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Abstract
The construction of a predictive theory of the dynamics and structure of microbial communities requires
the consideration of repeatable, robust empirical patterns. The investigation of such patterns in ecology has
historically been the domain of the subdiscipline of macroecology. However, the application of macroecology
to microorganisms is not straightforward, as there is not a unified view of the subdiscipline. In this Perspec-
tive, I start with an interpretation of microbial macroecology by mapping the specificities of research in the
microbial life sciences to prominent themes of macroecology. The bulk of the remaining manuscript is then
dedicated to a survey of common microbial macroecological patterns. I begin with a focus on universal pat-
terns that hold regardless of data type before proceeding to identify patterns that reflect temporal dynamics,
a major goal being the establishment of a minimal, predictive model of ecological dynamics. I conclude with
an outlook on the facets of microbial life that remain largely open to macroecological investigation. This
Perspective is intended for a range of researchers in the microbial life sciences, both to experimentalists and
theorists as well as those from disparate backgrounds.

Il mondo è così complicato, aggrovigliato e sovraccarico che per
vederci un po chiaro è necessario sfoltire, sfoltire.

(The world is so complicated, tangled, and overloaded that to
see into it with any clarity you must prune and prune.)

Italo Calvino
Se una notte d’inverno un viaggiatore

(If on a Winters Night a Traveler)
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Introduction 1

The characterization of repeatable empirical patterns is an integral activity when developing scientific theory. 2

Therefore, obtaining a predictive understanding of the typical composition and dynamics of microbial com- 3

munities requires a thorough investigation of ecological patterns. In ecology, such scrutinization generally 4

falls within the purview of macroecology [1, 2]. There is no single definition of macroecology, which will be 5

elaborated upon in the subsequent section, though it is often viewed as the study of ecological patterns and 6

processes over large scales. Given the global scale of microbial data collection efforts (e.g., [3]), it is not 7

surprising that macroecological approaches have been increasingly leveraged to investigate macroecological 8

communities (e.g., [4–8]). The sheer number of studies, empirical patterns, and proposed mathematical 9

models warrants a reevaluation of our present understanding of microbial macroecological patterns and how 10

they relate to the development of theory in microbial ecology. 11

This Perspective is not the first to provide an overview of microbial macroecology [9–12], nor the first 12

to acknowledge the ways in which microbiological approaches shape macroecological investigation [13, 14]. 13

It is also not the purpose of this Perspective to ordain a single definition of macroecology as being the 14

most germane for microorganisms. Rather, an initial goal is to interpret prominent macroecological themes 15

through the lens of the microbial life sciences. From there, I provide a survey of prominent, repeatable 16

macroecological patterns across cross-sectional data and/or time, highlighting when and how a given pattern 17

can be quantitatively explained by data-driven mathematical modeling efforts. Due to the sequence-based 18

nature of the bulk of microbial data, I will focus on patterns that can be characterized using compositional 19

data. It is also not the goal of this Perspective to prescribe a single model capable of explaining all docu- 20

mented macroecological patterns, though I do not believe this task is insurmountable. Finally, an outlook 21

on microbial macroecological investigations is provided, highlighting measurable quantities and biological 22

processes that are likely fruitful targets for future research efforts. 23

What is macroecology? 24

It is useful to begin with a brief overview of the historical development and current interpretation of macroe- 25

cology. The investigation of biodiversity patterns one would now label as "macroecological" have been present 26

since the virtual inception of ecology [15]. The eventual consolidation of macroecology did not occur un- 27

til the late 20th century, driven, it has been argued [16], by three historical developments: 1) recognition 28

that processes occurring over larger scales shape communities at the local scale, 2) the accumulation and 29

curation of quantitative biodiversity data, and 3) an increasing acceptance of the limitations of the reduction- 30

istic/microscopic approaches that dominated ecological research from the 1970s-1990s (see [17, 18]). These 31

developments lead to the formalization of macroecology in 1989 (using a term first introduced in 1971 [19]) 32

as a research program focused on investigating the relationship between organisms and their environment via 33

statistical patterns over large spatial, temporal, and taxonomic (i.e., # species) scales [1, 2]. This definition 34

has diverged since its inception, though it has been proposed that the various definitions that have since 35

arisen can be coarse-grained into two [16, 20], where macroecology is: 1) large-scale ecology in the sense that 36

practitioners are focused on large scale patterns [21, 22] and 2) the study of recurring statistical patterns of 37

biodiversity over time or across ensembles of communities (i.e., an ecological analogue to statistical physics) 38

[23–26]. 39

While there is no singular, universally accepted definition of macroecology, they all share what has been 40

called an "insistence on empiricism" [20]. Given the plurality of working definitions, instead of attempting 41

to graft microbial particularities onto a single previously established definition it is instead pragmatic to 42

identify empirical themes of macroecological research so that one can examine their relation to microbial 43

ecology. A non-exhaustive list of macroecological themes include: 44

1. Scale. Scale in macroecology refers to both the extent and resolution (i.e., "grain") that a quantity 45

of interest is measured. Scale was originally viewed as constitutive rather than incidental, meaning 46

that macroecological patterns are emergent properties rather than a summation over a large number 47

of communities [2]. The recurrence of patterns across disparate environments and their seeming insen- 48

sitivity to ecological processes operating within individual communities would then suggest that they 49

are explanatory in their own right [2] (similar to "More Is Different" [27]). Alternative views range from 50
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scale simply being the chosen window of observation [21, 22], to a convenient (though still embraced) 51

property for inference rather than a defining feature [20]. 52

2. Pattern-first inference. Empirical patterns remain the primary object of investigation across 53

macroecological definitions despite differences in interpretation. Patterns were originally viewed as 54

higher-level statements about ecosystems, where the investigation of the pattern itself was advocated 55

as the primary strategy of macroecology rather than the reduction of patterns to specific ecological 56

mechanisms. A contrary view is that macroecological patterns are scientifically valuable insofar as 57

they permit discrimination among reasonable ecological mechanisms, where a many-to-one mapping 58

from mechanisms to pattern reflects underdetermination rather than being a justification for viewing 59

the pattern as inherently informative [28, 29]. 60

3. Non-experimental investigation. Macroecology was originally envisioned as an explicitly non- 61

experimental research program, the logic of this restriction of scope being that it is often difficult to 62

draw useful ecological generalizations out of the aggregation of results from different experiments [1, 2]. 63

It has been argued that this focus on observation was driven in-part by the ascendancy of small-scale 64

ecological experiments when macroecology was introduced [16, 20]. 65

4. Reliance on comparative data. Macroecological research is contingent on the availability of com- 66

parable public datasets. This statement was true at the onset of macroecology [1], with the need to 67

ensure the comparability of various sources and types of data becoming only more pressing given that 68

biology has long since entered the era of "big data" [30]. 69

What is microbial macroecology? 70

Microbial macroecology can be defined as the application of macroecological principles and approaches to 71

microbial systems. Such a definition can be misinterpreted as a tautology, but, as discussed earlier, there 72

are multiple interpretations of macroecology. This plurality, coupled with the particularities of microbiology, 73

can make the application of macroecology appear nebulous from the outset. Below I will examine how the 74

particularities of microbial life science research relates to four previously identified macroecological themes. 75

