

Environmental DNA reveals differential geologic isolation effects on plant and fungal Communities in the Hengduan Mountains

5 Yaquan Chang^{1,2,3}, Yifan Wang⁴, Xianjun Fang³, Ao Luo⁵, Wenjun Zhong⁴, Xiaowei Zhang⁴,
6 Zhiheng Wang⁵, Camille Albouy^{1,2}, Niklaus E. Zimmermann², Sean D. Willett³, Loïc
7 Pellissier^{1,2}

1. Ecosystems and Landscape Evolution, Department of Environmental Systems Science,
ETH Zürich

2. Land Change Science Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)

3. Earth Surface Dynamics, Department of Earth and Planetary Sciences, ETH Zürich

4. State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China

5. *Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871 China*

18

19

20

21

22

24

25

27

20

30

32

33

35

Corresponding author: Yaquan Chang; yaquanchang0623@gmail.com

36 **Abstract**

37
38 Species range limits are typically constrained by their tolerance to abiotic factors such as
39 climate, as well as by dispersal limitations due to geographic barriers like mountain ridges
40 and river valleys. Montane regions, which are hyperdiverse in many different clades,
41 characterised by high turnover, and complex topography, provide ideal systems for
42 investigating the drivers of range limits. In this study, we collected 30 environmental DNA
43 (eDNA) samples from the tributaries of the Salween, Mekong, and Yangtze rivers in west
44 China and employed ITS2 primers to analyse the species phylogenetic beta diversity of plant
45 and fungal communities. We then applied a null model approach to disentangle the dispersal
46 limitation process from the climate filtering process. Habitat preference analyses indicate that
47 our eDNA samples predominantly capture mid-to-low elevation species. The spatial pattern
48 of the PCoA plot from phylogenetic beta diversity revealed congruent distribution patterns
49 between plant and fungal groups, with assemblage segregation across different river valleys
50 and along latitudes. The plant communities were structured along the Salween-Mekong
51 divide once climatic and distance effects were accounted for. Our results highlight the
52 efficiency of using river eDNA to detect the terrestrial plant and fungi communities and
53 emphasize the dispersal barrier is taxa and location dependent.

54

55 **Keywords:**

56 Environmental DNA, plant, fungi, geographic barriers, climate filtering

57 **Introduction**

58 Mountain regions harbour disproportionate terrestrial biodiversity globally despite occupying
59 only 25% of the land area ¹. This high biodiversity level is caused by the aggregation of many
60 small-range species ² with species composition varying substantially over short geographic
61 distances ³, or along elevational gradients ^{4,5} or across river valleys ⁶. Thus, examining
62 species assemblage replacement (hereafter: beta diversity) across geographic distance is
63 essential for understanding the biodiversity distribution of the montane systems.

64 Environmental filtering and dispersal limitation are two primary mechanisms in driving
65 community composition. Environmental filtering determines species range limits based on
66 abiotic control, constraining species range limits according to environmental conditions such
67 as temperature ^{7,8} and precipitation ^{9,10}. This hypothesis suggests that current climatic
68 variations could influence species range limits due to species-habitat associations ¹¹. In
69 addition, geographic barriers can impede species dispersal even within similar abiotic
70 conditions, eventually leading to long-term isolation and subsequent allopatric speciation ¹².
71 For example, the interfluvial drainage divide generated from escarpment retreat created
72 dispersal barriers for vascular plants in Madagascar ¹³. Montane regions with high levels of
73 complex topography have restricted species dispersal and thus host a high number of small-
74 ranged species ^{2,12}. However, these hypotheses are not mutually exclusive and have strong
75 interactions. For example, mountain ranges also act as barriers to atmospheric moisture,
76 creating rain shadows and filtering drought tolerant species on one side of mountain ranges.
77 The complex topography further compresses diverse climates within short geographic
78 distances along elevational gradients, further filtering species that favour different
79 environmental conditions, promoting high spatial species turnover in montane regions ¹⁴.
80 Therefore, disentangling the role of dispersal barriers from climate filtering is essential to
81 understand how mountain ranges play a role in geographic isolation.

82
83 Mountain regions have been identified as phylogeographic hotspots, where
84 phylogeographical patterns often correspond with geographic features such as mountain
85 ridges ¹⁵ and river valleys ¹⁶. These geographic features can block gene flow among
86 populations, eventually leading to allopatric speciation across clades. For example, high
87 mountains, lacking low-elevation passes have been identified as dispersal barriers for birds ¹⁷,
88 mammals ¹⁸, amphibians ¹⁵, and plants ¹⁹. The effectiveness of these barriers, however, may
89 also depend on species' habitat preferences and dispersal abilities ¹². Moreover, mountain
90 ridges have been shown to impede the population connectivity of mid-to-low elevation yews
91 ²⁰, while deeply incised river valleys can act as dispersal barriers for alpine clades, isolating
92 mountain peaks as sky islands ²¹. Moreover, life history traits related to dispersal, such as
93 avian wing size ¹², plant seed size ²², or belonging to functional groups ²³, also influence how
94 species interact with these barriers. For example, mountainous barriers pose less of an
95 obstacle to ferns compared to other plants due to their easily dispersed spores ²⁴. Therefore,
96 considering habitat preferences and functional groups can enhance our understanding of the
97 role and effectiveness of geographic features as dispersal barriers.

99 The environmental DNA (eDNA) metabarcoding approach enables rapid and efficient
100 biodiversity monitoring, particularly for the quick characterisation of riverine species, as it
101 can simultaneously detect multiple taxa through the use of primers ²⁵. Riverine eDNA is
102 extensively employed to identify freshwater fish ^{26,27} and vertebrates ²⁸. However, the
103 evaluation of terrestrial plant and fungi communities through riverine eDNA has been much
104 less studied ²⁹, despite rivers transporting plant fragments such as pollen, leaves, or flowers
105 ³⁰. Detecting plant diversity in riverine environments is challenging due to the trade-off
106 between the prevalence and length of eDNA fragments ³¹. The high occurrence of small DNA
107 fragments in water samples often leads to an elevated read abundance of short amplicons.
108 The plant eDNA requires larger metabarcoding markers (over 500 bp) to distinguish closely
109 related species, which is present in lower quantities ³¹. This makes it difficult to detect a
110 sufficient number of plant and fungi species in rivers. The nuclear ribosomal DNA (nrDNA)
111 internal transcribed spacer-2 (ITS2) region has been identified as an effective genetic marker
112 for flowering vascular plants due to its high mutation rate and conserved small size (220 bp;
113 Espinosa Prieto et al., 2024). This makes ITS2 a valuable target for detecting terrestrial plants
114 and fungi in eDNA studies. While ITS2 has been widely used to detect plant and fungi
115 communities in the soil ³², and airborne ³³, it has rarely been assessed in riverine eDNA ³⁰.
116 Therefore, it is essential to expand the assessment of the ITS2 primer for plants and fungi
117 using riverine eDNA, as the extent to which river eDNA can accurately capture terrestrial
118 plant and fungal diversity remains largely unexplored.
119

120 Situated at the tectonic boundary between the Indian and Eurasian plates, the Hengduan
121 Mountains (HDM) region is recognised as a major biodiversity hotspot outside the tropics.
122 The Three Rivers Region (TRR) stands out in the HDM due to its complex topography and
123 exceptional biodiversity ³⁴. The Salween, Mekong, and Yangtze rivers, originating from
124 Tibet, run north to south in roughly parallel paths, carving deep gorges up to 3000 metres
125 deep and coming within tens of kilometres of each other at their closest points ³⁵. The TRR is
126 characterised by numerous north-south oriented mountain ranges with extreme relief,
127 dissected by river valleys, leading to a fragmented landscape with repeated ridge-valley
128 patterns ³⁶. This creates an ideal natural laboratory for studying how geographic features
129 influence phylogeographical discontinuities. For example, the TRR has been shown to
130 hamper gene flow among populations and amplify speciation in plants ²⁰, and amphibians ³⁷.
131 While the north-south oriented river valleys in the TRR provide potential corridors for
132 dispersal across latitudes, rapid species turnover near the TRR bottleneck around 28°N
133 suggests that climate gradients, particularly winter temperatures, significantly influence
134 species distributions ³⁸. A comprehensive, multi-taxa investigation based on eDNA sampling
135 can help determine to what extent these repeated geographic features play the dispersal
136 barriers in the TRR region.
137

138 In this study, we evaluate the effectiveness of mountain ridges and river valleys as dispersal
139 barriers by analysing the phylogenetic composition of plant and fungi species across 30
140 drainage basins in the tributaries of the Salween, Mekong, and Yangtze Rivers using eDNA.
141 We constructed plant and fungi communities based on water samples from each tributary. We
142 first assessed the sampling efficiency by comparing the elevation range of sampled plants and

143 that of the drainage basins. Next, we investigated the spatial pattern of species phylogenetic
144 beta diversity in the TRR including construction of a generalized dissimilarity model to
145 quantify the impact of climate. Finally, we examined whether mountain ridges play the role
146 as dispersal barriers after controlling for the effect of the climate filtering process.
147 Specifically, we addressed the following questions:

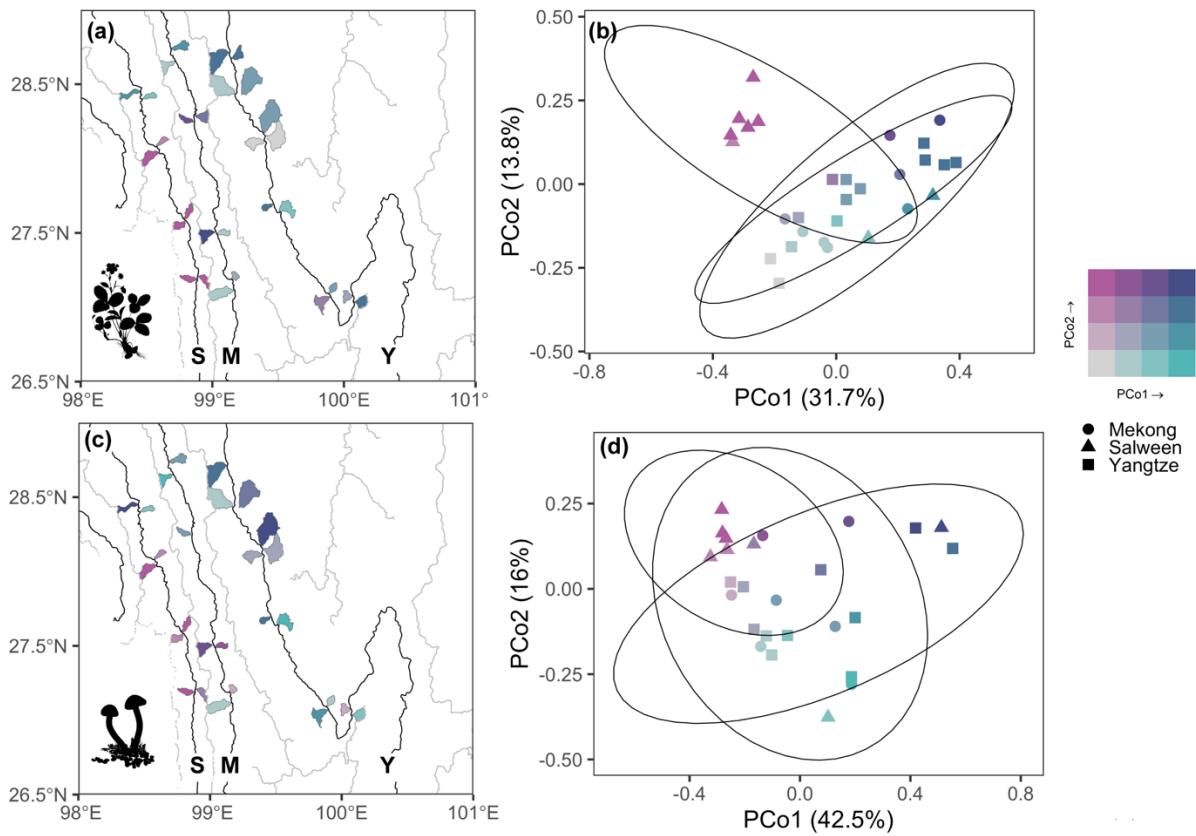
- 148 1) Can current sampling methods cover the whole drainage basin? Which elevation
149 bands are sampled by the riverine eDNA samples from tributary outlets?
- 150 2) What are the spatial distributions of plant and fungi phylogenetic diversity? Do they
151 show congruent distribution patterns?
- 152 3) Do mountain ridges act as dispersal barriers for both plant and fungi communities
153 after controlling the climate filtering process?

