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This study presents a fixed-parameter pipeline designed to support reproducible embedding of
frame-level representations of multiple passerine vocalizations within shared low-dimensional
spaces. Three passerine species are considered: Eurasian Wren, Tree Pipit and Common Chaffinch,
with a selection of four individuals for each species group. Vocalization frames from each species
group are mapped into a single three-dimensional coordinate system to allow comparison between
individuals while preserving temporal continuity. The pipeline operates under a controlled
protocol with an unsupervised, geometry-first exploratory approach. Two feature representations
are used: MFCC (40 coefficients with delta and delta-delta) and 80-bin chroma vectors. The two
feature sets provide complementary analytical lenses on the signal, ranging from spectral-envelope
dynamics to relative frequency organization, without imposing discrete musical categories. The
dimensionality-reduction process features a PCA-20 preconditioning step followed by a UMAP
embedding, resulting in a total of six manifolds (two feature spaces × three species). The
resulting embeddings are visualized as continuous trajectories in two separate layouts: a view
with individual identity separated by solid coloring and another augmented view with descriptor
overlays as color coding, applied post-embedding. The descriptors include spectral centroid and
a chroma-derived concentration measure (Chroma Energy Concentration or CEC, introduced in
this work), visualized as scalar fields on the manifold geometry. A supplementary case study
demonstrates event-level backtracking from localized manifold regions to the underlying audio,
enabling identification of recurring vocal events concentrated in specific embedding regions. The
framework operates independently of labeling or categorization: it provides a descriptive interface
intended to complement spectrogram-based analysis, supporting qualitative comparison and
hypothesis generation.

1 Introduction

Animal vocalizations form a highly diverse and multi-faceted acoustic domain. In order to analyze
it, the discipline of bioacoustics has developed and established practices relying on spectrogram
inspection with the use of acoustic descriptors such as fundamental frequency, bandwidth and
measures of spectral complexity[1]. These approaches created vast catalogs of repertoires and
classifications, and they have been widely useful for purposes such as species identification and
comparative behavioral studies[2, 3]. At the same time, it is common practice to summarize
complex vocalizations using descriptor sets and segment-level measurements, leaving their per-
frame structure only indirectly accessible and, in some cases, less systematically explored. Recent
unsupervised pipelines address this by constructing frame-level representations and latent spaces
for exploratory analysis[4].

From a purely acoustical standpoint, reducing a continuous, highly structured signal into an
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array of discrete numbers tends to emphasize certain aspects of that signal while compressing
others[5, 6]. As a result, its fine-grained spectral and temporal evolution may be difficult to
inspect as a continuous object, and it could become a sensible limitation when the aim is not
simply to characterize a single recording, but to compare vocalizations across individuals while
preserving continuity, revealing recurrent motifs, and making differences visually assessable
without forcing early interpretation.

Recent advancements in computational methods provide new opportunities to reorganize such
frame-level detail into a coherent geometric space. Dimensionality-reduction techniques such
as UMAP[7] (and related approaches such as t-SNE[8]) enable embedding of high-dimensional
vectors into low-dimensional spaces with the aim of preserving local neighborhood relations.
Applying such mappings to time-ordered sequences may let continuous trajectories emerge, with
spatial proximities reflecting similarities in acoustic structure. In bioacoustics, related approaches
have increasingly used latent or embedded representations for visualization, comparison, and
exploration of vocal repertoires[9, 10, 4]. However, their use to compare multiple individuals
within a shared geometric space remains less standardized: normalization choices, fitting strategies,
and interpretive conventions may vary between implementations[4, 11].

This study develops and documents a fixed-parameter analysis pipeline for mapping frame-
level acoustic features into continuous, low-dimensional trajectories, with extensive parameter
description to support reproducibility. The exploratory work unfolds through a case study
covering three different passerine species, each one including four different individuals. Frame-
level representations of their vocalizations are embedded into a common three-dimensional space
using two complementary feature sets: MFCC (timbral structure)[12] and chroma vectors (octave-
wrapped log-frequency amplitude profiles, 80 bins per octave)[6, 13]. The resulting manifolds are
presented as explicitly exploratory representations and the vocalizations are treated as unlabeled
acoustic signals. No behavioral patterns are inferred, nor new taxonomic groupings are proposed;
the focus is instead on documenting the geometric consistencies emerging between individuals,
outlining a visual framework that may support future research in the investigation of vocal
structure[4].

By making frame-level organization comparable across individuals and feature spaces, this
framework is intended to support future work in hypothesis generation, targeted annotation, and
repertoire-level investigation of vocal structure. In this sense, the present study positions an
analytical acoustic framework within a bioacoustic context with a methodological and descriptive
focus: its low-dimensional embeddings are proposed as an additional inspection interface alongside
established spectrogram-based practices, providing an analytical pipeline that could integrate
naturally into existing bioacoustic workflows.

2 Methods

The study analyzes vocalizations from three different passerine species: Tree Pipit (Anthus
trivialis), Eurasian Wren (Troglodytes troglodytes), and Common Chaffinch (Fringilla coelebs).
Each species group contains a selection of four different individuals. The three species present
distinct song organizations, ranging from rapid broadband syllable sequences to more tonal,
phrase like patterns: overall, they provide a compact test set to evaluate the pipeline across
different vocal morphologies, while keeping the design simple and reproducible. Moreover,
Eurasian Wren, Tree Pipit and Common Chaffinch are widely recorded in Europe and have
substantial publicly available material, which facilitates the selection of multiple individuals with
consistent recording metadata and sufficiently long high-quality segments.
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All twelve recordings come from the Xeno-canto database[14]. The selection criteria were based
on an adequate signal-to-noise ratio, consistent and comparable vocalization patterns and a
recording length sufficient to edit a 60 s sequence of vocalizations for each recording. These
criteria were applied independently of the geographical origin of the birds, resulting in a set of
individuals distributed across different regions of Europe. All selected excerpts correspond to
song-type vocalizations as labeled in the source archive. All recording metadata and sources are
provided in Supplementary Tables S1–S3.

Recordings
3 species groups

(4 individuals per species)

Preprocessing
Denoising (RX11) → contour-based isolation

→ standardized 60 s sequence

Per-species frame concatenation
(frames from 4 individuals)

MFCC features
40 + ∆ + ∆∆

(120D)

Chroma features
80-EDO, L1-normalized

(80D)

Scaling / standardization Scaling / standardization

PCA reduction
20D

PCA reduction
20D

UMAP-3D fit per species
(frames from 4 individuals)
(distance metric: Euclidean)

UMAP-3D fit per species
(frames from 4 individuals)

(distance metric: cosine)

UMAP coordinates per frame
(time-ordered)

→ per-recording trajectories

UMAP coordinates per frame
(time-ordered)

→ per-recording trajectories

Visualization overlays
RMS → point size

centroid / CEC → color

Visualization overlays
RMS → point size

centroid / CEC → color

Descriptor computation
RMS, spectral centroid
CEC (chroma-derived)

Rendered manifold visualizations
(MFCC and chroma figures)

MFCC branch Chroma branch

Figure 1: Overview of the analysis pipeline. For each species, frames from four individuals are concatenated to fit shared
UMAP embeddings separately for MFCC and chroma features. Embedded frames form time-ordered trajectories per
recording. In parallel, per-frame descriptors are computed (RMS and spectral centroid from audio frames; CEC from chroma
vectors) and used only as visualization overlays (point size and color), without entering the embedding pipeline.
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2.1 Audio preprocessing

Given the heterogeneous field conditions (different recordists, microphones and acoustic environ-
ments) variability in spectral coloration and signal-to-noise ratio must be taken into account,
especially for timbre-based descriptors such as MFCC. To mitigate these effects, a standardized
multistage denoising and signal isolation pipeline was applied to all the recordings, with the
aim of reducing background noise and improving spectral clarity to facilitate comparison across
recordings. Nevertheless, this process cannot fully eliminate all biases related to the recording
conditions.

2.1.1 Denoising procedure

The denoising procedure was conceived as a standardized preprocessing step rather than a signal
restoration process. All parameters were defined prior to analysis and applied identically to
all recordings, without any file-specific adjustment. This choice was made in order to preserve
comparability between recordings, rather than to maximize noise suppression for individual files.

The same preprocessing pipeline was applied to all the recordings, and it was implemented
using a spectral denoising workflow on iZotope RX 11. It consisted of five different spectral
denoising passes (two using adaptive noise prints and three with manual noise profiles). Denoising
passes used both the “Advanced” and "Advanced+Extreme" algorithm mode with FFT window
length of 50 ms and multi-resolution enabled, and the parameters were set in order to ensure a
balance between noise suppression and preservation of the harmonic and noisy components of
the vocalizations. Full parametrization for the denoising procedure is provided in Supplementary
Table S4.