1. Scale, a fortiori 76

A characteristic feature of microorganisms is their scale. Between an estimated global abundance of ∼ 1030 77

cells [31], global richness ranging from 106 [32] to 1012 [6], harboring vast amounts of known phylogenetic and 78

metabolic diversity, and having colonized virtually every environment on Earth [3], microbial life provides the 79

taxonomic, phylogenetic, metabolic, and spatial scales that permit macroecological investigation. Coupled 80

with the comparative ease that timeseries can be obtained for durations far exceeding intrinsic ecological 81

timescales (e.g., division time) [33], microbial communities cover all dimensions of macroecological scale [20]. 82

While scale alone is an insufficient characterization of macroecology, it provides the benefit of permitting one 83

to examine how statistical aggregation may reveal general patterns that might otherwise remain unobservable 84

at smaller scales [20]. An alternative view of scale is that microbial communities are often high-dimensional, 85

providing justification for the use of models that seek to capture the typical community rather than every 86

possible arrangement [26]. 87

2. The utility of minimal models in microbial macroecological investigations 88

The application of mathematical models to empirical patterns has increasingly become a defining feature 89

of macroecological investigations [34]. Identifying explanatory ecological mechanisms via modeling is not 90

straightforward, as different mechanisms often have similar explanatory power for a given macroecological 91

pattern [35, 36]. In order to progress it is necessary for researchers to identify the simplest possible model 92

capable of reproducing a given pattern(s), known as minimal models, where added model detail acts as a 93

hypothesis that must explain additional features in the data to justify its retention. Such a strategy is 94

consistent with the long-standing spirit of model development in ecology [37], ideally circumventing issues 95
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that arise from complex models such as effectively indistinguishable parameter combinations preventing one 96

from differentiating between alternative mechanisms (i.e., "sloppy" models [38]). 97

The interpretation of macroecological patterns in microbial ecological communities has been greatly 98

aided by the application of minimal mathematical models [4, 25, 26, 39–41]. For example, the simple 99

requirement that a useful ecological model must qualitatively capture macroecological patterns allows one 100

to rule out several candidates (Box 1). Of those models remaining, one can quantitatively predict multiple 101

macroecological patterns where time is not a factor using as few as two free parameters (Fig. 1). Such models 102

provide a foundation for the subsequent identification of minimal models of ecological dynamics ([4]; Box 103

3, Fig. 2) as well as when it is necessary to invoke non-independence between species via the incorporation 104

of explicit ecological interactions (e.g., generalized Lotka-Volterra (gLV)) [42]). This approach does not 105

limit one’s modeling efforts to the phenomenological scale of abundances (e.g., logistic growth), as successful 106

minimal modeling efforts have been performed using mechanistic Consumer-Resource Models (CRMs; [8]). 107

3. Observational and experimental investigation: pari passu 108

As previously stated, macroecology was originally conceived as an explicitly non-experimental form of inves- 109

tigation [2]. This restriction was in-part motivated by the reality of performing ecological experiments on 110

macroorganisms, as limited observation timescales, replication, and capacity to perform systematic manipu- 111

lations can impede one’s ability to map a given mechanism to a macroecological pattern. Microbial ecology 112

provides a solution, as researchers are increasingly pursuing experimental endeavors that examine microbial 113

dynamics for ensembles of replicate communities [43–47]. This type of experimental design combined with 114

the sheer taxonomic scale typical of microbial communities (i.e., many degrees of freedom) lends itself to 115

the characterization of repeatable patterns typical of macroecological investigations. Indeed, a number of 116

macroecological patterns have been identified in experimental microbial communities [48–51]. A potentially 117

greater benefit is that one can perform systematic experimental manipulations to directly interpret the biotic 118

and abiotic contributors towards a pattern of interest [52]. The microbial macroecological consequences of 119

experimental manipulations have begun to be examined (e.g., [49]), while minimal models capable of explain- 120

ing patterns in natural communities provide a means to generate novel predictions for future experiments 121

(e.g., [8]). 122

4. Limitations of microbial measurement 123

Measurement is not a neutral act. Decisions made by the investigator constrain the set of patterns that 124

can be explored as well as the models that can be tested [53]. Such consequences clearly apply to ecological 125

modeling [54], meaning that it is worth considering how the typical details of microbial community data 126

collection impact subsequent macroecological investigations. A reliance on sequencing is a characteristic of 127

the measurement of microbial communities. While the first sequence-based characterization of microbial 128

diversity relied on Sanger sequencing clone libraries of rRNA genes [55–58], the advent of massive parallel 129

sequencing (then known as "next-generation sequencing") provided an unprecedented means for investigating 130

the composition and structure of large microbial communities, both by targeting 16S rRNA regions [59] as 131

well as entire genomes via metagenomics [60]. The cost of both technologies has long-since decreased to the 132

point where large-scale sampling of communities across space and time is financially feasible. Metagenomics 133

provides an added benefit, as it contains information about the frequencies of genetic variants within commu- 134

nity members, permitting the investigation of eco-evolutionary patterns [61]. The need to standardize both 135

the processing of sequence data and the reporting of metadata is well recognized by those in the microbial 136

life sciences [62], ensuring some level of comparability across studies. 137

Such benefits come with limitations, an example being that units of biodiversity must be gleaned from 138

sequence data [63, 64]. Historically microbial ecologists treated clusters of 16S rRNA barcodes at a given 139

level of sequence similarity as "species" in the sense that they represented the lowest scale of taxonomic 140

resolution, deemed Operational Taxonomic Units (OTUs) [65]. Later microbial ecologists opted for the 141

inference of community members at the level of single nucleotide differences rather than a prescribed level of 142

similarity, referred to as Amplicon or Exact Sequence Variants (ASVs/ESVs) [66]. However, this advancement 143

does not solve the issue that units of diversity inferred from 16S rRNA are ultimately reliant on the degree 144

that a single gene reflects the ecological variation encoded in the entire genome. Metagenomics provides 145
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additional information, though sampling effort is more complicated as the number of reads belonging to a 146

given community member is now a composite of coverage values over many genes [67]. Fortunately, many 147

macroecological patterns appear to hold in both barcoding and metagenomic data [67–69]. The increasing 148

momentum towards metagenomics over barcoding provides the added benefit of revealing sub-ASV structure 149

known as "strains", representing the minimal meaningful unit of biodiversity that can be inferred from 150

metagenomic data [70, 71]. 151

An additional, potentially more severe, limitation is that information about absolute abundances (e.g., # 152

cells, # genes) is absent in most sequence data, as the total number of reads is an arbitrary limit set by one’s 153

sequencing protocol. This feature, known as compositionality, introduces undesirable statistical artifacts 154

when researchers examine reads as relative abundances. Such artifacts can often be corrected through the 155

use of appropriate statistical methods [72–74], while information about absolute abundances remains lost. 156

As there is no widely used sequencing method that preserves the original number of cells, researchers often 157

multiply relative abundances by an externally-obtained measure that is reflective of the total abundance of 158

the community (e.g., quantitative/digital PCR [5, 75], optical density [47], flow cytometry counts [76, 77]). In 159

contrast to post hoc rescaling, the scale of absolute abundances can be preserved throughout the sequencing 160

protocol when internal standards are added to samples (e.g., DNA [78–81], cells [82]). These approaches 161

permit the inference of absolute abundances while accounting for experiment-specific statistical artifacts. 162

Fluorescence-based microscopy is a potential alternative for obtaining absolute counts (e.g., fluorescence in 163

situ hybridization [83]), though it is more effective for smaller communities where the taxonomic composition 164

is known a priori. Such considerations are rarely made for studies with either the temporal or replicative scale 165

necessary for macroecology. As a consequence, the macroecological patterns typically examined in microbial 166

communities are those focused on diversity and composition, with comparatively little known about those 167

that require quantities with physical dimensions such as abundance or biomass. This experiment-specific 168

contingency on the existence of information about absolute abundances should be considered when one 169

applies macroecological models where total absolute abundance operates as a community-level constraint 170

