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Abstract 17 

Human-driven environmental change is reshaping ecosystems and challenging species’ ability to adapt. 18 

Understanding how genetic variation enables adaptation is crucial for conservation and requires exemplary 19 

systems to test hypotheses and make predictions. One particularly suitable model for studying climate-driven 20 

adaptation is seasonal color change (SCC), a phenological trait in which individuals transition between summer-21 

dark and winter-white pelage/plumage to maintain camouflage. This review evaluates SCC as a model for 22 

predicting adaptive responses to climate change. First, we address the vulnerability of phenological traits to 23 

climate change, due to their dependence on photoperiodic cues and complex molecular regulation. Second, we 24 

review SCC literature across all 21 SCC species, summarizing knowledge on its regulation, the fitness costs of 25 

mismatch induced by snow loss, and the limited role of plasticity in buffering these effects. Third, we review 26 

recent findings on the genetic basis of SCC polymorphism that have linked adaptation to selection on 27 

pigmentation alleles with multiple evolutionary origins (including introgression and de novo mutations). Finally, 28 

we discuss the implications of the genetic architecture of SCC polymorphism for evolutionary rescue and 29 

conservation strategies, as well as methods for testing adaptation conditions using modeling approaches. While 30 

past research on SCC already showcased how predictive evolution can be incorporated into conservation action, 31 

we identify research gaps, including limited fitness data, taxonomic biases, and the need for real-time ecological 32 

and genomic monitoring. Addressing these gaps will improve the accuracy of predictive models and the success 33 

of management strategies aiming at protecting species’ resilience to rapid environmental change. 34 

Keywords 35 

seasonal color change; seasonal coat color polymorphism; climate change adaptation; adaptation genomics; 36 

conservation genomics  37 
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Introduction  38 

Rapid anthropogenic changes are causing escalating habitat losses, posing severe threats to species' survival by 39 

disrupting local environmental adaptations 1. The current pace of species loss suggests that Earth is nearing 40 

mass extinction thresholds 2. Understanding the impact of climate change on biodiversity and forecasting the 41 

potential for rapid adaptation is, therefore, one of the most critical and pressing challenges of modern science 42 

3,4. Such studies have often been conducted at the ecological level, assessing and monitoring changes in species 43 

communities 5,6. Still, the adaptive potential of each species depends first and foremost on existing standing 44 

genetic variation, which provides a pool of variants upon which selection can act, fueling resilience to 45 

environmental change and diseases, and thus facilitating adaptation 4,7. Neutral genetic diversity is a long-46 

established metric for assessing the health of natural populations, their adaptive potential, and conservation 47 

status (e.g., by the International Union for Conservation of Nature, IUCN) 7. Yet, genomic data also offer a 48 

powerful way to detect and quantify adaptive genetic variation, which can be incorporated into assessments of 49 

population status and predictions of adaptation to climate change 8. Despite this potential, the knowledge of the 50 

genetic basis of adaptation is still seldom incorporated into conservation actions 9.  51 

Traits with clear effects on fitness and predictable responses to environmental change serve as powerful models 52 

to understand the conditions under which adaptation to anthropogenic change can be expected 10. Among these, 53 

seasonal, or phenological, traits enable organisms to maintain fitness year-round by synchronizing key life cycle 54 

events with seasonal environmental changes 11,12. When the primary cue triggering phenological change remains 55 

fixed (for example, photoperiod), but environmental conditions change, a phenological mismatch occurs, which 56 

can affect individual fitness and the species’ future survival 10,13.  57 

Here, we synthesize seasonal color change (SCC) as a model adaptive trait to investigate genotype-to-58 

phenotype-to-environment relationships underlying the scope for adaptation to climate change. SCC is a 59 

seasonal transition between summer dark and winter-white coats or plumages occurring in at least 21 species of 60 

mammals and birds across the Northern Hemisphere 13,14. We connect phenological timing, bases of trait 61 

expression, costs of phenological mismatch, genetic architecture and evolution of winter color polymorphism, 62 

and prediction frameworks for future rapid evolutionary change, showing that SCC can serve as an especially 63 

suited model trait to gain both practical and general insights to foster the maintenance of biodiversity in a 64 

changing climate.  65 

Seasonally Flexible Traits  66 

Habitats worldwide undergo seasonal environmental cycles, which tend to be more pronounced in temperate 67 

mid-latitude regions 15. In response, diverse taxa have independently evolved mechanisms to cope with these 68 

seasonal fluctuations, including seasonal reproduction 16, hibernation 17, migration 18, molt 19, and others 11. 69 

Although seasonal traits may share developmental pathways and expression patterns 20,21, specific physiological 70 

and molecular foundations of phenological traits can vary according to evolutionary and ecological contexts. 71 

These phenological traits require physiological adjustments across multiple biological levels 21, including 72 

molecular (e.g., gene expression 22,23), cellular (e.g., proliferation 24,25), metabolic (e.g., energy balance 26), and 73 
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hormonal (e.g., melatonin regulation 27). Such adjustments reflect seasonal phenotypic flexibility — the ability 74 

of an organism to undergo reversible change in physiology or behavior in response to environmental changes 75 

28. 76 

Seasonal changes in phenotype are regulated by deeply conserved biological pathways across traits and taxa, 77 

with differences reflecting fine-scale adaptations to local ecological conditions 29. For instance, conserved 78 

genetic pathways 30 and/or epigenetic mechanisms 31 have been shown to regulate several seasonal phenotypes. 79 

