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Abstract 18 

Host-parasite coevolution describes the continuous reciprocal selection driving host defense 19 

and parasite infectivity, with direct consequences for disease dynamics. While abundant 20 

evidence exists for coevolution shaping host-parasite dynamics within the ‘one host-one 21 

parasite’ framework, hosts are typically infected by multiple parasites and the extent to which 22 

coevolutionary processes shape within-host parasite communities remains poorly understood. 23 

Investigating these interactions is essential for understanding how coevolution drives parasite 24 

diversity, competition, and coexistence within hosts. Here, we conducted a local adaptation 25 

experiment to investigate the effects of coevolution on within-host viral community assembly 26 

in Plantago lanceolata. Greenhouse-grown individuals were reciprocally transplanted into 27 

wild populations during natural viral epidemics. We combined small-RNA sequencing to 28 

identify the viral communities and joint species distribution modelling to quantify the effects 29 

of local adaptation, population and host characteristics on viral community assembly. Our 30 

results show that host populations vary in the extent to which local adaptation influences 31 

within-host viral diversity. Across all populations, host maternal line and origin population 32 

were the main determinants of viral community composition and infection status. The effects 33 

varied across virus families, suggesting virus-specific assembly processes and variation in the 34 

potential for coevolution to shape these interactions.  35 
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Introduction 42 

Coevolutionary theory predicts reciprocal selection to drive key interaction traits in hosts and 43 

parasites – resistance and infectivity, respectively (1,2). Coevolution is fundamental for 44 

understanding host-parasite interactions and disease dynamics in nature, as the presence of 45 

parasites depends on the availability of susceptible hosts. Indeed, host-parasite interactions 46 

provide some of the most compelling evidence for the theory of coevolution, often 47 

demonstrated through local adaptation experiments (3–6). However, much of this work has 48 

focused on the one-host-one-parasite framework, although in nature hosts are rarely infected 49 

by a single parasite and often support complex parasite communities (7–10). Despite the 50 

growing interest in within-host parasite communities in natural environments, there remains a 51 

gap in our understanding of how coevolution can shape these complex communities (11,12). 52 

Genetic variation and genotype-genotype specificity in the interaction are prerequisites 53 

for coevolution. Indeed, the ability to infect or resist infection can be genotype-dependent: 54 

some parasite genotypes can infect only certain host genotypes, while some host genotypes 55 

exhibit resistance to specific parasite genotypes (13–15). This variation is maintained by 56 

evolutionary mechanisms, such as parasite-imposed negative frequency-dependent selection 57 

and arms-race dynamics, which can favour different host genotypes in different populations, 58 

contributing to local adaptation (3,15,16). Notably, the outcome of host genotype × parasite 59 

genotype interactions may be altered under multiple parasite attack (17,18), with co-occurring 60 

parasites influencing community assembly either directly through parasite-parasite interactions 61 

(19,20) or indirectly through host-mediated responses (14,21). If host colonization ability – a 62 

trait expected to be shaped by coevolution – is sensitive to co-occurring parasites, then we may 63 

expect community assembly to be shaped by both ecological and evolutionary dynamics (22). 64 

The community monopolization hypothesis –  evoked to explain evolutionary priority effects 65 

– predicts that locally adapted resident species can have a competitive advantage over later 66 



arriving individuals, potentially influencing parasite community dynamics (23,24). It has been 67 

demonstrated that adaptation can reduce competitive dominance with direct consequences for 68 

community assembly (24), and that locally adapted parasites can influence the composition of 69 

the entire community (25,26).  70 

Viruses, similar to other parasites, can form highly diverse communities (20,27–32). 71 

As obligate parasites, viral reproduction relies on the virus’ ability to infect and hijack host cell 72 

machinery (33), making host-virus interactions a key factor in shaping viral communities 73 