(e.g., maximum entropy [23, 84]), providing justification for favoring process-based models over those that 171

are constraint-based [85]. 172

Sample-invariant microbial macroecological patterns 173

The survey begins by focusing on empirical macroecological patterns that have been documented in both 174

both cross-sectional (i.e., samples from different locations in space or replicate experimental communities) 175

and temporal (i.e., longitudinal) measures of communities. Ultimately, many patterns of historical interest 176

can be quantitatively explained using few free parameters across a range of disparate environments, providing 177

a foundation for building quantitative intuition about the structure of a "typical" microbial community. 178

Abundance Fluctuation Distribution (AFD) 179

Understanding how the abundance of a given species is distributed over time or space is a fundamental goal 180

in macroecology. Once this distribution is understood one can leverage its existence to predict community 181

structure if community members are independent. This object is known as the Abundance Fluctuation Dis- 182

tribution (AFD) and has become an object of study in recent years [4]. Such efforts have found that diverse 183

community members tend to have AFDs of the same qualitative shape once rescaled by their mean and 184

variance, a phenomenon known as a data collapse [86], that holds both for natural environments and exper- 185

imental communities [4, 49]. This persistent form is often captured by a gamma distribution, holding both 186

for cross-sectional and temporal data. For the temporal AFD, the gamma distribution can be interpreted 187

as a time-independent probability distribution if certain criteria are met (Box 2). When valid, this inter- 188

pretation allows one to construct Stochastic Differential Equations (SDEs) comprised of different ecological 189

mechanisms that produce the same stationary AFD. For the gamma AFD, two SDEs are frequently invoked: 190

the Stochastic Logistic Model of growth (SLM) and the Birth-Death-Migration (BDM) model (Box 3; [4, 191

87, 88]). 192

The qualitative invariance of the AFD has been documented across taxonomic and phylogenetic scales. 193

Specifically, the abundances of sub-16S rRNA microbial strains inferred using human gut metagenomic 194

timeseries exhibit distributions of the same form as across-host frequencies of the genetic variants that 195

5



constitute strain differences [89, 90]. Moving from finer to coarser scales, the same form of the AFD has 196

been found to hold when OTUs are merged by taxonomic label or phylogenetic similarity [91]. This operation 197

represents a form of coarse-graining, where the richness of the community reflects the number of degrees 198

of freedom which is then sequentially reduced. The consistent shape of the AFD has been leveraged to 199

investigate the relationship between measures of community biodiversity at different phylogenetic/taxonomic 200

scales (i.e., "diversity begets diversity") [91, 92]). 201

Taylor’s Law 202

In contrast to the recent focus on the AFD, the power law relationship between the mean and variance of the 203

AFD across community members, known as Taylor’s Law, has remained an intensely studied pattern for over 204

sixty years [93]. This pattern is virtually ubiquitous in microbial communities, having been characterized 205

both for cross-sectional data as well as over time for disparate environments [4, 8, 16, 48, 49], in both 206

natural and experimental communities [48–50], and the sub-16S rRNA level of strains [89, 90]. An exponent 207

value of two, as is often reported in microbial community data, represents a constant coefficient of variation 208

across community members. Such constancy represents an instance of scale invariance of the strength of 209

fluctuations relative to typical abundance. 210

Taylor’s Law represents one of the few law-like patterns in ecology, having resulted in ecologists exerting 211

immense effort to provide mechanistic interpretations of exponent values. Historically such efforts have fo- 212

cused on macroorganisms [16, 94, 95], though in recent years mathematical models have have been developed 213

to investigate Taylor’s Law as a reflection of fluctuating resources that shape the dynamics of microbial con- 214

sumers [8] as well as the sparsity of resource consumption preferences [96]. The CRM has a potentially larger 215

explanatory role to play, as the value of the exponent is associated with the presence of carbohydrate-active 216

enzymes in gut microbiota timeseries [97]. In terms of experimental observation, the (in)variance of the 217

Taylor’s Law exponent has been attributed to offspring number correlations [98], competition across space 218

[48], the rate and form of migration as an experimental variable [49], and the application of antibiotics and 219

phage predation [50]. Such experimental efforts confirm when the value of the exponent is and is not a 220

reflection of ecological mechanism, but it is worth stating that the form of Taylor’s Law is virtually never 221

altered in experiments. Such qualitative invariance in the face of experimental manipulation is consistent 222

with the interpretation that the form of Taylor’s Law is a consequence of growth being a multiplicative 223

process [99, 100]. Regarding the contribution of the form of noise towards the form of Taylor’s Law (Box 3), 224

environmental noise is sufficient to reproduce observed patterns while demographic noise removes, or even 225

inverts, Taylor’s Law for stochastic gLV models [101]. 226

Mean Abundance Distribution (MAD) 227

The Mean Abundance Distribution (MAD) reflects the degree of variation across community members in 228

typical abundance. The MAD is generally captured by the log-normal distribution for temporal and cross- 229

sectional data from natural communities [4]. A similar result has been found in cross-sectional data from 230

experimental communities [49]. Recent efforts provide a subtler interpretation to the shape of the AFD, where 231

truncating the MAD favors a log-Laplace distribution for low relative abundance thresholds (x̄i < 10−5) while 232

the log-normal is recapitulated for higher values (x̄i > 10−5) [67]. It is essential to note that sampling shapes 233

the empirical MAD and is necessary to incorporate in one’s statistical inference [41]. 234

There are interpretive benefits that come from examining the MAD rather than the distribution of species 235

abundances within an individual sample. The mean abundance of a given species has historically been an 236

object of interest in theoretical ecology. For example, symmetry in species’ birth and death rates under 237

the Unified Neutral Theory of Biodiversity and Biogeography (UNTB) predicts that mean abundances are 238

identical when the species identities are exchangeable [24, 102]. Under this prediction, the MAD is Gaussian 239

for a finite number of independent samples, approaching a single value as the number of samples approaches 240

infinity [4]. More detailed predictions of the form of the MAD can be obtained when interactions between 241

community members are incorporated, as a stochastic gLV model can only reproduce empirical MADs when 242

both the strength and connectedness of interactions between community members is weak [42]. This result 243

was further refined by incorporating Taylor’s Law, demonstrating the utility provided by constructing models 244
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constrained by multiple macroecological patterns. These results appear consistent with those of a coarse- 245

grained CRM which was able to capture the empirical MAD without fine-tuning [8]. 246

