

1 Title: Diversity in viral resistance emerges from host genotype and infection order effects

2 Authors: Maija Jokinen¹, Hanna Susi^{1, 2} & Anna-Liisa Laine¹

3 ¹ Department of Organismal and Evolutionary Biology, Faculty of Biological and
4 Environmental Sciences, PO BOX 65 00014 University of Helsinki, Finland

5 ² Department of Agricultural Sciences, Faculty of Agriculture and Forestry, PO BOX 27,
6 00014, University of Helsinki, Finland

7

8 Email: M.J. maiija.jokinen@helsinki.fi, H.S. hanna.susi@helsinki.fi, A-L.L. anna-liisa.laine@helsinki.fi

10 Correspondence: Maija Jokinen, maiija.jokinen@helsinki.fi and Anna-Liisa Laine, anna-liisa.laine@helsinki.fi Organismal and Evolutionary Biology Research Programme, Faculty of
11 Biological and Environmental Sciences, PO BOX 65 00014 University of Helsinki, Finland
12

13

14 Running title: Intraspecific variation in resistance

15

16 Keywords: intraspecific variation, resistance, sequential infection, coinfection, host resistance,
17 virus ecology

18

19

20

21

22

23

24

25

26

27 **Abstract**

28 • While viruses are predicted to be the most diverse group of parasites wild plant hosts
29 encounter, the extent and mechanisms maintaining viral resistance diversity remains poorly
30 understood. Here, we test the hypothesis that allocation trade-offs maintain genetic variation
31 in viral resistance and assess whether phenotypic resistance variation may arise from
32 altered expression under multiple viral attack.

33 • We inoculated clones from 24 *Plantago lanceolata* genotypes with two viruses to
34 quantify intraspecific variation among host genotypes and test possible trade-offs in
35 resistance to either of the viruses. Furthermore, we performed subsequent viral
36 inoculations to investigate if prior viral infection changes host resistance phenotype.

37 • We found striking intraspecific variation in resistance among the 24 host genotypes
38 against the two studied viruses, with limited evidence for trade-offs maintaining this
39 variation. We also found that prior infection by *Plantago lanceolata* enamovirus altered
40 the host resistance phenotype, rendering the host more vulnerable to subsequent
41 infection.

42 • Jointly, our results show that intraspecific variation in resistance may have a substantial
43 role in mitigating viral infections in wild hosts. Furthermore, our results highlight the
44 importance of arrival order for the resistance phenotype and for shaping viral
45 coinfections.

46

47

48

49

50

51

52

53

54 **Introduction**

55 The benefits of host resistance against parasites are clear, yet wild hosts are known to harbour
56 substantial diversity in resistance across populations and among genotypes (Ericson, Burdon
57 and Müller, 2002; Laine, 2004; Broekgaarden *et al.*, 2011; Laine *et al.*, 2011; Ekroth, Rafaluk-
58 Mohr and King, 2019). Indeed, parasites can only colonise susceptible hosts, and hence, host
59 resistance is expected to be an important determinant of host fitness and reproduction (Little
60 and Ebert, 1999; Fraile and García-Arenal, 2016; Hily *et al.*, 2016; Sallinen *et al.*, 2020;
61 Höckerstedt, Susi and Laine, 2021). Throughout their life cycle, plants are exposed to a wide
62 range of parasites from several kingdoms of life, including fungi, bacteria, insects, and viruses.
63 While viruses are predicted to be the most diverse group of parasites wild plant hosts encounter,
64 much of this viral diversity still remains undiscovered (Roossinck, 2005; Maclot *et al.*, 2020;
65 Yang *et al.*, 2022). Though many of the discovered viruses are described to be pathogenic,
66 almost nothing is known of the intraspecific variation in plant resistance against viruses in the
67 wild (Malmstrom, Martin and Gagnevin, 2022).

68 Intraspecific variation in both host resistance and parasite infectivity is predicted to be
69 maintained through coevolution (Hamilton, 1980; Anderson and May, 1982; Gibson, 2022).
70 Negative frequency-dependent selection favours parasites that can infect the most common
71 host genotypes while rare host genotypes escape infection and thereby have higher fitness in
72 the presence of parasites (Hamilton, 1980), with resistance imposing a cost on the host in terms
73 of growth and reproduction (Leonard, 1977; Ashby and King, 2017). Indeed, experimental
74 work on host resistance and analyses of plant resistance genes have shown resistance to be
75 costly in some systems (Tian *et al.*, 2003; Ciota *et al.*, 2011; Auld *et al.*, 2013; Brown and Rant,
76 2013a; Cheatsazan *et al.*, 2013; Giolai and Laine, 2024), although there is variation in this trend
77 across study systems (Antonovics and Thrall, 1994; Bray *et al.*, 2022).

78 While the cost of resistance is often studied in terms of its impact on different traits of
79 host fitness, allocation costs against a specific parasite may constrain host resources for
80 resistance against the myriad of other parasites the host encounters (Stearns, 1989; Bergelson
81 and Purrington, 1996; Brown and Rant, 2013a). For example, in barley the resistance locus *mlo*
82 conferred resistance to powdery mildew while increasing susceptibility to Ramularia leaf spot
83 disease (McGrann *et al.*, 2014). Conversely, limited evidence shows that a single resistance
84 loci can have significant effects against several parasites (Ali *et al.*, 2013; Lopez-Zuniga *et al.*,
85 2019). Resistance may also be context-dependent, as attack by multiple parasites can alter the

86 expression of the resistance phenotype (Brown and Rant, 2013b; Hückelhoven *et al.*, 2013;
87 Tollenaere, Susi and Laine, 2016). Over time, resistance may also be vulnerable to resistance
88 breakdown in the face of rapidly evolving pathogens (Bergelson *et al.*, 2001; Hillung *et al.*,
89 2014; González, Butković and Elena, 2019).

90 While coevolutionary theory considers resistance to be a fixed trait, in reality an
91 additional layer of variation may be introduced by phenotypic plasticity whereby the
92 expression of resistance is context dependent. Research on natural populations has revealed
93 that multiple parasites can infect a single host simultaneously and the complex interactions
94 between hosts and parasites play an important role in shaping these within-host parasite
95 communities (Susi *et al.*, 2015, 2019). Within-host parasite communities are often formed
96 through sequential coinfections, where the time and the interval of the infection events can vary
97 (Natsopoulou *et al.*, 2015; Marchetto and Power, 2018; Karvonen, Jokela and Laine, 2019). In
98 sequential coinfections, the initial infection can change the host resistance phenotype to be
99 more susceptible or resistant to subsequent infection (Fukami, 2015; Debray *et al.*, 2022;
100 Jokinen *et al.*, 2023). First infection can elevate the host immune response and thus inhibit the
101 colonisation by subsequent parasite (Ziebell and Carr, 2010; Mauch-Mani *et al.*, 2017). On the
102 other hand, defence against first-arriving parasite may incur costs to the host, rendering it
103 susceptible to secondary infection (Morris, Cleary and Clarke, 2017; Wang *et al.*, 2018). Thus,
104 the interplay between the host and its parasites may be dynamic and change during the course
105 of infection generating phenotypic variation in host resistance that may be difficult to predict
106 based on their genotype alone.

107 To address the knowledge gap of plant intraspecific variation in resistance against viral
108 infection and the role trade-offs and phenotypic plasticity contributing to this variation, we
109 conducted a large inoculation experiment to study intraspecific resistance variation among host
110 genotypes during viral infection. We inoculated 24 *Plantago lanceolata* genotypes with two
111 different *P. lanceolata* infecting viruses: *Plantago lanceolata closterovirus* and *Plantago*
112 *lanceolata enamovirus*. To evaluate differences in resistance against the two viruses and to
113 investigate possible allocation costs in defence between the studied viruses, we performed
114 single viral inoculations with each virus species on each host genotype. Additionally, sequential
115 viral inoculations were conducted on a subset of the genotypes to study changes in resistance
116 phenotypes under viral coinfection. Specifically, we ask: 1) Can we detect intraspecific
117 variation among *P. lanceolata* genotypes in resistance against the two viruses? 2) Can we detect
118 allocation costs in viral resistance to different viruses among host genotypes? 3) Can we

119 identify allocation costs between resistance and fitness traits during viral infection? 4) Can we
120 detect changes in resistance phenotype when the host is exposed to sequential infections? 5)
121 Are there differences among host genotypes in their responses to sequential infections?

122

123 Materials and Methods

124 Study species

125 The host, *P. lanceolata*, is a perennial herb that reproduces sexually through wind-dispersed
126 pollen and asexually via side rosettes (Sagar and Harper, 1964). *Plantago lanceolata* is
127 distributed worldwide. In Finland, *P. lanceolata* is found in the Åland Islands, where it typically
128 grows on dry meadows and forms a network of over 4000 populations, varying in size and
129 connectivity (Jousimo *et al.*, 2014; Höckerstedt *et al.*, 2022). The size and location of these
130 populations have been monitored since 1990 as part of metapopulation studies of the Glanville
131 fritillary (*Melitaea cinxia*) butterfly (Hanski *et al.*, 1995; Ojanen *et al.*, 2013).

132 Viruses associated with *P. lanceolata* in the Åland Islands have been studied since 2013,
133 and several virus families have been detected from this system with small-RNA sequencing
134 technology (Susi *et al.*, 2019; Norberg *et al.*, 2023). Five viruses have been characterized in
135 more detail; PCR primers have been developed for *Plantago lanceolata* latent virus (PILV) in
136 the genus *Capulavirus* (Susi *et al.*, 2017), *Plantago lanceolata* *caulimovirus* in the genus
137 *Caulimovirus* (Susi *et al.*, 2019), *Plantago lanceolata* *betapartitivirus* in the genus
138 *Betapartitivirus* (Susi *et al.*, 2019), *Plantago enamovirus* in the genus *Enamovirus* (Susi *et al.*,
139 2019) and *Plantago closterovirus* in the genus *Closterovirus* (Susi *et al.*, 2019). For clarity, the
140 studied viruses are hereafter referred to by their genus. Field studies have demonstrated
141 differences among *P. lanceolata* genotypes in the diversity of viral infections they host
142 (Sallinen *et al.*, 2020; Jokinen *et al.*, 2023). However, whether these differences are generated
143 by inherent differences in resistance or, e.g., differences in vector preferences have not been
144 determined previously.

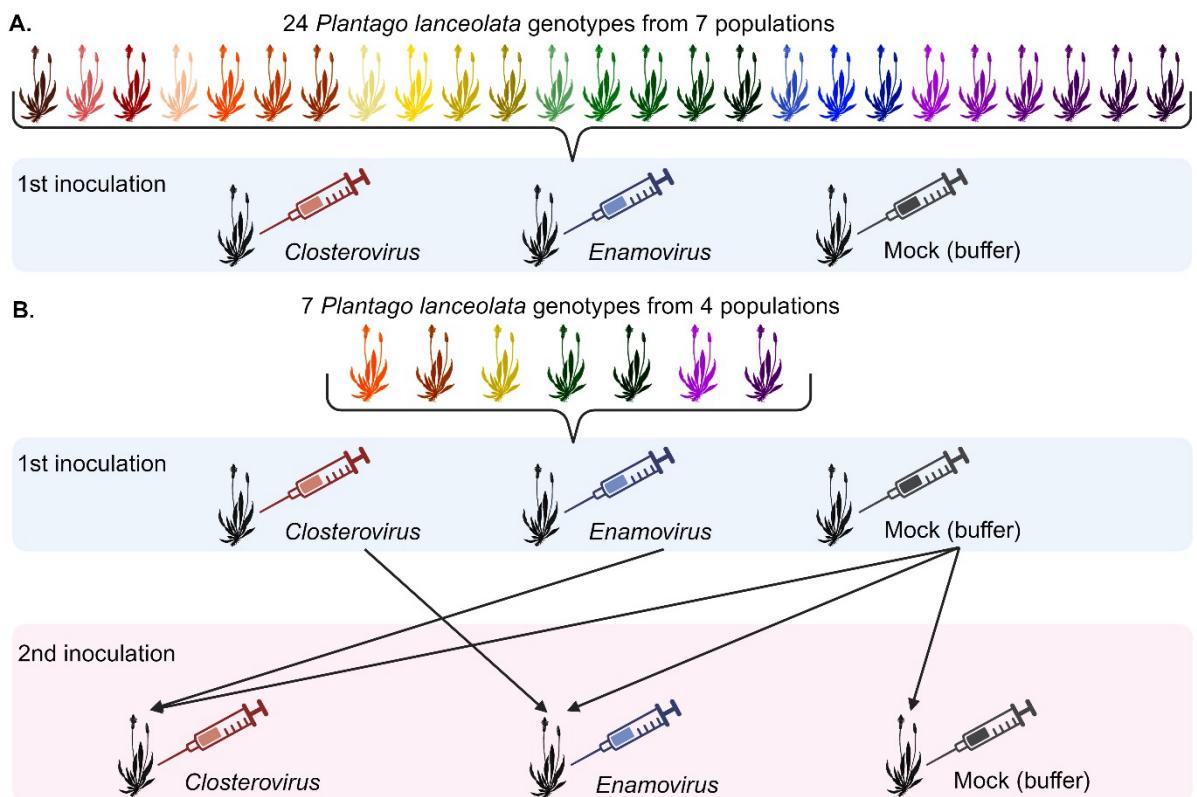
145 In this study, we focused on two RNA viruses: *Closterovirus* and *Enamovirus*.
146 *Closterovirus* belongs to the *Closteroviridae* virus family, and the members of this family are
147 a diverse group of single-stranded RNA (ssRNA) viruses (Karasev, 2000). *Closteroviridae*
148 typically have long, filamentous non-enveloped structure (Agranovsky *et al.*, 1995) and can

