinvertebrate samples analyses for ensuring quality precision in freshwater monitoring
691 programs. *Science of the Total Environment*, 703, 135496. <https://doi.org/10.1016/j.scitotenv.2019.135496>

692 Ntislidou, C., Latinopoulos, D., Skotida, A., Giannoulis, T., Moutou, K., & Kagalou, I. (2023). Assessment of
693 hydrological barriers effect in river benthic fauna coupled with eDNA metabarcoding monitoring.
694 *Ecohydrology & Hydrobiology*, 23(3), 389-399. <https://doi.org/10.1016/j.ecohyd.2023.05.003>

695 Papaioannou, C., Geladakis, G., Kommata, V., Batargias, C., & Lagoumartzis, G. (2023). Insights in pharmaceutical
696 pollution: The prospective role of eDNA metabarcoding. *Toxics*, 11(11), 903.
697 <https://doi.org/10.3390/toxics11110903>

698 Pereira-da-Conceicoa, L., Elbrecht, V., Hall, A., Briscoe, A., Barber-James, H., & Price, B. (2021). Metabarcoding
699 unsorted kick-samples facilitates macroinvertebrate-based biomonitoring with increased taxonomic resolution,
700 while outperforming environmental DNA. *Environmental DNA*, 3(2), 353-371.
701 <https://doi.org/10.1002/edn3.214>

702 Perrelet, K., Cook, L. M., Dietzel, A., Altermatt, F., & Moretti, M. (2025). Aquatic and terrestrial environmental
703 DNA signals reveal decoupling of blue-green communities along an urbanization gradient. *Landscape and*

704 *Urban Planning*, 260, 105376. <https://doi.org/10.1016/j.landurbplan.2024.105376>

705 Perry, W. B., Seymour, M., Orsini, L., Jâms, I. B., Milner, N., Edwards, F., Harvey, R., de Bruyn, M., Bista, I., Walsh,
706 K., & others. (2024). An integrated spatio-temporal view of riverine biodiversity using environmental DNA
707 metabarcoding. *Nature Communications*, 15(1), 4372. <https://doi.org/10.1038/s41467-024-47618-4>

708 Penaluna, B. E., Coble, A. A., Jan, A., Cronn, R., Hauck, L. L., Arismendi, I., & Homyack, J. (2026). Forest age
709 influences freshwater biodiversity in temperate watersheds. *Biological Conservation*, 313, 111530.
710 <https://doi.org/10.1016/j.biocon.2025.111530>

711 Pinna, M., Zangaro, F., & Specchia, V. (2024). Assessing benthic macroinvertebrate communities' spatial
712 heterogeneity in Mediterranean transitional waters through eDNA metabarcoding. *Scientific Reports*, 14(1),
713 17890. <https://doi.org/10.1038/s41598-024-61965-1>

714 Pratiwi, D., Sumiarsa, D., Oktavia, D., Fatharani, R. H., & others. (2024). Effect of land use type on macrobenthos
715 assemblages, distribution, and functional guild in upstream Citarum River. *Ecological Indicators*, 160, 111849.
716 <https://doi.org/10.1016/j.ecolind.2023.111849>

717 Preece, E. P., Bryan, M., Mapes, S. M., Wademan, C., & Dorazio, R. (2021). Monitoring for freshwater mussel
718 presence in rivers using environmental DNA. *Environmental DNA*, 3(3), 591-604.
719 <https://doi.org/10.1002/edn3.201>

720 Pyšek, P., Hulme, P. E., Simberloff, D., Bacher, S., Blackburn, T. M., Carlton, J. T., Dawson, W., Essl, F., Foxcroft,
721 L. C., Genovesi, P., & others. (2020). Scientists' warning on invasive alien species. *Biological Reviews*, 95(6),
722 1511-1534. <https://doi.org/10.1111/brv.12649>

723 Qin, S., Li, F., Zou, Y., Xue, J., Zhang, Y., & Yang, Z. (2023). eDNA-based diversity and multitrophic network
724 reveal the effects of land use and pollutants on the subtropical Dongjiang River systems. *Environmental
725 Pollution*, 334, 122157. <https://doi.org/10.1016/j.envpol.2023.122157>