2.1.2 Sensitivity checks

In order to verify that the denoising process did not alter the spectral structure, two comple-
mentary checks were performed. First, a batch of SNR-proxy metrics was computed on the
trimmed raw segments to determine the baseline signal-background separability across recordings
(Supplementary Table S5). Second, denoising sensitivity was quantified by comparing MFCC
and chroma features extracted from the denoised audio, against the corresponding raw segments
evaluated on the same frame set, using the same frame indices defined by amplitude gating
on raw frame-RMS (frames in the upper 30% and 70% of the raw frame-RMS distribution;
Supplementary Tables S6–S7). The 30% gate emphasizes the highest-RMS vocalization frames,
whereas the 70% gate includes a broader set of lower-RMS frames and therefore provides a
more stringent test against residual background influence. Sensitivity for MFCC and chroma is
reported through cosine similarity statistics (mean with 5th percentile in parentheses) along with
descriptor-level shifts in spectral centroid, bandwidth and CEC (a chroma-derived descriptor to
be discussed later).

The analysis was performed on two denoised variants for each recording: full5, applying all the
denoising passes in order, and noP4, applying the same chain while omitting pass 4, which was
the most aggressive pass in the sequence (highest reduction strength and "Advanced+Extreme"
algorithm settings; Supplementary Table S4). Results of these checks support that the overall
structure of both feature spaces was preserved by the denoising procedure, and that the subsequent
manifold organization is not determined by preprocessing artifacts.

4



2.1.3 Signal isolation and audio standardization

Following the denoising process, the final step consisted of signal isolation through manual tracing
of its time-frequency contours for the vocalizations on the spectrogram, replacing the non-vocal
regions with digital silence to remove residual background activity. This operation was strictly
limited to vocal contours masking and did not modify the waveform within the retained vocal
regions, nor the internal spectral or temporal structure of the signal.

After contour-based isolation, a single continuous interval of its isolated vocalizations was used to
construct a standardized 60 s sequence, which served as the input for all subsequent frame-level
analyses. No discontinuous selection or montage of preferred events was performed. The time
ranges used for each recording are reported in Supplementary Tables S1–S3. The end result
is a uniformly preprocessed audio segment, suitable for frame-level analysis and ensuring a
comparable contribution from each individual to the embedding process. Supplementary figure
S7 provides an example of the described workflow, including spectrogram views of the various
denoising stages and the final standardized 60 s excerpt.

2.2 Feature computation

2.2.1 MFCC

Mel-Frequency Cepstral Coefficients (MFCC) were used because of their frame-level timbral
information and for the compact description of spectral envelope shape they provide, with some
reduced sensitivity to overall gain compared to raw spectra[12, 15].

Every audio signal was converted into a sequence of short-time frames with a window size of
4096 samples and a hop size of 384 samples, and those same parameters were applied throughout
all the recordings. For each frame, 40 coefficients were computed together with their first-
and second-order temporal derivatives (delta and delta-delta), in order to provide a detailed
description of the spectral envelope. The resulting 120-dimensional feature space makes it
possible for the embedding algorithms to evaluate both the instantaneous spectral shape and
its local temporal evolution. Full MFCC parametrization (window type, mel bands, fmin/fmax,
pre-emphasis, lifter, scaling) is listed in Supplementary Table S8.

2.2.2 Chroma 80-bins

Concurrently, each frame was also represented by an 80-bin chroma vector computed over
an 80 equal-division-of-the-octave (80-EDO) grid[6, 13]. Unlike the standard 12-bin chroma
representation commonly used in musical analysis, this higher resolution setting was adopted to
better capture the fine-grained frequency variations and micro-interval structure characteristic
of animal vocalizations, without imposing assumptions of harmonic organization or discrete
categories.

The octave-folding here is used as a pragmatic normalization emphasizing relative frequency
organization and frequency-modulation patterns, while reducing sensitivity to absolute frequency
shifts across individuals and recording conditions. It was conceived as a modeling choice to
facilitate cross-individual comparison under heterogeneous recording environments. It should
not be interpreted as a perceptual or production-based tuning system, but rather as a high
resolution, octave-normalized sampling providing a continuous representation of octave-folded
spectral amplitude distribution across frequency-class bins.
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The chroma vectors were normalized by their L1 norm, so that only the relative chroma-bin
amplitude distribution (and not the global amplitude) can be taken into account in the embeddings.
The same window and hop sizes were applied to all recordings (respectively 4096 and 384 samples,
consistent with the MFCC feature computation).

Octave folding necessarily removes absolute frequency information, implying that this repre-
sentation should be used as a complementary view rather than a replacement for absolute
frequency descriptors. The complete parametrization for chroma (80-EDO mapping, smoothing,
normalization, tuning reference, etc.) is listed in Supplementary Table S8.

Complementary roles of feature sets. By computing both MFCC-based and chroma-
based embeddings for each vocalization, it was possible to enable two complementary acoustic
perspectives for each recording. MFCC features provide a coherent description of timbral
structure (reflecting changes in spectral envelope, noise-related components and short-term
temporal modulation), while microtonal chroma features provide an octave-normalized view
capturing how amplitude is distributed across frequency bins (after octave folding) and how that
distribution evolves over time.

In short, they reflect two distinct yet complementary aspects that make up the signal. Moreover,
their reduced sensitivity to absolute amplitude provides a reasonable detachment from the specific
recording conditions of each individual audio, mitigating recording-related bias. Additional
stabilization is achieved through an intermediate computation step.

2.3 PCA 20-dimensional reduction

Between features computation and non-linear embedding an intermediate dimensionality-reduction
step was taken, consisting of the reduction to a Principal Component Analysis (PCA) 20-
dimensional space. This step was motivated by two main considerations.

First, as previously stated, the recordings are of heterogeneous nature, coming from differ-
ent microphones and distances, with different noise floors and spectral coloration. PCA was
utilized to concentrate the dominant modes of variation into orthogonal components and to
reduce redundancy and small amplitude variation that can destabilize subsequent neighborhood-
based embeddings; in this sense, it was intended as a preconditioning stage rather than an
information-maximizing compression step. Secondly, given the sensitivity of UMAP to local
noise and redundant dimensions, a 20-dimensional PCA reduction can be viewed as a form of
smoothing/regularization step in feature space.

2.3.1 Choice of 20 dimensions

The choice of 20 components for the reduction in dimensionality was done as a practical
compromise observed across datasets: PCA-20 preserved an average 55.83% variance retention
for MFCC features and 86.19% for chroma features (see Supplementary Table S9 for variance
retention values with PCA-15/20/30). The lower retention for MFCC is expected, given the
higher dimensionality and correlation structure determined by the introduction of its derivative
delta and delta-delta features which distributed variance across a larger number of components.
In this pipeline, the retention of the dominant modes of variation and the reduction of variability
at fine scale is intended to obtain more interpretable shared embeddings for the purposes of this
study.
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2.3.2 Uniform protocol across MFCC and chroma branches

It is also important to note that the same PCA applied to very different feature sets like MFCC
and chroma was not been done with the purpose to make such features comparable to each other,
but rather to make each of them internally stable for UMAP embedding under a single controlled
protocol. Also, the choice of applying a 20-dimensional reduction to both feature sets relies on
the principle that in a preliminary exploratory study a common compromise would be better
than having two separately tuned pipelines.

All those reasons combined make a 20-dimensional PCA reduction a reasonable compromise
choice in order to provide a common intermediate geometry before UMAP embedding. This
procedure was uniformly applied to all recordings for the creation of such intermediate feature
space before UMAP embedding, both for MFCC and chroma branches of the pipeline.

2.4 UMAP embedding

Uniform Manifold Approximation and Projection (UMAP) was selected as the non-linear em-
bedding method for this work. Animal vocalizations are complex signals evolving continuously
over time, and the embeddings produced by UMAP may exhibit continuous trajectories, since
it is designed to preserve local neighborhoods and often yields extended coherent structures in
low-dimensional space. It can also handle a large number of frames with practical computational
cost, and allows fine-tuning and control over neighborhood scale and minimum distance con-
straints through its hyperparameters[7]. For these reasons, UMAP was deemed suitable for the
purposes of the present study.

2.4.1 Shared manifolds construction

As noted previously, a set of four different individual recordings was processed to compute
MFCC and chroma features, with a subsequent intermediate 20-dimensional PCA reduction.
Subsequently, a shared embedding was constructed by concatenating all the resulting frames
from the various individuals into a single feature matrix: one for MFCC, one for chroma. A
UMAP model was fitted over this concatenated dataset, in order to create a three-dimensional
common manifold for each species group and feature type[4]. Frames retained the recording IDs,
allowing recovery of the trajectories of each individual within the shared geometric space.

UMAP was run with n_neighbors = 30, min_dist = 0.1, n_components = 3, and random_state
= 42. For MFCC embeddings, the Euclidean metric was used; for chroma embeddings, the cosine
metric was applied. All embeddings used a shared scaling and normalization procedure (including
a global unit-cube normalization) as specified in Supplementary Table S8, which reports the full
parameter set and command-line arguments.

No Procrustes alignment or post-hoc rotation was applied to the embeddings.

