

1 **Body size shapes average behaviour, social impact, and**
2 **social responsiveness in agonistic interactions**

3 Tom Ratz^{1,2*}, Melissa Bahtije Maliqi¹, Corné de Groot¹, Emily Herter¹, Rori Wijnhorst¹ &
4 Niels J. Dingemanse¹

5 ¹Behavioural Ecology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany

6 ²Department of Evolutionary Biology and Environmental Science, University of Zurich,
7 Zurich, Switzerland

8 *Correspondence: T. Ratz, e-mail address: tom.ratz@uzh.ch

9

10 **Abstract**

12 Social interactions shape behavioural phenotypes and fitness, and therefore represent major
13 drivers of evolution. Increasingly, it is recognised that plasticity in response to social partners
14 (“social plasticity”) operates through two causal pathways: an individual’s *impact on* and
15 *responsiveness to* partner phenotypes. Functional links among an individual’s average
16 behaviour, social impact, and social responsiveness may have unanticipated evolutionary
17 consequences. Body size is likely to be a key driver of such links, as size often determines the
18 outcome of social interactions. This is particularly true in competitive contexts, where larger
19 contestants generally have an advantage and individuals are expected to decide whether to
20 escalate a contest or retreat based on the difference between their own body size and that of their
21 rivals. We quantified the extent to which the three components, average behaviour, social impact
22 and responsiveness, vary as a function of body size in competitive interactions, using southern
23 field crickets (*Gryllus bimaculatus*) as a study system. We found that smaller animals were on
24 average less aggressive, elicited more aggression in their opponents, and were more responsive
25 by reducing their aggression more strongly when interacting against large opponents. Thus, all

26 three social behavioural components—average aggression, social impact and social
27 responsiveness—were size-dependent. If heritable, such associations in traits mediating
28 aggression may either constrain or facilitate evolutionary responses to selection in ways not
29 previously recognised. Our findings provide the first empirical evidence for hidden relationships
30 among the key components of social traits, highlighting the need for a multivariate perspective
31 to better predict the evolution of social behaviour.

32

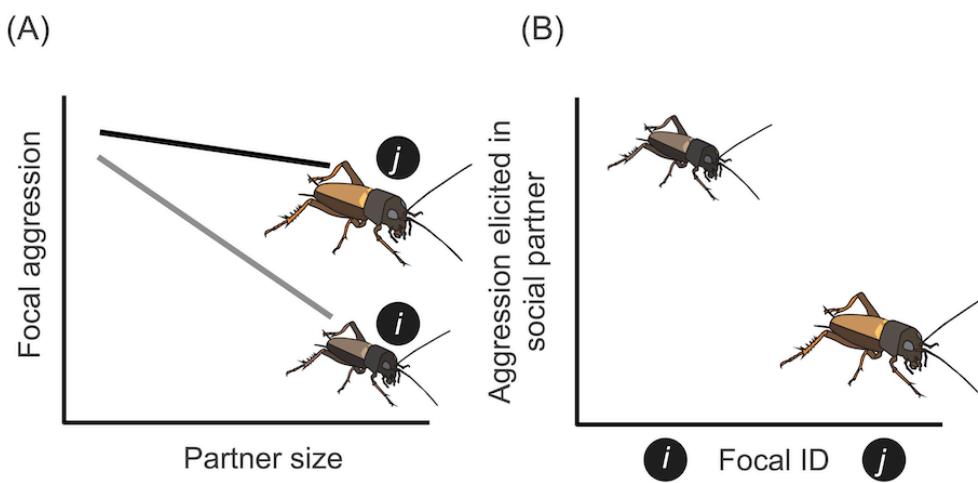
33 **Keywords:** Aggression, animal contests, animal personality, resource competition, *Gryllus*
34 *bimaculatus*, individual-by-environment interaction, indirect genetic effects, reaction norm,
35 social evolution, social plasticity.

36 **Introduction**

37 Social interactions affect the behavioural decisions, and fitness, of individuals and their social
38 partners (Westneat & Fox, 2010). Social interactions are ubiquitous because all animals interact
39 with conspecifics to forage, compete, and reproduce (Trivers, 1985; Frank, 2007). Two fields of
40 evolutionary biology have extensively studied social interactions. First, behavioural ecology has
41 focussed on predicting the behaviour that individuals should express to maximize fitness in
42 situations where their phenotype is affecting, and affected by, the phenotype of conspecifics. To
43 achieve this aim, behavioural ecologists have used game theory, for example, to predict
44 behaviour expressed during cooperative or competitive interactions (Parker, 1974; Maynard
45 Smith, 1982; McNamara & Leimar, 2020). Second, quantitative genetics has developed
46 theoretical models to predict how selection on traits expressed during social interactions
47 translates into micro-evolutionary change (Moore et al., 1997; McGlothlin et al., 2010; Bijma,
48 2014). Both fields emphasize the key role that social interactions play as drivers of variation,
49 selection, and evolution.

50 Individual phenotypes expressed during social interactions (called “interacting
51 phenotypes”) arise from three key components: (1) the individual’s average phenotype, (2) its
52 partner’s social impact, and (3) its social responsiveness (Figure 1) (Araya-Ajoy et al., 2020; de
53 Groot et al., 2023; Wijnhorst et al., 2025). An individual’s average phenotype is determined by
54 environmental and genetic factors that permanently influence its phenotype, known as direct
55 environmental (DEEs) and direct genetic effects (DGEs), respectively (Falconer & Mackay,
56 1996; Lynch & Walsh, 1998). Variation among individuals in these factors contributes to
57 repeatable differences in average phenotype, which can give rise to broader suites of correlated
58 traits, including behavioural syndromes and animal personalities (Dall et al. 2004; Sih et al. 2004;
59 Réale et al. 2007, 2010). Social impact describes how interacting individuals elicit phenotypic
60 change in their social partners (Araya-Ajoy et al., 2020; de Groot et al., 2023). When this
61 influence has a genetic basis, it is called an indirect genetic effect (IGE; Moore et al., 1997; Wolf

62 et al., 1998; McAdam et al., 2014). Social responsiveness, in contrast, is a form of phenotypic
63 plasticity defined as the slope of the reaction norm, and captures how an individual's phenotype
64 changes as a function of the phenotype of social partners (Dingemanse & Araya-Ajoy, 2015).
65 Although conceptually related, social impact and social responsiveness arise from distinct causal
66 pathways (Araya-Ajoy et al., 2020; de Groot et al., 2023; Wijnhorst et al., 2025). Previous
67 research has primarily focused on covariance parameters that encapsulate effects of both social
68 impact and social responsiveness, such as those called “responsiveness” (André & Day, 2007;
69 André, 2015), “response coefficient” (Akçay et al., 2009; Akçay & Van Cleve, 2012; Van Cleve
70 & Akçay, 2014), or the “interaction coefficient ψ ” (Moore et al., 1997; Bleakley et al., 2010;
71 McGlothlin et al., 2010). Consequently variation in both social responsiveness and social impact
72 has so far mostly been disregarded.