726 Rahel, F. J., & Olden, J. D. (2008). Assessing the effects of climate change on aquatic invasive species. *Conservation
727 Biology*, 22(3), 521-533. <https://doi.org/10.1111/j.1523-1739.2008.00954.x>

728 Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J., Kidd, K. A., MacCormack, T. J.,
729 Olden, J. D., Ormerod, S. J., & others. (2019). Emerging threats and persistent conservation challenges for
730 freshwater biodiversity. *Biological Reviews*, 94(3), 849-873. <https://doi.org/10.1111/brv.12519>

731 Reinholdt Jensen, M., Egelyng Sigsgaard, E., Agersnap, S., Jessen Rasmussen, J., Baattrup-Pedersen, A., Wiberg-
732 Larsen, P., & Francis Thomsen, P. (2021). Seasonal turnover in community composition of stream-associated
733 macroinvertebrates inferred from freshwater environmental DNA metabarcoding. *Environmental DNA*, 3(4),
734 861-876. <https://doi.org/10.1002/edn3.233>

735 Rishan, S. T., Kline, R. J., & Rahman, M. S. (2023). Applications of environmental DNA (eDNA) to detect
736 subterranean and aquatic invasive species: A critical review on the challenges and limitations of eDNA
737 metabarcoding. *Environmental Advances*, 12, 100370. <https://doi.org/10.1016/j.envadv.2023.100370>

738 Rivera, S. F., Vasselon, V., Mary, N., Monnier, O., Rimet, F., & Bouchez, A. (2021). Exploring the capacity of
739 aquatic biofilms to act as environmental DNA samplers: Test on macroinvertebrate communities in rivers.
740 *Science of the Total Environment*, 763, 144208. <https://doi.org/10.1016/j.scitotenv.2020.144208>

741 Johnson, R. K., Wiederholm, T., & Rosenberg, D. M. (1993). Freshwater biomonitoring using individual organisms,
742 populations, and species assemblages of benthic macroinvertebrates. In *Freshwater Biomonitoring and Benthic
743 Macroinvertebrates* (pp. 40-158). Chapman & Hall.

744 Rowland, J. A., Bland, L. M., Keith, D. A., Juffe-Bignoli, D., Burgman, M. A., Etter, A., Ferrer-Paris, J. R., Miller,
745 R. M., Skowno, A. L., & Nicholson, E. (2019). Ecosystem indices to support global biodiversity conservation.
746 *Conservation Letters*, 12(6), e12680. <https://doi.org/10.1111/conl.12680>

747 Saccò, M., Campbell, M. A., Aguilar, P., Salazar, G., Berry, T. E., Heydenrych, M. J., Lawrie, A., White, N. E.,
748 Harrod, C., & Allentoft, M. E. (2025). Metazoan diversity in Chilean hypersaline lakes unveiled by
749 environmental DNA. *Frontiers in Ecology and Evolution*, 13, 1504666.

750 <https://doi.org/10.3389/fevo.2025.1504666>

751 Sahu, A., Singh, M., Amin, A., Malik, M. M., Qadri, S. N., Abubakr, A., Teja, S. S., Dar, S. A., & Ahmad, I. (2025).
752 A systematic review on environmental DNA (eDNA) science: An eco-friendly survey method for conservation
753 and restoration of fragile ecosystems. *Ecological Indicators*, 173, 113441.
754 <https://doi.org/10.1016/j.ecolind.2024.113441>

755 Sakata, M. K., Watanabe, T., Maki, N., Ikeda, K., Kosuge, T., Okada, H., Yamanaka, H., Sado, T., Miya, M., &
756 Minamoto, T. (2021). Determining an effective sampling method for eDNA metabarcoding: A case study for
757 fish biodiversity monitoring in a small, natural river. *Limnology*, 22(2), 221-235.
758 <https://doi.org/10.1007/s10201-021-00624-5>

759 Sander, M., Beermann, A. J., Buchner, D., Weiss, M., Werner, M.-T., & Leese, F. (2025). Capture—Incubate—
760 Release: An animal-friendly approach to assess local aquatic macroinvertebrate species diversity through
761 environmental DNA metabarcoding. *Environmental DNA*, 7(3), e70112. <https://doi.org/10.1002/edn3.70112>