In particular, genes underlying circannual clocks, which are sensitive to seasonal light cycles, exhibit a regular 80 

pattern of expression in different cell types. This rhythmic expression coordinates downstream physiological 81 

pathways involving melatonin and prolactin hormones (discussed below), which further initiate various seasonal 82 

transitions 27,32-36. Other hormones, such as gonadotropins, also influence seasonality, regulating reproduction, 83 

molt, and other physiological processes 13,37. Overall, neuroendocrine regulation is usually functionally 84 

integrated and conserved across taxa 20,29.  85 

Due to the existence of these conserved regulatory pathways, mutations affecting upstream regulatory 86 

components of seasonal phenotypes may have widespread pleiotropic consequences 38,39. Such constraints may 87 

select for modularity or limit adaptive changes to the downstream portions of regulatory cascades, buffering 88 

against mismatches in other traits (for more details, see Box 1). Alternatively, selection on interconnected 89 

regulatory mechanisms could help coordinate multiple seasonal traits, ensuring that annual phenotypic 90 

transitions align with environmental pressures 38 (Box 1). For instance, this type of coordinated regulation is 91 

evident in organisms that undergo seasonal color change, where hormonal and genetic pathways govern the 92 

timing and extent of pelage or plumage color transitions in response to shifting seasonal conditions.  93 
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Seasonal color change 94 

Seasonal color change (SCC) is a phenological trait characterized by molt transitions from a dark, typically 95 

brown, thinner coat (or plumage) in summer to a thicker white coat in winter 13. This adaptive mechanism 96 

ensures year-round camouflage in environments with seasonal snow and is present in at least 21 species of 97 

mammals and birds (Fig. 1). Photoperiod is the primary trigger for molting in birds and mammals, including 98 

species that undergo SCC 48,54. Molt phenology can also be influenced by intrinsic factors such as sex 37,55, age 99 

37, body mass 37,56, and health condition 13,37, as well as extrinsic factors like temperature 57,58 and snow cover 100 

duration 59,60. However, as snow duration decreases under climate change 61, phenotypic plasticity alone may 101 

not suffice to maintain effective camouflage, and evolutionary responses may be required to avoid fitness costs 102 

57,62.  103 

BOX 1. THE INTEGRATION OF PHENOLOGICAL TRAIT REGULATION: A BUFFER OR A 

VULNERABILITY FOR CLIMATE CHANGE ADAPTATION? 

The regulation of phenological traits is often interconnected, leading to overlapping genetic and 

physiological pathways, which can lead to pleiotropic effects 40. This interdependence can enhance 

adaptation by synchronizing multiple traits 41, but it can also create vulnerabilities by limiting the ability for 

independent adjustments 39. This limitation, known as the "cost of complexity" or "cost of pleiotropy", 

indicates that when one locus affects multiple traits, the rate of adaptation is often slower 42,43. As climate 

change reshapes seasonal environments at an unprecedented pace 44-46, understanding the regulatory 

architecture of these traits and how their interactions influence adaptation becomes increasingly critical. 

 

The degree of regulatory interconnection varies among different mechanisms. Upstream mechanisms play 

a critical role in regulating multiple seasonal traits. These include master genes (e.g., clock genes), 

transcription factors (e.g., THR1), and master hormones (e.g., melatonin) 47-49. These elements act as central 

regulators, synchronizing various traits in response to environmental cues. While this coordination can be 

adaptive, it also creates constraints. Tightly linked traits might lead to ecological mismatches if an adaptive 

shift in one trait misaligns with changes in others 39. For instance, if the timing of seasonal breeding changes 

but migration does not, species may face challenges in finding suitable habitats or mates. In contrast, 

downstream trait regulation usually involves other cis-regulatory elements that fine-tune gene expression 

in specific tissues or developmental stages. This results in divergent pathways, allowing traits to be 

regulated differently 50-52. Additionally, genetic modularity can affect more pleiotropic pathways through 

divergent regulation, which allows for specific genetic control depending on the developmental stage, 

tissue, or environmental cue 53. This flexibility allows for the independent evolution of traits such as 

seasonal migration, breeding patterns, and coat color. 

 

Overall, changes in upstream phenological regulation may face greater challenges for adjusting phenotypes 

to rapidly shifting climates. In contrast, divergent pathways leading to downstream regulation of 

phenological traits may enhance species' adaptability by preventing disruptions across multiple traits. 

Furthermore, divergent regulation might help alleviate pleiotropy constraints through genetic modularity. 

This indicates that the adaptive pathways for coping with climate change are more likely to occur 

downstream and/or with a high level of genetic modularity.  
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 104 

Fig. 1 | Cumulative geographic distributions of all 21 SCC species. Mammals - Canidae: (A) Vulpes lagopus (Arctic fox), Mustelidae: 105 
(B) Mustela nivalis (Least weasel), (C) M. erminea (Stoat), (D) Neogale frenata (Long-tailed weasel), Leporidae: (E) Lepus americanus 106 
(Snowshoe hare), (F) L. arcticus (Arctic hare), (G) L. brachyurus (Japanese hare), (H) L. othus (Alaskan hare), (I) L. timidus (Mountain 107 
hare), (J) L. townsendii (White-tailed jackrabbit), Cricetidae: (K) Dicrostonyx groenlandicus (Nearctic collared lemming), (L) D. 108 
hudsonius (Ungava collared lemming), (M) D. nelson (Nelson's collared lemming), (N) D. richardsoni (Richardson's collared lemming), 109 
(O) D. torquatus (Arctic lemming), (P) D. vinogradovi (Northern collared lemming), (Q) Phodopus sungorus (Winter-white dwarf 110 
hamster). Birds - Tetraonidae: (R) Lagopus lagopus (Willow Ptarmigan), (S) L. leucurus (White-tailed ptarmigan), (T) L. muta (Rock 111 
ptarmigan). (U) The combined distribution of the 21 species in purple, based on IUCN. Pictures rights: (A) Phil Chaon, (B) Karol Zub 112 
(C) Jing-Yi Lu, (D) Tom Benson, (E) Cam Nikkel, (F) Andrew Simon, (G) Rei Akiyama, (H) Alex Patia, (I) Claudio Spadin, (J) N 113 
Bertrand, (K) Mark C Long, (L) Fabrice Simon, (N) Justin Benjamin, (O) Frank Kienast, (P) Игорь Поспелов, (Q) Philipp Salzgeber, 114 
(R) Igor Dvurekov, (S) Nigel Voaden, (T) Ryan Shaw. Illustration rights: (M) National Geographic. A properly identified picture of the 115 
Cricetidae species Dicrostonyx nunatakensis is not available. 116 