2.4.2 Cosine and Euclidean metrics

As a final note, a brief explanation is provided about the choice of Euclidean distance for the
MFCC embeddings and cosine for the chroma ones, since it is the only intentional divergence
in an otherwise parameter-shared pipeline. As MFCC vectors encode the spectral envelope
shape and its temporal evolution, Euclidean metrics were used to outline the absolute differences
between coefficient dimensions. In contrast, chroma vectors are L1-normalized and represent an
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octave-folded amplitude distribution across frequency-class bins[6], so their relative orientation
carries more importance than absolute magnitude; therefore, the cosine distance provides a
proper metric to compare chroma orientations in feature space. Such choices were considered
reasonable for the feature representation according to their intrinsic structure. Alternative
distance metrics and other parameter configurations were explored in the present work, as the
goal was to maintain methodological consistency rather than parameter optimization.

2.5 Spectral descriptors

In parallel with the dimensional reduction steps described above, two descriptors were computed
and used exclusively for visualization purposes: frame-level amplitude (RMS), used to modulate
point size in the manifold renderings, and spectral centroid, used as a scalar field color coding to
provide an interpretable frequency-balance anchor.

In addition, a chroma-derived descriptor termed Chroma Energy Concentration (CEC) was
computed from the per-frame chroma vector as a measure of concentration in the chroma-bin
amplitude distribution (ratio between the maximum chroma bin and the sum of all bins); it is
used only as a scalar field visualization and is discussed further in the Results section as well as
in Supplementary Materials.

3 Results

As a result of the procedure described above, a total of six shared manifolds (two feature sets
across three species) were computed, each containing four individual trajectories evolving within a
common low-dimensional space, allowing their visual comparison within the embedded geometry.
Each trajectory consists of a sequence of points ordered in time, representing the evolution of the
vocalization. Proximity and commonly traversed paths can be read as shared acoustic regimes
between individuals, whereas excursions or branching departures reflect shifts in the feature
profile over time.

Visualization of the manifolds was obtained by constructing three-dimensional geometric repre-
sentations from the embedded coordinate data. In these models, each frame is represented by
a point whose size is modulated by the RMS amplitude of the signal. Amplitude scaling was
applied to harmonize point-size ranges across individuals; all relative amplitude ratios within
each recording have been preserved, and no amplitude information was used in the embedding
process. Solid coloring differentiates the individual trajectories within each manifold.

In addition to solid-color representations, a second set of three-dimensional visualizations was
constructed by overlaying two scalar descriptors on the manifolds. Spectral centroid was included
as a familiar visual reference for spectral balance, color-coded on the low-dimensional geometry.
Chroma energy concentration (CEC), introduced in this work, is shown as a complementary
scalar field quantifying the amplitude concentration (after octave folding) in the chroma-bin
amplitude distribution, computed as the ratio of the maximum chroma-bin amplitude to the
sum of all bins. These scalar fields are applied after the embedding process and therefore do not
influence the manifold geometry.

In the following, a systematic paired description of the MFCC-based and chroma-based em-
beddings of each species group is provided, to facilitate comparison between the two feature
representations and to allow a consistent cross-species comparison under uniform visualization
settings. The descriptions that follow are not intended to support functional or behavioral inter-
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pretation,nor do they indicate any inferences at the population level, given the limited sample
size; all observed patterns are reported as instances of the general behavior of the embedding
framework rather than defining characteristics of the examined species.

3.1 Eurasian Wren group

Figure 2: Eurasian Wren group. Paired low-dimensional manifolds computed from frame-level features for four
individuals (solid color trajectories; legend reports recording IDs). Left: MFCC-based embedding. Right: chroma-based
embedding. Each frame is rendered as a point in the embedded space and ordered in time along the trajectory; point size is
modulated by the RMS amplitude of the signal for visualization (relative amplitude dynamics are preserved within each
recording and harmonized across individuals).

MFCC-based embedding. The MFCC-based manifold for the Eurasian Wren group displays
a structure that is highly articulated and spatially extended (Fig. 2, left), composed of multiple
intertwined strands and several loop-like excursions. The internal regions of the embedding show
an interconnected core traversed by the various individuals. Each trajectory develops differently
elongated peripheral trajectories: they branch away from and, in several cases, rejoin the core.
Many loop-like structures from different individuals occur in proximity within the shared space,
and areas of partial overlap are observed on some of the strands characterizing the geometry.

Chroma-based embedding. The chroma-based embedding for the Eurasian Wren group
reveals a geometry that differs substantially from its MFCC-based counterpart. It exhibits an
apparently cohesive three-dimensional organization characterized by a surface-like structure with
a pronounced central void, resembling a hollow shell or ring (Fig. 2, right). The four trajectories
show substantial overlap across the manifold, with no single region exclusively occupied by one
recording, although local density differences and peripheral protrusions are visible.
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3.2 Tree Pipit group

Figure 3: Paired MFCC-based (left) and chroma-based (right) manifolds for four individuals, displayed using the same
conventions as Fig. 2. The chroma-based embedding is further examined in the Supplementary case study (Supplementary
section S3), which demonstrates a backtracking workflow from geometry to signal, recovering recurring acoustic events from
a localized region of the manifold.

MFCC-based embedding. The MFCC-based embedding for the Tree Pipit group forms a
broad, interconnected structure with a dense central region and elongated exterior excursions
(Fig. 3, left). The four individual trajectories overlap substantially through the core of the
manifold, while several peripheral arcs are preferentially occupied by specific individuals. Overall,
the geometry is continuous and strand-like, with repeated returns to common paths and several
long-range deviations that expand the occupied volume.

Chroma-based embedding. The chroma-based manifold yields a more globally coherent
geometry dominated by a curved ring/shell-like structure with four peripheral lobes (Fig. 3,
right). Most trajectories co-occupy a common surface, and differences between individuals appear
primarily as local departures rather than separate clusters.
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3.3 Common Chaffinch group

Figure 4: Common Chaffinch group. Paired MFCC-based (left) and chroma-based (right) manifolds for four individuals,
displayed using the same conventions as Fig. 2.

MFCC-based embeddings. The MFCC-based embedding for Common Chaffinch forms
a loop-rich structure with a densely interwoven interior, where the trajectories extensively
overlap (Fig. 4, left). Multiple peripheral loop excursions extend outward and are, in places,
preferentially occupied by specific trajectories, indicating localized individual bias within an
otherwise continuous manifold.

Chroma-based embeddings. The chroma-based embedding (Fig. 4, right) forms a cohesive,
bounded envelope. Strong intermixing is observed across the trajectories. Individual differences
appear mainly as localized density concentrations and peripheral protrusions rather than separable
regions. In the displayed orientation, a small detached loop-like excursion is prominently occupied
by one trajectory, while the remainder of the manifold remains broadly shared.

3.4 Spectral descriptors as scalar fields

In the following visualizations, additional layers of information are applied to the manifolds by
mapping descriptor values as color coding for each point, while individual identity is intentionally
collapsed. Instead, a single spatial field is created that highlights the descriptor value distribution
along the geometries of the embeddings.

Two descriptors were employed: spectral centroid, a widely used measure of the frequency-
weighted center of mass of the spectrum, provides a familiar reference and a visual anchor for how
spectral balance shifts along the trajectories; chroma energy concentration (CEC) is provided as
a complementary view, quantifying how strongly chroma-bin amplitudes are concentrated within
the octave-folded representation: higher values indicate a more concentrated chroma profile
(greater concentration into fewer bins), while lower values reflect a more distributed profile. Both
descriptors are displayed as continuous scalar fields shaped by the geometry of the embedding.
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In order to maintain consistency and comparability, fixed global scales were used throughout
all visualizations: spectral centroid is displayed over a 2–9 kHz range and CEC over a 0–0.6
range. These ranges were selected to encompass the full distribution of values observed across all
individuals and species included in the study, and are applied uniformly in both the main figures
and in the descriptor visualizations present in the additional materials.

Figure 5: MFCC-based (left) and chroma-based (right, 80-EDO) manifolds colored by spectral centroid (top, 2–9 kHz) and
chroma energy concentration (CEC; bottom, 0–0.6). Individual identity is collapsed to emphasize descriptor distributions as
continuous scalar fields.

Spectral centroid. Applying spectral centroid as a scalar field to the MFCC-based and chroma-
based manifolds of the Eurasian Wren group yields structured, spatially coherent gradients across
both embedding geometries (Fig. 5, top row). In the MFCC-based manifold (Fig. 5, top left),
elevated centroid values concentrate within the densest region of the embedding and extend along
several major arcs departing from it, while lower values occupy broad portions of the remaining
trajectories, producing smooth transitions along the manifold paths.

In the chroma-based manifold (Fig. 5, top right), centroid values exhibit a clear large-scale
anisotropy around the shell-like geometry: higher values are concentrated along a subset of
boundary arcs (notably on the left and upper portions in the displayed orientation), whereas
lower values dominate the opposite side and the lower extension, forming gradual gradients
around the manifold.

Chroma energy concentration. Chroma energy concentration (CEC) applied as a scalar
field highlights a different organization (Fig. 5, bottom row). In the MFCC-based embedding
(Fig. 5, bottom left), higher CEC values occur as localized patches and short segments along
selected trajectories, while most extended loops and peripheral excursions remain comparatively
low. In the chroma-based embedding (Fig. 5, bottom right), elevated CEC values are more
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spatially constrained and tend to occur along specific boundary arcs and folded regions, with the
majority of the manifold showing lower CEC values.