(14,34,35). Here, to investigate how viral community assembly is influenced by coevolution, 74 

we conducted a reciprocal transplant experiment, by placing naïve Plantago lanceolata 75 

individuals as sentinels in sympatric and allopatric populations during naturally occurring viral 76 

epidemics. We sampled the plant individuals at the end of the growth season for small-RNA 77 

sequencing to characterize viral communities and used joint species distribution modelling (36) 78 

to tease apart the effects of local adaptation, population and host characteristics on viral 79 

community assembly. Specifically, we ask: i) Can we detect viral local adaptation? ii) What is 80 

the importance of local adaptation in determining viral community assembly? iii) What is the 81 

role of population and host characteristics in viral community assembly? 82 

 83 

Materials and Methods 84 

Study species  85 

The host, Plantago lanceolata, is a perennial herb reproducing clonally with side rosettes or 86 

sexually with wind-dispersed pollen (37). Plantago lanceolata occurs worldwide, and in 87 

Finland, P. lanceolata can be found mainly in SW Finland. In the Åland Islands (an area 88 

spanning 50 ´ 70 km), P. lanceolata  forms a large network consisting of over 4000 small 89 

fragmented populations (38).  90 



The P. lanceolata host populations in the Åland Islands harbour complex viral 91 

communities (19,20). Five novel P. lanceolata infecting viruses have been characterised from 92 

this system, and PCR primers have been developed for their detection (14,39,40). Viral 93 

symptoms in wild hosts are challenging to identify but can include yellowing or redness of the 94 

leaf, curliness and necrotic lesions (40–42). Plantago lanceolata latent virus (PILV) infection 95 

has been linked to yellowing of the leaf (40,43).  96 

 97 

Preparation of host plant material and field experiment 98 

To investigate the role of local adaptation in viral community assembly, we conducted a 99 

reciprocal transplant experiment in three P. lanceolata populations (ID: s: 9205, 876, and 950) 100 

in the Åland Islands. In autumn 2020, seeds were collected from eight individuals per studied 101 

population and germinated in early April 2021 with the aim of obtaining up to 15 offspring per 102 

maternal line. The seeds from 24 maternal lines (Supplementary table 1), were sown in peat 103 

pots with a 3:1 mixture of potting soil and sand and then placed in a growth chamber with a 104 

16:8 h light-dark cycle. After three weeks, the seedlings were transferred to the greenhouse and 105 

replanted into 10 cm ×10 cm pots filled with a 1:1 mixture of potting soil and sand. The plants 106 

were watered as needed and, when large enough, fertilized weekly with NPK fertilizer (7:2:2). 107 

During the growth period in the greenhouse, leaf samples were collected for PCR screening to 108 

confirm that each maternal line was virus-free of PlLV, Plantago latent caulimovirus, Plantago 109 

betapartitivirus, Plantago enamovirus, and Plantago closterovirus, all of which are among the 110 

most common viruses in the Åland Islands populations (39,40). Two weeks prior to the 111 

transplant experiment, the plants were treated with fungicide (Bordeaux mixture). 112 

 In early June 2021, the greenhouse-grown naïve plants were taken to the Åland Islands 113 

and placed in their transplant populations. For each maternal line, five offspring were placed 114 



in their sympatric P. lanceolata population and five in each of the two allopatric populations 115 

(Figure 1). For four maternal lines with fewer offspring, priority was given to sympatric 116 

placement, and the remaining individuals were distributed among the two allopatric 117 

populations (Supplementary table 1). Finally, the experiment consisted of 348 plants across the 118 

three transplant populations (Supplementary table 1). The plants were randomly placed among 119 

the natural vegetation and kept in pots placed inside plastic boxes (approximately 13 cm × 11 120 

cm) to isolate them from the local soil. To minimize within-population spatial effects, we 121 

shuffled the plants among the plastic boxes three times per week for the duration of the 122 

experiment. The plants were watered as needed.  123 

After six weeks of exposure, a 3 cm2 piece of leaf tissue was collected for RNA 124 

extraction and snap-frozen in liquid nitrogen. At this time, we also recorded host characteristics 125 

that prior work suggests could affect viral infections on P. lanceolata. Plant size was measured 126 

as  n × A, where n is the number of leaves and A = πab, where a is the half axis of the width of 127 

the largest leaf, and b is the half axis of the length of the largest leaf (14,19).  128 

 129 

RNA extraction and RNA purification 130 

Total RNA was extracted using a modified acid phenol-chloroform extraction protocol (44). A 131 

3 cm2 leaf tissue sample was ground in liquid nitrogen, after which 800 µl of warm extraction 132 

buffer was added and mixed thoroughly. The extraction buffer consisted of 2% 133 

hexadecyltrimethylammonium bromide (Sigma-Aldrich USA), 2% of polyvinylpyrrolidone K-134 

