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Abstract

Host-parasite coevolution describes the continuous reciprocal selection driving host defense
and parasite infectivity, with direct consequences for disease dynamics. While abundant
evidence exists for coevolution shaping host-parasite dynamics within the ‘one host-one
parasite’ framework, hosts are typically infected by multiple parasites and the extent to which
coevolutionary processes shape within-host parasite communities remains poorly understood.
Investigating these interactions is essential for understanding how coevolution drives parasite
diversity, competition, and coexistence within hosts. Here, we conducted a local adaptation
experiment to investigate the effects of coevolution on within-host viral community assembly
in Plantago lanceolata. Greenhouse-grown individuals were reciprocally transplanted into
wild populations during natural viral epidemics. We combined small-RNA sequencing to
identify the viral communities and joint species distribution modelling to quantify the effects
of local adaptation, population and host characteristics on viral community assembly. Our
results show that host populations vary in the extent to which local adaptation influences
within-host viral diversity. Across all populations, host maternal line and origin population
were the main determinants of viral community composition and infection status. The effects
varied across virus families, suggesting virus-specific assembly processes and variation in the

potential for coevolution to shape these interactions.
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Introduction

Coevolutionary theory predicts reciprocal selection to drive key interaction traits in hosts and
parasites — resistance and infectivity, respectively (1,2). Coevolution is fundamental for
understanding host-parasite interactions and disease dynamics in nature, as the presence of
parasites depends on the availability of susceptible hosts. Indeed, host-parasite interactions
provide some of the most compelling evidence for the theory of coevolution, often
demonstrated through local adaptation experiments (3—6). However, much of this work has
focused on the one-host-one-parasite framework, although in nature hosts are rarely infected
by a single parasite and often support complex parasite communities (7—10). Despite the
growing interest in within-host parasite communities in natural environments, there remains a

gap in our understanding of how coevolution can shape these complex communities (11,12).

Genetic variation and genotype-genotype specificity in the interaction are prerequisites
for coevolution. Indeed, the ability to infect or resist infection can be genotype-dependent:
some parasite genotypes can infect only certain host genotypes, while some host genotypes
exhibit resistance to specific parasite genotypes (13—15). This variation is maintained by
evolutionary mechanisms, such as parasite-imposed negative frequency-dependent selection
and arms-race dynamics, which can favour different host genotypes in different populations,
contributing to local adaptation (3,15,16). Notably, the outcome of host genotype x parasite
genotype interactions may be altered under multiple parasite attack (17,18), with co-occurring
parasites influencing community assembly either directly through parasite-parasite interactions
(19,20) or indirectly through host-mediated responses (14,21). If host colonization ability — a
trait expected to be shaped by coevolution — is sensitive to co-occurring parasites, then we may
expect community assembly to be shaped by both ecological and evolutionary dynamics (22).
The community monopolization hypothesis — evoked to explain evolutionary priority effects

— predicts that locally adapted resident species can have a competitive advantage over later
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arriving individuals, potentially influencing parasite community dynamics (23,24). It has been
demonstrated that adaptation can reduce competitive dominance with direct consequences for
community assembly (24), and that locally adapted parasites can influence the composition of

the entire community (25,26).

Viruses, similar to other parasites, can form highly diverse communities (20,27-32).
As obligate parasites, viral reproduction relies on the virus’ ability to infect and hijack host cell
machinery (33), making host-virus interactions a key factor in shaping viral communities
(14,34,35). Here, to investigate how viral community assembly is influenced by coevolution,
we conducted a reciprocal transplant experiment, by placing naive Plantago lanceolata
individuals as sentinels in sympatric and allopatric populations during naturally occurring viral
epidemics. We sampled the plant individuals at the end of the growth season for small-RNA
sequencing to characterize viral communities and used joint species distribution modelling (36)
to tease apart the effects of local adaptation, population and host characteristics on viral
community assembly. Specifically, we ask: 1) Can we detect viral local adaptation? ii) What is
the importance of local adaptation in determining viral community assembly? iii) What is the

role of population and host characteristics in viral community assembly?