73 Quantitative genetics theory predicts that the evolutionary response to selection on
74 interacting phenotypes depends on the additive genetic variance in, and covariance between,
75 direct and indirect genetic effects. Direct genetic effects (DGEs) influence an individual's
76 average phenotype, while indirect genetic effects (IGEs) capture the impact of an individual's
77 genotype on the phenotype of its social partners. Positive genetic correlations between DGEs
78 and IGEs are expected to amplify the response to selection, whereas negative correlations should
79 constrain it (Moore et al., 1997; McGlothlin et al., 2010; Bijma, 2014). In addition, genetic
80 correlations between the average phenotype and the level of social responsiveness—the extent to
81 which individuals adjust their phenotype in response to others—should also shape evolutionary
82 trajectories (Bailey et al. 2021). Such correlations imply that the amount of variance explained
83 by DGEs may change depending on the phenotype of social partners, potentially enhancing or
84 dampening evolutionary responses depending on the correlation sign. If interacting phenotypes
85 are indeed shaped by three components—average phenotype, social impact, and social
86 responsiveness—then accurate predictions of micro-evolutionary change require estimates of
87 genetic variance in, and covariance among, *all* three. This raises two key questions: (1) do

88 populations harbour heritable variation in each component of interacting phenotypes, and (2) are
89 these components genetically correlated?

90 Heritable variation in average trait values is already well established for interacting
91 phenotypes, as demonstrated by studies reporting non-zero variance attributable to direct genetic
92 effects (DGEs; Stirling et al., 2002; Dochtermann et al., 2015, 2019; Santostefano et al., 2025).
93 Indeed, heritable variation in aggression has been documented across a wide diversity of taxa,
94 including mammals (Kessler et al., 1977; Benus et al., 1991), birds (Verbeek et al., 1996;
95 Duckworth & Kruuk, 2009), and insects (Edwards et al., 2006; Santostefano et al., 2017b).
96 Likewise, heritable variation in social impact is evidenced by studies reporting non-zero variance
97 attributable to indirect genetic effects (IGEs; Bailey & Desjonquères, 2022; Santostefano et al.,
98 2025). Meanwhile, evidence for heritable variation in social responsiveness comes from studies
99 reporting genetic differences in plastic responses to social partners (e.g., Kent et al., 2008;
100 Bleakley & Brodie, 2009; Chenoweth et al., 2010; Bailey & Zuk, 2012). Correlations between
101 DGE and IGE have also been reported (e.g., McAdam & Boutin, 2004; Wilson et al., 2009,
102 2011), indicating genetic covariance between average phenotype and social impact. Genetic
103 correlations between average phenotype and social responsiveness may also exist, as suggested
104 by among-individual correlations between these components observed across a range of species
105 (e.g., Benus et al., 1990; Natarajan et al., 2009; Strickland et al., 2021). Nevertheless, to our
106 knowledge, no study has yet attempted to infer variation or covariation across all three
107 components of interacting phenotypes.

108 This study aims to address this gap by testing whether average behaviour, social
109 responsiveness, and social impact (co)vary across individuals due to variation in body size. We
110 designed an experiment to quantify, first, the three components of interacting phenotypes
111 (average trait expression, social impact, and social responsiveness) and, second, test whether
112 body size mediates their expression. We used agonistic interactions in male southern field
113 crickets (*Gryllus bimaculatus*) as model system. Our analysis indirectly addresses patterns of

114 (co)variance that—in line with Cheverud (1988)'s conjecture—are predictive of genetic
 115 (co)variance in this species (Santostefano et al., 2017a,b; Han et al., 2018). This is because
 116 aggression and aggression elicited in conspecifics are both repeatable and heritable, and are
 117 negatively correlated at the individual and additive genetic level (Santostefano et al., 2017b). We
 118 hypothesised that functional links between average aggression, social impact, and social
 119 responsiveness would arise due to variation in a non-behavioural trait: body size. In many
 120 animals, including field crickets, body size is a critical determinant of fighting success and
 121 influences aggression during contests (Gammell & Hardy 2003; Briffa, 2015). Larger individuals
 122 are more likely to win fights (Simmons, 1986; Shackleton et al., 2005; Reaney et al., 2011) and
 123 tend to be more aggressive (Dixon & Cade, 1986; Simmons, 1986). We thus predicted that (1)
 124 larger males to be more aggressive and that (2) males should in general reduce their aggression
 125 when faced with large opponents. We also expected that larger, more aggressive males are less
 126 responsive to opponent size, thereby linking average aggression and responsiveness (Figure 1A).
 127 Lastly, larger males should reduce their opponent's aggression, thereby linking body size and
 128 social impact, and average aggression and impact (Figure 1B).

129 **Figure 1.** Illustration of size-mediated differences in social responsiveness (A) and social impact
 130 (B). In this example, individual *i* is smaller, more responsive to social partners' phenotype, and
 131 elicits more aggression in social partners than individual *j*.
 132

134 **Materials and methods**

135 ***Origin and maintenance of the crickets***

136 All crickets were derived from our stock population that originated from Sevilla (Spain) and was
137 maintained under controlled conditions at LMU Munich for four generations (Ratz et al. 2024).
138 The stock was kept under a 12L:12D photoperiod at 28°C and 60% humidity, and provided with
139 commercial dry cat food, fish flakes, and water. We separated a total of 340 males as juveniles
140 in their last nymphal stage and housed them in individual containers (10 × 10 × 9 cm) furnished
141 with a plastic tube section for shelter, and supplied with ad libitum water and dry cat food.

