

1 Title: Diversity in viral resistance emerges from host genotype and infection order effects

2 Authors: Maija Jokinen¹, Hanna Susi^{1, 2} & Anna-Liisa Laine¹

3 ¹ Department of Organismal and Evolutionary Biology, Faculty of Biological and
4 Environmental Sciences, PO BOX 65 00014 University of Helsinki, Finland

5 ² Department of Agricultural Sciences, Faculty of Agriculture and Forestry, PO BOX 27,
6 00014, University of Helsinki, Finland

7

8 Email: M.J. maiija.jokinen@helsinki.fi, H.S. hanna.susi@helsinki.fi, A-L.L. anna-liisa.laine@helsinki.fi

10 Correspondence: Maija Jokinen, maiija.jokinen@helsinki.fi and Anna-Liisa Laine, anna-liisa.laine@helsinki.fi Organismal and Evolutionary Biology Research Programme, Faculty of
11 Biological and Environmental Sciences, PO BOX 65 00014 University of Helsinki, Finland
12

13

14 Running title: Intraspecific variation in resistance

15

16 Keywords: intraspecific variation, resistance, sequential infection, coinfection, host resistance,
17 virus ecology

18

19

20

21

22

23

24

25

26

27 **Abstract**

28 • While viruses are predicted to be the most diverse group of parasites wild plant hosts
29 encounter, the extent and mechanisms maintaining viral resistance diversity remains poorly
30 understood. Here, we test the hypothesis that allocation trade-offs maintain genetic variation
31 in viral resistance and assess whether phenotypic resistance variation may arise from
32 altered expression under multiple viral attack.

33 • We inoculated clones from 24 *Plantago lanceolata* genotypes with two viruses to
34 quantify intraspecific variation among host genotypes and test possible trade-offs in
35 resistance to either of the viruses. Furthermore, we performed subsequent viral
36 inoculations to investigate if prior viral infection changes host resistance phenotype.

37 • We found striking intraspecific variation in resistance among the 24 host genotypes
38 against the two studied viruses, with limited evidence for trade-offs maintaining this
39 variation. We also found that prior infection by *Plantago lanceolata* enamovirus altered
40 the host resistance phenotype, rendering the host more vulnerable to subsequent
41 infection.

42 • Jointly, our results show that intraspecific variation in resistance may have a substantial
43 role in mitigating viral infections in wild hosts. Furthermore, our results highlight the
44 importance of arrival order for the resistance phenotype and for shaping viral
45 coinfections.

46

47

48

49

50

51

52

53

55

Introduction

56 The benefits of host resistance against parasites are clear, yet wild hosts are known to harbour
 57 substantial diversity in resistance across populations and among genotypes (Ericson, Burdon
 58 and Müller, 2002; Laine, 2004; Broekgaarden *et al.*, 2011; Laine *et al.*, 2011; Ekroth, Rafaluk-
 59 Mohr and King, 2019). Indeed, parasites can only colonise susceptible hosts, and hence, host
 60 resistance is expected to be an important determinant of host fitness and reproduction (Little
 61 and Ebert, 1999; Fraile and García-Arenal, 2016; Hily *et al.*, 2016; Sallinen *et al.*, 2020;
 62 Höckerstedt, Susi and Laine, 2021). Throughout their life cycle, plants are exposed to a wide
 63 range of parasites from several kingdoms of life, including fungi, bacteria, insects, and viruses.
 64 While viruses are predicted to be the most diverse group of parasites wild plant hosts encounter,
 65 much of this viral diversity still remains undiscovered (Roossinck, 2005; Maclot *et al.*, 2020;
 66 Yang *et al.*, 2022). Though many of the discovered viruses are described to be pathogenic,
 67 almost nothing is known of the intraspecific variation in plant resistance against viruses in the
 68 wild (Malmstrom, Martin and Gagnevin, 2022).

69 Intraspecific variation in both host resistance and parasite infectivity is predicted to be
 70 maintained through coevolution (Hamilton, 1980; Anderson and May, 1982; Gibson, 2022).
 71 Negative frequency-dependent selection favours parasites that can infect the most common
 72 host genotypes while rare host genotypes escape infection and thereby have higher fitness in
 73 the presence of parasites (Hamilton, 1980), with resistance imposing a cost on the host in terms
 74 of growth and reproduction (Leonard, 1977; Ashby and King, 2017). Indeed, experimental
 75 work on host resistance and analyses of plant resistance genes have shown resistance to be
 76 costly in some systems (Tian *et al.*, 2003; Ciota *et al.*, 2011; Auld *et al.*, 2013; Brown and Rant,
 77 2013a; Cheatsazan *et al.*, 2013; Giolai and Laine, 2024), although there is variation in this trend
 78 across study systems (Antonovics and Thrall, 1994; Bray *et al.*, 2022).

79 While the cost of resistance is often studied in terms of its impact on different traits of
 80 host fitness, allocation costs against a specific parasite may constrain host resources for
 81 resistance against the myriad of other parasites the host encounters (Stearns, 1989; Bergelson
 82 and Purrington, 1996; Brown and Rant, 2013a). For example, in barley the resistance locus *mlo*
 83 conferred resistance to powdery mildew while increasing susceptibility to *Ramularia* leaf spot

84 disease (McGrann *et al.*, 2014). Conversely, limited evidence shows that a single resistance
85 loci can have significant effects against several parasites (Ali *et al.*, 2013; Lopez-Zuniga *et al.*,
86 2019). Resistance may also be context-dependent, as attack by multiple parasites can alter the
87 expression of the resistance phenotype (Brown and Rant, 2013b; Hückelhoven *et al.*, 2013;
88 Tollenaere, Susi and Laine, 2016). Over time, resistance may also be vulnerable to resistance
89 breakdown in the face of rapidly evolving pathogens (Bergelson *et al.*, 2001; Hillung *et al.*,
90 2014; González, Butković and Elena, 2019).

91 While coevolutionary theory considers resistance to be a fixed trait, in reality an
92 additional layer of variation may be introduced by phenotypic plasticity whereby the
93 expression of resistance is context dependent. Research on natural populations has revealed
94 that multiple parasites can infect a single host simultaneously and the complex interactions
95 between hosts and parasites play an important role in shaping these within-host parasite
96 communities (Susi *et al.*, 2015, 2019). Within-host parasite communities are often formed
97 through sequential coinfections, where the time and the interval of the infection events can vary
98 (Natsopoulou *et al.*, 2015; Marchetto and Power, 2018; Karvonen, Jokela and Laine, 2019). In
99 sequential coinfections, the initial infection can change the host resistance phenotype to be
100 more susceptible or resistant to subsequent infection (Fukami, 2015; Debray *et al.*, 2022;
101 Jokinen *et al.*, 2023). First infection can elevate the host immune response and thus inhibit the
102 colonisation by subsequent parasite (Ziebell and Carr, 2010; Mauch-Mani *et al.*, 2017). On the
103 other hand, defence against first-arriving parasite may incur costs to the host, rendering it
104 susceptible to secondary infection (Morris, Cleary and Clarke, 2017; Wang *et al.*, 2018). Thus,
105 the interplay between the host and its parasites may be dynamic and change during the course
106 of infection generating phenotypic variation in host resistance that may be difficult to predict
107 based on their genotype alone.

108 To address the knowledge gap of plant intraspecific variation in resistance against viral
109 infection and the role trade-offs and phenotypic plasticity contributing to this variation, we
110 conducted a large inoculation experiment to study intraspecific resistance variation among host
111 genotypes during viral infection. We inoculated 24 *Plantago lanceolata* genotypes with two
112 different *P. lanceolata* infecting viruses: *Plantago lanceolata closterovirus* and *Plantago*
113 *lanceolata enamovirus*. To evaluate differences in resistance against the two viruses and to
114 investigate possible allocation costs in defence between the studied viruses, we performed
115 single viral inoculations with each virus species on each host genotype. Additionally, sequential
116 viral inoculations were conducted on a subset of the genotypes to study changes in resistance

117 phenotypes under viral coinfection. Specifically, we ask: 1) Can we detect intraspecific
118 variation among *P. lanceolata* genotypes in resistance against the two viruses? 2) Can we detect
119 allocation costs in viral resistance to different viruses among host genotypes? 3) Can we
120 identify allocation costs between resistance and fitness traits during viral infection? 4) Can we
121 detect changes in resistance phenotype when the host is exposed to sequential infections? 5)
122 Are there differences among host genotypes in their responses to sequential infections?

123

124 Materials and Methods

125 Study species

126 The host, *P. lanceolata*, is a perennial herb that reproduces sexually through wind-dispersed
127 pollen and asexually via side rosettes (Sagar and Harper, 1964). *Plantago lanceolata* is
128 distributed worldwide. In Finland, *P. lanceolata* is found in the Åland Islands, where it typically
129 grows on dry meadows and forms a network of over 4000 populations, varying in size and
130 connectivity (Jousimo *et al.*, 2014; Höckerstedt *et al.*, 2022). The size and location of these
131 populations have been monitored since 1990 as part of metapopulation studies of the Glanville
132 fritillary (*Melitaea cinxia*) butterfly (Hanski *et al.*, 1995; Ojanen *et al.*, 2013).

133 Viruses associated with *P. lanceolata* in the Åland Islands have been studied since 2013,
134 and several virus families have been detected from this system with small-RNA sequencing
135 technology (Susi *et al.*, 2019; Norberg *et al.*, 2023). Five viruses have been characterized in
136 more detail; PCR primers have been developed for *Plantago lanceolata latent virus* (PILV) in
137 the genus *Capulavirus* (Susi *et al.*, 2017), *Plantago lanceolata caulimovirus* in the genus
138 *Caulimovirus* (Susi *et al.*, 2019), *Plantago lanceolata betapartitivirus* in the genus
139 *Betapartitivirus* (Susi *et al.*, 2019), *Plantago enamovirus* in the genus *Enamovirus* (Susi *et al.*,
140 2019) and *Plantago closterovirus* in the genus *Closterovirus* (Susi *et al.*, 2019). For clarity, the
141 studied viruses are hereafter referred to by their genus. Field studies have demonstrated
142 differences among *P. lanceolata* genotypes in the diversity of viral infections they host
143 (Sallinen *et al.*, 2020; Jokinen *et al.*, 2023). However, whether these differences are generated
144 by inherent differences in resistance or, e.g., differences in vector preferences have not been
145 determined previously.

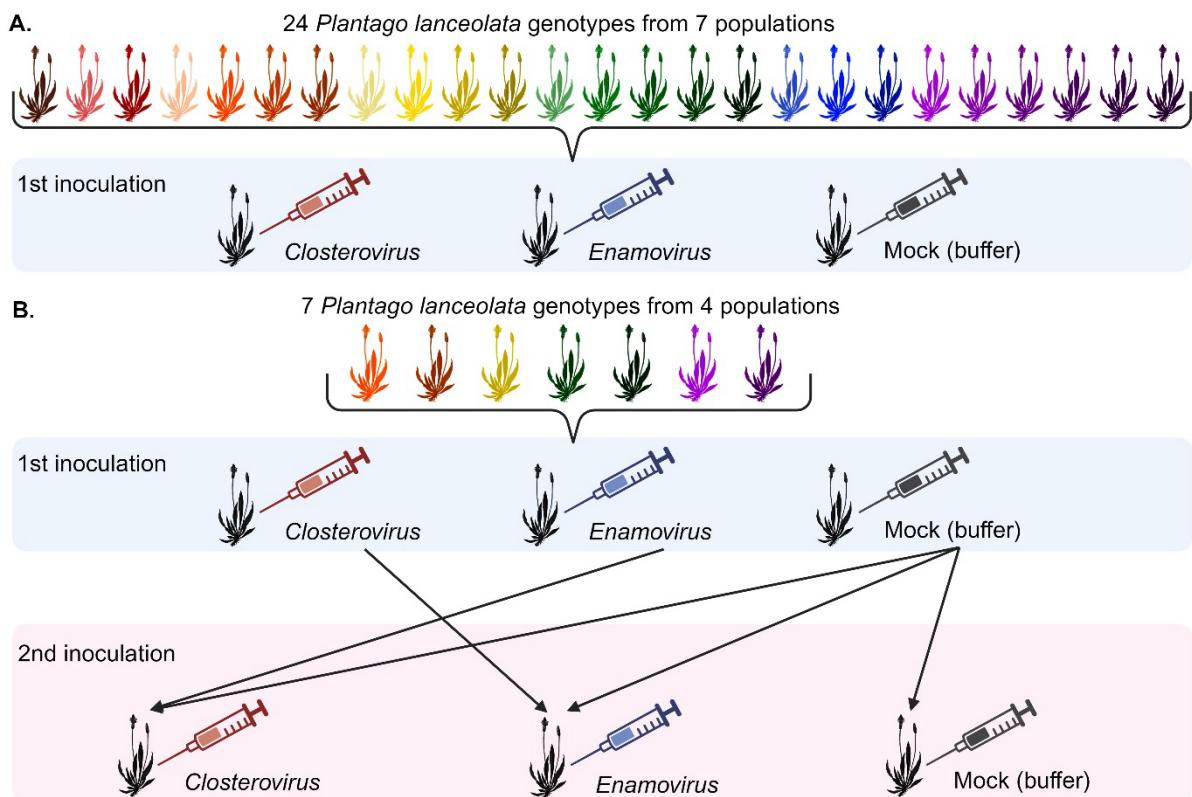
146 In this study, we focused on two RNA viruses: *Closterovirus* and *Enamovirus*.
147 *Closterovirus* belongs to the *Closteroviridae* virus family, and the members of this family are
148 a diverse group of single-stranded RNA (ssRNA) viruses (Karasev, 2000). *Closteroviridae*
149 typically have long, filamentous non-enveloped structure (Agranovsky *et al.*, 1995) and can
150 colonise several economically important hosts: beet (type species: *Beet yellows virus*
151 ;Agranovsky *et al.*, 1995), citrus (Citrus tristeza virus; Harper, 2013), carrot (Adams *et al.*,
152 2014) and grapevine (Al Rwahnih *et al.*, 2012). Viruses of this family are also among the most
153 frequently detected viruses infecting *P. lanceolata* in Åland Islands (Susi *et al.*, 2019; Norberg
154 *et al.*, 2023). *Closteroviridae* are transmitted in a semi-persistent manner, typically by aphids;
155 however, transmission by whiteflies and mealybugs has been reported as well (Karasev, 2000).
156 Transmission via seeds has not been reported (Fuchs *et al.*, 2020). Symptoms of
157 *Closteroviridae* colonisation can include yellowing or reddening of the leaf tissue or vein-
158 clearing, though symptoms can be inconspicuous and difficult to detect (Karasev, 2000; Fuchs
159 *et al.*, 2020).