Species Abundance Distribution (SAD) 247

When Taylor’s Law holds and the mean and variance are sufficient to characterize a given AFD, the AFDs 248

of all community members are fully specified once one knows the MAD [4]. These three macroecological 249

laws allow one to predict the shape of the Species Abundance Distribution (SAD) within a given sample, 250

one of the most intensely studied patterns in the history of ecology [28, 103–105]. The resulting SAD is 251

consistent with a prior effort that examined per-sample SADs [7], with the same SAD model being used to 252

generate predictions of global microbial richness by leveraging empirical scaling relationships between the 253

total number of reads and richness [6, 106]. 254

Recently the purported generality of the lognormal has been challenged by a distribution known as the 255

powerbend, a hybrid of a power law and exponential function that often provides greater explanatory power 256

for empirical microbial SADs [107, 108]. This distribution is similar in form to the gamma distribution, 257

which has a history of being invoked to explain empirical SADs [28], differing in that it is a discrete and 258

truncated extension of the gamma. The powerbend is also a generalized distribution, meaning that it can 259

be reduced to simpler distributions often used in ecology (e.g., logseries, power law), potentially applying to 260

microbial communities that display non-lognormal SADs such as those in Tara Oceans data [109]. Notably, 261

the powerbend cannot be reduced to a lognormal, but can qualitatively resemble said distribution in certain 262

parameter regimes. 263

Similar to its statistical investigation, effort has been expended in the hope of identifying ecological 264

mechanisms capable of generating empirical SADs [28]. For example, CRMs have been largely able to 265

capture empirical SADs in Tara Oceans data when community members belonging to the same taxonomic 266

group have correlated resource preferences [39]. These modeling efforts produce a logseries SAD, rather 267

than the lognormal or powerbend that is most often reported in other environments. However, given that 268

empirical MADs can be recapitulated using certain forms of the gLV model [42], which itself can often be 269

obtained from the CRM [110, 111], it is reasonable to assume that CRMs can be invoked to explain variation 270

in empirical SADs across diverse environments. 271

Abundance-Occupancy Relationship (AOR) 272

The relationship between the typical abundance of a community member and its presence across sites is one of 273

the most well-documented patterns in macroecology, known as the Abundance-Occupancy Relationship [112– 274

114]. For microbial communities, this relationship can be qualitatively captured by deriving the predicted 275

occupancy across samples using a gamma distributed AFD and Poisson sampling [4]. This success has 276

significant consequences for our understanding of microbial community data, as it implies that the absence 277

of a given community member in primarily due to sampling effort. Interestingly, the ability to predict 278

occupancy given the mean and variance also extends to experimental communities that exhibit alternative 279

stable-states and does not systematically vary when migration is manipulated [49]. Such a high level of 280

accuracy given the mean and variance alone suggests that occupancy typically contains little ecological 281

information outside of its ability to reflect the form of the underlying AFD. This conclusion relates to 282

the expected occupancy and may not extend to alternative measures such as the joint occupancy between 283

two species, which likely depends on the joint relationship between AFDs. Therefore, while the AOR is a 284

macroecological pattern of historical interest, its ability to provide mechanistic insight into the composition 285

of microbial communities is likely limited. 286

Temporal microbial macroecological patterns 287

Timeseries data are fundamentally ordered in a sequence, unlike cross-sectional data, providing an oppor- 288

tunity for macroecological patterns to be investigated as a consequence of temporal dynamics. Below I 289

will summarize temporal macroecological patterns that have been characterized in microbial communities, 290

focusing first on those that examine variables calculated within or across community members over time 291

before shifting attention to those calculated between community members. Contributions are noted from 292
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the extensive literature on measures of distance/dissimilarity between the same community sampled at two 293

points in time [33, 115–117] as well as between two communities as a function of time [118–122], though a 294

systematic overview is not provided. 295

Patterns within and across community members 296

Discretized growth rates 297

With temporal data in hand, one can examine how relative abundances change between samples. In macroe- 298

cology this quantity is often examined using the logarithm, interpreted as the relative change in abundance. 299

This is an ecologically meaningful measure as growth is a multiplicative process, allowing for the quantity 300

to be interpreted as a discretized form of the per-capita growth rate which can then be leveraged to test 301

predictions about the role of time-dependent growth within a community [94, 123, 124] (Fig. 2a). Microbial 302

investigations of discretized growth rates primarily rely on sequence data due to the difficulty of directly 303

measuring growth rates in terms of biomass or number of cells in a community-context. Metagenomics can 304

provide an orthogonal source of information on growth, as the degree of bias in the distribution of coverage 305

along the genome due to nested genome replication reflects the growth rate [125, 126], having been leveraged 306

alongside the SLM to provide insight into the relationship between the typical abundance of a community 307

member and its growth rate [127]. 308

In recent years the distribution of discretized growth rates has been an object of macroecological interest 309

(Fig. 2b). Initial investigations found that the distribution was well-described as a Laplace distribution in 310

human and mouse gut microbiota [5] as well as in experimental communities [51]. Later work comparing 311

the explanatory power of minimal models favored demographic noise as an explanation (Box 3) [87], though 312

it is unclear at present how this result relates to analyses that favor environmental noise as an explanation 313

[88, 101]. The latter interpretation is consistent with an alternative measure of fluctuations, the absolute 314

value of the change in relative abundance between time points (|∆xi|; Fig. 2c), with its dependency on mean 315

abundance being mostly consistent with predictions of environmental noise [128]. 316

Regarding ecological mechanisms, this distribution has been examined as the outcome of density-dependent 317

birth-death processes [129], the niche structure of an environment [130], and the strength of noise in resource 318

inflow [8]. The last explanation is particularly useful in microbial macroecology, as it has been noted that 319

the form of the distribution of discretized growth rates is insensitive to the temporal ordering of observations 320

[131, 132], raising questions about the extent that the distribution reflects temporal dynamics. An answer 321

was found by examining the slope of the relationship between ∆lnxi(t) and lnxi(t) through the lens of a 322

CRM (Fig. 2d), as its value was strongly influenced by temporal autocorrelation in resource inflow [8]. Said 323

sensitivity of the joint relationship appears consistent with gLV modeling efforts [101]. 324

Growth rate fluctuations scale over increasing intervals of time, examined as Var(∆lnxi(t)|∆t) ∝ ∆t2H , 325

where H is known as the Hurst exponent (Fig. 2e) [133]. The value of H reflects the direction of temporal 326

correlations, interpreted in physics as anomalous diffusion, with H < 0.5 and H > 0.5 representing subdif- 327

fusion and superdiffusion, respectively. Within human and mouse gut microbiota, values of H ≈ 0.07− 0.08 328

have been reported [5]. The subdiffusive nature of these values is consistent with the view that microbial 329

species are typically driven towards a steady-state. Analytic predictions of Var(∆lnxi(t)|∆t) can be de- 330

rived for both the SLM and BDM, with both models predicting diffusion or the absence of scaling (i.e., 331

Var(∆lnxi(t)|∆t) being constant) when ∆t is much smaller or larger than the timescale of growth, respec- 332

tively. In ecological terms, said saturation reflects community members being driven to their equilibrium 333

abundance over extended timescales [134]. Interestingly, three-member experimental communities in closed 334

phototroph-driven ecosystems displayed exponents ranging from 0.28− 0.45 [51]. The cause of this increase 335

is unclear, though plausible explanations include the trophic structure of the community. 336

Timescales 337

In natural communities one often finds periods of time where low abundance species remain unobserved. 338

