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Abstract

Human-driven environmental change is reshaping ecosystems and challenging species’ ability to adapt.
Understanding how genetic variation enables adaptation is crucial for conservation and requires exemplary
systems to test hypotheses and make predictions. One particularly suitable model for studying climate-driven
adaptation is seasonal color change (SCC), a phenological trait in which individuals transition between summer-
dark and winter-white pelage/plumage to maintain camouflage. This review evaluates SCC as a model for
predicting adaptive responses to climate change. First, we address the vulnerability of phenological traits to
climate change, due to their dependence on photoperiodic cues and complex molecular regulation. Second, we
review SCC literature across all 21 SCC species, summarizing knowledge on its regulation, the fitness costs of
mismatch induced by snow loss, and the limited role of plasticity in buffering these effects. Third, we review
recent findings on the genetic basis of SCC polymorphism that have linked adaptation to selection on
pigmentation alleles with multiple evolutionary origins (including introgression and de novo mutations). Finally,
we discuss the implications of the genetic architecture of SCC polymorphism for evolutionary rescue and
conservation strategies, as well as methods for testing adaptation conditions using modeling approaches. While
past research on SCC already showcased how predictive evolution can be incorporated into conservation action,
we identify research gaps, including limited fitness data, taxonomic biases, and the need for real-time ecological
and genomic monitoring. Addressing these gaps will improve the accuracy of predictive models and the success

of management strategies aiming at protecting species’ resilience to rapid environmental change.

Keywords
seasonal color change; seasonal coat color polymorphism; climate change adaptation; adaptation genomics;

conservation genomics
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Introduction
Rapid anthropogenic changes are causing escalating habitat losses, posing severe threats to species' survival by

disrupting local environmental adaptations *. The current pace of species loss suggests that Earth is nearing
mass extinction thresholds 2. Understanding the impact of climate change on biodiversity and forecasting the
potential for rapid adaptation is, therefore, one of the most critical and pressing challenges of modern science
34, Such studies have often been conducted at the ecological level, assessing and monitoring changes in species
communities >®. Still, the adaptive potential of each species depends first and foremost on existing standing
genetic variation, which provides a pool of variants upon which selection can act, fueling resilience to
environmental change and diseases, and thus facilitating adaptation *’. Neutral genetic diversity is a long-
established metric for assessing the health of natural populations, their adaptive potential, and conservation
status (e.g., by the International Union for Conservation of Nature, IUCN) 7. Yet, genomic data also offer a
powerful way to detect and quantify adaptive genetic variation, which can be incorporated into assessments of
population status and predictions of adaptation to climate change 8. Despite this potential, the knowledge of the

genetic basis of adaptation is still seldom incorporated into conservation actions °.

Traits with clear effects on fitness and predictable responses to environmental change serve as powerful models
to understand the conditions under which adaptation to anthropogenic change can be expected *°. Among these,
seasonal, or phenological, traits enable organisms to maintain fitness year-round by synchronizing key life cycle
events with seasonal environmental changes %12, When the primary cue triggering phenological change remains
fixed (for example, photoperiod), but environmental conditions change, a phenological mismatch occurs, which

can affect individual fitness and the species’ future survival 1012,

Here, we synthesize seasonal color change (SCC) as a model adaptive trait to investigate genotype-to-
phenotype-to-environment relationships underlying the scope for adaptation to climate change. SCC is a
seasonal transition between summer dark and winter-white coats or plumages occurring in at least 21 species of
mammals and birds across the Northern Hemisphere 34, We connect phenological timing, bases of trait
expression, costs of phenological mismatch, genetic architecture and evolution of winter color polymorphism,
and prediction frameworks for future rapid evolutionary change, showing that SCC can serve as an especially
suited model trait to gain both practical and general insights to foster the maintenance of biodiversity in a

changing climate.

Seasonally Flexible Traits
Habitats worldwide undergo seasonal environmental cycles, which tend to be more pronounced in temperate

mid-latitude regions *°. In response, diverse taxa have independently evolved mechanisms to cope with these
seasonal fluctuations, including seasonal reproduction ¢, hibernation ¥/, migration 8, molt °, and others **.
Although seasonal traits may share developmental pathways and expression patterns 22, specific physiological
and molecular foundations of phenological traits can vary according to evolutionary and ecological contexts.
These phenological traits require physiological adjustments across multiple biological levels %, including

molecular (e.g., gene expression 2223), cellular (e.g., proliferation 242), metabolic (e.g., energy balance %), and
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hormonal (e.g., melatonin regulation 2’). Such adjustments reflect seasonal phenotypic flexibility — the ability

of an organism to undergo reversible change in physiology or behavior in response to environmental changes
28