160 *Enamovirus* belongs to the family *Solemoviridae*, a group of ssRNA viruses with non-
161 enveloped icosahedral virions (Sõmera *et al.*, 2021). Similar to *Closteroviridae*, members of
162 the *Solemoviridae* family infect important crop species: potato (Type species of *Polerovirus*:
163 Potato leafroll virus; Taliinsky, Mayo and Barker, 2003, legumes (Southern bean mosaic virus,
164 Pea enation mosaic virus 1; Vemulapati *et al.*, 2010; Sõmera *et al.*, 2021, rice, and papaya
165 (Sõmera *et al.*, 2021). Most *Solemoviridae* are transmitted by aphid vectors in a persistent,
166 circulative and non-propagative manner (Demler *et al.*, 1996). However, for some viruses
167 belonging to the family, also mechanical transmission via wounding and abiotic transmission
168 through soil have been described (*Sobemovirus*; Sõmera, Sarmiento and Truve, 2015).
169 *Solemoviridae* infections can cause a variety of symptoms in their hosts with equally varying
170 severity; the host can remain symptomless or display symptoms such as mosaic pattern, vein-
171 clearing, necrotic lesions, yellowing, redness, rolling, and even sterility (Sõmera *et al.*, 2021).

172 Host and viral material for the inoculation experiment

173 To study intraspecific resistance variation among *P. lanceolata* genotypes during viral
174 infection, we cloned *P. lanceolata* individuals from 24 genotypes, originating from 7 different
175 *P. lanceolata* populations in the Åland Islands (Supplementary table 1). The maternal plants
176 were grown from seeds collected from the Åland Islands during the autumn of 2017. The
177 germination of the maternal plants was started at the beginning of February 2022 by placing

178 the seeds into small pots filled with potting soil and sand (3:1, respectively). The germination
179 was carried out in a growth chamber with a light-dark cycle of 16:8, and after approximately
180 three weeks, the seedlings were transferred to the greenhouse. The cloning was started five
181 weeks after sowing. The maternal plant pot was positioned on top of an 11 cm × 11 cm pot
182 filled with vermiculite and placed on a tray filled with water. The roots of the maternal plant
183 were allowed to grow through the upper pot and once they reached sufficient size, they were
184 cut and let sprout into the bottom pot. When the shoots were grown large enough, they were
185 individually planted into fresh 10 cm × 10 cm pots filled with 1:1 proportion of potting soil
186 and sand (see also Sallinen *et al.*, 2020). The cloned host individuals were grown in the
187 greenhouse until the beginning of the experiment (mid-June 2022). During the growth period
188 in the greenhouse, the plants were fertilised with NPK fertiliser (7:2:2, respectively) once a
189 week and watered when needed. Plants were regularly treated with 2% pine soap water to
190 prevent thrip damage. Before the start of the experiment, leaf samples were collected from each
191 maternal plant for RNA extraction by collecting a 3 cm² leaf piece and the maternal plants were
192 confirmed to be virus-free for the focal viruses by PCR (see below for a detailed description of
193 the PCR protocol).


194 The cloning success varied among the genotypes, and hence, in the experiment, the
195 genotypes were represented by 7 to 21 individuals depending on the host genotype
196 (Supplementary table 1). Furthermore, for statistical analyses, we focused on plant genotypes
197 with a successful mock inoculation (i.e., mock plants with no virus detection). Consequently,
198 we excluded two genotypes from the first inoculation treatment (Figure 1A), leaving
199 individuals from 24 genotypes for statistical analysis (n = 335). For the sequential inoculations,
200 a subset of seven genotypes were selected as they had an adequate number of clones to perform
201 both sequential and single inoculation treatments (17-21 clones, n = 129). (Figure 1B,
202 Supplementary table 1).

203 To investigate host genotypic variation against two distinct viruses, we prepared virus
204 inocula from *P. lanceolata* plants collected from wild *P. lanceolata* populations in early June
205 2022. Plants exhibiting viral symptoms were carefully uprooted from the local soil and placed
206 into 10 cm × 10 cm pots, and if needed, the pots were filled with a mixture of 1:1 soil and sand.
207 The plants were transported to the laboratory and placed into a growth chamber with a 16:8
208 light-dark cycle. To identify which viruses were present in the collected wild plants, we took 1
209 cm² and 3 cm² samples from each plant for DNA and RNA extractions, respectively, and snap-
210 froze those in liquid nitrogen. We extracted total RNA and DNA from each sample and ran

211 PCR reactions targeting PILV, *Enamovirus*, *Closterovirus*, *Betapartitivirus* and *Caulimovirus*
212 as described in Susi *et al.* (2019) and Sallinen *et al.* (2020).

213 The inoculation experiment was started in mid-June 2022. In the first part of the
214 inoculation experiment (Figure 1A) each of the 24 *P. lanceolata* genotypes, represented by 3-
215 7 individuals, depending on the genotype, received either *Closterovirus* inoculum or
216 *Enamovirus* inoculum and the control plants received mock inoculum (phosphate buffer;
217 Supplementary table 1). To prepare the viral inoculum, leaves from plants infected by the
218 respective virus were collected and placed into individual plastic extraction bags (Bioreba,
219 Switzerland) containing 5 ml of 0.02 M phosphate buffer (pH 7.4). The bags were sealed, and
220 the leaves were crushed with a mortar. The resulting inoculum was then immediately applied
221 to the cloned experimental plants (approx. 400-500 µl of viral inoculum per plant) by pressing
222 the syringe tightly against the leaf. The control plants were inoculated similarly using the
223 phosphate buffer. After inoculation, each plant was placed individually inside a mesh bag
224 closed with a rubber band to prevent insect transmission of the viruses. Two weeks after the
225 first inoculation, we collected samples for RNA extraction for subsequent viral detection by
226 taking a 3 cm² piece of leaf tissue and snap-froze those in liquid nitrogen. In addition, we
227 counted the number of flowers and leaves, as well as measured the length of the longest flower
228 and the width and length of the largest leaf. We used the measurements, to calculate the plant
229 size $n \times A$, where n is the number of leaves and $A = \pi ab$, where a is the half axis of the width of
230 the largest leaf and b is the half axis of the length of the largest leaf.

231 To investigate the effects of sequential infections on plant's resistance phenotype, we
232 carried out subsequent inoculations for seven of the genotypes included in the first inoculations
233 (Figure 1B, Supplementary table 1). On the day following the first sampling, individuals
234 initially inoculated with *Closterovirus* were subsequently inoculated with *Enamovirus* and vice
235 versa, the host individuals first inoculated with *Enamovirus* were inoculated with
236 *Closterovirus*. Additionally, to compare the effects of single and sequential infections,
237 individuals from each genotype initially treated with phosphate buffer (mock inoculation) were
238 now inoculated with *Closterovirus* or *Enamovirus*. In the experiment, 4-5 individuals in each
239 treatment represented each genotype (Supplementary table 1). Lastly, one individual per
240 genotype remained as a mock inoculated control throughout the experiment and was inoculated
241 with phosphate buffer in the first and second inoculation steps. Sampling was repeated two
242 weeks after the second inoculation, using the same procedure as after the first. The plants were
243 kept in their individual mesh bags for the whole experiment.

244

245 Figure 1. Experimental set-up of an inoculation experiment investigating intraspecific variation
 246 in host resistance during viral infection among *Plantago lanceolata* host genotypes (n = 24).
 247 The experiment comprised of two inoculation steps: A) first inoculations, where clones from
 248 24 genotypes were inoculated with *Plantago lanceolata closterovirus* or *Plantago lanceolata*
 249 *enamovirus* or mock inoculated, and B) sequential inoculations, where seven genotypes from
 250 the first inoculation were sequentially inoculated with a different treatment than in the first
 251 inoculation. The syringe colour represents the inoculation treatment: red = *Plantago lanceolata*
 252 *closterovirus*, blue = *Plantago lanceolata enamovirus* and black = mock inoculation
 253 (phosphate buffer).

254

255 **RNA extraction, cDNA translation and viral PCR detection from plant
 256 tissue samples**

257 To detect *Closterovirus* and *Enamovirus* RNA from the collected samples, we extracted the
 258 total RNA using acid phenol-chloroform extraction method (Chang, Puryear and Cairney,
 259 1993) with a few modifications. In short, first a 3 cm² size piece of plant tissue sample was

260 ground to a very fine powder using liquid nitrogen and then combined with 800 μ l of warm
261 65 °C extraction buffer (2% hexadecyltrimethylammonium bromide (Sigma-Aldrich, USA),
262 2% polyvinylpyrrolidone K-30 (MW 40 000, Sigma-Aldrich, USA), 100 mM Tris
263 hydrochloride (pH 8.0; Thermo Fischer Scientific, USA), 25 mM Ethylenediaminetetraacetic
264 acid (pH 8.9; Sigma-Aldrich, USA), 2.0 M NaCl (Sigma-Aldrich, USA) and 2% β -
265 mercaptoethanol (Sigma-Aldrich, USA) and mixed vigorously. After, 800 μ l of phenol-
266 chloroform-isoamyl alcohol (IAA) solution (25:24:1, respectively) was added and the mixture
267 was centrifuged at full speed (13 500 rpm) for 15 minutes. The supernatant was collected, and
268 the acid-phenol-IAA and centrifugation steps were repeated. The supernatant was collected into
269 a new tube and combined with 160 μ l of 10 M of LiCl (Sigma-Aldrich, USA) and precipitated
270 overnight on ice at +4 °C. The following day, the extract was centrifuged 10 000 rpm for 30
271 min at +4 °C. The pellet was resuspended with 500 μ l of warm of SSTE buffer (1 M NaCl
272 (Sigma-Aldrich, USA), 0.5 % Sodium dodecyl sulphate (Sigma-Aldrich, USA), 10 mM Tris
273 hydrochloride (pH 8.0; Thermo Fischer Scientific, USA), 1mM Ethylenediaminetetraacetic
274 acid (pH 8.9; Sigma-Aldrich, USA)) and 1 ml of Chloroform-IAA (24:1) was added and the
275 sample was vortexed vigorously. After this, the chloroform-IAA purification step was repeated,
276 followed by two ethanol washes (94 % and 70 %, respectively). Finally, the RNA was
277 resuspended into 25 μ l of nuclease-free water. The leaf tissue sample and the extracted RNA
278 were stored at -80 °C.