30 (MW 40 000, Sigma-Aldrich USA), 100 mM of Tris-HCl (pH 8.0, Thermo Fisher Scientific, 135 

USA), 25 mM of Ethylenediaminetetraacetic acid (pH 8.9, Sigma-Aldrich, USA), 2.0 M of 136 

NaCl (Sigma-Aldrich, USA) and 2% of β-mercaptoethanol (Sigma-Aldrich, USA). Next, 800 137 

µl of acid phenol-chloroform-isoamyl alcohol (IAA; 25:24:1) was added, and the sample was 138 



centrifuged at 13500 rpm for 15 minutes at RT. The supernatant was transferred to a clean tube, 139 

mixed with 1 ml phenol-chloroform-IAA and centrifuged under the same conditions. RNA was 140 

precipitated by adding 160 µl of 10 M LiCl and incubating overnight at +4 °C. The following 141 

day, samples were purified with chloroform-IAA (24:1) purification step and washed twice 142 

with ethanol. The RNA pellet was resuspended in 25 µl of nuclease-free water and treated with 143 

Ambion® DNA-free™ DNA removal Kit (Invitrogen, USA). RNA concentration was 144 

measured using Nanodrop 2000 (Thermo Fischer Scientific, USA) and Qubit (Thermo Fischer 145 

Scientific, USA), and RNA was stored at -80 °C. 146 

 147 

Small-RNA sequencing and bioinformatic pipeline 148 

To identify the viral communities present in the sentinel plants, we assigned the samples to 149 

small-RNA (sRNA) sequencing. From the 348 sampled experimental plants, we randomly 150 

selected samples from three individuals from each maternal line from each transplant 151 

population to be assigned for sRNA sequencing. From maternal line 876-4, we sequenced three 152 

samples from the sympatric transplant population but only one sample from one of the 153 

allopatric populations, resulting in 211 samples assigned for sRNA sequencing. The RNA 154 

extracted from the selected samples was diluted with nuclease-free water and sent to the 155 

sequencing facility according to the sequencing company’s instructions (Fasteris SA, 156 

Switzerland).  157 

The sRNA sequencing and library preparation were carried out at Fasteris SA 158 

(Switzerland). Small-RNA cDNA libraries were prepared using QIAseq miRNA Library Kit 159 

(Qiagen) according to Fasteris SA Small RNA-Seq Gel-free protocol with 100 ng of total RNA. 160 

Sequencing was performed using Illumina NovaSeq 6000 (Illumina Inc, San Diego, California, 161 

USA) and targeted insert sizes from 0 nt to 43 nt with an average library yield of 1779 Mb. 162 



Inserts with sizes from 20 nt to 25 nt were selected for bioinformatic analyses. Sequencing 163 

adapter removal was done using Trimmomatics software (45), and the reads were de novo 164 

assembled to contigs using VirusDetect software (46). VirusDetect software conducts 165 

BLASTX and BLASTN searches against curated plant virus database (vrl_Plants_248_U100) 166 

of VirusDetect for each sample separately. We used default parameters BLASTX and 167 

BLASTN searches, default similarity 25 % and p-value 1e-5. We then assigned the obtained 168 

contigs to virus family level for the statistical analyses (Supplementary table 2).  169 

 170 

Statistical analysis 171 

All statistical analyses were conducted in R (version 4.2.2; (47). To test whether local 172 

adaptation influenced host infection status (infected by any studied virus= 1, not infected by 173 

any studied virus = 0), we fitted generalized linear mixed models (GLMM) using the 174 