These timescales have been proposed as being informative of the typical turnover time of the community, 339

potentially reflecting ecological forces such as demography [135] resulting in the local extinction of a com- 340

munity member [102, 136]. The timescales when community members are consecutively present or absent 341

are known as residence (Tresidence; also known as a type of "avalanche" distribution [137, 138]) and return 342
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(Treturn) times, respectively (Fig. 2f). In human and mouse gut microbiomes the distributions of said vari- 343

ables have been characterized, with the distribution of Tresidence tending to follow a power law [5, 8, 138] 344

while that of Treturn displays a convex shape on a log-log scale [5], though both distributions are sufficiently 345

captured by a power law with an exponential cutoff [5, 8]. 346

Given that the typical total number of reads for a barcoding sample ranges from ∼ 104 − 106 and the 347

estimated typical number of bacterial cells in e.g. the human colon being ∼ 1013 [139], the sheer gap between 348

the lower bounds of observation and true abundance suggest that Tresidence and Treturn typically harbor 349

little information about genuine extinction events. This conclusion likely extends to temporal dynamics in 350

general, as distributions of Tresidence and Treturn obtained from timeseries with the temporal order destroyed 351

via permutation are virtually identical to empirical distributions [132]. Instead, these distributions may 352

predominantly reflect the typical composition of a community characterized by the time-agnostic patterns 353

discussed earlier plus sampling. Such generality is supported by both distributions being predicted by 354

coarse-grained CRMs without the use of fitted parameters [8]. It is also likely that this explanation can be 355

extended to the power law relationship between the length of a timeseries and the cumulative richness of 356

the community, known as the Species Time Relationship (S ∝ (∆t)w), a pattern that can be characterized 357

in any timeseries but has been primarily investigated in industrial wastewater bioreactors [117, 140]. 358

A key feature of microbial temporal dynamics is that community members often fluctuate around a typical 359

value, which can be interpreted as a steady-state. A recent macroecological effort has sought to scrutinize 360

said fluctuations, drawing from efforts in statistical physics to characterize the universal behavior of a random 361

walker destined to return to its origin [141, 142]. The behavior of these deviations can be captured through 362

three patterns: 1) the distribution of the length of the sojourn period (i.e., sojourn time, Tsojourn; Fig. 363

2f), 2) the relationship between sojourn time and the average height under the sojourn curve, and 3) the 364

relationship between the deviation from the steady-state and the time within the sojourn period. Unlike 365

distributions of Tresidence and Treturn mentioned above, distributions of Tsojourn appear to reflect underlying 366

temporal dynamics. The third pattern can be rescaled using the second to obtain a universal scaling relation 367

that holds for a variety of stochastic processes, as well as for microbial communities in the human gut [143]. 368

However, zero rescaling was needed in human gut timeseries, potentially due to the timescale of growth in 369

the human gut being close to the lower bound of ∆t [144]. 370

Temporal autocorrelation 371

Temporal autocorrelations are highly useful in that they allow one to evaluate the existence of long-ranged 372

correlations in a community, a form of ecological "memory" [145–147] (Fig. 2g). It is often more convenient 373

to instead examine the Power Spectral Density (PSD), which can be interpreted as the Fourier transform 374

of the autocorrelation function under certain criteria (Fig. 2h). The exponent governing the shape of the 375

PSD reflects the type of underlying noise (i.e., noise color). Exponents within the human gut imply that 376

the underlying autocorrelation function decays as a power law (i.e., exponent of -1, pink noise), indicating 377

that it has no characteristic timescale (i.e., scale-free). In contrast, results from the human palm and oral 378

microbiome imply a lack of temporal structure (i.e., exponent of 0, white noise) [128]. Exponent values from 379

natural communities can reproduced using gLVs, where the product of the strength of self-interaction with 380

the mean abundance serves a key control parameter [128]. Similar results were found in a separate study 381

using gLVs, where experimental mouse microbiomes and marine bacterial communities favored white noise, 382

though in all environments pink noise tended to be found among dominant community members [101]. As 383

a contrasting observation, exponent values in closed phototroph-driven experimental communities indicate 384

the persistence of autocorrelations over extended timescales (i.e., exponent of 2, Brownian noise) [51]. The 385

underlying mechanism responsible for these long-range correlations is unclear, though, as discussed earlier, 386

the trophic structure of the designed community may be a contributor [51]. 387

Despite its advantages, the PSD can only be interpreted in terms of the autocorrelation function when 1) 388

the mean is constant over time and 2) the autocorrelation only depends on ∆t (i.e., "wide-sense stationary" 389

[148]). In order to identify community members that are stationary, one can examine the dissimilarity 390

between samples to determine whether it saturates with increasing ∆t [119] (Fig. 2i). Analyses of the 391

human gut suggest that most community members tend to be stationary, with a minority exhibiting values 392

of Φi(∆t) that continue to increase with increasing ∆t. The dynamics of this minority cannot be captured 393

by the standard SLM (Box 3), however, modifying the carrying capacity so that there is a large, single 394
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change is sufficient to reproduce the lack of saturation. This jump occurs at similar points in time for 395

different community members, suggesting that they are collectively responding to a single, large change in 396

the environment, a phenomenon known as alternative stable states [149–154]. 397

Patterns between community members 398

Pairwise temporal correlations 399

Abundance correlations between pairs of species cannot be explained by minimal ecological models that 400

do not explicitly encode interactions, a discrepancy that is often interpreted as a reflection of underlying 401

ecological interactions (Box 3; Fig. 2j; [4]). The distribution of said correlations can be explained using 402

a gLV, where high sparsity in the interaction matrix is necessary to reproduce empirical observations [42]. 403

Regarding explanatory mechanisms, the same distribution can be predicted by fitting a coarse-grained CRM 404

to macroecological patterns that do not explicitly depend on pairwise correlations (i.e., per-sample commu- 405

nity richness, Taylor’s Law, distribution of discretized growth rates, and the slope of ∆lnxi(t) vs. lnxi(t)) 406

[8]. The effectiveness of this model suggests that macroecological patterns that do not explicitly depend on 407

quantities calculated from the joint AFD of a pair of species can reflect pairwise correlations due to shared 408

consumption preferences for fluctuating resources. Furthermore, the consideration of correlations is largely 409

sufficient to recapitulate empirical measures of distance/dissimilarity between communities[155]. This result 410

extends to the relationship between community dissimilarity and overlap (i.e., probability that a read belongs 411

to a species present in both samples) [155], a macroecological pattern documented in both natural [156] and 412

experimental communities [157]. 413

Moving beyond the shape of the distribution, in recent years it has been reported that the strength of 414

pairwise correlations tends to decline with increasing pairwise phylogenetic distance for both cross-sectional 415

and temporal data [158], a novel macroecological pattern (Fig. 2k). Interpreting phylogenetic distance 416

as a reflection of shared preferences for environmental factors (e.g., resources, temperature), the empirical 417

pattern cannot be recapitulated when competition between community members plays a critical role, nor 418

by fluctuations in the environmental factors induced by community members (e.g., resource consumption). 419

Rather, the environmental factors must be fluctuating independently of species abundances, a scenario known 420

as "environmental filtering" [159]. This macroecological pattern reflects the expected pairwise correlation for 421

a given phylogenetic distance, though one can also examine how the structure of the correlation matrix 422

is affected under coarse-graining via phylogeny or taxonomy by examining the distribution of eigenvalues. 423

In general the rank distribution of eigenvalues remains invariant under coarse-graining, as evidenced by its 424

distribution of eigenvalues [138]. Similar results were found when community member pairs were coarse- 425

grained by their strength of correlation [138], a procedure known as the phenomenological renormalization 426

group method due to its utility in investigating the stability of a system [160, 161]. The similar qualitative 427

invariance under these two coarse-graining protocols is unsurprising given the existence of the aforementioned 428

distance-decay relationship, as its validity means that each axis is a function of the other. This inference likely 429

extends to the recently characterized relationship between pairwise phylogenetic distance and the average 430

dissimilarity between all communities that harbor both species [162], as dissimilarities between communities 431

can be largely recapitulated when one considers pairwise correlations between species. 432