762 Sayer, C. A., Fernando, E., Jimenez, R. R., Macfarlane, N. B. W., Rapacciulo, G., Böhm, M., Brooks, T. M.,
763 Contreras-MacBeath, T., Cox, N. A., Harrison, I., & others. (2025). One-quarter of freshwater fauna threatened
764 with extinction. *Nature*, 638(8049), 138-145. <https://doi.org/10.1038/s41586-025-07984-0>

765 Schmidt, B. C., Spear, S. F., Tomi, A., & Bodinof Jachowski, C. M. (2021). Evaluating the efficacy of environmental
766 DNA (eDNA) to detect an endangered freshwater mussel *Lasmigona decorata* (Bivalvia: Unionidae).
767 *Freshwater Science*, 40(2), 354-367. <https://doi.org/10.1086/713082>

768 Seymour, M., Edwards, F. K., Cosby, B. J., Bista, I., Scarlett, P. M., Brailsford, F. L., Glanville, H. C., de Bruyn,
769 M., Carvalho, G. R., & Creer, S. (2021). Environmental DNA provides higher resolution assessment of riverine
770 biodiversity and ecosystem function via spatio-temporal nestedness and turnover partitioning. *Communications
771 Biology*, 4(1), 512. <https://doi.org/10.1038/s42003-021-02286-7>

772 Shen, Y., Zhou, X., Zhang, Y., Li, Q., Zhang, J., & Cheng, R. (2024). Environmental DNA (eDNA) reveals the
773 effects of cascade dam development on the distribution patterns of aquatic biodiversity in mountain rivers.
774 *Frontiers in Marine Science*, 11, 1444097. <https://doi.org/10.3389/fmars.2024.1444097>

775 Shi, K., He, Y., Yu, J., Zhao, Y., Wang, H., & Cui, Y. (2025). Combined water and detritus sampling is the most
776 effective strategy to detect environmental DNA of macroinvertebrates in rivers. *Ecological Indicators*, 177,
777 113782. <https://doi.org/10.1016/j.ecolind.2024.113782>

778 Sigsgaard, E. E., Carl, H., Møller, P. R., & Thomsen, P. F. (2015). Monitoring the near-extinct European weather
779 loach in Denmark based on environmental DNA from water samples. *Biological Conservation*, 183, 46-52.
780 <https://doi.org/10.1016/j.biocon.2015.01.023>

781 Simonin, M., Rocca, J. D., Gerson, J. R., Moore, E., Brooks, A. C., Czaplicki, L., Ross, M. R. V., Fierer, N., Craine,
782 J. M., & Bernhardt, E. S. (2021). Consistent declines in aquatic biodiversity across diverse domains of life in
783 rivers impacted by surface coal mining. *Ecological Applications*, 31(6), e02389.
784 <https://doi.org/10.1002/ea.2389>

785 Specchia, V., Saccomanno, B., Zangaro, F., Tzafesta, E., & Pinna, M. (2022). Exploring the biodiversity of a
786 European Natura 2000 Mediterranean lagoon through eDNA metabarcoding. *Diversity*, 14(11), 991.
787 <https://doi.org/10.3390/d14110991>

788 Sumudumali, R. G. I., & Jayawardana, J. M. C. K. (2021). A review of biological monitoring of aquatic ecosystems
789 approaches: With special reference to macroinvertebrates and pesticide pollution. *Environmental Management*,
790 67(2), 263-276. <https://doi.org/10.1007/s00267-020-01264-5>

791 Takahashi, M., Saccò, M., Kestel, J. H., Nester, G., Campbell, M. A., Van Der Heyde, M., Heydenrych, M. J.,
792 Juszkiewicz, D. J., Nevill, P., Dawkins, K. L., & others. (2023). Aquatic environmental DNA: A review of the
793 macro-organismal biomonitoring revolution. *Science of the Total Environment*, 873, 162322.
794 <https://doi.org/10.1016/j.scitotenv.2023.162322>

795 Tank, J. L., Rosi-Marshall, E. J., Griffiths, N. A., Entrekin, S. A., & Stephen, M. L. (2010). A review of

796 allochthonous organic matter dynamics and metabolism in streams. *Journal of the North American*
797 *Benthological Society*, 29(1), 118-146. <https://doi.org/10.1899/08-184.1>