Materials and Methods

Study species

The host, Plantago lanceolata, is a perennial herb reproducing clonally with side rosettes or
sexually with wind-dispersed pollen (37). Plantago lanceolata occurs worldwide, and in
Finland, P. lanceolata can be found mainly in SW Finland. In the Aland Islands (an area
spanning 50 x 70 km), P. lanceolata forms a large network consisting of over 4000 small

fragmented populations (38).
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The P. lanceolata host populations in the Aland Islands harbour complex viral
communities (19,20). Five novel P. lanceolata infecting viruses have been characterised from
this system, and PCR primers have been developed for their detection (14,39,40). Viral
symptoms in wild hosts are challenging to identify but can include yellowing or redness of the
leaf, curliness and necrotic lesions (40-42). Plantago lanceolata latent virus (PILV) infection

has been linked to yellowing of the leaf (40,43).

Preparation of host plant material and field experiment

To investigate the role of local adaptation in viral community assembly, we conducted a
reciprocal transplant experiment in three P. lanceolata populations (ID: s: 9205, 876, and 950)
in the Aland Islands. In autumn 2020, seeds were collected from eight individuals per studied
population and germinated in early April 2021 with the aim of obtaining up to 15 offspring per
maternal line. The seeds from 24 maternal lines (Supplementary table 1), were sown in peat
pots with a 3:1 mixture of potting soil and sand and then placed in a growth chamber with a
16:8 h light-dark cycle. After three weeks, the seedlings were transferred to the greenhouse and
replanted into 10 cm %10 cm pots filled with a 1:1 mixture of potting soil and sand. The plants
were watered as needed and, when large enough, fertilized weekly with NPK fertilizer (7:2:2).
During the growth period in the greenhouse, leaf samples were collected for PCR screening to
confirm that each maternal line was virus-free of PILV, Plantago latent caulimovirus, Plantago
betapartitivirus, Plantago enamovirus, and Plantago closterovirus, all of which are among the
most common viruses in the Aland Islands populations (39,40). Two weeks prior to the

transplant experiment, the plants were treated with fungicide (Bordeaux mixture).

In early June 2021, the greenhouse-grown naive plants were taken to the Aland Islands

and placed in their transplant populations. For each maternal line, five offspring were placed
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in their sympatric P. lanceolata population and five in each of the two allopatric populations
(Figure 1). For four maternal lines with fewer offspring, priority was given to sympatric
placement, and the remaining individuals were distributed among the two allopatric
populations (Supplementary table 1). Finally, the experiment consisted of 348 plants across the
three transplant populations (Supplementary table 1). The plants were randomly placed among
the natural vegetation and kept in pots placed inside plastic boxes (approximately 13 cm x 11
cm) to isolate them from the local soil. To minimize within-population spatial effects, we
shuffled the plants among the plastic boxes three times per week for the duration of the

experiment. The plants were watered as needed.

After six weeks of exposure, a 3 cm? piece of leaf tissue was collected for RNA
extraction and snap-frozen in liquid nitrogen. At this time, we also recorded host characteristics
that prior work suggests could affect viral infections on P. lanceolata. Plant size was measured
as n x A, where n is the number of leaves and 4 = wab, where a is the half axis of the width of

the largest leaf, and b is the half axis of the length of the largest leaf (14,19).

RNA extraction and RNA purification

Total RNA was extracted using a modified acid phenol-chloroform extraction protocol (44). A
3 cm? leaf tissue sample was ground in liquid nitrogen, after which 800 ul of warm extraction
buffer was added and mixed thoroughly. The extraction buffer consisted of 2%
hexadecyltrimethylammonium bromide (Sigma-Aldrich USA), 2% of polyvinylpyrrolidone K-
30 (MW 40 000, Sigma-Aldrich USA), 100 mM of Tris-HCI (pH 8.0, Thermo Fisher Scientific,
USA), 25 mM of Ethylenediaminetetraacetic acid (pH 8.9, Sigma-Aldrich, USA), 2.0 M of
NaCl (Sigma-Aldrich, USA) and 2% of B-mercaptoethanol (Sigma-Aldrich, USA). Next, 800