"glmmTMB" R-package (48) with binomial distribution and logit link function. Specifically, 175 

we constructed GLMMs to test the two key metrics of local adaptation: i) local vs. foreign and 176 

ii) home vs. away (49,50). For the local vs. foreign model (LF), a categorical variable 177 

representing sympatry or allopatry, nested within transplant population, was included as a fixed 178 

effect. Seed origin population and plant size were included as additional fixed effects and 179 

maternal line nested within seed origin population was included as a random effect to account 180 

for genetic variation among hosts. For the home vs. away model (HA), the model structure was 181 

identical, except that the categorical variable of sympatry or allopatry was nested within seed 182 

origin population and included as a fixed effect. Model assumptions were assessed using R-183 

package “DHARMa” (51). The significance of the main effects were evaluated using Wald X2 184 

tests (function “Anova” in R-package “car”; (52). For significant effects, pairwise comparisons 185 

of the estimated marginal means were performed using functions “contrasts” and “emmeans” 186 



from the R-package “emmeans” (version 1.8.8; (53), applying Tukey’s method for multiple 187 

comparisons.  188 

To investigate the effects of local adaptation, population and host characteristics on 189 

within-host viral diversity, while also accounting for viral (co-)occurrence patterns in the 190 

transplant experiment, we implemented Joint Species Distribution Modelling (JSDM) using 191 

the hierarchical modelling of species communities (HMSC) framework (54,55). HMSC is a 192 

hierarchical generalized linear mixed model with Bayesian inference and allows the analysis 193 

of multiple species’ responses to ecological variables while incorporating species- and 194 

community-level parameters and accounting for covariation among species. Th response 195 

variables in our HMSC model were the occurrences of the three most prevalent virus families: 196 

Caulimoviridae, Partitiviridae and Pospivirodae. As fixed effect predictors, we included 1) 197 

maternal line ID, 2) seed origin population, 3) sympatry/allopatry, 4) plant size, and 5) signs 198 

of herbivory. Transplant population was included as a random effect. Including 199 

sympatry/allopatry as a fixed effect allowed us to directly estimate the effect of local adaptation 200 

in our model. We used four separate Markov chain Monte Carlo (MCMC) chains to sample the 201 

posterior distribution. Each chain was run for 1 875 000 iterations, and the first 625 000 were 202 

discarded as burn-in. Subsequently, the remaining iterations were thinned by 5000, resulting in 203 

250 posterior samples per chain. Finally, we obtained a total of 1000 posterior samples across 204 

all four chains. The model fit was evaluated by examining explanatory and predictive 205 

performance via ten-fold cross-validation, using Tjur’s coefficient of determination (Tjur R2) 206 

and area under the curve (AUC), respectively. The HMSC analyses were ran using the R-207 

package “Hmsc” (version 3.0-14).  208 

 209 

 210 



Results 211 

Description of the sRNA sequencing data 212 

From the 211 sequenced individuals, the sRNA sequencing yielded on average 23,799,485 213 

reads per plant tissue sample (min 17,364,260; max 49,152,805; SD 7,738,962). The 214 

VirusDetect pipeline assembled 2374 contigs ranging from 41 to 2080 nt in length (mean length 215 

of 159 nt and SD 163 nt). Of these, 11% of contigs had virus-specific BLASTN hits with 80–216 

100% identity (mean 93%), while 89% had BLASTX hits with 22–100% identity (mean 67%). 217 

In total, we assembled 1151 plant virus-associated contigs across the 211 individuals, 218 

representing six plant virus families: Tymoviridae, Botourmiaviridae, Closteroviridae, 219 

Partitiviridae, Caulimoviridae and Pospiviroidae (Figure 2C, Supplementary table 2). From 220 

each family, we identified 1 to 3 virus genera and 3 to 842 contigs for each genus. At the species 221 

level, we acquired BLAST hits to 1 to 15 species, depending on the virus genus (Supplementary 222 

table 2). Overall, 26% of the host individuals were infected, and of those 86% were colonized 223 

by one virus family and 14% by two virus families. The most prevalent families were 224 

Caulimoviridae and Pospiviroidae (both in 43% of the infected individuals), whereas 225 

Tymoviridae and Botourmiaviridae were the rarest (both in 2% of the infected individuals; 226 

Figure 2C).  227 

 228 

Analysis of viral local adaptation: local vs. foreign 229 

Using the local vs. foreign criterion, we observed indications of viral local adaptation in 230 

transplant population 876, where local hosts had higher infection rates than foreign hosts. A 231 

similar trend was observed in population 950, where local hosts showed the second-highest 232 

infection rates (Figure 2A). Conversely, in population 9205, local hosts harboured fewer 233 

infections than foreign hosts – suggesting viral maladaptation. However, the GLMM (LF) did 234 



not provide statistical support for these trends (Wald X2 = 1.53, P = 0.673; Table 1). Seed 235 

origin populations differed significantly in infection rates (Wald X2 = 7.37, P = 0.025; Table 236 