149 colonise several economically important hosts: beet (type species: *Beet yellows virus*
150 ;Agranovsky *et al.*, 1995), citrus (Citrus tristeza virus; Harper, 2013), carrot (Adams *et al.*,
151 2014) and grapevine (Al Rwahnih *et al.*, 2012). Viruses of this family are also among the most
152 frequently detected viruses infecting *P. lanceolata* in Åland Islands (Susi *et al.*, 2019; Norberg
153 *et al.*, 2023). *Closteroviridae* are transmitted in a semi-persistent manner, typically by aphids;
154 however, transmission by whiteflies and mealybugs has been reported as well (Karasev, 2000).
155 Transmission via seeds has not been reported (Fuchs *et al.*, 2020). Symptoms of
156 *Closteroviridae* colonisation can include yellowing or reddening of the leaf tissue or vein-
157 clearing, though symptoms can be inconspicuous and difficult to detect (Karasev, 2000; Fuchs
158 *et al.*, 2020).

159 *Enamovirus* belongs to the family *Solemoviridae*, a group of ssRNA viruses with non-
160 enveloped icosahedral virions (Sõmera *et al.*, 2021). Similar to *Closteroviridae*, members of
161 the *Solemoviridae* family infect important crop species: potato (Type species of *Polerovirus*:
162 Potato leafroll virus; Taliinsky, Mayo and Barker, 2003, legumes (Southern bean mosaic virus,
163 Pea enation mosaic virus 1; Vemulapati *et al.*, 2010; Sõmera *et al.*, 2021, rice, and papaya
164 (Sõmera *et al.*, 2021). Most *Solemoviridae* are transmitted by aphid vectors in a persistent,
165 circulative and non-propagative manner (Demler *et al.*, 1996). However, for some viruses
166 belonging to the family, also mechanical transmission via wounding and abiotic transmission
167 through soil have been described (*Sobemovirus*; Sõmera, Sarmiento and Truve, 2015).
168 *Solemoviridae* infections can cause a variety of symptoms in their hosts with equally varying
169 severity; the host can remain symptomless or display symptoms such as mosaic pattern, vein-
170 clearing, necrotic lesions, yellowing, redness, rolling, and even sterility (Sõmera *et al.*, 2021).

171 Host and viral material for the inoculation experiment

172 To study intraspecific resistance variation among *P. lanceolata* genotypes during viral
173 infection, we cloned *P. lanceolata* individuals from 24 genotypes, originating from 7 different
174 *P. lanceolata* populations in the Åland Islands (Supplementary table 1). The maternal plants
175 were grown from seeds collected from the Åland Islands during the autumn of 2017. The
176 germination of the maternal plants was started at the beginning of February 2022 by placing
177 the seeds into small pots filled with potting soil and sand (3:1, respectively). The germination
178 was carried out in a growth chamber with a light-dark cycle of 16:8, and after approximately
179 three weeks, the seedlings were transferred to the greenhouse. The cloning was started five
180 weeks after sowing. The maternal plant pot was positioned on top of an 11 cm × 11 cm pot


181 filled with vermiculite and placed on a tray filled with water. The roots of the maternal plant
182 were allowed to grow through the upper pot and once they reached sufficient size, they were
183 cut and let sprout into the bottom pot. When the shoots were grown large enough, they were
184 individually planted into fresh 10 cm × 10 cm pots filled with 1:1 proportion of potting soil
185 and sand (see also Sallinen *et al.*, 2020). The cloned host individuals were grown in the
186 greenhouse until the beginning of the experiment (mid-June 2022). During the growth period
187 in the greenhouse, the plants were fertilised with NPK fertiliser (7:2:2, respectively) once a
188 week and watered when needed. Plants were regularly treated with 2% pine soap water to
189 prevent thrip damage. Before the start of the experiment, leaf samples were collected from each
190 maternal plant for RNA extraction by collecting a 3 cm² leaf piece and the maternal plants were
191 confirmed to be virus-free for the focal viruses by PCR (see below for a detailed description of
192 the PCR protocol).

193 The cloning success varied among the genotypes, and hence, in the experiment, the
194 genotypes were represented by 7 to 21 individuals depending on the host genotype
195 (Supplementary table 1). Furthermore, for statistical analyses, we focused on plant genotypes
196 with a successful mock inoculation (i.e., mock plants with no virus detection). Consequently,
197 we excluded two genotypes from the first inoculation treatment (Figure 1A), leaving
198 individuals from 24 genotypes for statistical analysis (n = 335). For the sequential inoculations,
199 a subset of seven genotypes were selected as they had an adequate number of clones to perform
200 both sequential and single inoculation treatments (17-21 clones, n = 129). (Figure 1B,
201 Supplementary table 1).

202 To investigate host genotypic variation against two distinct viruses, we prepared virus
203 inocula from *P. lanceolata* plants collected from wild *P. lanceolata* populations in early June
204 2022. Plants exhibiting viral symptoms were carefully uprooted from the local soil and placed
205 into 10 cm × 10 cm pots, and if needed, the pots were filled with a mixture of 1:1 soil and sand.
206 The plants were transported to the laboratory and placed into a growth chamber with a 16:8
207 light-dark cycle. To identify which viruses were present in the collected wild plants, we took 1
208 cm² and 3 cm² samples from each plant for DNA and RNA extractions, respectively, and snap-
209 froze those in liquid nitrogen. We extracted total RNA and DNA from each sample and ran
210 PCR reactions targeting *PlLV*, *Enamovirus*, *Closterovirus*, *Betapartitivirus* and *Caulimovirus*
211 as described in Susi *et al.* (2019) and Sallinen *et al.* (2020).

212 The inoculation experiment was started in mid-June 2022. In the first part of the
213 inoculation experiment (Figure 1A) each of the 24 *P. lanceolata* genotypes, represented by 3-
214 7 individuals, depending on the genotype, received either *Closterovirus* inoculum or
215 *Enamovirus* inoculum and the control plants received mock inoculum (phosphate buffer;
216 Supplementary table 1). To prepare the viral inoculum, leaves from plants infected by the
217 respective virus were collected and placed into individual plastic extraction bags (Bioreba,
218 Switzerland) containing 5 ml of 0.02 M phosphate buffer (pH 7.4). The bags were sealed, and
219 the leaves were crushed with a mortar. The resulting inoculum was then immediately applied
220 to the cloned experimental plants (approx. 400-500 µl of viral inoculum per plant) by pressing
221 the syringe tightly against the leaf. The control plants were inoculated similarly using the
222 phosphate buffer. After inoculation, each plant was placed individually inside a mesh bag
223 closed with a rubber band to prevent insect transmission of the viruses. Two weeks after the
224 first inoculation, we collected samples for RNA extraction for subsequent viral detection by
225 taking a 3 cm² piece of leaf tissue and snap-froze those in liquid nitrogen. In addition, we
226 counted the number of flowers and leaves, as well as measured the length of the longest flower
227 and the width and length of the largest leaf. We used the measurements, to calculate the plant
228 size $n \times A$, where n is the number of leaves and $A = \pi ab$, where a is the half axis of the width of
229 the largest leaf and b is the half axis of the length of the largest leaf.

230 To investigate the effects of sequential infections on plant's resistance phenotype, we
231 carried out subsequent inoculations for seven of the genotypes included in the first inoculations
232 (Figure 1B, Supplementary table 1). On the day following the first sampling, individuals
233 initially inoculated with *Closterovirus* were subsequently inoculated with *Enamovirus* and vice
234 versa, the host individuals first inoculated with *Enamovirus* were inoculated with
235 *Closterovirus*. Additionally, to compare the effects of single and sequential infections,
236 individuals from each genotype initially treated with phosphate buffer (mock inoculation) were
237 now inoculated with *Closterovirus* or *Enamovirus*. In the experiment, 4-5 individuals in each
238 treatment represented each genotype (Supplementary table 1). Lastly, one individual per
239 genotype remained as a mock inoculated control throughout the experiment and was inoculated
240 with phosphate buffer in the first and second inoculation steps. Sampling was repeated two
241 weeks after the second inoculation, using the same procedure as after the first. The plants were
242 kept in their individual mesh bags for the whole experiment.

243

244 Figure 1. Experimental set-up of an inoculation experiment investigating intraspecific variation
 245 in host resistance during viral infection among *Plantago lanceolata* host genotypes (n = 24).
 246 The experiment comprised of two inoculation steps: A) first inoculations, where clones from
 247 24 genotypes were inoculated with *Plantago lanceolata* closterovirus or *Plantago lanceolata*
 248 enamovirus or mock inoculated, and B) sequential inoculations, where seven genotypes from
 249 the first inoculation were sequentially inoculated with a different treatment than in the first
 250 inoculation. The syringe colour represents the inoculation treatment: red = *Plantago lanceolata*
 251 closterovirus, blue = *Plantago lanceolata* enamovirus and black = mock inoculation
 252 (phosphate buffer).

253

254 **RNA extraction, cDNA translation and viral PCR detection from plant
 255 tissue samples**

256 To detect *Closterovirus* and *Enamovirus* RNA from the collected samples, we extracted the
 257 total RNA using acid phenol-chloroform extraction method (Chang, Puryear and Cairney,
 258 1993) with a few modifications. In short, first a 3 cm² size piece of plant tissue sample was

259 ground to a very fine powder using liquid nitrogen and then combined with 800 μ l of warm
260 65 °C extraction buffer (2% hexadecyltrimethylammonium bromide (Sigma-Aldrich, USA),
261 2% polyvinylpyrrolidone K-30 (MW 40 000, Sigma-Aldrich, USA), 100 mM Tris
262 hydrochloride (pH 8.0; Thermo Fischer Scientific, USA), 25 mM Ethylenediaminetetraacetic
263 acid (pH 8.9; Sigma-Aldrich, USA), 2.0 M NaCl (Sigma-Aldrich, USA) and 2% β -
264 mercaptoethanol (Sigma-Aldrich, USA) and mixed vigorously. After, 800 μ l of phenol-
265 chloroform-isoamyl alcohol (IAA) solution (25:24:1, respectively) was added and the mixture
266 was centrifuged at full speed (13 500 rpm) for 15 minutes. The supernatant was collected, and
267 the acid-phenol-IAA and centrifugation steps were repeated. The supernatant was collected into
268 a new tube and combined with 160 μ l of 10 M of LiCl (Sigma-Aldrich, USA) and precipitated
269 overnight on ice at +4 °C. The following day, the extract was centrifuged 10 000 rpm for 30
270 min at +4 °C. The pellet was resuspended with 500 μ l of warm of SSTE buffer (1 M NaCl
271 (Sigma-Aldrich, USA), 0.5 % Sodium dodecyl sulphate (Sigma-Aldrich, USA), 10 mM Tris
272 hydrochloride (pH 8.0; Thermo Fischer Scientific, USA), 1mM Ethylenediaminetetraacetic
273 acid (pH 8.9; Sigma-Aldrich, USA)) and 1 ml of Chloroform-IAA (24:1) was added and the
274 sample was vortexed vigorously. After this, the chloroform-IAA purification step was repeated,
275 followed by two ethanol washes (94 % and 70 %, respectively). Finally, the RNA was
276 resuspended into 25 μ l of nuclease-free water. The leaf tissue sample and the extracted RNA
277 were stored at -80 °C.