Seasonal changes in phenotype are regulated by deeply conserved biological pathways across traits and taxa,
with differences reflecting fine-scale adaptations to local ecological conditions 2°. For instance, conserved
genetic pathways  and/or epigenetic mechanisms ! have been shown to regulate several seasonal phenotypes.
In particular, genes underlying circannual clocks, which are sensitive to seasonal light cycles, exhibit a regular
pattern of expression in different cell types. This rhythmic expression coordinates downstream physiological
pathways involving melatonin and prolactin hormones (discussed below), which further initiate various seasonal
transitions 2732-%, Other hormones, such as gonadotropins, also influence seasonality, regulating reproduction,
molt, and other physiological processes *%. Overall, neuroendocrine regulation is usually functionally

integrated and conserved across taxa 2°2°,

Due to the existence of these conserved regulatory pathways, mutations affecting upstream regulatory
components of seasonal phenotypes may have widespread pleiotropic consequences *#3°. Such constraints may
select for modularity or limit adaptive changes to the downstream portions of regulatory cascades, buffering
against mismatches in other traits (for more details, see Box 1). Alternatively, selection on interconnected
regulatory mechanisms could help coordinate multiple seasonal traits, ensuring that annual phenotypic
transitions align with environmental pressures *¢ (Box 1). For instance, this type of coordinated regulation is
evident in organisms that undergo seasonal color change, where hormonal and genetic pathways govern the

timing and extent of pelage or plumage color transitions in response to shifting seasonal conditions.
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BOX 1. THE INTEGRATION OF PHENOLOGICAL TRAIT REGULATION: A BUFFER OR A
VULNERABILITY FOR CLIMATE CHANGE ADAPTATION?

The regulation of phenological traits is often interconnected, leading to overlapping genetic and
physiological pathways, which can lead to pleiotropic effects . This interdependence can enhance
adaptation by synchronizing multiple traits #*, but it can also create vulnerabilities by limiting the ability for
independent adjustments *°. This limitation, known as the "cost of complexity" or "cost of pleiotropy",
indicates that when one locus affects multiple traits, the rate of adaptation is often slower “243, As climate
change reshapes seasonal environments at an unprecedented pace *¢, understanding the regulatory
architecture of these traits and how their interactions influence adaptation becomes increasingly critical.

The degree of regulatory interconnection varies among different mechanisms. Upstream mechanisms play
a critical role in regulating multiple seasonal traits. These include master genes (e.g., clock genes),
transcription factors (e.g., THR1), and master hormones (e.g., melatonin) 4, These elements act as central
regulators, synchronizing various traits in response to environmental cues. While this coordination can be
adaptive, it also creates constraints. Tightly linked traits might lead to ecological mismatches if an adaptive
shift in one trait misaligns with changes in others *. For instance, if the timing of seasonal breeding changes
but migration does not, species may face challenges in finding suitable habitats or mates. In contrast,
downstream trait regulation usually involves other cis-regulatory elements that fine-tune gene expression
in specific tissues or developmental stages. This results in divergent pathways, allowing traits to be
regulated differently 5052, Additionally, genetic modularity can affect more pleiotropic pathways through
divergent regulation, which allows for specific genetic control depending on the developmental stage,
tissue, or environmental cue 3. This flexibility allows for the independent evolution of traits such as
seasonal migration, breeding patterns, and coat color.

Overall, changes in upstream phenological regulation may face greater challenges for adjusting phenotypes
to rapidly shifting climates. In contrast, divergent pathways leading to downstream regulation of
phenological traits may enhance species' adaptability by preventing disruptions across multiple traits.
Furthermore, divergent regulation might help alleviate pleiotropy constraints through genetic modularity.
This indicates that the adaptive pathways for coping with climate change are more likely to occur
downstream and/or with a high level of genetic modularity.

Seasonal color change
Seasonal color change (SCC) is a phenological trait characterized by molt transitions from a dark, typically

brown, thinner coat (or plumage) in summer to a thicker white coat in winter . This adaptive mechanism
ensures year-round camouflage in environments with seasonal snow and is present in at least 21 species of
mammals and birds (Fig. 1). Photoperiod is the primary trigger for molting in birds and mammals, including
species that undergo SCC “3%, Molt phenology can also be influenced by intrinsic factors such as sex 3*°, age
87 body mass *%¢, and health condition *%7, as well as extrinsic factors like temperature "°8 and snow cover
duration 5°%°, However, as snow duration decreases under climate change 5, phenotypic plasticity alone may

not suffice to maintain effective camouflage, and evolutionary responses may be required to avoid fitness costs

57,62
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Fig. 1 | Cumulative geographic distributions of all 21 SCC species. Mammals - Canidae: (A) Vulpes lagopus (Arctic fox), Mustelidae:
(B) Mustela nivalis (Least weasel), (C) M. erminea (Stoat), (D) Neogale frenata (Long-tailed weasel), Leporidae: (E) Lepus americanus
(Snowshoe hare), (F) L. arcticus (Arctic hare), (G) L. brachyurus (Japanese hare), (H) L. othus (Alaskan hare), () L. timidus (Mountain
hare), (J) L. townsendii (White-tailed jackrabbit), Cricetidae: (K) Dicrostonyx groenlandicus (Nearctic collared lemming), (L) D.
hudsonius (Ungava collared lemming), (M) D. nelson (Nelson's collared lemming), (N) D. richardsoni (Richardson's collared lemming),
(O) D. torquatus (Arctic lemming), (P) D. vinogradovi (Northern collared lemming), (Q) Phodopus sungorus (Winter-white dwarf
hamster). Birds - Tetraonidae: (R) Lagopus lagopus (Willow Ptarmigan), (S) L. leucurus (White-tailed ptarmigan), (T) L. muta (Rock
ptarmigan). (U) The combined distribution of the 21 species in purple, based on IUCN. Pictures rights: (A) Phil Chaon, (B) Karol Zub
(C) Jing-Yi Lu, (D) Tom Benson, (E) Cam Nikkel, (F) Andrew Simon, (G) Rei Akiyama, (H) Alex Patia, (I) Claudio Spadin, (J) N
Bertrand, (K) Mark C Long, (L) Fabrice Simon, (N) Justin Benjamin, (O) Frank Kienast, (P) Urops ITocnenos, (Q) Philipp Salzgeber,
(R) Igor Dvurekov, (S) Nigel Voaden, (T) Ryan Shaw. Illustration rights: (M) National Geographic. A properly identified picture of the
Cricetidae species Dicrostonyx nunatakensis is not available.