Overall, these scalar fields reveal complementary distributions across the same geometries:
spectral centroid varies smoothly at broad spatial scales, whereas CEC appears more intermittent
and localized, with both patterns shaped by the different configurations of the MFCC-based and
chroma-based low-dimensional spaces.

3.5 Results extensions in the Supplementary Materials

The Supplementary Materials provide additional visualizations and worked examples for com-
pleteness and for qualitative inspection. These items document the analysis workflow and the
outputs of the fixed-parameter pipeline in greater detail, without extending the main Results
section.

3.5.1 Additional descriptor overlays

In addition to the descriptor-coated views of the Eurasian Wren group illustrated above, the
Supplementary Materials provide additional descriptor overlays for the two remaining groups
(Supplementary section S2, Fig. S1–S2). These renderings support visual examination of descriptor
distributions across the shared geometries under the same fixed global scales (Fig. S3). These
views are constructed post-embedding and do not influence the computed manifold geometries.

3.5.2 Supplementary case study

A supplementary case study focused on the Tree Pipit group demonstrates a backtracking
workflow from geometry to signal (Supplementary section S3, Fig. S4–S6, Table S10). While the
Results section focused on describing the manifold geometries, this analysis provides a concrete
example of how shared embeddings can be used as a practical inspection interface. Here, a
compact region of the chroma-based embedding was identified by qualitative inspection of the
geometry and its descriptor overlays: backtracking from the region of interest to the audio signal
recovered a set of 17 short syllable events, recurring across individuals and occurring in two
consistent frequency regions.

3.5.3 Supplementary videos

Supplementary Videos V1–V3 provide multi-angle animated views to complement the static
figures. The videos include both solid-color, descriptor-coated views, and a detail view of the
region of interest (ROI) used in the Supplementary case study, together with the corresponding
trajectory segments of the recovered acoustic events.
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4 Discussion

4.1 Low-dimensional manifolds as exploratory representations

4.1.1 Fixed-parameter shared embeddings

This study presented a fixed-parameter pipeline for mapping frame-level representations of passer-
ine vocalizations into shared low-dimensional spaces, with extensive parameter documentation
to support reproducibility. Three distinct species groups were considered: for each species,
frames from four individuals are projected into a single coordinate system under a fixed protocol
designed to preserve temporal continuity and stable geometry between individuals. The pipeline
is deliberately non-optimized and non-categorical: neither supervised labeling nor any parameter
tuning specific to individual recordings or species were used in the process.

4.1.2 Relation to embedding-based bioacoustics

Related embedding-based approaches have been used to organize and visualize animal vocaliza-
tions, often through learned or spectrogram-derived representations, but conventions about the
shared space and interpretive framing vary between studies [9, 4, 10]. The present framework
differs in that it does not learn a representation: it embeds fixed, interpretable frame-level features
under a transparent protocol with fixed parameters, prioritizing geometry-first comparison across
individuals.

4.1.3 Exploratory scope

The resulting manifolds should be considered as exploratory representations. They do not
constitute or define any sort of classification, taxonomy or model of vocal production; rather,
they offer a coherent geometric view of how acoustic features evolve, represented as continuous
trajectories evolving in low-dimensional space. In this perspective, they act as a descriptive
interface to inspect the high-dimensional space of acoustic features, complementing traditional
spectrogram-based analysis rather than replacing it.

4.2 Complementary roles of MFCC and chroma feature spaces

Across all species considered, MFCC and chroma-based embeddings produced qualitatively
different geometries, despite being generated using the same fixed-parameter pipeline. This
controlled dual-representation design provided two different views of each recording.

MFCC-based manifolds produced articulated and often filamentary geometries, emphasizing
variations in spectral envelope, broadband structure and temporal modulation. Chroma-based
manifolds instead exhibited more compact geometries overall, ranging from shell-like shapes to
more folded organizations, highlighting octave-folded amplitude distribution across frequency-class
bins.

Such intrinsic differences between these representations are the outcome of two distinct analytical
lenses applied to the same signal, revealing aspects of it which can be considered as complementary
rather than hierarchical.
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4.3 Inter-individual consistency in the shared manifolds

The shared embeddings enabled a visual inspection of the inter-individual consistency in embedded
vocalizations within a single shared space, without relying on specific similarity scoring or
classification objectives. It was observed how the embeddings captured a common acoustic
structure with the individual trajectories occupying overlapping regions of low-dimensional space;
at the same time, the trajectories retained distinct paths for every individual. This balance
between correspondence and differentiation suggests that such shared manifold constructions
could be useful for exploratory comparisons of individuals, populations or recordings contexts,
while remaining agnostic to functional or biological interpretations[4, 11].

4.4 Descriptor overlays as scalar fields on manifolds

4.4.1 Overlays as post-hoc data layers

Overlaying spectral descriptors as color-coded scalar fields onto the embedded manifolds illustrates
how additional layers of information can be integrated into the framework, without influencing
the embedding process. Across feature spaces, they were applied as a color coating over the
low-dimensional geometry, highlighting patterns or specific subsets of frames without inducing
clustering or reorganization of the embedding. Although the spatial distribution of descriptor
values across the embeddings of the examined species groups cannot be considered an indicator
of function or vocal strategy in itself, it can nevertheless be considered as a further data layer
that can be inspected alongside the manifold structures.

4.4.2 Chroma Energy Concentration

Notably, chroma energy concentration (CEC) was introduced in this study, defined per-frame as
the ratio between the maximum chroma-bin amplitude and the chroma-sum. It quantifies how
concentrated the chroma-bin amplitude distribution is within the chroma representation: higher
values indicate dominance by a narrow subset of bins, while lower values reflect a pattern more
evenly spread through the chroma profile. CEC is used here as a heuristic measure of concentration
rather than as an unequivocal indicator of narrowband, tonal emissions; the Supplementary
case study (Supplementary section S3) provides an example of its use in complementarity with
spectral centroid, where their joint inspection on the Tree Pipit chroma-based manifold geometry
supported identification and comparison of concentrated events across different frequency regions.
In addition, chroma features exhibited consistently high cosine similarity in the denoising
sensitivity checks (Supplementary table S6–S7), complementing the MFCC representation with a
feature space that is relatively insensitive to preprocessing operations.

4.4.3 Decoupling embedding geometry from descriptor visualization

The separation between manifold construction and descriptor visualization is central to the
framework and is implemented by design. Descriptor overlays are computed separately and
applied after the embedding process; this decoupling provides an immediate and intuitive view
of how the selected values vary across the geometry. While spectral centroid and CEC were
used here as practical examples, it is possible to apply virtually any scalar descriptor, manually
defined annotations, or any frame-aligned sets of values derived from external analyses.
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4.5 Methodological considerations and limitations

The present study is intentionally scoped as a small, exploratory case study with three species
groups of four individuals each. It was designed to document the behavior of a shared-embedding
pipeline rather than to support statistical generalizations, and there are limitations that must be
acknowledged.

4.5.1 Fixed parameters and lack of optimization

First, the specific choice of embedding parameters, intermediate dimensionality reduction and
distance metrics was intended as a common controlled compromise rather than an optimized
configuration. While additional parameter exploration could have yielded alternative geometries,
this study prioritized reproducibility and comparability between species.

4.5.2 Compressed audio and codec artifacts

Secondly, a number of recordings (8 out of 12, the remainder in WAV format) were available only
in MP3 format. Given the passerine material analyzed here, the most salient spectral content
lies in the mid-frequency range, so it is less likely for high-frequency roll-off to be a dominant
factor in the resulting embeddings; however, other codec-dependent artifacts (e.g., quantization
noise shaping, transient smearing) may still affect fine spectral structure[16].

4.5.3 Recording conditions and residual confounds

Although a uniform process of denoising, sensitivity checks, and contour-based isolation has
been applied throughout all the audio material, variability in recording conditions remains a
potential source of bias that cannot be fully eliminated. Standardized preprocessing may not
fully remove condition-specific signatures (habitat background, microphone/distance effects) that
can influence computational analyses; prior work on acoustic individual identification highlights
the importance of explicitly testing for such confounding effects when interpreting algorithmic
outcomes[17]. Related observations in large-scale bird audio systems further emphasize recording
quality and domain-shift effects across recording contexts[18].

4.5.4 Scope of interpretation

Finally, the low-dimensional manifolds presented here should not be conflated with topological
data analysis, nor do they encode any information about causal or generative models of vocal
production.

4.6 Outlook

The results of the present study suggest that shared low-dimensional manifolds may serve as
a useful exploratory tool in bioacoustics research. Potential applications may include analysis
of individuals, populations and comparison of recording contexts, as well as integration with
annotation, segmentation or quantitative measures on the embedded geometry.
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Future work could extend this framework to larger datasets, additional species and alternative
feature representations. It would also be possible to investigate how geometric properties of the
manifolds could relate to independent annotation systems or controlled experimental conditions.
However, these extensions fall outside the scope of the present study.

5 Conclusion

This study documented a fixed-parameter pipeline for constructing shared low-dimensional
manifolds from frame-level representations of passerine vocalizations, enabling direct visual
comparison of multiple individuals within a common coordinate system while preserving temporal
continuity. By applying the same protocol across three species groups and two complementary
feature spaces (MFCC and chroma), the work establishes a reproducible baseline for manifold-
based, geometry-first inspection of vocal structure.