278 The extracted total RNA was translated into cDNA before analysing the samples for
279 viral presence by PCR. The concentration and purity of each RNA sample was measured with
280 Nanodrop 2000, and 2 ng of RNA was used for each cDNA reaction. The extracted RNA was
281 combined with 2 μ l of 50 μ M random hexamer primers (Promega Corporation, USA) and
282 nuclease-free water was added to a final volume of 17.125 μ l. The reaction was incubated at
283 70 °C for 5 min. After, the reactions were immediately placed on ice and spun down. The
284 reverse transcription reaction was prepared as follows: 1 μ l of Moloney Murine Leukemia
285 Virus Reverse Transcriptase (M-MLV RT; Promega Corporation, USA), 5 μ l of M-MLV RT 5x
286 buffer (Promega Corporation, USA), 1.25 of 10 mM dNTP mix (Thermo Fischer) and 0.625 μ l
287 of RiboLock RNase inhibitor (Thermo Fischer Scientific, USA) was added. The mixture was
288 incubated for 60 min at 37 °C and finally stored at -20 °C.

289 The detection of *Closterovirus* and *Enamovirus* was done by PCR (Susi *et al.*, 2017,
290 2019; Sallinen *et al.*, 2020). In short, for the PCR reaction, we combined 1 μ l of template

291 cDNA, 500 nmol of each corresponding reverse and forward primer, 5 μ l of GoTaq Green® 5x
292 Mastermix (Promega Corporation, USA) and nuclease-free water to a total reaction volume of
293 10 μ l. The PCR program consisted of initial denaturation at 95 °C for 2 min, followed by 35
294 cycles at 95 °C for 2 min, 53-60 °C for 40 s and 72 °C for 1 min. The final extension was done
295 at 72 °C for 5 min. Positive control and water control were included in each run. The sizes of
296 the PCR products were analysed on 1.5 % agarose gel, stained with GelRed (Biotium, USA)
297 and visualised using the Bio-Rad Gel Doc XR+ imaging system (Bio-Rad Laboratories, USA).

298

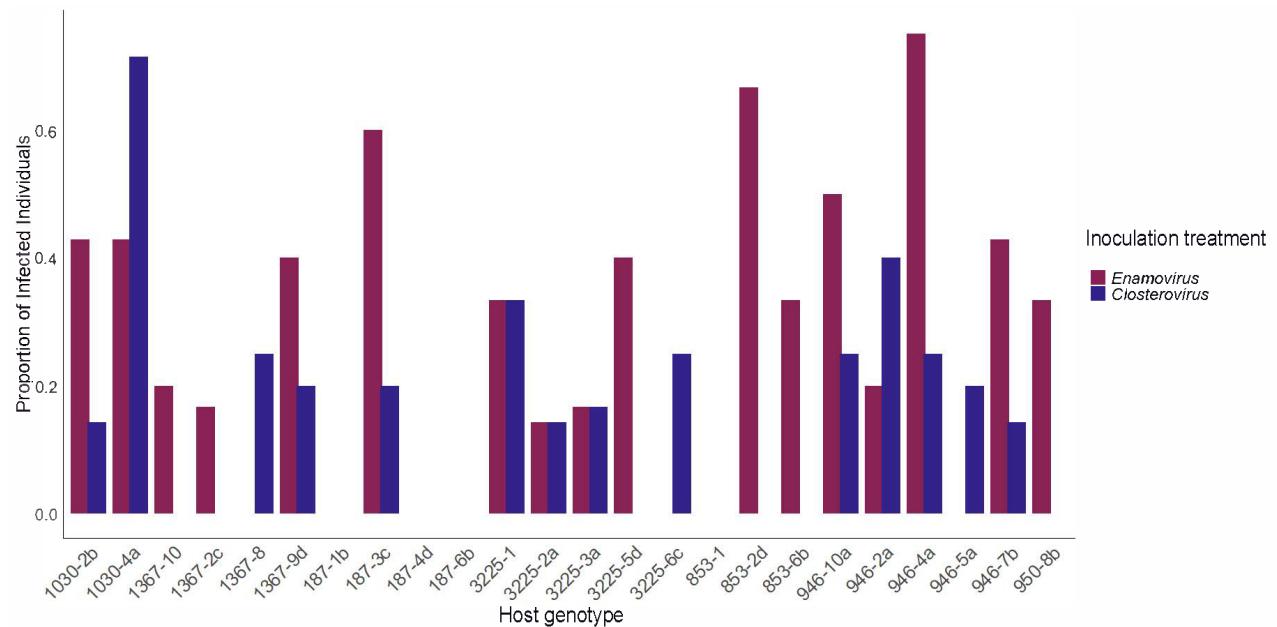
299 Statistical analysis

300 All statistical analyses were conducted using R software (version 4.2.2., R Foundation for
301 Statistical and Computing, Vienna, 2022). To investigate intraspecific variation among *P.*
302 *lanceolata* genotypes in resistance to viral infection and to test differences in responses to
303 *Closterovirus* and *Enamovirus*, we ran Generalized linear models (GLM) for the data of the
304 first inoculation treatment. We included host infection status (0 = no infection, 1 = infection by
305 *Closterovirus* or *Enamovirus*) as a binomial response variable and host genotype, viral
306 inoculation treatment (*Closterovirus* or *Enamovirus*) along with their interaction as predictor
307 variables. To determine the significance of the main effects we used function “Anova” in R-
308 package “car” (Fox and Weisberg, 2019). To examine differences among host genotypes in
309 resistance to the studied viruses and possible allocation costs in resistance, we performed
310 pairwise comparisons of the estimated marginal means using functions “contrasts” and
311 “emmeans” from the R-package “emmeans” (version 1.8.8, Lenth *et al.*, 2018). Specifically,
312 we compared the infection rates of *Closterovirus* and *Enamovirus* within each host genotype,
313 as well as between *Closterovirus* and *Enamovirus* across all genotypes.

314 To further assess the relationship between *Closterovirus* and *Enamovirus* infection rates
315 among host genotypes, as well as associations between plant growth and reproductive traits
316 (flower size and number) with each virus, we performed Pearson correlation test for each
317 combination. For these correlations, we used the average infection rates for each virus, the
318 average plant size, the average flower size, and the average number of flowers for each
319 genotype. To study possible changes in resistance phenotype after the host had been exposed to
320 sequential infection and to investigate differences in responses among genotypes to sequential
321 infections, we analysed the data from the second inoculation for each virus. We fitted separate
322 GLMs for individuals sequentially inoculated with *Closterovirus* or with *Enamovirus*.

323 Specifically, we included the host infection status (0 = no infection, 1 = infection by
324 *Closterovirus* or *Enamovirus*) as a binomial response variable and host genotype, inoculation
325 treatment (*Closterovirus* or mock inoculation, *Enamovirus* or mock inoculation) and their
326 interactions as predictor variables. The significance of the main effects was determined by
327 using function “Anova” in package “car” (Fox and Weisberg, 2019).

328


329 **Results**

330 First, we investigated whether host genotypes varied in their resistance to viral infection and
331 whether the resistance responses among host genotypes differed against the two viruses. The
332 GLM analysis and likelihood-ratio (LR) test showed significant effects of host genotype (Table
333 1; LR test $\chi^2 = 37.308$, df = 23, p = 0.00318) and inoculation treatment (Table 1; LR test $\chi^2 =$
334 4.182, df = 1, p = 0.04086) on host infection status after the first inoculation. Indeed, the
335 infection rates varied across genotypes and viral treatments. Of the 24 genotypes included in
336 the first inoculation, in 20 genotypes at least one individual became infected with either of the
337 viruses while four genotypes were resistant to both viruses (187-1b, 187-4d, 187-6b and 853-
338 1; Figure 2). From the 20 susceptible genotypes, 11 were susceptible to both viruses, six to
339 *Closterovirus* only, and three to *Enamovirus* only. A total of 17 genotypes were susceptible to
340 *Closterovirus*, and *Closterovirus* was detected in 28% of the *Closterovirus* inoculated
341 individuals (n = 116). Infection rates (% of infected individuals) varied greatly within
342 genotypes; for example, the infection rate for *Closterovirus* in genotype 946-4a was 75%, while
343 for genotype 3225-2a, only 14% of the individuals were infected. Conversely, the overall
344 infection rate for *Enamovirus* was lower at 17% (n = 115), with individuals from 14 genotypes
345 being infected. Similar variability in infection rates within genotypes was observed for
346 *Enamovirus*, genotype 1030-4a had the highest infection rate for *Enamovirus* (71%) and
347 genotypes 1030-2b, 3225-2a and 946-7b harboured the lowest infection rates (14%).
348 Furthermore, the GLM analysis showed that genotype 1030-4a was overall more likely to
349 harbour infection, as indicated by the positive estimated coefficient and significant p-value
350 (Supplementary table 2; estimate = 2.71, p = 0.047).

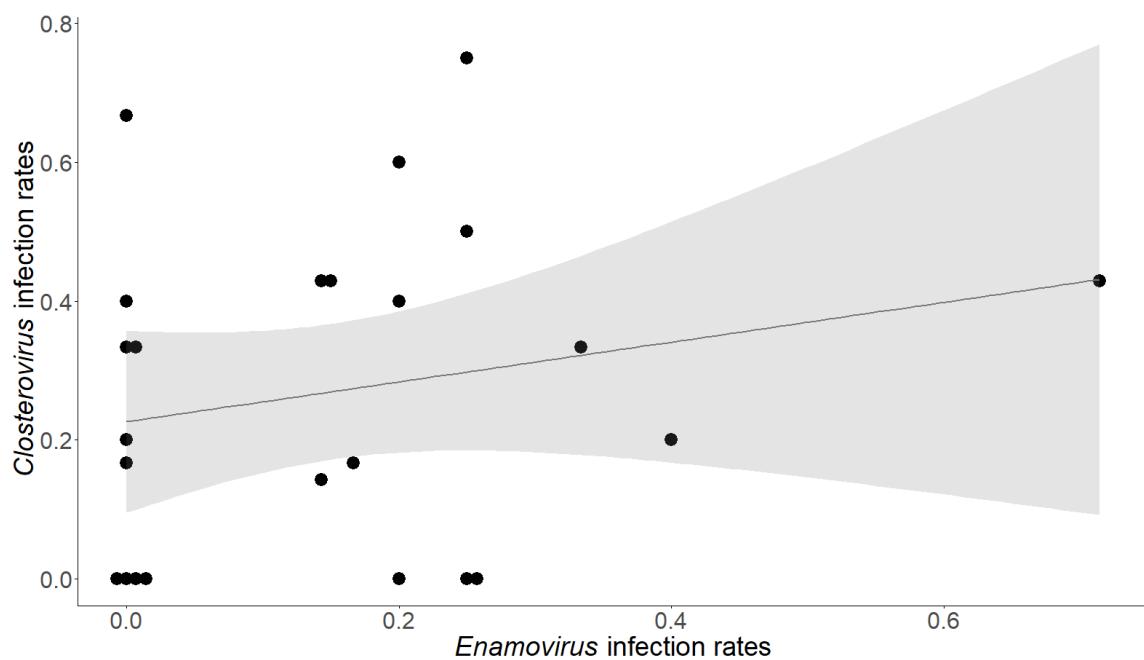
351 Post hoc analysis to evaluate differences between *Closterovirus* and *Enamovirus*
352 resistance and possible allocation costs in resistance to the two viruses showed no significant
353 differences within genotypes (Supplementary table 3) or among genotypes (Supplementary

354 table 4). Additionally, when analysing the correlation between infection rates of *Closterovirus*
355 and *Enamovirus*, we observed a weak positive correlation. However, this correlation was not
356 statistically significant (Figure 3; $t = 1.0248$, $df = 22$, $p = 0.3166$).

