

1 **Seasonal camouflage as a model to understand the scope for**
2 **rapid adaptation in a changing world**

3 Marcela M. Alvarenga^{1,2,3} | Cynthia K. S. Ulbing⁴ | Inês Miranda^{1,2,3} | Mafalda S. Ferreira⁵ | Paulo C. Alves^{1,2,3} |
4 L. Scott Mills⁶ | João Pimenta^{1,3} | Jeffrey M. Good^{4,6,*} | José Melo-Ferreira^{1,2,3,*}

5 1. CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório
6 Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
7 2. Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
8 3. BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-
9 661 Vairão, Portugal
10 4. Division of Biological Sciences, University of Montana, Missoula, MT, USA
11 5. SciLifeLab, Department of Zoology, Stockholm University, Box 1031, SE-171 21 Solna, Sweden
12 6. Wildlife Biology Program, University of Montana, Missoula, MT, USA
13 * Shared senior authorship.

14 **Corresponding Author**

15 Marcela M. Alvarenga, marcela.alvarenga@cibio.up.pt; José Melo-Ferreira, jmeloferreira@cibio.up.pt

17 **Abstract**

18 Human-driven environmental change is reshaping ecosystems and challenging species' ability to adapt.
19 Understanding how genetic variation enables adaptation is crucial for conservation and requires exemplary
20 systems to test hypotheses and make predictions. One particularly suitable model for studying climate-driven
21 adaptation is seasonal color change (SCC), a phenological trait in which individuals transition between summer-
22 dark and winter-white pelage/plumage to maintain camouflage. This review evaluates SCC as a model for
23 predicting adaptive responses to climate change. First, we address the vulnerability of phenological traits to
24 climate change, due to their dependence on photoperiodic cues and complex molecular regulation. Second, we review
25 SCC literature across all 21 SCC species, summarizing knowledge on its regulation, the fitness costs of
26 mismatch induced by snow loss, and the limited role of plasticity in buffering these effects. Third, we review
27 recent findings on the genetic basis of SCC polymorphism that have linked adaptation to selection on
28 pigmentation alleles with multiple evolutionary origins (including introgression and *de novo* mutations). Finally,
29 we discuss the implications of the genetic architecture of SCC polymorphism for evolutionary rescue and
30 conservation strategies, as well as methods for testing adaptation conditions using modeling approaches. While
31 past research on SCC already showcased how predictive evolution can be incorporated into conservation action,
32 we identify research gaps, including limited fitness data, taxonomic biases, and the need for real-time ecological
33 and genomic monitoring. Addressing these gaps will improve the accuracy of predictive models and the success
34 of management strategies aiming at protecting species' resilience to rapid environmental change.

35 **Keywords**

36 seasonal color change; seasonal coat color polymorphism; climate change adaptation; adaptation genomics;
37 conservation genomics

39 **Introduction**

40 Rapid anthropogenic changes are causing escalating habitat losses, posing severe threats to species' survival by
41 disrupting local environmental adaptations ¹. The current pace of species loss suggests that Earth is nearing
42 mass extinction thresholds ². Understanding the impact of climate change on biodiversity and forecasting the
43 potential for rapid adaptation is, therefore, one of the most critical and pressing challenges of modern science
44 ^{3,4}. Such studies have often been conducted at the ecological level, assessing and monitoring changes in species
45 communities ^{5,6}. Still, the adaptive potential of each species depends first and foremost on existing standing
46 genetic variation, which provides a pool of variants upon which selection can act, fueling resilience to
47 environmental change and diseases, and thus facilitating adaptation ^{4,7}. Neutral genetic diversity is a long-
48 established metric for assessing the health of natural populations, their adaptive potential, and conservation
49 status (e.g., by the International Union for Conservation of Nature, IUCN) ⁷. Yet, genomic data also offer a
50 powerful way to detect and quantify adaptive genetic variation, which can be incorporated into assessments of
51 population status and predictions of adaptation to climate change ⁸. Despite this potential, the knowledge of the
52 genetic basis of adaptation is still seldom incorporated into conservation actions ⁹.

53 Traits with clear effects on fitness and predictable responses to environmental change serve as powerful models
54 to understand the conditions under which adaptation to anthropogenic change can be expected ¹⁰. Among these,
55 seasonal, or phenological, traits enable organisms to maintain fitness year-round by synchronizing key life cycle
56 events with seasonal environmental changes ^{11,12}. When the primary cue triggering phenological change remains
57 fixed (for example, photoperiod), but environmental conditions change, a phenological mismatch occurs, which
58 can affect individual fitness and the species' future survival ^{10,13}.

59 Here, we synthesize seasonal color change (SCC) as a model adaptive trait to investigate genotype-to-
60 phenotype-to-environment relationships underlying the scope for adaptation to climate change. SCC is a
61 seasonal transition between summer dark and winter-white coats or plumages occurring in at least 21 species of
62 mammals and birds across the Northern Hemisphere ^{13,14}. We connect phenological timing, bases of trait
63 expression, costs of phenological mismatch, genetic architecture and evolution of winter color polymorphism,
64 and prediction frameworks for future rapid evolutionary change, showing that SCC can serve as an especially
65 suited model trait to gain both practical and general insights to foster the maintenance of biodiversity in a
66 changing climate.

67 **Seasonally Flexible Traits**

68 Habitats worldwide undergo seasonal environmental cycles, which tend to be more pronounced in temperate
69 mid-latitude regions ¹⁵. In response, diverse taxa have independently evolved mechanisms to cope with these
70 seasonal fluctuations, including seasonal reproduction ¹⁶, hibernation ¹⁷, migration ¹⁸, molt ¹⁹, and others ¹¹.
71 Although seasonal traits may share developmental pathways and expression patterns ^{20,21}, specific physiological
72 and molecular foundations of phenological traits can vary according to evolutionary and ecological contexts.
73 These phenological traits require physiological adjustments across multiple biological levels ²¹, including
74 molecular (e.g., gene expression ^{22,23}), cellular (e.g., proliferation ^{24,25}), metabolic (e.g., energy balance ²⁶), and

75 hormonal (e.g., melatonin regulation ²⁷). Such adjustments reflect seasonal phenotypic flexibility — the ability
76 of an organism to undergo reversible change in physiology or behavior in response to environmental changes
77 ²⁸.

78 Seasonal changes in phenotype are regulated by deeply conserved biological pathways across traits and taxa,
79 with differences reflecting fine-scale adaptations to local ecological conditions ²⁹. For instance, conserved
80 genetic pathways ³⁰ and/or epigenetic mechanisms ³¹ have been shown to regulate several seasonal phenotypes.
81 In particular, genes underlying circannual clocks, which are sensitive to seasonal light cycles, exhibit a regular
82 pattern of expression in different cell types. This rhythmic expression coordinates downstream physiological
83 pathways involving melatonin and prolactin hormones (discussed below), which further initiate various seasonal
84 transitions ^{27,32-36}. Other hormones, such as gonadotropins, also influence seasonality, regulating reproduction,
85 molt, and other physiological processes ^{13,37}. Overall, neuroendocrine regulation is usually functionally
86 integrated and conserved across taxa ^{20,29}.

87 Due to the existence of these conserved regulatory pathways, mutations affecting upstream regulatory
88 components of seasonal phenotypes may have widespread pleiotropic consequences ^{38,39}. Such constraints may
89 select for modularity or limit adaptive changes to the downstream portions of regulatory cascades, buffering
90 against mismatches in other traits (for more details, see Box 1). Alternatively, selection on interconnected
91 regulatory mechanisms could help coordinate multiple seasonal traits, ensuring that annual phenotypic
92 transitions align with environmental pressures ³⁸ (Box 1). For instance, this type of coordinated regulation is
93 evident in organisms that undergo seasonal color change, where hormonal and genetic pathways govern the
94 timing and extent of pelage or plumage color transitions in response to shifting seasonal conditions.

BOX 1. THE INTEGRATION OF PHENOLOGICAL TRAIT REGULATION: A BUFFER OR A VULNERABILITY FOR CLIMATE CHANGE ADAPTATION?

The regulation of phenological traits is often interconnected, leading to overlapping genetic and physiological pathways, which can lead to pleiotropic effects⁴⁰. This interdependence can enhance adaptation by synchronizing multiple traits⁴¹, but it can also create vulnerabilities by limiting the ability for independent adjustments³⁹. This limitation, known as the "cost of complexity" or "cost of pleiotropy", indicates that when one locus affects multiple traits, the rate of adaptation is often slower^{42,43}. As climate change reshapes seasonal environments at an unprecedented pace⁴⁴⁻⁴⁶, understanding the regulatory architecture of these traits and how their interactions influence adaptation becomes increasingly critical.

The degree of regulatory interconnection varies among different mechanisms. Upstream mechanisms play a critical role in regulating multiple seasonal traits. These include master genes (e.g., clock genes), transcription factors (e.g., THR1), and master hormones (e.g., melatonin)⁴⁷⁻⁴⁹. These elements act as central regulators, synchronizing various traits in response to environmental cues. While this coordination can be adaptive, it also creates constraints. Tightly linked traits might lead to ecological mismatches if an adaptive shift in one trait misaligns with changes in others³⁹. For instance, if the timing of seasonal breeding changes but migration does not, species may face challenges in finding suitable habitats or mates. In contrast, downstream trait regulation usually involves other cis-regulatory elements that fine-tune gene expression in specific tissues or developmental stages. This results in *divergent pathways*, allowing traits to be regulated differently⁵⁰⁻⁵². Additionally, genetic modularity can affect more pleiotropic pathways through *divergent regulation*, which allows for specific genetic control depending on the developmental stage, tissue, or environmental cue⁵³. This flexibility allows for the independent evolution of traits such as seasonal migration, breeding patterns, and coat color.

Overall, changes in upstream phenological regulation may face greater challenges for adjusting phenotypes to rapidly shifting climates. In contrast, *divergent pathways* leading to downstream regulation of phenological traits may enhance species' adaptability by preventing disruptions across multiple traits. Furthermore, *divergent regulation* might help alleviate pleiotropy constraints through genetic modularity. This indicates that the adaptive pathways for coping with climate change are more likely to occur downstream and/or with a high level of genetic modularity.

95 Seasonal color change

96 Seasonal color change (SCC) is a phenological trait characterized by molt transitions from a dark, typically
97 brown, thinner coat (or plumage) in summer to a thicker white coat in winter¹³. This adaptive mechanism
98 ensures year-round camouflage in environments with seasonal snow and is present in at least 21 species of
99 mammals and birds (Fig. 1). Photoperiod is the primary trigger for molting in birds and mammals, including
100 species that undergo SCC^{48,54}. Molt phenology can also be influenced by intrinsic factors such as sex^{37,55}, age
101 ³⁷, body mass^{37,56}, and health condition^{13,37}, as well as extrinsic factors like temperature^{57,58} and snow cover
102 duration^{59,60}. However, as snow duration decreases under climate change⁶¹, phenotypic plasticity alone may
103 not suffice to maintain effective camouflage, and evolutionary responses may be required to avoid fitness costs
104 ^{57,62}.