Temporal cross-correlation 433

Often in ecology one wants to characterize the extent that a pair of community members fluctuate together 434

as a function of temporal displacement. Similar to autocorrelation, one can use the Fourier transform of the 435

cross-correlation function, known as the Cross-Power Spectral Density (CPSD; Fig. 2l,m) [147]. A normalized 436

form of the CPSD, known as coherence, has recently been leveraged to infer resource consumption structure 437

in empirical marine communities via CRMs [163]. Coherence tended to decline with increasing pairwise 438

phylogenetic distance for microbial eukaryotes, an analogous form of the relationship between phylogenetic 439

distance and pairwise correlations [158] (Fig. 2k). 440
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Prospects of microbial macroecology 441

The preceding sections were concerned with macroecological patterns that can be characterized solely us- 442

ing compositional abundance measurements. While explanatory mechanistic models were invoked (i.e., the 443

CRM), they were used to explain patterns of the only variable that was measured (i.e., relative abundances) 444

rather than all variables in the model (i.e., relative abundances and resources). This approach has changed 445

in recent years, as technological advances and novel experiments provide opportunities to extend macroe- 446

cological investigations to microbiological phenomena that were previously unobservable. Four potential 447

(non-exhaustive) avenues of microbial macroecological advancement are examined below. 448

Measuring physiological variables 449

Microbial researchers have been largely limited in their ability to investigate macroecological laws that 450

depend on variables with physical dimensions measured for individual community members (e.g., per-species 451

# cells, biomass), a severe limitation as some of the most impactful results for macroorganisms were gleaned 452

from dimension-based analyses [2]. This limitation does not mean that there is a lack of understanding 453

of physiological macroecological patterns in microorganisms. For example, community-level measurements 454

(e.g., total biomass) have permitted researchers to probe the relationship between community diversity 455

and function [164] and model physiological transitions among community members [165], where physiology 456

acts as a mediator between the environment and the community. Likewise, laboratory measurements of 457

individual microorganisms have provided a quantitative understanding of energy dissipation per-unit biomass 458

across microbial species [166]. Though one can argue that at present the ability to investigate physiological 459

quantities of individual species in a community context is the primary limitation. The continued consideration 460

and measurement of physiological meaningful variables is necessary in that they have repeatedly provided 461

answers for long-standing ecological questions (e.g., empirical scaling laws between mass and growth rate 462

permitting community stability with increased diversity [167]). The quantification of species-level metabolic 463

activity and mass are discussed below, two key physiological quantities in macroecology. 464

The study of metabolism provides a first-principle basis for linking scales of biological organization 465

ranging from cells to ecosystems [168]. However, obtaining per-species estimates of metabolic activity and 466

growth in mixed microbial communities is not straightforward, with the interpretation of "metabolic activity" 467

depending both on what is measured as well as the model used for interpretation [169]. With the measurement 468

of species-level metabolic activity being so difficult, microbial ecologists have leveraged 16S barcoding on 469

reverse-transcribed RNA (i.e., cDNA) to identify community members that are actively growing [170]. Taxa 470

deemed metabolically active often display alternative forms of the patterns discussed earlier, such the SAD 471

[171], the spatial distance-dissimilarity relationship [172, 173], and fluctuations in the discretized growth rate 472

[174]. Though this approach may be too coarse a measure to capture variation in the growth rate across 473

species [175] or temporal changes in cell physiology. Analogous approaches are possible for mRNA using 474

metatranscriptomics, potentially providing greater sensitivity to underlying physiological differences among 475

community members [176]. For example, robust relationships between mRNA transcript concentration 476

and carbon biomass have been reported in marine eukaryotic plankton [177]. Given the emphasis in this 477

Perspective on the benefits and drawbacks of sequence-based measurements, it is necessary to note the 478

increasing availability of approaches that do not rely on sequencing. Notable examples include single- 479

cell stable isotope probing and its variations (e.g., Raman microspectroscopy or NanoSIMS) as well as 480

microcalorimetry [178], though difficulties remain in applying such approaches to diverse communities [179]. 481

Biomass is a crucial measure for unifying macroecological patterns [180]. Such unification is possible 482

because the finite supply of resources in a community constrains fluctuations in physiological variables, which 483

are then embedded in empirical scaling relationships [181]. One such pattern that has been difficult to obtain 484

for microorganisms is the distribution of biomass values within a community, known as the Community Size- 485

Spectrum (CSS) [182]. Recent technological advances now permit the measurement of the mass of individual 486

cells by combining microfluidics with a cantilever [183]. This innovative approach has since been used 487

to investigate the relationship between the mean mass and growth rate across bacterial strains [184], an 488

allometric scaling relationship of historical interest in macroecology [168, 185, 186]. While this approach 489

has only been applied to populations of single species, it could theoretically be used characterize the CSS 490

(Fig. 3a). However, there remains the need for a method to distinguish cellular mass estimates by species 491
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identity. Such a tool could provide the means to probe patterns in situ, such as the scaling relationship 492

between per-species biomass and the basal metabolic rate (i.e., Kleiber’s Law) [187] or population density 493

(i.e., Damuths Law) [188]. 494

Resources as mechanisms 495

Throughout this Perspective empirical macroecological patterns have been primarily interpreted through 496

the lens of phenomenological models (e.g., SLM, gLV; Boxes 1 and 3). While this approach is useful, it is 497

ultimately limited in that it does not provide insight into the underlying mechanisms that shape microbial 498

communities. Given that growth requires resources of some kind, researchers have increasingly viewed 499

consumption as a mechanism that shapes the process of community assembly and final composition, for both 500

experiments and theory. Potential resources can be measured in natural communities (e.g., metabolomics) 501

and coupled with sequence based measures of abundance, providing a novel means to infer the dimensionality 502

of a community in terms of a CRM [189]. To list just a few experimental examples, a resource-centered view 503

of microbial life has been leveraged to investigate how community composition depends on the availability 504

of carbon sources [43, 190], the exchange of excreted resources (i.e., cross-feeding) [191, 192] and the impact 505

of environmental fluctuations [193]. 506

Additionally, increased attention towards the ecological role played by resources has spurred the exper- 507

imental investigation of novel macroecological patterns. A notable example is the dependency between the 508

number of substitutable resources supplied to an environment and the diversity of the assembled community, 509

a novel empirical pattern known as the resource-diversity relationship [194] (Fig. 3b). The slope of this 510

relationship deviates from what is expected under strict competitive exclusion [195], but can be explained 511

once one incorporates cross-feeding. However, this relationship is unlikely to exist as a single, universal 512

form across environmental scenarios. Additional experimental investigations report relationships ranging 513

from the absence of the relationship [196, 197] to its eventual reversal [198]. Mathematical models have the 514

potential to validate the range of documented relationships as well as generate novel forms (e.g., reversal of 515

the relationship when metabolic trade-offs are imposed [199]). 516

Spatial patterns as the outcome of physical processes 517

Patterns of diversity and abundance over space have historically been objects of interest in macroecology [13, 518

102, 200]. However, identifying the ecological mechanisms responsible for near-ubiquitous spatial patterns 519

in natural communities is challenging, particularly for microorganisms (for notable exceptions, see [201– 520

203]). This difficulty arises in-part due to the minuscule spatial scale that cells typically traverse over their 521

lifespan [204–206]. Given that the movement of microbial cells over space is effectively a physical process, 522

experimental efforts in defined environments provide a novel approach for connecting microbial movement to 523

spatial community-level patterns. Using such an approach has allowed researchers to characterize community- 524

level spatial patterns as the outcome of negative interactions [207] and resource exchange [208, 209] (Fig. 525