798 Thompson, R. M., Brose, U., Dunne, J. A., Hall, R. O., Hladyz, S., Kitching, R. L., Martinez, N. D., Rantala, H.,
799 Romanuk, T. N., Stouffer, D. B., & others. (2012). Food webs: Reconciling the structure and function of
800 biodiversity. *Trends in Ecology & Evolution*, 27(12), 689-697. <https://doi.org/10.1016/j.tree.2012.08.004>

801 Thomsen, P. F., Kielgast, J. O. S., Iversen, L. L., Wiuf, C., Rasmussen, M., Gilbert, M. T. P., Orlando, L., &
802 Willerslev, E. (2012). Monitoring endangered freshwater biodiversity using environmental DNA. *Molecular*
803 *Ecology*, 21(11), 2565-2573. <https://doi.org/10.1111/j.1365-294X.2012.05541.x>

804 Thomsen, P. F., & Willerslev, E. (2015). Environmental DNA-An emerging tool in conservation for monitoring past
805 and present biodiversity. *Biological Conservation*, 183, 4-18. <https://doi.org/10.1016/j.biocon.2014.12.006>

806 Uchida, N., Kubota, K., Aita, S., & Kazama, S. (2020). Aquatic insect community structure revealed by eDNA
807 metabarcoding derives indices for environmental assessment. *PeerJ*, 8, e9176.
808 <https://doi.org/10.7717/peerj.9176>

809 van der Plas, M., Trimbos, K. B., Bosker, T., & Vijver, M. G. (2025). eDNA-based approaches advance
810 ecotoxicology: Insights and best practices from eDNA metabarcoding studies in evaluating stress-induced
811 aquatic (macro-) invertebrate community composition. *Ecological Indicators*, 172, 113269.
812 <https://doi.org/10.1016/j.ecolind.2024.113269>

813 van der Plas, M., Nederstigt, T. A. P., Trimbos, K. B., & Vijver, M. G. (2025). Size-dependent impacts from
814 polystyrene micro-and nanoplastics on freshwater invertebrates: A mesocosm study combining environmental
815 DNA metabarcoding and morphological identification. *Journal of Hazardous Materials*, 140304.
816 <https://doi.org/10.1016/j.jhazmat.2024.140304>

817 Vidal-Abarca Gutiérrez, M. (2024). "Buceando" en el socio-ecosistema de los ríos secos: Aproximación desde la
818 socio-limnología. *Limnetica*, 45(1), 1. <https://doi.org/10.23818/limnetica.45.1.1>

819 Vourka, A., Karaouzas, I., & Parmakelis, A. (2023). River benthic macroinvertebrates and environmental DNA
820 metabarcoding: A scoping review of eDNA sampling, extraction, amplification and sequencing methods.
821 *Biodiversity and Conservation*, 32(13), 4221-4238. <https://doi.org/10.1007/s10531-023-02644-5>

822 Wang, Y., Chen, K., Gao, J., Wang, M., Dong, J., Xie, Y., Giesy, J. P., Jin, X., & Wang, B. (2021). Environmental
823 DNA of preservative ethanol performed better than water samples in detecting macroinvertebrate diversity
824 using metabarcoding. *Diversity and Distributions*, 27(10), 1989-2002. <https://doi.org/10.1111/ddi.13365>

825 Wu, F., Li, F., Zou, Y., Li, B., Guo, F., Gao, W., Yin, Z., Li, L., & Zhang, Y. (2025). Environmental DNA reveals
826 multitrophic insight into the mechanism of community stability changes in shallow eutrophic lakes. *ACSES&T*
827 *Water*, 5(8), 4351-4363. <https://doi.org/10.1021/acs.estwater.4c01064>

828 Wu, F., Zou, Y., Qin, S., Li, F., & Zhang, Y. (2023). eDNA biomonitoring of macroinvertebrate communities for the
829 bioassessment of a river's ecological status. *Water*, 15(2), 308. <https://doi.org/10.3390/w15020308>

830 Xie, H., Ma, Y., Jin, X., Jia, S., Zhao, X., Zhao, X., Cai, Y., Xu, J., Wu, F., & Giesy, J. P. (2024). Land use and river-
831 lake connectivity: Biodiversity determinants of lake ecosystems. *Environmental Science and Ecotechnology*,
832 21, 100434. <https://doi.org/10.1016/j.est.2024.100434>