The cost of color mismatch
Seasonal color molts allow species to track seasonal snow, enabling year-round camouflage **. The disruption

of camouflage through phenotypic mismatch against the background has, with few exceptions 554, been shown
to impact individual survival, potentially leading to local extinctions or population declines in species such as
rock ptarmigan, willow ptarmigan, and snowshoe and mountain hares %57, In snowshoe hares, camouflage
mismatch has been shown to cause up to 7% decrease in individual weekly survival 7°. Variation in snow cover
duration in both spring and fall molts also affects survival rates of willow ptarmigans, but the rate changes with
age and sex . In least weasels and snowshoe hares, studies using artificial models have recorded higher rates
of predator attacks when body color mismatched the background 7274, with white-on-brown mismatches facing
greater predation rates than brown-on-white, indicating stronger selection against mismatches more likely to be

induced by climate change .

Reductions in snow cover depth, extent, and duration across the Northern Hemisphere have been extensively
documented “66175 with further decreases projected under many climate change scenarios “¢°”. The combination
of declining snow cover duration, due to anthropogenic climate change, and an unaltered photoperiod challenges
the adaptive value of seasonal brown-to-white molts *’. Projections of current color molt phenology against

decreasing snow cover duration suggest increasing color mismatch in the absence of adaptive shifts, leading to

6
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range contractions and population declines 367976, Understanding the physiological mechanisms underlying

seasonal color change is crucial for identifying adaptive pathways that may mitigate mismatch.

Regulation of seasonal color change
Adaptation to shifts in snow seasonality could potentially evolve through physiological adjustments in the

developmental timeline that controls molt and color change. Seasonal molts are regulated hormonally by signals
that influence intracellular cascades and genetic regulatory mechanisms "8, which coordinate the expression
of key pigmentation, molting, and circadian rhythm-related genes 32223, The process starts with the perception
of photoperiodic changes, which, in mammals, occurs through photosensitive retinal ganglion cells that transmit
light information to internal circadian pacemakers in the brain (the suprachiasmatic nucleus). In turn, in birds,
other photoreceptor cells exist that allow direct photoperiodic change independent of the eyes “3%*, The
photoperiodic shift signal is transmitted through the suprachiasmatic nucleus to the pineal gland in the brain,
which regulates melatonin production ”°. Melatonin is secreted in response to darkness and thus production
increases with longer nights, further regulating prolactin production: high melatonin levels signal the pituitary
gland to inhibit prolactin production, while low melatonin levels result in prolactin secretion 88!, These
hormonal signals act upstream of genetic pathways regulating molt and pigmentation. While prolactin and
melatonin have been shown to affect pigment production experimentally 2", the mechanism connecting the
melatonin—prolactin axis to melanin synthesis remains unclear, whether through direct expression mechanisms
(e.g., melatonin receptors in melanocytes) or via indirect pathways.



BOX 2. MOLECULAR REGULATION OF SEASONAL COLOR CHANGE

© melatonin

PC1/3
PC2
POMC a-MSH
[ ]
“'M.SH CORIN @~
MC1R MC1R
]
>
§ TrcAMP
5
' e © D
@ L-Tyrosine L-Tyrosine
DOPA-quinone DOPA-quinone
N -
) ®
geumelanin

Fig. 2 | Pigmentation pathway in melanocytes and melanosomes. The illustration depicts the melanogenesis pathway, starting from
POMC expression in keratinocytes (not shown), detailing the process within melanocytes, and including the contrasting binding
effects of two molecules to MC1R in the melanocyte membrane — the agonist a-MSH (eumelanin production) and the antagonist
ASIP (pheomelanin production). The simplified signaling cascade inside the melanosome highlights key enzymes that convert
intermediate structures into the two types of melanin.