142

143 ***Experimental design***

144 Our aim was to evaluate the relationships among body size, average aggression, social impact,
145 and social responsiveness to partner body size. We thus designed an experiment where each
146 individual was first categorized as “small” or “large” (Figure 2); we then created dyads of all
147 combinations based on these size groups (focal-opponent: small-small, small-large, large-small,
148 large-large). While doing so, we ensured that each individual interacted (repeatedly) with
149 “small” and with “large” opponents. To this end, we allocated males that had reached sexual
150 maturity (*i.e.*, ≥ 10 days after adult moulting) to one of two size groups based on the population-
151 average body size. As a proxy for body size, we used the length of the rear femur measured using
152 digital callipers (Mousseau & Roff, 1989; Nosil, 2002). To purge measurement error in our
153 analysis, we used the mean of three measurements of femur length taken from each individual
154 (Arnqvist & Martensson, 1998; Fruciano, 2016). We assigned males below the population mean
155 to the “small” group, and males above the population mean to the “large” group measured on
156 approximately 80 experimental males.

157

158 **Figure 2.** Distribution of the rear femur size among the 340 experimental males. As part of our
 159 experiment, males below the population mean were assigned to the “small” group, while males
 160 above the population mean were assigned to the “large” group.

161

162 **Aggression assays**

163 Aggression was assayed repeatedly using a well-established protocol (Santostefano et al., 2016,
 164 2017a,b; Han et al., 2018; Jäger et al., 2019). Briefly, males were first marked with non-toxic
 165 acrylic paint one day prior to their first aggression assay. To begin an assay, we placed a focal
 166 male and an opponent male (arbitrarily assigned) in the centre of an arena ($14.5 \times 15.5 \times 9 \text{ cm}^3$).
 167 We allowed approximately 1 min for acclimation, and recorded the interaction for five minutes
 168 using a high-resolution digital video camera (Basler GenICam, Germany) at a distance of 43 cm
 169 above the arena, and set at 25 frames/s and 1600×1200 pixels resolution. Males generally
 170 rapidly engage in agonistic displays that often escalate into fights (Adamo & Hoy, 1995;
 171 Hofmann & Stevenson, 2000). After each test, males were returned to their original individual
 172 containers.

173 Over the course of the experiment, each male was assayed 8 times with a “small”
 174 opponent and 8 times with a “large” opponent. While our goal was to test each male in a total of
 175 16 times (realized mean = 12.5 times), individuals that died or lost two or more legs were

176 removed from the experiment before completing all contests. All videos were scored using the
177 EthoVision software (Noldus EthoVision XT 10, Noldus Information Technology). To prevent
178 carry-over effects across assays caused by winner or loser effects, we allowed a minimum of one
179 day before conducting repeat aggression assays on the same individuals (Han & Dingemanse,
180 2017; Santostefano et al., 2017b; Han et al., 2018). This interval is conservative as such effects
181 generally disappear within 6 h after fighting (Khazraie & Campan, 1999; Rillich & Stevenson,
182 2011). As a measure of aggressiveness, we used the total movement toward the opponent, which
183 is computed in EthoVision as the total distance focal males moved relative to their opponents
184 calculated across all video frames (Santostefano et al., 2016, 2017b). We recorded a total of 1822
185 dyadic interactions involving 289 males.

186

187 **Statistical analysis**

188 All analyses were performed using R (v.4.1.2; R Development Core Team, 2021). The following
189 packages were used for general analysis and plotting: *car* (v.3.0; Fox et al., 2019), *MASS* (v.7.3;
190 Venables & Ripley, 2002), *rstan* (v. 2.21.5; Stan Development Team, 2022), *shinystan* (v.2.6.0;
191 Gabry & Veen, 2022), *bayesplot* (v.1.9.0; Gabry & Mahr, 2024), *ggplot2* (v.3.4.0; Wickham,
192 2016), and *cowplot* (v.1.1.1; Wilke, 2020).

193 Our aim was to estimate the main effects of focal body size (*i.e.*, size-related average
194 behaviour), opponent body size (*i.e.*, size-related social impact) and the interaction between focal
195 and opponent body size (*i.e.*, size-related social plasticity). Aggression was standardized, and
196 log-transformed to approach normality. The model was fitted in *rstan* using common
197 regularizing priors for all model parameters, assuming normal distributions of mean 0 and
198 standard deviation of 1. Priors for standard deviations and variances followed a half-normal
199 probability function. All correlations were assigned a Lewandowski-Kurowicka-Joe (LKJ) prior
200 with shape parameter 1, which specifies a uniform probability density function bounded between
201 -1 and 1 (Lewandowski et al., 2009). The model was fitted with 4 chains, a warmup of 2000

202 iterations, 4000 sampling iterations, and a thinning interval set to one. Visual inspection of plots
203 of posterior distributions versus fitted values using the *shinystan* interface revealed satisfactory
204 fit.

205 The model was fitted with focal ($A_{D,i}$), opponent ($A_{S,j}$) and dyad ($Dyad_{i,j}$) identity as
206 random effects (Equation 1), and random slopes for focal identity (ψ_i) as a function of opponent
207 size group Z_j (small or large). For measurement k of focal individual i interacting with individual
208 j , focal aggression Y was modelled as:

209
$$Y_{ijk} = \mu + A_{D,i} + \beta_1 Z_i + (\bar{\psi} + \psi_i) Z_j + \beta_2 Z_i Z_j + A_{S,j} + Dyad_{i,j} + e_{ijk} \quad (1)$$

210 Where μ represents the population average aggression, β_1 the fixed effect of focal size group Z_i
211 (coded as small or large), $\bar{\psi}$ the population-level social responsiveness to social partner size, β_2
212 the fixed interaction effect between focal and partner size, and e_{ijk} the residual error. Prior
213 model checks revealed that the residual variance varied as a function of opponent size (see Table
214 S2), and we thus modelled heteroskedasticity by allowing the residual variance to depend on
215 opponent size: $e_{ijk} \sim \mathcal{N}(0, \sqrt{e^{\mu_e + \beta_e Z_j}})$, where μ_e is the residual variance in the average social
216 environment, and β_e the difference in between-social-environment variance across the two size
217 groups.