357

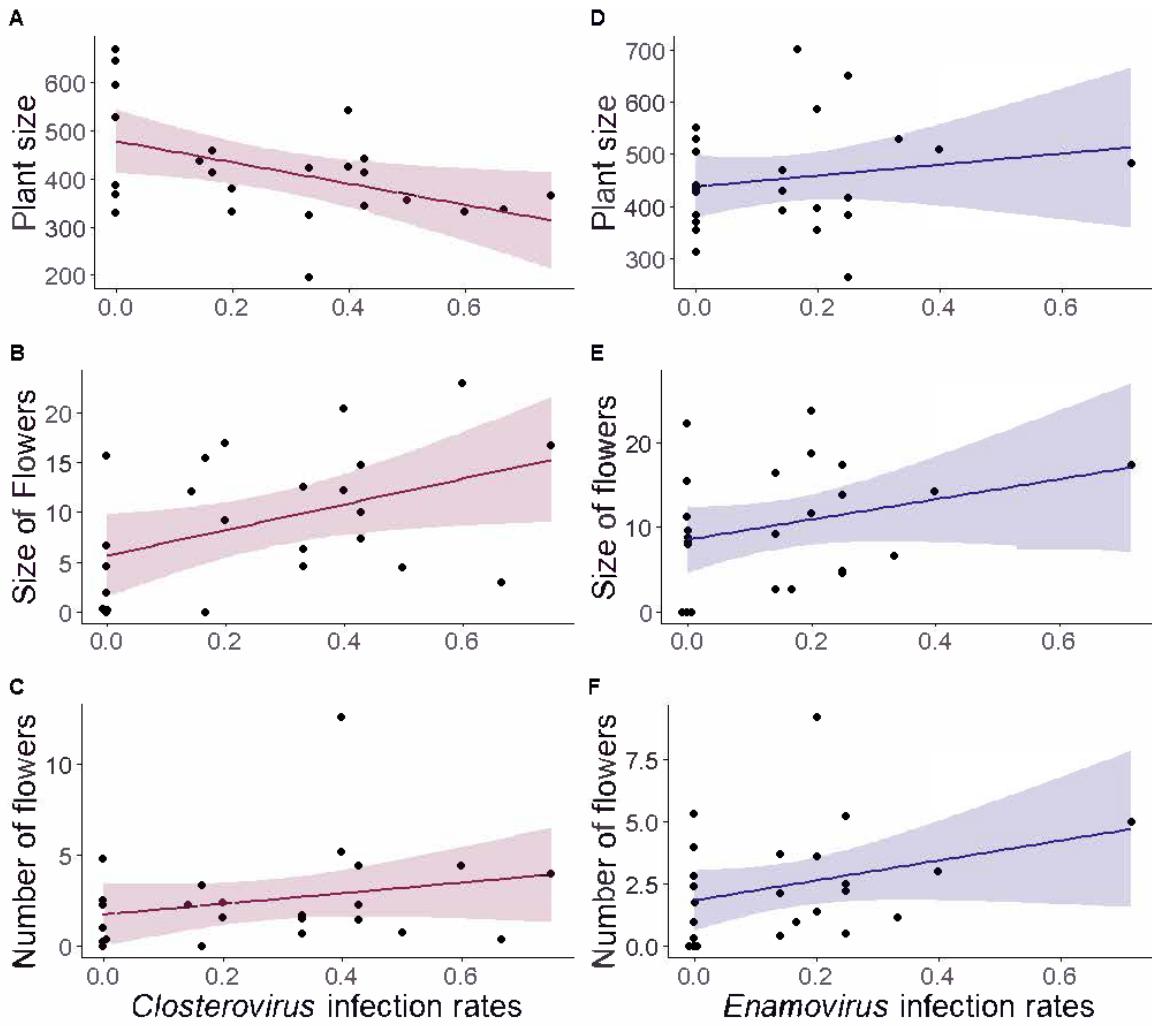
358

359 Figure 2. Infection rates of *Plantago lanceolata closterovirus* and *Plantago lanceolata*
360 *enamovirus* following the first inoculation treatment grouped by host genotypes. The blue
361 colour represent the proportion of *Enamovirus* infected individuals within the *Enamovirus*
362 inoculation treatment and correspondingly, the red colour represents the proportion
363 *Closterovirus* infected individuals within *Closterovirus* treatment. The absence of a bar
364 indicates that the genotype did not harbour viral infections after the first inoculation treatment.


365

366 Table 1. Results from Generalized linear model analysis on an inoculation experiment with 24
367 *Plantago lanceolata* genotypes ($n = 335$) inoculated with *Plantago lanceolata closterovirus* or
368 *Plantago lanceolata enamovirus* investigating the intraspecific variation among host genotypes
369 during viral infection and the differences in host response to the studied viruses across
370 genotypes.

Fixed effect	LR χ^2	Df	p-value
Genotype	37.308	23	0.03018
Inoculation treatment	4.182	1	0.04086
Genotype \times Inoculation treatment	23.032	23	0.4589


371

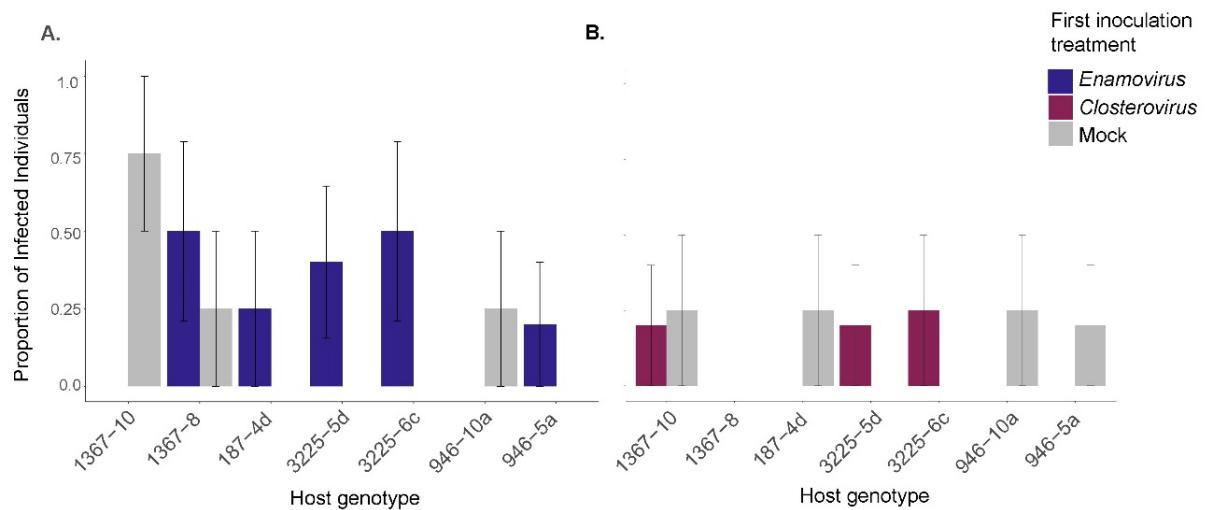
372

373

374 Figure 3. The correlation between *Plantago lanceolata closterovirus* and *Plantago lanceolata*
375 *enamovirus* infection rates among 24 *Plantago lanceolata* genotypes after the first
376 inoculation. The Pearson correlation between the infection rates of the two viruses was non-
377 significant but weakly positive ($t = 1.0248$, $df = 22$, $p = 0.3166$).

378

379 Figure 4. Correlations between *Plantago lanceolata* closterovirus and *Plantago lanceolata*
 380 *enamovirus* infection rates and plant size (A and D), size of flowers (B and E), and umber of
 381 flowers (C and F). The points represent the average infection rate for each genotype with the
 382 corresponding association. The trend line indicates the linear regression and the shaded area
 383 the 95% confidence interval.


384

385 Next, we investigated the associations between plant growth and reproductive traits
 386 (flower size and number) and virus infection rates. We found a negative but non-significant
 387 correlation (-0.459) between *Closterovirus* infection rates and host plant size (Figure 4; $t =$
 388 2.424, $df = 22$, $p = 0.0238$). In contrast, *Closterovirus* infection rates showed moderate positive
 389 correlations with flower size (0.433) and number of flowers (0.253). The correlation with
 390 flower size was statistically significant ($t = 2.257$, $df = 22$, $p = 0.0342$), while the correlation
 391 with the number of flowers was weak and statistically non-significant ($t = 1.231$, $df = 22$, $p =$

392 0.231). In comparison, the correlations between *Enamovirus* infection rates and plant growth
393 and reproductive traits were weakly positive and did not reach statistical significance. The
394 correlation between plant size and *Enamovirus* infection rates was weakly positive (0.175) with
395 no significant effect ($t = 0.834$, $df = 22$, $p = 0.4127$). Similarly, the correlations with flower
396 size (0.2965) and flower number (0.315) were weak and non-significant ($t = 1.456$, $df = 22$, p
397 = 0.159 and $t = 1.557$, $df = 22$, $p = 0.133$, respectively).

398 Finally, we investigated whether the initial inoculation with *Closterovirus* or
399 *Enamovirus* influenced the host resistance phenotype in sequential inoculation with
400 *Enamovirus* or *Closterovirus*, respectively. After the sequential inoculations, the overall
401 *Closterovirus* infection rate was 20%. Individuals that been previously infected with
402 *Enamovirus* had a higher infection rate than plants that had received the mock inoculation
403 treatment (66% vs. 33%, respectively), demonstrating how sensitive the resistance phenotype
404 is to prior infection. Specifically, genotypes 187-4d, 3225-5d, 3225-6c and 956-5a were more
405 susceptible to *Closterovirus* inoculation after initial inoculation with *Enamovirus* when
406 compared to individuals that were mock inoculated during the first treatment (Figure 5A.).
407 These observations were supported by our GLM and LR analysis, where the interaction
408 between host genotype and initial inoculation treatment had a significant effect on
409 *Closterovirus* resistance (Table 2A. LR $\chi^2 = 19.9074$, $df = 6$, $p = 0.002876$). Indeed, model
410 coefficients revealed positive estimates for interactions between genotype and first inoculation
411 treatment with *Enamovirus* when compared to the intercept involving interaction between
412 genotype and mock inoculation (Supplementary table 5). In contrast, we did not observe similar
413 trends for *Enamovirus* sequential infections. The infection rates of *Enamovirus* after the
414 sequential inoculation were generally lower than those of *Closterovirus* (Figure 5B), with only
415 5% of all *Enamovirus* inoculated individuals colonised by the virus. Out of the *Enamovirus*
416 infected individuals 50% were first inoculated with *Closterovirus* and the other 50% were first
417 mock inoculated. Our statistical analyses revealed that neither the initial *Closterovirus*
418 inoculation nor the host genotype had a significant effect on resistance to sequential
419 *Enamovirus* inoculation (Table 2B, Supplementary table 6).

420

421

422 Figure 5. Viral infection rates of plant individuals from 7 host genotypes after sequential
 423 inoculation treatments. A) Infection rates of individuals after *Plantago lanceolata closterovirus*
 424 sequential infection. During the first inoculation the individuals were inoculated with *Plantago*
 425 *lanceolata enamovirus* (blue) or mock inoculated (grey). B) Infection rates of individuals after
 426 *Plantago lanceolata enamovirus* inoculation. During the first inoculation the individuals were
 427 inoculated with *Plantago lanceolata closterovirus* (red) or mock inoculated (grey).

428

429 Table 2. Likelihood Ratio Chi-Square test results for two Generalized linear model (GLM)
 430 analyses of an inoculation experiment investigating the intraspecific variation and response
 431 among 7 *Plantago lanceolata* genotypes during sequential viral infections. A) GLM results
 432 from individuals that were first inoculated with *Plantago lanceolata enamovirus* or mock
 433 inoculated and sequentially inoculated with *Plantago lanceolata closterovirus*. B) GLM results
 434 from individuals that were first inoculated with *Plantago lanceolata closterovirus* or mock
 435 inoculated and sequentially inoculated with *Plantago lanceolata enamovirus*.

A.

Fixed effect	LR χ^2	Df	p-value
Genotype	2.4445	6	0.87463
First inoculation treatment	1.317	1	0.251124
Genotype × First inoculation treatment	19.9074	6	0.002876

B.

Fixed effect	LR χ^2	Df	p-value
Genotype	5.1259	6	0.5278
Inoculation treatment in timepoint A	0.0022	1	0.882
Genotype × Inoculation treatment in timepoint A	5.8739	6	0.4375

436

437

Discussion

438 Variation in intraspecific resistance is expected to have a key role in shaping the outcome of
439 host-pathogen interactions (Thrall and Burdon, 2000; Laine *et al.*, 2011; Sallinen *et al.*, 2020),
440 mitigating disease spread and preventing major outbreaks (Salvaudon, Héraudet and Shykoff,
441 2007; Ganz and Ebert, 2010; Jousimo *et al.*, 2014). However, much of our understanding of
442 this derives from studies focusing on single parasite infections while in reality hosts are
443 exposed to a wide diversity of parasites. While the true viral diversity in natural environments
444 still remains largely undiscovered, it is well-documented that viruses are abundant and diverse
445 across habitats, and many known viruses are pathogenic (Suttle, 2005; Roossinck, 2011; Bibby,
446 2013; Bass *et al.*, 2019; Koonin, Krupovic and Dolja, 2023). Yet, we know little about the
447 intraspecific variation in resistance to viral infections in wild hosts. Here, our findings highlight
448 the importance of host genotype as a key predictor of host viral resistance – host genotypes
449 exhibited varying resistance profiles, ranging from resistance to susceptibility for both studied
450 viruses. Moreover, we observed a significant change in host resistance phenotype as
451 susceptibility to *Closterovirus* increased following prior *Enamovirus* inoculation. In addition,
452 we observed distinct strategies in how resources were allocated between growth and resistance
453 for the two viruses. Overall, our results highlight the role of host genotype and virus–virus
454 interactions in mediating viral infections as well as viral community assembly.