The pigmentation pathway primarily regulates the downstream pathway of seasonal color (Fig. 2). The
production of eumelanin (dark melanin pigment) in melanocytes is promoted by the a-melanocyte-
stimulating hormone (a-MSH), a peptide hormone derived from the cleavage of the pro-opiomelanocortin
protein (POMC). When a-MSH binds to the melanocortin-1 receptor (MC1R) on the melanocyte membrane,
it acts as an agonist, initiating a signaling cascade that increases intracellular cyclic adenosine
monophosphate (CAMP) levels 8222 This boost in cAMP enhances tyrosinase activity and promotes the
proliferation of other melanogenic enzymes (e.g., DCT and TYRP1), ultimately resulting in the synthesis of
eumelanin 884, Like prolactin, a-MSH is secreted when daylight is abundant and suppressed in low light
conditions, being indirectly regulated by photoperiod 8. However, it remains unclear whether this
suppression is directly linked to melatonin release. Research suggests that melatonin does not inhibit a-MSH
secretion but rather suppresses the melanogenic action of a-MSH by interfering with the accumulation of
new tyrosinase molecules %. Furthermore, melatonin may affect the melanocortin system by reducing
POMC expression, which hampers the binding of a-MSH to MC1R, leading to the production of lighter
pigment instead %,

The agouti signaling protein (ASIP) contributes to the production of lighter pigment, as ASIP acts as an
antagonist to a-MSH at the MC1R receptor. When ASIP binds to MCLR, it decreases the activity of
tyrosinase and inhibits the enzymes necessary for eumelanin production, leading to the synthesis of
pheomelanin (light melanin pigment) instead 884, Notably, in the presence of the transmembrane serine
protease CORIN, ASIP does not bind to MC1R % The connection between ASIP and photoperiodic
changes, and how ASIP production is regulated throughout the year to control seasonal color change,
remains unknown. However, evidence suggests that ASIP expression level varies throughout the year, and
between winter-brown and winter-white morphs 322,
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The final step in the regulatory cascade within melanocytes is the transfer of melanin to keratinocytes, where
it contributes to the formation of keratin structures, producing the colored coat/plumage during the
hair/feather growth cycle 848°,

Beyond hormonal regulation, existing literature on the genetic regulation of SCC molt shows a dynamic control
of gene expression in response to seasonal cues ?2%°, Although the development of seasonal pelage molts is
linked to the hair growth cycle and circadian clock genes, changes in the expression of key pigmentation genes
are likely to shape seasonal transitions in color (for details on the downstream pigmentation pathway, see Box
2). For example, genes associated with melanogenesis have been found to be differentially expressed during the
late fall molt in Arctic foxes °%. Additionally, the expression of the Agouti Signaling Protein (ASIP), which is
involved in the production of pheomelanin (light melanin pigment), is upregulated during the development of
white fur coats in hare species *2%, Similarly, the Tyrosinase-Related Protein 1 (TYRP1), which is linked to
eumelanin (dark melanin pigment) production, is upregulated during the development of brown plumage in
ptarmigan species *. These examples suggest that the color changes observed in many SCC species are likely
related to regulatory mechanisms affecting gene expression. However, since the activation of these molecular
pathways is likely tightly coupled with photoperiodic signals, the capacity of species with SCC to respond to

other environmental cues may be constrained *°.

Plasticity in SCC species
Although photoperiod is the primary trigger for SCC, the impacts of declining snow cover duration could be

mitigated by plasticity in the timing or rate of color molts, or by behavioral adjustments *. However, responses
to variation in temperature and snow cover duration across species appear insufficient to fully buffer against
increasing camouflage mismatches 5759 For example, while there is some evidence for environmentally
driven phenological variation of spring molts 5759%9%.9 fall molts show much less evidence for phenotypic
plasticity 575°%° Translocation experiments also suggest that molting plasticity rarely allows individuals to
forgo the winter-white morph completely 3765100101 (hyt see King and Powell ¥, page 63). Collectively, these
findings imply strong genetic or physiological constraints on molt timing and expression, which may limit the

potential for rapid adaptation to snow cover reductions in SCC species.

Likewise, there is limited and inconsistent evidence that behavioral plasticity provides an alternative means of
mitigating climate change-induced mismatches. For example, mismatched hares do not appear to adjust their
resting, hiding, or fleeing behaviors %12, but may show enhanced predator vigilance 1°. Conversely, ptarmigans
appear to adjust their feeding strategies 14, select more cryptic resting spots, and may even soil white plumage
when mismatched 1%, However, these behavioral changes occur in lekking systems where sexual selection on
plumage color likely intensifies mismatch relative to other systems %1%, Given limited meaningful plasticity

in coat color timing and behavior, evolutionary processes appear essential to foster future adaptation.
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Winter color polymorphism
The most substantial evidence for adaptation in SCC is the repeated evolution of winter color polymorphism in

response to local variation in snow cover duration. As a result, most SCC species display geographic variation
in the color of winter molts (white and brown morphs), resulting in color polymorphisms across species ranges
14 (Table 1). This trait polymorphism has been shown to have a genetic basis in many species, supported by
common garden and translocation experiments 1% and direct genetic mapping of color variation °2:93107.108,
The frequency of different winter color morphs varies geographically and is strongly correlated with snow cover
duration and ephemerality 4, showing that the phenotypic clines are maintained by local adaptation for
camouflage. For example, winter-brown morphs are more common in coastal and southern areas, where winter
snow cover duration is low, absent, or highly variable. These findings suggest that genetic variation underlying
alternative winter coloration morphs may be critical to fuel adaptive responses to global changes in snow cover
duration %2°3197 There are also SCC species displaying summer color polymorphism (Table 1), but it is not the

scope of this study to review this polymorphism.