The cost of color mismatch 117 

Seasonal color molts allow species to track seasonal snow, enabling year-round camouflage 13. The disruption 118 

of camouflage through phenotypic mismatch against the background has, with few exceptions  63,64, been shown 119 

to impact individual survival, potentially leading to local extinctions or population declines in species such as 120 

rock ptarmigan, willow ptarmigan, and snowshoe and mountain hares 57,65-70. In snowshoe hares, camouflage 121 

mismatch has been shown to cause up to 7% decrease in individual weekly survival 70. Variation in snow cover 122 

duration in both spring and fall molts also affects survival rates of willow ptarmigans, but the rate changes with 123 

age and sex 71. In least weasels and snowshoe hares, studies using artificial models have recorded higher rates 124 

of predator attacks when body color mismatched the background 72-74, with white-on-brown mismatches facing 125 

greater predation rates than brown-on-white, indicating stronger selection against mismatches more likely to be 126 

induced by climate change 74.  127 

Reductions in snow cover depth, extent, and duration across the Northern Hemisphere have been extensively 128 

documented 46,61,75, with further decreases projected under many climate change scenarios 46,57. The combination 129 

of declining snow cover duration, due to anthropogenic climate change, and an unaltered photoperiod challenges 130 

the adaptive value of seasonal brown-to-white molts 57. Projections of current color molt phenology against 131 

decreasing snow cover duration suggest increasing color mismatch in the absence of adaptive shifts, leading to 132 
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range contractions and population declines 57,67,70,76. Understanding the physiological mechanisms underlying 133 

seasonal color change is crucial for identifying adaptive pathways that may mitigate mismatch. 134 

Regulation of seasonal color change  135 

Adaptation to shifts in snow seasonality could potentially evolve through physiological adjustments in the 136 

developmental timeline that controls molt and color change. Seasonal molts are regulated hormonally by signals 137 

that influence intracellular cascades and genetic regulatory mechanisms 77,78, which coordinate the expression 138 

of key pigmentation, molting, and circadian rhythm-related genes 13,22,23. The process starts with the perception 139 

of photoperiodic changes, which, in mammals, occurs through photosensitive retinal ganglion cells that transmit 140 

light information to internal circadian pacemakers in the brain (the suprachiasmatic nucleus). In turn, in birds, 141 

other photoreceptor cells exist that allow direct photoperiodic change independent of the eyes 48,54. The 142 

photoperiodic shift signal is transmitted through the suprachiasmatic nucleus to the pineal gland in the brain, 143 

which regulates melatonin production 79. Melatonin is secreted in response to darkness and thus production 144 

increases with longer nights, further regulating prolactin production: high melatonin levels signal the pituitary 145 

gland to inhibit prolactin production, while low melatonin levels result in prolactin secretion 80,81. These 146 

hormonal signals act upstream of genetic pathways regulating molt and pigmentation. While prolactin and 147 

melatonin have been shown to affect pigment production experimentally 27,34, the mechanism connecting the 148 

melatonin–prolactin axis to melanin synthesis remains unclear, whether through direct expression mechanisms 149 

(e.g., melatonin receptors in melanocytes) or via indirect pathways.  150 
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BOX 2. MOLECULAR REGULATION OF SEASONAL COLOR CHANGE  

  

Fig. 2 | Pigmentation pathway in melanocytes and melanosomes. The illustration depicts the melanogenesis pathway, starting from 

POMC expression in keratinocytes (not shown), detailing the process within melanocytes, and including the contrasting binding 

effects of two molecules to MC1R in the melanocyte membrane – the agonist α-MSH (eumelanin production) and the antagonist 

ASIP (pheomelanin production). The simplified signaling cascade inside the melanosome highlights key enzymes that convert 

intermediate structures into the two types of melanin. 

The pigmentation pathway primarily regulates the downstream pathway of seasonal color (Fig. 2). The 

production of eumelanin (dark melanin pigment) in melanocytes is promoted by the α-melanocyte-

stimulating hormone (α-MSH), a peptide hormone derived from the cleavage of the pro-opiomelanocortin 

protein (POMC). When α-MSH binds to the melanocortin-1 receptor (MC1R) on the melanocyte membrane, 

it acts as an agonist, initiating a signaling cascade that increases intracellular cyclic adenosine 

monophosphate (cAMP) levels 82,83. This boost in cAMP enhances tyrosinase activity and promotes the 

proliferation of other melanogenic enzymes (e.g., DCT and TYRP1), ultimately resulting in the synthesis of 

eumelanin 83,84. Like prolactin, α-MSH is secreted when daylight is abundant and suppressed in low light 

conditions, being indirectly regulated by photoperiod 34,84. However, it remains unclear whether this 

suppression is directly linked to melatonin release. Research suggests that melatonin does not inhibit α-MSH 

secretion but rather suppresses the melanogenic action of α-MSH by interfering with the accumulation of 

new tyrosinase molecules 85. Furthermore, melatonin may affect the melanocortin system by reducing 

POMC expression, which hampers the binding of α-MSH to MC1R, leading to the production of lighter 

pigment instead 86. 