279 The extracted total RNA was translated into cDNA before analysing the samples for
280 viral presence by PCR. The concentration and purity of each RNA sample was measured with
281 Nanodrop 2000, and 2 ng of RNA was used for each cDNA reaction. The extracted RNA was
282 combined with 2 μ l of 50 μ M random hexamer primers (Promega Corporation, USA) and
283 nuclease-free water was added to a final volume of 17.125 μ l. The reaction was incubated at
284 70 °C for 5 min. After, the reactions were immediately placed on ice and spun down. The
285 reverse transcription reaction was prepared as follows: 1 μ l of Moloney Murine Leukemia
286 Virus Reverse Transcriptase (M-MLV RT; Promega Corporation, USA), 5 μ l of M-MLV RT 5x
287 buffer (Promega Corporation, USA), 1.25 of 10 mM dNTP mix (Thermo Fischer) and 0.625 μ l
288 of RiboLock RNase inhibitor (Thermo Fischer Scientific, USA) was added. The mixture was
289 incubated for 60 min at 37 °C and finally stored at -20 °C.

290 The detection of *Closterovirus* and *Enamovirus* was done by PCR (Susi *et al.*, 2017,
291 2019; Sallinen *et al.*, 2020). In short, for the PCR reaction, we combined 1 μ l of template

292 cDNA, 500 nmol of each corresponding reverse and forward primer, 5 µl of GoTaq Green® 5x
293 Mastermix (Promega Corporation, USA) and nuclease-free water to a total reaction volume of
294 10 µl. The PCR program consisted of initial denaturation at 95 °C for 2 min, followed by 35
295 cycles at 95 °C for 2 min, 53-60 °C for 40 s and 72 °C for 1 min. The final extension was done
296 at 72 °C for 5 min. Positive control and water control were included in each run. The sizes of
297 the PCR products were analysed on 1.5 % agarose gel, stained with GelRed (Biotium, USA)
298 and visualised using the Bio-Rad Gel Doc XR+ imaging system (Bio-Rad Laboratories, USA).

299

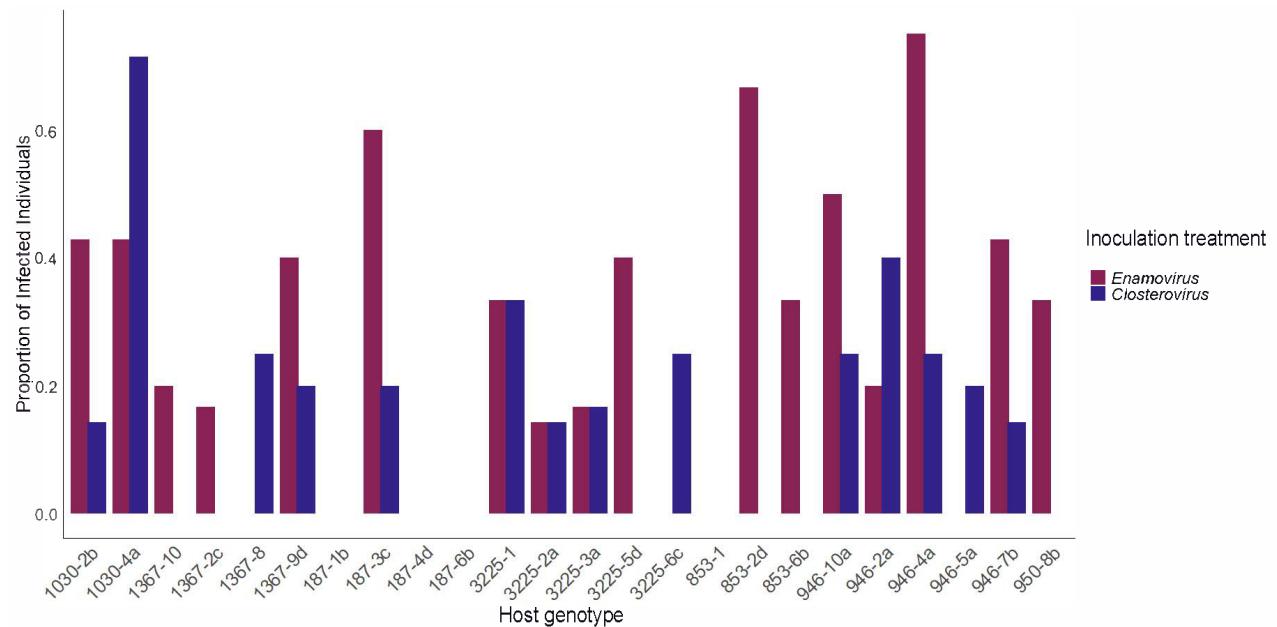
300 Statistical analysis

301 All statistical analyses were conducted using R software (version 4.2.2., R Foundation for
302 Statistical and Computing, Vienna, 2022). To investigate intraspecific variation among *P.*
303 *lanceolata* genotypes in resistance to viral infection and to test differences in responses to
304 *Closterovirus* and *Enamovirus*, we ran Generalized linear models (GLM) for the data of the
305 first inoculation treatment. We included host infection status (0 = no infection, 1 = infection by
306 *Closterovirus* or *Enamovirus*) as a binomial response variable and host genotype, viral
307 inoculation treatment (*Closterovirus* or *Enamovirus*) along with their interaction as predictor
308 variables. To determine the significance of the main effects we used function “Anova” in R-
309 package “car” (Fox and Weisberg, 2019). To examine differences among host genotypes in
310 resistance to the studied viruses and possible allocation costs in resistance, we performed
311 pairwise comparisons of the estimated marginal means using functions “contrasts” and
312 “emmeans” from the R-package “emmeans” (version 1.8.8, Lenth *et al.*, 2018). Specifically,
313 we compared the infection rates of *Closterovirus* and *Enamovirus* within each host genotype,
314 as well as between *Closterovirus* and *Enamovirus* across all genotypes.

315 To further assess the relationship between *Closterovirus* and *Enamovirus* infection rates
316 among host genotypes, as well as associations between plant growth and reproductive traits
317 (flower size and number) with each virus, we performed Pearson correlation test for each
318 combination. For these correlations, we used the average infection rates for each virus, the
319 average plant size, the average flower size, and the average number of flowers for each
320 genotype. To study possible changes in resistance phenotype after the host had been exposed to
321 sequential infection and to investigate differences in responses among genotypes to sequential
322 infections, we analysed the data from the second inoculation for each virus. We fitted separate
323 GLMs for individuals sequentially inoculated with *Closterovirus* or with *Enamovirus*.

324 Specifically, we included the host infection status (0 = no infection, 1 = infection by
325 *Closterovirus* or *Enamovirus*) as a binomial response variable and host genotype, inoculation
326 treatment (*Closterovirus* or mock inoculation, *Enamovirus* or mock inoculation) and their
327 interactions as predictor variables. The significance of the main effects was determined by
328 using function “Anova” in package “car” (Fox and Weisberg, 2019).

329


330 Results

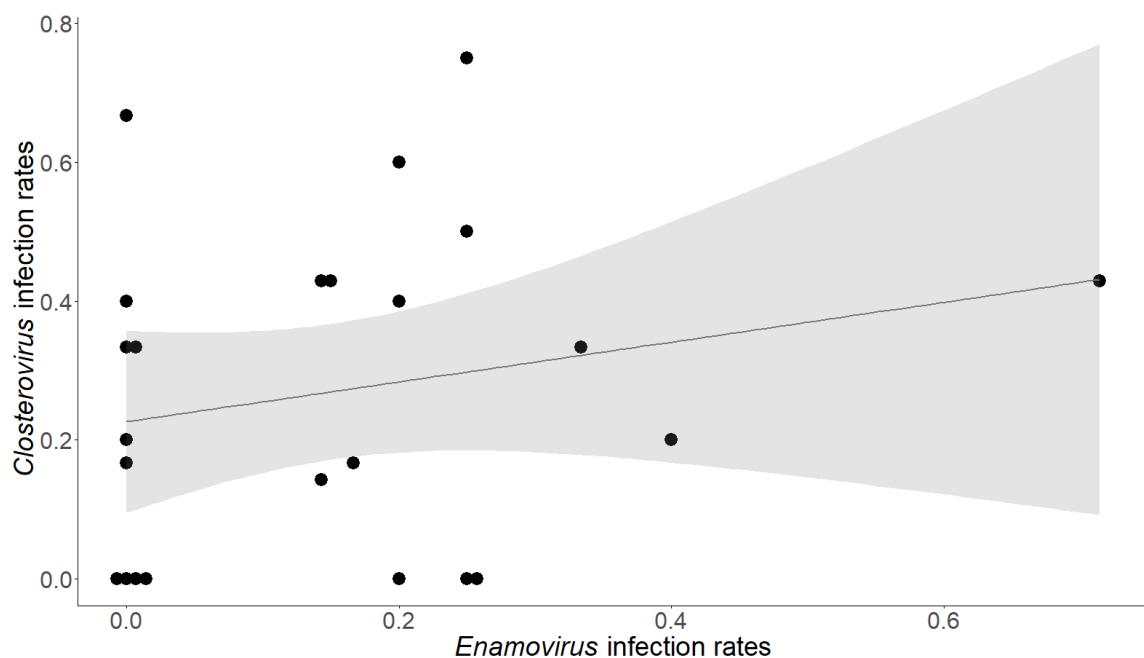
331 First, we investigated whether host genotypes varied in their resistance to viral infection and
332 whether the resistance responses among host genotypes differed against the two viruses. The
333 GLM analysis and likelihood-ratio (LR) test showed significant effects of host genotype (Table
334 1; LR test $\chi^2 = 37.308$, df = 23, p = 0.00318) and inoculation treatment (Table 1; LR test $\chi^2 =$
335 4.182, df = 1, p = 0.04086) on host infection status after the first inoculation. Indeed, the
336 infection rates varied across genotypes and viral treatments. Of the 24 genotypes included in
337 the first inoculation, in 20 genotypes at least one individual became infected with either of the
338 viruses while four genotypes were resistant to both viruses (187-1b, 187-4d, 187-6b and 853-
339 1; Figure 2). From the 20 susceptible genotypes, 11 were susceptible to both viruses, six to
340 *Closterovirus* only, and three to *Enamovirus* only. A total of 17 genotypes were susceptible to
341 *Closterovirus*, and *Closterovirus* was detected in 28% of the *Closterovirus* inoculated
342 individuals (n = 116). Infection rates (% of infected individuals) varied greatly within
343 genotypes; for example, the infection rate for *Closterovirus* in genotype 946-4a was 75%, while
344 for genotype 3225-2a, only 14% of the individuals were infected. Conversely, the overall
345 infection rate for *Enamovirus* was lower at 17% (n = 115), with individuals from 14 genotypes
346 being infected. Similar variability in infection rates within genotypes was observed for
347 *Enamovirus*, genotype 1030-4a had the highest infection rate for *Enamovirus* (71%) and
348 genotypes 1030-2b, 3225-2a and 946-7b harboured the lowest infection rates (14%).
349 Furthermore, the GLM analysis showed that genotype 1030-4a was overall more likely to
350 harbour infection, as indicated by the positive estimated coefficient and significant p-value
351 (Supplementary table 2; estimate = 2.71, p = 0.047).

352 Post hoc analysis to evaluate differences between *Closterovirus* and *Enamovirus*
353 resistance and possible allocation costs in resistance to the two viruses showed no significant
354 differences within genotypes (Supplementary table 3) or among genotypes (Supplementary

355 table 4). Additionally, when analysing the correlation between infection rates of *Closterovirus*
356 and *Enamovirus*, we observed a weak positive correlation. However, this correlation was not
357 statistically significant (Figure 3; $t = 1.0248$, $df = 22$, $p = 0.3166$).