1), with individuals originating from population 9205 having significantly fewer infections 237 

than those originating from population 876 (Figure 2A, Supplementary table 3A; estimate = 238 

2.071, SE = 0.778, z-ratio = 2.661, P = 0.021).  239 

Analysis of viral local adaptation: home vs. away 240 

Applying the home vs. away criterion, we found no evidence of viral local adaptation (Figure 241 

2B). Hosts from populations 876 and 950 had lower infection rates in their respective home 242 

populations than in their away populations, suggesting viral maladaptation (Figure 2B). Our 243 

statistical analysis (model HA) did not detect significant differences in infection rates between 244 

home and away habitats. However, model coefficients for the “sympatry“ term nested within 245 

seed origin population were lower, suggesting higher infection rates in away habitats 246 

(Supplementary table 4). Additionally, seed origin population significantly influenced host 247 

infection status (Wald X2 = 9.09, P=0.010; Table 2). Post hoc comparisons showed that 248 

individuals from population 876 had significantly higher infection rates than those from 249 

population 9205 (estimate = 1.818, SE = 0.649, z-ratio = 2.802, P = 0.014; Supplementary table 250 

3B., Figure 2B and C).  251 

Analysis of viral (co-)occurrence patterns 252 

We applied the HMSC approach to investigate the factors influencing the (co-)occurrence of 253 

the detected virus families in a local adaptation experiment. The model predicted virus family 254 

occurrences well, although model performance varied among virus families (Supplementary 255 

table 5). Tjur R2 and AUC were used to quantify the explanatory and predictive performance 256 

of the model, with a mean Tjur R2 of 0.27 (range among the detected virus families 0.10-0.47) 257 

and a mean AUC of 0.89 (0.80-0.98). The predictive power of the model was based on ten-fold 258 



cross-validations, where the mean Tjur R2 was 0.19 (range 0.01 - 0.4) and the mean AUC was 259 

0.74 (range 0.54-0.88; Supplementary table 5) varying among virus families. 260 

In terms of contributions to the explained variation in our HMSC model, host maternal 261 

line was the strongest determinant of viral occurrences, explaining on average 62% of the 262 

variance. However, the effect varied among virus families and was most pronounced for 263 

Pospiviroidae (73%) and less important in explaining Partitiviridae (60%) and Caulimoviridae 264 

54%) occurrences (Figure 3, Supplementary table 6). For example, maternal line 876-6, 265 

displayed the highest infection rates, with 89% of the individuals infected (Figure 2C). Seed 266 

origin population was the second most important predictor, explaining on average of 29% of 267 

the variance. The effect of host maternal line varied among virus families, with a more 268 

pronounced role for Caulimoviridae (35%) and Partitiviridae (33%), while being less 269 

important for explaining the occurrences of Pospiviroidae (18%; Figure 3, Supplementary table 270 

6). Consistent with this, individuals from seed origin population 876 harboured 50% of all 271 

detected viral infections, whereas individuals originating from population 9205 harboured only 272 

16% of all infections (Figure 2C).  273 

Host plant size accounted for an average of 4% of the variation in viral occurrences, 274 

with the strongest effect observed for Caulimoviridae (7%). Local adaptation 275 

(sympatry/allopatry) had a smaller role in contributing to explained variation, accounting for 276 

2% on average across virus families (Figure 3, Supplementary table 6). Herbivory had minimal 277 

effect, explaining only 0% to 0.1% of the viral occurrences. The random effect of transplant 278 

population explained on average 2% of the variation across virus families and was slightly 279 

more important in explaining Pospiviroidae occurrences (4%, Figure 3, Supplementary table 280 

6). Residual correlations among virus families at the random level were not significant, 281 

suggesting that after accounting for the effects of the fixed explanatory variables, viral 282 

occurrences were not influenced by interactions between virus families. 283 



Discussion 284 

Here, we used a reciprocal transplant experiment combined with sRNA sequencing and JSDM 285 

modelling to investigate the role of local adaptation in shaping within-host viral (co-286 