105

106 Fig. 1 | Cumulative geographic distributions of all 21 SCC species. Mammals - Canidae: (A) *Vulpes lagopus* (Arctic fox), Mustelidae:
107 (B) *Mustela nivalis* (Least weasel), (C) *M. erminea* (Stoat), (D) *Neogale frenata* (Long-tailed weasel), Leporidae: (E) *Lepus americanus*
108 (Snowshoe hare), (F) *L. arcticus* (Arctic hare), (G) *L. brachyurus* (Japanese hare), (H) *L. othus* (Alaskan hare), (I) *L. timidus* (Mountain
109 hare), (J) *L. townsendii* (White-tailed jackrabbit), Cricetidae: (K) *Dicrostonyx groenlandicus* (Nearctic collared lemming), (L) *D. hudsonius*
110 (Ungava collared lemming), (M) *D. nelson* (Nelson's collared lemming), (N) *D. richardsoni* (Richardson's collared lemming),
111 (O) *D. torquatus* (Arctic lemming), (P) *D. vinogradovi* (Northern collared lemming), (Q) *Phodopus sungorus* (Winter-white dwarf
112 hamster). Birds - Tetraonidae: (R) *Lagopus lagopus* (Willow Ptarmigan), (S) *L. leucurus* (White-tailed ptarmigan), (T) *L. muta* (Rock
113 ptarmigan). (U) The combined distribution of the 21 species in purple, based on IUCN. Pictures rights: (A) Phil Chaon, (B) Karol Zub
114 (C) Jing-Yi Lu, (D) Tom Benson, (E) Cam Nikkel, (F) Andrew Simon, (G) Rei Akiyama, (H) Alex Patia, (I) Claudio Spadin, (J) N
115 Bertrand, (K) Mark C Long, (L) Fabrice Simon, (N) Justin Benjamin, (O) Frank Kienast, (P) Игорь Постполов, (Q) Philipp Salzgeber,
116 (R) Igor Dvurekov, (S) Nigel Voaden, (T) Ryan Shaw. Illustration rights: (M) National Geographic. A properly identified picture of the
117 Cricetidae species *Dicrostonyx nunatakensis* is not available.

118

The cost of color mismatch

119 Seasonal color molts allow species to track seasonal snow, enabling year-round camouflage¹³. The disruption
120 of camouflage through phenotypic mismatch against the background has, with few exceptions^{63,64}, been shown
121 to impact individual survival, potentially leading to local extinctions or population declines in species such as
122 rock ptarmigan, willow ptarmigan, and snowshoe and mountain hares^{57,65-70}. In snowshoe hares, camouflage
123 mismatch has been shown to cause up to 7% decrease in individual weekly survival⁷⁰. Variation in snow cover
124 duration in both spring and fall molts also affects survival rates of willow ptarmigans, but the rate changes with
125 age and sex⁷¹. In least weasels and snowshoe hares, studies using artificial models have recorded higher rates
126 of predator attacks when body color mismatched the background⁷²⁻⁷⁴, with white-on-brown mismatches facing
127 greater predation rates than brown-on-white, indicating stronger selection against mismatches more likely to be
128 induced by climate change⁷⁴.

129

130 Reductions in snow cover depth, extent, and duration across the Northern Hemisphere have been extensively
131 documented^{46,61,75}, with further decreases projected under many climate change scenarios^{46,57}. The combination
132 of declining snow cover duration, due to anthropogenic climate change, and an unaltered photoperiod challenges
133 the adaptive value of seasonal brown-to-white molts⁵⁷. Projections of current color molt phenology against
decreasing snow cover duration suggest increasing color mismatch in the absence of adaptive shifts, leading to

134 range contractions and population declines ^{57,67,70,76}. Understanding the physiological mechanisms underlying
135 seasonal color change is crucial for identifying adaptive pathways that may mitigate mismatch.

136 **Regulation of seasonal color change**

137 Adaptation to shifts in snow seasonality could potentially evolve through physiological adjustments in the
138 developmental timeline that controls molt and color change. Seasonal molts are regulated hormonally by signals
139 that influence intracellular cascades and genetic regulatory mechanisms ^{77,78}, which coordinate the expression
140 of key pigmentation, molting, and circadian rhythm-related genes ^{13,22,23}. The process starts with the perception
141 of photoperiodic changes, which, in mammals, occurs through photosensitive retinal ganglion cells that transmit
142 light information to internal circadian pacemakers in the brain (the suprachiasmatic nucleus). In turn, in birds,
143 other photoreceptor cells exist that allow direct photoperiodic change independent of the eyes ^{48,54}. The
144 photoperiodic shift signal is transmitted through the suprachiasmatic nucleus to the pineal gland in the brain,
145 which regulates melatonin production ⁷⁹. Melatonin is secreted in response to darkness and thus production
146 increases with longer nights, further regulating prolactin production: high melatonin levels signal the pituitary
147 gland to inhibit prolactin production, while low melatonin levels result in prolactin secretion ^{80,81}. These
148 hormonal signals act upstream of genetic pathways regulating molt and pigmentation. While prolactin and
149 melatonin have been shown to affect pigment production experimentally ^{27,34}, the mechanism connecting the
150 melatonin–prolactin axis to melanin synthesis remains unclear, whether through direct expression mechanisms
151 (e.g., melatonin receptors in melanocytes) or via indirect pathways.

BOX 2. MOLECULAR REGULATION OF SEASONAL COLOR CHANGE

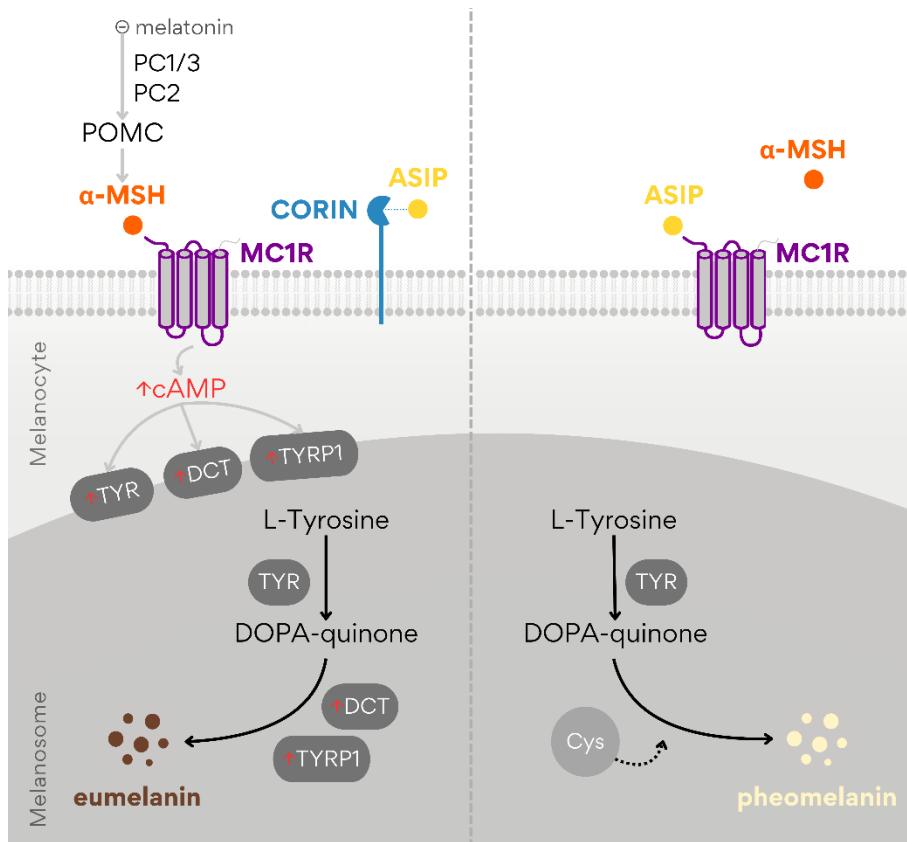


Fig. 2 | Pigmentation pathway in melanocytes and melanosomes. The illustration depicts the melanogenesis pathway, starting from POMC expression in keratinocytes (not shown), detailing the process within melanocytes, and including the contrasting binding effects of two molecules to MC1R in the melanocyte membrane – the agonist α -MSH (eumelanin production) and the antagonist ASIP (pheomelanin production). The simplified signaling cascade inside the melanosome highlights key enzymes that convert intermediate structures into the two types of melanin.

The pigmentation pathway primarily regulates the downstream pathway of seasonal color (Fig. 2). The production of eumelanin (dark melanin pigment) in melanocytes is promoted by the α -melanocyte-stimulating hormone (α -MSH), a peptide hormone derived from the cleavage of the pro-opiomelanocortin protein (POMC). When α -MSH binds to the melanocortin-1 receptor (MC1R) on the melanocyte membrane, it acts as an agonist, initiating a signaling cascade that increases intracellular cyclic adenosine monophosphate (cAMP) levels^{87,88}. This boost in cAMP enhances tyrosinase activity and promotes the proliferation of other melanogenic enzymes (e.g., DCT and TYRP1), ultimately resulting in the synthesis of eumelanin^{88,89}. Like prolactin, α -MSH is secreted when daylight is abundant and suppressed in low light conditions, being indirectly regulated by photoperiod^{34,89}. However, it remains unclear whether this suppression is directly linked to melatonin release. Research suggests that melatonin does not inhibit α -MSH secretion but rather suppresses the melanogenic action of α -MSH by interfering with the accumulation of new tyrosinase molecules⁹⁰. Furthermore, melatonin may affect the melanocortin system by reducing POMC expression, which hampers the binding of α -MSH to MC1R, leading to the production of lighter pigment instead⁹¹.

The agouti signaling protein (ASIP) contributes to the production of lighter pigment, as ASIP acts as an antagonist to α -MSH at the MC1R receptor. When ASIP binds to MC1R, it decreases the activity of tyrosinase and inhibits the enzymes necessary for eumelanin production, leading to the synthesis of pheomelanin (light melanin pigment) instead^{88,89}. Notably, in the presence of the transmembrane serine protease CORIN, ASIP does not bind to MC1R^{92,93}. The connection between ASIP and photoperiodic changes, and how ASIP production is regulated throughout the year to control seasonal color change, remains unknown. However, evidence suggests that ASIP expression level varies throughout the year, and between winter-brown and winter-white morphs^{13,22}.

The final step in the regulatory cascade within melanocytes is the transfer of melanin to keratinocytes, where it contributes to the formation of keratin structures, producing the colored coat/plumage during the hair/feather growth cycle ^{89,94}.

152 Beyond hormonal regulation, existing literature on the genetic regulation of SCC molt shows a dynamic control
153 of gene expression in response to seasonal cues ^{22,82}. Although the development of seasonal pelage molts is
154 linked to the hair growth cycle and circadian clock genes, changes in the expression of key pigmentation genes
155 are likely to shape seasonal transitions in color (for details on the downstream pigmentation pathway, see Box
156 2). For example, genes associated with melanogenesis have been found to be differentially expressed during the
157 late fall molt in Arctic foxes ⁸³. Additionally, the expression of the *Agouti Signaling Protein* (*ASIP*), which is
158 involved in the production of pheomelanin (light melanin pigment), is upregulated during the development of
159 white fur coats in hare species ^{84,85}. Similarly, the *Tyrosinase-Related Protein 1* (*TYRP1*), which is linked to
160 eumelanin (dark melanin pigment) production, is upregulated during the development of brown plumage in
161 ptarmigan species ⁸⁶. These examples suggest that the color changes observed in many SCC species are likely
162 related to regulatory mechanisms affecting gene expression. However, since the activation of these molecular
163 pathways is likely tightly coupled with photoperiodic signals, the capacity of species with SCC to respond to
164 other environmental cues may be constrained ¹³.