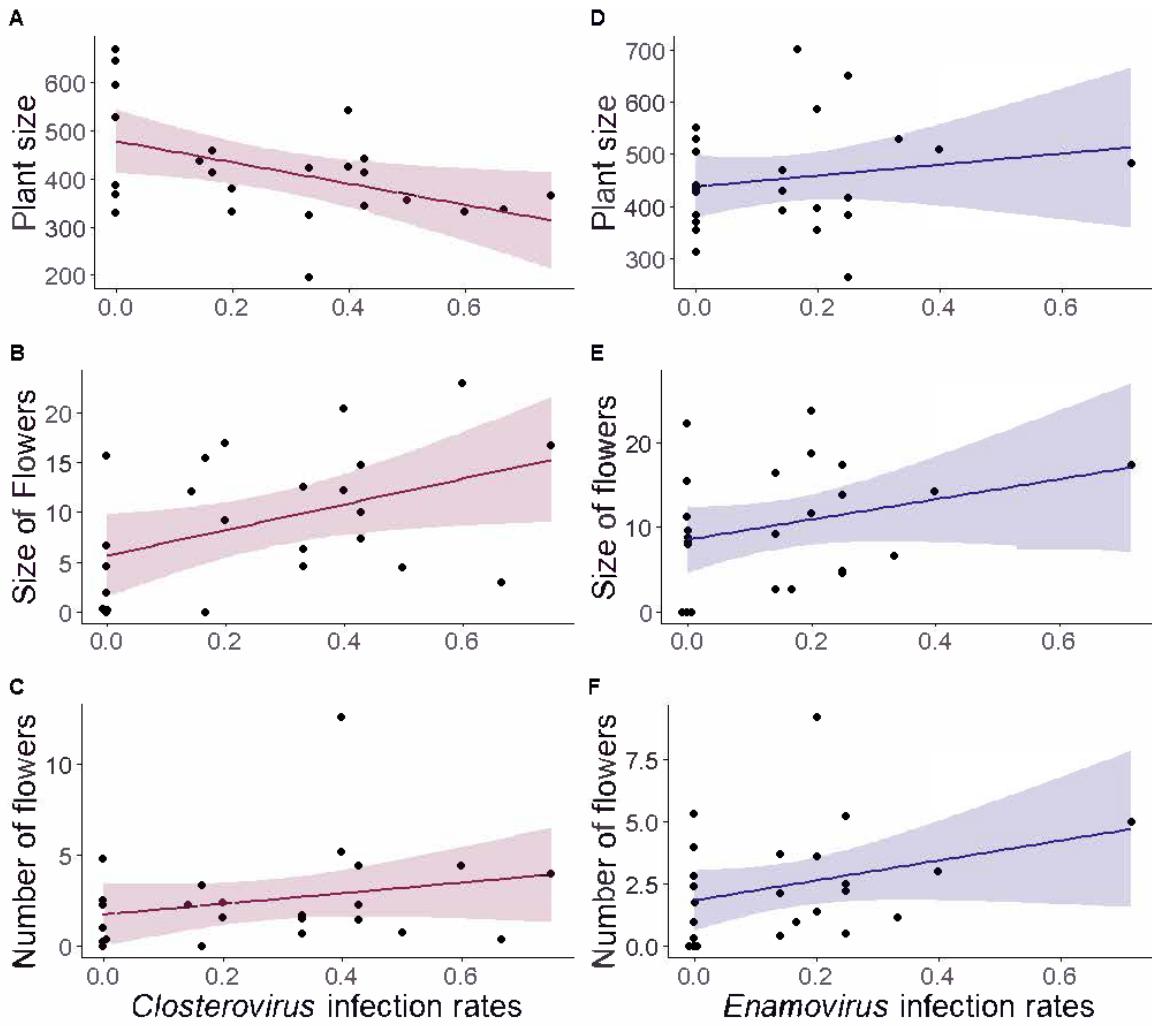
358

359
360 Figure 2. Infection rates of *Plantago lanceolata closterovirus* and *Plantago lanceolata*
361 *enamovirus* following the first inoculation treatment grouped by host genotypes. The blue
362 colour represent the proportion of *Enamovirus* infected individuals within the *Enamovirus*
363 inoculation treatment and correspondingly, the red colour represents the proportion
364 *Closterovirus* infected individuals within *Closterovirus* treatment. The absence of a bar
365 indicates that the genotype did not harbour viral infections after the first inoculation treatment.


366

367 Table 1. Results from Generalized linear model analysis on an inoculation experiment with 24
368 *Plantago lanceolata* genotypes ($n = 335$) inoculated with *Plantago lanceolata closterovirus* or
369 *Plantago lanceolata enamovirus* investigating the intraspecific variation among host genotypes
370 during viral infection and the differences in host response to the studied viruses across
371 genotypes.

Fixed effect	LR χ^2	Df	p-value
Genotype	37.308	23	0.03018
Inoculation treatment	4.182	1	0.04086
Genotype \times Inoculation treatment	23.032	23	0.4589

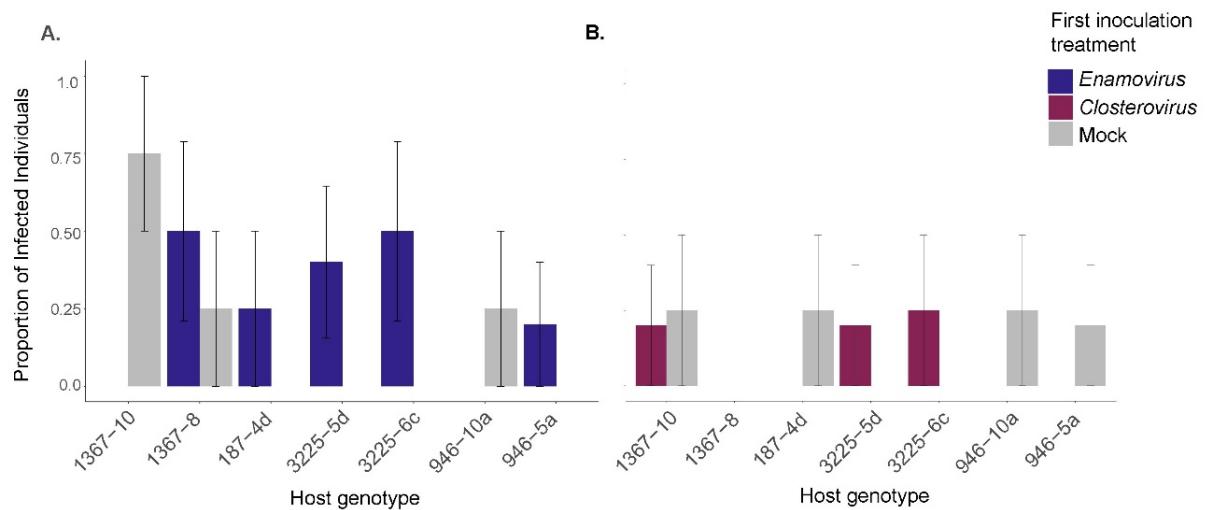

372

373

374

375 Figure 3. The correlation between *Plantago lanceolata closterovirus* and *Plantago lanceolata*
376 *enamovirus* infection rates among 24 *Plantago lanceolata* genotypes after the first
377 inoculation. The Pearson correlation between the infection rates of the two viruses was non-
378 significant but weakly positive ($t = 1.0248$, $df = 22$, $p = 0.3166$).

379


380 Figure 4. Correlations between *Plantago lanceolata* closterovirus and *Plantago lanceolata*
 381 *enamovirus* infection rates and plant size (A and D), size of flowers (B and E), and umber of
 382 flowers (C and F). The points represent the average infection rate for each genotype with the
 383 corresponding association. The trend line indicates the linear regression and the shaded area
 384 the 95% confidence interval.

385

386 Next, we investigated the associations between plant growth and reproductive traits
 387 (flower size and number) and virus infection rates. We found a negative but non-significant
 388 correlation (-0.459) between *Closterovirus* infection rates and host plant size (Figure 4; $t =$
 389 2.424, $df = 22$, $p = 0.0238$). In contrast, *Closterovirus* infection rates showed moderate positive
 390 correlations with flower size (0.433) and number of flowers (0.253). The correlation with
 391 flower size was statistically significant ($t = 2.257$, $df = 22$, $p = 0.0342$), while the correlation
 392 with the number of flowers was weak and statistically non-significant ($t = 1.231$, $df = 22$, $p =$

393 0.231). In comparison, the correlations between *Enamovirus* infection rates and plant growth
394 and reproductive traits were weakly positive and did not reach statistical significance. The
395 correlation between plant size and *Enamovirus* infection rates was weakly positive (0.175) with
396 no significant effect ($t = 0.834$, $df = 22$, $p = 0.4127$). Similarly, the correlations with flower
397 size (0.2965) and flower number (0.315) were weak and non-significant ($t = 1.456$, $df = 22$, p
398 = 0.159 and $t = 1.557$, $df = 22$, $p = 0.133$, respectively).

399 Finally, we investigated whether the initial inoculation with *Closterovirus* or
400 *Enamovirus* influenced the host resistance phenotype in sequential inoculation with
401 *Enamovirus* or *Closterovirus*, respectively. After the sequential inoculations, the overall
402 *Closterovirus* infection rate was 20%. Individuals that been previously infected with
403 *Enamovirus* had a higher infection rate than plants that had received the mock inoculation
404 treatment (66% vs. 33%, respectively), demonstrating how sensitive the resistance phenotype
405 is to prior infection. Specifically, genotypes 187-4d, 3225-5d, 3225-6c and 956-5a were more
406 susceptible to *Closterovirus* inoculation after initial inoculation with *Enamovirus* when
407 compared to individuals that were mock inoculated during the first treatment (Figure 5A.).
408 These observations were supported by our GLM and LR analysis, where the interaction
409 between host genotype and initial inoculation treatment had a significant effect on
410 *Closterovirus* resistance (Table 2A. $LR \chi^2 = 19.9074$, $df = 6$, $p = 0.002876$). Indeed, model
411 coefficients revealed positive estimates for interactions between genotype and first inoculation
412 treatment with *Enamovirus* when compared to the intercept involving interaction between
413 genotype and mock inoculation (Supplementary table 5). In contrast, we did not observe similar
414 trends for *Enamovirus* sequential infections. The infection rates of *Enamovirus* after the
415 sequential inoculation were generally lower than those of *Closterovirus* (Figure 5B), with only
416 5% of all *Enamovirus* inoculated individuals colonised by the virus. Out of the *Enamovirus*
417 infected individuals 50% were first inoculated with *Closterovirus* and the other 50% were first
418 mock inoculated. Our statistical analyses revealed that neither the initial *Closterovirus*
419 inoculation nor the host genotype had a significant effect on resistance to sequential
420 *Enamovirus* inoculation (Table 2B, Supplementary table 6).

422

423 Figure 5. Viral infection rates of plant individuals from 7 host genotypes after sequential
 424 inoculation treatments. A) Infection rates of individuals after *Plantago lanceolata* *closterovirus*
 425 sequential infection. During the first inoculation the individuals were inoculated with *Plantago*
 426 *lanceolata* *enamovirus* (blue) or mock inoculated (grey). B) Infection rates of individuals after
 427 *Plantago lanceolata* *enamovirus* inoculation. During the first inoculation the individuals were
 428 inoculated with *Plantago lanceolata* *closterovirus* (red) or mock inoculated (grey).

429

430 Table 2. Likelihood Ratio Chi-Square test results for two Generalized linear model (GLM)
 431 analyses of an inoculation experiment investigating the intraspecific variation and response
 432 among 7 *Plantago lanceolata* genotypes during sequential viral infections. A) GLM results
 433 from individuals that were first inoculated with *Plantago lanceolata* *enamovirus* or mock
 434 inoculated and sequentially inoculated with *Plantago lanceolata* *closterovirus*. B) GLM results
 435 from individuals that were first inoculated with *Plantago lanceolata* *closterovirus* or mock
 436 inoculated and sequentially inoculated with *Plantago lanceolata* *enamovirus*.

A.

Fixed effect	LR χ^2	Df	p-value
Genotype	2.4445	6	0.87463
First inoculation treatment	1.317	1	0.251124
Genotype × First inoculation treatment	19.9074	6	0.002876

B.

Fixed effect	LR χ^2	Df	p-value
Genotype	5.1259	6	0.5278
Inoculation treatment in timepoint A	0.0022	1	0.882
Genotype × Inoculation treatment in timepoint A	5.8739	6	0.4375

437

438

Discussion

439 Variation in intraspecific resistance is expected to have a key role in shaping the outcome of
440 host-pathogen interactions (Thrall and Burdon, 2000; Laine *et al.*, 2011; Sallinen *et al.*, 2020),
441 mitigating disease spread and preventing major outbreaks (Salvaudon, Héraudet and Shykoff,
442 2007; Ganz and Ebert, 2010; Jousimo *et al.*, 2014). However, much of our understanding of
443 this derives from studies focusing on single parasite infections while in reality hosts are
444 exposed to a wide diversity of parasites. While the true viral diversity in natural environments
445 still remains largely undiscovered, it is well-documented that viruses are abundant and diverse
446 across habitats, and many known viruses are pathogenic (Suttle, 2005; Roossinck, 2011; Bibby,
447 2013; Bass *et al.*, 2019; Koonin, Krupovic and Dolja, 2023). Yet, we know little about the
448 intraspecific variation in resistance to viral infections in wild hosts. Here, our findings highlight
449 the importance of host genotype as a key predictor of host viral resistance – host genotypes
450 exhibited varying resistance profiles, ranging from resistance to susceptibility for both studied
451 viruses. Moreover, we observed a significant change in host resistance phenotype as
452 susceptibility to *Closterovirus* increased following prior *Enamovirus* inoculation. In addition,
453 we observed distinct strategies in how resources were allocated between growth and resistance
454 for the two viruses. Overall, our results highlight the role of host genotype and virus–virus
455 interactions in mediating viral infections as well as viral community assembly.