218

219 **Results**

220 ***Size-driven average behaviour, social responsiveness, and social impact***

221 We detected strong evidence for size effects on average level of aggression, social
222 responsiveness, and social impact (Table 1; Fig. 3). Small and large animals differed in both their
223 average aggression and level of social responsiveness: large individuals were on average more
224 aggressive (positive effect of “focal size”; Table 1, Fig. 3) and reduced their aggression less
225 strongly with opponent size (positive effect of focal \times opponent size; Table 1, Fig. 3). Thus, body
226 size mediated the magnitude of social responsiveness. Meanwhile there was a negative main

227 effect of opponent size on focal aggression (Table 1; Fig. 3), indicating that larger opponents
228 overall suppressed aggression in focal individuals. Thus, body size also mediated the magnitude
229 of social impact.

230

231 **Table 1:** Median estimates (\pm 95% CI) of the main effects on focal aggression.

	Estimate (log)	Estimate (back-transformed)
Fixed effects (β) ¹		
Intercept (μ)	0.008 (-0.043, 0.062)	0.141 (0.130, 0.143)
Focal size (β_1)	0.117 (0.046, 0.189)	0.004 (0.001, 0.006)
Opponent size ($\bar{\psi}$)	-0.253 (-0.322, -0.185)	-0.008 (-0.010, -0.006)
Focal \times opponent size (β_2)	0.130 (0.004, 0.255)	—

232 ¹Focal size measures size-related average behaviour, opponent size measures size-related impact, focal \times opponent
233 size measures size-related social responsiveness.

234

235

236
237 **Figure 3.** Large males were on average more aggressive, more socially impactful, and less
238 responsive to opponent body size. Circles and error bars indicate means \pm standard errors. Data
239 are based on 1822 dyadic interactions involving 289 males.

240 **Discussion**

241 We have shown that body size affects all three major components of contest behaviour: average
242 aggression, social impact, and social responsiveness. Specifically, small individuals were less
243 aggressive, less impactful, but more responsive to size differences in opponents compared to
244 large individuals. Overall, our findings indicate that body size can constrain the expression, and
245 plausibly evolution, of flexible social behaviours.

246 Our findings that focal body size mediates all three components (*i.e.* average
247 aggression, social impact, and social responsiveness) highlight the plurality of roles that size can
248 play in social interactions. The level of aggression and the magnitude of the impact on
249 conspecifics were greater in large males, whereas responsiveness was greater in small males.
250 The association between size and average aggression is expected given that larger males, which
251 are typically stronger competitors (Shackleton et al., 2005; Reaney et al., 2011), should benefit
252 from maintaining high levels of aggression to assert dominance (Dixon & Cade, 1986; Simmons,
253 1986). Likewise, the association between size and impact is expected given that large males
254 should suppress aggression in their competitors, as these competitors should retreat and avoid
255 escalating a contest when the likely to win is relatively low (Rillich et al. 2007). Importantly,
256 this association between size and impact implies that variance attributable to differences among
257 social partners, and potentially to indirect genetic effects (IGEs), can be shaped by its body size.
258 Yet body size in insects is subject to developmental plasticity, being largely determined by
259 resource acquisition during juvenile development (Edgar, 2006; Mirth et al., 2007; Chown &
260 Gaston, 2010). Thus, genes influencing resource acquisition and allocation during juvenile
261 development might play a predominant role in driving indirect genetic effects during social
262 interactions. To our knowledge, this perspective is yet to be considered, and we encourage future
263 work testing possible genetic links between juvenile growth and social impact in interacting
264 adults.

265 Large focal individuals showed a weaker response to variation in their opponents' size,
266 and were thus less socially responsive than small individuals. This finding demonstrates that
267 body size not only influences aggression in agonistic interactions but also shapes how interacting
268 individuals adjust their own behaviour to others. It further raises the question as to why body
269 size influences the level of responsiveness in social interactions. One reason to expect
270 responsiveness to decrease with body size is because males larger than the population mean are
271 statistically more likely to encounter smaller rivals and win fights (Simmons, 1986; Shackleton
272 et al., 2005; Reaney et al., 2011). Given their higher probability of success, large males may
273 benefit from maintaining high aggression toward any rivals, as predicted by game theory (e.g.,
274 Phillips et al., 2018; Fouilloux et al., 2022). In contrast, small males, who are more likely to lose
275 contests, may gain by finely tuning their behaviour to the phenotype of their opponents, avoiding
276 the costs of escalated fights with stronger competitors while still exploiting opportunities to win
277 against weaker ones. More generally, the coexistence of socially responsive and unresponsive
278 strategies within a population is predicted by game theory (Wolf et al., 2008, 2011) and reflects
279 commonly observed patterns in natural populations (e.g., Araya-Ajoy & Dingemanse, 2017;
280 Montiglio et al., 2017; Perez et al., 2019). While responsiveness might be maintained as a
281 mechanism to adaptively adjust behaviour in aggressive disputes (Tello-Ramos et al., 2019; Wolf
282 et al., 2008), behavioural consistency can be an alternative successful strategy. This can be the
283 case, for example, when individuals gain information about conspecifics by monitoring their
284 interactions with others and where behavioural consistency could therefore reduce the
285 occurrence of extended fights (Dall et al., 2004; Schuett et al., 2010).