156 **Results**

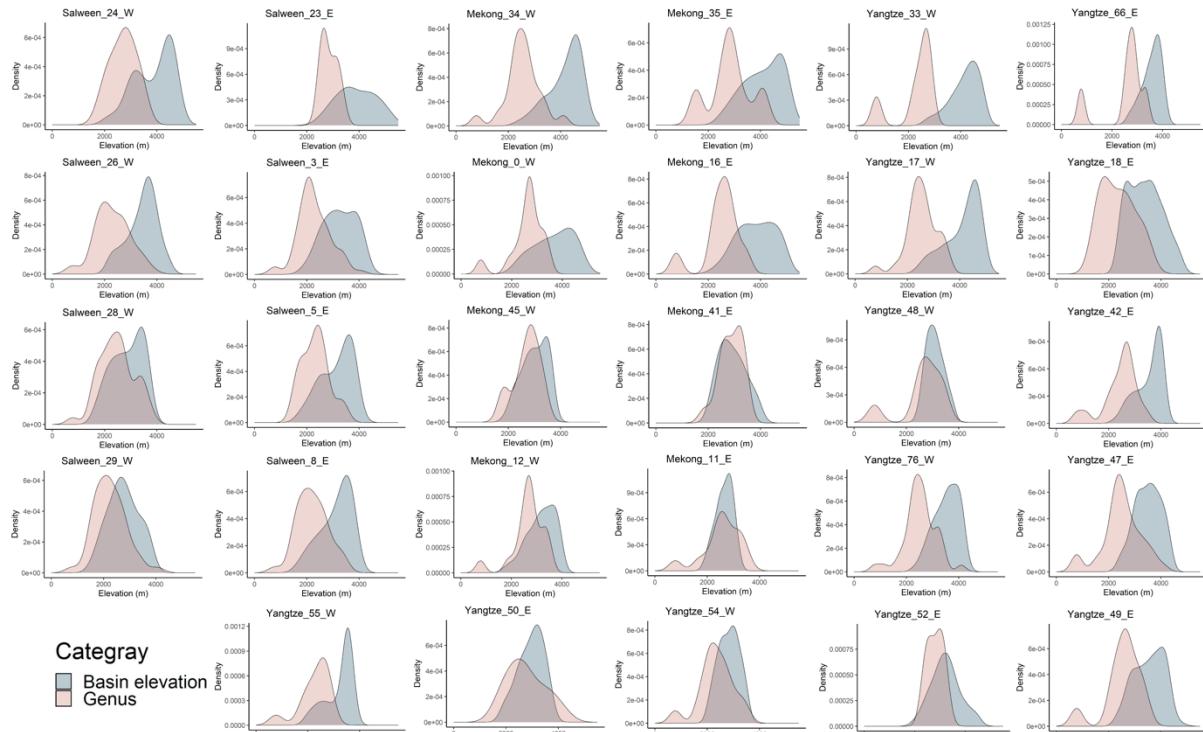
157 **Taxonomic assignment**

159 After the taxonomic assignment and cleaning step, the total number of reads in the ITS2 was
160 1,653,080 (average reads/filter = $27,099.67 \pm 28,088.96$) across the 61 pooled eDNA samples.
161 Plant species were detected in 29/30 sites, with 33 ASVs assigned to the family level, 139
162 ASVs assigned genus level and 105 ASVs to the species level. After assigning to the global
163 genus level phylogenetic tree, 134 genera were retained to perform the analyses. In the
164 Salween valley, Urticaceae was particularly diverse, the number of genera detected
165 occupying 9% of the total detected genera (Figure S2). The Salween River also has high
166 proportions of Araliaceae and Saxifragaceae (6.0% and 4.5% respectively), while the
167 Mekong and Yangtze rivers do not. The Yangtze and Mekong rivers share the same top 4
168 families including Fabaceae, Asteraceae, Urticaceae, and Poaceae while the orders are
169 slightly different. Fungal species were detected at 27 out of 30 sites, encompassing 46 orders
170 and 88 families. Pathogenic and nonyeast unicellular fungi are the dominant functional groups
171 among all rivers. The Salween River has a high abundance of yeast, while the Mekong and
172 Yangtze rivers have a high abundance of opportunistic human pathogens (Table S3). The
173 detailed site level checklist for plants and fungi could be found in Figure S2 and S3
174 respectively.

176 **Sampled habitats for plant communities**


177 The elevation gradient of sampled drainage basins ranged from 2123.9 ± 290.3 m to $4278.7 \pm$
178 565.0 m, with a mean elevation of 3201.3 ± 390.4 m and an elevation range of $2154.8 \pm$
179 444.1 m (Figure 2). The plant elevational preferences show the maximum (Figure 2), mean
180 (Figure S5), and minimal (Figure S6) elevation density for all plant genera found in certain
181 drainage basins. The mean elevation of the maximum elevation preference across all drainage
182 basins is 2347.8 ± 304.8 m (Figure 2). Comparing the plant maximum elevation preference
183 with the whole elevational gradient of the drainage basin, the plant elevation preference shifts
184 towards a lower elevation of 853.5 ± 473.2 m (Figure 2). The overlap between species'
185 maximum elevation range and basin elevation was $51.6\% \pm 19.1\%$. Additionally, the plant
186 mean and minimal preferred elevation maps showed downward shifts of 1303.2 ± 449.1 m
187 (Figure S5) and 1719 ± 466 m (Figure S6), respectively. The overlap of plant mean and
188 minimal preferred elevations with the drainage basin elevations were $29.5\% \pm 15.5\%$ (Figure
189 S5) and $14.1\% \pm 9.2\%$ (Figure S6), respectively.

190


191 **Spatial pattern of species composition**

192 The first two axes of the Principal Coordinates Analysis (PCoA) explained 45.5% and 58.5%
193 of the variance for plants and fungi, respectively (Figure 1b, d). The spatial pattern of the first
194 two PCoA axes delineated distinct east-west and north-south gradients of phylogenetic beta
195 diversity (Figure 1). The Salween River showed a more distinct species composition
196 compared to the Mekong and Yangtze rivers for both plant and fungi groups (Figure 1, S2,
197 S3). In the plant community, the Salween River is dominated by some tropical genera such as
198 *Toxicodendron*, *Tetracentron*, *Ficus*, *Maclura*, *Pilea* (Figure S2). In the fungi community,
199 some tropical families and functional groups have been mainly found in the Salween River
200 such as *schizophoraceae*, *polyporaceae* (Figure S3). The latitudinal gradient of the PCoA
201 pattern indicated a significant turnover at ca. 28°N , with this transition occurring further
202 north in the Salween and further south in the Yangtze (Figure 1).

203

204
205
206 **Figure 1.** Species composition of vascular plants and fungi on biplot maps and pcoa ordinary plots
207 based on Sorensen phylogenetic beta diversity. Figures (a) and (c) represent the spatial distribution of
208 the first two PCoA axes in plants and fungi, respectively; colour gradients highlight the species
209 composition difference between different drainage basins. Black lines represent the river valleys and
210 grey lines represent mountain ridges. S represents the Salween River, M represents the Mekong River,
211 and Y represents the Yangtze River. The second column represents the PCoA ordination of species
212 composition in the Salween, Mekong and Yangtze Rivers. The colour of the points corresponds to the
213 color in the drainage basins in the left panel. Circles represent the Mekong River, triangles the
214 Salween River, and squares the Yangtze River. Data ellipses were computed for the ordination plot
215 considering a multivariate t-distribution with a 0.95 level. The silhouette images were derived from
216 phylopic (<https://www.phylopic.org>).
217
218

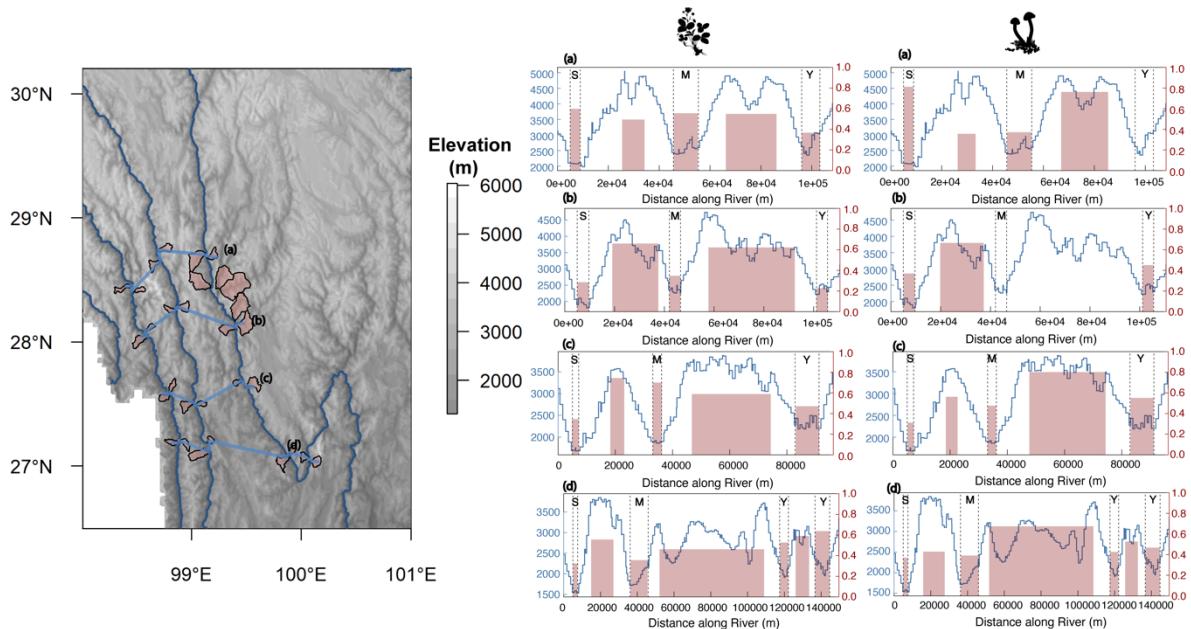

219
220
221
222
223

Figure 2. Elevation density plots with the sampled genus maximum elevation preference in each drainage basin (pink) and the full gradient of elevation of whole drainage basins (grey), in all sampling sites across Salween, Mekong and Yangtze Rivers.

224 **Elevational profile and phylogenetic beta diversity of the Three-River
225 Region**

226 The geomorphic analysis reveals significant elevational changes from west to east in the
227 TRR region that have a corresponding relationship in the phylogenetic beta diversity. The
228 structure of the geography is dominated by the north-south flowing rivers and their
229 intervening divides, which provide potential dispersal barriers. The relief of the Salween-
230 Mekong divide is larger than the Mekong-Yangtze and the distance between the Salween and
231 Mekong rivers is consistently smaller (Figure 3). Along the south and north swathes, both
232 divides have an elevation increase from 3700 m to 5000 m. The phylobeta diversity along the
233 east-west elevational profiles generally reveals significant high beta at the main divides than
234 phylobeta in the river valleys across plant ($p < 0.01$) and fungal ($p = 0.058$) although the most
235 north profile shows an opposite trend where phylobeta in the Salween River (0.600 and 0.812
236 for plant and fungi groups respectively) is higher than phylobeta in other river valleys and
237 ridges.

238

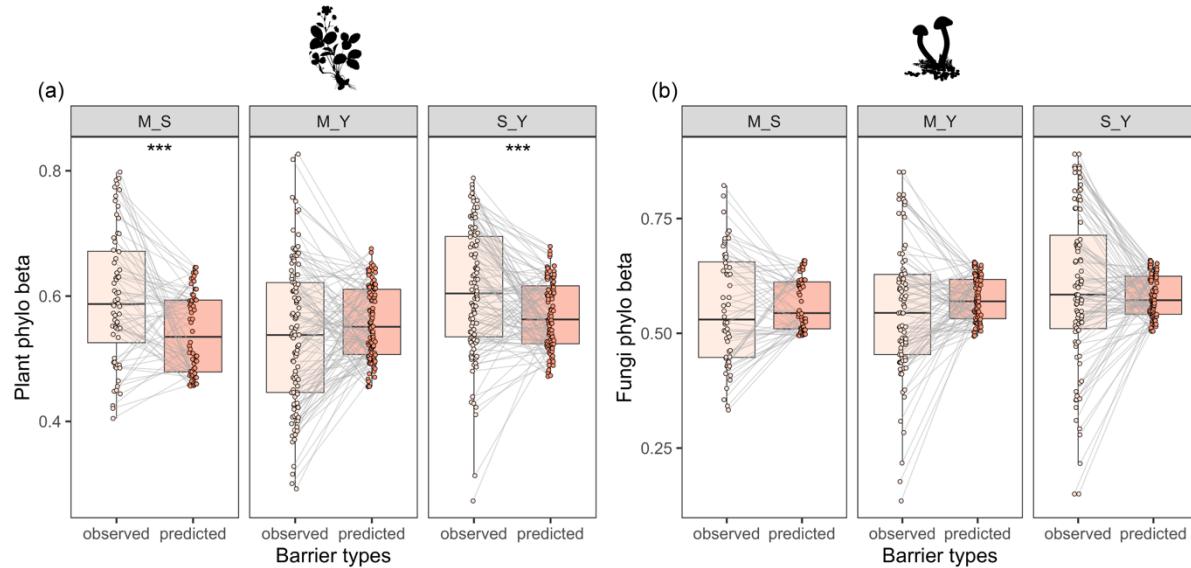
239
240
241
242
243
244
245
246

Figure 3. The phylogenetic beta diversity along different swathes. Dark blue lines in the left map represent the main trunks. The blue transects represent four swathes across sampling sites in the right panels. The polygons in the map represent the corresponding drainage basins. In the right panels, pink bars represent the phylogenetic beta diversity between two adjacent basins, and blue lines represent the elevation profile along the swath. The silhouette images were derived from phylopic (<https://www.phylopic.org>).

