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Abstract

The construction of a predictive theory of the dynamics and structure of microbial communities requires
the consideration of repeatable, robust empirical patterns. The investigation of such patterns in ecology has
historically been the domain of the subdiscipline of macroecology. However, the application of macroecology
to microorganisms is not straightforward, as there is not a unified view of the subdiscipline. In this Perspec-
tive, I start with an interpretation of microbial macroecology by mapping the specificities of research in the
microbial life sciences to prominent themes of macroecology. The bulk of the remaining manuscript is then
dedicated to a survey of common microbial macroecological patterns. I begin with a focus on universal pat-
terns that hold regardless of data type before proceeding to identify patterns that reflect temporal dynamics,
a major goal being the establishment of a minimal, predictive model of ecological dynamics. I conclude with
an outlook on the facets of microbial life that remain largely open to macroecological investigation. This
Perspective is intended for a range of researchers in the microbial life sciences, both to experimentalists and
theorists as well as those from disparate backgrounds.

Il mondo é cost complicato, aggrovigliato e sovraccarico che per
vederci un po chiaro é necessario sfoltire, sfoltire.

(The world is so complicated, tangled, and overloaded that to
see into it with any clarity you must prune and prune.)

Italo Calvino
Se una notte d’inverno un viaggiatore
(If on a Winters Night a Traveler)
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Introduction

The characterization of repeatable empirical patterns is an integral activity when developing scientific theory.
Therefore, obtaining a predictive understanding of the typical composition and dynamics of microbial com-
munities requires a thorough investigation of ecological patterns. In ecology, such scrutinization generally
falls within the purview of macroecology [1, [2]. There is no single definition of macroecology, which will be
elaborated upon in the subsequent section, though it is often viewed as the study of ecological patterns and
processes over large scales. Given the global scale of microbial data collection efforts (e.g., [3]), it is not
surprising that macroecological approaches have been increasingly leveraged to investigate macroecological
communities (e.g., |[4H8]). The sheer number of studies, empirical patterns, and proposed mathematical
models warrants a reevaluation of our present understanding of microbial macroecological patterns and how
they relate to the development of theory in microbial ecology.

This Perspective is not the first to provide an overview of microbial macroecology [9H12], nor the first
to acknowledge the ways in which microbiological approaches shape macroecological investigation |13} [14].
It is also not the purpose of this Perspective to ordain a single definition of macroecology as being the
most germane for microorganisms. Rather, an initial goal is to interpret prominent macroecological themes
through the lens of the microbial life sciences. From there, I provide a survey of prominent, repeatable
macroecological patterns across cross-sectional data and/or time, highlighting when and how a given pattern
can be quantitatively explained by data-driven mathematical modeling efforts. Due to the sequence-based
nature of the bulk of microbial data, I will focus on patterns that can be characterized using compositional
data. It is also not the goal of this Perspective to prescribe a single model capable of explaining all docu-
mented macroecological patterns, though I do not believe this task is insurmountable. Finally, an outlook
on microbial macroecological investigations is provided, highlighting measurable quantities and biological
processes that are likely fruitful targets for future research efforts.

What is macroecology?

It is useful to begin with a brief overview of the historical development and current interpretation of macroe-
cology. The investigation of biodiversity patterns one would now label as "macroecological" have been present
since the virtual inception of ecology [15]. The eventual consolidation of macroecology did not occur un-
til the late 20" century, driven, it has been argued [16], by three historical developments: 1) recognition
that processes occurring over larger scales shape communities at the local scale, 2) the accumulation and
curation of quantitative biodiversity data, and 3) an increasing acceptance of the limitations of the reduction-
istic/microscopic approaches that dominated ecological research from the 1970s-1990s (see |17, [18]). These
developments lead to the formalization of macroecology in 1989 (using a term first introduced in 1971 [19)])
as a research program focused on investigating the relationship between organisms and their environment via
statistical patterns over large spatial, temporal, and taxonomic (i.e., # species) scales |1}, 2]. This definition
has diverged since its inception, though it has been proposed that the various definitions that have since
arisen can be coarse-grained into two |16} 20], where macroecology is: 1) large-scale ecology in the sense that
practitioners are focused on large scale patterns [21} [22] and 2) the study of recurring statistical patterns of
biodiversity over time or across ensembles of communities (i.e., an ecological analogue to statistical physics)
[23-26].

While there is no singular, universally accepted definition of macroecology, they all share what has been
called an "insistence on empiricism" [20]. Given the plurality of working definitions, instead of attempting
to graft microbial particularities onto a single previously established definition it is instead pragmatic to
identify empirical themes of macroecological research so that one can examine their relation to microbial
ecology. A non-exhaustive list of macroecological themes include:

1. Scale. Scale in macroecology refers to both the extent and resolution (i.e., "grain") that a quantity
of interest is measured. Scale was originally viewed as constitutive rather than incidental, meaning
that macroecological patterns are emergent properties rather than a summation over a large number
of communities [2]. The recurrence of patterns across disparate environments and their seeming insen-
sitivity to ecological processes operating within individual communities would then suggest that they
are explanatory in their own right [2] (similar to "More Is Different" [27]). Alternative views range from
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scale simply being the chosen window of observation |21} 22], to a convenient (though still embraced)
property for inference rather than a defining feature [20].

2. Pattern-first inference. FEmpirical patterns remain the primary object of investigation across
macroecological definitions despite differences in interpretation. Patterns were originally viewed as
higher-level statements about ecosystems, where the investigation of the pattern itself was advocated
as the primary strategy of macroecology rather than the reduction of patterns to specific ecological
mechanisms. A contrary view is that macroecological patterns are scientifically valuable insofar as
they permit discrimination among reasonable ecological mechanisms, where a many-to-one mapping
from mechanisms to pattern reflects underdetermination rather than being a justification for viewing
the pattern as inherently informative |28} 29].

3. Non-experimental investigation. Macroecology was originally envisioned as an explicitly non-
experimental research program, the logic of this restriction of scope being that it is often difficult to
draw useful ecological generalizations out of the aggregation of results from different experiments [1} [2].
It has been argued that this focus on observation was driven in-part by the ascendancy of small-scale
ecological experiments when macroecology was introduced [16}, [20].

4. Reliance on comparative data. Macroecological research is contingent on the availability of com-
parable public datasets. This statement was true at the onset of macroecology [1], with the need to
ensure the comparability of various sources and types of data becoming only more pressing given that
biology has long since entered the era of "big data" [30].

What is microbial macroecology?

Microbial macroecology can be defined as the application of macroecological principles and approaches to
microbial systems. Such a definition can be misinterpreted as a tautology, but, as discussed earlier, there
are multiple interpretations of macroecology. This plurality, coupled with the particularities of microbiology,
can make the application of macroecology appear nebulous from the outset. Below I will examine how the
particularities of microbial life science research relates to four previously identified macroecological themes.