ul of acid phenol-chloroform-isoamyl alcohol (IAA; 25:24:1) was added, and the sample was
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centrifuged at 13500 rpm for 15 minutes at RT. The supernatant was transferred to a clean tube,
mixed with 1 ml phenol-chloroform-IAA and centrifuged under the same conditions. RNA was
precipitated by adding 160 pl of 10 M LiCl and incubating overnight at +4 °C. The following
day, samples were purified with chloroform-IAA (24:1) purification step and washed twice
with ethanol. The RNA pellet was resuspended in 25 pl of nuclease-free water and treated with
Ambion® DNA-free™ DNA removal Kit (Invitrogen, USA). RNA concentration was
measured using Nanodrop 2000 (Thermo Fischer Scientific, USA) and Qubit (Thermo Fischer

Scientific, USA), and RNA was stored at -80 °C.

Small-RNA sequencing and bioinformatic pipeline

To identify the viral communities present in the sentinel plants, we assigned the samples to
small-RNA (sRNA) sequencing. From the 348 sampled experimental plants, we randomly
selected samples from three individuals from each maternal line from each transplant
population to be assigned for sSRNA sequencing. From maternal line 876-4, we sequenced three
samples from the sympatric transplant population but only one sample from one of the
allopatric populations, resulting in 211 samples assigned for SRNA sequencing. The RNA
extracted from the selected samples was diluted with nuclease-free water and sent to the
sequencing facility according to the sequencing company’s instructions (Fasteris SA,

Switzerland).

The sRNA sequencing and library preparation were carried out at Fasteris SA
(Switzerland). Small-RNA cDNA libraries were prepared using QIAseq miRNA Library Kit
(Qiagen) according to Fasteris SA Small RNA-Seq Gel-free protocol with 100 ng of total RNA.
Sequencing was performed using [llumina NovaSeq 6000 (Illumina Inc, San Diego, California,

USA) and targeted insert sizes from 0 nt to 43 nt with an average library yield of 1779 Mb.
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Inserts with sizes from 20 nt to 25 nt were selected for bioinformatic analyses. Sequencing
adapter removal was done using Trimmomatics software (45), and the reads were de novo
assembled to contigs using VirusDetect software (46). VirusDetect software conducts
BLASTX and BLASTN searches against curated plant virus database (vrl Plants 248 U100)
of VirusDetect for each sample separately. We used default parameters BLASTX and
BLASTN searches, default similarity 25 % and p-value le-5. We then assigned the obtained

contigs to virus family level for the statistical analyses (Supplementary table 2).

Statistical analysis

All statistical analyses were conducted in R (version 4.2.2; (47). To test whether local
adaptation influenced host infection status (infected by any studied virus= 1, not infected by
any studied virus = 0), we fitted generalized linear mixed models (GLMM) using the
"glmmTMB" R-package (48) with binomial distribution and logit link function. Specifically,
we constructed GLMMs to test the two key metrics of local adaptation: 1) local vs. foreign and
i1) home vs. away (49,50). For the local vs. foreign model (LF), a categorical variable
representing sympatry or allopatry, nested within transplant population, was included as a fixed
effect. Seed origin population and plant size were included as additional fixed effects and
maternal line nested within seed origin population was included as a random effect to account
for genetic variation among hosts. For the home vs. away model (HA), the model structure was
identical, except that the categorical variable of sympatry or allopatry was nested within seed
origin population and included as a fixed effect. Model assumptions were assessed using R-
package “DHARMa” (51). The significance of the main effects were evaluated using Wald X?
tests (function “Anova” in R-package “car”; (52). For significant effects, pairwise comparisons

of the estimated marginal means were performed using functions “contrasts” and “emmeans”
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from the R-package “emmeans” (version 1.8.8; (53), applying Tukey’s method for multiple

comparisons.