247
248
249
250
251
252
253
254
255
256
257
258

Impact of climate isolation on phylogenetic beta

In the null model, the climate and geographic distance jointly explain the beta diversity with an explanation power that varied from 6.21% to 17.98% (Table S4). The GDM model has a consistent higher explanatory power in the plant community than the fungi community in both taxonomic and phylogenetic beta diversity (Table S4). PC2 is the most important predictor in these communities (Table S4), reflecting precipitation seasonality, annual range of air temperature, mean monthly precipitation amount of the coldest quarter, min daily min temperature of the coldest month, precipitation amount of the driest month (Figure S7). The PC1 is the second predictor, mainly reflecting monthly near surface relative humidity, site water balance, vapor pressure deficit, climate moisture index, and first day of the growing season (Figure S7).


259

The divide isolation impact after accounting for climate on beta diversity

260
261
262
263
264
265

The observed beta diversity crossing drainage divides is significantly higher than predicted beta diversity from climate difference. But this pattern varied across different groups and different divides (Figure 4). For the plant group, the Wilcoxon t-test shows a significant difference between the observed pattern of phylogenetic beta is significantly higher than the predicted beta diversity in the Salween-Mekong and Salween Yangtze divides ($p < 0.001$, Figure 4a) but not in the Mekong-Yangtze divide. In contrast, in the fungi community, none

266 of the divides revealed a significant difference between climate predictions and observed
 267 phylobeta (Figure 4b). The plant community has a consistent pattern when comparing
 268 taxonomic beta diversity, revealing the observed beta diversity is significantly higher than
 269 predicted beta diversity from pure climatic model in Salween-Mekong ($p < 0.001$, Figure
 270 S8a) and Salween-Yangtze ($p < 0.001$, Figure S8a) divides. In the fungal community, all
 271 divides show non-significant differences between observed taxonomic beta and predicted
 272 taxonomic beta except the Salween-Yangtze divide. The Salween-Yangtze divide shows a
 273 significantly higher observed taxonomic beta than predicted taxonomic beta diversity from
 274 climate effects ($p < 0.01$, Figure S8b).

275
 276 **Figure 4.** The pairwise comparison between climate and geographic distance predicted phylogenetic
 277 beta diversity versus observed phylogenetic beta diversity across different mountain ridges in both
 278 plant (a) and fungi (b) communities. Note that M_S represents the Salween-Mekong drainage divide;
 279 M_Y represents the Mekong-Yangtze divide; and S_Y represents the Salween-Mekong-Yangtze
 280 divide. Star signs represent the significance level from Wilcox comparison (i.e. $p < 0.001^{***}$;
 281 $p < 0.01^{**}$; $p < 0.05^*$). The silhouette images were derived from phylopic (<https://www.phylopic.org>).
 282

283 Discussion

284 Temperate mountain regions are typically associated with high species turnover³, largely due
 285 to climate filtering and dispersal limitation processes³⁹. In the Hengduan region, we found
 286 the north-south oriented mountain ranges play a significant role in impeding species dispersal
 287 in east-west directions. The clear segregation of plant and fungal phylogenetic beta diversity
 288 observed in both PCoA analyses and elevational profiles underscore the association between
 289 high phylogenetic turnover and mountain ridges. This highlights the function of mountain
 290 ridges acting as dispersal barriers. The rapid incision of the rivers in the TRR region has
 291 raised north-south oriented parallel mountains ranges³⁵, encouraging species to migrate in
 292 the north-south direction while restricting east-west genetic exchange among populations and
 293 leading to distinct geographic assemblages from east to west. For example, the tropical clade
 294 of Urticaceae, originally from the tropical region, primarily migrated northwards through the

295 Salween River valley ⁴⁰. The role of mountain ridges as dispersal barriers is observed
296 elsewhere. For instance, mountain range configurations have been linked to phylogenetic
297 discontinuities in the Andes ⁶, and Rocky Mountains ¹⁷ across various taxa, including birds ¹⁷,
298 plants ¹⁹ and mammals ⁴¹. Spatial congruence analyses revealed two main mechanisms by
299 which mountain ridges drive species turnover. First, the climate filtering process plays a key
300 role in driving species turnover in mountain systems ⁴². The strong elevation gradient is
301 associated with a temperature gradient, and mountain ridges act as barriers to moisture,
302 creating precipitation gradients and rain shadows, resulting in dramatic precipitation
303 gradients on both sides of a mountain ridge ⁴³. These climatic gradients filter species based on
304 their temperature and drought tolerance ^{20,44}. This process is particularly prominent in the
305 Hengduan Mountains, where north-south ridges shape the south Asia monsoon system by
306 blocking eastward cyclonic flow, producing a pronounced west-to-east precipitation gradient
307 ⁴⁵. Secondly, mountain ridges can act as direct geographic barriers, physically obstructing
308 species migration across ridges. Disentangling these processes is crucial to understand the
309 role of mountain ridges in shaping beta diversity across montane landscapes.
310

311 Not all mountain ridges act as barriers to species dispersal after accounting for climatic
312 effects on habitat. In the TRR region, the Salween-Mekong divide emerges as a major
313 dispersal barrier for plant species, even after controlling for the climatic effects at the point of
314 habitation of species. To differentiate the geographic isolation from climatic effects, we
315 compared observed phylogenetic beta diversity with values expected under a null model
316 based solely on climatic factors. This approach effectively isolated the contribution of
317 climatic isolation and confirmed the role of the Salween-Mekong divide as a geographic
318 barrier independent of climate. Although this divide has been recognized as a significant
319 barrier back to 1921 for fauna ⁴⁶ and later for flora communities at population and genetic
320 level ^{20,47}, our results provide empirical support for the effectiveness of this barrier after
321 controlling the climate impact on the habitat on each side of a range, highlighting the role of
322 physical geography in shaping regional plant biodiversity patterns. The effectiveness of the
323 Salween-Mekong divide acting as a dispersal barrier may be due to the large depth of the
324 gorge in the Salween valley. The high relief of the Salween valley compressed a wide range
325 of habitats-from tropical to alpine-into a steep elevational gradient. This compression
326 intensifies ecological barriers, reducing the likelihood of plant dispersal across the divide. In
327 contrast, the Mekong-Yangtze divide is less steep and with a more homogeneous and arid
328 climate ⁴⁸, resulting in fewer compressed ecological zones and a lower topographic-climate
329 barrier for plant species. Moreover, these divides exhibit distinct patterns of geomorphic
330 activity. The Salween-Mekong divide shows a consistent eastward direction of water-divide
331 migration, potentially facilitating directional species transfer from the Mekong to Salween
332 valleys. This asymmetrical movement may lead to species accumulation and promote
333 allopatric speciation crossing the divide. The Mekong-Yangtze river does not exhibit a
334 consistent migration direction along the divide ^{36,49}, which could promote mixing of species
335 pools and result in more homogeneous species assemblages across the divide. Although the
336 role of divide migration has been mainly investigated in aquatic systems ⁵⁰⁻⁵³, our empirical
337 data provide testable hypotheses regarding the influence of divide migration on plant species
338 turnover pattern at the regional scale.

339
340 The effectiveness of mountain ridges acting as dispersal barriers is taxa dependent. Although
341 fungal communities exhibit some spatial segregation across drainage divides, this pattern
342 disappears once climatic factors have been accounted for. The absence of statically
343 significant phylobeta across divides suggests that these mountain ridges may not act as
344 geographic barriers for fungi. This could reflect the higher long-distance dispersal capacity of
345 fungal spores compared with pollen ⁵⁴, consistent with the observation that the efficiency of
346 dispersal barrier varies with species dispersal abilities ⁵⁵. Instead, the community assembly of
347 fungal communities depends on the environmental filtering process ⁵⁶. This result is
348 confirmed with some global studies emphasizing climate in explaining the soil fungal
349 diversity at regional scale ^{57,58}. At the regional scale, other local factors such as soil pH and
350 calcium may filter fungal groups into different microenvironments ⁵⁷. The varied degree of
351 isolation impact of mountain ridges is also found in other comparisons between taxa such as
352 bird and lichen communities. The functional traits that determine dispersal abilities is likely
353 explained by these variations ⁵⁵.

354 Our eDNA data primarily captured species from mid-to-low elevation with implications for
355 the efficacy of eDNA characterization of large drainage basins. The taxa detected in plant and
356 fungal groups indicate sampling at the outlet of each drainage basin effectively recovered
357 species at hot, dry river valleys and temperate forests at mid-elevations (Figure 2). Using
358 documented elevation ranges for the detected genera ³⁴, we demonstrate that the eDNA signal
359 largely represents plant occurrence from mid-to-low elevations even under a maximum
360 elevation preference scenario. Furthermore, our eDNA data revealed a dominance of
361 pathogens and non-yeast unicellular fungi, which are typically associated with drylands and
362 temperate mesic forests ⁵⁸. This observation is consistent with the known dynamics of eDNA
363 advection, which are influenced by various biotic and abiotic factors such as DNA fragment
364 size ⁵⁹, hydrological conditions ⁶⁰. These factors contribute to varied downstream travel
365 distances ranging from metres to hundreds of kilometres ⁶⁰. For instance, studies have
366 demonstrated that plant eDNA is often only detected a few kilometers downstream ^{30,61}, in
367 contrast to the detection range for other organisms, such as invertebrates, which can extend
368 up to 9.1 km ⁶². One reason for this is that larger amplicons typically have lower abundance
369 and decay more easily in riverine systems ⁵⁹. Therefore, our eDNA data only permits us to
370 compare species that mainly occur in the dry river valleys and temperate forest ecosystems at
371 lower elevations in the catchments.

372 Climate is the dominant factor in shaping community assembly for both plant and fungal
373 communities, particularly for these communities within the river valley. In river valleys,
374 general dissimilarity models reveal that climate variables explain a large proportion of
375 phylogenetic beta diversity, especially the second factor, PC2, which captures climate
376 constraints related to both temperature and precipitation. Similarly, the north-south
377 segregation patterns identified through PCoA analyses show a significant division around
378 28°N, with the pattern being especially pronounced in the Salween River for both plant and
379 fungi communities. This segregation pattern is consistent with the 0°C minimal temperature
380 threshold in the coldest month ³⁸, partially supporting the freezing tolerance hypothesis. This

381 hypothesis posits that frost tolerance acts as one of the critical physiological barriers to
382 taxonomic shifts from tropical broadleaved forests to temperate conifer forests^{38,63},
383 demonstrating that tropical niche conservatism⁶⁴ is one of the main drivers in structuring
384 latitudinal biodiversity gradient in the Hengduan mountains. The freezing tolerance
385 hypothesis was initially supported using plant elevational ranges and county level distribution
386 records³⁸ in the Hengduan Mountains. We documented a similar pattern with more precise
387 community assembly data from eDNA. Certain clades, such as Urticaceae, originating from
388 tropical Asian regions⁵⁶, have migrated northwards along river valleys until reaching their
389 distributional limit near the 28°N freezing boundary in the Salween river valley. This pattern
390 is less pronounced in the Mekong and Yangtze river valleys, possibly due to the drier climate
391 in these valleys⁶⁵, which may have filtered out a high proportion of tropical lineages,
392 resulting in more homogeneous species compositions.