1. Scale, a fortiori

A characteristic feature of microorganisms is their scale. Between an estimated global abundance of ~ 1030

cells [31], global richness ranging from 10° [32] to 10'2 [6], harboring vast amounts of known phylogenetic and
metabolic diversity, and having colonized virtually every environment on Earth [3], microbial life provides the
taxonomic, phylogenetic, metabolic, and spatial scales that permit macroecological investigation. Coupled
with the comparative ease that timeseries can be obtained for durations far exceeding intrinsic ecological
timescales (e.g., division time) |33], microbial communities cover all dimensions of macroecological scale [20].
While scale alone is an insufficient characterization of macroecology, it provides the benefit of permitting one
to examine how statistical aggregation may reveal general patterns that might otherwise remain unobservable
at smaller scales [20]. An alternative view of scale is that microbial communities are often high-dimensional,
providing justification for the use of models that seek to capture the typical community rather than every
possible arrangement [26].

2. The utility of minimal models in microbial macroecological investigations

The application of mathematical models to empirical patterns has increasingly become a defining feature
of macroecological investigations [34]. Identifying explanatory ecological mechanisms via modeling is not
straightforward, as different mechanisms often have similar explanatory power for a given macroecological
pattern [35} 136]. In order to progress it is necessary for researchers to identify the simplest possible model
capable of reproducing a given pattern(s), known as minimal models, where added model detail acts as a
hypothesis that must explain additional features in the data to justify its retention. Such a strategy is
consistent with the long-standing spirit of model development in ecology [37], ideally circumventing issues
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that arise from complex models such as effectively indistinguishable parameter combinations preventing one
from differentiating between alternative mechanisms (i.e., "sloppy" models [38]).

The interpretation of macroecological patterns in microbial ecological communities has been greatly
aided by the application of minimal mathematical models [4, 25 [26, 39-41]. For example, the simple
requirement that a useful ecological model must qualitatively capture macroecological patterns allows one
to rule out several candidates (Box . Of those models remaining, one can quantitatively predict multiple
macroecological patterns where time is not a factor using as few as two free parameters (Fig. . Such models
provide a foundation for the subsequent identification of minimal models of ecological dynamics (|4]; Box
Fig. |2) as well as when it is necessary to invoke non-independence between species via the incorporation
of explicit ecological interactions (e.g., generalized Lotka-Volterra (gLV)) [42]). This approach does not
limit one’s modeling efforts to the phenomenological scale of abundances (e.g., logistic growth), as successful
minimal modeling efforts have been performed using mechanistic Consumer-Resource Models (CRMs; [g]).

3. Observational and experimental investigation: pari passu

As previously stated, macroecology was originally conceived as an explicitly non-experimental form of inves-
tigation [2]. This restriction was in-part motivated by the reality of performing ecological experiments on
macroorganisms, as limited observation timescales, replication, and capacity to perform systematic manipu-
lations can impede one’s ability to map a given mechanism to a macroecological pattern. Microbial ecology
provides a solution, as researchers are increasingly pursuing experimental endeavors that examine microbial
dynamics for ensembles of replicate communities [43-47]. This type of experimental design combined with
the sheer taxonomic scale typical of microbial communities (i.e., many degrees of freedom) lends itself to
the characterization of repeatable patterns typical of macroecological investigations. Indeed, a number of
macroecological patterns have been identified in experimental microbial communities [48-51]. A potentially
greater benefit is that one can perform systematic experimental manipulations to directly interpret the biotic
and abiotic contributors towards a pattern of interest [52]. The microbial macroecological consequences of
experimental manipulations have begun to be examined (e.g., [49]), while minimal models capable of explain-
ing patterns in natural communities provide a means to generate novel predictions for future experiments

(e-g- [8))-

4. Limitations of microbial measurement

Measurement is not a neutral act. Decisions made by the investigator constrain the set of patterns that
can be explored as well as the models that can be tested [53]. Such consequences clearly apply to ecological
modeling [54], meaning that it is worth considering how the typical details of microbial community data
collection impact subsequent macroecological investigations. A reliance on sequencing is a characteristic of
the measurement of microbial communities. While the first sequence-based characterization of microbial
diversity relied on Sanger sequencing clone libraries of rRNA genes [55-58], the advent of massive parallel
sequencing (then known as "next-generation sequencing") provided an unprecedented means for investigating
the composition and structure of large microbial communities, both by targeting 16S rRNA regions [59] as
well as entire genomes via metagenomics [60]. The cost of both technologies has long-since decreased to the
point where large-scale sampling of communities across space and time is financially feasible. Metagenomics
provides an added benefit, as it contains information about the frequencies of genetic variants within commu-
nity members, permitting the investigation of eco-evolutionary patterns [61]. The need to standardize both
the processing of sequence data and the reporting of metadata is well recognized by those in the microbial
life sciences [62], ensuring some level of comparability across studies.

Such benefits come with limitations, an example being that units of biodiversity must be gleaned from
sequence data |63} |64]. Historically microbial ecologists treated clusters of 16S rRNA barcodes at a given
level of sequence similarity as "species" in the sense that they represented the lowest scale of taxonomic
resolution, deemed Operational Taxonomic Units (OTUs) [65]. Later microbial ecologists opted for the
inference of community members at the level of single nucleotide differences rather than a prescribed level of
similarity, referred to as Amplicon or Exact Sequence Variants (ASVs/ESVs) [66]. However, this advancement
does not solve the issue that units of diversity inferred from 16S rRNA are ultimately reliant on the degree
that a single gene reflects the ecological variation encoded in the entire genome. Metagenomics provides
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additional information, though sampling effort is more complicated as the number of reads belonging to a
given community member is now a composite of coverage values over many genes [67]. Fortunately, many
macroecological patterns appear to hold in both barcoding and metagenomic data [67H69]. The increasing
momentum towards metagenomics over barcoding provides the added benefit of revealing sub-ASV structure
known as "strains', representing the minimal meaningful unit of biodiversity that can be inferred from
metagenomic data |70, [71].

An additional, potentially more severe, limitation is that information about absolute abundances (e.g., #
cells, # genes) is absent in most sequence data, as the total number of reads is an arbitrary limit set by one’s
sequencing protocol. This feature, known as compositionality, introduces undesirable statistical artifacts
when researchers examine reads as relative abundances. Such artifacts can often be corrected through the
use of appropriate statistical methods [72H74], while information about absolute abundances remains lost.
As there is no widely used sequencing method that preserves the original number of cells, researchers often
multiply relative abundances by an externally-obtained measure that is reflective of the total abundance of
the community (e.g., quantitative/digital PCR [5} |75], optical density [47], flow cytometry counts |76, (77]). In
contrast to post hoc rescaling, the scale of absolute abundances can be preserved throughout the sequencing
protocol when internal standards are added to samples (e.g., DNA [78-81], cells [82]). These approaches
permit the inference of absolute abundances while accounting for experiment-specific statistical artifacts.
Fluorescence-based microscopy is a potential alternative for obtaining absolute counts (e.g., fluorescence in
situ hybridization [83]), though it is more effective for smaller communities where the taxonomic composition
is known a priori. Such considerations are rarely made for studies with either the temporal or replicative scale
necessary for macroecology. As a consequence, the macroecological patterns typically examined in microbial
communities are those focused on diversity and composition, with comparatively little known about those
that require quantities with physical dimensions such as abundance or biomass. This experiment-specific
contingency on the existence of information about absolute abundances should be considered when one
applies macroecological models where total absolute abundance operates as a community-level constraint
(e.g., maximum entropy [23} 84]), providing justification for favoring process-based models over those that
are constraint-based [85].