456 In line with earlier studies on resistance variation in wild populations (Alexander,
457 Antonovics and Kelly, 1993; Thrall and Burdon, 2000; Laine, 2004, 2011; Rose *et al.*, 2005;
458 Susi and Laine, 2017), *P. lanceolata* genotypes showed high diversity in their resistance
459 responses, showing varying levels of susceptibility and resistance to the two viruses used in
460 this experiment. The overall susceptibility to the two viruses was relatively low and varied
461 between the two viruses (28% for *Closterovirus* and 17% for *Enamovirus*). However, in most
462 of the host genotypes we were able to detect viral infection in at least one individual. Infection
463 rates varied considerably within genotypes, from over 70% of individuals being infected, to
464 only 13% of infected individuals. We identified four genotypes that were completely resistant
465 to viral inoculation. Three of these originate from the same host population (ID: 187),
466 suggesting potentially spatially structured variation in selection for viral resistance (*cf.* Laine
467 *et al.*, 2011). Genotype 1030-4a was significantly more susceptible for virus infection
468 compared to the other genotypes, with infection rates of 71% for *Enamovirus* and 43% for
469 *Closterovirus*. The observed variation in viral resistance among host genotypes aligns with
470 previous research from this system, which has described ample variation in resistance to the
471 fungal parasite *P. plantaginis* within *P. lanceolata* populations (Laine, 2004; Susi, Vale and
472 Laine, 2015; Safdari *et al.*, 2021). Moreover, field experiments conducted during natural viral
473 epidemics in this system revealed that viral communities varied both among *P. lanceolata*
474 genotypes and populations (Susi *et al.*, 2019; Sallinen *et al.*, 2020; Jokinen *et al.*, 2023). Our
475 results confirm that these differences are likely to be generated by genetic resistance variation.

476 In this study, we individually inoculated clones of *P. lanceolata* genotypes with
477 *Closterovirus* or *Enamovirus* to explore possible allocation costs in resistance against the two
478 viruses as predicted by the concept of trade-offs (Bergelson and Purrington, 1996; Webster and
479 Woolhouse, 1999; Koskella *et al.*, 2012; Auld *et al.*, 2013). While the inoculation treatment
480 was a significant predictor of host infections status, post hoc tests did not detect statistically
481 significant differences in resistance against *Closterovirus* or *Enamovirus* across or within the
482 24 *P. lanceolata* genotypes included in the study. This lack of statistical support is likely due
483 to the variation in infection rates within host genotypes. However, we identified several host
484 genotypes that were resistant to one of the studied viruses while remaining susceptible to the
485 other. For example, genotypes 853-2d, 853-6b and 950-8b were resistant to *Enamovirus*, but
486 susceptible to *Closterovirus*, suggesting a possible trade-off in resistance. Overall, in our
487 inoculation experiment we found a weak positive correlation between *Closterovirus* and
488 *Enamovirus* infection rates, with several of the host genotypes being susceptible to both of the

489 viruses. These findings suggest that host genotype may play a key role in shaping viral co-
490 occurrence patterns, supported by field data showing that high viral diversity tends to
491 accumulate in certain host individuals (Susi *et al.*, 2019; Sallinen *et al.*, 2020; Jokinen *et al.*,
492 2023; Norberg *et al.*, 2023).

493 One of the most studied life-history trade-offs is the growth versus defense trade-off,
494 which predicts the host's limited resources must be allocated between growth and defence,
495 leading to patterns where growth is favoured over defense or vice versa (Bergelson and
496 Purrington, 1996; Monson *et al.*, 2022; Zaret *et al.*, 2024). Indeed, we found that for both
497 viruses higher infection rates positively correlated with larger flower size and number of
498 flowers. These results indicate that these individuals may have allocated more resources to
499 reproduction and, in turn, less resources to resistance against parasites. Varying resource
500 allocation strategies create variation in wild hosts, even among host genotypes, and such trade-
501 offs between fitness traits and defense are particularly evident in wild hosts (Giolai and Laine,
502 2024). Interestingly, we observed that higher infection rates with *Closterovirus* were negatively
503 correlated with host plant size, suggesting that larger plants harbour less viral infections. In
504 contrast, no such relationship was observed with *Enamovirus* inoculated individuals, where
505 small size was positively correlated with viral infections. These contrasting patterns may reflect
506 differences in the immune responses these viruses trigger or that the full extent of the trade-
507 offs were not captured within the timeframe of the experiment (Susi and Laine, 2015; Dallas,
508 Holtackers and Drake, 2016). A longer observation period may be necessary to observe
509 dynamics of resource allocation and viral resistance in this system.

510 In addition to intraspecific variation in resistance, we observed a significant change in
511 host resistance phenotype in several of the genotypes when the host was initially inoculated
512 with *Enamovirus*. Specifically, host individuals first inoculated with *Enamovirus* were more
513 susceptible to subsequent *Closterovirus* inoculation compared to those that were first mock
514 inoculated with phosphate buffer. However, there were differences among host genotypes in
515 their response to sequential *Closterovirus* inoculation. We observed the change in resistance
516 phenotype in all other genotypes included in the treatment except for genotypes 1367-10 and
517 946-10a, indicating that there is intraspecific variation among genotypes also in their response
518 to sequential coinfections. During coinfections, defence against the first arriving parasite can
519 leave the host more vulnerable or resistant against subsequent parasite attack (Spoel, Johnson
520 and Dong, 2007; Ziebell and Carr, 2010; Mauch-Mani *et al.*, 2017; Morris, Cleary and Clarke,
521 2017; Jokinen *et al.*, 2023). Interestingly, we did not observe similar change in resistance

522 phenotype when individuals were first inoculated with *Closterovirus*. There were no
523 differences in *Enamovirus* infection rates between individuals that were first inoculated with
524 *Closterovirus* and those that were mock inoculated. This suggest that resistance against
525 *Closterovirus* might not impose as significant cost for the host than resistance against
526 *Enamovirus*, which could also connect to our finding of the lack of trade-off between host plant
527 size and resistance against *Closterovirus*. Our results also demonstrate that the assembly of
528 viral communities is highly sensitive to the arrival order of the different viruses.

529 Here, we have described the importance of intraspecific variation in resistance in wild
530 host against viral infection by using naïve *P. lanceolata* clones in an inoculation experiment.
531 By applying both single and sequential inoculations with two wild viruses across 24 host
532 genotypes, we were able to detect distinct differences in resistance among host genotypes
533 against the two viruses and the sensitivity of the resistance phenotype to prior viral infection.
534 Moreover, we detected varying strategies in resource allocation between growth and defense
535 in response to the two viruses, reflecting a trade-off between these processes. Our findings
536 highlight the importance of intraspecific variation in host resistance against viral infection —
537 an important component in natural disease mitigation. Overall, our results indicate that host
538 genotype and virus arrival sequence are key determinants of host resistance, and they may play
539 important role in shaping disease dynamics and the assembly of within-host parasite
540 communities in natural systems. The global trend of genetic variation in being eroded in natural
541 populations by human actions can have far reaching consequences for disease risk (Exposito-
542 Alonso *et al.*, 2022; Laine, 2023), which as we have shown here, is highly sensitive to host
543 genetic variation.

544 Acknowledgements

545 We thank Krista Raveala for help cloning and caring for the host plants. We thank Krista
546 Raveala, Anna Hietala, Suvi Sallinen and Sara Leino for helping with the collection of the wild
547 plant material. We thank Santtu Nissilä, Heidi Blom and Jere Lentonen for helping with the
548 data collection and help at the greenhouse. We thank Jere Lentonen with help in the laboratory
549 work. The work was funded grants from European Research Council (AdG 101097545 Co-
550 EvoChange), and Academy of Finland (362242) to A.-L.L. and Academy of Finland (321441)
551 to H.S and University of Zurich to M.J.

552 Author Contributions

553 Conceptualization: A.-L.L; study design: M.J. and A.-L.L.; investigation, methodology, data
554 collection, formal analysis: M.J.; supervision: A.-L.L and H.S.; Writing: M.J., H.S. and A-L.L.

555 Conflict of Interest

556 The authors declare no conflict of interests.

557 Data availability statement

558 The data and R scripts used in this study have been submitted to GitHub
559 (<https://github.com/maiabajoki/INTRA22>).

560

561 References

562 Adams, I.P. *et al.* (2014) ‘Carrot yellow leaf virus is associated with carrot internal necrosis’,
563 *PLoS ONE*, 9(11).

564 Agranovsky, A.A. *et al.* (1995) ““Rattlesnake” structure of a filamentous plant RNA virus
565 built of two capsid proteins”, *Proceedings of the National Academy of Sciences of the United
566 States of America*, 92(7), pp. 2470–2473.

567 Alexander, H.M., Antonovics, J. and Kelly, A.W. (1993) ‘Genotypic Variation in Plant
568 Disease Resistance--Physiological Resistance in Relation to Field Disease Transmission’,
569 *Source: Journal of Ecology*, 81(2), pp. 325–333.

570 Ali, F. *et al.* (2013) ‘Evidence of Multiple Disease Resistance (MDR) and Implication of
571 Meta-Analysis in Marker Assisted Selection’, *PLOS ONE*, 8(7), p. e68150.

572 Anderson, R.M. and May, R.M. (1982) ‘Coevolution of hosts and parasites’, *Parasitology*,
573 85(2), pp. 411–426.

574 Antonovics, J. and Thrall, P.H. (1994) ‘The cost of resistance and the m aintenance of genetic
575 polym orphism in host-pathogen systems’, *Proceedings of the Royal Socie*, 257, pp. 105–110.

576 Ashby, B. and King, K.C. (2017) 'Friendly foes: The evolution of host protection by a
577 parasite', *Evolution Letters*, 1(4), pp. 211–221.

578 Auld, S.K.J.R. *et al.* (2013) 'Variation in costs of parasite resistance among natural host
579 populations', *Journal of Evolutionary Biology*, 26(11), pp. 2479–2486.

580 Bass, D. *et al.* (2019) 'The Pathobiome in Animal and Plant Diseases', *Trends in Ecology
581 and Evolution*. Elsevier Ltd, pp. 996–1008.

582 Bergelson, J. *et al.* (2001) 'Evolutionary dynamics of plant R-genes', *Science*, 292(5525), pp.
583 2281–2285.

584 Bergelson, J. and Purrington, C.B. (1996) 'Surveying patterns in the cost of resistance in
585 plants', *American Naturalist*, 148(3), pp. 536–558.

586 Bibby, K. (2013) 'Metagenomic identification of viral pathogens', *Trends in Biotechnology*,
587 31(5), pp. 275–279.

588 Bray, A.S. *et al.* (2022) 'MgrB-Dependent Colistin Resistance in *Klebsiella pneumoniae* Is
589 Associated with an Increase in Host-to-Host Transmission', *mBio*, 13(2).

590 Broekgaarden, C. *et al.* (2011) 'Exploiting natural variation to identify insect-resistance
591 genes', *Plant Biotechnology Journal*, 9(8), pp. 819–825.

592 Brown, J.K.M. and Rant, J.C. (2013a) 'Fitness costs and trade-offs of disease resistance and
593 their consequences for breeding arable crops', *Plant Pathology*, 62(S1), pp. 83–95.

594 Brown, J.K.M. and Rant, J.C. (2013b) 'Fitness costs and trade-offs of disease resistance and
595 their consequences for breeding arable crops', *Plant Pathology*, 62(S1), pp. 83–95.

596 Carrillo-Hernández, M.Y. *et al.* (2018) 'Co-circulation and simultaneous co-infection of
597 dengue, chikungunya, and zika viruses in patients with febrile syndrome at the Colombian-
598 Venezuelan border', *BMC Infectious Diseases*, 18(1), pp. 1–12.

599 Chang, S., Puryear, J. and Cairney, J. (1993) 'A simple and efficient method for isolating
600 RNA from pine trees', *Plant Molecular Biology Reporter*, 11(2), pp. 113–116.

601 Cheatsazan, H. *et al.* (2013) 'Experimental evidence for a cost of resistance to the fungal
602 pathogen, *Batrachochytrium dendrobatidis*, for the palmate newt, *Lissotriton helveticus*',
603 *BMC Ecology*, 13.

604 Ciota, A.T. *et al.* (2011) 'The costs of infection and resistance as determinants of West Nile

605 virus susceptibility in *Culex* mosquitoes', *BMC Ecology*, 11.