286 To our knowledge, only a handful of studies have examined such links between an
287 average social behaviour and its associated *impact on* and *responsiveness to* others. In mice,
288 highly aggressive males are less responsive, reducing less their aggression toward females
289 compared with less aggressive males (Benus et al., 1990; Caramaschi et al., 2008; Natarajan et
290 al., 2009). Meanwhile, in agamid lizards, individuals that are more responsive to changes in

291 population density are more likely to form social associations (Strickland et al., 2021). From an
292 evolutionary perspective, our findings suggest that variation in key traits mediating social
293 interactions, such as body size, could help maintain multiple aggression–impact–responsiveness
294 strategies in populations, provided that alternative strategies yield comparable selective
295 advantages. Such size dependence of social impact and social responsiveness also implies that
296 indirect genetic effects (IGEs) could exert stronger or weaker evolutionary effects, either
297 accelerating or constraining responses to selection (Wolf et al., 1998; McAdam et al., 2014),
298 depending on the phenotypic composition of the group. For example, IGEs may have a stronger
299 influence on the expression and evolution of aggression in populations composed of
300 predominantly smaller individuals. As with other environmentally dependent traits (Postma &
301 van Noordwijk, 2005; Nussey et al., 2007), these findings suggest that group composition could
302 alter heritability, the ratio of genetic to phenotypic variance (Falconer & Mackay, 1996), thereby
303 increasing or reducing the evolutionary potential of interacting phenotypes (Bijma & Wade,
304 2008). There is now a pressing need for empirical research to test these evolutionary
305 implications. Quantitative genetic studies adopting a multivariate perspective on interacting
306 phenotypes are particularly promising to tackle this gap as they allow quantifying the genetic
307 (co)variances underlying social traits. Such work will be crucial to identify genetic associations
308 that may constrain or promote social evolution (Figure S1).

309 It is becoming clear that two distinct mechanisms, social impact and social
310 responsiveness, cause plastic responses during social interactions, and that underlying
311 correlations have the potential to shape the evolutionary trajectory of interacting phenotypes
312 (Araya-Ajoy et al., 2020; de Groot et al., 2023). Using a reaction norm framework, we show that
313 these components covary with body size, a key morphological trait mediating social interactions.
314 These findings imply that social effects, and IGEs, can themselves be plastic and shaped by the
315 social environment. This is an important and unsuspected property of social interactions and their
316 evolutionary consequences which merits further investigation. If the association between body

317 size and the social behaviour has a genetic basis, selection on one will also drive evolutionary
318 change in the other, as expected for any pair of genetically correlated traits (Lande, 1979; Lande
319 & Arnold, 1983; Walsh & Blows, 2009). Social interactions are central to many processes that
320 drive the evolution of both social and non-social traits. Our study highlights the importance of
321 considering the multivariate nature of traits mediating social interactions. We suggest that the
322 reaction norm approach provides a useful framework to explore phenotypic plasticity in the
323 social context, opening up novel and exciting directions in the study of social evolution.

324

325 **Acknowledgements**

326 We thank Magdalena Matzke for the collection of crickets from the wild, Yvonne Cämmerer and
327 Cristina Tuni for assistance with maintaining the populations. We also thank Yimen Araya-Ajoy,
328 Barbara Class, Francesca Santostefano, and Jonathan Wright for fruitful discussions and
329 suggestions. TR was funded by an Alexander von Humboldt Fellowship (3.3-FRA-1217005-
330 HFST-P), NJD, CdG, RW by the German Science Foundation (DI 1694/1-2, DI 1694/5-1).

331

332 **Data and code availability**

333 <https://osf.io/jgrez>

334

335 **Conflict of interest**

336 We declare no conflicts of interest.

337

338 **References**

- 339 Adamo, S.A., & Hoy, R. R. (1995). Agonistic behaviour in male and female field crickets,
340 *Gryllus bimaculatus*, and how behavioural context influences its expression. *Animal
341 Behaviour*, 49, 1491–1501.
- 342 Akçay, E., Van Cleve, J., Feldman, M. W. & Roughgarden, J. (2009). A theory for the evolution
343 of other-regard integrating proximate and ultimate perspectives. *Proceedings of the
344 National Academy of Sciences*, 106, 19061–19066.

- 345 Akçay, E., & Van Cleve, J. (2012). Behavioral responses in structured populations pave the way
346 to group optimality. *American Naturalist*, 179, 257–269.
- 347 André, J.B. (2015). Contingency in the evolutionary emergence of reciprocal cooperation.
348 *American Naturalist*, 185, 303–316.
- 349 André, J.B., & Day, T. (2007). Perfect reciprocity is the only evolutionarily stable strategy in the
350 continuous iterated prisoner's dilemma. *Journal of Theoretical Biology*, 247, 11–22.
- 351 Araya-Ajoy, Y. G., & Dingemanse, N. J. (2017). Repeatability, heritability, and age-dependence
352 of seasonal plasticity in aggressiveness in a wild passerine bird. *Journal of Animal
353 Ecology*, 86, 227–238.
- 354 Araya-Ajoy, Y. G., Westneat, D. F., & Wright, J. (2020). Pathways to social evolution and their
355 evolutionary feedbacks. *Evolution*, 74, 1894–1907.
- 356 Arnqvist, G., & Martensson, T. (1998). Measurement error in geometric morphometrics:
357 empirical strategies to assess and reduce its impact on measures of shape. *Acta Zoologica
358 Academicae Scientiarum Hungaricae*, 44, 73–96.
- 359 Bailey, N. W., Desjonquères, C., Drago, A., Rayner, J. G., Sturiale, S. L., & Zhang, X. (2021).
360 A neglected conceptual problem regarding phenotypic plasticity's role in adaptive
361 evolution: The importance of genetic covariance and social drive. *Evolution Letters*, 5,
362 444–457.
- 363 Bailey, N. W., & Desjonquères, C. (2022). The indirect genetic effect interaction coefficient ψ :
364 theoretically essential and empirically neglected. *Journal of Heredity*, 113, 79–90.
- 365 Bailey, N. W., & Zuk, M. (2012). Socially flexible female choice differs among populations of
366 the Pacific field cricket: geographical variation in the interaction coefficient psi (ψ).
367 *Proceedings of the Royal Society B: Biological Sciences*, 279, 3589–3596.
- 368 Benus, R. F., Bohus, B., Koolhaas, J. M., & Van Oortmerssen, G. A. (1991). Heritable variation
369 for aggression as a reflection of individual coping strategies. *Experientia*, 47, 1008–1019.
- 370 Benus, R.F., Den Daas, S., Koolhaas, J.M., & Van Oortmerssen, G.A. (1990). Routine formation
371 and flexibility in social and non-social behaviour of aggressive and non-aggressive male
372 mice. *Behaviour*, 112, 176–193.
- 373 Bijma, P. (2014). The quantitative genetics of indirect genetic effects: a selective review of
374 modelling issues. *Heredity*, 112, 61–69.
- 375 Bijma, P., & Wade, M.J. (2008). The joint effects of kin, multilevel selection and indirect genetic
376 effects on response to genetic selection. *Journal of Evolutionary Biology*, 21, 1175–1188.
- 377 Bleakley, B. H., & Brodie III, E. D. (2009). Indirect genetic effects influence antipredator
378 behavior in guppies: estimates of the coefficient of interaction psi and the inheritance of
379 reciprocity. *Evolution*, 63, 1796–1806.
- 380 Bleakley, B. H., Wolf, J. B., & Moore, A. J. (2010). The quantitative genetics of social behaviour.
381 In T. Székely, A. J. Moore, & J. Komdeur (Eds.), *Social Behaviour: Genes, Ecology and
382 Evolution* (pp. 29–54). Cambridge University Press, Cambridge.
- 383 Briffa, M. (2015). Agonistic signals: integrating analysis of functions and mechanisms. In D. J.
384 Irschick, M. Briffa, & J. Podos (Eds.), *Animal signaling and function, an integrative
385 approach* (pp. 141–173). Wiley, Hoboken.
- 386 Caramaschi, D., de Boer, S.F., de Vries, H., & Koolhaas, J.M. (2008). Development of violence
387 in mice through repeated victory along with changes in prefrontal cortex neurochemistry.
388 *Behavioural Brain Research*, 189, 263–272.