3c), as well as how coexistence can be mediated by mechanical interactions between species [210]. Leveraging 526

physical similarities can then provide general explanations for spatial patterns. One key consideration 527

is spatial dimensionality, as environments can be modeled as having one (e.g., xylem), two (e.g., human 528

skin) or three spatial dimensions (e.g., soil aggregates). Within a spatial dimension one can then identify 529

environments with similar geometries. For example, diverse microbial communities are found in porous 530

soils, plant apoplasts, and crypts in host intestines, all of which can be viewed as small physical cavities. 531

Microbial growth in these seemingly disparate environments may be unified by recognizing how increased 532

cellular density results in a buildup of mechanical pressure, a determinant of the outcome of competition 533

[211] that can ameliorate competitive exclusion for slow-growing microbes [212]. A similar emphasis on 534

physical structure can be applied to highly spatially-structured communities such as biofilms, which can 535

be understood as a type of physical matter, the constituents of which require energy consumption to move 536

and reproduce (i.e., living matter) [213, 214]. A greater emphasis on microbial spatial macroecology as the 537

outcome of movement in a physically-defined environment has the potential to establish stronger conceptual 538

links between mechanisms and patterns. 539
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Phage as trophic structure 540

While the mechanistic origin of ecological interactions has not been extensively discussed throughout this 541

Perspective, when they have been invoked it has been at the scale of resource competition. This is a limited 542

view of microbial life, as it ignores the possibility of predation. For bacteria, a major source of predation- 543

induced mortality is bacteriophage, responsible for 10-40% of daily bacterial biomass turnover in marine 544

systems [215, 216]. This sheer impact on microbial death suggests the existence of macroecological patterns 545

that reflect underlying predator-prey dynamics, analogous to biomass scaling relationships documented in 546

macroorganisms [217, 218]. Indeed, the co-occurrence of phage and bacterial taxa [219, 220], the correlation 547

in their relative abundances [220], and the relationship between the phage and bacterial diversity has been 548

investigated in natural environments [221]. 549

Regarding absolute counts as a potentially more macroecological measure, scaling relationships between 550

the total cellular abundance of a community and the total number of phage particles have been repeatedly 551

reported [222, 223] (Fig. 3d). Such information has the potential to act as a constraint on minimal math- 552

ematical models. For example, the ratio of phage and bacteria in the human gut was recently leveraged 553

as a constraint alongside sequence and microscopy count data to investigate the balance between phage 554

life-history strategies (e.g., cell lysis vs. remaining in the host genome) [224]. It is also possible that a 555

macroecological view of phage is amenable to experimental manipulation, as phage diversity can be reliably 556

maintained in replicate experimental microcosms harboring a single bacterial strain [225], analogous to the 557

maintenance of microbial diversity on a single carbon source [43] 558

Summary 559

This Perspective provides an overview of the objects of study, approaches, and goals of microbial macroe- 560

cology. Despite its length, an exhaustive catalog of microbial macroecological patterns was not provided. 561

Rather, an emphasis has been placed on intensely studied patterns that can be connected to minimal math- 562

ematical models, providing a basis for microbial ecologists to determine whether a pattern in their system 563

of interest represents a truly unique feature. 564

While this Perspective ends with an advocation to increase the microbiological domain of macroecology, 565

efforts have been made throughout to identify limitations. Individual macroecological patterns rarely reflect 566

a single ecological cause. Evaluating the explanatory ability of sets of patterns is a needed, though not 567

necessarily sufficient, step in the process of winnowing down potential mechanisms. Coupling minimal 568

models with observational patterns is not a panacea for all inferential ills. Sampling is rarely complete, 569

data is imperfect, and the act of measurement often aggregates separate communities. Such concerns are 570

valid and are well-stated in the literature (e.g., [35, 226, 227]). Experimental approaches to macroecology 571

alongside additional consideration of the limitations of microbial measurement has the potential to provide 572

partial amelioration. Regardless, scientists are not going to stop looking for patterns in their data nor stop 573

considering potential explanations. This reality means that it necessary for microbial ecologists to maintain 574

a baseline understanding of the (dis)advantages of macroecological approaches. 575

I end by emphasizing the interdisciplinary and collaborative nature of the research that has shaped 576

our macroecological understanding of microbial life. This assessment is based on contributions made by 577

microbial ecologists from different backgrounds (biologists and physicists) as well as those that take different 578

investigative approaches (experimentalists and theorists). Such empirical and theoretical developments often 579

occur in parallel, but become expedited when cross-communication and collaboration is encouraged among 580

researchers of diverse backgrounds. Continued close collaborations are needed to not only identify novel 581

macroecological patterns, but to also identify how they can be measured and subsequently incorporated into 582

systematic theory. 583

Data and code availability 584

Data were obtained from the following previously published studies: Fig. 1 from Table S1 in [4], Fig. 2 from 585

host M3 [33] reprocessed in [143], Fig. 3 from [183, 194, 209, 222]. All code is available on GitHub under a 586

GNU General Public License: micro_macro_perspective 587
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Boxes 1296

Box 1: Null vs. Neutral models

Macroecologists often evaluate empirical patterns by comparing them with statistical baselines that
preserve certain features in the data while removing others that reflect an ecological mechanism(s) of
interest. This approach provides null models for hypothesis testing and predictive models for hypoth-
esis generation, respectively. In macroecology, models that assume equivalence among community
members (i.e., equal birth, death, and immigration rates) are often invoked, the bulk of which follow
the Unified Neutral Theory of Biodiversity (UNTB) [102]. The UNTB and its variations have made
considerable contributions to our understanding of macrobial communities and represents a genuine
advancement in theoretical ecology (see [24] for an overview and [228] for a recent summary). For
microbial communities the UNTB has been applied both as a null [92, 229–231] as well as to generate
predictions [231–234]. However, for microbial communities the UNTB generally fails to recapitulate
regularly occurring macroecological patterns (e.g., the shape of the MAD) [4]. One can argue that this
lack of correspondence can be looked past, as there is no universally accepted procedure for identifying
the "correct" null model, a perennial issue in community ecology [84, 235–238]. As a counterpoint, a
rigorous null is one that is not easy to "break", meaning that it should capture qualitative features of
the data while its quantitative validity remains an open question. The lack of correspondence between
UNTB and baseline macroecological patterns can obfuscate why the model failed to capture a more
involved pattern. This gap is possibly reflected by the recurring interpretation that deviations from
UNTB necessarily arise due to the existence of interactions between community members. In reality,
the UNTB does not exclude the possibility of interactions (and its success does not necessarily mean
the community is truly Neutral [239]), only that intra- and interspecific interactions be equivalent.
In this sense, one can understand the difference between UNTB and alternative approaches, where
the minimal model capable of capturing macroecological patterns (e.g., the MAD) is the one that
emphasizes non-equivalence among community members (Fig. 1).
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Box 2: Interpreting temporal vs. cross-sectional comparisons

Microbial community data can often be classified by sampling strategy, where collection occurs: 1)
over time within a single community or 2) across multiple communities at a single point in time (i.e.,
cross-sectional). Given the increasing availability of high-replication community assembly experiments
[240], it is worth reflecting on the relation between macroecological measures taken across communities
vs. within a single community over time. For instance, say one is interested in the typical value of
some observable that is a function of abundance and can be calculated using either sampling strategy
(O(xi(t))). If both 1) the distribution of abundances approaches stationarity (PAFD(xi, t) −−−→

t→∞
PAFD(x

∗
i )) and 2) the system explores all possible states of O(xi(t)) as time goes to infinity, then the

expected value of said observable calculated over an ensemble of communities will be equal to that
calculated over time within a community