165 **Plasticity in SCC species**

166 Although photoperiod is the primary trigger for SCC, the impacts of declining snow cover duration could be
167 mitigated by plasticity in the timing or rate of color molts, or by behavioral adjustments ⁹⁵. However, responses
168 to variation in temperature and snow cover duration across species appear insufficient to fully buffer against
169 increasing camouflage mismatches ^{57,59,96-99}. For example, while there is some evidence for environmentally
170 driven phenological variation of spring molts ^{57,59,96,98,99}, fall molts show much less evidence for phenotypic
171 plasticity ^{57,59,96,99}. Translocation experiments also suggest that molting plasticity rarely allows individuals to
172 forgo the winter-white morph completely ^{37,65,100,101} (but see King and Powell ³⁷, page 63). Collectively, these
173 findings imply strong genetic or physiological constraints on molt timing and expression, which may limit the
174 potential for rapid adaptation to snow cover reductions in SCC species.

175 Likewise, there is limited and inconsistent evidence that behavioral plasticity provides an alternative means of
176 mitigating climate change-induced mismatches. For example, mismatched hares do not appear to adjust their
177 resting, hiding, or fleeing behaviors ^{59,102}, but may show enhanced predator vigilance ¹⁰³. Conversely, ptarmigans
178 appear to adjust their feeding strategies ¹⁰⁴, select more cryptic resting spots, and may even soil white plumage
179 when mismatched ¹⁰⁵. However, these behavioral changes occur in lekking systems where sexual selection on
180 plumage color likely intensifies mismatch relative to other systems ^{105,106}. Given limited meaningful plasticity
181 in coat color timing and behavior, evolutionary processes appear essential to foster future adaptation.

182 Winter color polymorphism

183 The most substantial evidence for adaptation in SCC is the repeated evolution of winter color polymorphism in
 184 response to local variation in snow cover duration. As a result, most SCC species display geographic variation
 185 in the color of winter molts (white and brown morphs), resulting in color polymorphisms across species ranges
 186 ¹⁴ (Table 1). This trait polymorphism has been shown to have a genetic basis in many species, supported by
 187 common garden and translocation experiments ^{65,100}, and direct genetic mapping of color variation ^{84,85,107,108}.
 188 The frequency of different winter color morphs varies geographically and is strongly correlated with snow cover
 189 duration and ephemerality ¹⁴, showing that the phenotypic clines are maintained by local adaptation for
 190 camouflage. For example, winter-brown morphs are more common in coastal and southern areas, where winter
 191 snow cover duration is low, absent, or highly variable. These findings suggest that genetic variation underlying
 192 alternative winter coloration morphs may be critical to fuel adaptive responses to global changes in snow cover
 193 duration ^{84,85,107}. There are also SCC species displaying summer color polymorphism (Table 1), but it is not the
 194 scope of this study to review this polymorphism.

195 **Table 1 | The spectrum of seasonal color change and winter color polymorphism.** Summary of key findings from studies on SCC
 196 species, organized by families. The graphical representation illustrates coat/plumage color phenotypes, with summer morphs on the left
 197 and winter morphs on the right. Below each graphical representation, the type of coat/plumage color polymorphism for the species is
 198 indicated, with winter polymorphisms highlighted in bold. The table synthesizes research on: (i) Seasonal color change, namely color
 199 descriptions, and (ii) Winter color polymorphism, including its genetic architecture (i.e., genetic basis and causative mutations), as well
 200 as its evolutionary origins, allele history, and type of selection detected locally. For information on specific species and references, please
 201 refer to the Supporting Material.

		Foxes (Canidae)	Weasels (Mustelidae)	Hares (Leporidae)	Hamsters/Lemmings (Cricetidae)	Ptarmigans (Tetraonidae)
		polymorphic in winter and summer	polymorphic in winter	polymorphic in winter or summer	not polymorphic	polymorphic in winter
Seasonal color change	Summer color:	brown or bluish brown	Brown	brown, gray, or white	brown	brown
	Winter color:	white or bluish brown	brown, white, or piebald	brown, white, gray, or continuous color (brown to white)	white	brown, white, or intermediate
	Color transition type:	binary	Binary	binary or continuous	binary	binary or continuous
Winter color polymorphism	Genetic Basis:	<i>MC1R</i>	<i>MC1R</i>	<i>ASIP, EDNRB, CORIN</i>	unknown	unknown
	Causative mutations:	Amino acid substitutions	Amino acid substitutions or INDELS	Nucleotide substitutions or INDELS	unknown	unknown
	Allele Origin:	expected <i>de novo</i> mutations	<i>de novo</i> mutations	ancestral variation, introgression	unknown	unknown

Evolutionary Pattern Across Species:	unknown	convergent evolution	standing adaptive variation, convergent evolution	unknown	unknown
Selection type for winter-brown morph:	unknown	positive, balancing	positive, balancing	unknown	unknown

202 The genetic basis of winter color polymorphism

203 Genomic studies focused across phenotypic transition zones (i.e., polymorphic populations where different
 204 winter color morphs coexist¹⁴) have consistently shown that genome-wide genetic variation is structured by
 205 geography and not by color morph^{84,85,107,108}, indicating that color variation responds to selective pressures
 206 irrespective of population structure. Whole genome scans of association^{84,85,107-110} or candidate gene approaches
 207 have identified genes of large effect underlying winter color polymorphism in lagomorphs and carnivores.

208 In hares, winter color polymorphism is manifested by both discrete and continuous variation (Table 1). In
 209 snowshoe and mountain hares, discrete trait variation has been linked to cis-regulatory changes influencing the
 210 expression of *ASIP*^{84,85,109,112}, with simple Mendelian inheritance of dominant winter-white and recessive
 211 winter-brown/gray variants^{84,85}. In white-tailed jackrabbits, continuous brown-to-white winter color variation
 212 has been associated with at least three genes [*ASIP*, *Corin Serine Peptidase (CORIN)*, and *Endothelin Receptor*
 213 *B (EDRNB)*]¹⁰⁷, with additive or epistatic contributions to the phenotype. In carnivores, protein-coding variation
 214 in the *Melanocortin 1 Receptor (MC1R)* gene has been shown to determine discrete winter color polymorphism
 215 in the Arctic fox^{111,113}, least weasel¹⁰⁸, and long-tailed weasel¹¹⁰ (Table 1), with simple Mendelian inheritance
 216 with dominant winter-brown variants^{108,110,111}. The alternative patterns of winter-brown recessive inheritance
 217 associated with *ASIP* and dominant inheritance associated with *MC1R* agree with the molecular functions of
 218 these genes and inheritance patterns found for light and dark color phenotypes across vertebrate taxa⁵¹.

219 Overall, the studies conducted so far demonstrate that the melanin pigmentation pathway is strongly involved
 220 in determining winter color variation, either through regulatory or protein-coding changes (for details on the
 221 molecular regulation of the pigmentation pathway, see Box 2). Yet, the specific genes and genetic variants
 222 underlying the polymorphism vary across species^{84,85,107-111} and even within species^{109,110,112}. However,
 223 information on the genetic basis of winter color polymorphisms is still missing for many taxa. Advances in
 224 long-read sequencing and structural-variant detection have the potential to further resolve the genomic
 225 architecture of SCC polymorphism¹¹⁴, particularly in systems with more complex coloration dynamics such as
 226 stoats and ptarmigans (Sup. Table 1)^{37,115}.

227 Evolution of winter color polymorphism

228 Studies on winter color polymorphism across SCC species have also shed light on the evolutionary processes
 229 underlying the origin and persistence of the adaptive color variation within and across species. While the
 230 evolutionary origin of such polymorphisms remains elusive across most systems, available data show that the
 231 evolution of winter color variation has often been generated through repeated parallel evolution of re-derived
 232 brown winter morphs (for a discussion on re-derived vs. relic winter brown morphs, see Box 3). For example,

233 in snowshoe and mountain hares, the origin of *ASIP* alleles causing gray winter morphs has been traced back to
234 introgression from non-seasonally changing species (black-tailed jackrabbit and Iberian hare, respectively
235 ^{84,85,116}). Similarly, winter-brown *ASIP* alleles contributing to continuous winter color variation in white-tailed
236 jackrabbits have also introgressed from the black-tailed jackrabbit. Meanwhile, winter-brown variants in *CORIN*
237 and *EDNRB* appear to result from the maintenance of ancestral genetic variation across species ¹⁰⁷, pointing to
238 a relic ancestral origin (Box 3). In weasels, different *MC1R* alleles have been shown to cause winter-brown
239 phenotypes in distinct species ^{108,110}, suggesting parallel adaptive evolution at the same gene, and a *de novo*
240 origin of winter-brown alleles has been confirmed for least weasel populations in Europe ¹¹⁷ (Table 1). In the
241 Arctic fox, genotyping of the *MC1R* region across Canidae did not reveal the occurrence of the Arctic fox
242 candidate mutations in other species ^{111,118,119}, which could point to a *de novo* origin.

BOX 3. ANCESTRAL OR RE-DERIVED? THE EVOLUTIONARY PUZZLE OF WINTER-BROWN MORPHS AND THE REVERSIBILITY OF TRAITS UNDER UNSTABLE ENVIRONMENTS

The rarity of seasonal color change across mammals and birds suggests that winter whitening is a derived phenotype, as it occurs in only a few genera compared with the many taxa that remain brown year-round ^{13,14}. In this context, the ability to molt into a winter-white pelage/plumage can be considered a derived trait within each lineage where it occurs and, broadly, the winter-brown phenotype as an ancestral state.

Two main hypotheses can explain the origin of winter color polymorphism in SCC species: 1) The relic hypothesis suggests that winter-brown populations may represent remnants of the ancestral non-whitening condition, reflecting the long-term maintenance of ancestral variation. For example, in least weasels, some winter-brown populations have been hypothesized to be ancestral relics rather than re-derived morphs, although direct genetic evidence is lacking ^{120,121}; 2) Alternatively, the re-derivation hypothesis proposes that brown morphs have arisen secondarily through repeated losses of the whitening capacity. Most population genomic studies across multiple SCC species tend to support this view, showing that winter-brown morphs often result from geographically localized evolution disrupting SCC regulatory pathways, through hybridization or *de novo* mutations ^{84,85,107,109}. Yet, these hypotheses are not mutually exclusive. In white-tailed jackrabbits, a combination of ancestral polymorphism and recent introgression underlies winter-brown variation, suggesting that a combination of the phenomena may have been at play. In least weasels, the northern and central European winter-brown populations are re-derived from a *de novo* mutation ^{108,117}, while the southernmost European populations may possibly be a relic ¹²¹. These examples show that complex adaptive traits may persist, be lost, regained, or modulated in response to selective pressures. Repeated re-derivation of winter-brown morphs may also reflect post-glacial dynamics, where species or populations that evolved winter whitening subsequently lost it as climate and snow cover duration fluctuated towards the Holocene ¹²².