Table 1 | The spectrum of seasonal color change and winter color polymorphism. Summary of key findings from studies on SCC
species, organized by families. The graphical representation illustrates coat/plumage color phenotypes, with summer morphs on the left
and winter morphs on the right. Below each graphical representation, the type of coat/plumage color polymorphism for the species is
indicated, with winter polymorphisms highlighted in bold. The table synthesizes research on: (i) Seasonal color change, namely color
descriptions, and (ii) Winter color polymorphism, including its genetic architecture (i.e., genetic basis and causative mutations), as well
as its evolutionary origins, allele history, and type of selection detected locally. For information on specific species and references, please
refer to the Supporting Material.

Foxes Weasels Hares Hamsters/Lemmings Ptarmigans
(Canidae) (Mustelidae) (Leporidae) (Cricetidae) (Tetraonidae)
-polymorphic in polym.orphic in Polymorphic in it Ealmenle ponm.orphic in
winter and summer winter winter or summer winter
b bluish b
o Summer color: rown or biuts Brown e, gray, or brown brown
oo brown white
5
<
o brown, white, gray,
© ) white or bluish brown, white, or 9 ! ! . brown, white, or
o Winter color: ) or continuous color white ) )
© brown piebald ) intermediate
© (brown to white)
2
©
= Color transition Sinery Biery binéry or iy bingry or
type: continuous continuous

S . )
2 Genetic Basis: MCIR MCIR ASIP, EDNRB, CORIN unknown unknown
o
2
= ) ) . Amino acid Nucleotide
5] Causative Amino acid . o
s — SIS substitutions or substitutions or unknown unknown
o ’ INDELS INDELS
3
()
2 » ted d : tral variati
£ Allele Origin: expecte . € nove de novo mutations anc'es ra var|'a ol unknown unknown
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The genetic basis of winter color polymorphism
Genomic studies focused across phenotypic transition zones (i.e., polymorphic populations where different

winter color morphs coexist ) have consistently shown that genome-wide genetic variation is structured by
geography and not by color morph 9293107108 indicating that color variation responds to selective pressures
irrespective of population structure. Whole genome scans of association %2:9%107-110 or candidate gene approaches

11 have identified genes of large effect underlying winter color polymorphism in lagomorphs and carnivores.

In hares, winter color polymorphism is manifested by both discrete and continuous variation (Table 1). In
snowshoe and mountain hares, discrete trait variation has been linked to cis-regulatory changes influencing the
expression of ASIP 9293109112 " \with simple Mendelian inheritance of dominant winter-white and recessive
winter-brown/gray variants 2%, In white-tailed jackrabbits, continuous brown-to-white winter color variation
has been associated with at least three genes [ASIP, Corin Serine Peptidase (CORIN), and Endothelin Receptor
B (EDRNB)] %7, with additive or epistatic contributions to the phenotype. In carnivores, protein-coding variation
in the Melanocortin 1 Receptor (MC1R) gene has been shown to determine discrete winter color polymorphism
in the Arctic fox 111113 least weasel 1%, and long-tailed weasel 1 (Table 1), with simple Mendelian inheritance
with dominant winter-brown variants 198110111 The alternative patterns of winter-brown recessive inheritance
associated with ASIP and dominant inheritance associated with MC1R agree with the molecular functions of

these genes and inheritance patterns found for light and dark color phenotypes across vertebrate taxa °:.

Overall, the studies conducted so far demonstrate that the melanin pigmentation pathway is strongly involved
in determining winter color variation, either through regulatory or protein-coding changes (for details on the
molecular regulation of the pigmentation pathway, see Box 2). Yet, the specific genes and genetic variants
underlying the polymorphism vary across species 293107111 and even within species 10110112 However,
information on the genetic basis of winter color polymorphisms is still missing for many taxa. Advances in
long-read sequencing and structural-variant detection have the potential to further resolve the genomic
architecture of SCC polymorphism 4, particularly in systems with more complex coloration dynamics such as

stoats and ptarmigans (Sup. Table 1) 37115,

Evolution of winter color polymorphism
Studies on winter color polymorphism across SCC species have also shed light on the evolutionary processes

underlying the origin and persistence of the adaptive color variation within and across species. While the
evolutionary origin of such polymorphisms remains elusive across most systems, available data show that the
evolution of winter color variation has often been generated through repeated parallel evolution of re-derived

brown winter morphs (for a discussion on re-derived vs. relic winter brown morphs, see Box 3). For example,

11
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in snowshoe and mountain hares, the origin of ASIP alleles causing gray winter morphs has been traced back to
introgression from non-seasonally changing species (black-tailed jackrabbit and Iberian hare, respectively
9293116y " Similarly, winter-brown ASIP alleles contributing to continuous winter color variation in white-tailed
jackrabbits have also introgressed from the black-tailed jackrabbit. Meanwhile, winter-brown variants in CORIN
and EDNRB appear to result from the maintenance of ancestral genetic variation across species 17, pointing to
a relic ancestral origin (Box 3). In weasels, different MC1R alleles have been shown to cause winter-brown
phenotypes in distinct species 1119 suggesting parallel adaptive evolution at the same gene, and a de novo
origin of winter-brown alleles has been confirmed for least weasel populations in Europe 7 (Table 1). In the
Arctic fox, genotyping of the MC1R region across Canidae did not reveal the occurrence of the Arctic fox

candidate mutations in other species 1'% ‘which could point to a de novo origin.