To investigate the effects of local adaptation, population and host characteristics on
within-host viral diversity, while also accounting for viral (co-)occurrence patterns in the
transplant experiment, we implemented Joint Species Distribution Modelling (JSDM) using
the hierarchical modelling of species communities (HMSC) framework (54,55). HMSC is a
hierarchical generalized linear mixed model with Bayesian inference and allows the analysis
of multiple species’ responses to ecological variables while incorporating species- and
community-level parameters and accounting for covariation among species. Th response
variables in our HMSC model were the occurrences of the three most prevalent virus families:
Caulimoviridae, Partitiviridae and Pospivirodae. As fixed effect predictors, we included 1)
maternal line ID, 2) seed origin population, 3) sympatry/allopatry, 4) plant size, and 5) signs
of herbivory. Transplant population was included as a random effect. Including
sympatry/allopatry as a fixed effect allowed us to directly estimate the effect of local adaptation
in our model. We used four separate Markov chain Monte Carlo (MCMC) chains to sample the
posterior distribution. Each chain was run for 1 875 000 iterations, and the first 625 000 were
discarded as burn-in. Subsequently, the remaining iterations were thinned by 5000, resulting in
250 posterior samples per chain. Finally, we obtained a total of 1000 posterior samples across
all four chains. The model fit was evaluated by examining explanatory and predictive
performance via ten-fold cross-validation, using Tjur’s coefficient of determination (Tjur R?)
and area under the curve (AUC), respectively. The HMSC analyses were ran using the R-

package “Hmsc” (version 3.0-14).
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Results

Description of the SRNA sequencing data

From the 211 sequenced individuals, the SRNA sequencing yielded on average 23,799,485
reads per plant tissue sample (min 17,364,260; max 49,152,805; SD 7,738,962). The
VirusDetect pipeline assembled 2374 contigs ranging from 41 to 2080 nt in length (mean length
of 159 nt and SD 163 nt). Of these, 11% of contigs had virus-specific BLASTN hits with 80—

100% identity (mean 93%), while 89% had BLASTX hits with 22—100% identity (mean 67%).

In total, we assembled 1151 plant virus-associated contigs across the 211 individuals,
representing six plant virus families: Tymoviridae, Botourmiaviridae, Closteroviridae,
Partitiviridae, Caulimoviridae and Pospiviroidae (Figure 2C, Supplementary table 2). From
each family, we identified 1 to 3 virus genera and 3 to 842 contigs for each genus. At the species
level, we acquired BLAST hits to 1 to 15 species, depending on the virus genus (Supplementary
table 2). Overall, 26% of the host individuals were infected, and of those 86% were colonized
by one virus family and 14% by two virus families. The most prevalent families were
Caulimoviridae and Pospiviroidae (both in 43% of the infected individuals), whereas
Tymoviridae and Botourmiaviridae were the rarest (both in 2% of the infected individuals;

Figure 2C).

Analysis of viral local adaptation: local vs. foreign

Using the local vs. foreign criterion, we observed indications of viral local adaptation in
transplant population 876, where local hosts had higher infection rates than foreign hosts. A
similar trend was observed in population 950, where local hosts showed the second-highest
infection rates (Figure 2A). Conversely, in population 9205, local hosts harboured fewer

infections than foreign hosts — suggesting viral maladaptation. However, the GLMM (LF) did
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not provide statistical support for these trends (Wald X? = 1.53, P = 0.673; Table 1). Seed
origin populations differed significantly in infection rates (Wald X2 = 7.37, P = 0.025; Table
1), with individuals originating from population 9205 having significantly fewer infections
than those originating from population 876 (Figure 2A, Supplementary table 3A; estimate =

2.071, SE = 0.778, z-ratio = 2.661, P = 0.021).

Analysis of viral local adaptation: home vs. away

Applying the home vs. away criterion, we found no evidence of viral local adaptation (Figure
2B). Hosts from populations 876 and 950 had lower infection rates in their respective home
populations than in their away populations, suggesting viral maladaptation (Figure 2B). Our
statistical analysis (model HA) did not detect significant differences in infection rates between
home and away habitats. However, model coefficients for the “sympatry* term nested within
seed origin population were lower, suggesting higher infection rates in away habitats
(Supplementary table 4). Additionally, seed origin population significantly influenced host
infection status (Wald X2 = 9.09, P=0.010; Table 2). Post hoc comparisons showed that
individuals from population 876 had significantly higher infection rates than those from
population 9205 (estimate = 1.818, SE = 0.649, z-ratio = 2.802, P = 0.014; Supplementary table

3B., Figure 2B and C).