)occurrences. Although we observed trends suggesting viral local adaptation and maladaptation 287 

when applying the local vs. foreign and home vs. away criteria, the effects were not statistically 288 

significant. Instead, we found host maternal line and host seed origin population to be the most 289 

important determinants of host infection status and viral community structure. The strength of 290 

these effects varied across virus families, indicating virus-specific assembly processes and 291 

variation in the extent to which coevolution shapes these interactions. Jointly our results 292 

identify key drivers of viral community assembly and provide insight into how within-host 293 

dynamics could scale up to predict the ecological and evolutionary consequences of disease in 294 

natural systems.  295 

Using sRNA sequencing, we detected viruses from six virus families, five of which 296 

have been previously identified from this system (20,43). Overall, 21% of the sampled sentinel 297 

plants were infected, exhibiting a lower infection rate than previously reported from hosts in 298 

this system (20,43). Despite the low overall infection prevalence, we found individuals 299 

originating from population 876 harbouring significantly higher infection rates than those from 300 

population 9205. Viral community composition also varied among seed origin populations and 301 

among maternal lines. Individuals from seed origin population 876 harboured viruses from five 302 

different virus families (Caulimoviridae, Pospiviroidae, Partitiviridae, Botourmiaviridae and 303 

Closteroviridae), whereas individuals from population 950 were infected by only three virus 304 

families (Pospiviroidae, Caulimoviridae and Partitiviridae). The overall lower infection 305 

prevalence may be due to differences in exposure time to viral epidemics and additionally, viral 306 

prevalence may vary annually due to several factors, such as temperature, humidity and vector 307 



behaviour — components of natural systems that are difficult to control in a field experiment 308 

(56–58). 309 

Using a reciprocal transplant experimental approach, we were able to apply the two key 310 

metrics of local adaptation: local vs. foreign and home vs. away. While we observed signs of 311 

viral local adaptation in transplant population 876 under the local vs. away criterion, the pattern 312 

was not statistically significant (GLMM LF). Similarly, analysis on the home vs. away metric 313 

showed no statistically significant effect of local adaptation on host infection status (GLMM 314 

HA). In line with these results, when investigating the effects of local adaptation on viral (co-315 

)occurrence patterns with JSDM in the HMSC framework, we found local adaptation to explain 316 

on average only 2.3% of the viral occurrences. However, when using the home vs. away 317 

criterion (GLMM HA), individuals from seed origin populations 876 and 950 harboured the 318 

lowest infection rates in their home populations, suggesting viral maladaptation. Patterns of 319 

maladaptation are not unexpected given the dynamic, cyclic nature of coevolutionary 320 

interactions between the host and its parasite (59). In the Aland Islands P. lanceolata 321 

populations are highly fragmented, and the connectivity levels of the populations vary (60,61)  322 

and consequently too high or low gene flow between populations could facilitate parasite 323 

maladaptation (59,62–64). Previous studies have shown that well-connected host populations 324 

are less affected by disease (65,66), a phenomenon that is likely due to higher resistance 325 

diversity in these populations maintained by gene flow (61).  326 

Seed origin population was a strong predictor of host infection status. Individuals 327 

originating from population 876 were more frequently infected and harboured the most diverse 328 

viral communities. In contrast, hosts from population 9205 exhibited high resistance to viral 329 

infection and consequently harboured less complex viral communities. Our HMSC analysis 330 

mirrored these findings, identifying maternal line and seed origin population as the strongest 331 

determinants of viral occurrence across virus families, explaining on average 62% and 29% of 332 



the variation, respectively (Figure 3). The variation in infection rates among host origin 333 

populations, together with the strong maternal line effects for viral occurrences across virus 334 

families, highlights host genetic diversity as a key driver of viral community assembly and 335 

composition in this system. Although evidence for viral local adaptation was limited, the 336 

variation in infections prevalence among host maternal lines indicates strong potential for 337 

coevolution, as genetic variation is a main driver of coevolution (67–69). Moreover, high host 338 

genetic diversity in natural populations can mitigate disease risk, a phenomenon known as the 339 

monoculture effect (70,71). 340 

Hosts encounter a myriad of parasites throughout their lives (43,72–74), and these 341 

interactions can have far-reaching consequences for host-parasite coevolution and population 342 

dynamics (75). Despite this, much of the research on local adaptation has focused on pairwise 343 