- 389 Chenoweth, S. F., Rundle, H. D., & Blows, M. W. (2010). Experimental evidence for the
390 evolution of indirect genetic effects: changes in the interaction effect coefficient, psi (ψ),
391 due to sexual selection. *Evolution*, 64, 1849–1856.
- 392 Cheverud, J.M. (1988). A comparison of genetic and phenotypic correlations. *Evolution*, 42,
393 958–968.
- 394 Chown, S. L., & Gaston, K.J. (2010). Body size variation in insects: a macroecological
395 perspective. *Biological Reviews*, 85, 139–169.
- 396 Dall, S. R. X., Houston, A. I., & McNamara, J. M. (2004). The behavioural ecology of
397 personality: consistent individual differences from an adaptive perspective. *Ecology
398 letters*, 7, 734–739.
- 399 Dingemanse, N. J., & Araya-Ajoy, Y.G. (2015). Interacting personalities: behavioural ecology
400 meets quantitative genetics. *Trends in Ecology & Evolution*, 30, 88–97.
- 401 Dixon, K. A., & Cade, W. H. (1986). Some factors influencing male-male aggression in the field
402 cricket *Gryllus integer* (time of day, age, weight and sexual maturity). *Animal Behaviour*,
403 34, 340–346.
- 404 Dochtermann, N.A., Schwab, T., Anderson Berdal, M., Dalos, J., & Royauté, R. (2019). The
405 heritability of behavior: a meta-analysis. *Journal of Heredity*, 110, 403–410.
- 406 Dochtermann, N.A., Schwab, T., & Sih, A. (2015). The contribution of additive genetic variation
407 to personality variation: heritability of personality. *Proceedings of the Royal Society B:
408 Biological Sciences*, 282, p.20142201.
- 409 Duckworth, R. A., & Kruuk, L. E. (2009). Evolution of genetic integration between dispersal
410 and colonization ability in a bird. *Evolution*, 63, 968–977.
- 411 Edgar, B.A. (2006). How flies get their size: genetics meets physiology. *Nature Reviews
412 Genetics*, 7, 907–916.
- 413 Edwards, A. C., Rollmann, S. M., Morgan, T. J., & Mackay, T. F. C. (2006). Quantitative
414 genomics of aggressive behavior in *Drosophila melanogaster*. *PLoS Genetics*, 2, p.e154.
- 415 Falconer, D. S., & Mackay, T. F. C. (1996). *Introduction to Quantitative Genetics*, 4th ed.
416 Pearson Education Limited, Essex.
- 417 Fouilloux, C.A., Fromhage, L., Valkonen, J.K., & Rojas, B. (2022). Size-dependent aggression
418 towards kin in a cannibalistic species. *Behavioral Ecology*, 33, 582–591.
- 419 Fox, J., & Weisberg, S. (2019). *An {R} companion to applied regression*. 3rd edition. Thousand
420 Oaks, Sage.
- 421 Frank, S. A. (2007). All of life is social. *Current Biology*, 17, R648–R650.
- 422 Fruciano, C. (2016). Measurement error in geometric morphometrics. *Development Genes and
423 Evolution*, 226, 139–158.
- 424 Gabry, J., & Mahr, T. (2024). bayesplot: Plotting for Bayesian Models. *R package version 1.11.1*,
425 <https://mc-stan.org/bayesplot/>
- 426 Gabry, J., & Veen, D. (2022). shinystan: interactive visual and numerical diagnostics and
427 posterior analysis for bayesian models. *R package version 2.6.0*. [https://CRAN.R-
428 project.org/package=shinystan](https://CRAN.R-project.org/package=shinystan)
- 429 Gammell, M. P., & Hardy, I. C. (2003). Contest duration: sizing up the opposition?. *Trends in
430 Ecology & Evolution*, 18, 491–493.
- 431 de Groot, C., Wijnhorst, R. E., Ratz, T., Murray, M., Araya-Ajoy, Y. G., Wright, J., &
432 Dingemanse, N. J. (2023). The importance of distinguishing individual differences in