Analysis of viral (co-)occurrence patterns

We applied the HMSC approach to investigate the factors influencing the (co-)occurrence of
the detected virus families in a local adaptation experiment. The model predicted virus family
occurrences well, although model performance varied among virus families (Supplementary
table 5). Tjur R? and AUC were used to quantify the explanatory and predictive performance
of the model, with a mean Tjur R? of 0.27 (range among the detected virus families 0.10-0.47)

and a mean AUC of 0.89 (0.80-0.98). The predictive power of the model was based on ten-fold
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cross-validations, where the mean Tjur R? was 0.19 (range 0.01 - 0.4) and the mean AUC was

0.74 (range 0.54-0.88; Supplementary table 5) varying among virus families.

In terms of contributions to the explained variation in our HMSC model, host maternal
line was the strongest determinant of viral occurrences, explaining on average 62% of the
variance. However, the effect varied among virus families and was most pronounced for
Pospiviroidae (73%) and less important in explaining Partitiviridae (60%) and Caulimoviridae
54%) occurrences (Figure 3, Supplementary table 6). For example, maternal line 876-6,
displayed the highest infection rates, with 89% of the individuals infected (Figure 2C). Seed
origin population was the second most important predictor, explaining on average of 29% of
the variance. The effect of host maternal line varied among virus families, with a more
pronounced role for Caulimoviridae (35%) and Partitiviridae (33%), while being less
important for explaining the occurrences of Pospiviroidae (18%; Figure 3, Supplementary table
6). Consistent with this, individuals from seed origin population 876 harboured 50% of all
detected viral infections, whereas individuals originating from population 9205 harboured only

16% of all infections (Figure 2C).

Host plant size accounted for an average of 4% of the variation in viral occurrences,
with the strongest effect observed for Caulimoviridae (7%). Local adaptation
(sympatry/allopatry) had a smaller role in contributing to explained variation, accounting for
2% on average across virus families (Figure 3, Supplementary table 6). Herbivory had minimal
effect, explaining only 0% to 0.1% of the viral occurrences. The random effect of transplant
population explained on average 2% of the variation across virus families and was slightly
more important in explaining Pospiviroidae occurrences (4%, Figure 3, Supplementary table
6). Residual correlations among virus families at the random level were not significant,
suggesting that after accounting for the effects of the fixed explanatory variables, viral

occurrences were not influenced by interactions between virus families.
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Discussion

Here, we used a reciprocal transplant experiment combined with SRNA sequencing and JSDM
modelling to investigate the role of local adaptation in shaping within-host viral (co-
)Joccurrences. Although we observed trends suggesting viral local adaptation and maladaptation
when applying the local vs. foreign and home vs. away criteria, the effects were not statistically
significant. Instead, we found host maternal line and host seed origin population to be the most
important determinants of host infection status and viral community structure. The strength of
these effects varied across virus families, indicating virus-specific assembly processes and
variation in the extent to which coevolution shapes these interactions. Jointly our results
identify key drivers of viral community assembly and provide insight into how within-host
dynamics could scale up to predict the ecological and evolutionary consequences of disease in

natural systems.

Using sRNA sequencing, we detected viruses from six virus families, five of which
have been previously identified from this system (20,43). Overall, 21% of the sampled sentinel
plants were infected, exhibiting a lower infection rate than previously reported from hosts in
this system (20,43). Despite the low overall infection prevalence, we found individuals
originating from population 876 harbouring significantly higher infection rates than those from
population 9205. Viral community composition also varied among seed origin populations and
among maternal lines. Individuals from seed origin population 876 harboured viruses from five
different virus families (Caulimoviridae, Pospiviroidae, Partitiviridae, Botourmiaviridae and
Closteroviridae), whereas individuals from population 950 were infected by only three virus
families (Pospiviroidae, Caulimoviridae and Partitiviridae). The overall lower infection
prevalence may be due to differences in exposure time to viral epidemics and additionally, viral

prevalence may vary annually due to several factors, such as temperature, humidity and vector
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behaviour — components of natural systems that are difficult to control in a field experiment

(56-58).