The framework is intended as a descriptive interface that complements established spectrogram-
and feature-based practices: it supports exploratory inspection, targeted backtracking from
geometry to signal, and hypothesis generation without imposing categorical labels or biological
interpretation. It is offered as an exploratory lens and a methodological contribution: a flexible
workflow for examining vocalizations that leaves biological interpretation and analytical extensions
explicitly open.
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Supplementary Materials
Supporting information and additional sections

Table S0. Overview of supplementary materials

Section Description

S1. Supplementary Tables Recording metadata, denoising parameters, feature
computation, and PCA statistics (Tables S1–S9).

S2. Additional descriptor overlays Additional manifold visualizations with spectral
centroid and chroma energy concentration (CEC)
overlays; descriptor comparison plots (Figures S1–S3).

S3. Tree Pipit case study Observation-driven exploration of a localized manifold
region, hypothesis formulation and verification
through frame-level audio inspection; includes events
data table and figures (Table S10; Figures S4–S6).

S4. Denoising and standardization Example of the five-pass denoising workflow, spectral
preservation, and standardized output (Figure S7).

S5. Supplementary Videos Rotating 3D manifold animations showing
low-dimensional geometry of embedded trajectories
(Videos V1–V3).
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Supplementary Table S1 — Common Chaffinch group recording metadata

Table S1: Common Chaffinch (Fringilla coelebs) recordings. All recordings were converted to mono and resampled to 48 kHz prior to analysis (see Methods).

Individual
ID

XC ID Recordist Date Time Country Location Latitude Longitude Elev.
(m)

Voc.
type

Dur. (s) Orig. SR
(Hz)

Ch. Type Analyzed
seg. (s)

CHF_01 XC733984 Hannu Varkki 2022-05-24 06:10 Finland Säräisniemi,
Vaala, Kainuu

64.4424 26.7783 130 song 144.9 48000 mono mp3 0–70

CHF_02 XC800762 Daniele Baroni 2023-05-06 20:15 Finland Savojärvi, Turku,
Varsinais-Suomi

60.7435 22.3894 80 song 172.9 48000 stereo wav 0–107

CHF_03 XC841750 Cedric Mroczko 2023-05-16 19:10 Ukraine Svalovychi,
Lyubeshivs’kyi
district, Volyn
Oblast

51.8731 25.6489 140 song 282.0 44100 stereo mp3 0–86

CHF_04 XC904603 Martin Billard 2024-05-12 09:12 France Phare de la
pointe d’Agon
(near Agon-
Coutainville),
Manche,
Normandy

49.0030 -1.5770 10 song 108.0 44100 stereo wav 0–85
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Supplementary Table S2 — Tree Pipit group recording metadata

Table S2: Tree Pipit (Anthus trivialis) recordings. All recordings were converted to mono and resampled to 48 kHz prior to analysis (see Methods).

Individual
ID

XC ID Recordist Date Time Country Location Latitude Longitude Elev.
(m)

Voc.
type

Dur. (s) Orig. SR
(Hz)

Ch. Type Analyzed
seg. (s)

TP_01 XC342202 Patrik Åberg 2013-04-28 05:29 Sweden Almömosse, Hjo
Västra
Götalands län

58.2662 14.1886 220 song 177.2 44100 stereo mp3 56–138

TP_02 XC799164 Thomas
Bergman

2023-05-06 06:39 Sweden Kålsö, Mörkö,
Södermanland

58.9462 17.6537 10 song 139.7 48000 stereo mp3 0–77

TP_03 XC595957 Simon Elliott 2010-05-05 12:00 United
Kingdom

Harwood Forest,
Northumber-
land, England

55.2311 -2.0089 280 song 128.6 48000 stereo mp3 34–116

TP_04 XC908842 Olivier Swift 2024-05-16 09:29 France Arrondissement
de Bernay (near
Glos-sur-Risle),
Eure,
Normandie

49.2652 0.6970 110 song 177.5 48000 stereo mp3 0–95
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Supplementary Table S3 — Eurasian Wren group recording metadata

Table S3: Eurasian Wren (Troglodytes troglodytes) recordings. All recordings were converted to mono and resampled to 48 kHz prior to analysis (see Methods).

Individual
ID

XC ID Recordist Date Time Country Location Latitude Longitude Elev.
(m)

Voc.
type

Dur. (s) Orig. SR
(Hz)

Ch. Type Analyzed
seg. (s)

WR_01 XC564559 Peter Boesman 2020-05-31 05:50 Belgium Mechels Broek,
Mechelen,
Antwerpen

51.0177 4.5160 0 song 99.4 44100 stereo mp3 0–99

WR_02 XC884539 Beatrix
Saadi-Varchmin

2024-02-25 08:02 Germany beaver marsh
behind
Klingelbächel,
near Thaining,
Landsberg am
Lech,
Oberbayern,
Bayern

47.9699 10.9755 650 song 100.2 44100 stereo wav 0–74

WR_03 XC897088 Lennart
Jeppsson

2024-04-17 10:00 Sweden Östratorp,
Baskemölla,
Simrishamn
Municipality,
Skåne län

55.5864 14.2804 70 song 128.3 48000 stereo mp3 0–99

WR_04 XC994646 João Tomás 2025-04-23 10:02 Spain Sayago (near
Peñausende),
Zamora, Castile
and León

41.3052 -5.8789 800 song 140.0 44100 stereo wav 0–87
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Supplementary Table S4 — Denoising parameters

Table S4: Spectral denoising passes (iZotope RX, Spectral De-noise). Parameters used for the five-pass denoising chain. Each pass was rendered sequentially
on the same trimmed segment. Two denoised variants were exported for sensitivity analysis: full5 = passes 1–5 applied in order; noP4 = passes 1–3 and 5 applied in
order (pass 4 omitted).

Pass Preset name Adaptive Thr Red Smooth Artifact Algorithm FFT (ms) MR BehavSm. Synth Enh White Mask Rel (ms)
1 Birdsong_AdaptiveCleaning Y 3.8 8.7 1.4 3.8 Advanced 50 Y 1.5 8.3 6.1 3.1 1.0 80
2 Birdsong_ManualPrint N 3.4 8.7 1.4 3.8 Advanced 50 Y 1.5 8.3 5.3 2.0 1.0 80
3 Birdsong_Smoothing Y 3.8 5.5 6.0 3.8 Advanced 50 Y 1.5 8.3 6.1 3.1 1.0 80
4 Birdsong_Extreme N 3.4 12.0 4.6 3.8 Adv.+Extr. 50 Y 1.5 7.0 5.3 2.0 1.0 80
5 Birdsong_Final N 3.4 7.2 4.6 3.8 Adv.+Extr. 50 Y 1.5 7.0 5.3 2.0 1.0 80

Notes. Column abbreviations correspond to iZotope RX Spectral De-noise UI controls: Adaptive = Adaptive mode (Y/N); Thr = Threshold; Red = Reduction;
Smooth = Smoothing; Artifact = Artifact control; Algorithm = Algorithm selection; FFT = FFT size (ms); MR = Multi-resolution (Y/N); BehavSm. = Algorithm
Behavior: Smoothing; Synth = Noise Floor: Synthesis; Enh = Noise Floor: Enhancement; White = Noise Floor: Whitening; Mask = Masking; Rel (ms) = Release
time (ms). For adaptive-mode passes, Learn time = 2.5 s. Quality = Best (D*), Reduction curve enabled, and Dynamics Knee = 1.5 were held constant across passes.
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Supplementary Table S5 — SNR proxy screening for all recordings (raw audio)

Table S5: SNR proxy batch metrics computed on trimmed raw recordings. SNR proxy is estimated as 20 log10(median RMSloud/median RMSquiet) using
frame-wise RMS, with quiet and loud defined as the lowest and highest 20% of frames, respectively. Spectral flatness is reported on quiet frames as a proxy for
background noise character.

Species ID File SR (Hz) Frames SNR proxy (dB) Flatness (quiet)

Chaffinch CHF_01 XC733984 48000 8740 35.903 0.0284
Chaffinch CHF_02 XC800762 48000 13365 36.242 0.0597
Chaffinch CHF_03 XC841750 48000 10740 35.728 0.0375
Chaffinch CHF_04 XC904603 48000 10615 38.668 0.0163

Tree Pipit TP_01 XC342202 48000 10240 44.440 0.0425
Tree Pipit TP_02 XC799164 48000 9615 48.026 0.0710
Tree Pipit TP_03 XC595957 48000 10240 45.140 0.0629
Tree Pipit TP_04 XC908842 48000 11865 37.933 0.0491

Wren WR_01 XC564559 48000 12411 46.790 0.1647
Wren WR_02 XC884539 48000 9240 41.393 0.1014
Wren WR_03 XC897088 48000 12365 41.378 0.0249
Wren WR_04 XC994646 48000 10865 37.592 0.0032
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Supplementary Table S6 — Denoising sensitivity checks - Amplitude gate 30%

Table S6: Denoising sensitivity (amp gate 30%). For each recording, features extracted from the denoised audio are compared to the corresponding raw audio
on the same gated frame set (frames in the upper 30% of the raw frame-RMS distribution; RMS percentile threshold). Results are reported for two denoising variants:
full5 (passes 1–5) and noP4 (identical chain excluding pass 4). MFCC and chroma cosine similarities (per-frame) are reported as mean with the 5th percentile in
parentheses. ∆ values report the change in the mean of spectral centroid (Hz), spectral bandwidth (Hz), and CEC (unitless) relative to raw.