393

394 Our results delineate the spatial pattern of phylogenetic and taxonomic beta diversity in the
395 TRR region, emphasizing the varying roles of mountain ridges acting as dispersal barriers
396 across different taxonomic groups. Our findings demonstrate the potential to extend terrestrial
397 plant and fungal eDNA detection from soil⁶⁶ and air⁶⁷ to freshwater systems. However, the
398 lack of species detection of upper catchment species suggests that sampling only at river
399 outlets limits the ability to assess full basin-level biodiversity. Thus, careful sampling design
400 is essential. In particular, increased sampling density within individual drainage basins is
401 necessary to capture basin-level species composition more accurately⁶⁰. Several challenges
402 of sample plant eDNA remain, including incomplete DNA reference databases and the lack
403 of universal primers⁶⁸. Although our study demonstrated that ITS2 is effective for taxa
404 identification, we can only resolve the plant and fungi communities at genus and family level
405 respectively. To optimise riverine eDNA for plant diversity studies, it is crucial to develop
406 comprehensive reference databases, particularly for endemic species. Moreover, better
407 detection rates could be achieved by combining ITS2 with plastid DNA barcodes, such as
408 ribulose-bisphosphate carboxylase (rbcL)³¹. Last but not least, the eDNA approach offers an
409 excellent opportunity to explore multi-taxon biodiversity patterns. Including freshwater
410 organisms such as fish, with appropriate primers like Teleo02⁶⁹, could provide a more
411 holistic understanding of biodiversity in the TRR region.

412

413 Conclusion

414 Our analyses of plant and fungi groups from riverine eDNA sampling reveal that using the
415 ITS2 primer is sufficient to characterize the unique terrestrial plant and fungi communities in
416 individual catchments. The habitat preference of the plant communities in eDNA samples
417 indicates that sampling at the outlets of tributaries primarily captured mid-to-low elevation
418 species and undersampled the upper catchments. Consistent with other genetic sampling
419 methods²⁰, our results demonstrate species composition and phylogenetic beta diversity
420 patterns are spatially structured in the Three Rivers Region, with clear segregation between
421 the major river valleys and along the latitudinal gradient within individual river valleys. After

422 controlling the climate differences, only the plant community reveals a dispersal barrier
423 associated with the Salween-Mekong divide, whereas the fungal community has not been
424 limited by the major drainage divides in the TRR region. These findings highlight the
425 dispersal barrier is taxa and location dependent, and this pattern will emerge only after
426 controlling for the turnover associated with climatic differences affecting habitat. Our study
427 offers a framework to disentangle the climate filtering process from dispersal limitation,
428 providing a foundation for understanding how geographical configurations impact species
429 range limits. Our eDNA approach paves the way for broader investigations of terrestrial plant
430 and fungi groups using riverine eDNA, although further refinement of sampling methods and
431 detection protocols would aid in optimising this technique.
432

433 **Methods**

434 **Study area and sampling**

435 The study area, defined as the Three Rivers Region (TRR), extends from 98°E to 101°E and
436 26.5°N to 30.2°N (Figure 1). This region includes the upper reaches of the Salween, Mekong,
437 and Yangtze Rivers, which originate from the Tibetan Plateau. These rivers run in parallel in
438 the TRR region, creating deep gorges up to 3000 m³⁵, and have nearest points within several
439 tens of kilometres of each other. The majority of their tributaries run perpendicular to the
440 main rivers, forming extensive alpine valley landforms. Within the defined study area,
441 riverine environmental DNA (eDNA) samples were collected using a capsule filter from
442 Darlly (<https://darllyfiltration.com/>) in May 2023 from 30 sites located at the outlets of
443 tributaries of the Salween, Mekong, and Yangtze Rivers (Figure 1). Eight sites from the
444 Salween and Mekong Rivers and 14 sites from the Yangtze River were sampled as the paired
445 drainage basins on both sides of the mainstream. The sampling strategy was designed to
446 minimise the influence of anthropogenic impact by avoiding highly impacted drainage basins.
447 At each of the 30 sites, two replicates were collected from the outlet of each tributary. For
448 each replicate, 20 litres of freshwater were filtered over approximately one hour. This
449 systematic approach ensured comprehensive coverage of the riverine environments within the
450 TRR.
451

452 **eDNA Extraction, amplification, sequencing**

453 The extraction of environmental DNA and amplification were both conducted in a dedicated
454 laboratory. To control contamination in the extraction room, we included one extraction
455 control by filtering tap water. We used the ITS2 primer designed by Banchi et al (2020)
456 (forward: GAAYCATCGARTCTTGAAACGC; reverse: TCCTCCGCTTAKTGATATGC)
457 that amplify a region of 317 base pairs on average (range 250 - 420 bp). The negative control
458 in the amplification procedure showed no DNA template.

459 The eDNA extraction protocol was modified from the DNeasy Blood & Tissue Kit (Qiagen,
460 Germany. The filter containing the buffer solution was placed on the S50 shaker for thorough

461 agitation. Next, the buffer solution was poured from the filter into a 50 mL centrifuge tube
462 and centrifuged at 4500 G. Using enzyme-free pipette tips, the clear liquid was carefully
463 removed from the surface, leaving 15 mL of liquid at the bottom of the tube. Anhydrous
464 ethanol and 3 M sodium acetate were then added, and the mixture was stored overnight at -
465 20 °C. The centrifuge tube was inverted to mix the contents, followed by centrifugation at
466 4500 G for 25 minutes, after which the supernatant was discarded. Next, 720 µL of Buffer
467 ATL was added to each centrifuge tube, which was then agitated thoroughly for 1 minute.
468 The resulting liquid was transferred into 2 mL centrifuge tubes. Proteinase K was added to
469 each tube and the tubes were incubated in a 56 °C water bath. After incubation, the
470 supernatant from the centrifuge tubes was transferred to new 2 mL centrifuge tubes,
471 centrifuged at 13400 rpm, and the supernatant was transferred to new 2 mL centrifuge tubes.
472 Following this, 500 µL of Buffer AL was added to each tube, mixed thoroughly, and
473 incubated in a water bath for 10 minutes until the solution became clear. An equal volume
474 (500 µL) of anhydrous ethanol was then added, mixed thoroughly, and briefly centrifuged.
475 The liquid (700 µL at a time) was then pipetted and added to the spin column in multiple
476 steps, centrifuged at 13000 rpm, and the centrifugate discarded after each step. This process
477 was repeated until all the liquid had been centrifuged and discarded. The spin column was
478 then washed by adding 500 µL of Buffer AW1, centrifuging for one minute at 13000 rpm,
479 and discarding the centrifugate. This step was followed by the addition of 500 µL of Buffer
480 AW2, centrifugation for three minutes at 17000 rpm, and discarding the centrifugate. Finally,
481 the spin column was removed and placed in a new 1.5 mL centrifuge tube. To complete the
482 eDNA extraction, 100 µL of Buffer AE was added to the centre of the membrane in the spin
483 column and centrifuged for one minute at 13000 rpm.

484 PCR amplifications were conducted in 96-well plates following a thermocycler protocol. This
485 protocol included an initial denaturation step at 95 °C for 30 seconds, followed by 31 cycles
486 of denaturation at 95 °C for 30 seconds, annealing at 47 °C for 30 seconds, extension at 72 °C
487 for 45 seconds, and a final extension step at 72 °C for 5 minutes. The 25 µL PCR system
488 included 12.5 µL 2 × Rapid Taq Master Mix P213 (Nanjing Vazyme Biotech Co., Ltd), 1 µL
489 10 µM forward and reverse primers, 2 µL DNA template and 8.5 µL negative controls DEPC
490 water. Amplification products were detected using 2% agarose gel electrophoresis, and equal
491 volumes of these products were pooled. The pooled samples were then purified using
492 VAHTS® DNA Clean Beads (N411, Vazyme Biotech Co., Ltd., China) protocol. Library
493 construction was carried out with the VAHTS Universal DNA Library Prep Kit for Illumina
494 V3 (Vazyme Biotech Co., Ltd., China) following the manufacturer's protocol, and library
495 concentration was determined using a Qubit fluorometer (Thermo Fisher Scientific, USA).
496 The Illumina PE150 library underwent paired-end sequencing at the Illumina sequencing
497 facility (Shanghai Biozeron Biotechnology Co., Ltd., China).

498 Bioinformatic analyses

499 The original Illumina paired-end sequencing data were merged using the fastq_mergepairs
500 algorithm in VSEARCH. Sequences were then split by sample barcode using the
501 barcode_splitter script (https://bitbucket.org/princeton_genomics/barcode_splitter). For each

502 sample, reads were assembled with VSEARCH ⁷⁰. Sequences were demultiplexed and
503 trimmed based on forward and reverse primer sequences using Cutadapt ⁷¹ software, with a
504 maximum mismatch error rate of 0.1. Identical sequences were dereplicated to calculate the
505 abundance of each sequence. The clustering of sequences into amplicon sequence variants
506 (ASVs) was performed using the SWARM algorithm with a minimum distance of one
507 nucleotide (d = 1). Chimeras were checked and removed using the "--uchime_denovo"
508 command in VSEARCH ⁷⁰. Taxonomic assignment of ASVs was conducted with the ecotag
509 tool from OBITOOLs ⁷², using a lowest common ancestor algorithm and a plant barcode
510 reference database built from sequences and taxonomic information downloaded from NCBI.
511 An in-silico PCR pipeline, utilising the algorithms obiconvert, ecopcr, obigrep, obiuniq, and
512 obiannotate from OBITOOLs, was executed with the ITS2 primer. Parameters for the in
513 silico PCR included a minimum length of 250 bp, a maximum length of 420 bp, and a
514 maximum of 5 bp mismatches.

515 Using the checklist of native species in Yunnan ⁷³, we generated a barcode reference database
516 exclusively for native species. Species annotation was prioritised at 100% sequence similarity
517 and was performed solely at the species level. For ASVs that could not be annotated to the
518 species level, a secondary annotation was conducted using the original barcode reference
519 database. In this secondary process, sequences with 97% or higher similarity to the reference
520 were identified at the species level, sequences with 95-97% similarity at the genus level,
521 sequences with 90-95% similarity at the family level, and sequences with less than 90%
522 similarity at the order level. For all ASVs with specific names, we used TaxonKit ⁷⁴, a cross-
523 platform and efficient NCBI taxonomy toolkit ⁷⁴, to load lineage information for each unique
524 sequence. ASVs with lengths shorter than 250 bp or longer than 420 bp, not assigned to a
525 plant and fungi group, or with an abundance frequency below 0.001 were removed to avoid
526 tag-jump noise ⁶⁷. The LULU algorithm ⁷⁵ was then applied to clean ASVs, identifying errors
527 based on sequence identity, abundance, and co-occurrence patterns. Each ASV was classified
528 as a contaminant or not based on contamination signatures from previous studies. Only
529 curated ASVs detected in more than 10 reads were retained. ASV reads from two replicates
530 were assembled on the species checklist at each site. Finally, we chose the classes
531 "Magnoliopsida" and "Pinopsida" as the plant group and divisions "Basidiomycota",
532 "Ascomycota", "Chytridiomycota", "Mucoromycota", "Olpidiomycota",
533 "Blastocladiomycota", "Zoopagomycota" as fungi group. We chose to focus on the entire
534 fungi kingdom, rather than just macro-fungi, because only 53 macro-fungi species were
535 detected across 18 sites, which was insufficient for identifying biodiversity patterns.

536 **Plant genera-level elevational information and fungi function types**

537 To understand the habitat preference for the plant and fungi species detected in the eDNA
538 samples, we extract elevational preference for plants from flora and function types for fungal
539 from published data. For plants taxa detected in the eDNA samples, we extract genus level
540 elevational information from the flora of China
541 (http://www.efloras.org/flora_page.aspx?flora_id=2) and local floras including Tibet,
542 Sichuan, and Yunnan floras (Wu, 1986; Wu, 1987; Zhou, 1994; Wang, 1994). The elevation

543 information includes maximum and minimal elevation preference at genus level. Then genus
544 and family level elevation information was aggregated from these species level information.
545 The elevation information covers 85%, 87%, and 84% of sampled plant sequences in the
546 Mekong, Salween, and Yangtze respectively. We perform a density plot between the
547 elevation in each drainage basin and the mean, minimal, and maximum elevation for sampled
548 plant species in each drainage basin and compute the overlap density using the overlap
549 function in the overlapping package ⁷⁶. Besides, the functional type of fungal species was
550 extracted from ⁵⁸, including the arbuscular mycorrhizal (AM), ectomycorrhizal fungi (EcM),
551 molds (Mold), nonmycorrhizal Agaricomycetes (AgarNM; mainly saprotrophic macrofungi),
552 nonsymbiotically biotrophic group on a wide variety of organisms (Path), yeasts (Yeast),
553 nonyeast unicellular fungi (Unicell), and opportunistic human pathogens (OHP). We
554 extracted family-level taxonomic information and matched it with the corresponding
555 functional types.