BOX 3. ANCESTRAL OR RE-DERIVED? THE EVOLUTIONARY PUZZLE OF WINTER-
BROWN MORPHS AND THE REVERSIBILITY OF TRAITS UNDER UNSTABLE
ENVIRONMENTS

The rarity of seasonal color change across mammals and birds suggests that winter whitening is a derived
phenotype, as it occurs in only a few genera compared with the many taxa that remain brown year-round
1314 In this context, the ability to molt into a winter-white pelage/plumage can be considered a derived trait
within each lineage where it occurs and, broadly, the winter-brown phenotype as an ancestral state.

Two main hypotheses can explain the origin of winter color polymorphism in SCC species: 1) The relic
hypothesis suggests that winter-brown populations may represent remnants of the ancestral non-whitening
condition, reflecting the long-term maintenance of ancestral variation. For example, in least weasels, some
winter-brown populations have been hypothesized to be ancestral relics rather than re-derived morphs,
although direct genetic evidence is lacking 2°2%; 2) Alternatively, the re-derivation hypothesis proposes
that brown morphs have arisen secondarily through repeated losses of the whitening capacity. Most
population genomic studies across multiple SCC species tend to support this view, showing that winter-
brown morphs often result from geographically localized evolution disrupting SCC regulatory pathways,
through hybridization or de novo mutations 293197109 et these hypotheses are not mutually exclusive. In
white-tailed jackrabbits, a combination of ancestral polymorphism and recent introgression underlies
winter-brown variation, suggesting that a combination of the phenomena may have been at play. In least
weasels, the northern and central European winter-brown populations are re-derived from a de novo
mutation %17 while the southernmost European populations may possibly be a relic 2. These examples
show that complex adaptive traits may persist, be lost, regained, or modulated in response to selective
pressures. Repeated re-derivation of winter-brown morphs may also reflect post-glacial dynamics, where
species or populations that evolved winter whitening subsequently lost it as climate and snow cover duration
fluctuated towards the Holocene 22,

The persistence of winter-brown or -white alleles across the range of species with SCC is thus driven by a
combination of selective mechanisms operating across heterogeneous environments (Table 1). Long-term
balancing selection acting on ancient alleles has been suggested °''7, alongside geographically localized
signatures of positive directional selection favoring winter-brown phenotypes in some parts of population
ranges, often in transition zones 293198117 This combination of signatures illustrates how spatially varying

selection can simultaneously maintain ancestral variation and drive locally adaptive divergence %312, These
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dynamics likely stem from geographic variation in snow cover duration, which imposes contrasting selective
pressures on coat color phenotypes by altering the fitness costs of seasonal camouflage mismatch. Such
historical evolutionary dynamics that maintained adaptive polymorphisms may also shape the potential for
future adaptation. Understanding the genetic architecture and selective landscape of winter color polymorphism

is thus essential for predicting the scope for camouflage adaptation under climate change scenarios.

Predictive frameworks for conservation
SCC species are facing severe habitat changes due to climate-driven decreases in snow duration (see section

“The cost of color mismatch™), which is threatening population viability 4. The persistence of these species
under climate change depends on their capacity for evolutionary rescue, which could depend on their ability to
recover or maintain positive population growth through rapid adaptive shifts in coat color in response to
declining snow cover 412, While environmental pressures define the direction of selection, it is the underlying
genetic potential that determines whether adaptation can occur swiftly enough to prevent extinction %,
Therefore, predicting the potential for evolutionary rescue in SCC species requires understanding the genetic

architecture, selective dynamics, and spatial distribution of adaptive alleles underlying SCC variation.

The scope for evolutionary rescue
The genetic architecture of SCC traits determines both the pace and trajectory of adaptation, which depend on

key factors such as the number of loci, allelic relationships (dominance, additivity, epistasis), effect sizes, and
linkage disequilibrium (LD) among loci 107116126128 'Eor example, in many SCC species, winter coat color is
controlled by a single large-effect locus 9293108110111 "Iy these cases, the dominance relationships of adaptive
alleles strongly influence evolutionary responses to climate change. Recessive winter-brown alleles, as in hares
9293 ‘may persist as hidden standing variation that initially responds slowly to selection because heterozygotes
remain winter-white '°. Conversely, dominant winter-brown alleles, such as those in least and long-tailed
weasels %119 are immediately exposed to selection and can spread rapidly when reduced snow cover favors
brown morphs 1, In the white-tailed jackrabbit, on the other hand, winter color polymorphism has a multigenic
and largely additive genetic basis, resulting in more continuous winter color variation, which leads to more rapid
adaptive responses and lower extinction risk in simulated populations confronted with reduced snow cover
duration %7, A multigenic architecture resulting in continuous variation may enable more gradual phenotypic
shifts, allowing intermediate forms to track progressive environmental change. Additive inheritance can
accelerate adaptive responses by acting on multiple loci simultaneously %13 with the magnitude of each
contribution depending on effect size 132, whereas epistasis and LD among loci may either facilitate or constrain

evolution depending on the direction of selection 3313,

The underlying evolutionary mechanisms generating adaptive genetic variation determine how such variation
translates into population persistence. Adaptation can rely on either standing genetic variation or de novo
mutations, each with distinct implications for the speed and predictability of evolutionary change #1212, In
hares, winter-brown morphs arose from ancestral or introgressed alleles maintained at low frequencies, which