243 The persistence of winter-brown or -white alleles across the range of species with SCC is thus driven by a
244 combination of selective mechanisms operating across heterogeneous environments (Table 1). Long-term
245 balancing selection acting on ancient alleles has been suggested ^{107,117}, alongside geographically localized
246 signatures of positive directional selection favoring winter-brown phenotypes in some parts of population
247 ranges, often in transition zones ^{84,85,108,117}. This combination of signatures illustrates how spatially varying
248 selection can simultaneously maintain ancestral variation and drive locally adaptive divergence ^{123,124}. These

249 dynamics likely stem from geographic variation in snow cover duration, which imposes contrasting selective
250 pressures on coat color phenotypes by altering the fitness costs of seasonal camouflage mismatch. Such
251 historical evolutionary dynamics that maintained adaptive polymorphisms may also shape the potential for
252 future adaptation. Understanding the genetic architecture and selective landscape of winter color polymorphism
253 is thus essential for predicting the scope for camouflage adaptation under climate change scenarios.

254 **Predictive frameworks for conservation**

255 SCC species are facing severe habitat changes due to climate-driven decreases in snow duration (see section
256 “The cost of color mismatch”), which is threatening population viability ^{14,70}. The persistence of these species
257 under climate change depends on their capacity for evolutionary rescue, which could depend on their ability to
258 recover or maintain positive population growth through rapid adaptive shifts in coat color in response to
259 declining snow cover ^{14,126}. While environmental pressures define the direction of selection, it is the underlying
260 genetic potential that determines whether adaptation can occur swiftly enough to prevent extinction ¹²⁶.
261 Therefore, predicting the potential for evolutionary rescue in SCC species requires understanding the genetic
262 architecture, selective dynamics, and spatial distribution of adaptive alleles underlying SCC variation.

263 **The scope for evolutionary rescue**

264 The genetic architecture of SCC traits determines both the pace and trajectory of adaptation, which depend on
265 key factors such as the number of loci, allelic relationships (dominance, additivity, epistasis), effect sizes, and
266 linkage disequilibrium (LD) among loci ^{107,116,127-129}. For example, in many SCC species, winter coat color is
267 controlled by a single large-effect locus ^{84,85,108,110,111}. In these cases, the dominance relationships of adaptive
268 alleles strongly influence evolutionary responses to climate change. Recessive winter-brown alleles, as in hares
269 ^{84,85}, may persist as hidden standing variation that initially responds slowly to selection because heterozygotes
270 remain winter-white ¹¹⁶. Conversely, dominant winter-brown alleles, such as those in least and long-tailed
271 weasels ^{108,110}, are immediately exposed to selection and can spread rapidly when reduced snow cover favors
272 brown morphs ¹³⁰. In the white-tailed jackrabbit, on the other hand, winter color polymorphism has a multigenic
273 and largely additive genetic basis, resulting in more continuous winter color variation, which leads to more rapid
274 adaptive responses and lower extinction risk in simulated populations confronted with reduced snow cover
275 duration ¹⁰⁷. A multigenic architecture resulting in continuous variation may enable more gradual phenotypic
276 shifts, allowing intermediate forms to track progressive environmental change. Additive inheritance can
277 accelerate adaptive responses by acting on multiple loci simultaneously ^{131,132}, with the magnitude of each
278 contribution depending on effect size ¹³³, whereas epistasis and LD among loci may either facilitate or constrain
279 evolution depending on the direction of selection ^{134,135}.

280 The underlying evolutionary mechanisms generating adaptive genetic variation determine how such variation
281 translates into population persistence. Adaptation can rely on either standing genetic variation or *de novo*
282 mutations, each with distinct implications for the speed and predictability of evolutionary change ^{4,126,127}. In
283 hares, winter-brown morphs arose from ancestral or introgressed alleles maintained at low frequencies, which
284 may enable rapid evolutionary rescue as snow duration declines ^{84,107,109,112,116,136}. In contrast, carnivores, such

285 as weasels, evolved winter-brown phenotypes through independent mutations, suggesting a slower initial
286 response but greater potential for parallel adaptation across lineages^{110,111,117,119,136}. Population size,
287 connectivity, and selection intensity may further shape these dynamics: small or isolated populations may
288 experience drift or maladaptation despite available variation, whereas large, well-connected populations can
289 maintain adaptive alleles and gene flow¹³⁶⁻¹³⁹. For example, forecasting predictions suggest that increasing
290 connectivity or human-assisted gene flow among white-tailed jackrabbit populations may accelerate the
291 evolutionary rescue of maladapted predominantly winter-white populations¹⁰⁷.

292 Finally, the resulting phenotype defines both the strength of selection and the likelihood of persistence. Species
293 with discrete, binary morphs (e.g., white vs. brown) may face heightened extinction risk as snow duration
294 declines, because mismatched individuals suffer greater predation (see Section “The cost of color mismatch”).
295 In contrast, species expressing continuous winter color variation show greater adaptive capacity¹⁰⁷. Intermediate
296 phenotypes can act as a selective bridge between extremes, facilitating gradual frequency shifts and promoting
297 evolutionary rescue under climate change¹³². However, empirical estimates of the fitness and frequency of these
298 intermediates in natural populations remain scarce, underscoring the need for integrative field and genomic
299 studies.

300 **Modeling Evolutionary Adaptation in SCC Systems**

301 Forecasting the likelihood of evolutionary rescue in SCC species requires models that connect environmental
302 change, genetic architecture, and adaptive responses through time. A previous large-scale effort by Mills, et al.
303¹⁴ used ecological niche modeling (ENM) across eight mammal species to predict the current distribution of
304 winter color morphs under changing snow conditions throughout species distribution ranges. Their results
305 revealed clear geographic gradients from regions with winter-white individuals to regions with winter-brown
306 individuals, including transition zones where both morphs coexist, suggesting that adaptation from standing
307 variation could mitigate mismatch risk. Although ENMs have been instrumental in identifying climate-driven
308 winter morph distribution patterns and areas with greater predicted adaptive shifts, they are largely correlative
309 and do not incorporate genetic or adaptive processes, limiting their ability to predict true adaptive potential
310^{140,141}.

311 Other modeling approaches offer more mechanistic perspectives and are best applied in combination with each
312 other. Genotype–environment (GE) association models can identify genomic regions associated with
313 environmental gradients, pinpointing where selection may be acting even in the absence of fitness data^{8,142}.
314 Demographic and coalescent models reconstruct historical population dynamics and selective events, providing
315 temporal context for contemporary adaptation^{143,144}. Individual-based models (IBMs) simulate genotypes,
316 selection, and ecological interactions across generations, allowing allele frequency trajectories to be estimated
317 under varying scenarios of drift, migration, and selection^{145,146}.

318 Building on that, Ferreira, et al.¹⁰⁷ provided an integrative framework combining SCC polymorphism, ENMs,
319 demographic models, and forward-in-time IBMs in SLiM¹⁴⁷ to predict evolutionary rescue in white-tailed
320 jackrabbits. The ENM mapped spatial probabilities of winter color morphs for current and future climates, the

321 latter informed by future climate forecasts. These projected mismatch scenarios informed forward-in-time
322 simulations, which were parameterized with modelled demographic parameters and empirical-based genotypes
323 and phenotypes. Results demonstrated that even low-frequency winter-brown alleles can drive rapid adaptation
324 under declining snow cover, underscoring the key contribution of standing adaptive genetic variation for
325 population persistence.

326 Future SCC modeling should extend this framework by incorporating spatial and temporal environmental
327 heterogeneity and empirical species-specific estimates of camouflage mismatch fitness costs, while refining our
328 understanding of genetic architecture, to produce more realistic predictions of adaptive limits and identify
329 populations most at risk ⁹. Historical records and Natural History Collections provide valuable temporal data
330 for model calibration, revealing past shifts in allele and phenotype frequencies ¹⁴⁸. Moreover, SCC systems
331 uniquely allow direct quantification of selection in the wild, as camouflage mismatch visibly affects predation
332 and survival ^{57,70}. These empirical data provide rare opportunities to calibrate evolutionary models with real
333 fitness information, helping define thresholds beyond which adaptation may fail to ensure population
334 persistence. However, such data remain difficult to obtain, and emerging frameworks that integrate vital-rate
335 estimates with genotype-environment (GE) models offer a promising way forward ².

336 **Informed conservation actions**

337 Genetic and evolutionary insights are important guides for conservation programs ². Although no program has
338 yet implemented these approaches explicitly for SCC systems, this trait provides a clear path to do so. In SCC
339 species, evolutionary rescue could occur when adaptive winter-brown variants increase rapidly enough to
340 restore positive population growth in regions dominated by winter-white individuals under shorter snow
341 seasons. This can be aided by genetic rescue through managed gene flow that introduces genetic diversity and,
342 most importantly, adaptive alleles improving camouflage matching ¹⁴.

343 Classic genetic rescue examples illustrate the demographic benefits of increased heterozygosity: translocations
344 revived prairie chickens after a severe bottleneck ¹⁴⁹, and Texas pumas introduced into the isolated Florida
345 panther population reduced inbreeding and temporarily lowered extinction risk ^{150,151}. Yet demographic recovery
346 alone may not ensure long-term persistence unless the introduced variation also increases adaptive potential
347 under contemporary selection ^{4,8}. This is the bridge to evolutionary rescue, where population recovery depends
348 not just on neutral genetic diversity but on the spread of the adaptive variance that enhances fitness in changing
349 environments ¹²⁶.

350 Translating these principles to SCC systems requires a practical, testable roadmap for linking evolutionary
351 potential to conservation action. First, dissect the genetic basis and evolutionary history of adaptive variants
352 underlying SCC polymorphisms. Second, map the current and projected distributions of adaptive SCC variation
353 relative to future climatic conditions ^{3,14,107}. Genetic markers linked to SCC variants can also serve as tools for
354 genetic monitoring — for instance, through non-invasive approaches such as scat or eDNA sampling, supported
355 by rapid assays or streamlined genomic pipelines — to track the frequency of adaptive alleles through time and
356 space ¹⁵²⁻¹⁵⁴. Such efforts can help validate model forecasts and identify populations lacking key adaptive

357 variants. Third, prioritize conservation actions for populations that already harbor adaptive alleles^{14,107}. Fourth,
358 design adaptive connectivity strategies that maintain or restore gene flow along corridors predicted to favor
359 winter-brown alleles, while assessing the risks of swamping or outbreeding depression¹⁵⁵. In regions where key
360 adaptive variants are absent, assisted gene flow or targeted reintroductions could be implemented to seed the
361 standing variation needed for evolutionary rescue.

362 To implement this roadmap, developing standardized pipelines and practitioner-oriented tools will be essential,
363 ranging from rapid DNA assays to decision-support frameworks that translate complex genomic and forecasting
364 information into actionable management. These resources enable conservation actions that effectively maintain
365 or restore adaptive potential in SCC populations facing accelerated snow loss, while also providing a
366 transferable framework for other adaptive traits and climate-sensitive systems (Box 4).

BOX 4. BEYOND SEASONAL CAMOUFLAGE: GENERAL APPLICABILITY OF THE LESSONS LEARNED

Seasonal color change (SCC) and winter color polymorphism provide a rare opportunity to directly observe and quantify climate-driven adaptation. However, while few species exhibit such visually trackable, discrete, and genetically well-characterized traits, the insights gained from SCC extend far beyond this specific system. Studying SCC helps uncover generalizable principles of phenotypic mismatch, evolutionary constraints, and the role of standing genetic variation in climate adaptation, all of which apply to species with less obvious adaptive traits.