455 In line with earlier studies on resistance variation in wild populations (Alexander,
456 Antonovics and Kelly, 1993; Thrall and Burdon, 2000; Laine, 2004, 2011; Rose *et al.*, 2005;
457 Susi and Laine, 2017), *P. lanceolata* genotypes showed high diversity in their resistance
458 responses, showing varying levels of susceptibility and resistance to the two viruses used in
459 this experiment. The overall susceptibility to the two viruses was relatively low and varied
460 between the two viruses (28% for *Closterovirus* and 17% for *Enamovirus*). However, in most
461 of the host genotypes we were able to detect viral infection in at least one individual. Infection
462 rates varied considerably within genotypes, from over 70% of individuals being infected, to
463 only 13% of infected individuals. We identified four genotypes that were completely resistant
464 to viral inoculation. Three of these originate from the same host population (ID: 187),
465 suggesting potentially spatially structured variation in selection for viral resistance (*cf.* Laine
466 *et al.*, 2011). Genotype 1030-4a was significantly more susceptible for virus infection
467 compared to the other genotypes, with infection rates of 71% for *Enamovirus* and 43% for
468 *Closterovirus*. The observed variation in viral resistance among host genotypes aligns with
469 previous research from this system, which has described ample variation in resistance to the
470 fungal parasite *P. plantaginis* within *P. lanceolata* populations (Laine, 2004; Susi, Vale and
471 Laine, 2015; Safdari *et al.*, 2021). Moreover, field experiments conducted during natural viral
472 epidemics in this system revealed that viral communities varied both among *P. lanceolata*
473 genotypes and populations (Susi *et al.*, 2019; Sallinen *et al.*, 2020; Jokinen *et al.*, 2023). Our
474 results confirm that these differences are likely to be generated by genetic resistance variation.

475 In this study, we individually inoculated clones of *P. lanceolata* genotypes with
476 *Closterovirus* or *Enamovirus* to explore possible allocation costs in resistance against the two
477 viruses as predicted by the concept of trade-offs (Bergelson and Purrington, 1996; Webster and
478 Woolhouse, 1999; Koskella *et al.*, 2012; Auld *et al.*, 2013). While the inoculation treatment
479 was a significant predictor of host infections status, post hoc tests did not detect statistically
480 significant differences in resistance against *Closterovirus* or *Enamovirus* across or within the
481 24 *P. lanceolata* genotypes included in the study. This lack of statistical support is likely due
482 to the variation in infection rates within host genotypes. However, we identified several host
483 genotypes that were resistant to one of the studied viruses while remaining susceptible to the
484 other. For example, genotypes 853-2d, 853-6b and 950-8b were resistant to *Enamovirus*, but
485 susceptible to *Closterovirus*, suggesting a possible trade-off in resistance. Overall, in our
486 inoculation experiment we found a weak positive correlation between *Closterovirus* and
487 *Enamovirus* infection rates, with several of the host genotypes being susceptible to both of the

488 viruses. These findings suggest that host genotype may play a key role in shaping viral co-
489 occurrence patterns, supported by field data showing that high viral diversity tends to
490 accumulate in certain host individuals (Susi *et al.*, 2019; Sallinen *et al.*, 2020; Jokinen *et al.*,
491 2023; Norberg *et al.*, 2023).

492 One of the most studied life-history trade-offs is the growth versus defense trade-off,
493 which predicts the host's limited resources must be allocated between growth and defence,
494 leading to patterns where growth is favoured over defense or vice versa (Bergelson and
495 Purrington, 1996; Monson *et al.*, 2022; Zaret *et al.*, 2024). Indeed, we found that for both
496 viruses higher infection rates positively correlated with larger flower size and number of
497 flowers. These results indicate that these individuals may have allocated more resources to
498 reproduction and, in turn, less resources to resistance against parasites. Varying resource
499 allocation strategies create variation in wild hosts, even among host genotypes, and such trade-
500 offs between fitness traits and defense are particularly evident in wild hosts (Giolai and Laine,
501 2024). Interestingly, we observed that higher infection rates with *Closterovirus* were negatively
502 correlated with host plant size, suggesting that larger plants harbour less viral infections. In
503 contrast, no such relationship was observed with *Enamovirus* inoculated individuals, where
504 small size was positively correlated with viral infections. These contrasting patterns may reflect
505 differences in the immune responses these viruses trigger or that the full extent of the trade-
506 offs were not captured within the timeframe of the experiment (Susi and Laine, 2015; Dallas,
507 Holtackers and Drake, 2016). A longer observation period may be necessary to observe
508 dynamics of resource allocation and viral resistance in this system.

509 In addition to intraspecific variation in resistance, we observed a significant change in
510 host resistance phenotype in several of the genotypes when the host was initially inoculated
511 with *Enamovirus*. Specifically, host individuals first inoculated with *Enamovirus* were more
512 susceptible to subsequent *Closterovirus* inoculation compared to those that were first mock
513 inoculated with phosphate buffer. However, there were differences among host genotypes in
514 their response to sequential *Closterovirus* inoculation. We observed the change in resistance
515 phenotype in all other genotypes included in the treatment except for genotypes 1367-10 and
516 946-10a, indicating that there is intraspecific variation among genotypes also in their response
517 to sequential coinfections. During coinfections, defence against the first arriving parasite can
518 leave the host more vulnerable or resistant against subsequent parasite attack (Spoel, Johnson
519 and Dong, 2007; Ziebell and Carr, 2010; Mauch-Mani *et al.*, 2017; Morris, Cleary and Clarke,
520 2017; Jokinen *et al.*, 2023). Interestingly, we did not observe similar change in resistance

521 phenotype when individuals were first inoculated with *Closterovirus*. There were no
522 differences in *Enamovirus* infection rates between individuals that were first inoculated with
523 *Closterovirus* and those that were mock inoculated. This suggest that resistance against
524 *Closterovirus* might not impose as significant cost for the host than resistance against
525 *Enamovirus*, which could also connect to our finding of the lack of trade-off between host plant
526 size and resistance against *Closterovirus*. Our results also demonstrate that the assembly of
527 viral communities is highly sensitive to the arrival order of the different viruses.

528 Here, we have described the importance of intraspecific variation in resistance in wild
529 host against viral infection by using naïve *P. lanceolata* clones in an inoculation experiment.
530 By applying both single and sequential inoculations with two wild viruses across 24 host
531 genotypes, we were able to detect distinct differences in resistance among host genotypes
532 against the two viruses and the sensitivity of the resistance phenotype to prior viral infection.
533 Moreover, we detected varying strategies in resource allocation between growth and defense
534 in response to the two viruses, reflecting a trade-off between these processes. Our findings
535 highlight the importance of intraspecific variation in host resistance against viral infection —
536 an important component in natural disease mitigation. Overall, our results indicate that host
537 genotype and virus arrival sequence are key determinants of host resistance, and they may play
538 important role in shaping disease dynamics and the assembly of within-host parasite
539 communities in natural systems. The global trend of genetic variation in being eroded in natural
540 populations by human actions can have far reaching consequences for disease risk (Exposito-
541 Alonso *et al.*, 2022; Laine, 2023), which as we have shown here, is highly sensitive to host
542 genetic variation.

543 Acknowledgements

544 We thank Krista Raveala for help cloning and caring for the host plants. We thank Krista
545 Raveala, Anna Hietala, Suvi Sallinen and Sara Leino for helping with the collection of the wild
546 plant material. We thank Santtu Nissilä, Heidi Blom and Jere Lentonen for helping with the
547 data collection and help at the greenhouse. We thank Jere Lentonen with help in the laboratory
548 work. The work was funded grants from European Research Council (AdG 101097545 Co-
549 EvoChange), and Academy of Finland (362242) to A.-L.L. and Academy of Finland (321441)
550 to H.S and University of Zurich to M.J.

551 Author Contributions

552 Conceptualization: A.-L.L; study design: M.J. and A.-L.L.; investigation, methodology, data
553 collection, formal analysis: M.J.; supervision: A.-L.L and H.S.; Writing: M.J., H.S. and A-L.L.

554 Conflict of Interest

555 The authors declare no conflict of interests.

556 Data availability statement

557 The data and R scripts used in this study have been submitted to GitHub
558 (<https://github.com/maiabajoki/INTRA22>).

559

560 References

561 Adams, I.P. *et al.* (2014) ‘Carrot yellow leaf virus is associated with carrot internal necrosis’,
562 *PLoS ONE*, 9(11).

563 Agranovsky, A.A. *et al.* (1995) ““Rattlesnake” structure of a filamentous plant RNA virus
564 built of two capsid proteins”, *Proceedings of the National Academy of Sciences of the United
565 States of America*, 92(7), pp. 2470–2473.

566 Alexander, H.M., Antonovics, J. and Kelly, A.W. (1993) ‘Genotypic Variation in Plant
567 Disease Resistance--Physiological Resistance in Relation to Field Disease Transmission’,
568 *Source: Journal of Ecology*, 81(2), pp. 325–333.

569 Ali, F. *et al.* (2013) ‘Evidence of Multiple Disease Resistance (MDR) and Implication of
570 Meta-Analysis in Marker Assisted Selection’, *PLOS ONE*, 8(7), p. e68150.

571 Anderson, R.M. and May, R.M. (1982) ‘Coevolution of hosts and parasites’, *Parasitology*,
572 85(2), pp. 411–426.

573 Antonovics, J. and Thrall, P.H. (1994) ‘The cost of resistance and the m aintenance of genetic
574 polym orphism in host-pathogen systems’, *Proceedings of the Royal Socie*, 257, pp. 105–110.

575 Ashby, B. and King, K.C. (2017) 'Friendly foes: The evolution of host protection by a
576 parasite', *Evolution Letters*, 1(4), pp. 211–221.

577 Auld, S.K.J.R. *et al.* (2013) 'Variation in costs of parasite resistance among natural host
578 populations', *Journal of Evolutionary Biology*, 26(11), pp. 2479–2486.

579 Bass, D. *et al.* (2019) 'The Pathobiome in Animal and Plant Diseases', *Trends in Ecology
580 and Evolution*. Elsevier Ltd, pp. 996–1008.

581 Bergelson, J. *et al.* (2001) 'Evolutionary dynamics of plant R-genes', *Science*, 292(5525), pp.
582 2281–2285.

583 Bergelson, J. and Purrington, C.B. (1996) 'Surveying patterns in the cost of resistance in
584 plants', *American Naturalist*, 148(3), pp. 536–558.

585 Bibby, K. (2013) 'Metagenomic identification of viral pathogens', *Trends in Biotechnology*,
586 31(5), pp. 275–279.

587 Bray, A.S. *et al.* (2022) 'MgrB-Dependent Colistin Resistance in *Klebsiella pneumoniae* Is
588 Associated with an Increase in Host-to-Host Transmission', *mBio*, 13(2).

589 Broekgaarden, C. *et al.* (2011) 'Exploiting natural variation to identify insect-resistance
590 genes', *Plant Biotechnology Journal*, 9(8), pp. 819–825.

591 Brown, J.K.M. and Rant, J.C. (2013a) 'Fitness costs and trade-offs of disease resistance and
592 their consequences for breeding arable crops', *Plant Pathology*, 62(S1), pp. 83–95.

593 Brown, J.K.M. and Rant, J.C. (2013b) 'Fitness costs and trade-offs of disease resistance and
594 their consequences for breeding arable crops', *Plant Pathology*, 62(S1), pp. 83–95.

595 Carrillo-Hernández, M.Y. *et al.* (2018) 'Co-circulation and simultaneous co-infection of
596 dengue, chikungunya, and zika viruses in patients with febrile syndrome at the Colombian-
597 Venezuelan border', *BMC Infectious Diseases*, 18(1), pp. 1–12.

598 Chang, S., Puryear, J. and Cairney, J. (1993) 'A simple and efficient method for isolating
599 RNA from pine trees', *Plant Molecular Biology Reporter*, 11(2), pp. 113–116.

600 Cheatsazan, H. *et al.* (2013) 'Experimental evidence for a cost of resistance to the fungal
601 pathogen, *Batrachochytrium dendrobatidis*, for the palmate newt, *Lissotriton helveticus*',
602 *BMC Ecology*, 13.

603 Ciota, A.T. *et al.* (2011) 'The costs of infection and resistance as determinants of West Nile

604 virus susceptibility in *Culex* mosquitoes', *BMC Ecology*, 11.

605 Dallas, T., Holtackers, M. and Drake, J.M. (2016) 'Costs of resistance and infection by a
606 generalist pathogen', *Ecology and Evolution*, 6(6), pp. 1737–1744.