- 433 ‘social impact’ versus ‘social responsiveness’ when quantifying indirect genetic effects on
434 the evolution of social plasticity. *Neuroscience & Biobehavioral Reviews*, 144, p.104996.
- 435 Han, C.S., & Dingemanse, N.J. (2017). Sex-dependent expression of behavioural genetic
436 architectures and the evolution of sexual dimorphism. *Proceedings of the Royal Society B: Biological Sciences*, 284, p.20171658.
- 438 Han, C. S., Tuni, C., Ulcik, J., & Dingemanse, N. J. (2018). Increased developmental density
439 decreases the magnitude of indirect genetic effects expressed during agonistic interactions
440 in an insect. *Evolution*, 72, 2435–2448.
- 441 Hofmann, H. A., & Stevenson, P. A. (2000). Flight restores fight in crickets. *Nature*, 403, 613–
442 613.
- 443 Jäger, H.Y., Han, C.S. & Dingemanse, N.J. (2019). Social experiences shape behavioral
444 individuality and within-individual stability. *Behavioral Ecology*, 30, 1012–1019.
- 445 Kent, C., Azanchi, R., Smith, B., Formosa, A., & Levine, J.D. (2008). Social context influences
446 chemical communication in *D. melanogaster* males. *Current Biology*, 18, 1384–1389.
- 447 Kessler, S., Elliott, G. R., Orenberg, E.K., & Barchas, J. D. (1977). A genetic analysis of
448 aggressive behavior in two strains of mice. *Behavior Genetics*, 7, 313–321.
- 449 Khazraie, K. and Campan, M. (1999). The role of prior agonistic experience in dominance
450 relationships in male crickets *Gryllus bimaculatus* (Orthoptera: Gryllidae). *Behavioural
451 Processes*, 44, 341–348.
- 452 Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain:body
453 size allometry. *Evolution*, 33:42–416.
- 454 Lande, R., & Arnold, S.J. (1983). The measurement of selection on correlated characters.
455 *Evolution*, 37, 1210–1226.
- 456 Lewandowski, D., Kurowicka, D., & Joe, H. (2009) Generating random correlation matrices
457 based on vines and extended onion method. *Journal of Multivariate Analysis*, 100, 1989–
458 2001.
- 459 Lynch, M., & Walsh, B. (1998). *Genetics and Analysis of Quantitative Traits*. Sunderland, MA
460 : Sinauer Associates.
- 461 Maynard Smith, J. (1982). *Evolution and the theory of games*. Cambridge University Press,
462 Cambridge.
- 463 McAdam, A.G., & Boutin, S. (2004). Maternal effects and the response to selection in red
464 squirrels. *Proceedings of the Royal Society of London. Series B: Biological Sciences*, 271,
465 75–79.
- 466 McAdam, A.G., Garant, D., & Wilson, A.J. (2014). The effects of others’ genes: maternal and
467 other indirect genetic effects. In: A. Charmantier, D. Garant, & L. E. B. Kruuk (Eds.),
468 *Quantitative genetics in the wild*. Oxford University Press.
- 469 McGlothlin, J.W., Moore, A.J., Wolf, J.B., & Brodie III, E.D. (2010). Interacting phenotypes
470 and the evolutionary process. III. Social evolution. *Evolution*, 64, 2558–2574.
- 471 McNamara, J.M., & Leimar, O. (2020). *Game theory in biology: concepts and frontiers*. Oxford
472 University Press, USA.
- 473 Mirth, C.K., & Riddiford, L.M. (2007). Size assessment and growth control: how adult size is
474 determined in insects. *Bioessays*, 29, 344–355.
- 475 Montiglio, P.O., Wey, T.W., Chang, A.T., Fogarty, S., & Sih, A. (2017). Correlational selection
476 on personality and social plasticity: morphology and social context determine behavioural

- 477 effects on mating success. *Journal of Animal Ecology*, 86, 213–226.
- 478 Moore, A.J., Brodie III, E.D., & Wolf, J.N. (1997). Interacting phenotypes and the evolutionary
479 process: I. Direct and indirect genetic effects of social interactions. *Evolution*, 51, 1352–
480 1362.
- 481 Mousseau, T.A., & Roff, D.A. (1989). Adaptation to seasonality in a cricket: patterns of
482 phenotypic and genotypic variation in body size and diapause expression along a cline in
483 season length. *Evolution*, 43, 1483–1496.
- 484 Natarajan D, de Vries H, Saaltink, D.J., de Boer, S.F., & Koolhaas, J.M. (2009). Delineation of
485 violence from functional aggression in mice: an ethological approach. *Behavior Genetics*,
486 39, 73–90
- 487 Nosil, P. (2002). Food fights in house crickets, *Acheta domesticus*, and the effects of body size
488 and hunger level. *Canadian Journal of Zoology*, 80, 409–417.
- 489 Nussey, D.H., Wilson, A.J., & Brommer, J. (2007). The evolutionary ecology of individual
490 phenotypic plasticity in wild populations. *Journal of Evolutionary Biology*, 20, 831–844.
- 491 Parker, G.A. (1974). Assessment strategy and the evolution of fighting behaviour. *Journal of
492 Theoretical Biology*, 47, 223–243.
- 493 Perez, A., Montiglio, P.O., Wey, T.W., & Sih, A. (2019). Male social plasticity influences
494 transient dynamics in the emergence of alternative mating systems in water striders.
495 *Behavioral Ecology*, 30, 1530–1538.
- 496 Phillips, J.A., Peacock, S.J., Bateman, A., Bartlett, M., Lewis, M.A., & Krkošek, M. (2018). An
497 asymmetric producer-scrounger game: body size and the social foraging behavior of coho
498 salmon. *Theoretical Ecology*, 11, 417–431.
- 499 Postma, E., & van Noordwijk, A. J. (2005). Genetic variation for clutch size in natural
500 populations of birds from a reaction norm perspective. *Ecology*, 86, 2344–2357.
- 501 R Core Team. (2021). *R: A Language and Environment for Statistical Computing*. R Foundation
502 for Statistical Computing. <http://www.R-project.org>
- 503 Ratz, T., Chechi, T. S., Dimopoulos, A. I., Sedlmair, S. D., & Tuni, C. (2024). Heatwaves inflict
504 reproductive but not survival costs to male insects. *Journal of Experimental Biology*, 227,
505 p.jeb246698.
- 506 Réale, D., Dingemanse, N. J., Kazem, A. J. N., & Wright, J. (2010). Evolutionary and ecological
507 approaches to the study of personality. *Philosophical Transactions of the Royal Society B:
508 Biological Sciences*, 365, 3937–3946.
- 509 Réale, D., Reader, S. M., Sol, D., McDougall, P. T., & Dingemanse, N. J. (2007). Integrating
510 animal temperament within ecology and evolution. *Biological Reviews*, 82, 291–318.
- 511 Reaney, L.T., Drayton, J.M., & Jennions, M.D., 2011. The role of body size and fighting
512 experience in predicting contest behaviour in the black field cricket, *Teleogryllus
513 commodus*. *Behavioral Ecology and Sociobiology*, 65, 217–225.
- 514 Rillich, J., Schildberger, K. and Stevenson, P.A. (2007). Assessment strategy of fighting crickets
515 revealed by manipulating information exchange. *Animal Behaviour*, 74, 823–836.
- 516 Rillich, J., & Stevenson, P.A. (2011). Winning fights induces hyperaggression via the action of
517 the biogenic amine octopamine in crickets. *PLoS One*, 6, p.e28891.
- 518 Santostefano, F., Moiron, M., Sánchez-Tójar, A., & Fisher, D.N. (2025). Indirect genetic effects
519 increase the heritable variation available to selection and are largest for behaviors: a meta-
520 analysis. *Evolution Letters*, 9, 89–104.