Sample-invariant microbial macroecological patterns

The survey begins by focusing on empirical macroecological patterns that have been documented in both
both cross-sectional (i.e., samples from different locations in space or replicate experimental communities)
and temporal (i.e., longitudinal) measures of communities. Ultimately, many patterns of historical interest
can be quantitatively explained using few free parameters across a range of disparate environments, providing
a foundation for building quantitative intuition about the structure of a "typical" microbial community.

Abundance Fluctuation Distribution (AFD)

Understanding how the abundance of a given species is distributed over time or space is a fundamental goal
in macroecology. Once this distribution is understood one can leverage its existence to predict community
structure if community members are independent. This object is known as the Abundance Fluctuation Dis-
tribution (AFD) and has become an object of study in recent years [4]. Such efforts have found that diverse
community members tend to have AFDs of the same qualitative shape once rescaled by their mean and
variance, a phenomenon known as a data collapse [86], that holds both for natural environments and exper-
imental communities [4, 49]. This persistent form is often captured by a gamma distribution, holding both
for cross-sectional and temporal data. For the temporal AFD, the gamma distribution can be interpreted
as a time-independent probability distribution if certain criteria are met (Box [2). When valid, this inter-
pretation allows one to construct Stochastic Differential Equations (SDEs) comprised of different ecological
mechanisms that produce the same stationary AFD. For the gamma AFD, two SDEs are frequently invoked:
the Stochastic Logistic Model of growth (SLM) and the Birth-Death-Migration (BDM) model (Box (3} |4}
87, 188]).

The qualitative invariance of the AFD has been documented across taxonomic and phylogenetic scales.
Specifically, the abundances of sub-16S rRNA microbial strains inferred using human gut metagenomic
timeseries exhibit distributions of the same form as across-host frequencies of the genetic variants that
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constitute strain differences [89} [90]. Moving from finer to coarser scales, the same form of the AFD has
been found to hold when OTUs are merged by taxonomic label or phylogenetic similarity [91]. This operation
represents a form of coarse-graining, where the richness of the community reflects the number of degrees
of freedom which is then sequentially reduced. The consistent shape of the AFD has been leveraged to
investigate the relationship between measures of community biodiversity at different phylogenetic/taxonomic
scales (i.e., "diversity begets diversity") [91}92]).

Taylor’s Law

In contrast to the recent focus on the AFD, the power law relationship between the mean and variance of the
AFD across community members, known as Taylor’s Law, has remained an intensely studied pattern for over
sixty years [93]. This pattern is virtually ubiquitous in microbial communities, having been characterized
both for cross-sectional data as well as over time for disparate environments [4, |8, |16, 48, 49], in both
natural and experimental communities [48-50], and the sub-16S rRNA level of strains [89}90]. An exponent
value of two, as is often reported in microbial community data, represents a constant coefficient of variation
across community members. Such constancy represents an instance of scale invariance of the strength of
fluctuations relative to typical abundance.

Taylor’s Law represents one of the few law-like patterns in ecology, having resulted in ecologists exerting
immense effort to provide mechanistic interpretations of exponent values. Historically such efforts have fo-
cused on macroorganisms |16} 94} 95|, though in recent years mathematical models have have been developed
to investigate Taylor’s Law as a reflection of fluctuating resources that shape the dynamics of microbial con-
sumers [8] as well as the sparsity of resource consumption preferences [96]. The CRM has a potentially larger
explanatory role to play, as the value of the exponent is associated with the presence of carbohydrate-active
enzymes in gut microbiota timeseries [97]. In terms of experimental observation, the (in)variance of the
Taylor’s Law exponent has been attributed to offspring number correlations |98], competition across space
[48], the rate and form of migration as an experimental variable [49], and the application of antibiotics and
phage predation [50]. Such experimental efforts confirm when the value of the exponent is and is not a
reflection of ecological mechanism, but it is worth stating that the form of Taylor’s Law is virtually never
altered in experiments. Such qualitative invariance in the face of experimental manipulation is consistent
with the interpretation that the form of Taylor’'s Law is a consequence of growth being a multiplicative
process |99, [100]. Regarding the contribution of the form of noise towards the form of Taylor’s Law (Box 7
environmental noise is sufficient to reproduce observed patterns while demographic noise removes, or even
inverts, Taylor’s Law for stochastic gLV models [101].

Mean Abundance Distribution (MAD)

The Mean Abundance Distribution (MAD) reflects the degree of variation across community members in
typical abundance. The MAD is generally captured by the log-normal distribution for temporal and cross-
sectional data from natural communities [4]. A similar result has been found in cross-sectional data from
experimental communities [49]. Recent efforts provide a subtler interpretation to the shape of the AFD, where
truncating the MAD favors a log-Laplace distribution for low relative abundance thresholds (z; < 10~°) while
the log-normal is recapitulated for higher values (z; > 107°) [67]. It is essential to note that sampling shapes
the empirical MAD and is necessary to incorporate in one’s statistical inference [41].

There are interpretive benefits that come from examining the MAD rather than the distribution of species
abundances within an individual sample. The mean abundance of a given species has historically been an
object of interest in theoretical ecology. For example, symmetry in species’ birth and death rates under
the Unified Neutral Theory of Biodiversity and Biogeography (UNTB) predicts that mean abundances are
identical when the species identities are exchangeable [24] [102]. Under this prediction, the MAD is Gaussian
for a finite number of independent samples, approaching a single value as the number of samples approaches
infinity [4]. More detailed predictions of the form of the MAD can be obtained when interactions between
community members are incorporated, as a stochastic gl.V model can only reproduce empirical MADs when
both the strength and connectedness of interactions between community members is weak [42]. This result
was further refined by incorporating Taylor’s Law, demonstrating the utility provided by constructing models
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constrained by multiple macroecological patterns. These results appear consistent with those of a coarse-
grained CRM which was able to capture the empirical MAD without fine-tuning [8].

Species Abundance Distribution (SAD)

When Taylor’s Law holds and the mean and variance are sufficient to characterize a given AFD, the AFDs
of all community members are fully specified once one knows the MAD [4]. These three macroecological
laws allow one to predict the shape of the Species Abundance Distribution (SAD) within a given sample,
one of the most intensely studied patterns in the history of ecology [28, [103-105]. The resulting SAD is
consistent with a prior effort that examined per-sample SADs [7], with the same SAD model being used to
generate predictions of global microbial richness by leveraging empirical scaling relationships between the
total number of reads and richness |6} |106].