606 Dallas, T., Holtackers, M. and Drake, J.M. (2016) 'Costs of resistance and infection by a
607 generalist pathogen', *Ecology and Evolution*, 6(6), pp. 1737–1744.

608 Debray, R. *et al.* (2022) 'Priority effects in microbiome assembly', *Nature Reviews
609 Microbiology*, pp. 109–121.

610 Demler, S.A. *et al.* (1996) 'Pea Enation Mosaic Enamovirus: Properties and Aphid
611 Transmission', *The Plant Viruses*, pp. 303–344.

612 Ekroth, A.K.E., Rafaluk-Mohr, C. and King, K.C. (2019) 'Host genetic diversity limits
613 parasite success beyond agricultural systems: A meta-analysis', *Proceedings of the Royal
614 Society B: Biological Sciences*, 286(1911).

615 Ericson, L., Burdon, J.J. and Müller, W.J. (2002) 'The rust pathogen *Triphragmium ulmariae*
616 as a selective force affecting its host, *Filipendula ulmaria*', *Journal of Ecology*, 90, pp. 167–
617 178.

618 Exposito-Alonso, M. *et al.* (2022) 'Genetic diversity loss in the Anthropocene', *Science*,
619 377(6613), pp. 1431–1435.

620 Fox, J. and Weisberg, S. (2019) 'An R Companion to Applied Regression', *Sage Publications*
621 [Preprint].

622 Fraile, A. and García-Arenal, F. (2016) 'Environment and evolution modulate plant virus
623 pathogenesis', *Current opinion in virology*, 17, pp. 50–56.

624 Fuchs, M. *et al.* (2020) 'ICTV virus taxonomy profile: Closteroviridae', *Journal of General
625 Virology*, 101(4), pp. 364–365.

626 Fukami, T. (2015) 'Historical Contingency in Community Assembly: Integrating Niches,
627 Species Pools, and Priority Effects', *Annu. Rev. Ecol. Evol. Syst.*, 46, pp. 1–23.

628 Ganz, H.H. and Ebert, D. (2010) 'Benefits of host genetic diversity for resistance to infection
629 depend on parasite diversity', *Ecology*, 91(5), pp. 1263–1268.

630 Gibson, A.K. (2022) 'Genetic diversity and disease: The past, present, and future of an old
631 idea', *Evolution*, 76, pp. 20–36.

632 Giolai, M. and Laine, A. (2024) 'A trade-off between investment in molecular defense
633 repertoires and growth in plants', 680(November), pp. 677–680.

634 González, R., Butković, A. and Elena, S.F. (2019) 'Role of host genetic diversity for
635 susceptibility-to-infection in the evolution of virulence of a plant virus', *Virus Evolution*,
636 5(2), pp. 1–12.

637 Hamilton, W.D. (1980) 'Sex versus Non-Sex versus Parasite', *Oikos*, 35(2), pp. 282–290.

638 Hanski, I. *et al.* (1995) 'Metapopulation Persistence of an Endangered Butterfly in a
639 Fragmented Landscape', *OIKOS*, 72(1), pp. 21–28.

640 Harper, S.J. (2013) 'Citrus tristeza virus: Evolution of complex and varied genotypic groups',
641 *Frontiers in Microbiology*, 4(APR).

642 Hillung, J. *et al.* (2014) 'Experimental evolution of an emerging plant virus in host genotypes
643 that differ in their susceptibility to infection', *Evolution*, 68(9), pp. 2467–2480.

644 Hily, J.M. *et al.* (2016) 'Environment and host genotype determine the outcome of a plant–
645 virus interaction: from antagonism to mutualism', *New Phytologist*, 209(2), pp. 812–822.

646 Höckerstedt, L. *et al.* (2022) 'Spatially structured eco-evolutionary dynamics in a host–
647 pathogen interaction render isolated populations vulnerable to disease', *Nature
648 Communications*, 13(1), pp. 1–11.

649 Höckerstedt, L., Susi, H. and Laine, A.L. (2021) 'Effect of maternal infection on progeny
650 growth and resistance mediated by maternal genotype and nutrient availability', *Journal of
651 Ecology*, 109(3), pp. 1439–1451.

652 Hückelhoven, R. *et al.* (2013) 'Genetic loss of susceptibility: a costly route to disease
653 resistance?', *Plant Pathology*, 62(S1), pp. 56–62.

654 Jokinen, M. *et al.* (2023) 'The first arriving virus shapes within-host viral diversity during
655 natural epidemics', *Proceedings of the Royal Society B*, 290(2006).

656 Jousimo, J. *et al.* (2014) 'Ecological and evolutionary effects of fragmentation on infectious
657 disease dynamics', *Science*, 344(6189), pp. 1289–1293.

658 Karasev, A. V. (2000) 'Genetic diversity and evolution of closteroviruses', *Annual Review of
659 Phytopathology*, 38, pp. 293–324.

660 Karvonen, A., Jokela, J. and Laine, A.L. (2019) 'Importance of Sequence and Timing in
661 Parasite Coinfections', *Trends in Parasitology*. Elsevier Ltd, pp. 109–118.

662 Koonin, E. V., Krupovic, M. and Dolja, V. V. (2023) 'The global virome: How much

663 diversity and how many independent origins?”, *Environmental Microbiology*, 25(1), pp. 40–
664 44.

665 Koskella, B. *et al.* (2012) ‘The costs of evolving resistance in heterogeneous parasite
666 environments’, *Proceedings of the Royal Society B: Biological Sciences*, 279(1735), pp.
667 1896–1903.

668 Laine, A.-L. (2004) ‘Resistance variation within and among host populations in a plant-
669 pathogen metapopulation: implications for regional pathogen dynamics’, *Journal of Ecology*,
670 92(6), pp. 990–1000.

671 Laine, A.L. (2011) ‘Context-dependent effects of induced resistance under co-infection in a
672 plant-pathogen interaction’, *Evolutionary Applications*, 4(5), pp. 696–707.

673 Laine, A.L. *et al.* (2011) ‘Spatial variation in disease resistance: From molecules to
674 metapopulations’, *Journal of Ecology*, 99(1), pp. 96–112.

675 Laine, A.L. (2023) ‘Plant disease risk is modified by multiple global change drivers’, *Current
676 Biology*, 33(11), pp. R574–R583.

677 Lenth, R. V. *et al.* (2018) ‘Package “Emmeans”’.

678 Leonard, K.J. (1977) ‘Selection Pressures and Plant Pathogens’, *Annals of the New York
679 Academy of Sciences*, 287(1), pp. 207–222.

680 Little, T.J. and Ebert, D. (1999) ‘Associations between parasitism and host genotype in
681 natural populations of Daphnia (Crustacea: Cladocera)’, *Journal of Animal Ecology*, 68, pp.
682 134–149.

683 Lopez-Zuniga, L.O. *et al.* (2019) ‘Using Maize Chromosome Segment Substitution Line
684 Populations for the Identification of Loci Associated with Multiple Disease Resistance’.

685 Maclot, F. *et al.* (2020) ‘Illuminating an Ecological Blackbox: Using High Throughput
686 Sequencing to Characterize the Plant Virome Across Scales’, *Frontiers in Microbiology*,
687 11(October), pp. 1–16.

688 Malmstrom, C.M., Martin, M.D. and Gagnevin, L. (2022) ‘Exploring the Emergence and
689 Evolution of Plant Pathogenic Microbes Using Historical and Paleontological Sources’,
690 *Annual Review of Phytopathology*, 60, pp. 187–209.

691 Marchetto, K.M. and Power, A.G. (2018) ‘Coinfection timing drives host population

692 dynamics through changes in virulence', *American Naturalist*, 191(2), pp. 173–183.

693 Mauch-Mani, B. *et al.* (2017) 'Defense Priming: An Adaptive Part of Induced Resistance',
694 *Annual Review of Plant Biology*, 68, pp. 485–512.

695 McGrann, G.R.D. *et al.* (2014) 'A trade off between mlo resistance to powdery mildew and
696 increased susceptibility of barley', *Journal of Experimental Botany*, 65(4), pp. 1025–1037.

697 Monson, R.K. *et al.* (2022) 'Coordinated resource allocation to plant growth–defense
698 tradeoffs', *New Phytologist*, 233(3), pp. 1051–1066.

699 Morris, D.E., Cleary, D.W. and Clarke, S.C. (2017) 'Secondary bacterial infections
700 associated with influenza pandemics', *Frontiers in Microbiology*, 8(JUN), p. 1041.

701 Natsopoulou, M.E. *et al.* (2015) 'Interspecific competition in honeybee intracellular gut
702 parasites is asymmetric and favours the spread of an emerging infectious disease',
703 *Proceedings of the Royal Society B: Biological Sciences*, 282(1798).

704 Norberg, A. *et al.* (2023) 'Direct and indirect viral associations predict coexistence in wild
705 plant virus communities', *Current Biology*, 33(9), pp. 1665-1676.e4.

706 Ojanen, S.P. *et al.* (2013) 'Long-term metapopulation study of the Glanville fritillary
707 butterfly (Melitaea cinxia): Survey methods, data management, and long-term population
708 trends', *Ecology and Evolution*, 3(11), pp. 3713–3737.

709 R Foundation for Statistical and Computing, Vienna, A. (2022) 'R: A language and
710 environment for statistical computing.'

711 Roossinck, M.J. (2005) 'Symbiosis versus competition in plant virus evolution', *Nature
Reviews Microbiology*, 3(12), pp. 917–924.

713 Roossinck, M.J. (2011) 'The big unknown: Plant virus biodiversity', *Current Opinion in
714 Virology*, 1(1), pp. 63–67.

715 Rose, L.E. *et al.* (2005) 'Natural variation in the Pto pathogen resistance gene within species
716 of wild tomato (Lycopersicon). I. Functional analysis of Pto alleles', *Genetics*, 171(1), pp.
717 345–357.

718 Al Rwahnih, M. *et al.* (2012) 'Genomic and biological analysis of Grapevine leafroll-
719 associated virus 7 reveals a possible new genus within the family Closteroviridae', *Virus
720 Research*, 163(1), pp. 302–309.

721 Safdari, P. *et al.* (2021) 'Genotype-Specific Expression and NLR Repertoire Contribute to
722 Phenotypic Resistance Diversity in *Plantago lanceolata*', *Frontiers in Plant Science*, 12(July).

723 Sagar, A.G.R. and Harper, J.L. (1964) 'Plantago Major L., P. Media L. and P. Lancocelata
724 L.', *Journal of Ecology*, 52, pp. 189–221.

725 Sallinen, S. *et al.* (2020) 'Intraspecific host variation plays a key role in virus community
726 assembly', *Nature Communications*, 11(1), pp. 1–11.

727 Salvaudon, L., Héraudet, V. and Shykoff, J.A. (2007) 'Genotype-specific interactions and the
728 trade-off between host and parasite fitness', *BMC Evolutionary Biology*, 7, pp. 1–10.

729 Sõmera, M. *et al.* (2021) 'ICTV Virus Taxonomy Profile: Solemoviridae 2021', *Journal of
730 General Virology*, 102(12), p. 001707.

731 Sõmera, M., Sarmiento, C. and Truve, E. (2015) 'Overview on Sobemoviruses and a Proposal
732 for the Creation of the Family Sobemoviridae', *Viruses*, 7, pp. 3076–3115.

733 Spoel, S.H., Johnson, J.S. and Dong, X. (2007) 'Regulation of tradeoffs between plant
734 defenses against pathogens with different lifestyles', *Proceedings of the National Academy of
735 Sciences*, 104(47), pp. 18842–18847.

736 Stearns, S.C. (1989) 'Trade-Offs in Life-History Evolution Published by : British Ecological
737 Society Stable URL : <http://www.jstor.org/stable/2389364> Trade-offs in life-history
738 evolution', *Function Ecology*, 3(3), pp. 259–268.

739 Susi, H. *et al.* (2015) 'Co-infection alters population dynamics of infectious disease', *Nature
740 Communications*, 6(1), pp. 1–8.

741 Susi, H. *et al.* (2017) 'Genome sequences of a capulavirus infecting *Plantago lanceolata* in
742 the Åland archipelago of Finland', *Archives of Virology*, 162(7), pp. 2041–2045.

743 Susi, H. *et al.* (2019) 'Diverse and variable virus communities in wild plant populations
744 revealed by metagenomic tools', *PeerJ*, 2019(1).

745 Susi, H. and Laine, A.L. (2015) 'The effectiveness and costs of pathogen resistance strategies
746 in a perennial plant', *Journal of Ecology*, 103(2), pp. 303–315.

747 Susi, H. and Laine, A.L. (2017) 'Host resistance and pathogen aggressiveness are key
748 determinants of coinfection in the wild', *Evolution*, 71(8), pp. 2110–2119.