607 Debray, R. *et al.* (2022) 'Priority effects in microbiome assembly', *Nature Reviews
608 Microbiology*, pp. 109–121.

609 Demler, S.A. *et al.* (1996) 'Pea Enation Mosaic Enamovirus: Properties and Aphid
610 Transmission', *The Plant Viruses*, pp. 303–344.

611 Ekroth, A.K.E., Rafaluk-Mohr, C. and King, K.C. (2019) 'Host genetic diversity limits
612 parasite success beyond agricultural systems: A meta-analysis', *Proceedings of the Royal
613 Society B: Biological Sciences*, 286(1911).

614 Ericson, L., Burdon, J.J. and Müller, W.J. (2002) 'The rust pathogen *Triphragmium ulmariae*
615 as a selective force affecting its host, *Filipendula ulmaria*', *Journal of Ecology*, 90, pp. 167–
616 178.

617 Exposito-Alonso, M. *et al.* (2022) 'Genetic diversity loss in the Anthropocene', *Science*,
618 377(6613), pp. 1431–1435.

619 Fox, J. and Weisberg, S. (2019) 'An R Companion to Applied Regression', *Sage Publications*
620 [Preprint].

621 Fraile, A. and García-Arenal, F. (2016) 'Environment and evolution modulate plant virus
622 pathogenesis', *Current opinion in virology*, 17, pp. 50–56.

623 Fuchs, M. *et al.* (2020) 'ICTV virus taxonomy profile: Closteroviridae', *Journal of General
624 Virology*, 101(4), pp. 364–365.

625 Fukami, T. (2015) 'Historical Contingency in Community Assembly: Integrating Niches,
626 Species Pools, and Priority Effects', *Annu. Rev. Ecol. Evol. Syst.*, 46, pp. 1–23.

627 Ganz, H.H. and Ebert, D. (2010) 'Benefits of host genetic diversity for resistance to infection
628 depend on parasite diversity', *Ecology*, 91(5), pp. 1263–1268.

629 Gibson, A.K. (2022) 'Genetic diversity and disease: The past, present, and future of an old
630 idea', *Evolution*, 76, pp. 20–36.

631 Giolai, M. and Laine, A. (2024) 'A trade-off between investment in molecular defense
632 repertoires and growth in plants', 680(November), pp. 677–680.

633 González, R., Butković, A. and Elena, S.F. (2019) 'Role of host genetic diversity for
634 susceptibility-to-infection in the evolution of virulence of a plant virus', *Virus Evolution*,
635 5(2), pp. 1–12.

636 Hamilton, W.D. (1980) 'Sex versus Non-Sex versus Parasite', *Oikos*, 35(2), pp. 282–290.

637 Hanski, I. *et al.* (1995) 'Metapopulation Persistence of an Endangered Butterfly in a
638 Fragmented Landscape', *OIKOS*, 72(1), pp. 21–28.

639 Harper, S.J. (2013) 'Citrus tristeza virus: Evolution of complex and varied genotypic groups',
640 *Frontiers in Microbiology*, 4(APR).

641 Hillung, J. *et al.* (2014) 'Experimental evolution of an emerging plant virus in host genotypes
642 that differ in their susceptibility to infection', *Evolution*, 68(9), pp. 2467–2480.

643 Hily, J.M. *et al.* (2016) 'Environment and host genotype determine the outcome of a plant–
644 virus interaction: from antagonism to mutualism', *New Phytologist*, 209(2), pp. 812–822.

645 Höckerstedt, L. *et al.* (2022) 'Spatially structured eco-evolutionary dynamics in a host–
646 pathogen interaction render isolated populations vulnerable to disease', *Nature
647 Communications*, 13(1), pp. 1–11.

648 Höckerstedt, L., Susi, H. and Laine, A.L. (2021) 'Effect of maternal infection on progeny
649 growth and resistance mediated by maternal genotype and nutrient availability', *Journal of
650 Ecology*, 109(3), pp. 1439–1451.

651 Hückelhoven, R. *et al.* (2013) 'Genetic loss of susceptibility: a costly route to disease
652 resistance?', *Plant Pathology*, 62(S1), pp. 56–62.

653 Jokinen, M. *et al.* (2023) 'The first arriving virus shapes within-host viral diversity during
654 natural epidemics', *Proceedings of the Royal Society B*, 290(2006).

655 Jousimo, J. *et al.* (2014) 'Ecological and evolutionary effects of fragmentation on infectious
656 disease dynamics', *Science*, 344(6189), pp. 1289–1293.

657 Karasev, A. V. (2000) 'Genetic diversity and evolution of closteroviruses', *Annual Review of
658 Phytopathology*, 38, pp. 293–324.

659 Karvonen, A., Jokela, J. and Laine, A.L. (2019) 'Importance of Sequence and Timing in
660 Parasite Coinfections', *Trends in Parasitology*. Elsevier Ltd, pp. 109–118.

661 Koonin, E. V., Krupovic, M. and Dolja, V. V. (2023) 'The global virome: How much

662 diversity and how many independent origins?”, *Environmental Microbiology*, 25(1), pp. 40–
663 44.

664 Koskella, B. *et al.* (2012) ‘The costs of evolving resistance in heterogeneous parasite
665 environments’, *Proceedings of the Royal Society B: Biological Sciences*, 279(1735), pp.
666 1896–1903.

667 Laine, A.-L. (2004) ‘Resistance variation within and among host populations in a plant-
668 pathogen metapopulation: implications for regional pathogen dynamics’, *Journal of Ecology*,
669 92(6), pp. 990–1000.

670 Laine, A.L. (2011) ‘Context-dependent effects of induced resistance under co-infection in a
671 plant-pathogen interaction’, *Evolutionary Applications*, 4(5), pp. 696–707.

672 Laine, A.L. *et al.* (2011) ‘Spatial variation in disease resistance: From molecules to
673 metapopulations’, *Journal of Ecology*, 99(1), pp. 96–112.

674 Laine, A.L. (2023) ‘Plant disease risk is modified by multiple global change drivers’, *Current
675 Biology*, 33(11), pp. R574–R583.

676 Lenth, R. V. *et al.* (2018) ‘Package “Emmeans”’.

677 Leonard, K.J. (1977) ‘Selection Pressures and Plant Pathogens’, *Annals of the New York
678 Academy of Sciences*, 287(1), pp. 207–222.

679 Little, T.J. and Ebert, D. (1999) ‘Associations between parasitism and host genotype in
680 natural populations of Daphnia (Crustacea: Cladocera)’, *Journal of Animal Ecology*, 68, pp.
681 134–149.

682 Lopez-Zuniga, L.O. *et al.* (2019) ‘Using Maize Chromosome Segment Substitution Line
683 Populations for the Identification of Loci Associated with Multiple Disease Resistance’.

684 Maclot, F. *et al.* (2020) ‘Illuminating an Ecological Blackbox: Using High Throughput
685 Sequencing to Characterize the Plant Virome Across Scales’, *Frontiers in Microbiology*,
686 11(October), pp. 1–16.

687 Malmstrom, C.M., Martin, M.D. and Gagnevin, L. (2022) ‘Exploring the Emergence and
688 Evolution of Plant Pathogenic Microbes Using Historical and Paleontological Sources’,
689 *Annual Review of Phytopathology*, 60, pp. 187–209.

690 Marchetto, K.M. and Power, A.G. (2018) ‘Coinfection timing drives host population

691 dynamics through changes in virulence', *American Naturalist*, 191(2), pp. 173–183.

692 Mauch-Mani, B. *et al.* (2017) 'Defense Priming: An Adaptive Part of Induced Resistance',
693 *Annual Review of Plant Biology*, 68, pp. 485–512.

694 McGrann, G.R.D. *et al.* (2014) 'A trade off between mlo resistance to powdery mildew and
695 increased susceptibility of barley', *Journal of Experimental Botany*, 65(4), pp. 1025–1037.

696 Monson, R.K. *et al.* (2022) 'Coordinated resource allocation to plant growth–defense
697 tradeoffs', *New Phytologist*, 233(3), pp. 1051–1066.

698 Morris, D.E., Cleary, D.W. and Clarke, S.C. (2017) 'Secondary bacterial infections
699 associated with influenza pandemics', *Frontiers in Microbiology*, 8(JUN), p. 1041.

700 Natsopoulou, M.E. *et al.* (2015) 'Interspecific competition in honeybee intracellular gut
701 parasites is asymmetric and favours the spread of an emerging infectious disease',
702 *Proceedings of the Royal Society B: Biological Sciences*, 282(1798).

703 Norberg, A. *et al.* (2023) 'Direct and indirect viral associations predict coexistence in wild
704 plant virus communities', *Current Biology*, 33(9), pp. 1665–1676.e4.

705 Ojanen, S.P. *et al.* (2013) 'Long-term metapopulation study of the Glanville fritillary
706 butterfly (*Melitaea cinxia*): Survey methods, data management, and long-term population
707 trends', *Ecology and Evolution*, 3(11), pp. 3713–3737.

708 R Foundation for Statistical and Computing, Vienna, A. (2022) 'R: A language and
709 environment for statistical computing.'

710 Roossinck, M.J. (2005) 'Symbiosis versus competition in plant virus evolution', *Nature
711 Reviews Microbiology*, 3(12), pp. 917–924.

712 Roossinck, M.J. (2011) 'The big unknown: Plant virus biodiversity', *Current Opinion in
713 Virology*, 1(1), pp. 63–67.

714 Rose, L.E. *et al.* (2005) 'Natural variation in the Pto pathogen resistance gene within species
715 of wild tomato (*Lycopersicon*). I. Functional analysis of Pto alleles', *Genetics*, 171(1), pp.
716 345–357.

717 Al Rwahnih, M. *et al.* (2012) 'Genomic and biological analysis of Grapevine leafroll-
718 associated virus 7 reveals a possible new genus within the family Closteroviridae', *Virus
719 Research*, 163(1), pp. 302–309.

720 Safdari, P. *et al.* (2021) 'Genotype-Specific Expression and NLR Repertoire Contribute to
721 Phenotypic Resistance Diversity in *Plantago lanceolata*', *Frontiers in Plant Science*, 12(July).

722 Sagar, A.G.R. and Harper, J.L. (1964) 'Plantago Major L., P. Media L. and P. Lancocelata
723 L.', *Journal of Ecology*, 52, pp. 189–221.

724 Sallinen, S. *et al.* (2020) 'Intraspecific host variation plays a key role in virus community
725 assembly', *Nature Communications*, 11(1), pp. 1–11.

726 Salvaudon, L., Héraudet, V. and Shykoff, J.A. (2007) 'Genotype-specific interactions and the
727 trade-off between host and parasite fitness', *BMC Evolutionary Biology*, 7, pp. 1–10.

728 Sōmera, M. *et al.* (2021) 'ICTV Virus Taxonomy Profile: Solemoviridae 2021', *Journal of
729 General Virology*, 102(12), p. 001707.

730 Sōmera, M., Sarmiento, C. and Truve, E. (2015) 'Overview on Sobemoviruses and a Proposal
731 for the Creation of the Family Sobemoviridae', *Viruses*, 7, pp. 3076–3115.

732 Spoel, S.H., Johnson, J.S. and Dong, X. (2007) 'Regulation of tradeoffs between plant
733 defenses against pathogens with different lifestyles', *Proceedings of the National Academy of
734 Sciences*, 104(47), pp. 18842–18847.

735 Stearns, S.C. (1989) 'Trade-Offs in Life-History Evolution Published by : British Ecological
736 Society Stable URL : <http://www.jstor.org/stable/2389364> Trade-offs in life-history
737 evolution', *Function Ecology*, 3(3), pp. 259–268.

738 Susi, H. *et al.* (2015) 'Co-infection alters population dynamics of infectious disease', *Nature
739 Communications*, 6(1), pp. 1–8.

740 Susi, H. *et al.* (2017) 'Genome sequences of a capulavirus infecting *Plantago lanceolata* in
741 the Åland archipelago of Finland', *Archives of Virology*, 162(7), pp. 2041–2045.

742 Susi, H. *et al.* (2019) 'Diverse and variable virus communities in wild plant populations
743 revealed by metagenomic tools', *PeerJ*, 2019(1).

744 Susi, H. and Laine, A.L. (2015) 'The effectiveness and costs of pathogen resistance strategies
745 in a perennial plant', *Journal of Ecology*, 103(2), pp. 303–315.

746 Susi, H. and Laine, A.L. (2017) 'Host resistance and pathogen aggressiveness are key
747 determinants of coinfection in the wild', *Evolution*, 71(8), pp. 2110–2119.