 

The agouti signaling protein (ASIP) contributes to the production of lighter pigment, as ASIP acts as an 

antagonist to α-MSH at the MC1R receptor. When ASIP binds to MC1R, it decreases the activity of 

tyrosinase and inhibits the enzymes necessary for eumelanin production, leading to the synthesis of 

pheomelanin (light melanin pigment) instead 83,84. Notably, in the presence of the transmembrane serine 

protease CORIN, ASIP does not bind to MC1R 87,88 The connection between ASIP and photoperiodic 

changes, and how ASIP production is regulated throughout the year to control seasonal color change, 

remains unknown. However, evidence suggests that ASIP expression level varies throughout the year, and 

between winter-brown and winter-white morphs 13,22. 
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The final step in the regulatory cascade within melanocytes is the transfer of melanin to keratinocytes, where 

it contributes to the formation of keratin structures, producing the colored coat/plumage during the 

hair/feather growth cycle 84,89. 

 

Beyond hormonal regulation, existing literature on the genetic regulation of SCC molt shows a dynamic control 151 

of gene expression in response to seasonal cues 22,90. Although the development of seasonal pelage molts is 152 

linked to the hair growth cycle and circadian clock genes, changes in the expression of key pigmentation genes 153 

are likely to shape seasonal transitions in color (for details on the downstream pigmentation pathway, see Box 154 

2). For example, genes associated with melanogenesis have been found to be differentially expressed during the 155 

late fall molt in Arctic foxes 91. Additionally, the expression of the Agouti Signaling Protein (ASIP), which is 156 

involved in the production of pheomelanin (light melanin pigment), is upregulated during the development of 157 

white fur coats in hare species 92,93. Similarly, the Tyrosinase-Related Protein 1 (TYRP1), which is linked to 158 

eumelanin (dark melanin pigment) production, is upregulated during the development of brown plumage in 159 

ptarmigan species 94. These examples suggest that the color changes observed in many SCC species are likely 160 

related to regulatory mechanisms affecting gene expression. However, since the activation of these molecular 161 

pathways is likely tightly coupled with photoperiodic signals, the capacity of species with SCC to respond to 162 

other environmental cues may be constrained 13.  163 

Plasticity in SCC species 164 

Although photoperiod is the primary trigger for SCC, the impacts of declining snow cover duration could be 165 

mitigated by plasticity in the timing or rate of color molts, or by behavioral adjustments 95. However, responses 166 

to variation in temperature and snow cover duration across species appear insufficient to fully buffer against 167 

increasing camouflage mismatches 57,59,96-99. For example, while there is some evidence for environmentally 168 

driven phenological variation of spring molts 57,59,96,98,99, fall molts show much less evidence for phenotypic 169 

plasticity 57,59,96,99. Translocation experiments also suggest that molting plasticity rarely allows individuals to 170 

forgo the winter-white morph completely 37,65,100,101 (but see King and Powell 37, page 63).  Collectively, these 171 

findings imply strong genetic or physiological constraints on molt timing and expression, which may limit the 172 

potential for rapid adaptation to snow cover reductions in SCC species. 173 

Likewise, there is limited and inconsistent evidence that behavioral plasticity provides an alternative means of 174 

mitigating climate change-induced mismatches. For example, mismatched hares do not appear to adjust their 175 

resting, hiding, or fleeing behaviors 59,102, but may show enhanced predator vigilance 103. Conversely, ptarmigans 176 

appear to adjust their feeding strategies 104, select more cryptic resting spots, and may even soil white plumage 177 

when mismatched 105. However, these behavioral changes occur in lekking systems where sexual selection on 178 

plumage color likely intensifies mismatch relative to other systems 105,106. Given limited meaningful plasticity 179 

in coat color timing and behavior, evolutionary processes appear essential to foster future adaptation.  180 



   

 

10 

 

Winter color polymorphism 181 

The most substantial evidence for adaptation in SCC is the repeated evolution of winter color polymorphism in 182 

response to local variation in snow cover duration. As a result, most SCC species display geographic variation 183 

in the color of winter molts (white and brown morphs), resulting in color polymorphisms across species ranges 184 

14
 (Table 1). This trait polymorphism has been shown to have a genetic basis in many species, supported by 185 

common garden and translocation experiments 65,100, and direct genetic mapping of color variation 92,93,107,108. 186 

The frequency of different winter color morphs varies geographically and is strongly correlated with snow cover 187 

duration and ephemerality 14, showing that the phenotypic clines are maintained by local adaptation for 188 

camouflage. For example, winter-brown morphs are more common in coastal and southern areas, where winter 189 

snow cover duration is low, absent, or highly variable. These findings suggest that genetic variation underlying 190 

alternative winter coloration morphs may be critical to fuel adaptive responses to global changes in snow cover 191 

duration 92,93,107. There are also SCC species displaying summer color polymorphism (Table 1), but it is not the 192 

scope of this study to review this polymorphism. 193 

Table 1 | The spectrum of seasonal color change and winter color polymorphism. Summary of key findings from studies on SCC 194 
species, organized by families. The graphical representation illustrates coat/plumage color phenotypes, with summer morphs on the left 195 
and winter morphs on the right. Below each graphical representation, the type of coat/plumage color polymorphism for the species is 196 
indicated, with winter polymorphisms highlighted in bold. The table synthesizes research on: (i) Seasonal color change, namely color 197 
descriptions, and (ii) Winter color polymorphism, including its genetic architecture (i.e., genetic basis and causative mutations), as well 198 
as its evolutionary origins, allele history, and type of selection detected locally. For information on specific species and references, please 199 
refer to the Supporting Material.   200 