SCC serves as a natural laboratory for testing evolutionary rescue, offering a measurable way to track how populations respond to rapid environmental change. It provides a framework for estimating fitness consequences of maladaptation, identifying evolutionary tipping points, and integrating genomic and ecological data into predictive models. These insights are broadly relevant to conservation, as most species will face environmental mismatches due to changing climates¹⁵⁶ but lack the clear visual markers that make SCC species so tractable.

Furthermore, SCC research integrates key methodologies – including genomic analyses, predictive modeling, and real-time monitoring – that can be adapted to study other seasonal traits, such as hibernation, reproduction, and migration timing. Since the first genetic study of SCC in 2002¹⁵⁷, major advances in genomics and landscape ecology have refined the ability to link genotype, phenotype, and fitness outcomes, demonstrating how genetic variation can facilitate or constrain adaptive responses.

More broadly, the lessons learned from SCC-based conservation efforts can be expanded to other species, informing actions to mitigate climate-driven biodiversity loss by enhancing adaptive management, targeted genetic monitoring, and conservation prioritization.

367 Concluding remarks & future perspectives

368 The SCC system is a powerful model for studying climate-driven adaptation, offering a unique opportunity to
369 integrate evolutionary biology with conservation practice in a rapidly changing world (Box 4). While genomic
370 advances have significantly expanded our understanding of SCC polymorphism, realizing their full conservation
371 potential requires addressing key gaps in data and application. Moving forward, several challenges must be
372 tackled to maximize the impact of evolutionary research on conservation action:

373 1. Closing Taxonomic and Knowledge Gaps: Despite growing genomic datasets, significant taxonomic
374 gaps remain (Table 1), with some SCC species still lacking high-resolution genetic data and genetic
375 studies. At the same time, for species where data exist, deeper investigation is needed to understand key
376 aspects of their evolutionary history, adaptive potential, and conservation status. Expanding both
377 taxonomic breadth and species-specific insights will strengthen predictions and refine conservation
378 priorities.

379 2. Bridging Fitness Data Gaps: A major challenge in predicting evolutionary rescue is the lack of direct
380 fitness data. While studies like that of Mills, et al. ¹⁴ have identified global hotspots for evolutionary
381 rescue, and Zimova, et al. ⁷⁰ have quantified the cost of mismatch, empirical data on survival,
382 reproduction, and selection pressures remain limited. Longitudinal studies integrating genomic,
383 ecological, and demographic data will be essential for improving predictions of adaptive potential.

384 3. Improving Forecasting Models: Current ecological niche models provide valuable predictions but often
385 fail to incorporate adaptive potential and genetic constraints on evolution. Future research should refine
386 genotype-phenotype-fitness informed forecasting models, improving accuracy for predicting species'
387 resilience or vulnerability under climate change.

388 4. Developing Proactive Conservation Strategies: Conservation efforts must prioritize populations with
389 high adaptive potential to enhance long-term resilience. Adaptive management approaches, informed
390 by genomic and ecological insights, are critical for mitigating climate-driven biodiversity loss.
391 Strengthening collaboration between evolutionary biologists, conservation practitioners, and
392 policymakers is fundamental to ensure that research translates into actionable conservation strategies.

393 **Acknowledgements**

394 We are grateful to the EVOCHANGE Research Group and the Good Lab for insightful discussions and support.
395 We thank Joan Obiol (Colorado State University) for valuable support in section 5 with literature and
396 proofreading, and Cristiana Marques for support with figure design. M.M.A. is thankful to the Workshop in
397 Genomics (evomics.org) for all the valuable discussions that helped shape this manuscript. This work was
398 financially supported by Portuguese Fundação para a Ciência e a Tecnologia (FCT) under the ERC-Portugal
399 program (to J.M.F.), and PhD fellowships to M.M.A. (2021.05642.BD) and I.M. (SFRH/BD/143457/2019).
400 Additional support was provided by a National Science Foundation Graduate Research Fellowship to C.K.S.U.
401 (DGE-1656518), grants from the National Science Foundation (OIA-1736249 and DEB-1907022 to J.M.G. and
402 L.S.M., respectively), and Stockholm University strategic funding as a SciLifeLab Fellowship to M.S.F.

403 **Author contributions**

404 J.M.F., J.M.G. and L.S.M conceived the project; M.M.A., J.M.F., J.M.G., and C.K.S.U. conceptualized the
405 manuscript; M.M.A., C.K.S.U., M.S.F., and I.M. conducted the literature review and data curation; J.M.F.,
406 J.M.G., and J.P. supervised the work; M.M.A. led writing, with section-specific contributions from M.M.A.,
407 I.M., C.K.S.U., M.S.F., J.P., and P.C.A, and review of J.M.F., J.M.G. and L.S.M.; All authors revised and edited
408 the final version of the manuscript.

409 **Competing interests**

410 The authors declare no competing interests.

411 **Additional information**

412 The online version contains supplementary material detailing Table 1 for each SCC species.

413 **References**

- 414 1 Pereira, H. M. *et al.* Global trends and scenarios for terrestrial biodiversity and ecosystem
415 services from 1900 to 2050. *Science* **384**, 458-465 (2024).
<https://doi.org/10.1126/science.adn3441>
- 416 2 Mills, L. S., Whiteley, A. & Tourani, M. *Conservation of wildlife populations*. Vol. 3rd Ed
417 (Oxford University Press, 2025).
- 418 3 Wood, K. A., Stillman, R. A. & Hilton, G. M. Conservation in a changing world needs
419 predictive models. *Anim. Conserv.* **21**, 87-88 (2018). <https://doi.org/10.1111/acv.12371>
- 420 4 Bernatchez, L., Ferchaud, A.-L., Berger, C. S., Venney, C. J. & Xuereb, A. Genomics for
421 monitoring and understanding species responses to global climate change. *Nature Reviews
422 Genetics* **25**, 165-183 (2024). <https://doi.org/10.1038/s41576-023-00657-y>
- 423 5 Antão, L. H. *et al.* Climate change reshuffles northern species within their niches. *Nat Clim
424 Change* **12**, 587-592 (2022). <https://doi.org/10.1038/s41558-022-01381-x>
- 425 6 Gaüzère, P., Iversen, L. L., Barnagaud, J.-Y., Svenning, J.-C. & Blonder, B. Empirical
426 predictability of community responses to climate change. *Frontiers in Ecology and Evolution*
427 **6**, 186 (2018).
- 428 7 Willi, Y. *et al.* Conservation genetics as a management tool: The five best-supported paradigms
429 to assist the management of threatened species. *PNAS* **119**, e2105076119 (2022).
<https://doi.org/10.1073/pnas.2105076119>

432 8 Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, S. R. Genomic
433 prediction of (mal)adaptation across current and future climatic landscapes. *Annual Review of
434 Ecology, Evolution, and Systematics* **51**, 245-269 (2020). <https://doi.org:10.1146/annurev-ecolysys-020720-042553>

436 9 Kardos, M. & Shafer, A. B. A. The peril of gene-targeted conservation. *Trends Ecol. Evol.* **33**,
437 827-839 (2018). <https://doi.org:10.1016/j.tree.2018.08.011>

438 10 Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological
439 mismatches. *Nature Ecology & Evolution* **3**, 879-885 (2019). <https://doi.org:10.1038/s41559-019-0880-8>

441 11 Visser, M. E., Caro, S. P., van Oers, K., Schaper, S. V. & Helm, B. Phenology, seasonal timing
442 and circannual rhythms: Towards a unified framework. *Philosophical Transactions of the
443 Royal Society B: Biological Sciences* **365**, 3113-3127 (2010).
<https://doi.org:10.1098/rstb.2010.0111>

445 12 Hernández-Carrasco, D., Tylianakis, J. M., Lytle, D. A. & Tonkin, J. D. Ecological and
446 evolutionary consequences of changing seasonality. *Science* **388**, eads4880 (2025).
<https://doi.org:10.1126/science.ads4880>

448 13 Zimova, M. *et al.* Function and underlying mechanisms of seasonal colour moulting in
449 mammals and birds: What keeps them changing in a warming world? *Biol Rev* **93**, 1478-1498
450 (2018). <https://doi.org:10.1111/brv.12405>

451 14 Mills, L. S. *et al.* Winter color polymorphisms identify global hot spots for evolutionary rescue
452 from climate change. *Science* **359**, 1033-1036 (2018). <https://doi.org:10.1126/science.aan8097>

453 15 Kwiecien, O. *et al.* What we talk about when we talk about seasonality – A transdisciplinary
454 review. *Earth-Sci. Rev.* **225**, 103843 (2022). <https://doi.org:10.1016/j.earscirev.2021.103843>

455 16 Sun, Z. P. *et al.* Evolution of reproduction periods in seasonal environments. *The American
456 Naturalist* **196**, E88-E109 (2020). <https://doi.org:10.1086/708274>

457 17 Andrews, M. T. Molecular interactions underpinning the phenotype of hibernation in
458 mammals. *J. Exp. Biol.* **222** (2019). <https://doi.org:10.1242/jeb.160606>

459 18 Cresswell, K. A., Satterthwaite, W. H. & Sword, G. A. Understanding the evolution of
460 migration through empirical examples. *Animal migration: A synthesis*, 7-16 (2011).
<https://doi.org:10.1093/acprof:oso/9780199568994.003.0002>

462 19 Beltran, R. S., Burns, J. M. & Breed, G. A. Convergence of biannual moulting strategies across
463 birds and mammals. *Proceedings of the Royal Society: Biological Sciences* **285** (2018).
<https://doi.org:10.1098/rspb.2018.0318>

465 20 Chmura, H. E. & Williams, C. T. A cross-taxonomic perspective on the integration of
466 temperature cues in vertebrate seasonal neuroendocrine pathways. *Horm. Behav.* **144** (2022).
<https://doi.org:10.1016/j.yhbeh.2022.105215>

468 21 Paul, M. J., Zucker, I. & Schwartz, W. J. Tracking the seasons: The internal calendars of
469 vertebrates. *Philosophical Transactions of the Royal Society B: Biological Sciences* **363**, 341-
470 361 (2008). <https://doi.org:10.1098/rstb.2007.2143>

471 22 Ferreira, M. S. *et al.* Transcriptomic regulation of seasonal coat color change in hares. *Ecology
472 & Evolution* **10**, 1180-1192 (2020). <https://doi.org:10.1002/ece3.5956>

473 23 Schwartz, C. & Andrews, M. T. Circannual transitions in gene expression: Lessons from
474 seasonal adaptations. *Current Topics in Developmental Biology* **105**, 247-273 (2013).
<https://doi.org:10.1016/B978-0-12-396968-2.00009-9>

476 24 Beltrán-Frutos, E. *et al.* Cellular modifications in spermatogenesis during seasonal testicular
477 regression: An update review in mammals. *Animals-Basel* **12** (2022).
<https://doi.org:10.3390/ani12131605>

479 25 Heim, A. B., Chung, D., Florant, G. L. & Chicco, A. J. Tissue-specific seasonal changes in
480 mitochondrial function of a mammalian hibernator. *Am J Physiol-Reg I* **313**, R180-R190
481 (2017). <https://doi.org:10.1152/ajpregu.00427.2016>

482 26 Swanson, D. L. Seasonal metabolic variation in birds: Functional and mechanistic correlates.
483 *Current Ornithology* **17**, 75-129 (2010). https://doi.org:10.1007/978-1-4419-6421-2_3