556 **Plant and fungi taxonomic and phylogenetic diversity**

557 The genus level vascular plant phylogeny was derived from Dimitrov et al., 2023 ⁷⁷,
558 including 135 genera in angiosperm and four genera (i.e., *Pinus*, *Abies*, *Cupressus*, and
559 *Torreya*) in gymnosperm. For the fungi phylogeny, we derived family level fungi phylogeny
560 from Li et al ⁷⁸ which includes 68 families. We choose genus level for plant and family level
561 for fungi as it could better represent evolutionary history and has good enough resolution to
562 capture more taxa. In the OTU table, the taxonomic level under genus and family level in
563 plant and fungi was merged into the genus and family level, respectively. For the OTU table
564 can only be assigned into the higher level, we choose one genus or family within a certain
565 clade to represent the family or genus. This approach is based on the hypothesis that each
566 genus or family forms a clade (a monophyletic group) where species have diverged from their
567 common ancestor over the same period in the phylogeny. Therefore, the choice of one species
568 over another does not modify the phylogenetic turnover pattern (Rozanski *et al.* 2022). We
569 calculated the pairwise Sorensen dissimilarity for both taxonomic diversity and phylogenetic
570 beta diversity. These beta diversity metrics only consider the presence/absence of each ASV
571 in certain basin and were computed in the phylo_beta and beta_diss function for phylogenetic
572 and taxonomic diversity respectively in the phyloregion package in R ⁷⁹.

573

574 **Beta diversity and PCoA analyses**

575 We performed the two-dimensional Principal Coordination Analysis (PCoA) based on a
576 Sorensen beta matrix using the pcoa function in the ape package ⁸⁰. We then extracted the
577 first two axes of the PCoA to calculate dissimilarity and computed ellipses for the ordination
578 plot with stat_ellipse function from ggplot2 v.3.5.0 ⁸¹ considering a multivariate t-distribution
579 at the 0.95 level. The PCoA results are also visualized spatially for the first two axes of PCoA
580 analysis. The PCoA analyses are computed and visualized for both phylogenetic and
581 taxonomic Sorensen beta diversities.

582 **Climate variables**

583 We obtained 31 bioclimatic variables from 1981 to 2010 from the CHELSA climate model ⁸².
584 Climate layers in this model include a wide range of biologically important variables for
585 plants. We extract climate values for sampled drainage basins and computed principal
586 components from the correlation matrix of these climate layers (Fig. S7). The first two axes
587 of the PCA capture more than 80% of variation in the sampling drainage basins. We extract
588 the scores from the first two axes in the PCA for each sampling basin and use them for the
589 generalized dissimilarity model. This method should include sufficient climate variables to
590 accurately reflect energy and water availability constraints and also ensures the dimension of
591 orthogonal climate axes. We also computed the climate variable for the sub-basins where the
592 area is over the sampling points of 1000m to conduct the sensitivity analyses and this
593 approach does not change the model results.

594
595

596 **Generalized dissimilarity model within and across divide**

597 A generalized dissimilarity model (GDM; ^{83,84} was used on the Sorensen dissimilarity matrix
598 for both phylogenetic and taxonomic beta diversity to build the climate driven GDM model.
599 In the GDM, we split drainage basin pairs into background pairs and testing pairs. We first
600 select pairs not crossing main drainage divides and within river valleys (i.e. Salween,
601 Mekong, and Yangtze River valleys) to construct the null model. The assumption of the null
602 model is that only climate and geographic distance impact the beta diversity within river
603 valleys. The climate distance was calculated from PC1 and PC2 from the PCA analyses. The
604 geographic distance was computed from the sampling coordinates directly. The GDM was
605 implemented using the gdm package in R with a spline and knot of 3 ⁸⁴. After calibrating the
606 dissimilarity model for all pairs within river valleys, we used the model to predict turnover
607 for pairs that lie on either side of the Salween-Mekong divide, the Mekong-Yangtze divide,
608 or the Salween-Mekong-Yangtze divide. This prediction represents the beta diversity purely
609 due to climate change between sites. Finally, we compared the observed beta and the beta
610 diversity from this model. Any observed beta diversity that is significantly higher than the
611 predicted beta diversity is regarded as being due to the barrier effect of the major drainage
612 divides. We used the Wilcoxon t-test to test if there is a significant difference between the
613 observed and predicted beta diversity as this test uses the rank based test and without the
614 assumption of a normal distribution ⁸⁵.

615

616 **Topographic analyses**

617 Averaged topographic swath profiles corresponding to the elevation of a west-to-east transect
618 across the TRR region. Each swath was taken connecting the sampling basins in each river
619 valley, crossing Salween, Mekong, and Yangtze rivers. In total, four swath profiles were
620 made to report topographic change in the north, middle and south of the TRR region.

621

622 **Acknowledgements**

623 We thank the State Key Laboratory of Water Pollution Control and Green Resource
624 Recycling in Nanjing University for providing lab space and consumables for the lab work.
625 We thank Xianjun Fang for providing the catchment shapefile in the TRR region, Song
626 Zhang, Siyuan Gu for providing help in the fieldwork. YC, WS, LP, and NEZ acknowledge
627 financial support from ETH Zürich (ETH+ grant Biodiversity, Earth, Climate Coupling in
628 Yunnan). Open access funding provided by Eidgenössische Technische Hochschule Zurich.

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662 Reference

663

664 1. Rahbek, C. *et al.* Humboldt's enigma: What causes global patterns of mountain

665 biodiversity? *Science* **365**, 1108–1113 (2019).

666 2. Fjeldså, J., Bowie, R. C. K. & Rahbek, C. The Role of Mountain Ranges in the

667 Diversification of Birds. *Annu. Rev. Ecol. Evol. Syst.* **43**, 249–265 (2012).

668 3. Sonne, J. & Rahbek, C. Idiosyncratic patterns of local species richness and turnover

669 define global biodiversity hotspots. *Proc. Natl. Acad. Sci.* **121**, e2313106121 (2024).

670 4. Janzen, D. H. Why Mountain Passes are Higher in the Tropics. *Am. Nat.* **101**, 233–249

671 (1967).

672 5. Rahbek, C. The Relationship Among Area, Elevation, And Regional Species Richness In

673 Neotropical Birds. *Am. Nat.* (1997) doi:10.1086/286028.

674 6. Hazzi, N. A., Moreno, J. S., Ortiz-Movliav, C. & Palacio, R. D. Biogeographic regions and

675 events of isolation and diversification of the endemic biota of the tropical Andes. *Proc.*

676 *Natl. Acad. Sci.* **115**, 7985–7990 (2018).

677 7. Keddy, P. A. Assembly and response rules: two goals for predictive community ecology.

678 *J. Veg. Sci.* **3**, 157–164 (1992).

679 8. He, J. *et al.* Joint effects of environmental filtering and dispersal limitation on the species

680 assemblage of the Tibetan Plateau. *J. Biogeogr.* **49**, 640–653 (2022).

681 9. Purcell, J. & Avilés, L. Gradients of precipitation and ant abundance may contribute to

682 the altitudinal range limit of subsocial spiders: insights from a transplant experiment.

683 *Proc. R. Soc. B Biol. Sci.* **275**, 2617–2625 (2008).

684 10. Normand, S. *et al.* Importance of abiotic stress as a range-limit determinant for

685 European plants: insights from species responses to climatic gradients. *Glob. Ecol.*

686 *Biogeogr.* **18**, 437–449 (2009).

687 11. Baselga, A., Lobo, J. M., Svenning, J.-C. & Araújo, M. B. Global patterns in the shape of

688 species geographical ranges reveal range determinants. *J. Biogeogr.* **39**, 760–771

689 (2012).

690 12. White, A. E. Geographical Barriers and Dispersal Propensity Interact to Limit Range
691 Expansions of Himalayan Birds. *Am. Nat.* **188**, 99–112 (2016).

692 13. Liu, Y., Wang, Y., Willett, S. D., Zimmermann, N. E. & Pellissier, L. Escarpment evolution
693 drives the diversification of the Madagascar flora. *Science* (2024)
694 doi:10.1126/science.adi0833.

695 14. Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of
696 species richness across taxa, biomes and spatial scales. *Ecol. Lett.* **17**, 866–880 (2014).

697 15. Sánchez-Montes, G., Wang, J., Ariño, A. H. & Martínez-Solano, I. Mountains as barriers
698 to gene flow in amphibians: Quantifying the differential effect of a major mountain ridge
699 on the genetic structure of four sympatric species with different life history traits. *J.*
700 *Biogeogr.* **45**, 318–331 (2018).

701 16. Leugger, F. *et al.* Dispersal and habitat dynamics shape the genetic structure of the
702 Northern chamois in the Alps. *J. Biogeogr.* **49**, 1848–1861 (2022).

703 17. Machado, A. P., Clément, L., Uva, V., Goudet, J. & Roulin, A. The Rocky Mountains as a
704 dispersal barrier between barn owl (*Tyto alba*) populations in North America. *J.*
705 *Biogeogr.* **45**, 1288–1300 (2018).

706 18. Cuypers, L. N. *et al.* Biogeographical Importance of the Livingstone Mountains in
707 Southern Tanzania: Comparative Genetic Structure of Small Non-volant Mammals.
708 *Front. Ecol. Evol.* **9**, (2022).

709 19. Wei, X., Meng, H. & Jiang, M. Landscape Genetic Structure of a Streamside Tree
710 Species *Euptelea pleiospermum* (Eupteleaceae): Contrasting Roles of River Valley and
711 Mountain Ridge. *PLOS ONE* **8**, e66928 (2013).

712 20. Liu, J. *et al.* Geological and ecological factors drive cryptic speciation of yews in a
713 biodiversity hotspot. *New Phytol.* **199**, 1093–1108 (2013).

714 21. He, K. *et al.* Cryptic phylogeographic history sheds light on the generation of species
715 diversity in sky-island mountains. *J. Biogeogr.* **46**, 2232–2247 (2019).

716 22. Sonkoly, J. *et al.* Do large-seeded herbs have a small range size? The seed mass–
717 distribution range trade-off hypothesis. *Ecol. Evol.* **7**, 11204–11212 (2017).

718 23. Aslan, C. *et al.* Employing plant functional groups to advance seed dispersal ecology
719 and conservation. *AoB PLANTS* **11**, plz006 (2019).

720 24. Normand, S. *et al.* Postglacial migration supplements climate in determining plant
721 species ranges in Europe. *Proc. R. Soc. B Biol. Sci.* **278**, 3644–3653 (2011).

722 25. Seymour, M. *et al.* Executing multi-taxa eDNA ecological assessment via traditional
723 metrics and interactive networks. *Sci. Total Environ.* **729**, 138801 (2020).

724 26. Marques, V. *et al.* Blind assessment of vertebrate taxonomic diversity across spatial
725 scales by clustering environmental DNA metabarcoding sequences. *Ecography* **43**,
726 1779–1790 (2020).

727 27. Zong, S. *et al.* Combining environmental DNA with remote sensing variables to map fish
728 species distributions along a large river. (2023).

729 28. Sales, N. G. *et al.* Fishing for mammals: Landscape-level monitoring of terrestrial and
730 semi-aquatic communities using eDNA from riverine systems. *J. Appl. Ecol.* **57**, 707–716
731 (2020).

732 29. Reji Chacko, M. *et al.* Catchment-based sampling of river eDNA integrates terrestrial and
733 aquatic biodiversity of alpine landscapes. *Oecologia* **202**, 699–713 (2023).

734 30. Espinosa Prieto, A., Beisel, J.-N., Verschuren, P. & Hardion, L. Toward freshwater plant
735 diversity surveys with eDNA barcoding and metabarcoding. *Environ. DNA* **5**, 648–670
736 (2023).

737 31. Espinosa Prieto, A., Hardion, L., Debortoli, N. & Beisel, J.-N. Finding the perfect pairs: A
738 matchmaking of plant markers and primers for multi-marker eDNA metabarcoding. *Mol.*
739 *Ecol. Resour.* **24**, e13937 (2024).

740 32. Ariza, M. *et al.* Plant biodiversity assessment through soil eDNA reflects temporal and
741 local diversity. *Methods Ecol. Evol.* **14**, 415–430 (2023).