host-parasite interactions (76–78), with little focus on the role of parasite communities in 344 

coevolutionary processes. To our knowledge, our study is among the first to study viral local 345 

adaptation within a community ecology framework. After accounting for host attributes, we 346 

found no evidence of virus-virus interactions shaping within-host viral diversity. Instead, host 347 

characteristics, represented by maternal line and host seed origin population, emerged as the 348 

most important predictor of viral community structure and host infection status.  Our findings 349 

highlight the importance of host genetic variation in shaping viral communities and contribute 350 

to the growing field of viral community ecology research. Understanding the drivers of 351 

complex host-parasite interactions and processes at the community level is essential for 352 

predicting how disease dynamics scale up from individuals to populations and understanding 353 

the ecological and evolutionary conditions from which novel viral diseases may emerge.  354 

 355 
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 567 

Figure 1. Reciprocal transplant experiment where Plantago lanceolata individuals from 24 568 
maternal lines originating from three populations were transplanted into their sympatric and 569 
two allopatric populations during natural viral epidemics. We placed 40 individuals into 570 
sympatric population and ~80 individuals into two allopatric populations, with a total of 348 571 
plant individuals across three populations in the Åland Islands SW Finland. 572 



 573 

Figure 2. Proportions of virus infected Plantago lanceolata host individuals in a reciprocal 574 
transplant experiment using (A) local vs. foreign, (B) home vs. away metrics of local 575 
adaptation, and (C) infection pattern across host maternal (n =24) line grouped by seed origin 576 
population. In panel A, colours indicate the seed origin populations and the squares mark the 577 
local host. In panel B, the colours represent the transplant populations and the squares mark 578 
the home habitat of the host (purple = seed origin/transplant population 876 yellow = seed 579 
origin/transplant population 950, and green = seed origin/transplant population 9205). In panel 580 
C colours represent the six virus families detected with sRNA sequencing.  581 

 582 

 583 



 584 

Table 1. Type II Wald X² test for Generalizer linear mixed model estimating the effects of plant 585 
size, seed origin population, transplant population and local vs. foreign metric of local 586 
adaptation on host infection status (1=infected, 0=uninfected) in a reciprocal transplant 587 
experiment in the Åland Islands (model LF).  588 

 589 

 590 

 591 

Table 2. Type II Wald X² test for Generalizer linear mixed model testing for the effects of plant 592 
size, seed origin population, transplant population and home vs. away metric of local adaptation 593 
on host infection status (1=infected, 0=uninfected) in a reciprocal transplant experiment in the 594 
Åland Islands (model HA).  595 

 596 

 597 

 598 

Figure 3. Variance partitioning of the fixed and random effects in the Hierarchical Modelling 599 
of Species Communities model for the three most prevalent virus families (Caulimoviridae, 600 
Partitiviridae, Pospiviridae) in the reciprocal transplant experiment. The six variables 601 
explaining the occurrences the three virus families were: maternal line, seed origin population, 602 
plant size, sympatry/allopatry, herbivory and transplant population (random effect). 603 

 604 



 605 
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 610 

 611 
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Supplement 621 

 622 

Supplementary table 1. The host maternal lines included in a reciprocal transplant 623 

experiment studying viral local adaptation in Plantago lanceolata host populations in the Åland 624 

Islands during naturally occurring viral epidemics. In the table are included the ID of each 625 

maternal line, the ID of the origin population of each maternal line, the ID of the transplant 626 

population where the plants were placed during the experiment and the number of individuals, 627 

and finally, the number of sequenced individuals.  628 



 629 

 630 

 631 

 632 

 633 

 634 

Maternal line Seed origin population Transplant population
No individuals in the 

experiment
Number of individuals 

sequenced
876-1 876 876 5 3
876-1 876 950 5 3
876-1 876 9205 5 3
876-2 876 876 5 3
876-2 876 950 5 3
876-2 876 9205 5 3
876-3 876 876 5 3
876-3 876 950 5 3
876-3 876 9205 5 3
876-4 876 876 5 3
876-4 876 950 1 1
876-4 876 9205 0 0
876-5 876 876 5 3
876-5 876 950 4 3
876-5 876 9205 3 3
876-6 876 876 5 3
876-6 876 950 5 3
876-6 876 9205 5 3
876-7 876 876 5 3
876-7 876 950 5 3
876-7 876 9205 5 3
876-9 876 876 5 3
876-9 876 950 5 3
876-9 876 9205 5 3