749 Susi, H., Vale, P.F. and Laine, A.L. (2015) 'Host genotype and coinfection modify the

750 relationship of within and between host transmission', *American Naturalist*, 186(2), pp. 252–
751 263.

752 Suttle, C.A. (2005) 'Viruses in the sea', *Nature*, 437(7057), pp. 356–361.

753 Swanson, S.J. *et al.* (2006) 'Coinfections acquired from Ixodes ticks', *Clinical Microbiology
754 Reviews*, 19(4), pp. 708–727.

755 Taliansky, M., Mayo, M.A. and Barker, H. (2003) 'Potato leafroll virus: A classic pathogen
756 shows some new tricks', *Molecular Plant Pathology*, 4(2), pp. 81–89.

757 Thrall, P.H. and Burdon, J.J. (2000) 'Effect of resistance variation in a natural plant host–
758 pathogen metapopulation on disease dynamics', *Plant Pathology*, 49(6), pp. 767–773.

759 Tian, D. *et al.* (2003) 'Fitness costs of R-gene-mediated resistance in *Arabidopsis thaliana*',
760 *Nature*, 423(6935), pp. 74–77.

761 Tollenaere, C., Susi, H. and Laine, A.L. (2016) 'Evolutionary and Epidemiological
762 Implications of Multiple Infection in Plants', *Trends in Plant Science*. Elsevier Ltd, pp. 80–
763 90.

764 Vemulapati, B. *et al.* (2010) 'Molecular characterization of pea enation mosaic virus and
765 bean leafroll virus from the Pacific Northwest, USA', *Archives of Virology*, 155(10), pp.
766 1713–1715.

767 Wang, H. *et al.* (2018) 'Resolving viral-induced secondary bacterial infection in COPD: A
768 concise review', *Frontiers in Immunology*, 9(OCT), p. 2345.

769 Webster, J.P. and Woolhouse, M.E.J. (1999) 'Cost of resistance: relationship between
770 reduced fertility and increased resistance in a snail-schistosome host-parasite system',
771 *Proceedings of the Royal Society of London Series B-Biological Sciences*, 266, pp. 391–396.

772 Yang, S. *et al.* (2022) 'Expanding known viral diversity in plants: virome of 161 species
773 alongside an ancient canal', *Environmental Microbiomes*, 17(1), pp. 1–15.

774 Zaret, M. *et al.* (2024) 'Plant growth–defense trade-offs are general across interactions with
775 fungal, insect, and mammalian consumers', *Ecology*, 105(5), p. e4290.

776 Ziebell, H. and Carr, J.P. (2010) 'Cross-Protection: A Century of Mystery', 76, pp. 211–264.

777

778 **Supplementary information**

779 Diversity in viral resistance emerges from host genotype and infection order effects

780 Maija Jokinen^{1,2}, Hanna Susi¹ & Anna-Liisa Laine¹

781 ¹ Organismal and Evolutionary Biology Research Programme, Faculty of Biological and
782 Environmental Sciences, PO BOX 65 00014 University of Helsinki, Finland

783 ² Department of Evolutionary Biology and Environmental Studies, University of Zürich, 8057
784 Zürich, Switzerland

785

786 M.J. maija.jokinen@helsinki.fi, H.S. hanna.susi@helsinki.fi, A-L.L. anna-
787 liisa.laine@helsinki.fi

788 Maija Jokinen, maija.jokinen@helsinki.fi and Anna-Liisa Laine, anna-liisa.laine@helsinki.fi
789 Organismal and Evolutionary Biology Research Programme, Faculty of Biological and
790 Environmental Sciences, PO BOX 65 00014 University of Helsinki, Finland

791

792

793

794

795

796

797

798

799

800

801

802

803

804 **Supplementary table 1. Data table showing all *Plantago lanceolata* genotypes included in the**
805 **inoculation experiment in the first inoculations (n = 24) and the sequential inoculations (n = 7).**
806 The host genotype origin populations, first and sequential inoculation treatments, infection rates for
807 *Enamovirus* and *Closterovirus* within each genotype and treatment, and the number individuals of
808 each genotype within each genotype are shown.

Origin population	Host genotype	Timepoint	First inoculation treatment	Sequential inoculation treatment	Infection rate: Enamovirus	Infection rate: Closterovirus	Number of individuals/treatment
187	187-1b	1	<i>Closterovirus</i>		-	0.00	4
187	187-1b	1	<i>Enamovirus</i>		0.00	-	4
187	187-1b	1	Mock		0.00	0.00	2
187	187-3c	1	<i>Closterovirus</i>		-	0.60	5
187	187-3c	1	<i>Enamovirus</i>		0.20	-	5
187	187-3c	1	Mock		0.00	0.00	2
187	187-4d	1	<i>Closterovirus</i>		-	0.00	4
187	187-4d	1	<i>Enamovirus</i>		0.00	-	4
187	187-4d	1	Mock		0.00	0.00	9
853	853-1	1	<i>Closterovirus</i>		-	0.00	3
853	853-1	1	<i>Enamovirus</i>		0.00	-	3
853	853-1	1	Mock		0.00	0.00	2
853	853-2d	1	<i>Closterovirus</i>		-	0.67	3
853	853-2d	1	<i>Enamovirus</i>		0.00	-	3
853	853-2d	1	Mock		0.00	0.00	1
853	853-6b	1	<i>Closterovirus</i>		-	0.33	3
853	853-6b	1	<i>Enamovirus</i>		0.00	-	3
853	853-6b	1	Mock		0.00	0.00	2
946	946-10a	1	<i>Closterovirus</i>		-	0.50	4
946	946-10a	1	<i>Enamovirus</i>		0.25	-	4
946	946-10a	1	Mock		0.00	0.30	10
946	946-4a	1	<i>Closterovirus</i>		-	0.75	4
946	946-4a	1	<i>Enamovirus</i>		0.25	-	4
946	946-4a	1	Mock		0.00	0.00	2
946	946-5a	1	<i>Closterovirus</i>		-	0.00	5
946	946-5a	1	<i>Enamovirus</i>		0.20	-	5
946	946-5a	1	Mock		0.09	0.00	11
946	946-7b	1	<i>Closterovirus</i>		-	0.43	7
946	946-7b	1	<i>Enamovirus</i>		0.14	-	7
946	946-7b	1	Mock		0.00	0.00	1
950	950-8b	1	<i>Closterovirus</i>		-	0.33	3
950	950-8b	1	<i>Enamovirus</i>		0.00	-	3
950	950-8b	1	Mock		0.00	0.00	2
1030	1030-2b	1	<i>Closterovirus</i>			0.43	7
1030	1030-2b	1	<i>Enamovirus</i>		0.14		7
1030	1030-2b	1	Mock		0.00	0.00	1
1030	1030-4a	1	<i>Closterovirus</i>		-	0.43	7
1030	1030-4a	1	<i>Enamovirus</i>		0.71	-	7
1030	1030-4a	1	Mock		0.00	0.00	1
1367	1367-10	1	<i>Closterovirus</i>		-	0.20	5
1367	1367-10	1	<i>Enamovirus</i>		0.00	-	5
1367	1367-10	1	Mock		0.00	0.00	9
1367	1367-2c	1	<i>Closterovirus</i>		-	0.17	6
1367	1367-2c	1	<i>Enamovirus</i>		0.00	-	6
1367	1367-2c	1	Mock		0.00	0.00	1
1367	1367-8	1	<i>Closterovirus</i>		-	0.00	4
1367	1367-8	1	<i>Enamovirus</i>		0.25	-	4
1367	1367-8	1	Mock		0.11	0.00	9
1367	1367-9d	1	<i>Closterovirus</i>		-	0.40	5
1367	1367-9d	1	<i>Enamovirus</i>		0.20	-	5
1367	1367-9d	1	Mock		0.00	0.00	11
3225	3225-1	1	<i>Closterovirus</i>		-	0.33	6
3225	3225-1	1	<i>Enamovirus</i>		0.33	-	6
3225	3225-1	1	Mock		0.00	0.00	2
3225	3225-2a	1	<i>Closterovirus</i>		-	0.14	7
3225	3225-2a	1	<i>Enamovirus</i>		0.14	-	7
3225	3225-2a	1	Mock		0.00	0.00	1
3225	3225-3a	1	<i>Closterovirus</i>		-	0.17	6
3225	3225-3a	1	<i>Enamovirus</i>		0.17	-	6
3225	3225-3a	1	Mock		0.00	0.00	1
3225	3225-5d	1	<i>Closterovirus</i>			0.40	5
3225	3225-5d	1	<i>Enamovirus</i>		0.00		5
3225	3225-5d	1	Mock		0.00	0.20	10
3225	3225-6c	1	<i>Closterovirus</i>		-	0.00	4
3225	3225-6c	1	<i>Enamovirus</i>		0.25	-	4
809	3225	3225-6c	1	Mock	0.00	0.10	10

812

187	187-4d	2	<i>Closterovirus</i>	<i>Enamovirus</i>	0.00	-	4
187	187-4d	2	<i>Enamovirus</i>	<i>Closterovirus</i>	-	0.25	4
187	187-4d	2	Mock	<i>Closterovirus</i>	-	0.00	4
187	187-4d	2	Mock	<i>Enamovirus</i>	0.25	-	4
187	187-4d	2	Mock	Mock	0.00	0.00	1
946	946-10a	2	<i>Closterovirus</i>	<i>Enamovirus</i>	0.00	-	4
946	946-10a	2	<i>Enamovirus</i>	<i>Closterovirus</i>	-	0.00	4
946	946-10a	2	Mock	<i>Closterovirus</i>	-	0.25	4
946	946-10a	2	Mock	<i>Enamovirus</i>	0.25	-	4
946	946-10a	2	Mock	Mock	0.00	0.00	2
946	946-5a	2	<i>Closterovirus</i>	<i>Enamovirus</i>	0.00	-	5
946	946-5a	2	<i>Enamovirus</i>	<i>Closterovirus</i>	-	0.20	5
946	946-5a	2	Mock	<i>Closterovirus</i>	-	0.00	5
946	946-5a	2	Mock	<i>Enamovirus</i>	0.00	-	5
946	946-5a	2	Mock	Mock	-	-	1
1367	1367-10	2	<i>Closterovirus</i>	<i>Enamovirus</i>	0.20	-	5
1367	1367-10	2	<i>Enamovirus</i>	<i>Closterovirus</i>	-	0.00	5
1367	1367-10	2	Mock	<i>Closterovirus</i>	-	0.75	4
1367	1367-10	2	Mock	<i>Enamovirus</i>	0.25	-	4
1367	1367-10	2	Mock	Mock	0.00	0.00	1
1367	1367-8	2	<i>Closterovirus</i>	<i>Enamovirus</i>	0.00	-	4
1367	1367-8	2	<i>Enamovirus</i>	<i>Closterovirus</i>	-	0.50	4
1367	1367-8	2	Mock	<i>Closterovirus</i>	-	0.00	4
1367	1367-8	2	Mock	<i>Enamovirus</i>	0.00	-	4
1367	1367-8	2	Mock	Mock	0.00	0.00	1
3225	3225-5d	2	<i>Closterovirus</i>	<i>Enamovirus</i>	0.20	-	5
3225	3225-5d	2	<i>Enamovirus</i>	<i>Closterovirus</i>	-	0.40	5
3225	3225-5d	2	Mock	<i>Closterovirus</i>	-	0.00	4
3225	3225-5d	2	Mock	<i>Enamovirus</i>	0.00	-	4
3225	3225-5d	2	Mock	Mock	0.00	0.00	2
3225	3225-6c	2	<i>Closterovirus</i>	<i>Enamovirus</i>	0.25	-	4
3225	3225-6c	2	<i>Enamovirus</i>	<i>Closterovirus</i>	-	0.50	4
3225	3225-6c	2	Mock	<i>Closterovirus</i>	-	0.00	4
3225	3225-6c	2	Mock	<i>Enamovirus</i>	0.00	-	4
3225	3225-6c	2	Mock	Mock	0.00	0.00	2

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828 **Supplementary table 2. Model coefficients testing the effect of virus inoculation (*Closterovirus* or**

829 *Enamovirus*) on host infection rate among 24 different *Plantago lanceolata* genotypes. Model

830 variables included host genotype, inoculation treatment (*Closterovirus* or *Enamovirus*) and the

831 interaction between these two. For all variables, one level is a reference level included in the intercept.