742 33. Johnson, M. D., Cox, R. D. & Barnes, M. A. The detection of a non-anemophilous plant
743 species using airborne eDNA. *PLOS ONE* **14**, e0225262 (2019).

744 34. Chang, Y. *et al.* Phytodiversity is associated with habitat heterogeneity from Eurasia to
745 the Hengduan Mountains. *New Phytol.* **240**, 1647–1658 (2023).

746 35. Yang, R. *et al.* Spatial and temporal pattern of erosion in the Three Rivers Region,
747 southeastern Tibet. *Earth Planet. Sci. Lett.* **433**, 10–20 (2016).

748 36. Gelwick, K. D., Willett, S. D. & Yang, R. Geomorphic indicators of continental-scale
749 landscape transience in the Hengduan Mountains, SE Tibet, China. *Earth Surf. Dyn.* **12**,
750 783–800 (2024).

751 37. Zhang, D.-R. *et al.* Shared response to changes in drainage basin: Phylogeography of
752 the Yunnan small narrow-mouthed frog, *Glyphoglossus yunnanensis* (Anura:
753 Microhylidae). *Ecol. Evol.* **10**, 1567–1580 (2020).

754 38. Li, Q. *et al.* Grade of Membership models reveal geographical and environmental
755 correlates of floristic structure in a temperate biodiversity hotspot. *New Phytol.* **232**,
756 1424–1435 (2021).

757 39. Martín-Devasa, R., Jiménez-Valverde, A., Leprieur, F., Baselga, A. & Gómez-Rodríguez,
758 C. Dispersal limitation shapes distance-decay patterns of European spiders at the
759 continental scale. *Glob. Ecol. Biogeogr.* **33**, e13810 (2024).

760 40. Rana, S. K., Luo, D., Rana, H. K., O'Neill, A. R. & Sun, H. Geoclimatic factors influence
761 the population genetic connectivity of *Incarvillea arguta* (Bignoniaceae) in the Himalaya–
762 Hengduan Mountains biodiversity hotspot. *J. Syst. Evol.* **59**, 151–168 (2021).

763 41. Novillo, A. *et al.* Beta diversity patterns in Andean rodents: current and historical factors
764 as drivers of turnover and nestedness. *J. Mammal.* **105**, 230–240 (2024).

765 42. Padullés Cubino, J., Chytrý, M., Divíšek, J. & Jiménez-Alfaro, B. Climatic filtering and
766 temporal instability shape the phylogenetic diversity of European alpine floras.
767 *Ecography* **2022**, e06316 (2022).

768 43. Chen, X., Zhou, T., Wu, P. & Roberts, M. J. Better Resolved Orography Improves
769 Precipitation Simulation Over the Tibetan Plateau in High-Resolution Models. *J.*
770 *Geophys. Res. Atmospheres* **129**, e2024JD041140 (2024).

771 44. Stanik, N., Peppler-Lisbach, C. & Rosenthal, G. Extreme droughts in oligotrophic
772 mountain grasslands cause substantial species abundance changes and amplify
773 community filtering. *Appl. Veg. Sci.* **24**, e12617 (2021).

774 45. Xiang, R. *et al.* Assessing the Regional Climate Response to Different Hengduan
775 Mountains Geometries With a High-Resolution Regional Climate Model. *J. Geophys.*
776 *Res. Atmospheres* **129**, e2023JD040208 (2024).

777 46. Ward, F. K. The Mekong-Salween Divide as a Geographical Barrier. *Geogr. J.* **58**, 49–56
778 (1921).

779 47. Luo, D., Xu, B., Li, Z.-M. & Sun, H. The ‘Ward Line–Mekong–Salween Divide’ is an
780 important floristic boundary between the eastern Himalaya and Hengduan Mountains:
781 evidence from the phylogeographical structure of subnival herbs *Marmoritis*
782 *complanatum* (Lamiaceae). *Bot. J. Linn. Soc.* **185**, 482–496 (2017).

783 48. Gao, F., Tan, X., Zhou, C., Bian, S. & Shi, F. Eastward drainage-divide migrations driven
784 by the spatial variations in precipitation and tectonic uplift contribute to the formation of
785 the Parallel Rivers in the Hengduan Mountains, Southeastern Tibet. *Geomorphology*
786 **468**, 109513 (2025).

787 49. Cao, K. *et al.* Southwestward growth of plateau surfaces in eastern Tibet. *Earth-Sci.*
788 *Rev.* **232**, 104160 (2022).

789 50. Waters, J. M., Craw, D., Youngson, J. H. & Wallis, G. P. GENES MEET GEOLOGY:
790 FISH PHYLOGEOGRAPHIC PATTERN REFLECTS ANCIENT, RATHER THAN
791 MODERN, DRAINAGE CONNECTIONS. *Evolution* **55**, 1844–1851 (2001).

792 51. Waters, J. M., Wallis, G. P., Burridge, C. P. & Craw, D. Geology shapes biogeography:
793 Quaternary river-capture explains New Zealand’s biologically ‘composite’ Taieri River.
794 *Quat. Sci. Rev.* **120**, 47–56 (2015).

795 52. Bossu, C. M., Beaulieu, J. M., Ceas, P. A. & Near, T. J. Explicit tests of palaeodrainage
796 connections of southeastern North America and the historical biogeography of
797 Orangethroat Darters (Percidae: Etheostoma: Ceasia). *Mol. Ecol.* **22**, 5397–5417 (2013).

798 53. He, C. *et al.* Drainage divide migration and implications for climate and biodiversity. *Nat.*
799 *Rev. Earth Environ.* **5**, 177–192 (2024).

800 54. Fichant, T., Ledent, A., Collart, F. & Vanderpoorten, A. Dispersal capacities of pollen,
801 seeds and spores: insights from comparative analyses of spatial genetic structures in

802 bryophytes and spermatophytes. *Front. Plant Sci.* **14**, (2023).

803 55. Peña, R., Obeso, J. R. & Laiolo, P. Dispersal constrains the biotic connectivity of
804 mountain assemblages. *J. Biogeogr.* **51**, 1230–1243 (2024).

805 56. Huang, X. *et al.* Tropical Asian Origin, boreotropical migration and long-distance
806 dispersal in Nettles (Urticeae, Urticaceae). *Mol. Phylogenet. Evol.* **137**, 190–199 (2019).

807 57. Tedersoo, L. *et al.* Global diversity and geography of soil fungi. *Science* **346**, 1256688
808 (2014).

809 58. Mikryukov, V. *et al.* Connecting the multiple dimensions of global soil fungal diversity.
810 *Sci. Adv.* **9**, eadj8016 (2023).

811 59. Jo, T. *et al.* Rapid degradation of longer DNA fragments enables the improved
812 estimation of distribution and biomass using environmental DNA. *Mol. Ecol. Resour.* **17**,
813 e25–e33 (2017).

814 60. Carraro, L., Stauffer, J. B. & Altermatt, F. How to design optimal eDNA sampling
815 strategies for biomonitoring in river networks. *Environ. DNA* **3**, 157–172 (2021).

816 61. d'Auriac, M. B. A., Strand, D. A., Mjelde, M., Demars, B. O. L. & Thaulow, J. Detection of
817 an invasive aquatic plant in natural water bodies using environmental DNA. *PLOS ONE*
818 **14**, e0219700 (2019).

819 62. Deiner, K. & Altermatt, F. Transport Distance of Invertebrate Environmental DNA in a
820 Natural River. *PLOS ONE* **9**, e88786 (2014).

821 63. Zanne, A. E. *et al.* Three keys to the radiation of angiosperms into freezing
822 environments. *Nature* **506**, 89–92 (2014).

823 64. Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology and species richness.
824 *Trends Ecol. Evol.* **19**, 639–644 (2004).

825 65. Fan, H. & He, D. Temperature and Precipitation Variability and Its Effects on Streamflow
826 in the Upstream Regions of the Lancang–Mekong and Nu–Salween Rivers. *J.*
827 *Hydrometeorol.* **16**, 2248–2263 (2015).

828 66. Barnes, C. J. *et al.* Metabarcoding of soil environmental DNA replicates plant community
829 variation but not specificity. *Environ. DNA* **4**, 732–746 (2022).

830 67. Banchi, E. *et al.* Environmental DNA assessment of airborne plant and fungal seasonal
831 diversity. *Sci. Total Environ.* **738**, 140249 (2020).

832 68. Kress, W. J. Plant DNA barcodes: Applications today and in the future. *J. Syst. Evol.* **55**,
833 291–307 (2017).

834 69. Duarte, I. A. *et al.* Short-term variability of fish condition and growth in estuarine and
835 shallow coastal areas. *Mar. Environ. Res.* **134**, 130–137 (2018).

836 70. Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open
837 source tool for metagenomics. *PeerJ* **4**, e2584 (2016).

838 71. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing
839 reads. *EMBnet.journal* **17**, 10–12 (2011).

840 72. Boyer, F. *et al.* obitools: a unix-inspired software package for DNA metabarcoding. *Mol.*
841 *Ecol. Resour.* **16**, 176–182 (2016).

842 73. Sun, H. & Gao, Z. *YUNNANSHENG SHENGWU WUZHONG MINGLU*. (Yunnan
843 technology publisher, 2016).

844 74. Shen, W. & Ren, H. TaxonKit: A practical and efficient NCBI taxonomy toolkit. *J. Genet.*
845 *Genomics* **48**, 844–850 (2021).

846 75. Frøslev, T. G. *et al.* Algorithm for post-clustering curation of DNA amplicon data yields
847 reliable biodiversity estimates. *Nat. Commun.* **8**, 1188 (2017).

848 76. Pastore, M. Overlapping: a R package for Estimating Overlapping in Empirical
849 Distributions. *J. Open Source Softw.* **3**, 1023 (2018).

850 77. Dimitrov, D. *et al.* Diversification of flowering plants in space and time. *Nat. Commun.* **14**,
851 7609 (2023).

852 78. Li, Y. *et al.* A genome-scale phylogeny of the kingdom Fungi. *Curr. Biol.* **31**, 1653–
853 1665.e5 (2021).

854 79. Daru, B. H., Karunarathne, P. & Schliep, K. phyloregion: R package for biogeographical
855 regionalization and macroecology. *Methods Ecol. Evol.* **11**, 1483–1491 (2020).

856 80. Paradis, E. *et al.* ape: Analyses of Phylogenetics and Evolution. 5.8
857 <https://doi.org/10.32614/CRAN.package.ape> (2002).

858 81. Wickham, H. *ggplot2*. *WIREs Comput. Stat.* **3**, 180–185 (2011).

859 82. Karger, D. N. *et al.* Climatologies at high resolution for the earth's land surface areas.

860 *Sci. Data* **4**, 170122 (2017).

861 83. Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity

862 modelling to analyse and predict patterns of beta diversity in regional biodiversity

863 assessment. *Divers. Distrib.* **13**, 252–264 (2007).

864 84. Mokany, K., Ware, C., Woolley, S. N. C., Ferrier, S. & Fitzpatrick, M. C. A working guide

865 to harnessing generalized dissimilarity modelling for biodiversity analysis and

866 conservation assessment. *Glob. Ecol. Biogeogr.* **31**, 802–821 (2022).

867 85. Fay, M. P. & Proschan, M. A. Wilcoxon-Mann-Whitney or t-test? On assumptions for

868 hypothesis tests and multiple interpretations of decision rules. *Stat. Surv.* **4**, 1–39 (2010).