484 27 Smith, A. J. *et al.* Effects of melatonin implantation on spermatogenesis, the moulting cycle
485 and plasma concentrations of melatonin, LH, prolactin and testosterone in the male blue fox
486 (*Alopex lagopus*). *Journal of Reproduction and Fertility* **79**, 379-390 (1987).
487 <https://doi.org:10.1530/jrf.0.0790379>

488 28 Piersma, T. & Drent, J. Phenotypic flexibility and the evolution of organismal design. *Trends
489 Ecol. Evol.* **18**, 228-233 (2003). [https://doi.org:https://doi.org/10.1016/S0169-5347\(03\)00036-3](https://doi.org:https://doi.org/10.1016/S0169-5347(03)00036-3)

491 29 Aubry, L. M. & Williams, C. T. Vertebrate phenological plasticity: From molecular
492 mechanisms to ecological and evolutionary implications. *Integr. Comp. Biol.* **62**, 958-971
493 (2022). <https://doi.org:10.1093/icb/icac121>

494 30 Fenderson, L. E., Kovach, A. I. & Llamas, B. Spatiotemporal landscape genetics: Investigating
495 ecology and evolution through space and time. *Mol. Ecol.* **29**, 218-246 (2020).
496 <https://doi.org:10.1111/mec.15315>

497 31 Fishman, B. & Tauber, E. Epigenetics and seasonal timing in animals: A concise review.
498 *Journal of Comparative Physiology a: Neuroethology Sensory Neural and Behavioral
499 Physiology* (2023). <https://doi.org:10.1007/s00359-023-01673-3>

500 32 Appenroth, D. *et al.* Photoperiodic induction without light-mediated circadian entrainment in
501 a High Arctic resident bird. *The Journal of experimental biology* **223** (2020).
502 <https://doi.org:10.1242/jeb.220699>

503 33 Dardente, H. *et al.* A molecular switch for photoperiod responsiveness in mammals. *Curr. Biol.*
504 **20**, 2193-2198 (2010). <https://doi.org:10.1016/j.cub.2010.10.048>

505 34 Rust, C. C. & Meyer, R. K. Hair color, molt, and testis size in male, short-tailed weasels treated
506 with melatonin. *Science* **165**, 921-922 (1969). <https://doi.org:10.1126/science.165.3896.921>

507 35 Cuninkova, L. & Brown, S. A. Peripheral circadian oscillators: interesting mechanisms and
508 powerful tools. *Ann. N. Y. Acad. Sci.* **1129**, 358-370 (2008).
509 <https://doi.org:10.1196/annals.1417.005>

510 36 Reiter, R. J. The melatonin rhythm: Both a clock and a calendar. *Experientia* **49**, 654-664
511 (1993). <https://doi.org:10.1007/BF01923947>

512 37 King, C. M. & Powell, R. A. *The natural history of weasels and stoats: Ecology, behavior, and
513 management*. Second edn, (Oxford University Press, Oxford, 2007).

514 38 Williams, C. M. *et al.* Understanding evolutionary impacts of seasonality: An introduction to
515 the symposium. *Integr. Comp. Biol.* **57**, 921-933 (2017). <https://doi.org:10.1093/icb/icx122>

516 39 Miyatake, T. Pleiotropic effect, clock genes, and reproductive isolation. *Popul. Ecol.* **44**, 0201-
517 0207 (2002). <https://doi.org:10.1007/s101440200023>

518 40 Stearns, F. W. One hundred years of pleiotropy: A retrospective. *Genetics* **186**, 767-773 (2010).
519 <https://doi.org:10.1534/genetics.110.122549>

520 41 Frachon, L. *et al.* Intermediate degrees of synergistic pleiotropy drive adaptive evolution in
521 ecological time. *Nature Ecology & Evolution* **1**, 1551-1561 (2017).
522 <https://doi.org:10.1038/s41559-017-0297-1>

523 42 Orr, H. A. Adaptation and the cost of complexity. *Evolution* **54**, 13-20 (2000).
524 <https://doi.org:10.1111/j.0014-3820.2000.tb00002.x>

525 43 Wagner, G. P. & Zhang, J. The pleiotropic structure of the genotype–phenotype map: The
526 evolvability of complex organisms. *Nature Reviews Genetics* **12**, 204-213 (2011).
527 <https://doi.org:10.1038/nrg2949>

528 44 IPCC, I. P. o. C. C. *Global Warming of 1.5°C: IPCC Special Report on Impacts of Global
529 Warming of 1.5°C above Pre-industrial Levels in Context of Strengthening Response to
530 Climate Change, Sustainable Development, and Efforts to Eradicate Poverty*. (Cambridge
531 University Press, 2022).

532 45 Essa, Y. H., Hirschi, M., Thiery, W., El-Kenawy, A. M. & Yang, C. Drought characteristics in
533 Mediterranean under future climate change. *npj Climate and Atmospheric Science* **6**, 133
534 (2023). <https://doi.org/10.1038/s41612-023-00458-4>

535 46 Mudryk, L. *et al.* Historical Northern Hemisphere snow cover trends and projected changes in
536 the CMIP6 multi-model ensemble. *Cryosphere* **14**, 2495-2514 (2020).
537 <https://doi.org/10.5194/tc-14-2495-2020>

538 47 McMillan, H. & Wynne-Edwards, K. Evolutionary change in the endocrinology of behavioral
539 receptivity: divergent roles for progesterone and prolactin within the genus *Phodopus*. *Biol.
540 Reprod.* **59**, 30-38 (1998). <https://doi.org/10.1095/biolreprod59.1.30>

541 48 Hazlerigg, D. G., Appenroth, D., Tomotani, B. M., West, A. C. & Wood, S. H. Biological
542 timekeeping in polar environments: Lessons from terrestrial vertebrates. *J. Exp. Biol.* **226**
543 (2023). <https://doi.org/10.1242/jeb.246308>

544 49 Martin, A. & Orgogozo, V. The loci of repeated evolution: A catalog of genetic hotspots of
545 phenotypic variation. *Evolution* **67**, 1235-1250 (2013). <https://doi.org/10.1111/evo.12081>

546 50 Mallarino, R. *et al.* Developmental mechanisms of stripe patterns in rodents. *Nature* **539**, 518-
547 523 (2016). <https://doi.org/10.1038/nature20109>

548 51 Manceau, M., Domingues, V. S., Linnen, C. R., Rosenblum, E. B. & Hoekstra, H. E.
549 Convergence in pigmentation at multiple levels: Mutations, genes and function. *Philosophical
550 Transactions of the Royal Society B: Biological Sciences* **365**, 2439-2450 (2010).
551 <https://doi.org/10.1098/rstb.2010.0104>

552 52 van der Burg, K. R. L. *et al.* Genomic architecture of a genetically assimilated seasonal color
553 pattern. *Science* **370**, 721-725 (2020). <https://doi.org/10.1126/science.aaz3017>

554 53 Auge, G. A., Penfield, S. & Donohue, K. Pleiotropy in developmental regulation by flowering-
555 pathway genes: is it an evolutionary constraint? *New Phytol.* **224**, 55-70 (2019).
556 <https://doi.org/10.1111/nph.15901>

557 54 Bradshaw, W. E. & Holzapfel, C. M. Evolution of animal photoperiodism. *Annual Review of
558 Ecology Evolution and Systematics* **38**, 1-25 (2007).
559 <https://doi.org/10.1146/annurev.ecolsys.37.091305.110115>

560 55 Braun, C. E. & Martin, K. Unusual summer plumage of white-tailed Ptarmigan. *Wilson Bull.*
561 **113**, 373-377 (2001). [https://doi.org/10.1676/0043-5643\(2001\)113\[0373:Uspowt\]2.0.Co;2](https://doi.org/10.1676/0043-5643(2001)113[0373:Uspowt]2.0.Co;2)

562 56 Ross, P. D. *Phodopus sungorus*. *Mammalian Species*, 1-9 (1998).
563 <https://doi.org/10.2307/0.595.1>

564 57 Mills, L. S. *et al.* Camouflage mismatch in seasonal coat color due to decreased snow duration.
565 *Proceedings of the National Academy of Sciences* **110**, 7360-7365 (2013).
566 <https://doi.org/10.1073/pnas.1222724110>

567 58 Rust, C. C. Temperature as a modifying factor in the spring pelage change of short-tailed
568 weasels. *J. Mammal.* **43**, 323-328 (1962). <https://doi.org/10.2307/1376938>

569 59 Kumar, A. V., Zimova, M., Sparks, J. R. & Mills, L. S. Snow-mediated plasticity does not
570 prevent camouflage mismatch. *Oecologia* **194**, 301-310 (2020).
571 <https://doi.org/10.1007/s00442-020-04680-2>

572 60 Jackes, A. D. & Watson, A. Winter whitening of Scottish Mountain hares (*Lepus timidus
573 scoticus*) in relation to daylength, temperature and snow-lie. *J. Zool.* **176**, 403-409 (1975).
574 <https://doi.org/10.1111/j.1469-7998.1975.tb03211.x>

575 61 Pulliainen, J. *et al.* Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018.
576 *Nature* **581**, 294-298 (2020). <https://doi.org/10.1038/s41586-020-2258-0>

577 62 Carlson, S. M., Cunningham, C. J. & Westley, P. A. Evolutionary rescue in a changing world.
578 *Trends Ecol. Evol.* **29**, 521-530 (2014). <https://doi.org/10.1016/j.tree.2014.06.005>

579 63 Di Bernardi, C. *et al.* Fitness and fur colouration: Testing the camouflage and thermoregulation
580 hypotheses in an Arctic mammal. *J. Anim. Ecol.* **90**, 1328-1340 (2021).
581 <https://doi.org/10.1111/1365-2656.13457>

582 64 Kennah, J. L. *et al.* Coat color mismatch improves survival of a keystone boreal herbivore:
583 Energetic advantages exceed lost camouflage. *Ecology* **104** (2023).
<https://doi.org/10.1002/ecy.3882>

584 65 Wilson, E. C., Shipley, A. A., Zuckerberg, B., Peery, M. Z. & Pauli, J. N. An experimental
586 translocation identifies habitat features that buffer camouflage mismatch in snowshoe hares.
587 *Conservation Letters* **12** (2019). <https://doi.org/10.1111/conl.12614>

588 66 Duncan, R. J., Andrew, M. E. & Forchhammer, M. C. Snow mediates climatic impacts on
589 Arctic herbivore populations. *Polar Biol.* **44**, 1251-1271 (2021).
<https://doi.org/10.1007/s00300-021-02871-y>

590 67 Imperio, S., Bionda, R., Viterbi, R. & Provenzale, A. Climate change and human disturbance
592 can lead to local extinction of Alpine Rock Ptarmigan: New insight from the Western Italian
593 Alps. *Plos One* **8** (2013). <https://doi.org/10.1371/journal.pone.0081598>

594 68 Melin, M., Mehtätalo, L., Helle, P., Ikonen, K. & Packalen, T. Decline of the boreal willow
595 grouse (*Lagopus lagopus*) has been accelerated by more frequent snow-free springs. *Scientific
596 Reports* **10**, 6987 (2020). <https://doi.org/10.1038/s41598-020-63993-7>

597 69 Pedersen, S., Odden, M. & Pedersen, H. C. Climate change induced molting mismatch?
598 Mountain hare abundance reduced by duration of snow cover and predator abundance.
599 *Ecosphere* **8**, e01722 (2017). <https://doi.org/10.1002/ecs2.1722>

600 70 Zimova, M., Mills, L. S. & Nowak, J. J. High fitness costs of climate change-induced
601 camouflage mismatch. *Ecological Letters* **19**, 299-307 (2016).
<https://doi.org/10.1111/ele.12568>

602 71 Eriksen, L. F. *et al.* Climatic variation affects seasonal survival of an alpine bird species. *Wildl.
604 Biol.*, e01386 (2025). <https://doi.org/10.1002/wlb3.01386>

603 72 Atmeh, K., Andruszkiewicz, A. & Zub, K. Climate change is affecting mortality of weasels
606 due to camouflage mismatch. *Scientific Reports* **8**, 7648 (2018).
<https://doi.org/10.1038/s41598-018-26057-5>

604 73 Otte, P. J., Cromsigt, J. P. G. M., Smit, C. & Hofmeester, T. R. Snow cover-related camouflage
609 mismatch increases detection by predators. *Journal of Experimental Zoology Part a:
610 Ecological and Integrative Physiology* **341**, 327-337 (2024). <https://doi.org/10.1002/jez.2784>

611 74 Emmel, A., Bickford, N. & Mills, L. S. Raptor perception of mismatch in seasonally polyphenic
612 prey. *The American Naturalist* (2025). <https://doi.org/10.1086/738016>

613 75 IPCC, I. P. o. C. C. AR6 Synthesis Report: Climate Change 2023. (Cambridge University
614 Press, 2023).