Species ID XC ID Dur. (s) Frames kept Centroidraw (Hz) BWraw (Hz) CECraw full5 noP4

MFCC cos120 Chroma cos ∆Centroid (Hz) ∆BW (Hz) ∆CEC MFCC cos120 Chroma cos ∆Centroid (Hz) ∆BW (Hz) ∆CEC

Common Chaffinch CHF_01 XC733984 70 2622 4053 584 0.050 0.783 (0.720) 0.999 (0.993) 19 -42 0.002 0.788 (0.721) 0.999 (0.993) 19 -44 0.002
Common Chaffinch CHF_02 XC800762 107 4010 3758 889 0.045 0.826 (0.725) 0.986 (0.926) 182 -68 0.004 0.830 (0.731) 0.986 (0.926) 177 -79 0.004
Common Chaffinch CHF_03 XC841750 86 3222 4196 677 0.056 0.879 (0.812) 0.997 (0.989) 23 -33 0.004 0.881 (0.812) 0.997 (0.989) 23 -35 0.004
Common Chaffinch CHF_04 XC904603 85 3185 4155 558 0.058 0.802 (0.706) 0.993 (0.951) 69 -101 0.005 0.803 (0.709) 0.992 (0.941) 69 -108 0.006

Tree Pipit TP_01 XC342202 82 3072 5020 337 0.098 0.872 (0.813) 0.999 (0.999) 3 -2 0.002 0.869 (0.809) 0.999 (0.999) 3 -2 0.002
Tree Pipit TP_02 XC799164 77 2885 4507 406 0.073 0.953 (0.926) 0.999 (0.998) -2 -6 0.001 0.955 (0.928) 0.999 (0.998) -2 -6 0.001
Tree Pipit TP_03 XC595957 82 3072 4705 392 0.089 0.888 (0.846) 1.000 (0.999) 2 -12 0.003 0.886 (0.841) 1.000 (0.999) 2 -13 0.003
Tree Pipit TP_04 XC908842 95 3560 5126 453 0.079 0.876 (0.780) 0.997 (0.981) 30 -17 0.003 0.878 (0.783) 0.997 (0.981) 30 -17 0.004

Eurasian Wren WR_01 XC564559 99 3710 5847 312 0.162 0.910 (0.868) 1.000 (0.999) 0 -9 0.004 0.909 (0.864) 1.000 (0.999) 0 -10 0.005
Eurasian Wren WR_02 XC884539 74 2772 5477 505 0.087 0.902 (0.826) 1.000 (0.998) 8 -33 0.003 0.901 (0.827) 1.000 (0.998) 8 -33 0.004
Eurasian Wren WR_03 XC897088 99 3710 5945 447 0.138 0.833 (0.785) 0.999 (0.997) 12 -13 0.006 0.834 (0.781) 0.999 (0.997) 12 -14 0.006
Eurasian Wren WR_04 XC994646 87 3260 5534 424 0.114 0.937 (0.894) 0.999 (0.994) 18 -74 0.004 0.937 (0.895) 0.999 (0.994) 18 -74 0.004
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Denoising sensitivity checks - Amplitude gate 70%

Table S7: Denoising sensitivity (amp gate 30%). For each recording, features extracted from the denoised audio are compared to the corresponding raw audio
on the same gated frame set (frames in the upper 70% of the raw frame-RMS distribution; RMS percentile threshold). Results are reported for two denoising variants:
full5 (passes 1–5) and noP4 (identical chain excluding pass 4). MFCC and chroma cosine similarities (per-frame) are reported as mean with the 5th percentile in
parentheses. ∆ values report the change in the mean of spectral centroid (Hz), spectral bandwidth (Hz), and CEC (unitless) relative to raw.

Species ID XC ID Dur. (s) Frames kept Centroidraw (Hz) BWraw (Hz) CECraw full5 noP4

MFCC cos120 Chroma cos ∆Centroid (Hz) ∆BW (Hz) ∆CEC MFCC cos120 Chroma cos ∆Centroid (Hz) ∆BW (Hz) ∆CEC

Common Chaffinch CHF_01 XC733984 70 6118 3541 1223 0.045 0.706 (0.574) 0.955 (0.827) 567 -580 0.014 0.714 (0.592) 0.952 (0.815) 557 -595 0.015
Common Chaffinch CHF_02 XC800762 107 9355 2902 1636 0.039 0.779 (0.685) 0.934 (0.802) 835 -499 0.017 0.788 (0.697) 0.933 (0.804) 797 -533 0.017
Common Chaffinch CHF_03 XC841750 86 7518 3758 987 0.051 0.822 (0.740) 0.971 (0.898) 146 -278 0.015 0.824 (0.744) 0.968 (0.886) 135 -302 0.017
Common Chaffinch CHF_04 XC904603 85 7430 3922 1141 0.050 0.741 (0.654) 0.935 (0.812) 695 -403 0.023 0.752 (0.671) 0.934 (0.807) 714 -252 0.025

Tree Pipit TP_01 XC342202 82 7168 4433 829 0.088 0.815 (0.697) 0.980 (0.908) 170 -290 0.014 0.816 (0.703) 0.978 (0.901) 159 -305 0.015
Tree Pipit TP_02 XC799164 77 6730 4272 646 0.063 0.933 (0.886) 0.989 (0.950) 11 -91 0.006 0.935 (0.890) 0.988 (0.949) 7 -96 0.006
Tree Pipit TP_03 XC595957 82 7168 4387 1788 0.070 0.843 (0.704) 0.958 (0.802) 366 -877 0.009 0.842 (0.713) 0.957 (0.796) 387 -867 0.010
Tree Pipit TP_04 XC908842 95 8305 3640 1054 0.065 0.842 (0.740) 0.927 (0.692) 730 -329 0.012 0.846 (0.753) 0.926 (0.690) 714 -331 0.013

Eurasian Wren WR_01 XC564559 99 8655 5975 1945 0.098 0.854 (0.736) 0.964 (0.850) -527 -1174 0.014 0.857 (0.756) 0.959 (0.828) -547 -1141 0.016
Eurasian Wren WR_02 XC884539 74 6468 4733 1020 0.073 0.844 (0.704) 0.983 (0.912) 136 -338 0.009 0.843 (0.702) 0.982 (0.911) 134 -341 0.009
Eurasian Wren WR_03 XC897088 99 8655 5057 1065 0.090 0.775 (0.652) 0.979 (0.905) 385 -243 0.011 0.774 (0.652) 0.976 (0.894) 345 -270 0.012
Eurasian Wren WR_04 XC994646 87 7605 4071 948 0.109 0.900 (0.814) 0.912 (0.522) 840 -390 -0.018 0.902 (0.820) 0.912 (0.519) 834 -391 -0.017

27



Supplementary Table S8 — Technical parameters

Table S8: Technical parameters for MFCC and chroma feature computation and embedding pipeline. The same settings were applied uniformly to all
recordings.
Stage MFCC branch Chroma branch
Audio standardization Resampling to 48,000 Hz. Stereo recordings converted to mono by channel averaging. Working format standardized prior to

feature extraction (see Methods).
Frame / STFT settings Window: Hann, 4096 samples (85.33 ms). Hop: 384 samples (8.00 ms; 125 frames/s). FFT size: 4096.
Core representation MFCC coefficients: 40. Mel bands: 128. Frequency range: 20 Hz to Nyquist. Microtonal chroma: 80 bins on an 80

equal-division-of-the-octave (80-EDO) grid.
Reference tuning: A4 = 440 Hz.

Pre-processing Pre-emphasis filter: α = 0.97. Prewhitening: α = 0.0 (disabled).
Coefficient computation DCT: type-II (orthonormal). Lifter: L = 22. Chroma bins accumulated from STFT

magnitude |X(f)| (linear amplitude; no power
weighting). Per-frame L1 normalization enabled.

Temporal derivatives Delta + delta-delta enabled, yielding 120-dimensional vectors (40 × 3). Not applied.
Delta computation
method

First and second temporal derivatives computed per coefficient using
numpy.gradient over frames (central differences; forward/backward at
boundaries).

Not applied.

Smoothing / stabilization Not applied beyond PCA preconditioning. Circular Gaussian smoothing applied to chroma
bins (σ = 0.3 bins). EMA smoothing: 1
(disabled).

Intermediate reduction PCA reduction to 20 dimensions prior to UMAP embedding (PCA-20).
UMAP (shared-manifold)
settings

Metric: Euclidean. n_neighbors = 30. min_dist = 0.1. Seed = 42. Output
dimension: 3D.

Metric: Cosine. n_neighbors = 30. min_dist
= 0.1. Seed = 42. Output dimension: 3D.