Using a reciprocal transplant experimental approach, we were able to apply the two key
metrics of local adaptation: local vs. foreign and home vs. away. While we observed signs of
viral local adaptation in transplant population 876 under the local vs. away criterion, the pattern
was not statistically significant (GLMM LF). Similarly, analysis on the home vs. away metric
showed no statistically significant effect of local adaptation on host infection status (GLMM
HA). In line with these results, when investigating the effects of local adaptation on viral (co-
)occurrence patterns with JSDM in the HMSC framework, we found local adaptation to explain
on average only 2.3% of the viral occurrences. However, when using the home vs. away
criterion (GLMM HA), individuals from seed origin populations 876 and 950 harboured the
lowest infection rates in their home populations, suggesting viral maladaptation. Patterns of
maladaptation are not unexpected given the dynamic, cyclic nature of coevolutionary
interactions between the host and its parasite (59). In the Aland Islands P. lanceolata
populations are highly fragmented, and the connectivity levels of the populations vary (60,61)
and consequently too high or low gene flow between populations could facilitate parasite
maladaptation (59,62—64). Previous studies have shown that well-connected host populations
are less affected by disease (65,66), a phenomenon that is likely due to higher resistance

diversity in these populations maintained by gene flow (61).

Seed origin population was a strong predictor of host infection status. Individuals
originating from population 876 were more frequently infected and harboured the most diverse
viral communities. In contrast, hosts from population 9205 exhibited high resistance to viral
infection and consequently harboured less complex viral communities. Our HMSC analysis
mirrored these findings, identifying maternal line and seed origin population as the strongest

determinants of viral occurrence across virus families, explaining on average 62% and 29% of



333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

the variation, respectively (Figure 3). The variation in infection rates among host origin
populations, together with the strong maternal line effects for viral occurrences across virus
families, highlights host genetic diversity as a key driver of viral community assembly and
composition in this system. Although evidence for viral local adaptation was limited, the
variation in infections prevalence among host maternal lines indicates strong potential for
coevolution, as genetic variation is a main driver of coevolution (67—69). Moreover, high host
genetic diversity in natural populations can mitigate disease risk, a phenomenon known as the

monoculture effect (70,71).

Hosts encounter a myriad of parasites throughout their lives (43,72—74), and these
interactions can have far-reaching consequences for host-parasite coevolution and population
dynamics (75). Despite this, much of the research on local adaptation has focused on pairwise
host-parasite interactions (76—78), with little focus on the role of parasite communities in
coevolutionary processes. To our knowledge, our study is among the first to study viral local
adaptation within a community ecology framework. After accounting for host attributes, we
found no evidence of virus-virus interactions shaping within-host viral diversity. Instead, host
characteristics, represented by maternal line and host seed origin population, emerged as the
most important predictor of viral community structure and host infection status. Our findings
highlight the importance of host genetic variation in shaping viral communities and contribute
to the growing field of viral community ecology research. Understanding the drivers of
complex host-parasite interactions and processes at the community level is essential for
predicting how disease dynamics scale up from individuals to populations and understanding

the ecological and evolutionary conditions from which novel viral diseases may emerge.
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Figure 1. Reciprocal transplant experiment where Plantago lanceolata individuals from 24
maternal lines originating from three populations were transplanted into their sympatric and
two allopatric populations during natural viral epidemics. We placed 40 individuals into
sympatric population and ~80 individuals into two allopatric populations, with a total of 348
plant individuals across three populations in the Aland Islands SW Finland.
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Figure 2. Proportions of virus infected Plantago lanceolata host individuals in a reciprocal
transplant experiment using (A) local vs. foreign, (B) home vs. away metrics of local
adaptation, and (C) infection pattern across host maternal (n =24) line grouped by seed origin
population. In panel A, colours indicate the seed origin populations and the squares mark the
local host. In panel B, the colours represent the transplant populations and the squares mark
the home habitat of the host (purple = seed origin/transplant population 876 yellow = seed
origin/transplant population 950, and green = seed origin/transplant population 9205). In panel
C colours represent the six virus families detected with SRNA sequencing.
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Table 1. Type I Wald X? test for Generalizer linear mixed model estimating the effects of plant
size, seed origin population, transplant population and local vs. foreign metric of local
adaptation on host infection status (l=infected, O=uninfected) in a reciprocal transplant
experiment in the Aland Islands (model LF).