Recently the purported generality of the lognormal has been challenged by a distribution known as the
powerbend, a hybrid of a power law and exponential function that often provides greater explanatory power
for empirical microbial SADs [107] [108]. This distribution is similar in form to the gamma distribution,
which has a history of being invoked to explain empirical SADs [2§], differing in that it is a discrete and
truncated extension of the gamma. The powerbend is also a generalized distribution, meaning that it can
be reduced to simpler distributions often used in ecology (e.g., logseries, power law), potentially applying to
microbial communities that display non-lognormal SADs such as those in Tara Oceans data [109]. Notably,
the powerbend cannot be reduced to a lognormal, but can qualitatively resemble said distribution in certain
parameter regimes.

Similar to its statistical investigation, effort has been expended in the hope of identifying ecological
mechanisms capable of generating empirical SADs [28]. For example, CRMs have been largely able to
capture empirical SADs in Tara Oceans data when community members belonging to the same taxonomic
group have correlated resource preferences [39]. These modeling efforts produce a logseries SAD, rather
than the lognormal or powerbend that is most often reported in other environments. However, given that
empirical MADs can be recapitulated using certain forms of the gLV model [42], which itself can often be
obtained from the CRM [110, |111], it is reasonable to assume that CRMs can be invoked to explain variation
in empirical SADs across diverse environments.

Abundance-Occupancy Relationship (AOR)

The relationship between the typical abundance of a community member and its presence across sites is one of
the most well-documented patterns in macroecology, known as the Abundance-Occupancy Relationship [112-
114]. For microbial communities, this relationship can be qualitatively captured by deriving the predicted
occupancy across samples using a gamma distributed AFD and Poisson sampling |4]. This success has
significant consequences for our understanding of microbial community data, as it implies that the absence
of a given community member in primarily due to sampling effort. Interestingly, the ability to predict
occupancy given the mean and variance also extends to experimental communities that exhibit alternative
stable-states and does not systematically vary when migration is manipulated [49]. Such a high level of
accuracy given the mean and variance alone suggests that occupancy typically contains little ecological
information outside of its ability to reflect the form of the underlying AFD. This conclusion relates to
the expected occupancy and may not extend to alternative measures such as the joint occupancy between
two species, which likely depends on the joint relationship between AFDs. Therefore, while the AOR is a
macroecological pattern of historical interest, its ability to provide mechanistic insight into the composition
of microbial communities is likely limited.

Temporal microbial macroecological patterns

Timeseries data are fundamentally ordered in a sequence, unlike cross-sectional data, providing an oppor-
tunity for macroecological patterns to be investigated as a consequence of temporal dynamics. Below I
will summarize temporal macroecological patterns that have been characterized in microbial communities,
focusing first on those that examine variables calculated within or across community members over time
before shifting attention to those calculated between community members. Contributions are noted from

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292



the extensive literature on measures of distance/dissimilarity between the same community sampled at two
points in time |33} [115H117] as well as between two communities as a function of time [118H122], though a
systematic overview is not provided.

Patterns within and across community members
Discretized growth rates

With temporal data in hand, one can examine how relative abundances change between samples. In macroe-
cology this quantity is often examined using the logarithm, interpreted as the relative change in abundance.
This is an ecologically meaningful measure as growth is a multiplicative process, allowing for the quantity
to be interpreted as a discretized form of the per-capita growth rate which can then be leveraged to test
predictions about the role of time-dependent growth within a community [94, [123| [124] (Fig. ) Microbial
investigations of discretized growth rates primarily rely on sequence data due to the difficulty of directly
measuring growth rates in terms of biomass or number of cells in a community-context. Metagenomics can
provide an orthogonal source of information on growth, as the degree of bias in the distribution of coverage
along the genome due to nested genome replication reflects the growth rate [125] 126], having been leveraged
alongside the SLM to provide insight into the relationship between the typical abundance of a community
member and its growth rate [127].

In recent years the distribution of discretized growth rates has been an object of macroecological interest
(Fig. ) Initial investigations found that the distribution was well-described as a Laplace distribution in
human and mouse gut microbiota [5] as well as in experimental communities [51]. Later work comparing
the explanatory power of minimal models favored demographic noise as an explanation (Box [3)) [87], though
it is unclear at present how this result relates to analyses that favor environmental noise as an explanation
[88, |101). The latter interpretation is consistent with an alternative measure of fluctuations, the absolute
value of the change in relative abundance between time points (|Ax;|; Fig. )7 with its dependency on mean
abundance being mostly consistent with predictions of environmental noise [12§].

Regarding ecological mechanisms, this distribution has been examined as the outcome of density-dependent
birth-death processes [129], the niche structure of an environment [130], and the strength of noise in resource
inflow [8]. The last explanation is particularly useful in microbial macroecology, as it has been noted that
the form of the distribution of discretized growth rates is insensitive to the temporal ordering of observations
[131}, [132], raising questions about the extent that the distribution reflects temporal dynamics. An answer
was found by examining the slope of the relationship between Alnx;(¢) and Inz;(¢) through the lens of a
CRM (Fig. 2, as its value was strongly influenced by temporal autocorrelation in resource inflow [8]. Said
sensitivity of the joint relationship appears consistent with gLV modeling efforts [101].

Growth rate fluctuations scale over increasing intervals of time, examined as Var(Aln x;(t)|At) oc At?H
where H is known as the Hurst exponent (Fig. 2p) [133]. The value of H reflects the direction of temporal
correlations, interpreted in physics as anomalous diffusion, with H < 0.5 and H > 0.5 representing subdif-
fusion and superdiffusion, respectively. Within human and mouse gut microbiota, values of H = 0.07 — 0.08
have been reported [5]. The subdiffusive nature of these values is consistent with the view that microbial
species are typically driven towards a steady-state. Analytic predictions of Var(Alnz;(t)|At) can be de-
rived for both the SLM and BDM, with both models predicting diffusion or the absence of scaling (i.e.,
Var(Aln x;(t)|At) being constant) when At is much smaller or larger than the timescale of growth, respec-
tively. In ecological terms, said saturation reflects community members being driven to their equilibrium
abundance over extended timescales |[134]. Interestingly, three-member experimental communities in closed
phototroph-driven ecosystems displayed exponents ranging from 0.28 — 0.45 [51]. The cause of this increase
is unclear, though plausible explanations include the trophic structure of the community.

Timescales

In natural communities one often finds periods of time where low abundance species remain unobserved.
These timescales have been proposed as being informative of the typical turnover time of the community,
potentially reflecting ecological forces such as demography [135] resulting in the local extinction of a com-
munity member [102, 136]. The timescales when community members are consecutively present or absent
are known as residence (Tyesidence; @lso known as a type of "avalanche' distribution [137] [138]) and return
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(Treturn) times, respectively (Fig. ) In human and mouse gut microbiomes the distributions of said vari-
ables have been characterized, with the distribution of Tyesidence tending to follow a power law [5] (8] [138]
while that of Tieturn displays a convex shape on a log-log scale [5], though both distributions are sufficiently
captured by a power law with an exponential cutoff |5, |8].