    

          

  
Foxes 

(Canidae) 
Weasels 

(Mustelidae) 
Hares 

(Leporidae) 
Hamsters/Lemmings 

(Cricetidae) 
Ptarmigans 

(Tetraonidae) 

    
polymorphic in 

winter and summer 
polymorphic in 

winter  
polymorphic in 

winter or summer 
not polymorphic 

polymorphic in 
winter 

Se
as

o
n

al
 c

o
lo

r 
ch

an
ge

 Summer color: 
brown or bluish 

brown 
Brown 

brown, gray, or 
white 

brown brown 

Winter color: 
white or bluish 

brown 
brown, white, or 

piebald  

brown, white, gray, 
or continuous color 

(brown to white) 
white 

brown, white, or 
intermediate 

Color transition 
type: 

binary Binary 
binary or 

continuous 
binary 

binary or 
continuous 

W
in

te
r 

co
lo

r 
p

o
ly

m
o

rp
h

is
m

 

Genetic Basis: MC1R  MC1R ASIP, EDNRB, CORIN  unknown  unknown  

Causative 
mutations: 

Amino acid 
substitutions 

Amino acid 
substitutions or 

INDELS  

Nucleotide 
substitutions or 

INDELS  
unknown  unknown  

Allele Origin: 
expected de novo 

mutations 
de novo mutations   

ancestral variation, 
introgression 

unknown  unknown  
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Evolutionary 
Pattern Across 

Species: 
unknown  

convergent 
evolution  

standing adaptive 
variation, 

convergent 
evolution  

unknown  unknown  

Selection type for 
winter-brown 

morph: 
unknown  positive, balancing positive, balancing unknown  unknown  

The genetic basis of winter color polymorphism  201 

Genomic studies focused across phenotypic transition zones (i.e., polymorphic populations where different 202 

winter color morphs coexist 14) have consistently shown that genome-wide genetic variation is structured by 203 

geography and not by color morph 92,93,107,108, indicating that color variation responds to selective pressures 204 

irrespective of population structure. Whole genome scans of association 92,93,107-110 or candidate gene approaches 205 

111 have identified genes of large effect underlying winter color polymorphism in lagomorphs and carnivores.  206 

In hares, winter color polymorphism is manifested by both discrete and continuous variation (Table 1). In 207 

snowshoe and mountain hares, discrete trait variation has been linked to cis-regulatory changes influencing the 208 

expression of ASIP 92,93,109,112, with simple Mendelian inheritance of dominant winter-white and recessive 209 

winter-brown/gray variants 92,93. In white-tailed jackrabbits, continuous brown-to-white winter color variation 210 

has been associated with at least three genes [ASIP, Corin Serine Peptidase (CORIN), and Endothelin Receptor 211 

B (EDRNB)] 107, with additive or epistatic contributions to the phenotype. In carnivores, protein-coding variation 212 

in the Melanocortin 1 Receptor (MC1R) gene has been shown to determine discrete winter color polymorphism 213 

in the Arctic fox 111,113, least weasel 108, and long-tailed weasel 110 (Table 1), with simple Mendelian inheritance 214 

with dominant winter-brown variants 108,110,111. The alternative patterns of winter-brown recessive inheritance 215 

associated with ASIP and dominant inheritance associated with MC1R agree with the molecular functions of 216 

these genes and inheritance patterns found for light and dark color phenotypes across vertebrate taxa 51. 217 

Overall, the studies conducted so far demonstrate that the melanin pigmentation pathway is strongly involved 218 

in determining winter color variation, either through regulatory or protein-coding changes (for details on the 219 

molecular regulation of the pigmentation pathway, see Box 2). Yet, the specific genes and genetic variants 220 

underlying the polymorphism vary across species 92,93,107-111 and even within species 109,110,112. However, 221 

information on the genetic basis of winter color polymorphisms is still missing for many taxa. Advances in 222 

long-read sequencing and structural-variant detection have the potential to further resolve the genomic 223 

architecture of SCC polymorphism 114, particularly in systems with more complex coloration dynamics such as 224 

stoats and ptarmigans (Sup. Table 1) 37,115. 225 

Evolution of winter color polymorphism 226 

Studies on winter color polymorphism across SCC species have also shed light on the evolutionary processes 227 

underlying the origin and persistence of the adaptive color variation within and across species. While the 228 

evolutionary origin of such polymorphisms remains elusive across most systems, available data show that the 229 

evolution of winter color variation has often been generated through repeated parallel evolution of re-derived 230 

brown winter morphs (for a discussion on re-derived vs. relic winter brown morphs, see Box 3). For example, 231 
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in snowshoe and mountain hares, the origin of ASIP alleles causing gray winter morphs has been traced back to 232 

introgression from non-seasonally changing species (black-tailed jackrabbit and Iberian hare, respectively 233 

92,93,116). Similarly, winter-brown ASIP alleles contributing to continuous winter color variation in white-tailed 234 

jackrabbits have also introgressed from the black-tailed jackrabbit. Meanwhile, winter-brown variants in CORIN 235 

and EDNRB appear to result from the maintenance of ancestral genetic variation across species 107, pointing to 236 

a relic ancestral origin (Box 3). In weasels, different MC1R alleles have been shown to cause winter-brown 237 

phenotypes in distinct species 108,110, suggesting parallel adaptive evolution at the same gene, and a de novo 238 

origin of winter-brown alleles has been confirmed for least weasel populations in Europe 117 (Table 1). In the 239 

Arctic fox, genotyping of the MC1R region across Canidae did not reveal the occurrence of the Arctic fox 240 

candidate mutations in other species 111,118,119, which could point to a de novo origin.  241 