Fixed effect Wald X? Df p-value
Plant size 1.71 1 0.190
Seed origin population 7.37 2 0.025
Transplant population 1.99 2 0.369
Transplant population : sympatry/allopatry 1.53 3 0.673

Table 2. Type II Wald X2 test for Generalizer linear mixed model testing for the effects of plant
size, seed origin population, transplant population and home vs. away metric of local adaptation
on host infection status (1=infected, O=uninfected) in a reciprocal transplant experiment in the
Aland Islands (model HA).

Fixed effect Wald X? Df p-value
Plant size 1.71 1 0.190
Seed origin population 9.09 2 0.010
Transplant population 1.64 2 0.438
Seed origin population : sympatry/allopatry 1.53 3 0.673

Figure 3. Variance partitioning of the fixed and random effects in the Hierarchical Modelling
of Species Communities model for the three most prevalent virus families (Caulimoviridae,
Partitiviridae, Pospiviridae) in the reciprocal transplant experiment. The six variables
explaining the occurrences the three virus families were: maternal line, seed origin population,
plant size, sympatry/allopatry, herbivory and transplant population (random effect).
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Supplement

Supplementary table 1. The host maternal lines included in a reciprocal transplant
experiment studying viral local adaptation in Plantago lanceolata host populations in the Aland
Islands during naturally occurring viral epidemics. In the table are included the ID of each
maternal line, the ID of the origin population of each maternal line, the ID of the transplant
population where the plants were placed during the experiment and the number of individuals,

and finally, the number of sequenced individuals.
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No individuals in the

Number of individuals

Maternal line Seed origin population Transplant population experiment sequenced
876-1 876 876 5 3
876-1 876 950 5 3
876-1 876 9205 5 3
876-2 876 876 5 3
876-2 876 950 5 3
876-2 876 9205 5 3
876-3 876 876 5 3
876-3 876 950 5 3
876-3 876 9205 5 3
876-4 876 876 5 3
876-4 876 950 1 1
876-4 876 9205 0 0
876-5 876 876 5 3
876-5 876 950 4 3
876-5 876 9205 3 3
876-6 876 876 5 3
876-6 876 950 5 3
876-6 876 9205 5 3
876-7 876 876 5 3
876-7 876 950 5 3
876-7 876 9205 5 3
876-9 876 876 5 3
876-9 876 950 5 3
876-9 876 9205 5 3

950-10 950 876 5 3
950-10 950 950 5 3
950-10 950 9205 5 3
950-2 950 876 5 3
950-2 950 950 5 3
950-2 950 9205 5 3
950-4 950 876 5 3
950-4 950 950 5 3
950-4 950 9205 5 3
950-5 950 876 5 3
950-5 950 950 5 3
950-5 950 9205 5 3
950-6 950 876 5 3
950-6 950 950 5 3
950-6 950 9205 5 3
950-7 950 876 5 3
950-7 950 950 5 3
950-7 950 9205 5 3
950-8 950 876 5 3
950-8 950 950 5 3
950-8 950 9205 5 3
950-9 950 876 5 3
950-9 950 950 5 3
950-9 950 9205 5 3
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Supplementary table 2. Virus families detected by small-RNA sequencing on
Plantago lanceolata individuals (n = 211) included in a transplant experiment in the Aland
Islands studying viral local adaptation. The genera belonging to each virus family are shown
as well as the number of contigs and virus species within each virus family. Reference to the

literature describing the detected family listed in the “reference” column [1-3].