	Estimate	Std. error	z-value	p-value
(Intercept)	-1.79	1.08	-1.66	0.097
Genotype 1030-4a	2.71	1.366	1.98	0.047
Genotype 1367-10	-17.77	4.81E+03	-3.70E-03	0.997
Genotype 1367-2c	-17.77	4.39E+03	-4.05E-03	0.997
Genotype 1367-8	0.69	1.581	0.44	0.661
Genotype 1367-9d	0.41	1.555	0.26	0.794
Genotype 187-1b	-17.77	5.38E+03	-3.31E-03	0.997
Genotype 187-3c	0.41	1.555	0.26	0.794
Genotype 187-4d	-17.77	5.38E+03	-3.31E-03	0.997
Genotype 187-6b	-17.77	5.38E+03	-3.31E-03	0.997
Genotype 3225-1	1.1	1.384	0.79	0.427
Genotype 3225-2a	1.48E-14	1.528	9.67E-15	> .999
Genotype 3225-3a	0.18	1.538	0.12	0.906
Genotype 3225-5d	-17.77	4.81E+03	-3.70E-03	0.997
Genotype 3225-6c	0.69	1.581	0.44	0.661
Genotype 853-1	-17.77	6.21E+03	-2.86E-03	0.998
Genotype 853-2d	-17.77	6.21E+03	-2.86E-03	0.998
Genotype 853-6b	-17.77	6.21E+03	-2.86E-03	0.998
Genotype 946-10a	0.69	1.581	0.44	0.661
Genotype 946-2a	1.39	1.414	0.98	0.327
Genotype 946-4a	0.69	1.581	0.44	0.661
Genotype 946-5a	0.41	1.555	0.26	0.794
Genotype 946-7b	5.94E-15	1.528	3.89E-15	> .999
Genotype 950-8b	-17.77	6.21E+03	-2.86E-03	0.998
Inoculation treatment (<i>Enamovirus</i>)	1.5	1.323	1.14	0.256
Genotype 1030-4a × Inoculation treatment (<i>Enamovirus</i>)	-2.71	1.742	-1.55	0.12
Genotype 1367-10 × Inoculation treatment (<i>Enamovirus</i>)	16.68	4.81E+03	3.47E-03	0.997
Genotype 1367-2c × Inoculation treatment (<i>Enamovirus</i>)	16.45	4.39E+03	3.75E-03	0.997
Genotype 1367-8 × Inoculation treatment (<i>Enamovirus</i>)	-19.97	5.38E+03	-3.71E-03	0.997
Genotype 1367-9d × Inoculation treatment (<i>Enamovirus</i>)	-0.52	1.958	-0.27	0.789
Genotype 187-1b × Inoculation treatment (<i>Enamovirus</i>)	-1.5	7.60E+03	-1.98E-04	> .999
Genotype 187-3c × Inoculation treatment (<i>Enamovirus</i>)	0.29	1.96E+00	0.15	0.883
Genotype 187-4d × Inoculation treatment (<i>Enamovirus</i>)	-1.5	7.60E+03	-1.98E-04	> .999
Genotype 187-6b × Inoculation treatment (<i>Enamovirus</i>)	-1.5	7.60E+03	-1.98E-04	> .999
Genotype 3225-1 × Inoculation treatment (<i>Enamovirus</i>)	-1.5	1.803	-0.83	0.404
Genotype 3225-2a × Inoculation treatment (<i>Enamovirus</i>)	-1.5	2.021	-0.74	0.457
Genotype 3225-3a × Inoculation treatment (<i>Enamovirus</i>)	-1.5	2.037	-0.74	0.46
Genotype 3225-5d × Inoculation treatment (<i>Enamovirus</i>)	17.66	4.81E+03	3.67E-03	0.997
Genotype 3225-6c × Inoculation treatment (<i>Enamovirus</i>)	-19.97	5.38E+03	-3.71E-03	0.997
Genotype 853-1 × Inoculation treatment (<i>Enamovirus</i>)	-1.5	8.78E+03	-1.71E-04	> .999
Genotype 853-2d × Inoculation treatment (<i>Enamovirus</i>)	18.76	6.21E+03	3.02E-03	0.998
Genotype 853-6b × Inoculation treatment (<i>Enamovirus</i>)	17.37	6.21E+03	2.80E-03	0.998
Genotype 946-10a × Inoculation treatment (<i>Enamovirus</i>)	-0.41	2.021	-0.2	0.841
Genotype 946-2a × Inoculation treatment (<i>Enamovirus</i>)	-2.48	1.958	-1.27	0.204
Genotype 946-4a × Inoculation treatment (<i>Enamovirus</i>)	0.69	2.102	0.33	0.742
Genotype 946-5a × Inoculation treatment (<i>Enamovirus</i>)	-19.68	4.81E+03	-4.09E-03	0.997
Genotype 946-7b × Inoculation treatment (<i>Enamovirus</i>)	-1.29E-14	1.871	-6.92E-15	> .999
Genotype 950-8b × Inoculation treatment (<i>Enamovirus</i>)	17.37	6.21E+03	2.80E-03	0.998

832

833

834

835

836 **Supplementary table 3. Post-hoc test comparing the infection status of the host between the two**
 837 **inoculation treatments (*Enamovirus* and *Closterovirus*) within 24 *Plantago lanceolata* genotypes.**
 838 Results of a pairwise comparison of the estimated marginal means calculated from the Generalized
 839 linear model (Table 1). Tukey adjustment was applied for multiple comparisons.

Genotype	Contrast	Estimate	Std.error	df	z-value	p-value
1030-2b	<i>Enamovirus</i> - <i>Closterovirus</i>	1.504	1.32	Inf	1.137	0.2555
1030-4a	<i>Enamovirus</i> - <i>Closterovirus</i>	-1.204	1.13	Inf	-1.063	0.2879
1367-10	<i>Enamovirus</i> - <i>Closterovirus</i>	18.18	4.81E+03	Inf	0.004	0.997
1367-2c	<i>Enamovirus</i> - <i>Closterovirus</i>	17.957	4.39E+03	Inf	0.004	0.9967
1367-8	<i>Enamovirus</i> - <i>Closterovirus</i>	-18.467	5.38E+03	Inf	-0.003	0.9973
1367-9d	<i>Enamovirus</i> - <i>Closterovirus</i>	0.981	1.44	Inf	0.68	0.4968
187-1b	<i>Enamovirus</i> - <i>Closterovirus</i>	0	7.60E+03	Inf	0	1
187-3c	<i>Enamovirus</i> - <i>Closterovirus</i>	1.792	1.44	Inf	1.241	0.2145
187-4d	<i>Enamovirus</i> - <i>Closterovirus</i>	0	7.60E+03	Inf	0	1
187-6b	<i>Enamovirus</i> - <i>Closterovirus</i>	0	7.60E+03	Inf	0	1
3225-1	<i>Enamovirus</i> - <i>Closterovirus</i>	0	1.23	Inf	0	1
3225-2a	<i>Enamovirus</i> - <i>Closterovirus</i>	0	1.53	Inf	0	1
3225-3a	<i>Enamovirus</i> - <i>Closterovirus</i>	0	1.55	Inf	0	1
3225-5d	<i>Enamovirus</i> - <i>Closterovirus</i>	19.161	4.81E+03	Inf	0.004	0.9968
3225-6c	<i>Enamovirus</i> - <i>Closterovirus</i>	-18.467	5.38E+03	Inf	-0.003	0.9973
853-1	<i>Enamovirus</i> - <i>Closterovirus</i>	0	8.78E+03	Inf	0	1
853-2d	<i>Enamovirus</i> - <i>Closterovirus</i>	20.259	20.259	Inf	0.003	0.9974
853-6b	<i>Enamovirus</i> - <i>Closterovirus</i>	18.873	6.21E+03	Inf	0.003	0.9976
946-10a	<i>Enamovirus</i> - <i>Closterovirus</i>	1.099	1.53	Inf	0.719	0.472
946-2a	<i>Enamovirus</i> - <i>Closterovirus</i>	-0.981	1.44	Inf	-0.68	0.4968
946-4a	<i>Enamovirus</i> - <i>Closterovirus</i>	2.197	1.63	Inf	1.346	0.1785
946-5a	<i>Enamovirus</i> - <i>Closterovirus</i>	-18.18	4.81E+03	Inf	-0.004	0.997
946-7b	<i>Enamovirus</i> - <i>Closterovirus</i>	1.504	1.32	Inf	1.137	0.2555
950-8b	<i>Enamovirus</i> - <i>Closterovirus</i>	18.873	6.21E+03	Inf	0.003	0.9976

840

841

842

843

844 **Supplementary table 4. Post-hoc test comparing the inoculation treatments (*Enamovirus* and**
 845 ***Closterovirus*) across all *Plantago lanceolata* genotypes.** Results of a pairwise comparison of the
 846 estimated marginal means calculated from the Generalized linear model (Table 1). Tukey adjustment
 847 was applied for multiple comparisons.

Contrast	Estimate	SE	Df	Z-value	p-value
Inoculation treatment (<i>Enamovirus</i> - <i>Closterovirus</i>)	2.71	923	Inf	0.003	0.997

848

849

850

851 **Supplementary table 5. Model coefficients testing the effect of first inoculation (*Enamovirus* or**

852 **mock) on sequential inoculation success of *Closterovirus* among 7 different *Plantago lanceolata***

853 **genotypes.** Model variables included host genotype, first inoculation treatment (*Enamovirus* or mock)

854 and the interaction between these two. For all variables, one level is a reference level included in the

855 intercept.

	Estimate	Std. error	z-value	p-value
(Intercept)	1.1	1.155	0.951	0.341
Genotype 1367-8	-20.66	5.38E+03	-4.00E-03	0.997
Genotype 187-4d	-20.66	5.38E+03	-4.00E-03	0.997
Genotype 3225-5d	-20.66	5.38E+03	-4.00E-03	0.997
Genotype 3225-6c	-20.66	5.38E+03	-4.00E-03	0.997
Genotype 946-10a	-2.2	1.633	-1.346	0.178
Genotype 946-5a	-20.66	4.81E+03	-4.00E-03	0.997
<i>First inoculation treatment (Enamovirus)</i>	-20.66	4.81E+03	-4.00E-03	0.997
<i>Genotype 1367-8 × First inoculation treatment (Enamovirus)</i>	40.23	7.21E+03	6.00E-03	0.996
<i>Genotype 187-4d × First inoculation treatment (Enamovirus)</i>	39.13	7.21E+03	5.00E-03	0.996
<i>Genotype 3225-5d × First inoculation treatment (Enamovirus)</i>	39.83	7.21E+03	6.00E-03	0.996
<i>Genotype 3225-6c × First inoculation treatment (Enamovirus)</i>	40.23	7.21E+03	6.00E-03	0.996
<i>Genotype 946-10a × First inoculation treatment (Enamovirus)</i>	2.2	7.21E+03	0	1
<i>Genotype 946-5a × First inoculation treatment (Enamovirus)</i>	38.84	6.80E+03	6.00E-03	0.995

856

857

858 **Supplementary table 6. Model coefficients testing the effect of first inoculation (*Closterovirus* or**

859 **mock) on sequential inoculation success of *Enamovirus* among 7 different *Plantago lanceolata***

860 **genotypes.** Model variables included host genotype, first inoculation treatment (*Closterovirus* or

861 mock) and the interaction between these two. For all variables, one level is a reference level included

862 in the intercept.

	Estimate	Std. error	z-value	p-value
(Intercept)	-1.1	1.155	-0.951	0.341
Genotype 1367-8	-19.47	8.87E+03	-2.00E-03	0.998
Genotype 187-4d	1.29E-14	1.63E+00	0	1
Genotype 3225-5d	-19.47	8.87E+03	-2.00E-03	0.998
Genotype 3225-6c	-19.47	8.87E+03	-2.00E-03	0.998
Genotype 946-10a	-1.17E-15	1.63E+00	0	1
Genotype 946-5a	-19.47	7.93E+03	-2.00E-03	0.998
<i>First inoculation treatment (Closterovirus)</i>	-0.29	1.61E+00	-0.179	0.858
<i>Genotype 1367-8 × First inoculation treatment (Closterovirus)</i>	0.29	1.25E+04	0	1
<i>Genotype 187-4d × First inoculation treatment (Closterovirus)</i>	-19.18	8.87E+03	-2.00E-03	0.998
<i>Genotype 3225-5d × First inoculation treatment (Closterovirus)</i>	19.47	8.87E+03	2.00E-03	0.998
<i>Genotype 3225-6c × First inoculation treatment (Closterovirus)</i>	19.76	8.87E+03	2.00E-03	0.998
<i>Genotype 946-10a × First inoculation treatment (Closterovirus)</i>	19.18	8.87E+03	-2.00E-03	0.998
<i>Genotype 946-5a × First inoculation treatment (Closterovirus)</i>	0.29	1.12E+04	0	1

863

864