Given that the typical total number of reads for a barcoding sample ranges from ~ 10* — 10° and the
estimated typical number of bacterial cells in e.g. the human colon being ~ 103 [139], the sheer gap between
the lower bounds of observation and true abundance suggest that Tiesidence and Treturn typically harbor
little information about genuine extinction events. This conclusion likely extends to temporal dynamics in
general, as distributions of Tiesidence a1d Tieturn Obtained from timeseries with the temporal order destroyed
via permutation are virtually identical to empirical distributions [132]. Instead, these distributions may
predominantly reflect the typical composition of a community characterized by the time-agnostic patterns
discussed earlier plus sampling. Such generality is supported by both distributions being predicted by
coarse-grained CRMs without the use of fitted parameters [8]. It is also likely that this explanation can be
extended to the power law relationship between the length of a timeseries and the cumulative richness of
the community, known as the Species Time Relationship (S o« (At)*), a pattern that can be characterized
in any timeseries but has been primarily investigated in industrial wastewater bioreactors [117] |{140].

A key feature of microbial temporal dynamics is that community members often fluctuate around a typical
value, which can be interpreted as a steady-state. A recent macroecological effort has sought to scrutinize
said fluctuations, drawing from efforts in statistical physics to characterize the universal behavior of a random
walker destined to return to its origin [141}, [142]. The behavior of these deviations can be captured through
three patterns: 1) the distribution of the length of the sojourn period (i.e., sojourn time, Tygjourn; Fig.
2f), 2) the relationship between sojourn time and the average height under the sojourn curve, and 3) the
relationship between the deviation from the steady-state and the time within the sojourn period. Unlike
distributions of Tiesidence and Treturn mentioned above, distributions of Tysjourn appear to reflect underlying
temporal dynamics. The third pattern can be rescaled using the second to obtain a universal scaling relation
that holds for a variety of stochastic processes, as well as for microbial communities in the human gut [143].
However, zero rescaling was needed in human gut timeseries, potentially due to the timescale of growth in
the human gut being close to the lower bound of At [144].

Temporal autocorrelation

Temporal autocorrelations are highly useful in that they allow one to evaluate the existence of long-ranged
correlations in a community, a form of ecological "memory" [145-147] (Fig. ) It is often more convenient
to instead examine the Power Spectral Density (PSD), which can be interpreted as the Fourier transform
of the autocorrelation function under certain criteria (Fig. ) The exponent governing the shape of the
PSD reflects the type of underlying noise (i.e., noise color). Exponents within the human gut imply that
the underlying autocorrelation function decays as a power law (i.e., exponent of -1, pink noise), indicating
that it has no characteristic timescale (i.e., scale-free). In contrast, results from the human palm and oral
microbiome imply a lack of temporal structure (i.e., exponent of 0, white noise) [128]. Exponent values from
natural communities can reproduced using gLVs, where the product of the strength of self-interaction with
the mean abundance serves a key control parameter [128]. Similar results were found in a separate study
using gLVs, where experimental mouse microbiomes and marine bacterial communities favored white noise,
though in all environments pink noise tended to be found among dominant community members [101]. As
a contrasting observation, exponent values in closed phototroph-driven experimental communities indicate
the persistence of autocorrelations over extended timescales (i.e., exponent of 2, Brownian noise) [51]. The
underlying mechanism responsible for these long-range correlations is unclear, though, as discussed earlier,
the trophic structure of the designed community may be a contributor [51].

Despite its advantages, the PSD can only be interpreted in terms of the autocorrelation function when 1)
the mean is constant over time and 2) the autocorrelation only depends on At (i.e., "wide-sense stationary"
[148]). In order to identify community members that are stationary, one can examine the dissimilarity
between samples to determine whether it saturates with increasing At [119] (Fig. [2[). Analyses of the
human gut suggest that most community members tend to be stationary, with a minority exhibiting values
of ®;(At) that continue to increase with increasing At. The dynamics of this minority cannot be captured
by the standard SLM (Box , however, modifying the carrying capacity so that there is a large, single
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change is sufficient to reproduce the lack of saturation. This jump occurs at similar points in time for
different community members, suggesting that they are collectively responding to a single, large change in
the environment, a phenomenon known as alternative stable states [149-154].

Patterns between community members
Pairwise temporal correlations

Abundance correlations between pairs of species cannot be explained by minimal ecological models that
do not explicitly encode interactions, a discrepancy that is often interpreted as a reflection of underlying
ecological interactions (Box [} Fig. [2f; [4]). The distribution of said correlations can be explained using
a gLV, where high sparsity in the interaction matrix is necessary to reproduce empirical observations [42].
Regarding explanatory mechanisms, the same distribution can be predicted by fitting a coarse-grained CRM
to macroecological patterns that do not explicitly depend on pairwise correlations (i.e., per-sample commu-
nity richness, Taylor’s Law, distribution of discretized growth rates, and the slope of Alnx;(t) vs. Inz;(¢))
[8]. The effectiveness of this model suggests that macroecological patterns that do not explicitly depend on
quantities calculated from the joint AFD of a pair of species can reflect pairwise correlations due to shared
consumption preferences for fluctuating resources. Furthermore, the consideration of correlations is largely
sufficient to recapitulate empirical measures of distance/dissimilarity between communities|155]. This result
extends to the relationship between community dissimilarity and overlap (i.e., probability that a read belongs
to a species present in both samples) |[155], a macroecological pattern documented in both natural |156] and
experimental communities [157].

Moving beyond the shape of the distribution, in recent years it has been reported that the strength of
pairwise correlations tends to decline with increasing pairwise phylogenetic distance for both cross-sectional
and temporal data [158], a novel macroecological pattern (Fig. [2k). Interpreting phylogenetic distance
as a reflection of shared preferences for environmental factors (e.g., resources, temperature), the empirical
pattern cannot be recapitulated when competition between community members plays a critical role, nor
by fluctuations in the environmental factors induced by community members (e.g., resource consumption).
Rather, the environmental factors must be fluctuating independently of species abundances, a scenario known
as "environmental filtering" [159]. This macroecological pattern reflects the ezpected pairwise correlation for
a given phylogenetic distance, though one can also examine how the structure of the correlation matrix
is affected under coarse-graining via phylogeny or taxonomy by examining the distribution of eigenvalues.
In general the rank distribution of eigenvalues remains invariant under coarse-graining, as evidenced by its
distribution of eigenvalues [138]. Similar results were found when community member pairs were coarse-
grained by their strength of correlation [138], a procedure known as the phenomenological renormalization
group method due to its utility in investigating the stability of a system [160, [161]. The similar qualitative
invariance under these two coarse-graining protocols is unsurprising given the existence of the aforementioned
distance-decay relationship, as its validity means that each axis is a function of the other. This inference likely
extends to the recently characterized relationship between pairwise phylogenetic distance and the average
dissimilarity between all communities that harbor both species |162], as dissimilarities between communities
can be largely recapitulated when one considers pairwise correlations between species.