may enable rapid evolutionary rescue as snow duration declines 92107:109112118.135 "1n contrast, carnivores, such
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as weasels, evolved winter-brown phenotypes through independent mutations, suggesting a slower initial
response but greater potential for parallel adaptation across lineages 0111117118135 -~ popylation size,
connectivity, and selection intensity may further shape these dynamics: small or isolated populations may
experience drift or maladaptation despite available variation, whereas large, well-connected populations can
maintain adaptive alleles and gene flow 5%, For example, forecasting predictions suggest that increasing
connectivity or human-assisted gene flow among white-tailed jackrabbit populations may accelerate the

evolutionary rescue of maladapted predominantly winter-white populations 1%,

Finally, the resulting phenotype defines both the strength of selection and the likelihood of persistence. Species
with discrete, binary morphs (e.g., white vs. brown) may face heightened extinction risk as snow duration
declines, because mismatched individuals suffer greater predation (see Section “The cost of color mismatch”).
In contrast, species expressing continuous winter color variation show greater adaptive capacity 7. Intermediate
phenotypes can act as a selective bridge between extremes, facilitating gradual frequency shifts and promoting
evolutionary rescue under climate change 3. However, empirical estimates of the fitness and frequency of these
intermediates in natural populations remain scarce, underscoring the need for integrative field and genomic

studies.

Modeling Evolutionary Adaptation in SCC Systems
Forecasting the likelihood of evolutionary rescue in SCC species requires models that connect environmental

change, genetic architecture, and adaptive responses through time. A previous large-scale effort by Mills, et al.
14 used ecological niche modeling (ENM) across eight mammal species to predict the current distribution of
winter color morphs under changing snow conditions throughout species distribution ranges. Their results
revealed clear geographic gradients from regions with winter-white individuals to regions with winter-brown
individuals, including transition zones where both morphs coexist, suggesting that adaptation from standing
variation could mitigate mismatch risk. Although ENMs have been instrumental in identifying climate-driven
winter morph distribution patterns and areas with greater predicted adaptive shifts, they are largely correlative

and do not incorporate genetic or adaptive processes, limiting their ability to predict true adaptive potential

139,140

Other modeling approaches offer more mechanistic perspectives and are best applied in combination with each
other. Genotype—environment (GE) association models can identify genomic regions associated with
environmental gradients, pinpointing where selection may be acting even in the absence of fitness data 84,
Demographic and coalescent models reconstruct historical population dynamics and selective events, providing
temporal context for contemporary adaptation 42143, Individual-based models (IBMs) simulate genotypes,
selection, and ecological interactions across generations, allowing allele frequency trajectories to be estimated

under varying scenarios of drift, migration, and selection #4145,

Building on that, Ferreira, et al. 1°” provided an integrative framework combining SCC polymorphism, ENMs,
demographic models, and forward-in-time IBMs in SLiM ¢ to predict evolutionary rescue in white-tailed

jackrabbits. The ENM mapped spatial probabilities of winter color morphs for current and future climates, the
14
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latter informed by future climate forecasts. These projected mismatch scenarios informed forward-in-time
simulations, which were parameterized with modelled demographic parameters and empirical-based genotypes
and phenotypes. Results demonstrated that even low-frequency winter-brown alleles can drive rapid adaptation
under declining snow cover, underscoring the key contribution of standing adaptive genetic variation for

population persistence.

Future SCC modeling should extend this framework by incorporating spatial and temporal environmental
heterogeneity and empirical species-specific estimates of camouflage mismatch fitness costs, while refining our
understanding of genetic architecture, to produce more realistic predictions of adaptive limits and identify
populations most at risk °. Historical records and Natural History Collections provide valuable temporal data
for model calibration, revealing past shifts in allele and phenotype frequencies 4. Moreover, SCC systems
uniquely allow direct quantification of selection in the wild, as camouflage mismatch visibly affects predation
and survival 577°. These empirical data provide rare opportunities to calibrate evolutionary models with real
fitness information, helping define thresholds beyond which adaptation may fail to ensure population
persistence. However, such data remain difficult to obtain, and emerging frameworks that integrate vital-rate

estimates with genotype-environment (GE) models offer a promising way forward 2.

Informed conservation actions
Genetic and evolutionary insights are important guides for conservation programs 2. Although no program has

yet implemented these approaches explicitly for SCC systems, this trait provides a clear path to do so. In SCC
species, evolutionary rescue could occur when adaptive winter-brown variants increase rapidly enough to
restore positive population growth in regions dominated by winter-white individuals under shorter snow
seasons. This can be aided by genetic rescue through managed gene flow that introduces genetic diversity and,

most importantly, adaptive alleles improving camouflage matching 4.