The persistence of winter-brown or -white alleles across the range of species with SCC is thus driven by a 242 

combination of selective mechanisms operating across heterogeneous environments (Table 1). Long-term 243 

balancing selection acting on ancient alleles has been suggested 107,117, alongside geographically localized 244 

signatures of positive directional selection favoring winter-brown phenotypes in some parts of population 245 

ranges, often in transition zones 92,93,108,117. This combination of signatures illustrates how spatially varying 246 

selection can simultaneously maintain ancestral variation and drive locally adaptive divergence 123,124. These 247 

BOX 3. ANCESTRAL OR RE-DERIVED? THE EVOLUTIONARY PUZZLE OF WINTER-

BROWN MORPHS AND THE REVERSIBILITY OF TRAITS UNDER UNSTABLE 

ENVIRONMENTS 

The rarity of seasonal color change across mammals and birds suggests that winter whitening is a derived 

phenotype, as it occurs in only a few genera compared with the many taxa that remain brown year-round  
13,14. In this context, the ability to molt into a winter-white pelage/plumage can be considered a derived trait 

within each lineage where it occurs and, broadly, the winter-brown phenotype as an ancestral state. 

 

Two main hypotheses can explain the origin of winter color polymorphism in SCC species: 1) The relic 

hypothesis suggests that winter-brown populations may represent remnants of the ancestral non-whitening 

condition, reflecting the long-term maintenance of ancestral variation. For example, in least weasels, some 

winter-brown populations have been hypothesized to be ancestral relics rather than re-derived morphs, 

although direct genetic evidence is lacking 120,121; 2) Alternatively, the re-derivation hypothesis proposes 

that brown morphs have arisen secondarily through repeated losses of the whitening capacity. Most 

population genomic studies across multiple SCC species tend to support this view, showing that winter-

brown morphs often result from geographically localized evolution disrupting SCC regulatory pathways, 

through hybridization or de novo mutations 92,93,107,109. Yet, these hypotheses are not mutually exclusive. In 

white-tailed jackrabbits, a combination of ancestral polymorphism and recent introgression underlies 

winter-brown variation, suggesting that a combination of the phenomena may have been at play. In least 

weasels, the northern and central European winter-brown populations are re-derived from a de novo 

mutation 108,117, while the southernmost European populations may possibly be a relic 121. These examples 

show that complex adaptive traits may persist, be lost, regained, or modulated in response to selective 

pressures. Repeated re-derivation of winter-brown morphs may also reflect post-glacial dynamics, where 

species or populations that evolved winter whitening subsequently lost it as climate and snow cover duration 

fluctuated towards the Holocene 122.  
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dynamics likely stem from geographic variation in snow cover duration, which imposes contrasting selective 248 

pressures on coat color phenotypes by altering the fitness costs of seasonal camouflage mismatch. Such 249 

historical evolutionary dynamics that maintained adaptive polymorphisms may also shape the potential for 250 

future adaptation. Understanding the genetic architecture and selective landscape of winter color polymorphism 251 

is thus essential for predicting the scope for camouflage adaptation under climate change scenarios. 252 

Predictive frameworks for conservation 253 

SCC species are facing severe habitat changes due to climate-driven decreases in snow duration (see section 254 

“The cost of color mismatch”), which is threatening population viability 14,70. The persistence of these species 255 

under climate change depends on their capacity for evolutionary rescue, which could depend on their ability to 256 

recover or maintain positive population growth through rapid adaptive shifts in coat color in response to 257 

declining snow cover 14,125. While environmental pressures define the direction of selection, it is the underlying 258 

genetic potential that determines whether adaptation can occur swiftly enough to prevent extinction 125. 259 

Therefore, predicting the potential for evolutionary rescue in SCC species requires understanding the genetic 260 

architecture, selective dynamics, and spatial distribution of adaptive alleles underlying SCC variation. 261 

The scope for evolutionary rescue 262 

The genetic architecture of SCC traits determines both the pace and trajectory of adaptation, which depend on 263 

key factors such as the number of loci, allelic relationships (dominance, additivity, epistasis), effect sizes, and 264 

linkage disequilibrium (LD) among loci 107,116,126-128. For example, in many SCC species, winter coat color is 265 

controlled by a single large-effect locus 92,93,108,110,111. In these cases, the dominance relationships of adaptive 266 

alleles strongly influence evolutionary responses to climate change. Recessive winter-brown alleles, as in hares 267 

92,93, may persist as hidden standing variation that initially responds slowly to selection because heterozygotes 268 

remain winter-white 116. Conversely, dominant winter-brown alleles, such as those in least and long-tailed 269 

weasels 108,110, are immediately exposed to selection and can spread rapidly when reduced snow cover favors 270 

brown morphs 129. In the white-tailed jackrabbit, on the other hand, winter color polymorphism has a multigenic 271 

and largely additive genetic basis, resulting in more continuous winter color variation, which leads to more rapid 272 

adaptive responses and lower extinction risk in simulated populations confronted with reduced snow cover 273 

duration 107. A multigenic architecture resulting in continuous variation may enable more gradual phenotypic 274 

shifts, allowing intermediate forms to track progressive environmental change. Additive inheritance can 275 

accelerate adaptive responses by acting on multiple loci simultaneously 130,131, with the magnitude of each 276 

contribution depending on effect size 132, whereas epistasis and LD among loci may either facilitate or constrain 277 

evolution depending on the direction of selection 133,134. 278 

The underlying evolutionary mechanisms generating adaptive genetic variation determine how such variation 279 

translates into population persistence. Adaptation can rely on either standing genetic variation or de novo 280 