Family Genus Contigs Species References
Botourmiaviridae 3 1
Gammascleroulivirus 3 1
Caulimoviridae 896 21 [1,2,3]
Badnavirus 1 1
Caulimovirus 842 15
Soymovirus 52 5
Closteroviridae 13 5 [1,2,3]
Ampelovirus 1 1
Closterovirus 11 3
unclassified 1 1
Partitiviridae 212 11 [1,2,3]
Betapartitivirus 113
unclassified 99 3
Pospiviridae 24 1 [3]
Pospiviroid 24 1
Tymoviridae 3 1 [1,2,3]
Maculavirus 3 1
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Supplementary table 3. Post hoc test comparing the infection status of the host
Plantago lanceolata from the three seed origin populations in a local adaptation experiment in
the Aland Islands during naturally occurring viral epidemics. Pairwise comparison of the
estimated marginal means calculated from both generalized linear mixed effects models A)
model LF and B) model HA (Table 1 and 2). P-values are Tukey adjusted.

A.
Contrast Estimate SE Df Z ratio p-value
Seed origin population 876 — Seed origin population 950 1.283 0.703 Inf 1.825 0.161
Seed origin population 876- Seed origin population 9205 2.071 0.778 Inf 2.661 0.021
Seed origin population 950 — Seed origin population 9205 0.788 0.736 Inf 1.070 0.532
B.
Contrast Estimate SE Df Z ratio p-value
Seed origin population 876 — Seed origin population 950 0.703 0.597 Inf 1.176 0.467
Seed origin population 876- Seed origin population 9205 1.818 0.649 Inf 2.802 0.014
Seed origin population 950 — Seed origin population 9205 1.115 0.664 Inf 1.679 0.213
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Supplementary table 4. Model coefficients (model HA) testing for the effects of local
adaptation on host infection status using the home vs. away metrics of local adaptation. For all

variables one levels is a reference level included in the intercept.



Parameter Coefficient Std. Error z-ratio p-value

(Intercept) 0.46958 0.76237 0.61595 0.53792
Plant size -0.00088 0.00067 -1.31035 0.19008
Seed origin population 950 -1.28293 0.70295 -1.82505 0.06799
Seed origin population 9205 -2.07082 0.77828 -2.66078 0.00780
Transplant population 950 -0.47045 0.67071 -0.70142 0.48304
Transplant population 9205 0.28314 0.59902 0.47267 0.63645
Seed origin population 876 x sympatric -0.86730 0.80862 -1.07257 0.28346
Seed origin population 950 x sympatric 0.29316 0.83422 0.35141 0.72528
Seed origin population 9205 x sympatric -0.36200 0.92003 -0.39346 0.69398

685

686

687 Supplementary table 5. Explanatory and predictive performance of the HMSC model

688  of viral occurrence in the experimental plant individuals in terms of Tjur R’ and AUC. The

689  model predictive performance is based on 10-fold cross-validation.

690
Model predictive performance with
Model explanatory performance 10-fold cross validation (cv)
Response variable Tjur R? AUC Tjur R? (cv) AUC (cv)
Caulimoviridae 0.24 0.91 0.16 0.81
Partitiviridae 0.47 0.98 0.4 0.88
Pospivirodae 0.1 0.8 0.01 0.54
691
692

693
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Supplementary table 6. Exact values of the HMSC model variance partitioning for the

three most prevalent virus families detected in a reciprocal transplant experiment studying local

adaptation. Six variables explaining the virus family occurrence in a reciprocal transplant

experiment were: maternal line ID, seed origin population ID, sympatry/allopatry, plant size,

herbivory and transplant population ID (random).

Model parameter

Response variable

Fixed effects:
Maternal line
Seed origin population

Sympatry/allopatry

Plant area
Herbivory
Random effect:

Transplant population

Caulimoviridae

0.54

0.35

0.03

0.07

0

0.02

Partitiviridae

0.60

0.33

0.02

0.03

0

0.02

Pospivirodae

0.73
0.18

0.02

0.03

0.04
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