Temporal cross-correlation

Often in ecology one wants to characterize the extent that a pair of community members fluctuate together
as a function of temporal displacement. Similar to autocorrelation, one can use the Fourier transform of the
cross-correlation function, known as the Cross-Power Spectral Density (CPSD; Fig. ,m) [147]. A normalized
form of the CPSD, known as coherence, has recently been leveraged to infer resource consumption structure
in empirical marine communities via CRMs [163]. Coherence tended to decline with increasing pairwise
phylogenetic distance for microbial eukaryotes, an analogous form of the relationship between phylogenetic
distance and pairwise correlations [158] (Fig. [2k).
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Prospects of microbial macroecology

The preceding sections were concerned with macroecological patterns that can be characterized solely us-
ing compositional abundance measurements. While explanatory mechanistic models were invoked (i.e., the
CRM), they were used to explain patterns of the only variable that was measured (i.e., relative abundances)
rather than all variables in the model (i.e., relative abundances and resources). This approach has changed
in recent years, as technological advances and novel experiments provide opportunities to extend macroe-
cological investigations to microbiological phenomena that were previously unobservable. Four potential
(non-exhaustive) avenues of microbial macroecological advancement are examined below.

Measuring physiological variables

Microbial researchers have been largely limited in their ability to investigate macroecological laws that
depend on variables with physical dimensions measured for individual community members (e.g., per-species
# cells, biomass), a severe limitation as some of the most impactful results for macroorganisms were gleaned
from dimension-based analyses [2]. This limitation does not mean that there is a lack of understanding
of physiological macroecological patterns in microorganisms. For example, community-level measurements
(e.g., total biomass) have permitted researchers to probe the relationship between community diversity
and function [164] and model physiological transitions among community members [165], where physiology
acts as a mediator between the environment and the community. Likewise, laboratory measurements of
individual microorganisms have provided a quantitative understanding of energy dissipation per-unit biomass
across microbial species [166]. Though one can argue that at present the ability to investigate physiological
quantities of individual species in a community context is the primary limitation. The continued consideration
and measurement of physiological meaningful variables is necessary in that they have repeatedly provided
answers for long-standing ecological questions (e.g., empirical scaling laws between mass and growth rate
permitting community stability with increased diversity [167]). The quantification of species-level metabolic
activity and mass are discussed below, two key physiological quantities in macroecology.

The study of metabolism provides a first-principle basis for linking scales of biological organization
ranging from cells to ecosystems [168]. However, obtaining per-species estimates of metabolic activity and
growth in mixed microbial communities is not straightforward, with the interpretation of "metabolic activity"
depending both on what is measured as well as the model used for interpretation |[169]. With the measurement
of species-level metabolic activity being so difficult, microbial ecologists have leveraged 16S barcoding on
reverse-transcribed RNA (i.e., cDNA) to identify community members that are actively growing [170]. Taxa
deemed metabolically active often display alternative forms of the patterns discussed earlier, such the SAD
[171], the spatial distance-dissimilarity relationship [172}173|, and fluctuations in the discretized growth rate
[174]. Though this approach may be too coarse a measure to capture variation in the growth rate across
species [175] or temporal changes in cell physiology. Analogous approaches are possible for mRNA using
metatranscriptomics, potentially providing greater sensitivity to underlying physiological differences among
community members [176]. For example, robust relationships between mRNA transcript concentration
and carbon biomass have been reported in marine eukaryotic plankton [177]. Given the emphasis in this
Perspective on the benefits and drawbacks of sequence-based measurements, it is necessary to note the
increasing availability of approaches that do not rely on sequencing. Notable examples include single-
cell stable isotope probing and its variations (e.g., Raman microspectroscopy or NanoSIMS) as well as
microcalorimetry [178], though difficulties remain in applying such approaches to diverse communities [179).

Biomass is a crucial measure for unifying macroecological patterns [180]. Such unification is possible
because the finite supply of resources in a community constrains fluctuations in physiological variables, which
are then embedded in empirical scaling relationships [181]. One such pattern that has been difficult to obtain
for microorganisms is the distribution of biomass values within a community, known as the Community Size-
Spectrum (CSS) [182]. Recent technological advances now permit the measurement of the mass of individual
cells by combining microfluidics with a cantilever [183]. This innovative approach has since been used
to investigate the relationship between the mean mass and growth rate across bacterial strains [184], an
allometric scaling relationship of historical interest in macroecology |168} 185, [186]. While this approach
has only been applied to populations of single species, it could theoretically be used characterize the CSS
(Fig. ) However, there remains the need for a method to distinguish cellular mass estimates by species
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identity. Such a tool could provide the means to probe patterns in situ, such as the scaling relationship
between per-species biomass and the basal metabolic rate (i.e., Kleiber’s Law) [187] or population density
(i.e., Damuths Law) [188].

Resources as mechanisms

Throughout this Perspective empirical macroecological patterns have been primarily interpreted through
the lens of phenomenological models (e.g., SLM, gLV; Boxes |1| and . While this approach is useful, it is
ultimately limited in that it does not provide insight into the underlying mechanisms that shape microbial
communities. Given that growth requires resources of some kind, researchers have increasingly viewed
consumption as a mechanism that shapes the process of community assembly and final composition, for both
experiments and theory. Potential resources can be measured in natural communities (e.g., metabolomics)
and coupled with sequence based measures of abundance, providing a novel means to infer the dimensionality
of a community in terms of a CRM [189]. To list just a few experimental examples, a resource-centered view
of microbial life has been leveraged to investigate how community composition depends on the availability
of carbon sources [43, 190], the exchange of excreted resources (i.e., cross-feeding) [191} |192] and the impact
of environmental fluctuations [193].

Additionally, increased attention towards the ecological role played by resources has spurred the exper-
imental investigation of novel macroecological patterns. A notable example is the dependency between the
number of substitutable resources supplied to an environment and the diversity of the assembled community,
a novel empirical pattern known as the resource-diversity relationship [194] (Fig. ) The slope of this
relationship deviates from what is expected under strict competitive exclusion [195], but can be explained
once one incorporates cross-feeding. However, this relationship is unlikely to exist as a single, universal
form across environmental scenarios. Additional experimental investigations report relationships ranging
from the absence of the relationship [196] [197] to its eventual reversal |198]. Mathematical models have the
potential to validate the range of documented relationships as well as generate novel forms (e.g., reversal of
the relationship when metabolic trade-offs are imposed [199]).