615 76 Sultaire, S. M. *et al.* Climate change surpasses land-use change in the contracting range
616 boundary of a winter-adapted mammal. *Proceedings of the Royal Society B: Biological
617 Sciences* **283** (2016). <https://doi.org/10.1098/rspb.2015.3104>

618 77 Hoffmann, K. The influence of photoperiod and melatonin on testis size, body weight, and
619 pelage colour in the Djungarian hamster (*Phodopus sungorus*). *Journal of Comparative
620 Physiology* **1**, 333 (1973). <https://doi.org/10.1007/BF00694233>

621 78 Niklowitz, P. & Hoffmann, K. Pineal and pituitary involvement in the photoperiodic regulation
622 of body weight, coat color and testicular size of the Djungarian hamster, *Phodopus sungorus*.
623 *Biol. Reprod.* **39**, 489-498 (1988). <https://doi.org/10.1095/biolreprod39.2.489>

624 79 Kandalepas, P. C., Mitchell, J. W. & Gillette, M. U. Melatonin signal transduction pathways
625 require E-box-mediated transcription of Per1 and Per2 to reset the SCN clock at dusk. *PloS one*
626 **11**, e0157824 (2016). <https://doi.org/10.1371/journal.pone.0157824>

627 80 Foldes, A., Maxwell, C. A., Carter, N. B. & Scaramuzzi, R. J. Effects of prolonged artificial
628 photoperiod on circulating prolactin and melatonin levels in seasonal ewes. *Neurochem. Res.*
629 **16**, 693-697 (1991). <https://doi.org/10.1007/BF00965557>

630 81 Lincoln, G. in *Adv. Exp. Med. Biol.* Vol. 460 137-153 (1999).

631 82 Ferreira, M. S. *et al.* The transcriptional landscape of seasonal coat colour moult in the
632 83 snowshoe hare. *Mol. Ecol.* **26**, 4173-4185 (2017). <https://doi.org/10.1111/mec.14177>

633 83 Hong, Z. *et al.* RNA sequencing-based transcriptome analysis of seasonal coat color change in
634 83 Arctic Fox (*Vulpes lagopus*). *Russ. J. Genet.* **61**, 77-87 (2025).
<https://doi.org/10.1134/S1022795424701424>

635 84 Jones, M. R. *et al.* Adaptive introgression underlies polymorphic seasonal camouflage in
636 84 snowshoe hares. *Science* **360**, 1355-1358 (2018). <https://doi.org/10.1126/science.aar5273>

637 85 Giska, I. *et al.* Introgression drives repeated evolution of winter coat color polymorphism in
638 85 hares. *Proceedings of the National Academy of Sciences* **116**, 24150-24156 (2019).
<https://doi.org/10.1073/pnas.1910471116>

639 86 Curthoys, D. *Seasonal regulation of melanogenesis in ptarmigan*, UiT Norges arktiske
640 86 universitet, (2023).

641 87 Nasti, T. H. & Timares, L. MC1R, eumelanin and pheomelanin: Their role in determining the
642 87 susceptibility to skin cancer. *Photochem. Photobiol.* **91**, 188-200 (2015).
<https://doi.org/10.1111/php.12335>

643 88 Boswell, T. & Takeuchi, S. Recent developments in our understanding of the avian
644 88 melanocortin system: Its involvement in the regulation of pigmentation and energy
645 88 homeostasis. *Peptides* **26**, 1733-1743 (2005). <https://doi.org/10.1016/j.peptides.2004.11.039>

646 89 Galván, I. & Solano, F. Bird integumentary melanins: Biosynthesis, forms, function and
647 89 evolution. *International Journal of Molecular Sciences* **17**, 520 (2016).
<https://doi.org/10.3390/ijms17040520>

648 90 Valverde, P. *et al.* Melatonin antagonizes alpha-melanocyte-stimulating hormone enhancement
649 90 of melanogenesis in mouse melanoma cells by blocking the hormone-induced accumulation of
650 90 the c locus tyrosinase. *Eur. J. Biochem.* **232**, 257-263 (1995). <https://doi.org/10.1111/j.1432-1033.1995.tb20807.x>

651 91 Rasmussen, D. D., Marck, B. T., Boldt, B. M., Yellon, S. M. & Matsumoto, A. M. Suppression
652 91 of hypothalamic pro-opiomelanocortin (POMC) gene expression by daily melatonin
653 91 supplementation in aging rats. *J. Pineal Res.* **34**, 127-133 (2003).
<https://doi.org/10.1034/j.1600-079X.2003.00019.x>

654 92 Enshell-Seijffers, D., Lindon, C. & Morgan, B. A. The serine protease *CORIN* is a novel
655 92 modifier of the Agouti pathway. *Development* **135**, 217-225 (2008).
<https://doi.org/10.1242/dev.011031>

656 93 Xu, X. *et al.* The genetics of tiger pelage color variations. *Cell Res.* **27**, 954-957 (2017).
<https://doi.org/10.1038/cr.2017.32>

657 94 Benito-Martínez, S., Salavessa, L., Raposo, G., Marks, M. S. & Delevoye, C. Melanin transfer
658 94 and fate within keratinocytes in human skin pigmentation. *Integr. Comp. Biol.* **61**, 1546-1555
659 94 (2021). <https://doi.org/10.1093/icb/icab094>

660 95 Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: The problem
661 95 and the evidence. *Evolutionary Applications* **7**, 1-14 (2014). <https://doi.org/10.1111/eva.12137>

662 96 Zimova, M. *et al.* Local climate determines vulnerability to camouflage mismatch in snowshoe
663 96 hares. *Global Ecology Biogeography* **29**, 503-515 (2020). <https://doi.org/10.1111/geb.13049>

664 97 Hewson, R. & Watson, A. Winter whitening of Stoats (*Mustela erminea*) in Scotland and north-
665 97 east England. *J. Zool.* **187**, 55-64 (1979). <https://doi.org/10.1111/j.1469-7998.1979.tb07712.x>

666 98 Laporte-Devylder, L. *et al.* A camera trap-based assessment of climate-driven phenotypic
667 98 plasticity of seasonal moulting in an endangered carnivore. *Remote Sens Ecol Con* **9**, 210-221
668 98 (2023). <https://doi.org/10.1002/rse2.304>

669 99 Zimova, M., Moberg, D., Mills, L. S., Dietz, A. J. & Angerbjörn, A. Colour moult phenology
670 99 and camouflage mismatch in polymorphic populations of Arctic foxes. *Biol. Lett.* **18** (2022).
<https://doi.org/10.1098/rsbl.2022.0334>

680 100 Feder, S. *Environmental Determinants of Seasonal Coat Color Change in Weasels (Mustela*
681 *Erminea) from Two Populations*, University of Alaska Fairbanks, (1990).

682 101 Wilson, E. C., Zuckerberg, B., Peery, M. Z. & Pauli, J. N. The past, present and future impacts
683 of climate and land use change on snowshoe hares along their southern range boundary. *Biol.*
684 *Conserv.* **249** (2020). <https://doi.org:10.1016/j.biocon.2020.108731>

685 102 Zimova, M., Mills, L. S., Lukacs, P. M. & Mitchell, M. S. Snowshoe hares display limited
686 phenotypic plasticity to mismatch in seasonal camouflage. *Proceedings of the Royal Society B:*
687 *Biological Sciences* **281**, 20140029 (2014). <https://doi.org:10.1098/rspb.2014.0029>

688 103 Shiratsuru, S. & Pauli, J. N. Food-safety trade-offs drive dynamic behavioural antipredator
689 responses among snowshoe hares. *J. Anim. Ecol.* **93**, 1710-1721 (2024).
690 <https://doi.org:10.1111/1365-2656.14183>

691 104 Steen, J. B., Erikstad, K. E. & Høidal, K. Cryptic behaviour in moulting hen willow ptarmigan
692 *Lagopus l. lagopus* during snow melt. *Ornis Scandinavica*, 101-104 (1992).
693 <https://doi.org:10.2307/3676433>

694 105 Montgomerie, R., Lyon, B. & Holder, K. Dirty ptarmigan: Behavioral modification of
695 conspicuous male plumage. *Behav. Ecol.* **12**, 429-438 (2001).
696 <https://doi.org:10.1093/beheco/12.4.429>

697 106 McQueen, A. *et al.* Evolutionary drivers of seasonal plumage colours: colour change by moult
698 correlates with sexual selection, predation risk and seasonality across passerines. *Ecol. Lett.*
699 **22**, 1838-1849 (2019). <https://doi.org:10.1111/ele.13375>

700 107 Ferreira, M. S. *et al.* The evolution of white-tailed jackrabbit camouflage in response to past
701 and future seasonal climates. *Science* **379**, 1238-1242 (2023).
702 <https://doi.org:10.1126/science.adc3984>

703 108 Miranda, I. *et al.* Museomics dissects the genetic basis for adaptive seasonal coloration in the
704 least weasel. *Mol. Biol. Evol.* **38**, 4388-4402 (2021). <https://doi.org:10.1093/molbev/msab177>

705 109 Giska, I. *et al.* The evolutionary pathways for local adaptation in mountain hares. *Mol. Ecol.*
706 **31**, 1487-1503 (2022). <https://doi.org:10.1111/mec.16338>

707 110 Pimenta, J. *et al.* Museum genomics links MC1R alleles to adaptive winter coat color
708 polymorphism in the long-tailed weasel. *BioRxiv* (2025).
709 <https://doi.org:10.64898/2025.12.17.694841>

710 111 Våge, D. I. *et al.* Two cysteine substitutions in the generate the blue variant of the Arctic fox
711 (*Vulpes lagopus*) and prevent expression of the white winter coat. *Peptides* **26**, 1814-1817
712 (2005). <https://doi.org:10.1016/j.peptides.2004.11.040>

713 112 Jones, M. R., Mills, L. S., Jensen, J. D. & Good, J. M. Convergent evolution of seasonal
714 camouflage in response to reduced snow cover across the snowshoe hare range. *Evolution* **74**,
715 2033-2045 (2020). <https://doi.org:10.1111/evo.13976>

716 113 Tietgen, L. *et al.* Fur colour in the Arctic fox: Genetic architecture and consequences for fitness.
717 *Proceedings of the Royal Society B: Biological Sciences* **288** (2021).
718 <https://doi.org:10.1098/rspb.2021.1452>

719 114 Wold, J. *et al.* Expanding the conservation genomics toolbox: Incorporating structural variants
720 to enhance genomic studies for species of conservation concern. *Mol. Ecol.* **30**, 5949-5965
721 (2021). <https://doi.org:10.1111/mec.16141>

722 115 Salomonsen, F. Moults and sequence of plumages in the rock ptarmigan (*Lapopus mutus*
723 (Montin)). (1939).