748 Susi, H., Vale, P.F. and Laine, A.L. (2015) 'Host genotype and coinfection modify the

749 relationship of within and between host transmission', *American Naturalist*, 186(2), pp. 252–
750 263.

751 Suttle, C.A. (2005) 'Viruses in the sea', *Nature*, 437(7057), pp. 356–361.

752 Swanson, S.J. *et al.* (2006) 'Coinfections acquired from Ixodes ticks', *Clinical Microbiology
753 Reviews*, 19(4), pp. 708–727.

754 Taliansky, M., Mayo, M.A. and Barker, H. (2003) 'Potato leafroll virus: A classic pathogen
755 shows some new tricks', *Molecular Plant Pathology*, 4(2), pp. 81–89.

756 Thrall, P.H. and Burdon, J.J. (2000) 'Effect of resistance variation in a natural plant host–
757 pathogen metapopulation on disease dynamics', *Plant Pathology*, 49(6), pp. 767–773.

758 Tian, D. *et al.* (2003) 'Fitness costs of R-gene-mediated resistance in *Arabidopsis thaliana*',
759 *Nature*, 423(6935), pp. 74–77.

760 Tollenaere, C., Susi, H. and Laine, A.L. (2016) 'Evolutionary and Epidemiological
761 Implications of Multiple Infection in Plants', *Trends in Plant Science*. Elsevier Ltd, pp. 80–
762 90.

763 Vemulapati, B. *et al.* (2010) 'Molecular characterization of pea enation mosaic virus and
764 bean leafroll virus from the Pacific Northwest, USA', *Archives of Virology*, 155(10), pp.
765 1713–1715.

766 Wang, H. *et al.* (2018) 'Resolving viral-induced secondary bacterial infection in COPD: A
767 concise review', *Frontiers in Immunology*, 9(OCT), p. 2345.

768 Webster, J.P. and Woolhouse, M.E.J. (1999) 'Cost of resistance: relationship between
769 reduced fertility and increased resistance in a snail-schistosome host-parasite system',
770 *Proceedings of the Royal Society of London Series B-Biological Sciences*, 266, pp. 391–396.

771 Yang, S. *et al.* (2022) 'Expanding known viral diversity in plants: virome of 161 species
772 alongside an ancient canal', *Environmental Microbiomes*, 17(1), pp. 1–15.

773 Zaret, M. *et al.* (2024) 'Plant growth–defense trade-offs are general across interactions with
774 fungal, insect, and mammalian consumers', *Ecology*, 105(5), p. e4290.

775 Ziebell, H. and Carr, J.P. (2010) 'Cross-Protection: A Century of Mystery', 76, pp. 211–264.

776

777 **Supplementary information**

778 Diversity in viral resistance emerges from host genotype and infection order effects

779 Authors: Maija Jokinen¹, Hanna Susi^{1, 2} & Anna-Liisa Laine¹

780 ¹ Department of Organismal and Evolutionary Biology, Faculty of Biological and
781 Environmental Sciences, PO BOX 65 00014 University of Helsinki, Finland

782 ² Department of Agricultural Sciences, Faculty of Agriculture and Forestry, PO BOX 27,
783 00014, University of Helsinki, Finland

784

785 M.J. maija.jokinen@helsinki.fi, H.S. hanna.susi@helsinki.fi, A-L.L. anna-
786 liisa.laine@helsinki.fi

787 Maija Jokinen, maija.jokinen@helsinki.fi and Anna-Liisa Laine, anna-liisa.laine@helsinki.fi
788 Department of Organismal and Evolutionary Biology, Faculty of Biological and Environmental
789 Sciences, PO BOX 65 00014 University of Helsinki, Finland

790

791

792

793

794

795

796

797

798

799

800

801

802

803 **Supplementary table 1. Data table showing all *Plantago lanceolata* genotypes included in the**
804 **inoculation experiment in the first inoculations (n = 24) and the sequential inoculations (n = 7).**
805 The host genotype origin populations, first and sequential inoculation treatments, infection rates for
806 *Enamovirus* and *Closterovirus* within each genotype and treatment, and the number individuals of
807 each genotype within each genotype are shown.

Origin population	Host genotype	Timepoint	First inoculation treatment	Sequential inoculation treatment	Infection rate: Enamovirus	Infection rate: Closterovirus	Number of individuals/treatment
187	187-1b	1	<i>Closterovirus</i>		-	0.00	4
187	187-1b	1	<i>Enamovirus</i>		0.00	-	4
187	187-1b	1	Mock		0.00	0.00	2
187	187-3c	1	<i>Closterovirus</i>		-	0.60	5
187	187-3c	1	<i>Enamovirus</i>		0.20	-	5
187	187-3c	1	Mock		0.00	0.00	2
187	187-4d	1	<i>Closterovirus</i>		-	0.00	4
187	187-4d	1	<i>Enamovirus</i>		0.00	-	4
187	187-4d	1	Mock		0.00	0.00	9
853	853-1	1	<i>Closterovirus</i>		-	0.00	3
853	853-1	1	<i>Enamovirus</i>		0.00	-	3
853	853-1	1	Mock		0.00	0.00	2
853	853-2d	1	<i>Closterovirus</i>		-	0.67	3
853	853-2d	1	<i>Enamovirus</i>		0.00	-	3
853	853-2d	1	Mock		0.00	0.00	1
853	853-6b	1	<i>Closterovirus</i>		-	0.33	3
853	853-6b	1	<i>Enamovirus</i>		0.00	-	3
853	853-6b	1	Mock		0.00	0.00	2
946	946-10a	1	<i>Closterovirus</i>		-	0.50	4
946	946-10a	1	<i>Enamovirus</i>		0.25	-	4
946	946-10a	1	Mock		0.00	0.30	10
946	946-4a	1	<i>Closterovirus</i>		-	0.75	4
946	946-4a	1	<i>Enamovirus</i>		0.25	-	4
946	946-4a	1	Mock		0.00	0.00	2
946	946-5a	1	<i>Closterovirus</i>		-	0.00	5
946	946-5a	1	<i>Enamovirus</i>		0.20	-	5
946	946-5a	1	Mock		0.09	0.00	11
946	946-7b	1	<i>Closterovirus</i>		-	0.43	7
946	946-7b	1	<i>Enamovirus</i>		0.14	-	7
946	946-7b	1	Mock		0.00	0.00	1
950	950-8b	1	<i>Closterovirus</i>		-	0.33	3
950	950-8b	1	<i>Enamovirus</i>		0.00	-	3
950	950-8b	1	Mock		0.00	0.00	2
1030	1030-2b	1	<i>Closterovirus</i>			0.43	7
1030	1030-2b	1	<i>Enamovirus</i>		0.14		7
1030	1030-2b	1	Mock		0.00	0.00	1
1030	1030-4a	1	<i>Closterovirus</i>		-	0.43	7
1030	1030-4a	1	<i>Enamovirus</i>		0.71	-	7
1030	1030-4a	1	Mock		0.00	0.00	1
1367	1367-10	1	<i>Closterovirus</i>		-	0.20	5
1367	1367-10	1	<i>Enamovirus</i>		0.00	-	5
1367	1367-10	1	Mock		0.00	0.00	9
1367	1367-2c	1	<i>Closterovirus</i>		-	0.17	6
1367	1367-2c	1	<i>Enamovirus</i>		0.00	-	6
1367	1367-2c	1	Mock		0.00	0.00	1
1367	1367-8	1	<i>Closterovirus</i>		-	0.00	4
1367	1367-8	1	<i>Enamovirus</i>		0.25	-	4
1367	1367-8	1	Mock		0.11	0.00	9
1367	1367-9d	1	<i>Closterovirus</i>		-	0.40	5
1367	1367-9d	1	<i>Enamovirus</i>		0.20	-	5
1367	1367-9d	1	Mock		0.00	0.00	11
3225	3225-1	1	<i>Closterovirus</i>		-	0.33	6
3225	3225-1	1	<i>Enamovirus</i>		0.33	-	6
3225	3225-1	1	Mock		0.00	0.00	2
3225	3225-2a	1	<i>Closterovirus</i>		-	0.14	7
3225	3225-2a	1	<i>Enamovirus</i>		0.14	-	7
3225	3225-2a	1	Mock		0.00	0.00	1
3225	3225-3a	1	<i>Closterovirus</i>		-	0.17	6
3225	3225-3a	1	<i>Enamovirus</i>		0.17	-	6
3225	3225-3a	1	Mock		0.00	0.00	1
3225	3225-5d	1	<i>Closterovirus</i>			0.40	5
3225	3225-5d	1	<i>Enamovirus</i>		0.00		5
3225	3225-5d	1	Mock		0.00	0.20	10
3225	3225-6c	1	<i>Closterovirus</i>		-	0.00	4
3225	3225-6c	1	<i>Enamovirus</i>		0.25	-	4
808	3225	3225-6c	1	Mock	0.00	0.10	10

811

187	187-4d	2	<i>Closterovirus</i>	<i>Enamovirus</i>	0.00	-	4
187	187-4d	2	<i>Enamovirus</i>	<i>Closterovirus</i>	-	0.25	4
187	187-4d	2	Mock	<i>Closterovirus</i>	-	0.00	4
187	187-4d	2	Mock	<i>Enamovirus</i>	0.25	-	4
187	187-4d	2	Mock	Mock	0.00	0.00	1
946	946-10a	2	<i>Closterovirus</i>	<i>Enamovirus</i>	0.00	-	4
946	946-10a	2	<i>Enamovirus</i>	<i>Closterovirus</i>	-	0.00	4
946	946-10a	2	Mock	<i>Closterovirus</i>	-	0.25	4
946	946-10a	2	Mock	<i>Enamovirus</i>	0.25	-	4
946	946-10a	2	Mock	Mock	0.00	0.00	2
946	946-5a	2	<i>Closterovirus</i>	<i>Enamovirus</i>	0.00	-	5
946	946-5a	2	<i>Enamovirus</i>	<i>Closterovirus</i>	-	0.20	5
946	946-5a	2	Mock	<i>Closterovirus</i>	-	0.00	5
946	946-5a	2	Mock	<i>Enamovirus</i>	0.00	-	5
946	946-5a	2	Mock	Mock	-	-	1
1367	1367-10	2	<i>Closterovirus</i>	<i>Enamovirus</i>	0.20	-	5
1367	1367-10	2	<i>Enamovirus</i>	<i>Closterovirus</i>	-	0.00	5
1367	1367-10	2	Mock	<i>Closterovirus</i>	-	0.75	4
1367	1367-10	2	Mock	<i>Enamovirus</i>	0.25	-	4
1367	1367-10	2	Mock	Mock	0.00	0.00	1
1367	1367-8	2	<i>Closterovirus</i>	<i>Enamovirus</i>	0.00	-	4
1367	1367-8	2	<i>Enamovirus</i>	<i>Closterovirus</i>	-	0.50	4
1367	1367-8	2	Mock	<i>Closterovirus</i>	-	0.00	4
1367	1367-8	2	Mock	<i>Enamovirus</i>	0.00	-	4
1367	1367-8	2	Mock	Mock	0.00	0.00	1
3225	3225-5d	2	<i>Closterovirus</i>	<i>Enamovirus</i>	0.20	-	5
3225	3225-5d	2	<i>Enamovirus</i>	<i>Closterovirus</i>	-	0.40	5
3225	3225-5d	2	Mock	<i>Closterovirus</i>	-	0.00	4
3225	3225-5d	2	Mock	<i>Enamovirus</i>	0.00	-	4
3225	3225-5d	2	Mock	Mock	0.00	0.00	2
3225	3225-6c	2	<i>Closterovirus</i>	<i>Enamovirus</i>	0.25	-	4
3225	3225-6c	2	<i>Enamovirus</i>	<i>Closterovirus</i>	-	0.50	4
3225	3225-6c	2	Mock	<i>Closterovirus</i>	-	0.00	4
3225	3225-6c	2	Mock	<i>Enamovirus</i>	0.00	-	4
3225	3225-6c	2	Mock	Mock	0.00	0.00	2

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827 **Supplementary table 2. Model coefficients testing the effect of virus inoculation (*Closterovirus* or**

828 *Enamovirus*) on host infection rate among 24 different *Plantago lanceolata* genotypes. Model

829 variables included host genotype, inoculation treatment (*Closterovirus* or *Enamovirus*) and the

830 interaction between these two. For all variables, one level is a reference level included in the intercept.