Coordinate normalization Reducer script normalization: –norm cube with –global_cube enabled (shared unit-cube normalization across embeddings;
overrides per-embedding scaling).

Reducer script arguments –scale –pca_dim_for_umap 20 –umap_neighbors 30 –umap_min_dist 0.1
–umap_metric euclidean –seed 42 –norm cube –global_cube

–scale –pca_dim_for_umap 20
–umap_neighbors 30 –umap_min_dist 0.1
–umap_metric cosine –seed 42 –norm cube
–global_cube

Chroma-derived
descriptor

Chroma Energy Concentration (CEC) computed per frame as CEC = max(c)∑
c

, where c is the 80-bin chroma vector. Used

only as a scalar-field visualization (coating), not as an input to PCA/UMAP.
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Supplementary Table S9 — PCA variance retention

Table S9: PCA variance retention. Cumulative explained variance retained (%) by PCA dimensionality reduction (PCA-15/20/30) for MFCC and chroma feature
sets, computed on concatenated frame-level datasets per species group.

Species group Feature set PCA-15 (%) PCA-20 (%) PCA-30 (%)
Eurasian Wren MFCC 50.22 58.66 72.35
Eurasian Wren Chroma 78.42 84.49 91.18

Tree Pipit MFCC 49.39 58.57 72.20
Tree Pipit Chroma 78.98 84.87 91.34

Common Chaffinch MFCC 42.17 50.26 63.17
Common Chaffinch Chroma 86.17 89.21 93.03
Mean (3 species groups) MFCC 47.26 55.83 69.24
Mean (3 species groups) Chroma 81.19 86.19 91.85
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S2. Additional descriptor overlays

The main Results section presented spectral-descriptors (centroid and Chroma Energy Concentration,
CEC) scalar-field visualizations overlaid as color coding on the Eurasian Wren group embeddings.
The following supplementary figures apply the same visualization procedure to the remaining Tree
Pipit and Common Chaffinch groups.

In each case, centroid and CEC are meant to provide interpretable anchors of spectral balance and
octave-folded concentration of chroma-bin amplitudes, while leaving the UMAP embedded geometry
unchanged. These figures are provided for completeness, to support qualitative inspection across the
three species groups under a common protocol.

S2.1 Tree Pipit group

Figure S1: Tree Pipit group. Scalar-field visualizations on the Tree Pipit manifolds: MFCC-based embedding (left) and
80-EDO chroma embedding (right) colored by spectral centroid (top, 2–9 kHz) and CEC (bottom, 0–0.6). Individual labeling is
intentionally collapsed so descriptor patterns appear as continuous distributions in the shared space.

Spectral centroid Applying spectral centroid as a scalar field to the MFCC-based and chroma-
based manifolds of the Tree Pipit group reveals smooth, structured gradients across both embedding
geometries (Fig. S1, top row). In the MFCC-based manifold (Fig. S1, top left), higher centroid
values concentrate along the leftward extension and portions of the densest central region, while
lower values dominate broad sections of the right-hand arcs, producing gradual transitions along the
main trajectories. In the chroma-based manifold (Fig. S1, top right), centroid values show a clear
large-scale organization across the envelope-like structure, with elevated values concentrated on the
right-hand bulge and portions of the upper boundary in the displayed orientation, and lower values
occupying extended regions on the opposite side.
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Chroma energy concentration Chroma energy concentration (CEC) as a scalar field highlights a
more intermittent and localized pattern (Fig. S1, bottom row). Overall, CEC remains predominantly
low across both manifolds, with higher values emerging only in restricted regions of the embedding.
In the MFCC-based manifold (Fig. S1, bottom left), elevated CEC values appear as localized patches
and short streaks, most prominently at the far-left tip and along selected segments of the lower
extension, while most of the manifold remains comparatively low. In the chroma-based manifold
(Fig. S1, bottom right), higher CEC values are strongly concentrated along portions of the outer
boundary (especially around the right-side lobe) whereas the majority of the embedded surface shows
low CEC values. Under the current uniform comparative scaling, these distributions indicate that
higher chroma-bin concentration occurs only within limited regions of the shared low-dimensional
geometry.

S2.2 Common Chaffinch group

Figure S2: Common Chaffinch group. Scalar-field visualizations on the Common Chaffinch manifolds, displayed using the
same conventions as Fig. S1

Spectral centroid. Applying spectral centroid as a scalar field to the MFCC-based and chroma-
based manifolds of the Common Chaffinch group yields a smooth but comparatively low-contrast
distribution under the current fixed global scaling (Fig. S2, top row). In the MFCC-based manifold
(Fig. S2, top left), centroid values remain largely in the lower portion of the displayed range, with
moderate increases localized to a few central trajectory bundles and selected arc segments, while
broad peripheral loops and extended excursions remain dominated by lower values. In the chroma-
based manifold (Fig. S2, top right), centroid values likewise show limited dynamic range, with slightly
elevated values concentrated along a restricted set of boundary and protruding regions (notably
toward the right side in the displayed orientation), whereas most of the envelope is occupied by
lower centroid values.
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Chroma energy concentration. Chroma energy concentration (CEC) as a scalar field reinforces
the same low-contrast behavior (Fig. S2, bottom row). Across both embeddings, CEC remains
predominantly low and visually flattened under the chosen comparative scale, with only small
localized increases along a few MFCC trajectory segments (Fig. S2, bottom left). In the chroma-
based embedding (Fig. S2, bottom right), CEC shows minimal differentiation across the manifold,
with only faint boundary-localized increases and the majority of the structure remaining at low
concentration values. Overall, within the current uniform scaling, both centroid and CEC provide
continuous, interpretable scalar fields without sharp discontinuities, but CEC exhibits a particularly
restricted effective dynamic range for this species.
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S2.3 Pairwise relationships between spectral descriptors

Figure S3: Pairwise relationships between visualization descriptors across species groups. For each species group
(rows: Eurasian Wren, Tree Pipit, Common Chaffinch), frame-level values are shown for spectral centroid vs. RMS (left), CEC
vs. RMS (middle), and CEC vs. spectral centroid (right). Points are colored by individual (legend). Dotted guides mark the
fixed visualization ranges used for the manifold overlays (centroid and CEC color scales), enabling direct verification that the
chosen common scaling captures the predominant value ranges across groups while preserving visibility of outliers (CEC clipping:
Eurasian Wren 0.27%, Tree Pipit 0.15%). The right-column panels summarize how octave-folded chroma concentration (CEC)
relates to spectral balance (centroid), contextualizing localized high-CEC regions discussed in the descriptor-overlay figures.
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S3. Supplementary case study - Tree Pipit group

S3.1 Overview

This supplementary case study illustrates a hypothesis generated from examination of the embedding
geometry and its descriptor distributions, which was subsequently verified through frame-level
analysis of raw and preprocessed audio data. The initial observation, hypothesis formulation, and
verification were carried out without prior knowledge of the specific time intervals involved; the
relevant segments were identified only after selecting a localized region in the embedding space and
mapping its frames back to audio. This emphasizes the exploratory nature of the finding, which
emerged directly from observation of the manifold structure.

S3.2 Manifold-based observation and hypothesis formulation

During qualitative inspection of the Tree Pipit chroma-based manifold, a localized region apparently
traversed by multiple trajectories was observed, exhibiting highly divergent spectral centroid values
and elevated chroma energy concentration (CEC) values. Under the fixed comparative scaling,
centroid values in this region formed two clusters visually aligned near ∼4 kHz and ∼8 kHz, while
relatively high CEC values (∼0.4–0.6) suggested concentrated chroma profiles. The co-occurrence
of high CEC and two-clusters centroid pattern within a compact multi-trajectory region enabled
formulation of an observation-driven hypothesis: the presence of recurring narrowband acoustic
events in two separate frequency regions consistent with an approximate factor of two separation.

This reasoning assumes that, under high-CEC conditions, spectral centroid is more likely to track
the dominant frequency than broadband coloration or sparse high-frequency components. This
hypothesis motivated a backtracking step from geometry to signal, to test whether the localized
region corresponded to recurring acoustic events.

Figure S4: Localized region of the Tree Pipit chroma-based embedding used for hypothesis generation. Left: full
chroma-based manifold with the region of interest indicated. Right: magnified view of the detail window, showing overlapping
trajectories and two centroid regions near ∼4 kHz and ∼8 kHz, under elevated CEC values (∼0.4–0.6). The descriptor overlays
are used here as visual cues to guide targeted backtracking from embedding space to audio.
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S3.3 Hypothesis verification

The region of interest (ROI) was manually selected by visual inspection of the chroma-based
embedding and its descriptor coatings, focusing on the compact multi-trajectory area shown in
Figure S4, and then mapped back to audio. The backtracking of ROI frames to audio confirmed
the presence of sequences of short, narrowband, frequency-modulated syllables occupying consistent
frequency regions. They were produced by all four individuals at different points in their vocalizations.
The syllables shared qualitatively similar spectral-envelope profiles and occupied two frequency
regions near ∼4 kHz and ∼8 kHz, consistent with the bifurcated centroid pattern that motivated
the hypothesis.