724 116 Jones, M. R., Mills, L. S., Jensen, J. D. & Good, J. M. The origin and spread of locally adaptive
725 seasonal camouflage in snowshoe hares. *Am. Nat.* **196**, 316-332 (2020).
726 <https://doi.org:10.1086/710022>

727 117 Miranda, I. *et al.* Ancient balanced polymorphism underlies long-standing adaptation for
728 seasonal camouflage in the least weasel. *BioRxiv* (2025).
729 <https://doi.org:10.1101/2025.11.14.688436>

730 118 Liu, Z. Z. *et al.* Genetic variations of the coding region of the melanocortin receptor 1 (*MC1R*)
731 gene in the fox. *Vet Dermatol* **27**, 135-+ (2016). <https://doi.org/10.1111/vde.12303>

732 119 Nowacka-Woszuk, J., Salamon, S., Gorna, A. & Switonski, M. Missense polymorphisms in
733 the *MC1R* gene of the dog, red fox, Arctic fox and Chinese raccoon dog. *J. Anim. Breed. Genet.*
734 **130**, 136-141 (2013). <https://doi.org/10.1111/jbg.12005>

735 120 Abramov, A. & Baryshnikov, G. Geographic variation and intraspecific taxonomy of weasel
736 *Mustela nivalis* (Carnivora, Mustelidae). *Zoosystematica Rossica* **8**, 365-402 (2000).

737 121 Frank, F. Zur evolution und systematik der kleinen Wiesel (*Mustela nivalis* Linnaeus, 1766).
738 *Zeitschrift für Säugetierkunde* **50**, 208-225 (1985).

739 122 Larsen, D. J., Crump, S. E. & Blumm, A. Alpine glacier resilience and Neoglacial fluctuations
740 linked to Holocene snowfall trends in the western United States. *Science Advances* **6**, eabc7661
741 (2020). <https://doi.org/10.1126/sciadv.abc7661>

742 123 Levene, H. Genetic equilibrium when more than one ecological niche is available. *The
743 American Naturalist* **87**, 331-333 (1953). <https://doi.org/10.1086/281792>

744 124 Savolainen, O., Lascoux, M. & Merilä, J. Ecological genomics of local adaptation. *Nature
745 Reviews Genetics* **14**, 807-820 (2013). <https://doi.org/10.1038/nrg3522>

746 125 Gong, Y. F. *et al.* Genetic polymorphisms in the 5'-flanking region of the melanocortin 1
747 receptor (*MC1R*) gene in foxes. *Russ. J. Genet.* **53**, 490-497 (2017).
748 <https://doi.org/10.1134/S102279541704007X>

749 126 Bell, G. Evolutionary rescue and the limits of adaptation. *Philosophical Transactions of the
750 Royal Society B: Biological sciences* **368**, 20120080 (2013).
751 <https://doi.org/10.1098/rstb.2012.0080>

752 127 Bay, R. A. *et al.* Predicting responses to contemporary environmental change using
753 evolutionary response architectures. *The American Naturalist* **189**, 463-473 (2017).
754 <https://doi.org/10.1086/691233>

755 128 Barrett, R. D. & Schlüter, D. Adaptation from standing genetic variation. *Trends Ecol. Evol.*
756 **23**, 38-44 (2008). <https://doi.org/10.1016/j.tree.2007.09.008>

757 129 Hermisson, J. & Pennings, P. S. Soft sweeps: Molecular population genetics of adaptation from
758 standing genetic variation. *Genetics* **169**, 2335-2352 (2005).
759 <https://doi.org/10.1534/genetics.104.036947>

760 130 Teshima, K. M. & Przeworski, M. Directional positive selection on an allele of arbitrary
761 dominance. *Genetics* **172**, 713-718 (2006). <https://doi.org/10.1534/genetics.105.044065>

762 131 Bloom, J. S. *et al.* Genetic interactions contribute less than additive effects to quantitative trait
763 variation in yeast. *Nat. Commun.* **6**, 8712 (2015). <https://doi.org/10.1038/ncomms9712>

764 132 Kardos, M. & Luikart, G. The genetic architecture of fitness drives population viability during
765 rapid environmental change. *The American Naturalist* **197**, 511-525 (2021).
766 <https://doi.org/10.1086/713469>

767 133 Jain, K. & Stephan, W. Response of polygenic traits under stabilizing selection and mutation
768 when loci have unequal effects. *G3* **5**, 1065-1074 (2015).
769 <https://doi.org/10.1534/g3.115.017970>

770 134 Aeschbacher, S. & Bürger, R. The effect of linkage on establishment and survival of locally
771 beneficial mutations. *Genetics* **197**, 317-336 (2014).
772 <https://doi.org/10.1534/genetics.114.163477>

773 135 Schlötterer, C. How predictable is adaptation from standing genetic variation? Experimental
774 evolution in *Drosophila* highlights the central role of redundancy and linkage disequilibrium.
775 *Philosophical Transactions of the Royal Society B: Biological Sciences* **378**, 20220046 (2023).
776 <https://doi.org/10.1098/rstb.2022.0046>

777 136 Orr, H. A. & Unckless, R. L. The population genetics of evolutionary rescue. *PLoS Genet.* **10**,
778 e1004551 (2014). <https://doi.org/10.1371/journal.pgen.1004551>

779 137 Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. *Ecol. Lett.* **7**, 1225-1241
780 (2004). <https://doi.org:10.1111/j.1461-0248.2004.00684.x>

781 138 Kirkpatrick, M. & Barton, N. H. Evolution of a species' range. *The American Naturalist* **150**,
782 1-23 (1997). <https://doi.org:10.1086/286054>

783 139 Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to quaternary climate change.
784 *Science* **292**, 673-679 (2001). <https://doi.org:10.1126/science.292.5517.673>

785 140 Razgour, O. *et al.* Considering adaptive genetic variation in climate change vulnerability
786 assessment reduces species range loss projections. *PNAS* **116**, 10418-10423 (2019).
787 <https://doi.org:10.1073/pnas.1820663116>

788 141 Aguirre-Liguori, J. A., Ramírez-Barahona, S. & Gaut, B. S. The evolutionary genomics of
789 species' responses to climate change. *Nature Ecology & Evolution* **5**, 1350-1360 (2021).
790 <https://doi.org:10.1038/s41559-021-01526-9>

791 142 O'Brien, N. L., Holland, B., Engelstädter, J. & Ortiz-Barrientos, D. The distribution of fitness
792 effects during adaptive walks using a simple genetic network. *PLoS Genet.* **20**, e1011289
793 (2024). <https://doi.org:10.1371/journal.pgen.1011289>

794 143 Excoffier, L. & Foll, M. fastsimcoal: a continuous-time coalescent simulator of genomic
795 diversity under arbitrarily complex evolutionary scenarios. *Bioinformatics* **27**, 1332-1334
796 (2011). <https://doi.org:10.1093/bioinformatics/btr124>

797 144 Noskova, E. *et al.* GADMA2: more efficient and flexible demographic inference from genetic
798 data. *GigaScience* **12**, giad059 (2023). <https://doi.org:10.1093/gigascience/giad059>

799 145 DeAngelis, D. L. & Mooij, W. M. Individual-based modeling of ecological and evolutionary
800 processes. *Annual Review of Ecology, Evolution, and Systematics* **36**, 147-168 (2005).
801 <https://doi.org:10.1146/annurev.ecolsys.36.102003.152644>

802 146 Xuereb, A., Rougemont, Q., Tiffin, P., Xue, H. & Phifer-Rixey, M. J. P. o. t. R. S. B. Individual-
803 based eco-evolutionary models for understanding adaptation in changing seas. *Proceedings of
804 the Royal Society B: Biological Sciences* **288**, 20212006 (2021).
805 <https://doi.org:10.1098/rspb.2021.2006>

806 147 Haller, B. C. & Messer, P. W. SLiM 4: Multispecies eco-evolutionary modeling. *The American
807 Naturalist* **201**, E127-E139 (2023). <https://doi.org:10.1086/723601>

808 148 Schweizer, R. M. *et al.* Museum genomics suggests long-term population decline in a
809 putatively extinct bumble bee. *Proceedings of the National Academy of Sciences* **122**,
810 e2509749122 (2025). <https://doi.org:doi:10.1073/pnas.2509749122>

811 149 Westemeier, R. L. *et al.* Tracking the long-term decline and recovery of an isolated population.
812 *Science* **282**, 1695-1698 (1998). <https://doi.org:10.1126/science.282.5394.1695>

813 150 Johnson, W. E. *et al.* Genetic restoration of the Florida panther. *Science* **329**, 1641-1645 (2010).
814 <https://doi.org:10.1126/science.1192891>

815 151 Aguilar-Gómez, D. *et al.* Genetic rescue of Florida panthers reduced homozygosity but did not
816 swamp ancestral genotypes. *Proceedings of the National Academy of Sciences* **122**,
817 e2410945122 (2025). <https://doi.org:10.1073/pnas.2410945122>

818 152 Alvarenga, M. M. *et al.* Rapid DNA/eDNA-based ID tools for improved chondrichthyan
819 monitoring and management. *Molecular Ecology Resources*, e70044 (2025).
820 <https://doi.org:10.1111/1755-0998.70044>

821 153 Hogg, C. *et al.* The future is here: An easy-to-use toolkit for integrating genetics into
822 conservation management. *Anim. Conserv.* **28**, 93-103 (2025).
823 <https://doi.org:10.1111/acv.12971>

824 154 Kwon, Y. M. *et al.* Tasman-PCR: A genetic diagnostic assay for Tasmanian devil facial tumour
825 diseases. *Royal Society Open Science* **5**, 180870 (2018). <https://doi.org:10.1098/rsos.180870>

826 155 Stewart, F. E. C., Darlington, S., Volpe, J. P., McAdie, M. & Fisher, J. T. Corridors best
827 facilitate functional connectivity across a protected area network. *Scientific Reports* **9**, 10852
828 (2019). <https://doi.org:10.1038/s41598-019-47067-x>

829 156 Beard, K. H., Kelsey, K. C., Leffler, A. J. & Welker, J. M. The missing angle: Ecosystem
830 consequences of phenological mismatch. *Trends Ecol. Evol.* **34**, 885-888 (2019).
831 <https://doi.org/10.1016/j.tree.2019.07.019>

832 157 Zima, J. Coat colour and chromosome variation in central European population of the weasel
833 (*Mustela nivalis*). *Folia Zoologica* **51**, 265-274 (2002).