	Estimate	Std. error	z-value	p-value
(Intercept)	-1.79	1.08	-1.66	0.097
Genotype 1030-4a	2.71	1.366	1.98	0.047
Genotype 1367-10	-17.77	4.81E+03	-3.70E-03	0.997
Genotype 1367-2c	-17.77	4.39E+03	-4.05E-03	0.997
Genotype 1367-8	0.69	1.581	0.44	0.661
Genotype 1367-9d	0.41	1.555	0.26	0.794
Genotype 187-1b	-17.77	5.38E+03	-3.31E-03	0.997
Genotype 187-3c	0.41	1.555	0.26	0.794
Genotype 187-4d	-17.77	5.38E+03	-3.31E-03	0.997
Genotype 187-6b	-17.77	5.38E+03	-3.31E-03	0.997
Genotype 3225-1	1.1	1.384	0.79	0.427
Genotype 3225-2a	1.48E-14	1.528	9.67E-15	> .999
Genotype 3225-3a	0.18	1.538	0.12	0.906
Genotype 3225-5d	-17.77	4.81E+03	-3.70E-03	0.997
Genotype 3225-6c	0.69	1.581	0.44	0.661
Genotype 853-1	-17.77	6.21E+03	-2.86E-03	0.998
Genotype 853-2d	-17.77	6.21E+03	-2.86E-03	0.998
Genotype 853-6b	-17.77	6.21E+03	-2.86E-03	0.998
Genotype 946-10a	0.69	1.581	0.44	0.661
Genotype 946-2a	1.39	1.414	0.98	0.327
Genotype 946-4a	0.69	1.581	0.44	0.661
Genotype 946-5a	0.41	1.555	0.26	0.794
Genotype 946-7b	5.94E-15	1.528	3.89E-15	> .999
Genotype 950-8b	-17.77	6.21E+03	-2.86E-03	0.998
Inoculation treatment (<i>Enamovirus</i>)	1.5	1.323	1.14	0.256
Genotype 1030-4a × Inoculation treatment (<i>Enamovirus</i>)	-2.71	1.742	-1.55	0.12
Genotype 1367-10 × Inoculation treatment (<i>Enamovirus</i>)	16.68	4.81E+03	3.47E-03	0.997
Genotype 1367-2c × Inoculation treatment (<i>Enamovirus</i>)	16.45	4.39E+03	3.75E-03	0.997
Genotype 1367-8 × Inoculation treatment (<i>Enamovirus</i>)	-19.97	5.38E+03	-3.71E-03	0.997
Genotype 1367-9d × Inoculation treatment (<i>Enamovirus</i>)	-0.52	1.958	-0.27	0.789
Genotype 187-1b × Inoculation treatment (<i>Enamovirus</i>)	-1.5	7.60E+03	-1.98E-04	> .999
Genotype 187-3c × Inoculation treatment (<i>Enamovirus</i>)	0.29	1.96E+00	0.15	0.883
Genotype 187-4d × Inoculation treatment (<i>Enamovirus</i>)	-1.5	7.60E+03	-1.98E-04	> .999
Genotype 187-6b × Inoculation treatment (<i>Enamovirus</i>)	-1.5	7.60E+03	-1.98E-04	> .999
Genotype 3225-1 × Inoculation treatment (<i>Enamovirus</i>)	-1.5	1.803	-0.83	0.404
Genotype 3225-2a × Inoculation treatment (<i>Enamovirus</i>)	-1.5	2.021	-0.74	0.457
Genotype 3225-3a × Inoculation treatment (<i>Enamovirus</i>)	-1.5	2.037	-0.74	0.46
Genotype 3225-5d × Inoculation treatment (<i>Enamovirus</i>)	17.66	4.81E+03	3.67E-03	0.997
Genotype 3225-6c × Inoculation treatment (<i>Enamovirus</i>)	-19.97	5.38E+03	-3.71E-03	0.997
Genotype 853-1 × Inoculation treatment (<i>Enamovirus</i>)	-1.5	8.78E+03	-1.71E-04	> .999
Genotype 853-2d × Inoculation treatment (<i>Enamovirus</i>)	18.76	6.21E+03	3.02E-03	0.998
Genotype 853-6b × Inoculation treatment (<i>Enamovirus</i>)	17.37	6.21E+03	2.80E-03	0.998
Genotype 946-10a × Inoculation treatment (<i>Enamovirus</i>)	-0.41	2.021	-0.2	0.841
Genotype 946-2a × Inoculation treatment (<i>Enamovirus</i>)	-2.48	1.958	-1.27	0.204
Genotype 946-4a × Inoculation treatment (<i>Enamovirus</i>)	0.69	2.102	0.33	0.742
Genotype 946-5a × Inoculation treatment (<i>Enamovirus</i>)	-19.68	4.81E+03	-4.09E-03	0.997
Genotype 946-7b × Inoculation treatment (<i>Enamovirus</i>)	-1.29E-14	1.871	-6.92E-15	> .999
Genotype 950-8b × Inoculation treatment (<i>Enamovirus</i>)	17.37	6.21E+03	2.80E-03	0.998

831

832

833

834

835 **Supplementary table 3. Post-hoc test comparing the infection status of the host between the two**
 836 **inoculation treatments (*Enamovirus* and *Closterovirus*) within 24 *Plantago lanceolata* genotypes.**
 837 Results of a pairwise comparison of the estimated marginal means calculated from the Generalized
 838 linear model (Table 1). Tukey adjustment was applied for multiple comparisons.

Genotype	Contrast	Estimate	Std.error	df	z-value	p-value
1030-2b	<i>Enamovirus</i> - <i>Closterovirus</i>	1.504	1.32	Inf	1.137	0.2555
1030-4a	<i>Enamovirus</i> - <i>Closterovirus</i>	-1.204	1.13	Inf	-1.063	0.2879
1367-10	<i>Enamovirus</i> - <i>Closterovirus</i>	18.18	4.81E+03	Inf	0.004	0.997
1367-2c	<i>Enamovirus</i> - <i>Closterovirus</i>	17.957	4.39E+03	Inf	0.004	0.9967
1367-8	<i>Enamovirus</i> - <i>Closterovirus</i>	-18.467	5.38E+03	Inf	-0.003	0.9973
1367-9d	<i>Enamovirus</i> - <i>Closterovirus</i>	0.981	1.44	Inf	0.68	0.4968
187-1b	<i>Enamovirus</i> - <i>Closterovirus</i>	0	7.60E+03	Inf	0	1
187-3c	<i>Enamovirus</i> - <i>Closterovirus</i>	1.792	1.44	Inf	1.241	0.2145
187-4d	<i>Enamovirus</i> - <i>Closterovirus</i>	0	7.60E+03	Inf	0	1
187-6b	<i>Enamovirus</i> - <i>Closterovirus</i>	0	7.60E+03	Inf	0	1
3225-1	<i>Enamovirus</i> - <i>Closterovirus</i>	0	1.23	Inf	0	1
3225-2a	<i>Enamovirus</i> - <i>Closterovirus</i>	0	1.53	Inf	0	1
3225-3a	<i>Enamovirus</i> - <i>Closterovirus</i>	0	1.55	Inf	0	1
3225-5d	<i>Enamovirus</i> - <i>Closterovirus</i>	19.161	4.81E+03	Inf	0.004	0.9968
3225-6c	<i>Enamovirus</i> - <i>Closterovirus</i>	-18.467	5.38E+03	Inf	-0.003	0.9973
853-1	<i>Enamovirus</i> - <i>Closterovirus</i>	0	8.78E+03	Inf	0	1
853-2d	<i>Enamovirus</i> - <i>Closterovirus</i>	20.259	20.259	Inf	0.003	0.9974
853-6b	<i>Enamovirus</i> - <i>Closterovirus</i>	18.873	6.21E+03	Inf	0.003	0.9976
946-10a	<i>Enamovirus</i> - <i>Closterovirus</i>	1.099	1.53	Inf	0.719	0.472
946-2a	<i>Enamovirus</i> - <i>Closterovirus</i>	-0.981	1.44	Inf	-0.68	0.4968
946-4a	<i>Enamovirus</i> - <i>Closterovirus</i>	2.197	1.63	Inf	1.346	0.1785
946-5a	<i>Enamovirus</i> - <i>Closterovirus</i>	-18.18	4.81E+03	Inf	-0.004	0.997
946-7b	<i>Enamovirus</i> - <i>Closterovirus</i>	1.504	1.32	Inf	1.137	0.2555
950-8b	<i>Enamovirus</i> - <i>Closterovirus</i>	18.873	6.21E+03	Inf	0.003	0.9976

839

840

841

842

843 **Supplementary table 4. Post-hoc test comparing the inoculation treatments (*Enamovirus* and**
 844 ***Closterovirus*) across all *Plantago lanceolata* genotypes.** Results of a pairwise comparison of the
 845 estimated marginal means calculated from the Generalized linear model (Table 1). Tukey adjustment
 846 was applied for multiple comparisons.

Contrast	Estimate	SE	Df	Z-value	p-value
Inoculation treatment (<i>Enamovirus</i> - <i>Closterovirus</i>)	2.71	923	Inf	0.003	0.997

847

848

849

850 **Supplementary table 5. Model coefficients testing the effect of first inoculation (*Enamovirus* or**

851 **mock) on sequential inoculation success of *Closterovirus* among 7 different *Plantago lanceolata***

852 **genotypes.** Model variables included host genotype, first inoculation treatment (*Enamovirus* or mock)

853 and the interaction between these two. For all variables, one level is a reference level included in the

854 intercept.

	Estimate	Std. error	z-value	p-value
(Intercept)	1.1	1.155	0.951	0.341
Genotype 1367-8	-20.66	5.38E+03	-4.00E-03	0.997
Genotype 187-4d	-20.66	5.38E+03	-4.00E-03	0.997
Genotype 3225-5d	-20.66	5.38E+03	-4.00E-03	0.997
Genotype 3225-6c	-20.66	5.38E+03	-4.00E-03	0.997
Genotype 946-10a	-2.2	1.633	-1.346	0.178
Genotype 946-5a	-20.66	4.81E+03	-4.00E-03	0.997
<i>First inoculation treatment (Enamovirus)</i>	-20.66	4.81E+03	-4.00E-03	0.997
<i>Genotype 1367-8 × First inoculation treatment (Enamovirus)</i>	40.23	7.21E+03	6.00E-03	0.996
<i>Genotype 187-4d × First inoculation treatment (Enamovirus)</i>	39.13	7.21E+03	5.00E-03	0.996
<i>Genotype 3225-5d × First inoculation treatment (Enamovirus)</i>	39.83	7.21E+03	6.00E-03	0.996
<i>Genotype 3225-6c × First inoculation treatment (Enamovirus)</i>	40.23	7.21E+03	6.00E-03	0.996
<i>Genotype 946-10a × First inoculation treatment (Enamovirus)</i>	2.2	7.21E+03	0	1
<i>Genotype 946-5a × First inoculation treatment (Enamovirus)</i>	38.84	6.80E+03	6.00E-03	0.995

855

856

857 **Supplementary table 6. Model coefficients testing the effect of first inoculation (*Closterovirus* or**

858 **mock) on sequential inoculation success of *Enamovirus* among 7 different *Plantago lanceolata***

859 **genotypes.** Model variables included host genotype, first inoculation treatment (*Closterovirus* or

860 mock) and the interaction between these two. For all variables, one level is a reference level included

861 in the intercept.

	Estimate	Std. error	z-value	p-value
(Intercept)	-1.1	1.155	-0.951	0.341
Genotype 1367-8	-19.47	8.87E+03	-2.00E-03	0.998
Genotype 187-4d	1.29E-14	1.63E+00	0	1
Genotype 3225-5d	-19.47	8.87E+03	-2.00E-03	0.998
Genotype 3225-6c	-19.47	8.87E+03	-2.00E-03	0.998
Genotype 946-10a	-1.17E-15	1.63E+00	0	1
Genotype 946-5a	-19.47	7.93E+03	-2.00E-03	0.998
<i>First inoculation treatment (Closterovirus)</i>	-0.29	1.61E+00	-0.179	0.858
<i>Genotype 1367-8 × First inoculation treatment (Closterovirus)</i>	0.29	1.25E+04	0	1
<i>Genotype 187-4d × First inoculation treatment (Closterovirus)</i>	-19.18	8.87E+03	-2.00E-03	0.998
<i>Genotype 3225-5d × First inoculation treatment (Closterovirus)</i>	19.47	8.87E+03	2.00E-03	0.998
<i>Genotype 3225-6c × First inoculation treatment (Closterovirus)</i>	19.76	8.87E+03	2.00E-03	0.998
<i>Genotype 946-10a × First inoculation treatment (Closterovirus)</i>	19.18	8.87E+03	-2.00E-03	0.998
<i>Genotype 946-5a × First inoculation treatment (Closterovirus)</i>	0.29	1.12E+04	0	1

862

863