Classic genetic rescue examples illustrate the demographic benefits of increased heterozygosity: translocations
revived prairie chickens after a severe bottleneck 8, and Texas pumas introduced into the isolated Florida
panther population reduced inbreeding and temporarily lowered extinction risk %1%, Yet demographic recovery
alone may not ensure long-term persistence unless the introduced variation also increases adaptive potential
under contemporary selection #8, This is the bridge to evolutionary rescue, where population recovery depends
not just on neutral genetic diversity but on the spread of the adaptive variance that enhances fitness in changing

environments 1%,

Translating these principles to SCC systems requires a practical, testable roadmap for linking evolutionary
potential to conservation action. First, dissect the genetic basis and evolutionary history of adaptive variants
underlying SCC polymorphisms. Second, map the current and projected distributions of adaptive SCC variation
relative to future climatic conditions '41%7, Genetic markers linked to SCC variants can also serve as tools for
genetic monitoring — for instance, through non-invasive approaches such as scat or eDNA sampling, supported
by rapid assays or streamlined genomic pipelines — to track the frequency of adaptive alleles through time and

space 1518, Such efforts can help validate model forecasts and identify populations lacking key adaptive
15
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variants. Third, prioritize conservation actions for populations that already harbor adaptive alleles %7, Fourth,
design adaptive connectivity strategies that maintain or restore gene flow along corridors predicted to favor
winter-brown alleles, while assessing the risks of swamping or outbreeding depression >4, In regions where key
adaptive variants are absent, assisted gene flow or targeted reintroductions could be implemented to seed the

standing variation needed for evolutionary rescue.

To implement this roadmap, developing standardized pipelines and practitioner-oriented tools will be essential,
ranging from rapid DNA assays to decision-support frameworks that translate complex genomic and forecasting
information into actionable management. These resources enable conservation actions that effectively maintain
or restore adaptive potential in SCC populations facing accelerated snow loss, while also providing a

transferable framework for other adaptive traits and climate-sensitive systems (Box 4).

BOX 4. BEYOND SEASONAL CAMOUFLAGE: GENERAL APPLICABILITY OF THE
LESSONS LEARNED

Seasonal color change (SCC) and winter color polymorphism provide a rare opportunity to directly observe
and quantify climate-driven adaptation. However, while few species exhibit such visually trackable,
discrete, and genetically well-characterized traits, the insights gained from SCC extend far beyond this
specific system. Studying SCC helps uncover generalizable principles of phenotypic mismatch,
evolutionary constraints, and the role of standing genetic variation in climate adaptation, all of which apply
to species with less obvious adaptive traits.

SCC serves as a natural laboratory for testing evolutionary rescue, offering a measurable way to track how
populations respond to rapid environmental change. It provides a framework for estimating fitness
consequences of maladaptation, identifying evolutionary tipping points, and integrating genomic and
ecological data into predictive models. These insights are broadly relevant to conservation, as most species
will face environmental mismatches due to changing climates *° but lack the clear visual markers that make
SCC species so tractable.

Furthermore, SCC research integrates key methodologies — including genomic analyses, predictive
modeling, and real-time monitoring — that can be adapted to study other seasonal traits, such as hibernation,
reproduction, and migration timing. Since the first genetic study of SCC in 2002 ¢, major advances in
genomics and landscape ecology have refined the ability to link genotype, phenotype, and fitness outcomes,
demonstrating how genetic variation can facilitate or constrain adaptive responses.

More broadly, the lessons learned from SCC-based conservation efforts can be expanded to other species,
informing actions to mitigate climate-driven biodiversity loss by enhancing adaptive management, targeted
genetic monitoring, and conservation prioritization.

Concluding remarks & future perspectives
The SCC system is a powerful model for studying climate-driven adaptation, offering a unique opportunity to

integrate evolutionary biology with conservation practice in a rapidly changing world (Box 4). While genomic
advances have significantly expanded our understanding of SCC polymorphism, realizing their full conservation
potential requires addressing key gaps in data and application. Moving forward, several challenges must be

tackled to maximize the impact of evolutionary research on conservation action:
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Closing Taxonomic and Knowledge Gaps: Despite growing genomic datasets, significant taxonomic
gaps remain (Table 1), with some SCC species still lacking high-resolution genetic data and genetic
studies. At the same time, for species where data exist, deeper investigation is needed to understand key
aspects of their evolutionary history, adaptive potential, and conservation status. Expanding both
taxonomic breadth and species-specific insights will strengthen predictions and refine conservation
priorities.

Bridging Fitness Data Gaps: A major challenge in predicting evolutionary rescue is the lack of direct
fitness data. While studies like that of Mills, et al. * have identified global hotspots for evolutionary
rescue, and Zimova, et al. ° have quantified the cost of mismatch, empirical data on survival,
reproduction, and selection pressures remain limited. Longitudinal studies integrating genomic,
ecological, and demographic data will be essential for improving predictions of adaptive potential.
Improving Forecasting Models: Current ecological niche models provide valuable predictions but often
fail to incorporate adaptive potential and genetic constraints on evolution. Future research should refine
genotype-phenotype-fitness informed forecasting models, improving accuracy for predicting species’
resilience or vulnerability under climate change.

Developing Proactive Conservation Strategies: Conservation efforts must prioritize populations with
high adaptive potential to enhance long-term resilience. Adaptive management approaches, informed
by genomic and ecological insights, are critical for mitigating climate-driven biodiversity loss.
Strengthening collaboration between evolutionary biologists, conservation practitioners, and

policymakers is fundamental to ensure that research translates into actionable conservation strategies.
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