Spatial patterns as the outcome of physical processes

Patterns of diversity and abundance over space have historically been objects of interest in macroecology [13,
102, |200]. However, identifying the ecological mechanisms responsible for near-ubiquitous spatial patterns
in natural communities is challenging, particularly for microorganisms (for notable exceptions, see [201}-
203]). This difficulty arises in-part due to the minuscule spatial scale that cells typically traverse over their
lifespan [204206]. Given that the movement of microbial cells over space is effectively a physical process,
experimental efforts in defined environments provide a novel approach for connecting microbial movement to
spatial community-level patterns. Using such an approach has allowed researchers to characterize community-
level spatial patterns as the outcome of negative interactions [207] and resource exchange [208, |209] (Fig.
)7 as well as how coexistence can be mediated by mechanical interactions between species [210]. Leveraging
physical similarities can then provide general explanations for spatial patterns. One key consideration
is spatial dimensionality, as environments can be modeled as having one (e.g., xylem), two (e.g., human
skin) or three spatial dimensions (e.g., soil aggregates). Within a spatial dimension one can then identify
environments with similar geometries. For example, diverse microbial communities are found in porous
soils, plant apoplasts, and crypts in host intestines, all of which can be viewed as small physical cavities.
Microbial growth in these seemingly disparate environments may be unified by recognizing how increased
cellular density results in a buildup of mechanical pressure, a determinant of the outcome of competition
[211] that can ameliorate competitive exclusion for slow-growing microbes [212]. A similar emphasis on
physical structure can be applied to highly spatially-structured communities such as biofilms, which can
be understood as a type of physical matter, the constituents of which require energy consumption to move
and reproduce (i.e., living matter) [213],214]. A greater emphasis on microbial spatial macroecology as the
outcome of movement in a physically-defined environment has the potential to establish stronger conceptual
links between mechanisms and patterns.
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Phage as trophic structure

While the mechanistic origin of ecological interactions has not been extensively discussed throughout this
Perspective, when they have been invoked it has been at the scale of resource competition. This is a limited
view of microbial life, as it ignores the possibility of predation. For bacteria, a major source of predation-
induced mortality is bacteriophage, responsible for 10-40% of daily bacterial biomass turnover in marine
systems [215] [216]. This sheer impact on microbial death suggests the existence of macroecological patterns
that reflect underlying predator-prey dynamics, analogous to biomass scaling relationships documented in
macroorganisms [217,218]. Indeed, the co-occurrence of phage and bacterial taxa [219, 220], the correlation
in their relative abundances [220], and the relationship between the phage and bacterial diversity has been
investigated in natural environments [221].

Regarding absolute counts as a potentially more macroecological measure, scaling relationships between
the total cellular abundance of a community and the total number of phage particles have been repeatedly
reported [222, [223] (Fig. [B{). Such information has the potential to act as a constraint on minimal math-
ematical models. For example, the ratio of phage and bacteria in the human gut was recently leveraged
as a constraint alongside sequence and microscopy count data to investigate the balance between phage
life-history strategies (e.g., cell lysis vs. remaining in the host genome) [224]. Tt is also possible that a
macroecological view of phage is amenable to experimental manipulation, as phage diversity can be reliably
maintained in replicate experimental microcosms harboring a single bacterial strain [225], analogous to the
maintenance of microbial diversity on a single carbon source [43]

Summary

This Perspective provides an overview of the objects of study, approaches, and goals of microbial macroe-
cology. Despite its length, an exhaustive catalog of microbial macroecological patterns was not provided.
Rather, an emphasis has been placed on intensely studied patterns that can be connected to minimal math-
ematical models, providing a basis for microbial ecologists to determine whether a pattern in their system
of interest represents a truly unique feature.

While this Perspective ends with an advocation to increase the microbiological domain of macroecology,
efforts have been made throughout to identify limitations. Individual macroecological patterns rarely reflect
a single ecological cause. Evaluating the explanatory ability of sets of patterns is a needed, though not
necessarily sufficient, step in the process of winnowing down potential mechanisms. Coupling minimal
models with observational patterns is not a panacea for all inferential ills. Sampling is rarely complete,
data is imperfect, and the act of measurement often aggregates separate communities. Such concerns are
valid and are well-stated in the literature (e.g., |35} 226} [227]). Experimental approaches to macroecology
alongside additional consideration of the limitations of microbial measurement has the potential to provide
partial amelioration. Regardless, scientists are not going to stop looking for patterns in their data nor stop
considering potential explanations. This reality means that it necessary for microbial ecologists to maintain
a baseline understanding of the (dis)advantages of macroecological approaches.

I end by emphasizing the interdisciplinary and collaborative nature of the research that has shaped
our macroecological understanding of microbial life. This assessment is based on contributions made by
microbial ecologists from different backgrounds (biologists and physicists) as well as those that take different
investigative approaches (experimentalists and theorists). Such empirical and theoretical developments often
occur in parallel, but become expedited when cross-communication and collaboration is encouraged among
researchers of diverse backgrounds. Continued close collaborations are needed to not only identify novel
macroecological patterns, but to also identify how they can be measured and subsequently incorporated into
systematic theory.

Data and code availability
Data were obtained from the following previously published studies: Fig. 1 from Table S1 in [4], Fig. 2 from

host M3 [33] reprocessed in [143], Fig. 3 from [183} 194} 209, 222]. All code is available on GitHub under a
GNU General Public License: micro_macro_perspective
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https://github.com/wrshoemaker/micro_macro_perspective
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Box 1: Null vs. Neutral models

Macroecologists often evaluate empirical patterns by comparing them with statistical baselines that
preserve certain features in the data while removing others that reflect an ecological mechanism(s) of
interest. This approach provides null models for hypothesis testing and predictive models for hypoth-
esis generation, respectively. In macroecology, models that assume equivalence among community
members (i.e., equal birth, death, and immigration rates) are often invoked, the bulk of which follow
the Unified Neutral Theory of Biodiversity (UNTB) |102]. The UNTB and its variations have made
considerable contributions to our understanding of macrobial communities and represents a genuine
advancement in theoretical ecology (see [24] for an overview and [228] for a recent summary). For
microbial communities the UNTB has been applied both as a null |92} 229-231] as well as to generate
predictions [231-234]. However, for microbial communities the UNTB generally fails to recapitulate
regularly occurring macroecological patterns (e.g., the shape of the MAD) [4]. One can argue that this
lack of correspondence can be looked past, as there is no universally accepted procedure for identifying
the "correct" null model, a perennial issue in community ecology [84)235-238]. As a counterpoint, a
rigorous null is one that is not easy to "break", meaning that it should capture qualitative features of
the data while its quantitative validity remains an open question. The lack of correspondence between
UNTB and baseline macroecological patterns can obfuscate why the model failed to capture a more
involved pattern. This gap is possibly reflected by the recurring interpretation that deviations from
UNTB necessarily arise due to the existence of interactions between community members. In reality,
the UNTB does not exclude the possibility of interactions (and its success does not necessarily mean
the community is truly Neutral [239]), only that intra- and interspecific interactions be equivalent.
In this sense, one can understand the difference between UNTB and alternative approaches, where
the minimal model capable of capturing macroecological patterns (e.g., the MAD) is the one that
emphasizes non-equivalence among community members (Fig. .
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Box 2: Interpreting temporal vs. cross-sectional comparisons

Microbial community data can often be classified by sampling strategy, where collection occurs: 1)
over time within a single community or 2) across multiple communities at a single point in time (i.e.,
cross-sectional). Given the increasing availability of high-replication community assembly experiments
[240], it is worth reflecting on the relation between macroecological measures taken across commaunities
vs. within a single community over time. For instance, say one is interested in the typical value of
some observable that is a function of abundance and can be calculated using either sampling strategy
(O(z;(t))). If both 1) the distribution of abundances approaches stationarity (Parp(2;,t) PR

Parp(z})) and 2) the system explores all possible states of O(z;(t)) as time goes to infinity, then the
expected value of said observable calculated over an ensemble of communities will be equal to that
calculated over time within a community