mutations, each with distinct implications for the speed and predictability of evolutionary change 4,125,126. In 281 

hares, winter-brown morphs arose from ancestral or introgressed alleles maintained at low frequencies, which 282 

may enable rapid evolutionary rescue as snow duration declines 92,107,109,112,116,135. In contrast, carnivores, such 283 
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as weasels, evolved winter-brown phenotypes through independent mutations, suggesting a slower initial 284 

response but greater potential for parallel adaptation across lineages 110,111,117,119,135. Population size, 285 

connectivity, and selection intensity may further shape these dynamics: small or isolated populations may 286 

experience drift or maladaptation despite available variation, whereas large, well-connected populations can 287 

maintain adaptive alleles and gene flow 135-138. For example, forecasting predictions suggest that increasing 288 

connectivity or human-assisted gene flow among white-tailed jackrabbit populations may accelerate the 289 

evolutionary rescue of maladapted predominantly winter-white populations 107. 290 

Finally, the resulting phenotype defines both the strength of selection and the likelihood of persistence. Species 291 

with discrete, binary morphs (e.g., white vs. brown) may face heightened extinction risk as snow duration 292 

declines, because mismatched individuals suffer greater predation (see Section “The cost of color mismatch”). 293 

In contrast, species expressing continuous winter color variation show greater adaptive capacity 107. Intermediate 294 

phenotypes can act as a selective bridge between extremes, facilitating gradual frequency shifts and promoting 295 

evolutionary rescue under climate change 131. However, empirical estimates of the fitness and frequency of these 296 

intermediates in natural populations remain scarce, underscoring the need for integrative field and genomic 297 

studies. 298 

Modeling Evolutionary Adaptation in SCC Systems 299 

Forecasting the likelihood of evolutionary rescue in SCC species requires models that connect environmental 300 

change, genetic architecture, and adaptive responses through time. A previous large-scale effort by Mills, et al. 301 

14 used ecological niche modeling (ENM) across eight mammal species to predict the current distribution of 302 

winter color morphs under changing snow conditions throughout species distribution ranges. Their results 303 

revealed clear geographic gradients from regions with winter-white individuals to regions with winter-brown 304 

individuals, including transition zones where both morphs coexist, suggesting that adaptation from standing 305 

variation could mitigate mismatch risk. Although ENMs have been instrumental in identifying climate-driven 306 

winter morph distribution patterns and areas with greater predicted adaptive shifts, they are largely correlative 307 

and do not incorporate genetic or adaptive processes, limiting their ability to predict true adaptive potential 308 

139,140. 309 

Other modeling approaches offer more mechanistic perspectives and are best applied in combination with each 310 

other. Genotype–environment (GE) association models can identify genomic regions associated with 311 

environmental gradients, pinpointing where selection may be acting even in the absence of fitness data 8,141. 312 

Demographic and coalescent models reconstruct historical population dynamics and selective events, providing 313 

temporal context for contemporary adaptation 142,143. Individual-based models (IBMs) simulate genotypes, 314 

selection, and ecological interactions across generations, allowing allele frequency trajectories to be estimated 315 

under varying scenarios of drift, migration, and selection 144,145. 316 

Building on that, Ferreira, et al. 107 provided an integrative framework combining SCC polymorphism, ENMs, 317 

demographic models, and forward-in-time IBMs in SLiM 146 to predict evolutionary rescue in white-tailed 318 

jackrabbits. The ENM mapped spatial probabilities of winter color morphs for current and future climates, the 319 
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latter informed by future climate forecasts. These projected mismatch scenarios informed forward-in-time 320 

simulations, which were parameterized with modelled demographic parameters and empirical-based genotypes 321 

and phenotypes. Results demonstrated that even low-frequency winter-brown alleles can drive rapid adaptation 322 

under declining snow cover, underscoring the key contribution of standing adaptive genetic variation for 323 

population persistence. 324 

Future SCC modeling should extend this framework by incorporating spatial and temporal environmental 325 

heterogeneity and empirical species-specific estimates of camouflage mismatch fitness costs, while refining our 326 

understanding of genetic architecture, to produce more realistic predictions of adaptive limits and identify 327 

populations most at risk 9. Historical records and Natural History Collections provide valuable temporal data 328 

for model calibration, revealing past shifts in allele and phenotype frequencies 147. Moreover, SCC systems 329 

uniquely allow direct quantification of selection in the wild, as camouflage mismatch visibly affects predation 330 

and survival 57,70. These empirical data provide rare opportunities to calibrate evolutionary models with real 331 

fitness information, helping define thresholds beyond which adaptation may fail to ensure population 332 

persistence. However, such data remain difficult to obtain, and emerging frameworks that integrate vital-rate 333 

estimates with genotype-environment (GE) models offer a promising way forward 2. 334 

Informed conservation actions  335 

Genetic and evolutionary insights are important guides for conservation programs 2. Although no program has 336 

yet implemented these approaches explicitly for SCC systems, this trait provides a clear path to do so. In SCC 337 

species, evolutionary rescue could occur when adaptive winter-brown variants increase rapidly enough to 338 

restore positive population growth in regions dominated by winter-white individuals under shorter snow 339 

seasons. This can be aided by genetic rescue through managed gene flow that introduces genetic diversity and, 340 

most importantly, adaptive alleles improving camouflage matching 14.  341 

Classic genetic rescue examples illustrate the demographic benefits of increased heterozygosity: translocations 342 

revived prairie chickens after a severe bottleneck 148, and Texas pumas introduced into the isolated Florida 343 

panther population reduced inbreeding and temporarily lowered extinction risk 149,150. Yet demographic recovery 344 

alone may not ensure long-term persistence unless the introduced variation also increases adaptive potential 345 