833 Xiong, W., Chen, T., Du, X., Hou, L., Chen, Y., Han, J.-L., & Zhan, A. (2025). Ecological impacts of treated effluent
834 on multitrophic biodiversity and their interactions. *Environmental Research*, 277, 121585.
835 <https://doi.org/10.1016/j.envres.2024.121585>

836 Xu, X., Yuan, Y., Wang, Z., Zheng, T., Cai, H., Yi, M., Li, T., Zhao, Z., Chen, Q., & Sun, W. (2023). Environmental
837 DNA metabarcoding reveals the impacts of anthropogenic pollution on multitrophic aquatic communities
838 across an urban river of western China. *Environmental Research*, 216, 114512.
839 <https://doi.org/10.1016/j.envres.2022.114512>

840 Yang, J., Jeppe, K., Pettigrove, V., & Zhang, X. (2018). Environmental DNA metabarcoding supporting community
841 assessment of environmental stressors in a field-based sediment microcosm study. *Environmental Science &*

842 *Technology*, 52(24), 14469-14479. <https://doi.org/10.1021/acs.est.8b04007>

843 Yang, Y., Liu, K., Zhang, J., Xu, M., Guo, F., Zhou, X., Wang, C., Zhou, X., & Fu, X. (2025). Key environmental
844 factors influencing eDNA quantitative detection of golden mussel (*Limnoperna fortunei*) in a long-distance water
845 diversion project. *Environmental Technology & Innovation*, 37, 103998.
846 <https://doi.org/10.1016/j.eti.2024.103998>

847 Yates, A. G., Brua, R. B., Culp, J. M., Aguiar, F. C., Ajayan, A. P., Aspin, T., Bundschuh, M., Calderón, M. R.,
848 Csabai, Z., Dallas, H., & others. (2025). Charting a course for freshwater biomonitoring: The grand challenges
849 identified by the global scientific community. *Ecological Indicators*, 176, 113646.
850 <https://doi.org/10.1016/j.ecolind.2024.113646>

851 Yue, K., De Frenne, P., Van Meerbeek, K., Ferreira, V., Fornara, D. A., Wu, Q., Ni, X., Peng, Y., Wang, D., Heděnec,
852 P., & others. (2022). Litter quality and stream physicochemical properties drive global invertebrate effects on
853 instream litter decomposition. *Biological Reviews*, 97(6), 2023-2038. <https://doi.org/10.1111/brv.12869>

854 Zhang, S.-Y., Yan, Q., Zhao, J., Liu, Y., & Yao, M. (2024). Distinct multitrophic biodiversity composition and
855 community organization in a freshwater lake and a hypersaline lake on the Tibetan Plateau. *iScience*, 27(6).
856 <https://doi.org/10.1016/j.isci.2024.109932>

857 Zhou, S., Li, Z., Peng, S., Zhang, D., Li, W., Hong, M., Li, X., Yang, J., & Lu, P. (2022). Combining eDNA and
858 morphological approaches to reveal the impacts of long-term discharges of shale gas wastewaters on receiving
859 waters. *Water Research*, 222, 118869. <https://doi.org/10.1016/j.watres.2022.118869>

860 Zhu, W., Gai, H., Liu, Y., Zhang, M., Li, K. (2024). Nature-based bank protection measures improve benthic
861 macroinvertebrates in a stream draining an agriculturally dominated watershed. *Ecological Engineering*, 208,
862 107377. <https://doi.org/10.1016/j.ecoleng.2024.107377>

863 Zieritz, A., Richmond, T., Melzer, F., Rahim, K. A. A., Wilson, J.-J., Kassim, H. F. b., & Hartikainen, H. (2025). A
864 time-and cost-effective eDNA protocol to survey freshwater mussels (Bivalvia: Unionida) in tropical rivers.
865 *Environmental DNA*, 7(3), e70099. <https://doi.org/10.1002/edn3.70099>

866 Zizka, V. M. A., Leese, F., Peinert, B., & Geiger, M. F. (2019). DNA metabarcoding from sample fixative as a quick
867 and voucher-preserving biodiversity assessment method. *Genome*, 62(3), 122-136.
868 <https://doi.org/10.1139/gen-2018-0148>