〈O(xi)〉 ≡
∫

O(xi)PAFD(xi)dxi = lim
T→∞

1

T

∫ T

0

O(xi(t))dt ≡ O(xi)

This relationship holds when the system is ergodic, providing a powerful tool for relating community
data [241] as well as testing predictions from theory, as often it is more analytically tractable to
calculate the expected value over an ensemble than over time. It is essential to note that ergodicity
is a property of the specific observable. For example, an observable that is sensitive to community
members switching between alternative stable states, a behavior that has been observed microbial
communities [47, 119, 154], is unlikely to be ergodic. The existence of ergodicity has been explored
in ecological models of microbial communities [242] and properties related to ergodicity have been
empirically investigated, such as the time required for community members to return to a given
abundance (i.e., recurrence or sojourn time) in marine plankton communities, a necessary, but not
sufficient, condition [143, 243]. Fortunately one can now begin to test the existence of ergodicity
in microbial communities thanks to the increasing number of well-controlled microbial community
assembly experiments, where measurements are taken both over time as well as over a large ensemble
(e.g., [47]). For example, it has been found that after the cessation of migration that fluctuations in
the discretized growth rate remain constant over time within a community while the same observable
calculated across communities tended to increase with time, a violation of ergodicity [49].
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Box 3: Identifying noise source via data-driven minimal modeling

Noise source is an important consideration when constructing ecological models. Theoretical ecology
is often concerned with population size fluctuations arising due to 1) demographic (i.e., endogenous)
or 2) environmental (i.e., exogenous) sources. These can be mathematically interpreted as fluctuations
scaling with √

xi for demographic noise, as they are a consequence of the number of demographic
events (e.g., birth, death), whereas environmental noise scales with xi due to environmental variation
typically acting on the rate of growth. Given that empirical AFDs tend to be captured by a gamma
distribution, researchers have focused on two Stochastic Differential Equations (SDEs) that differ in
their encoded source of noise but return the same stationary probability distribution. These models
are the Birth-Death Model (BDM; more commonly known as the Cox–Ingersoll–Ross model) [244]
and the Stochastic Logistic Model (SLM) [4, 128].

SLM : dxi

dt =

Logistic growth︷ ︸︸ ︷
xi

τi

(
1− xi

Ki

)
+

Environmental noise︷ ︸︸ ︷√
σi

τi
xi · ηi(t)

BDM : dxi

dt = mi + xi(bi − di)︸ ︷︷ ︸
Migration + linear growth

+
√
(bi + di)xi · ηi(t)︸ ︷︷ ︸
Demographic noise

}
−−−→
t→∞

P (x∗
i ) ∼ Gamma(x̄i, βi)

Where for the SLM Ki represents the carrying capacity, σi the strength of environmental noise, and
τi the timescale of growth. For the BDM mi, bi, and di represent rates of migration, birth, and death,
respectively. The term ηi(t) introduces stochasticity as white noise [245]. There exists an additional
model with the same form as the BDM where the deterministic component represents deviations from
an equilibrium abundance that are then subject to a linear restoring force, known as the Stochastic
Linear-Response Model [246]. These models are phenomenological in nature, in that they do not
provide explanations of how a given parameter depends on some detail of the environment. They also
do not explicitly encode interactions between community members (e.g., gLV), though this omission
does not mean that interactions are absent in the real community. Rather, their success implies that
any underlying interactions implicitly impact a given pattern as a single collective impact, known in
physics as a mean-field effect [247]. The two SDEs can be reparameterized as:

SLM BDM
x̄i Ki

(
1− σi

2

)
mi

di−bi

βi ≡ CV−2
x
i

2−σi

σi

2mi

bi+di

Timescale τi (bi − di)
−1

allowing researchers to generate predictions that hinge on the dynamics of the system while
ensuring equivalent stationary behavior. This consideration means that the ability to differentiate
between models depends on the underlying timescale of growth being larger than that of sampling,
a limitation that holds severe consequences for investigating microbial dynamics. For example, in
environments such as the human gut microbiome the time between fecal sampling is expected to be
similar to the timescale of growth (∼ 1 day). While temporal dependence can be found in certain
microbial macroecological patterns (see Temporal Microbial Macroecological Patterns) and recent
rigorous BDM vs. SLM model comparisons suggest a slight preference for environmental noise [88],
it is worth emphasizing that one must consider both sampling and biological timescales in the
design and analysis of temporal ecological studies.
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Figure 1: The path from data →patterns →minimal model →predictions in microbial macroecol-
ogy. a) In microbial ecology one often consolidates their samples as a sample-by-species matrix of relative
abundance, consisting of samples from different sites (as illustrated) or timepoints. Using statistical mo-
ments calculated from empirical data, one can establish the existence of macroecological patterns. b) Three
macroecological laws exist across disparate environments [4]: 1) abundances across sites/over time for a
given community member tend to follow a gamma distribution (AFD), there exists a power law relationship
between the mean and variance of abundance (i.e., Taylor’s Law), and 3) the distribution of mean abun-
dances of all community members follows a lognormal (MAD). c) These three empirical laws provide the
means to construct a minimal model of microbial community composition. Namely, using a form of the AFD
that accounts for sampling (i.e., # reads) and recognizing that Taylor’s Law with an exponent value of two
implies that the coefficient of variation of abundance remains constant across community members (i.e., a
function of β), one can integrate over the MAD to obtain a probability distribution for the number of reads
requiring only the total number of reads in a sample and the two fitted parameters of the lognormal MAD
(i.e., a and b). d) With this distribution in-hand, one can then evaluate its predictive capacity by deriving
additional macroecological patternsa and comparing them to empirical data.
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Figure 2: Temporal macroecological dynamics. a) The temporal relative abundance trajectory of a
community member determines the macroecological patterns that can be examined. When a community
member is consistently sampled over time (blue), it is possible to calculate the discretized per-capita growth
rate gi(t,∆t) as well as quantities such as the length of fluctuations around steady-state abundance (i.e.,
sojourn time, Tsojourn). In contrast, when a community member is periodically unobserved (orange), one can
calculate the residence (Tresidence) and return times (Treturn). These two cases have the potential to reflect
different ecological dynamics and the corresponding patterns can be broadly grouped into two categories:
those calculated b-i) within/across or j-m) between community members. All patterns are obtained from
host M3 in [33].
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Figure 3: Novel and underutilized microbial macroecological patterns. a) Physiological measure-
ments have played a crucial role in the maturation of macroecology. Recent technological advances permit
the measurement of per-cell mass in microbial populations [183], allowing one to investigate how mass as a
dimension relates to other key quantities such as the population-level growth rate. b) The supply of resources
can be viewed as an experimental variable that permits the manipulation of microbial communities, revealing
novel macroecological patterns that allow one to identify explanatory CRMs [194]. c) While spatial metadata
is often provided alongside environmental samples, it is difficult to establish robust spatial patterns in micro-
bial macroecology, much less connect them with ecological mechanisms. Defining space as a physical aspect
within experiments allows one to investigate the spatial dependency of ecological mechanisms. For example,
cross-feeding as the consumption of excreted resources diffusing over space shapes the reproductive success
of a two-member community [209]. d) Phage plays a crucial role in the global turnover of microbial biomass
and is conceptually similar to predator-prey scaling relationships often examined in macrobial macroecology.
This illustrated minimal (and almost certainly unrealistic) conceptual model of phage infection can be math-
ematically formalized and potentially coupled with scaling relationships as empirically-informed constraints
[222].
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