S3.4 Results

Figure S5: Representative event set recovered from the localized embedding region. Ascending (M1–M3) and
descending events (M4–M17). Each panel is labeled by individual and Xeno-canto recording reference, with time intervals
reported for both the standardized audio segment used for embedding and the original raw recording. The bottom row provides
enlarged exemplars for each event category to highlight typical morphology. In particular, descending grouped composite events
exhibit a higher frequency onset (∼6–7 kHz) followed by a lower-frequency tail near ∼4 kHz; the highlighted ROI-linked portion
corresponds to this lower tail.

Seventeen acoustic events corresponding to the localized manifold region were identified by back-
tracking from ROI to audio (Fig. S5). The events occur predominantly in the ∼4 kHz and ∼8 kHz
frequency regions. Here, the ∼4 kHz and ∼8 kHz labels are used as shorthand for the approximate
upper extent of the dominant sweep (approximately spanning ∼2–4 kHz and ∼6–8 kHz, respectively).
They are not to be interpreted as strict frequency bounds.

Across the recovered set, the events are grouped in two contour families defined by the direction of
their frequency modulation: ascending (M1–M3) and descending (M4–M17). Within the descending
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set, three descriptive sub-families were defined: a grouped unit in the upper region (M4); single-
syllable upper-frequency hooks (M5–M10, M14, M16), and groups of composite syllables (M11, M12,
M13, M15, M17), characterized by a higher-frequency onset around ∼6–7 kHz followed by a lower-
frequency tail near ∼4 kHz. In these composite events, their tail corresponds to the ROI-traversing
portion of the manifold anchored to the ∼4 kHz region, while centroid coatings also indicate an
upper-frequency regime.

Figure S6: Event-derived trajectory segments and schematic path diagram. Trajectory segments corresponding to the
events in Fig. S5 projected back into the full chroma-based manifold. Colored points indicate event-associated frames grouped
by contour family and frequency region; the remaining manifold is shown in low opacity for context. The grey dashed outline
indicates the initial ROI used for backtracking. Right: stylized path diagram summarizing the dominant shared ridge and branch
directions (schematic; not to scale).

When projected back into the embedding space, the event-associated trajectory segments from all
categories converge onto the same compact ridge-like region used for hypothesis formulation, and
then depart along a small number of recurrent branches (Fig. S6, left). The stylized path diagram
illustrates these dominant directions in a schematic manner (Fig. S6, right).

Under the fixed viewpoint used for visualization, ascending-contour segments (M1–M3, red and
orange arrows) traverse the ridge predominantly in one projected direction, whereas descending-
contour segments (M4–M17, yellow, green and cyan arrows) traverse it in the opposite projected
direction, consistent with the reversal in sweep polarity, while retaining forward time progression.

Notably, upper-frequency single-syllable events from three individuals (TP_01, TP_02, TP_03)
align along a narrow filament-like subpath (M5–M10, M14, M16; green), while the upper-frequency
grouped syllable from TP_04 follows along the same route (M4, yellow), making this subpath
common to all four individuals. In contrast, grouped composite syllables associated to TP_02
(M11–M13, M15, M17, cyan) populate a distinct excursion direction linked to the onset-plus-tail
morphology. Together, these observations show that multiple spectro-temporal event types, spanning
different frequency regimes and contour polarities, can map onto shared and repeatable subpaths of
the chroma-based manifold under the fixed pipeline.

S3.5 Conclusion

The aim of this exploratory case study is to illustrate how low-dimensional acoustic embeddings can
assist inspection of fine-grained structural patterns within multi-individual vocal datasets, without
inferring cognitive or behavioral mechanisms. It provides an example of how manifold-based visual
exploration can guide targeted backtracking from geometry to waveform and spectrogram, allowing
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the recovery of consistent, frequency-specific events.

The Tree Pipit chroma-based embedding highlighted a compact corridor traversed by multiple
individuals, associated with a bifurcated centroid pattern and elevated CEC values. Backtracking
confirmed the recurrence of narrowband events occurring in two frequency regions with an approxi-
mate factor of two separation and exhibiting consistent contour families (including both ascending
and descending modulation patterns). The full set of identified events (timing, duration, class, and
frequency region) is summarized in Supplementary Table S10.

Furthermore, the case in question highlights the potential of chroma-based representations to identify
subtle organizational features in vocalization structures, which may serve as a bridge between raw
acoustic data and more structured patterns. Such visualizations may offer a complementary means
of hypothesis generation regarding signal organization, independent of manual segmentation or
categorical labeling.
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Table S10: Details of Tree Pipit (Anthus trivialis) events corresponding to the region highlighted in Figure S4. Standardized times refer to the
preprocessed one-minute excerpts used for embedding; raw times correspond to the original Xeno-Canto recordings. Frequency regions are approximate and refer to the
dominant frequency of the highlighted event; for composite events, the highlighted portion corresponds to the lower-frequency tail near ∼4 kHz, while the onset
occupies a higher frequency near ∼6–7 kHz.

Event ID Individual (XC ID) Std. (s) Raw (s) Dur. (s) Event type Region (kHz) Notes
M1 TP_04 – XC908842 02.818–05.668 05.756–08.606 2.85 Ascending grouped 4 6 repeated syllables
M2 TP_04 – XC908842 11.206–14.000 18.739–21.533 2.79 Ascending grouped 8 9 repeated syllables
M3 TP_04 – XC908842 32.264–35.324 48.080–51.140 3.06 Ascending grouped 8 10 repeated syllables
M4 TP_04 – XC908842 44.293–45.800 73.444–74.951 1.51 Descending grouped 8 4 repeated syllables
M5 TP_01 – XC342202 49.677–50.443 64.772–65.536 0.77 Descending single 8 Single syllable
M6 TP_01 – XC342202 57.566–58.500 78.820–79.739 0.93 Descending single 8 Single syllable
M7 TP_03 – XC595597 09.318–09.928 11.468–12.078 0.61 Descending single 8 Single syllable
M8 TP_03 – XC595597 16.776–17.386 22.017–22.627 0.61 Descending single 8 Single syllable
M9 TP_03 – XC595597 22.720–23.315 30.518–31.113 0.60 Descending single 8 Single syllable
M10 TP_03 – XC595597 36.978–37.587 50.076–50.685 0.61 Descending single 8 Single syllable
M11 TP_02 – XC799164 02.509–05.262 02.500–05.253 2.753 Descending

composite grouped
4 7 repeated syllables

M12 TP_02 – XC799164 14.030–15.796 19.167–20.933 1.766 Descending
composite grouped

4 5 repeated syllables

M13 TP_02 – XC799164 36.490–39.224 48.715–51.449 2.734 Descending
composite grouped

4 7 repeated syllables

M14 TP_02 – XC799164 40.310–40.689 52.535–52.915 0.38 Descending single 8 Single syllable
M15 TP_02 – XC799164 48.017–50.283 63.859–66.125 2.266 Descending

composite grouped
4 6 repeated syllables

M16 TP_02 – XC799164 56.339–56.993 73.723–74.378 0.655 Descending single 8 Single syllable
M17 TP_02 – XC799164 57.498–58.461 74.885–75.847 0.963 Descending

composite grouped
4 3 repeated syllables
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S4. Denoising and standardization workflow example

Figure S7: Example of the denoising and standardization workflow (Tree Pipit; TP_02 — XC799164). From top
to bottom: spectrograms of the original recording (raw audio), five sequential iZotope RX11 denoising stages (Pass 1–Pass 5 ;
user-defined preset labels shown for traceability), and the standardized 60 s excerpt used for feature extraction and embedding.
Standardization is performed by manually selecting vocalization events from the denoised recording and assembling them into a
fixed-duration sequence in which all non-vocal intervals are replaced by digital silence. This yields a uniform 60 s input across
recordings, ensuring comparable contribution from each individual to the shared manifolds while preserving the temporal ordering
and internal structure of the retained vocal segments.
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S5. Supplementary videos

Three supplementary videos provide animated views of the manifolds, to facilitate qualitative
inspection beyond fixed points of view.

• Supplementary Video V1 (37 s). Paired shared manifolds for all species groups (solid-color
individuals). Montage of the six shared embeddings (three species groups × two feature
spaces: MFCC and chroma). Individuals are shown with solid colors to visualize overlap,
inter-individual consistency, and trajectory organization within each shared space.

• Supplementary Video V2 (28 s). Descriptor-coated manifolds. Selection of shared
embeddings visualized with individual identity collapsed, with spectral centroid and Chroma
Energy Concentration (CEC) shown as scalar-field color coatings.

• Supplementary Video V3 (33 s). Supplementary case study workflow (from observation
of region of interest to recovered events). Video companion to the Tree Pipit supplementary
case study. First, a close view of the region of interest is shown in the chroma embedding
with centroid and CEC coatings, showing where the observation originated (Fig. S4). The
video then visualizes the resulting trajectory segments corresponding to the recovered events
(Fig. S6). The full manifold is shown in transparency for context.

All videos are 1920x1080 resolution, 30 fps, mp4 h264 format. Links are available via Zenodo (DOI:
10.5281/zenodo.18332166).
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