T—oo T

/O ;) Parp(z;)dz; = lim —/ O(z;(t O(xz)

This relationship holds when the system is ergodic, providing a powerful tool for relating community
data [241] as well as testing predictions from theory, as often it is more analytically tractable to
calculate the expected value over an ensemble than over time. It is essential to note that ergodicity
is a property of the specific observable. For example, an observable that is sensitive to community
members switching between alternative stable states, a behavior that has been observed microbial
communities [47, |119} [154], is unlikely to be ergodic. The existence of ergodicity has been explored
in ecological models of microbial communities [242] and properties related to ergodicity have been
empirically investigated, such as the time required for community members to return to a given
abundance (i.e., recurrence or sojourn time) in marine plankton communities, a necessary, but not
sufficient, condition [143| 243|. Fortunately one can now begin to test the existence of ergodicity
in microbial communities thanks to the increasing number of well-controlled microbial community
assembly experiments, where measurements are taken both over time as well as over a large ensemble
(e.g., [47]). For example, it has been found that after the cessation of migration that fluctuations in
the discretized growth rate remain constant over time within a community while the same observable
calculated across communities tended to increase with time, a violation of ergodicity [49].
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Box 3: Identifying noise source via data-driven minimal modeling

Noise source is an important consideration when constructing ecological models. Theoretical ecology
is often concerned with population size fluctuations arising due to 1) demographic (i.e., endogenous)
or 2) environmental (i.e., exogenous) sources. These can be mathematically interpreted as fluctuations
scaling with /x; for demographic noise, as they are a consequence of the number of demographic
events (e.g., birth, death), whereas environmental noise scales with z; due to environmental variation
typically acting on the rate of growth. Given that empirical AFDs tend to be captured by a gamma
distribution, researchers have focused on two Stochastic Differential Equations (SDEs) that differ in
their encoded source of noise but return the same stationary probability distribution. These models
are the Birth-Death Model (BDM; more commonly known as the Cox—Ingersoll-Ross model) [244]
and the Stochastic Logistic Model (SLM) [4, 128].

Logistic growth Environmental noise
— —Y
. iy i g
SLM: % = Zl1-== + =it .
dt Ti K; " mi(?) — P(z}) ~ Gamma(z;, §;)
. dzy _ — 00
Migration + linear growth Demographic noise

Where for the SLM K; represents the carrying capacity, o; the strength of environmental noise, and
7; the timescale of growth. For the BDM m;, b;, and d; represent rates of migration, birth, and death,
respectively. The term 7;(t) introduces stochasticity as white noise [245]. There exists an additional
model with the same form as the BDM where the deterministic component represents deviations from
an equilibrium abundance that are then subject to a linear restoring force, known as the Stochastic
Linear-Response Model [246]. These models are phenomenological in nature, in that they do not
provide explanations of how a given parameter depends on some detail of the environment. They also
do not explicitly encode interactions between community members (e.g., gLV), though this omission
does not mean that interactions are absent in the real community. Rather, their success implies that
any underlying interactions implicitly impact a given pattern as a single collective impact, known in
physics as a mean-field effect [247]. The two SDEs can be reparameterized as:

SLM BDM
T K; ( - 07) d:nfbi
pi=cv;: Bz b
Timescale T (b; —d;)~t

allowing researchers to generate predictions that hinge on the dynamics of the system while
ensuring equivalent stationary behavior. This consideration means that the ability to differentiate
between models depends on the underlying timescale of growth being larger than that of sampling,
a limitation that holds severe consequences for investigating microbial dynamics. For example, in
environments such as the human gut microbiome the time between fecal sampling is expected to be
similar to the timescale of growth (~ 1 day). While temporal dependence can be found in certain
microbial macroecological patterns (see Temporal Microbial Macroecological Patterns) and recent
rigorous BDM vs. SLM model comparisons suggest a slight preference for environmental noise [88|,
it is worth emphasizing that one must consider both sampling and biological timescales in the
design and analysis of temporal ecological studies.
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Figure 1: The path from data —patterns —minimal model —predictions in microbial macroecol-
ogy. a) In microbial ecology one often consolidates their samples as a sample-by-species matrix of relative
abundance, consisting of samples from different sites (as illustrated) or timepoints. Using statistical mo-
ments calculated from empirical data, one can establish the existence of macroecological patterns. b) Three
macroecological laws exist across disparate environments [4]: 1) abundances across sites/over time for a
given community member tend to follow a gamma distribution (AFD), there exists a power law relationship
between the mean and variance of abundance (i.e., Taylor’s Law), and 3) the distribution of mean abun-
dances of all community members follows a lognormal (MAD). ¢) These three empirical laws provide the
means to construct a minimal model of microbial community composition. Namely, using a form of the AFD
that accounts for sampling (i.e., # reads) and recognizing that Taylor’s Law with an exponent value of two
implies that the coefficient of variation of abundance remains constant across community members (i.e., a
function of 3), one can integrate over the MAD to obtain a probability distribution for the number of reads
requiring only the total number of reads in a sample and the two fitted parameters of the lognormal MAD
(i.e., a and b). d) With this distribution in-hand, one can then evaluate its predictive capacity by deriving
additional macroecological patternsa and comparing them to empirical data.
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Figure 2: Temporal macroecological dynamics. a) The temporal relative abundance trajectory of a
community member determines the macroecological patterns that can be examined. When a community
member is consistently sampled over time (blue), it is possible to calculate the discretized per-capita growth
rate g;(t, At) as well as quantities such as the length of fluctuations around steady-state abundance (i.e.,
sojourn time, Tyojourn)- In contrast, when a community member is periodically unobserved (orange), one can
calculate the residence (Tyesidence) and return times (Tieturn). These two cases have the potential to reflect
different ecological dynamics and the corresponding patterns can be broadly grouped into two categories:
those calculated b-i) within/across or j-m) between community members. All patterns are obtained from
host M3 in [33].
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Figure 3: Novel and underutilized microbial macroecological patterns. a) Physiological measure-
ments have played a crucial role in the maturation of macroecology. Recent technological advances permit
the measurement of per-cell mass in microbial populations [183], allowing one to investigate how mass as a
dimension relates to other key quantities such as the population-level growth rate. b) The supply of resources
can be viewed as an experimental variable that permits the manipulation of microbial communities, revealing
novel macroecological patterns that allow one to identify explanatory CRMs [194]. ¢) While spatial metadata
is often provided alongside environmental samples, it is difficult to establish robust spatial patterns in micro-
bial macroecology, much less connect them with ecological mechanisms. Defining space as a physical aspect
within experiments allows one to investigate the spatial dependency of ecological mechanisms. For example,
cross-feeding as the consumption of excreted resources diffusing over space shapes the reproductive success
of a two-member community [209]. d) Phage plays a crucial role in the global turnover of microbial biomass
and is conceptually similar to predator-prey scaling relationships often examined in macrobial macroecology.
This illustrated minimal (and almost certainly unrealistic) conceptual model of phage infection can be math-

ematically formalized and potentially coupled with scaling relationships as empirically-informed constraints
[222).
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