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

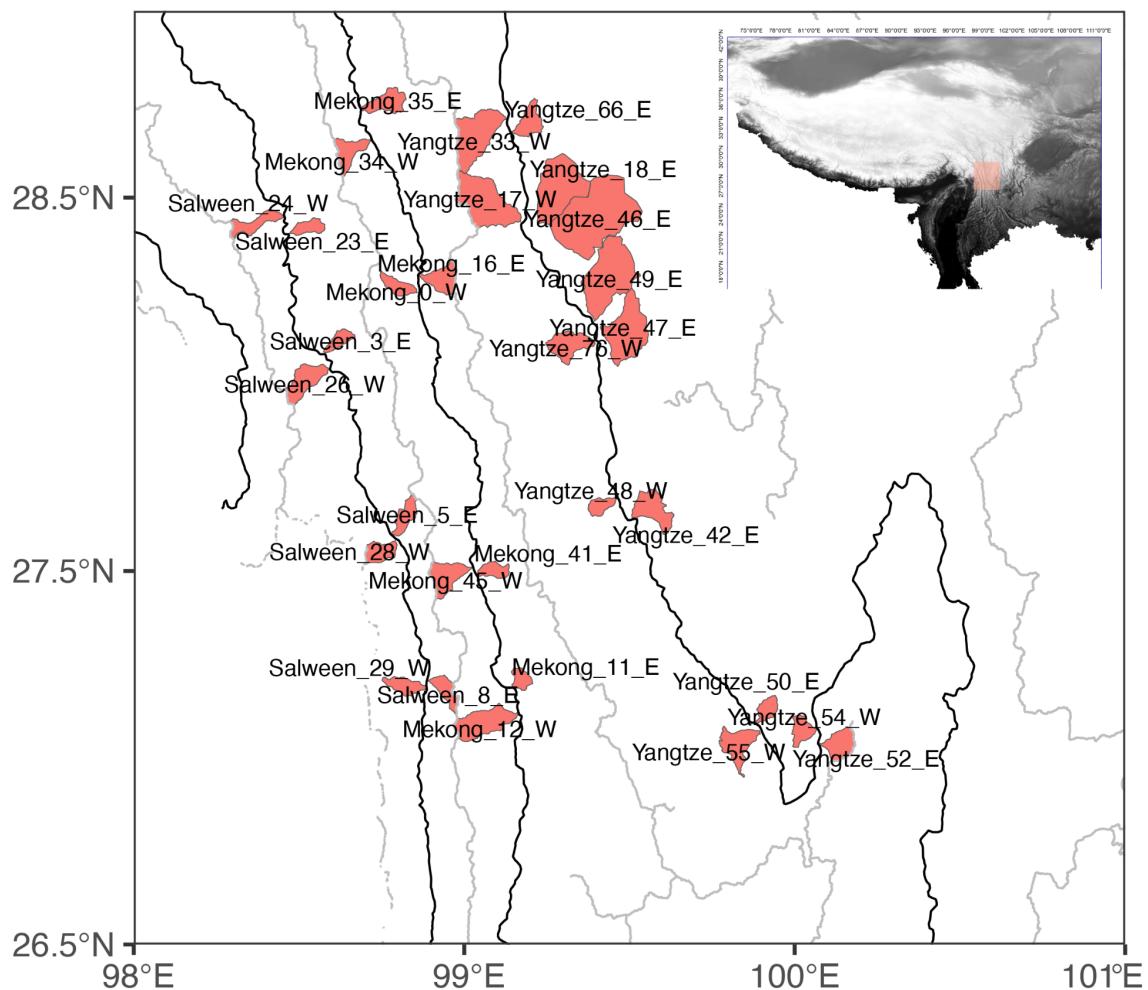
886

887

888

889

890


891

892

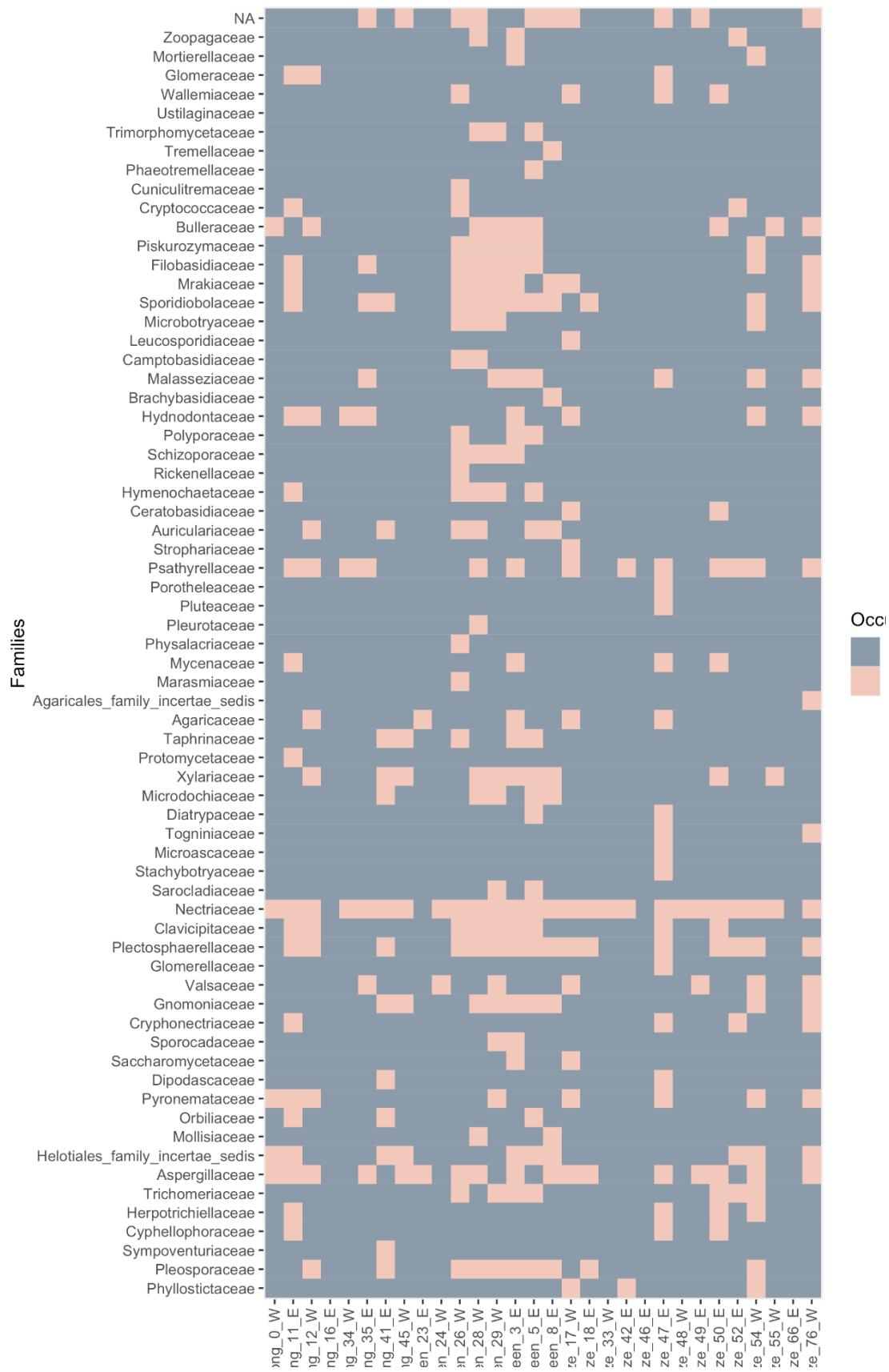
893

894

Appendix

895

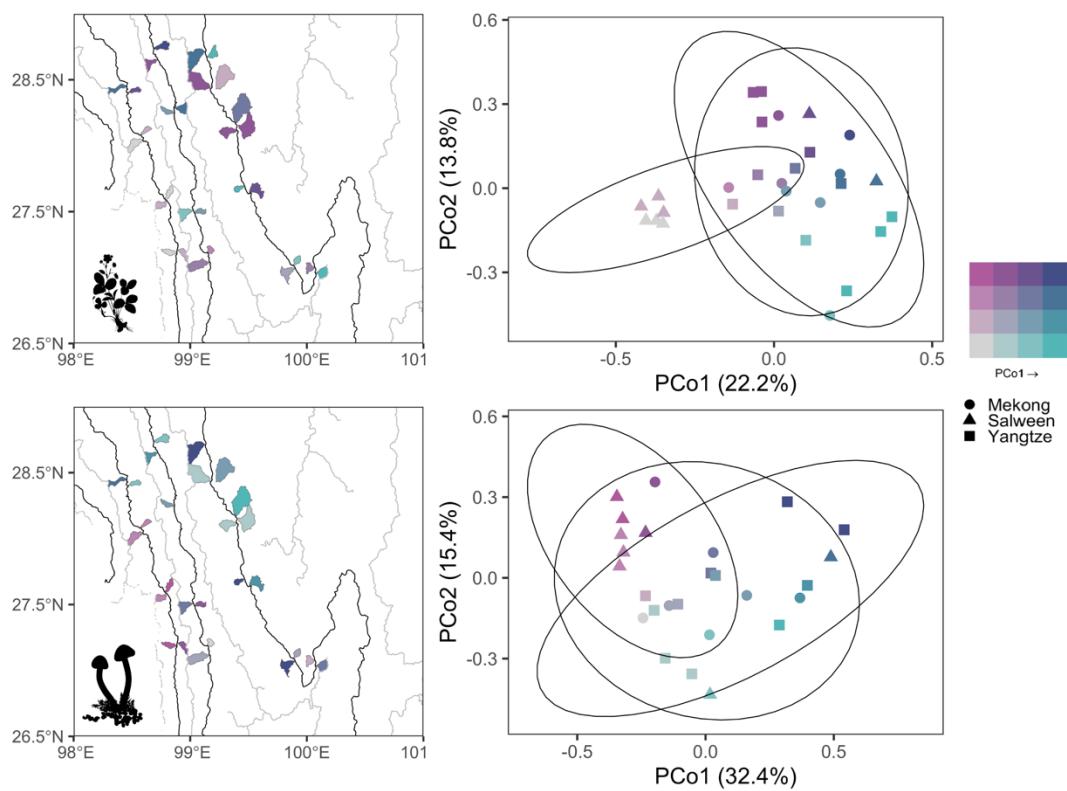
896


897 **Figure S1.** sampling location and sampling name

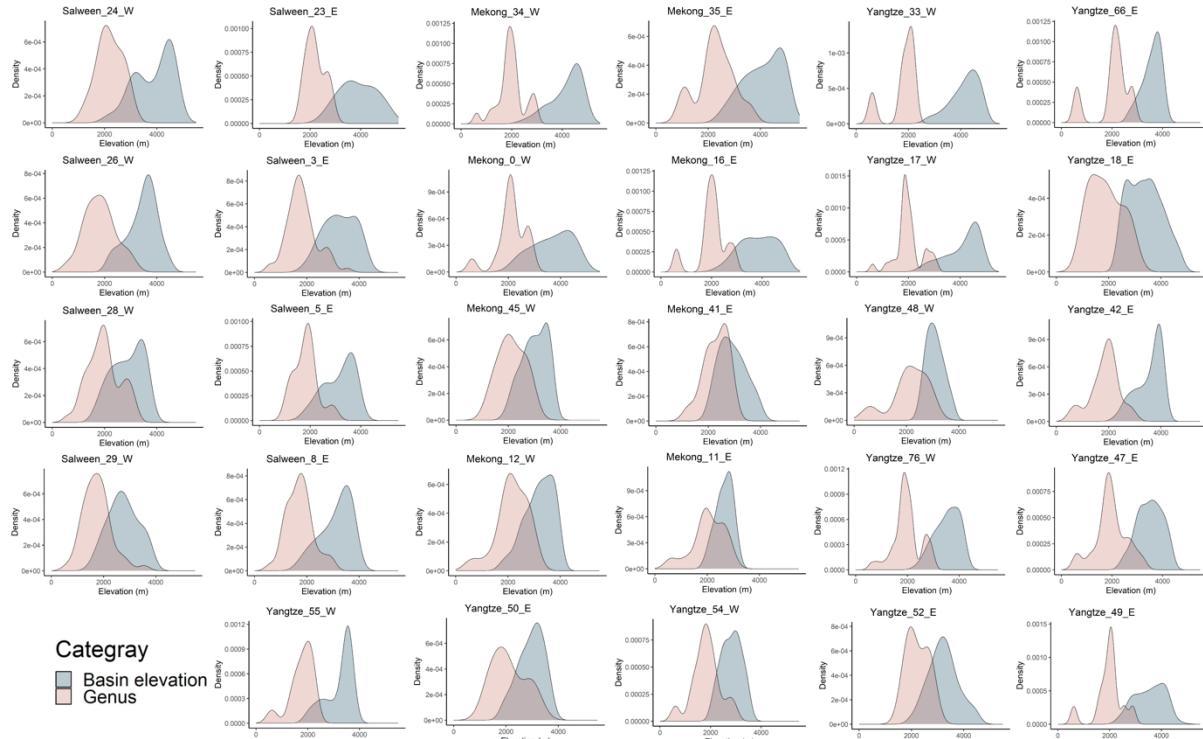
898

899

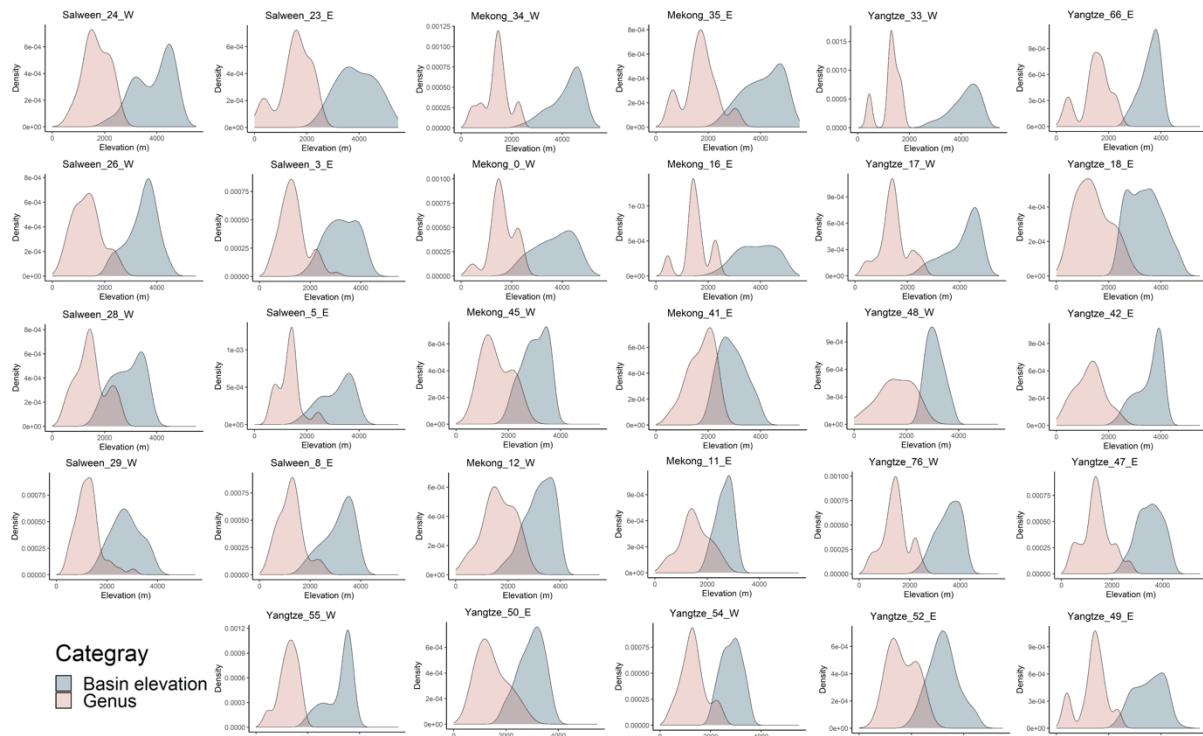
Figure S2. heatmap for the plant genera that are detected from sampling locations



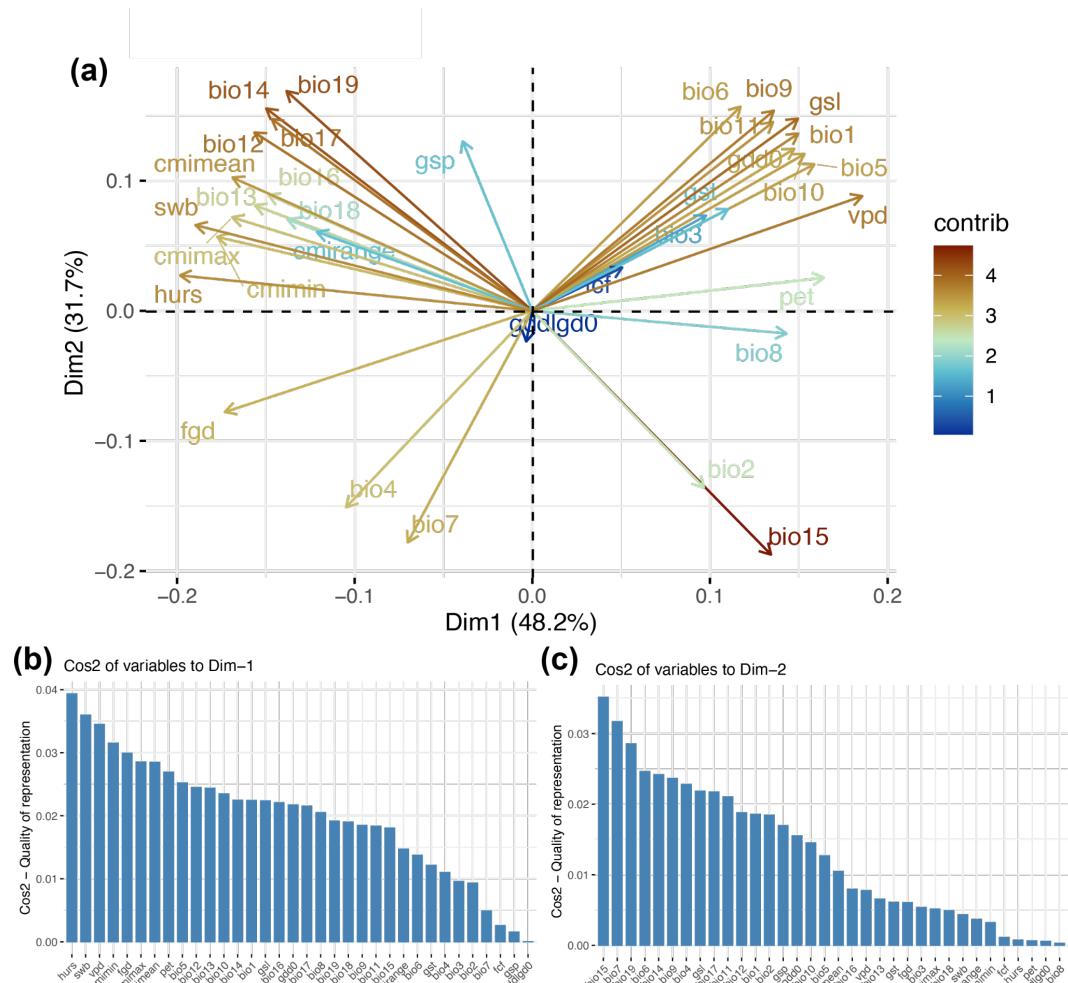
902


903 **Figure S3.** heatmap for the fungi families that are detected from sampling locations

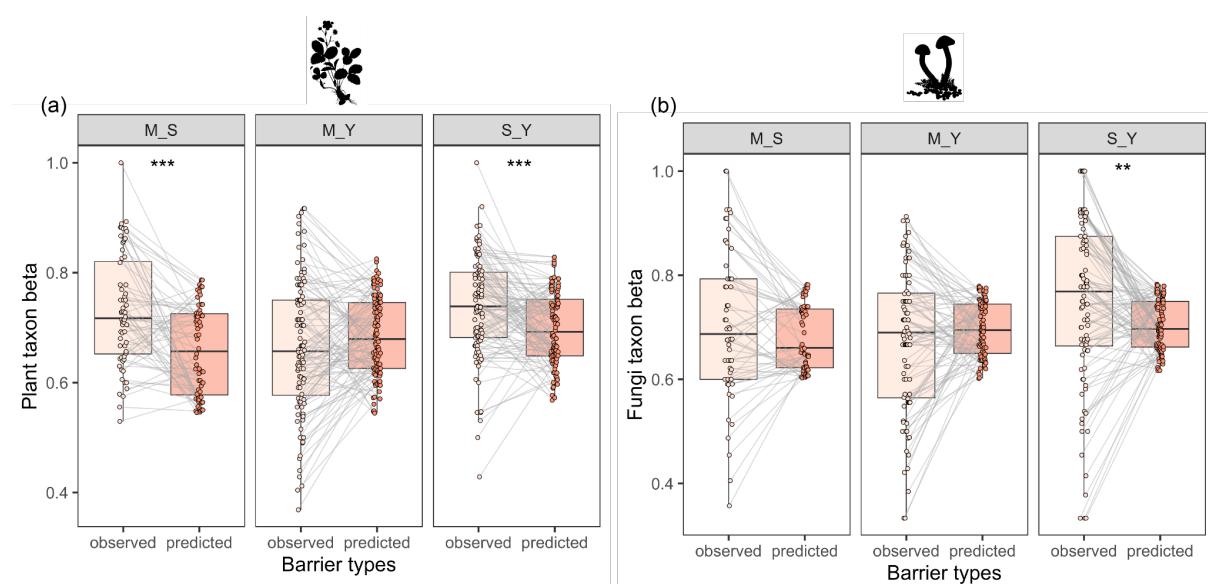
904


905

908
909 **Figure S4** Species composition of vascular plants and fungi on biplot maps and pcoa
910 ordinary plots based on Sorensen taxonomic beta diversity. Figures (a) and (c) represent the
911 spatial distribution of the first two PCoA axes in plants and fungi, respectively; colour
912 gradients highlight the species composition difference between different drainage basins.
913 Black lines represent the river valleys and grey lines represent mountain ridges. S
914 represents the Salween River, M represents the Mekong River, and Y represents the
915 Yangtze River. The second column represents the PCoA ordination of species composition
916 in the Salween, Mekong and Yangtze Rivers. The colour of the points corresponds to the
917 color in the drainage basins in the left panel. Circles represent the Mekong River, triangles
918 the Salween River, and squares the Yangtze River. Data ellipses were computed for the
919 ordination plot considering a multivariate t-distribution with a 0.95 level. The silhouette
920 images were derived from phylopic (<https://www.phylopic.org>).



923
924
925
926
927



928
929
930
931
932
933

Figure S5. Elevation density plots with the sampled genus and family level mean elevation preference (pink) and drainage basins elevation range (grey), in all sampling sites across Salween, Mekong and Yangtze Rivers.

Figure S7. The climate conditions in terms of growing degree days (gdd; a) and precipitation at driest month (bio14, b) in the TRR region. The units of gdd is $^{\circ}\text{C}$ day, and the units of bio14 is $\text{kg m}^{-2} \text{ month}^{-1}$.

943
944
945
946
947
948
949
950
951