950-10 950 876 5 3
950-10 950 950 5 3
950-10 950 9205 5 3
950-2 950 876 5 3
950-2 950 950 5 3
950-2 950 9205 5 3
950-4 950 876 5 3
950-4 950 950 5 3
950-4 950 9205 5 3
950-5 950 876 5 3
950-5 950 950 5 3
950-5 950 9205 5 3
950-6 950 876 5 3
950-6 950 950 5 3
950-6 950 9205 5 3
950-7 950 876 5 3
950-7 950 950 5 3
950-7 950 9205 5 3
950-8 950 876 5 3
950-8 950 950 5 3
950-8 950 9205 5 3
950-9 950 876 5 3
950-9 950 950 5 3
950-9 950 9205 5 3



 635 

 636 

 637 

 638 

 639 

 640 

9205-10 9205 876 5 3
9205-10 9205 950 5 3
9205-10 9205 9205 5 3
9205-4 9205 876 5 3
9205-4 9205 950 5 3
9205-4 9205 9205 5 3
9205-5 9205 876 5 3
9205-5 9205 950 5 3
9205-5 9205 9205 5 3
9205-6 9205 876 5 3
9205-6 9205 950 5 3
9205-6 9205 9205 5 3
9205-7 9205 876 5 3
9205-7 9205 950 5 3
9205-7 9205 9205 5 3
9205-8 9205 876 4 3
9205-8 9205 950 5 3
9205-8 9205 9205 5 3
9205-9 9205 876 5 3
9205-9 9205 950 5 3
9205-9 9205 9205 5 3
9250-2 9205 876 5 3
9250-2 9205 950 5 3
9250-2 9205 9205 5 3
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 642 

 643 

Supplementary table 2. Virus families detected by small-RNA sequencing on 644 

Plantago lanceolata individuals (n = 211) included in a transplant experiment in the Åland 645 

Islands studying viral local adaptation. The genera belonging to each virus family are shown 646 

as well as the number of contigs and virus species within each virus family. Reference to the 647 

literature describing the detected family listed in the “reference” column [1–3].  648 

 649 

Family Genus Contigs Species References 

Botourmiaviridae 3 1
Gammascleroulivirus 3 1

Caulimoviridae 896 21  [1,2,3]
Badnavirus 1 1
Caulimovirus 842 15
Soymovirus 52 5

Closteroviridae 13 5  [1,2,3]
Ampelovirus 1 1
Closterovirus 11 3
unclassified 1 1

Partitiviridae 212 11  [1,2,3]
Betapartitivirus 113 8
unclassified 99 3

Pospiviridae 24 1  [3]
Pospiviroid 24 1

Tymoviridae 3 1  [1,2,3]
Maculavirus 3 1
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 655 
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 657 

Supplementary table 3. Post hoc test comparing the infection status of the host 658 
Plantago lanceolata from the three seed origin populations in a local adaptation experiment in 659 
the Åland Islands during naturally occurring viral epidemics. Pairwise comparison of the 660 
estimated marginal means calculated from both generalized linear mixed effects models A) 661 
model LF and B) model HA (Table 1 and 2). P-values are Tukey adjusted.  662 
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 679 

 680 

Supplementary table 4. Model coefficients (model HA) testing for the effects of local 681 

adaptation on host infection status using the home vs. away metrics of local adaptation.  For all 682 

variables one levels is a reference level included in the intercept. 683 

 684 



 685 

 686 

Supplementary table 5. Explanatory and predictive performance of the HMSC model 687 

of viral occurrence in the experimental plant individuals in terms of Tjur R2 and AUC. The 688 

model predictive performance is based on 10-fold cross-validation. 689 
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 691 
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 693 



Supplementary table 6. Exact values of the HMSC model variance partitioning for the 694 

three most prevalent virus families detected in a reciprocal transplant experiment studying local 695 

adaptation. Six variables explaining the virus family occurrence in a reciprocal transplant 696 

experiment were: maternal line ID, seed origin population ID, sympatry/allopatry, plant size, 697 

herbivory and transplant population ID (random).  698 

 699 
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