under contemporary selection 4,8. This is the bridge to evolutionary rescue, where population recovery depends 346 

not just on neutral genetic diversity but on the spread of the adaptive variance that enhances fitness in changing 347 

environments 125. 348 

Translating these principles to SCC systems requires a practical, testable roadmap for linking evolutionary 349 

potential to conservation action. First, dissect the genetic basis and evolutionary history of adaptive variants 350 

underlying SCC polymorphisms. Second, map the current and projected distributions of adaptive SCC variation 351 

relative to future climatic conditions 3,14,107. Genetic markers linked to SCC variants can also serve as tools for 352 

genetic monitoring — for instance, through non-invasive approaches such as scat or eDNA sampling, supported 353 

by rapid assays or streamlined genomic pipelines — to track the frequency of adaptive alleles through time and 354 

space 151-153. Such efforts can help validate model forecasts and identify populations lacking key adaptive 355 
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variants. Third, prioritize conservation actions for populations that already harbor adaptive alleles 14,107. Fourth, 356 

design adaptive connectivity strategies that maintain or restore gene flow along corridors predicted to favor 357 

winter-brown alleles, while assessing the risks of swamping or outbreeding depression 154. In regions where key 358 

adaptive variants are absent, assisted gene flow or targeted reintroductions could be implemented to seed the 359 

standing variation needed for evolutionary rescue.  360 

To implement this roadmap, developing standardized pipelines and practitioner-oriented tools will be essential, 361 

ranging from rapid DNA assays to decision-support frameworks that translate complex genomic and forecasting 362 

information into actionable management. These resources enable conservation actions that effectively maintain 363 

or restore adaptive potential in SCC populations facing accelerated snow loss, while also providing a 364 

transferable framework for other adaptive traits and climate-sensitive systems (Box 4). 365 

Concluding remarks & future perspectives  366 

The SCC system is a powerful model for studying climate-driven adaptation, offering a unique opportunity to 367 

integrate evolutionary biology with conservation practice in a rapidly changing world (Box 4). While genomic 368 

advances have significantly expanded our understanding of SCC polymorphism, realizing their full conservation 369 

potential requires addressing key gaps in data and application. Moving forward, several challenges must be 370 

tackled to maximize the impact of evolutionary research on conservation action:  371 

BOX 4. BEYOND SEASONAL CAMOUFLAGE: GENERAL APPLICABILITY OF THE 

LESSONS LEARNED  

Seasonal color change (SCC) and winter color polymorphism provide a rare opportunity to directly observe 

and quantify climate-driven adaptation. However, while few species exhibit such visually trackable, 

discrete, and genetically well-characterized traits, the insights gained from SCC extend far beyond this 

specific system. Studying SCC helps uncover generalizable principles of phenotypic mismatch, 

evolutionary constraints, and the role of standing genetic variation in climate adaptation, all of which apply 

to species with less obvious adaptive traits. 

 

SCC serves as a natural laboratory for testing evolutionary rescue, offering a measurable way to track how 

populations respond to rapid environmental change. It provides a framework for estimating fitness 

consequences of maladaptation, identifying evolutionary tipping points, and integrating genomic and 

ecological data into predictive models. These insights are broadly relevant to conservation, as most species 

will face environmental mismatches due to changing climates 155 but lack the clear visual markers that make 

SCC species so tractable. 

 

Furthermore, SCC research integrates key methodologies – including genomic analyses, predictive 

modeling, and real-time monitoring – that can be adapted to study other seasonal traits, such as hibernation, 

reproduction, and migration timing. Since the first genetic study of SCC in 2002 156, major advances in 

genomics and landscape ecology have refined the ability to link genotype, phenotype, and fitness outcomes, 

demonstrating how genetic variation can facilitate or constrain adaptive responses. 

 

More broadly, the lessons learned from SCC-based conservation efforts can be expanded to other species, 

informing actions to mitigate climate-driven biodiversity loss by enhancing adaptive management, targeted 

genetic monitoring, and conservation prioritization. 
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1. Closing Taxonomic and Knowledge Gaps: Despite growing genomic datasets, significant taxonomic 372 

gaps remain (Table 1), with some SCC species still lacking high-resolution genetic data and genetic 373 

studies. At the same time, for species where data exist, deeper investigation is needed to understand key 374 

aspects of their evolutionary history, adaptive potential, and conservation status. Expanding both 375 

taxonomic breadth and species-specific insights will strengthen predictions and refine conservation 376 

priorities.  377 

2. Bridging Fitness Data Gaps: A major challenge in predicting evolutionary rescue is the lack of direct 378 

fitness data. While studies like that of Mills, et al. 14 have identified global hotspots for evolutionary 379 

rescue, and Zimova, et al. 70 have quantified the cost of mismatch, empirical data on survival, 380 

reproduction, and selection pressures remain limited. Longitudinal studies integrating genomic, 381 

ecological, and demographic data will be essential for improving predictions of adaptive potential.  382 

3. Improving Forecasting Models: Current ecological niche models provide valuable predictions but often 383 

fail to incorporate adaptive potential and genetic constraints on evolution. Future research should refine 384 

genotype-phenotype-fitness informed forecasting models, improving accuracy for predicting species’ 385 

resilience or vulnerability under climate change. 386 

4. Developing Proactive Conservation Strategies: Conservation efforts must prioritize populations with 387 

high adaptive potential to enhance long-term resilience. Adaptive management approaches, informed 388 

by genomic and ecological insights, are critical for mitigating climate-driven biodiversity loss. 389 

Strengthening collaboration between evolutionary biologists, conservation practitioners, and 390 

policymakers is fundamental to ensure that research translates into actionable conservation strategies.  391 
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