- 521 Santostefano, F., Wilson, A.J., Araya-Ajoy, Y.G., & Dingemanse, N.J. (2016). Interacting with
522 the enemy: indirect effects of personality on conspecific aggression in crickets. *Behavioral*
523 *Ecology*, 27, 1235–1246.
- 524 Santostefano, F., Wilson, A.J., Niemelä, P.T., & Dingemanse, N.J. (2017a). Behavioural
525 mediators of genetic life-history trade-offs: a test of the pace-of-life syndrome hypothesis
526 in field crickets. *Proceedings of the Royal Society B: Biological Sciences*, 284,
527 p.20171567.
- 528 Santostefano, F., Wilson, A.J., Niemelä, P.T., & Dingemanse, N.J. (2017b). Indirect genetic
529 effects: a key component of the genetic architecture of behaviour. *Scientific Reports*, 7,
530 p1–9.
- 531 Schuett, W., Tregenza, T., & Dall, S.R.X. (2010). Sexual selection and animal personality.
532 *Biological Reviews*, 85, 217–246.
- 533 Shackleton, M.A., Jennions, M.D., & Hunt, J. (2005). Fighting success and attractiveness as
534 predictors of male mating success in the black field cricket, *Teleogryllus commodus*: the
535 effectiveness of no-choice tests. *Behavioral Ecology & Sociobiology*, 58, 1–8.
- 536 Sih, A., Bell, A. M., & Johnson, J. C. (2004). Behavioral syndromes: an ecological and
537 evolutionary overview. *Trends in Ecology & Evolution*, 19, 372–378.
- 538 Simmons, L.W. (1986). Inter-male competition and mating success in the field cricket, *Gryllus*
539 *bimaculatus* (De Geer). *Animal Behaviour*, 34, 567–579.
- 540 Stan Development Team. (2022). RStan: the R interface to Stan. *R package version 2.21.5*.
541 <https://mc-stan.org>
- 542 Stirling, D.G., Réale, D., & Roff, D.A. (2002). Selection, structure and the heritability of
543 behaviour. *Journal of Evolutionary Biology*, 15, 277–289.
- 544 Strickland, K., Mitchell, D.J., Delmé, C., & Frère, C.H. (2021). Repeatability and heritability of
545 social reaction norms in a wild agamid lizard. *Evolution*, 75, 1953–1965.
- 546 Tello-Ramos, M.C., Branch, C.L., Kozlovsky, D.Y., Pitera, A.M., & Pravosudov, V.V. (2019).
547 Spatial memory and cognitive flexibility trade-offs: to be or not to be flexible, that is the
548 question. *Animal Behaviour*, 147, 129–136.
- 549 Trivers, R. (1985). *Social evolution*. Benjamin Cummings, Menlo Park.
- 550 Van Cleve, J., & Akçay, E. (2014). Pathways to social evolution: reciprocity, relatedness, and
551 synergy. *Evolution*, 68, 2245–2258.
- 552 Venables, W.N., & Ripley, B.D. (2002). *Modern applied statistics with S*. 4th edition. Springer,
553 New York.
- 554 Verbeek, M.E., Boon, A., & Drent, P.J. (1996). Exploration, aggressive behaviour and
555 dominance in pair-wise confrontations of juvenile male great tits. *Behaviour*, 133, 945–
556 963.
- 557 Walsh, B., & Blows, M.W. (2009). Abundant genetic variation + strong selection = multivariate
558 genetic constraints: a geometric view of adaptation. *Annual Review of Ecology, Evolution,*
559 *& Systematics*, 40, 41–59.
- 560 Westneat, D., & Fox, C.W. (2010). *Evolutionary behavioral ecology*. Oxford University Press.
- 561 Wickham, H. (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer, New York.
- 562 Wijnhorst, R.E., de Groot, C., Ajoy, Y.G.A., Wright, J., & Dingemanse, N.J. (2025).
563 Decomposing social interactions: a statistical method for estimating social impact and
564 social responsiveness. *EcoEvoRxiv*, <https://doi.org/10.32942/X2F65M>.

- 565 Wilke, C.O. (2020). cowplot: streamlined plot theme and plot annotations for ‘ggplot2’. *R*
566 package version 1.1.1. <https://CRAN.R-project.org/package=cowplot>
- 567 Wilson, A.J., Gelin, U., Perron, M.C., & Réale, D. (2009). Indirect genetic effects and the
568 evolution of aggression in a vertebrate system. *Proceedings of the Royal Society B: Biological Sciences*, 276, 533541.
- 570 Wilson, A.J., Morrissey, M.B., Adams, M.J., Walling, C.A., Guinness, F.E., Pemberton, J.M.,
571 Clutton-Brock, T.H., & Kruuk, L.E.B. (2011). Indirect genetics effects and evolutionary
572 constraint: an analysis of social dominance in red deer, *Cervus elaphus*. *Journal of Evolutionary Biology*, 24, 772–783.
- 574 Wolf, J.B., Brodie III, E.D., Cheverud, J. M., A. J. Moore, & Wade, M. J. (1998). Evolutionary
575 consequences of indirect genetic effects. *Trends in Ecology & Evolution*, 13, 64–69.
- 576 Wolf, M., Van Doorn, G.S., Weissing, F.J. (2008). Evolutionary emergence of responsive and
577 unresponsive personalities. *Proceedings of the National Academy of Sciences*, 105, 15825–15830.
- 579 Wolf, M., Van Doorn, G.S., Weissing, F.J. (2011). On the coevolution of social responsiveness
580 and behavioural consistency. *Proceedings of the Royal Society B: Biological Sciences*,
581 278, 440–448.