952

Figure S8. The comparison between climate and geographic distance predicted taxonomic beta diversity versus observed phylogenetic beta diversity across different mountain ridges in both plant (a) and fungi (b) communities. Note that M_S represents the Salween-Mekong drainage divide; M_Y represents the Mekong-Yangtze divide; and S_Y represents the Salween-Mekong-Yangtze divide. Star signs represent the significance level from Wilcox comparison (i.e. $p < 0.001^{***}$; $p < 0.01^{**}$; $p < 0.05^*$)

Table S1. the summary of detected species

Kingdom	Phylum	Class	Order	Family	Genus	Species	subspecies	no rank
Plant	8			33	139	105		7
Fungi	3	10	7	87	76	111		5

953
954
955
956
957
958
959

Table S2. The top five plant families in different river valleys

Salween		Mekong		Yangtze	
Family	prop	Family	prop	Family	prop
Urticaceae	9.0	Fabaceae	7.5	Fabaceae	14.9
Betulaceae	6.0	Asteraceae	7.5	Poaceae	11.9
Araliaceae	6.0	Urticaceae	6.0	Asteraceae	9.0
Saxifragaceae	4.5	Poaceae	6.0	Urticaceae	6.0
Rosaceae	4.5	Betulaceae	6.0	Rosaceae	6.0

960
961
962
963
964
965
966

Table S3. The top five functional groups of fungal communities in different river valleys. Func_group represents the functional group, Prop represents the proportion of these functional groups. The abbreviation shows arbuscular mycorrhizal (AM), ectomycorrhizal fungi (EcM), molds (Mold), nonmycorrhizal Agaricomycetes (AgarNM; mainly saprotrophic

967 macrofungi), nonsymbiotically biotrophic group on a wide variety of organisms (Path), yeasts
 968 (Yeast), nonyeast unicellular fungi (Unicell), and opportunistic human pathogens (OHP).
 969
 970

Salween		Mekong		Yangtze	
Func_group	Prop	Func_group	Prop	Func_group	Prop
Path	28.6	Path	30	Path	28.8
Unicell	17.2	Unicell	25.6	Unclassified	18.7
Unclassified	16.8	Unclassified	21.1	Unicell	18.3
Yeast	13	OHP	8.9	OHP	13
AgarNM	12.6	AgarNM	7.8	AgarNM	8.2

971
 972
 973 **Table S4**, the summary of generalized dissimilarity model for both plant and fungi
 974 communities

	explained deviance(%)	first predictor	coefficient	second predictor	coefficient	third predictor	coefficient
plant phylobeta	13.55	PC2	0.44	PC1	0.11	distance	0
fungi phylobeta	6.21	PC2	0.40	PC1	0.03	distance	0
plant taxon beta	17.98	PC2	0.78	PC1	0.24	distance	0
fungi taxon beta	7.11	PC2	0.61	PC1	0.08	distance	0

975
 976